

Algebra I/Introduction to Algebra V

Due: Please upload solutions to NUCT by Tuesday, June 22, 2021.

Problem 1. Let $G = \Sigma_4$ be the symmetric group on 4 letters, and recall that G has 5 conjugacy classes of elements with representatives $x_1 = e$, $x_2 = (12)$, $x_3 = (12)(34)$, $x_4 = (123)$, and $x_5 = (1234)$. The number $\ell_i = [G : G_{x_i}]$ of elements in the conjugacy class containing x_i is $\ell_1 = 1$, $\ell_2 = 6$, $\ell_3 = 3$, $\ell_4 = 8$, and $\ell_5 = 6$. In Lecture 7, we defined 5 pairwise non-isomorphic irreducible finite dimensional complex representations of G , namely, the trivial 1-dimensional representation π_1 , the 1-dimensional sign representation π_2 , the 3-dimensional standard representation π_3 , the 3-dimensional representation $\pi_4 = \pi_2 \otimes \pi_3$, and a 2-dimensional representation π_5 obtained from the standard representation $\bar{\pi}_3$ of $\bar{G} = \Sigma_3$.¹ Let χ_i be the character of π_i . By using the definition of π_1 , π_2 , and π_3 it is (rather) easy to find the values of χ_1 , χ_2 , and χ_3 on the x_1, \dots, x_5 :

x_i	e	(12)	$(12)(34)$	(123)	(1234)
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
χ_3	3	1	-1	0	-1
χ_4	3	?	?	?	?
χ_5	2	?	?	?	?
ℓ_i	1	6	3	8	6

Please answer the following questions:

(a) Find the values of χ_4 on x_1, \dots, x_5 .

[Hint: Use that $\chi_{\pi \otimes \tau} = \chi_\pi \cdot \chi_\tau$.]

(b) Find the values of χ_5 on x_1, \dots, x_5 .

[Hint: Use that $(\chi_1, \chi_2, \chi_3, \chi_4, \chi_5)$ is a basis of $Z(\mathbb{C}[G])$ and orthonormal with respect to the Schur inner product to produce a system of 4 linear equations in the 4 variables $\chi_5(x_2)$, $\chi_5(x_3)$, $\chi_5(x_4)$, and $\chi_5(x_5)$ and solve it.]

(c) Find the non-negative integers m_1, \dots, m_5 such that

$$\pi_3 \otimes \pi_3 \simeq \pi_1^{m_1} + \pi_2^{m_2} + \pi_3^{m_3} + \pi_4^{m_4} + \pi_5^{m_5}.$$

Here π^m denotes the direct sum of m copies of π .

[Hint: Use that $(\chi_1, \chi_2, \chi_3, \chi_4, \chi_5)$ is a basis of $Z(\mathbb{C}[G])$ that is orthonormal with respect to the Schur hermitian inner product.]

¹In the language of Lecture 9, we defined a group homomorphism $p: G = \Sigma_4 \rightarrow \bar{G} = \Sigma_3$ and defined $\pi_5 = p^*(\bar{\pi}_3)$ to be the representation of G obtained from the (2-dimensional) standard representation $\bar{\pi}_3$ of \bar{G} obtained by restriction along p .