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1. Category theory

As it is currently formalized, mathematics builds on the notion of a set. This
means that all mathematical objects are sets. We agree that sets are undefinable
but that they satisfy a list of basic assumptions (the ZFC axioms1) and all of
mathematics is built by combining these basic assumptions. At present, however,
a revolution is underway which, in my opinion, eventually will replace sets as the
building blocks of mathematics by the new notion of anima (or animated sets).

The purpose of this series of lectures is to being to explain what anima are and
what are they good for. This can only be a partial explanation for two reasons.
First, we do not yet understand the true nature of anima. In particular, we do
not know a list of basic assumptions that they must safisfy or even a language
in which to express these basic assumptions. (Lurie has constructed a theory of
anima within set theory, and while this gives a workable and powerful theory, it
does not answer these questions.) Second, the full-fledged theory of∞-categories is
too much to cover in these lectures. So we will settle for the theory of 1-categories,
which is good enough to amply display the difference with set theory and illustrate
the salient features of the new theory.

The main distinction with set theory is that equality is not a meaningful notion
in the new setting. We cannot say that two objects x and y are equal. Instead, we
must explicitly say how to compare x and y. This is a big difference! For to say
that x = y is a property, whereas to provide a comparison f : y → x is structure.
We already know this phenomenon well from many parts of mathematics. To wit,
in linear algebra, it is not meaningful to ask if two vector spaces V and W are
equal. Instead we should produce a linear map f : W → V and show that it is an
isomorphism. The map f : W → V tells us how to translate between V and W and
not only that a translation is possible. Obviously, knowing how to translate is much
more useful than knowing that a translation is possible.

Let us now make some precise definitions. Since we have nothing better available
at the moment, we will define the notion of a category within set theory.

Definition 1.1. A category to is a sextuple

C = (C0,C1, s, t, e, ◦)

consisting of a set C0, whose elements are called the objects of C, a set C1, whose
elements are called the morphisms of C, two maps s, t : C1 → C0 that to a morphism
assign its source and target, a map e : C0 → C1 that to an object assigns its identity
morphism, and a map ◦ : C2 → C1, from the subset

C2 = {(f, g) ∈ C1 × C1 | s(f) = t(g)} ⊂ C1 × C1

of composable morphisms to the set of morphisms that to a pair (f, g) of composable
morphisms assigns their composition f ◦ g, subject to the following axioms:

(C1) For all (f, g) ∈ C2, s(f ◦ g) = s(g) and t(f ◦ g) = t(f).
(C2) For all f ∈ C1, f ◦ e(s(f)) = f = e(t(f)) ◦ f .

1 For example, the first axiom reads ∀x∀y[∀z(z ∈ x ⇔ z ∈ y) ⇒ x = y], which means that

if two sets x and y have the same elements, then they are equal; and the second axiom reads
∃x∀y¬(y ∈ x), which means that there exists a set x, which has no elements. By the first axiom,

this set x is unique, and we denote it by ∅ and call it the empty set.
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(C3) For all (f, g, h) ∈ C3, (f ◦ g) ◦ h = f ◦ (g ◦ h), where C3 ⊂ C1 × C1 × C1 is
the subset of (f, g, h) with s(f) = t(g) and s(g) = t(h).

The axioms (C1)–(C3) formalize the behavior of maps that we are used to. If C is
a category and if f ∈ C1 is a morphism, then we will write f : y → x to indicate that
s(f) = y and t(f) = x. Also, if x ∈ C0 is an object, then we will write idx : x→ x for
its identity morphism e(x) ∈ C1. With this notation, we indicate that composable
morphisms f and g have composition h = f ◦ g by saying that the diagram

z

x

y
g

//

f

]]

h

AA

commutes. This expresses the content of (C1), which is that g and h have the same
source, while f and h have the same target. Similarly, the axiom (C2) expresses
that for every morphism f , the diagrams

y

x

y
idy

//

f

]]

f

AA

y

x

x

f

AA

idx

]]

f
//

commute, whereas the axiom (C3) expresses that if f , g, and h are three composable
morphisms, then the tetrahedral diagram

w

z

y

x

h ))

b 00

c

BB

g

==

f

__

a

RR

commutes.

Example 1.2. (1) If X is a set, then the sextuple C = (X,X, idX , idX , idX , ◦), where
◦ : C2 → C1 is the map that to (x, x) ∈ C2 assigns x ∈ C1, is a category. In this
category, the only morphisms are the identity morphisms idx : x→ x. We say that
such a category is a static category. It is common to abuse notation and denote the
category C by X. If X = ∅, then we call C the empty category.

(2) If G is a group, then the sextuple C = (1, G, p, p, e, µ), where 1 = {0} is the
first non-empty ordinal, p : G→ 1 is the unique map, e : 1→ G is the map that to
0 ∈ 1 assigns the identity element e = e(0) ∈ G, and µ : G × G → G is the map
that to (g, h) ∈ G × G assigns their product µ(g, h) = gh ∈ G, is a category. This
category is denoted by BG.

These two examples are both rather extreme. In the first example, we have many
objects (assuming that X has many elements), but we cannot compare objects,
unless they are equal. And in the second example, we have a single object, but we
now have many different ways of comparing this object to itself (assuming that G
has many elements). We wish to consider some more familiar examples, such as the
category of all sets and the category of all k-vector spaces. But here we run into
the problem that set theory does not allow us to form a set of all sets or a set of
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all k-vector spaces. This problem has nothing to do with category theory. It is the
word “all” that is the problem. So we introduce the word “small” to counter it.2

We will assume that small sets satisfy the ZFC axioms.

Example 1.3. We define the category Set of small sets as follows. The set of objects
is the set Set0 of all small sets. Let X,Y ∈ Set0, and let P(Y ×X) ∈ Set0 be the
power set of their product. We recall that (Y,X,Γf ) ∈ Set0 is defined to be a map
from Y to X if Γf ∈ P(Y ×X) and if for all y ∈ Y , there exists a unique x ∈ X such
that (y, x) ∈ Γf . In this situation, we write f : Y → X to indicate that (Y,X,Γf )
is a map from Y to X and we write f(y) = x to indicate that (y, x) ∈ Γf . Now, the
set of morphisms is the set

Set1 = {(Y,X,Γf ) ∈ Set0 | (Y,X,Γf ) is a map from Y to X},
and the maps s, t : Set1 → Set0 are defined by s(Y,X,Γf ) = Y and t(Y,X,Γf ) = X.
The map e : Set0 → Set1 is defined by e(X) = (X,X,∆), where ∆ ⊂ X ×X is the
diagonal, and finally, the map ◦ : Set2 → Set1 is defined by

(Y,X,Γf ) ◦ (Z, Y,Γg) = (Z,X,Γh),

where (z, x) ∈ Γh if and only if (y, x) ∈ Γf and (z, y) ∈ Γg. So in more familiar
notation, we have h(z) = f(g(z)).

As these examples illustrate, making definions within set theory is cumbersome
and forces us to include a lot of structure that we are not really interested in after
all. For example, we do usually not think of a map of sets f : Y → X in terms of
a triple (Y,X,Γf ) of two sets and a graph of a function. Instead, category theory
allows us to make definitions in terms of properties that we actually are interested
in. Let us now illustrate this with the definition of a product.

Definition 1.4. Let C be a category. A product of a pair (x1, x2) of objects in C is
a triple (y, p1 : y → x1, p2 : y → x2) of an object y and two morphisms pi : y → xi
in C with the property that if (z, f1 : z → x1, f2 : z → x2) is any such triple, then
there exists a unique morphism f : z → y such that the diagram

z

x1 y x2

f1

��

f2

��

f

��p1oo
p2 //

commutes.

A product of a pair of objects is not unique. Instead, it is unique, up to unique
isomorphism. But this is a good thing! It means that we have exactly managed
to ignore the unnecessary structure that set theory forced us to consider. Let us
now prove this uniqueness statement. First, we define a morphism f : y → x in a
category C to be an isomorphism if there exists a morphism g : x→ y in the opposite
direction such that the composite morphisms f ◦ g : x → x and g ◦ f : y → y are
equal to the the identity morphisms idx : x → x and idy : y → y, respectively. In
this case, we say that g is an inverse of f .3

2 If α is an ordinal in our model of ZFC set theory, then we can form the set Vα consisting of

the sets of rank < α. The set Vκ is itself a model of ZFC set theory if and only if κ is a strongly

inaccessible cardinal. Since κ /∈ Vκ, we cannot prove within ZFC set theory that such a κ exists.
3 The inverse of a morphism is unique.
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Proposition 1.5. Let C be a category, and let (x1, x2) be a pair of objects in C.
If both (y, p1 : y → x1, p2 : y → x2) and (y′, p′1 : y′ → x1, p

′
2 : y′ → x2) are products

of (x1, x2), then the unique morphisms p′ : y′ → y and p : y → y′ are each other’s
inverses.

Proof. We show that p′ ◦ p = idy; the proof that p ◦ p′ = idy′ is analogous. By the
definition of a product, the diagram

x1 y x2

x1 y′ x2

x1 y x2

p1oo
p2 //

idx1

��

idx2

��

p

��p′1oo
p′2 //

idx1

��

idx2

��

p′

��p1oo
p2 //

commutes. It follows (by the associativity of composition) that the diagram

x1 y x2

x1 y x2

p1oo
p2 //

idx1

��

idx2

��

p′◦ p
��p1oo

p2 //

commutes. But so does the diagram

x1 y x2

x1 y x2,

p1oo
p2 //

idx1

��

idx2

��

idy

��p1oo
p2 //

and therefore, it follows from the uniqueness statement in the definition of a product
that p′ ◦ p = idy, as we wanted to prove. �

When we say that a product of (x1, x2) is unique, up to unique isomorphism,
we mean that Proposition 1.5 holds. It shows that, while two products of (x1, x2)
may not be equal, we have a unique way to compare one to the other. This is all
we care about. Indeed, if I make calculations in one and you make calculations in
another, then we can compare our calculations. Because of this, we agree to write

(x1 × x2, p1 : x1 × x2 → x1, p2 : x1 × x2 → x2)

for any product of (x1, x2) with the understanding that this product is defined, up
to unique isomorphism, only. Moreover, given (z, f1 : z → x1, f2 : z → x2), we write

z x1 × x2
(f1,f2)

//

for the unique morphism f that makes the diagram in Definition 1.4 commute.

In a category C, it may or may not be true that every pair of objects admits a
product. It every pair of objects in C does admit a product, then we say that C

admits binary products.
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Proposition 1.6. The category Set of small sets admits binary products.

Proof. We give one possible definition of the product of a pair (X1, X2) of small sets
within set theory. We may view the pair (X1, X2) as a map X : {1, 2} → Set0, and
in this situation, the axioms of set theory allow us to form the union

⋃
i∈{1,2}Xi.

We now define the set-theoretic product of (X1, X2) to be the subset

X1 ×X2 ⊂ Map({1, 2},
⋃
i∈{1,2}Xi)

of those maps x : {1, 2} →
⋃
i∈{1,2}Xi such that x(i) ∈ Xi for all i ∈ {1, 2}. Given

such a map x, we also write xi instead of x(i) and (x1, x2) instead of x, and for all
i ∈ {1, 2}, we define pi : X1 ×X2 → Xi to be the map that to (x1, x2) assigns xi.
We now claim that the triple

(X1 ×X2, p1 : X1 ×X2 → X1, p2 : X1 ×X2 → X2)

is a product of (X1, X2) in Set. Indeed, given

(Z, f1 : Z → X1, f2 : Z → X2),

the map f : Z → X1 ×X2 defined by f(z) = (f1(z), f2(z)) makes the diagram

Z

X1 X1 ×X2 X2

f1

��

f2

��

f

��p1oo
p2 //

commute and is unique with this property. �

Let us notice that in Definition 1.4 and Propositions 1.5 and 1.6, the only prop-
erty of the index set {1, 2} that we used was that it was a small set. So let us
upgrade the definition and the propositions to small products in general. As is
common, given a map of sets x : I → X, we will also say that x is an I-indexed
family of elements in X and write (xi)i∈I instead of x : I → X, where xi = x(i).

Definition 1.7. Let C be a category. A product of a family (xi)i∈I of objects in C is
a pair (y, (pi : y → xi)i∈I) of an object y and a family (pi : y → xi)i∈I of morphisms
with the property that if (z, (fi : z → xi)i∈I) is any such pair, then there exists a
unique morphism f : z → y such that fi = pi ◦ f : z → xi for all i ∈ I.

The proof of Proposition 1.5 generalizes to show that, if it exists, then a product
of a family of objects in a category is unique, up to unique isomorphism. So if
(xi)i∈I is a family of object in a category C, then we agree to write

(
∏
i∈I xi, (pi :

∏
j∈I xj → xi))

for any product of this family, again with the understanding that this product is
only well-defined, up to unique isomorphism. Given (z, (fi : z → xi)i∈I), we write

z
∏
i∈I xi

(fi)i∈I
//

for the unique morphism f such that fi = pi ◦ f for all i ∈ I. We say that C admits
all products, if every family of objects in C admits a product, and we say that C

admits all small products, if every family of objects in C indexed by a small set
does so.
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Addendum 1.8. The category Set admits all small products.

Proof. Let X : I → Set0 be a family of small sets indexed by a small set I. The
axioms of set theory allow us to form the union

⋃
i∈I Xi, and since I and each of

the Xi are small, so is this union. Hence, as in the proof of Proposition 1.6, we
define the set-theoretic product of (Xi)i∈I to be the subset∏

i∈I Xi ⊂ Map(I,
⋃
i∈I Xi)

of those maps x : I →
⋃
i∈I Xi such that x(i) ∈ Xi for all i ∈ I, and we define∏

j∈I Xj
pi // Xi

to be the map that to (xj)j∈I assigns xi ∈ Xi. Now, the pair

(
∏
i∈I Xi, (pi :

∏
j∈I Xj → Xi)i∈I)

is a product in Set of the family of objects (Xi)i∈I . �

Remark 1.9. The category Set does not admit all products. More generally, if C is
a category, and if C admits products by families of objects (xi)i∈I , where I has the
same cardinality κ as the set C1 of morphisms, then the set of morphisms between
any two objects in C cannot have more that one element. Indeed, suppose that
(x, y) is a pair of objects in C such that the set Map(y, x) of morphisms f : y → x
has at least two elements, and suppose that a product (z, (pg : z → x)g∈C1) of the
(constant) family of objects (x)g∈C1 exists. Now, on the one hand, we have that
Map(y, z) ⊂ C1, so the cardinality of Map(y, z) is at most κ, and on the other hand,
the definition of product shows that the maps pg : z → x induce a bijection

Map(y, z) //
∏
g∈C1

Map(y, x),

so the cardinality of Map(y, z) is at least 2κ, because Map(y, x) has cardinality
at least 2. So the assumption implies that κ ≥ 2κ, which, by Cantor’s diagonal
argument, is impossible.

Example 1.10. It is always good to consider extreme cases. In Definition 1.7, we can
take I = ∅ to be the empty set and (xi)i∈I to be the empty family corresponding to
the unique map x : ∅ → C0. By definition, a product of the empty family is a pair
(y, p : ∅ → C1) of an object y and a map p : ∅ → C1, such that if also (z, q : ∅ → C1)
is such a pair, then there exists a unique map f : z → y such that q = p ◦ f . The
condition q = p ◦ f : ∅ → C1 is automatically satisfied, since such a map is unique.
So to give a product of the empty family is equivalent to giving an object y with
the property that for every object z, there exists a unique map f : z → y. We say
that an object y with this property is a terminal or final object. It is common to
write 1 or ∗ for a terminal object. The terminal objects in Set are the small sets
that have precisely one element.

The notion of a product is a special example of the more general notion of a
limit, which we will discuss in detail in the next lecture. However, we will now
discuss the special case of a base-change.
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Definition 1.11. Let C be a category, and let (f : y → x, g : x′ → x) be a pair of
morphism in C with common target. A pullback of (f, g) is a pair of morphisms
(g′ : y′ → y, f ′ : y′ → x′) in C with common source such that the diagram

y′ y

x′ x

g′
//

f ′

��

f

��
g
//

commutes and such that if (b : z → y, a : z → x′) is any such pair, then there exists
a unique morphism h : z → y′ such that a = f ′ ◦ h and b = g′ ◦ h.

We also express the fact that (g′, f ′) is a pullback of (f, g) by saying that f ′ is
a base-change of f along g and that g′ is a base-change of g along f or by saying
that the diagram in Definition 1.11 is cartesian. A pullback is unique, up to unique
isomorphism, and we also write (p1 : y×x x′ → y, p2 : y×x x′ → x′) for any pullback
of (f, g). We say that a category admits pullbacks if every pair of morphisms with
a common target therein admits a pullback.

Proposition 1.12. The category Set admits pullbacks.

Proof. Given a pair (f : Y → X, g : X ′ → X) of maps with common target, let

Y ′ = Y ×X X ′ = {(y, x′) ∈ Y ×X ′ | f(y) = g(x′)} ⊂ Y ×X ′,

and let g′ : Y ′ → Y and f ′ : Y ′ → X ′ be the maps that to (y, x′) assign y and x′,
respectively. Then (g′, f ′) is a pullback of (f, g). �

Example 1.13. Let C be a small category. Given a pair (y, x) of objects in C, we
define the set of morphisms in C from y to x to be the pullback

Map(y, x)
(y,x)′

//

(s,t)′

��

C1

(s,t)

��

1
(y,x)

// C0 × C0

in Set. Here 1 denotes a terminal object in Set the lower horizontal map takes the
unique element of 1 to the element (y, x) ∈ C0×C0. The base-change (s, t)′ of (s, t)
along (y, x) is the unique map to the terminal object. Moreover, the diagram

C2
t′ //

s′

��

C1

s

��

C1
t // C0,

where s′(f, g) = g and t′(f, g) = f , is cartesian.

There is another feature of category-theoretical definitions, which is that if we
reverse all the arrows, then we get a definition of a “dual” concept. In the case of
the product, the dual concept is called a coproduct.
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Definition 1.14. Let C be a category. A coproduct of a family (xs)s∈S of objects
in C is a pair (y, (is : xs → y)s∈S) of an object y and a family (is : xs → y)s∈S of
morphisms such that if (z, (fs : xs → z)s∈S) is any such pair, then there exists a
unique morphism f : y → z such that fs = f ◦ is : xs → z for all s ∈ S.

A coproduct of (xs)s∈S is unique, up to unique isomorphism, and we write

(
∐
s∈S xs, (is : xs →

∐
t∈S xt)s∈S)

for any coproduct of (xs)s∈S , and given (z, (fs : xs → z)s∈S). We also write

∐
s∈S xs z

∑
s∈S fs

//

for the unique morphism f such that fs = f ◦ is for all s ∈ S. The summation
symbol does not (necessarily) indicate an actual sum.

Example 1.15. A coproduct of the empty family in a category C determines and is
determined by an object y with the property that for every object x in C, there is
a unique map f : y → x. We say that an object y with this property is an initial
object. It is common to write 0 or ∅ for an initial object. The category Set has a
unique initial object, namely, the empty set ∅.

Proposition 1.16. The category Set admits small coproducts.

Proof. The coproduct in the category Set is given by disjoint union, which is defined
set theoretically as follows. If (Xs)s∈S is a family of sets, then we let∐

s∈X Xs = {(x, s) ∈ (
⋃
s∈S Xs)× S | x ∈ Xs ⊂

⋃
t∈S Xt},

and let is : Xs →
∐
t∈S Xt be the map defined by is(x) = (x, s). Given a pair

(Z, (fs : Xs → Z)s∈S), the map f :
∐
s∈S Xs → Z defined by f(x, s) = fs(x)

satisfies fs = f ◦ is for all s ∈ S and is unique with this property. �

We will next prove a theorem, which states that fiber products and coproducts
in the category Set interact in a particular way. The fact that they do so is quite
special and is part of what it means for Set to be a Grothendieck topos. The same
theorem holds for the ∞-category of anima.

Theorem 1.17. The category Set has the following properties.

(1) Coproducts are universal: If (fs : Ys → X)s∈S is a family of maps, and if
(f ′s : Y ′s → X ′)s∈S is the family of maps obtained by base-change along a
map g : X ′ → X, then the diagram∐

s∈S Y
′
s

//

��

∐
s∈S Ys

��

X ′
g

// X

is cartesian.
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(2) Coproducts are disjoint: If (fs : Ys → X)s∈S is a family of maps, then for
all s ∈ S, the diagram

Xs

idXs //

idXs

��

Xs

is

��

Xs
is //

∐
u∈S Xu

is cartesian, and for all s, t ∈ S with s 6= t, the diagram

∅ //

��

Xs

is

��

Xt
it //

∐
u∈S Xu

is cartesian.

Proof. We first prove (1). For every s ∈ S, the map is : Ys →
∐
t∈S Yt induces a

map is×XX ′ : Ys×XX ′ → (
∐
t∈S Yt)×XX ′, and the family of these maps indexed

by s ∈ S, in turn, induces the map∐
s∈S(Ys ×X X ′) (

∐
s∈S Ys)×X X ′,

∑
s∈S(is×XX

′)
//

which we wish to prove is a bijection. To this end, we will use the explict model of
the fiber product and the coproduct from Propositions 1.12 and 1.16. The elements
of the left-hand side are tuples ((y, x′), s) with s ∈ S, y ∈ Ys, and x′ ∈ X ′ such that
fs(y) = g(x′), and the elements of the right-hand side are tuples ((y, s), x′) with
s ∈ S, y ∈ Ys, and x′ ∈ X ′ such that fs(y) = g(x′). Moreover, the map in question
takes ((y, x′), s) to ((y, s), x′), so it is indeed a bijection, as stated.

We next prove (2). In the model for the coproduct provided by Proposition 1.16,
the map is : Xs →

∐
u∈S Xu takes x ∈ Xs to (x, s) ∈ (

⋃
u∈S Xu) × S, and in the

model for the fiber product provided by Proposition 1.12, the pullback of (is, it) is
given by subset of Xs×Xt consisting of the pairs (x1, x2) such that is(x1) = it(x2),
or equivalently, such that (x1, s) = (x2, t). If s = t, then this equality holds if and
only if x1 = x2, which shows that the first diagram in (2) is cartesian, and if s 6= t,
then the equality does not hold for any (x1, x2) ∈ Xs ×Xt, which shows that also
the second diagram in (2) is cartesian. �

We will use Theorem 1.17 to give an equivalent definition of a category that only
requires us to specify each of the individual morphism sets Map(y, x) and not the
full morphism set C1, which is often easier. This description, however, is based on
the following lemma, which has no analogue for anima.

Lemma 1.18. For every set S, the map∐
s∈S {s} // S

induced by the canonical inclusions is a bijection.

Proof. This is a rephrasing of the (ZFC) axiom of extensionality, which states that
two sets agree if and only if the have the same elements. �
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Corollary 1.19. Let C be a small category. The map∐
(y,x)∈C0×C0

Map(y, x) // C1

induced by the canonical inclusions is a bijection.

Proof. For every (y, x) ∈ C0 × C0, the diagram

Map(y, x) //

��

C1

(s,t)

��

{(y, x)} // C0 × C0

is cartesian, so Theorem 1.17 (1) shows that the induced diagram∐
(y,x)∈C0×C0

Map(y, x) //

��

C1

(s,t)

��∐
(y,x)∈C0×C0

{(y, x)} // C0 × C0

is cartesian. But the lower horizontal map is a bijection, by Lemma 1.18, and hence,
so is the upper horizontal map. �

Corollary 1.20. Let C be a small category. There is a cartesian diagram∐
(z,y,x)∈C0×C0×C0

Map(y, x)×Map(z, y)
t′ //

s′

��

∐
(u,x)∈C0×C0

Map(u, x)

s

��∐
(z,v)∈C0×C0

Map(z, v)
t // C0

in which the maps are defined as follows: The (u, x)th component of the map s takes
every element of Map(u, x) to u ∈ C0, the (z, v)th component of the map t takes
every element of Map(z, v) to v ∈ C0, and finally, the (z, y, x)th component of the
maps t′ and s′ are given by the composite maps

Map(y, x)×Map(z, y)
p1 // Map(y, x)

i(y,x)
//
∐

(v,u)∈C0×C0
Map(v, u),

Map(y, x)×Map(z, y)
p2 // Map(z, y)

i(z,y)
//
∐

(w,v)∈C0×C0
Map(w, v)

respectively.

Proof. Applying Theorem 1.17 (1) twice, we conclude that the canonical maps∐
(u,x)∈C0×C0

∐
(v,z)∈C0×C0

(Map(u, x)×C0
Map(z, v))

//
∐

(u,x)∈C0×C0
(Map(u, x)×C0

(
∐

(z,v)∈C0×C0
Map(z, v)))

// (
∐

(u,x)∈C0×C0
Map(u, x))×C0

(
∐

(z,v)∈C0×C0
Map(z, v)))

are bijections. Now we use Lemma 1.18 for S = Map(u, x) and S = Map(z, v) and
conclude again from Theorem 1.17 (1) that the map∐

(f,g)∈Map(u,x)×Map(z,v) ({f} ×C0
{g}) // Map(x, u)×C0

Map(z, v)

11



induced by the canonical inclusions is a bijection. Similarly, using Lemma 1.18 for
S = C0, we see from Theorem 1.17 (2) that if (f, g) ∈ Map(u, x)×Map(z, v), then
the fiber product {f} ×C0 {g} is canonically bijective to {(f, g)}, if u = v, and to
∅, otherwise. It follows that the canonical map

Map(y, x)×Map(z, y) // Map(y, x)×C0
Map(z, y)

is a bijection, and that Map(u, x)×C0
Map(z, v) is the empty if u 6= v. �

By the uniqueness of fiber product, there is a commutative diagram∐
(z,y,x)∈C0×C0×C0

Map(y, x)×Map(z, y) //

��

C2

◦

��∐
(z,x)∈C0×C0

Map(z, x) // C1

where the bottom horizontal map is the isomorphism of Corollary 1.19, and where
the top horizontal map is the unique isomorphism of fiber products determined
by Example 1.13 and Corollary 1.20. The (z, y, x)th component of the left-hand
vertical map is the composition of a “pointwise” composition map

Map(y, x)×Map(z, y)
◦ // Map(z, x)

and of the canonical inclusion

Map(z, x) //
∐

(v,u)∈C0×C0
Map(v, u).

Hence, up to unique isomorphism, the composition map ◦ : C2 → C1 determines
and is determined by the family of pointwise composition maps. In a similarly way,
the identity map e : C0 → C1 determines and is determined by pointwise identity
maps e : {x} → Map(x, x), that is, by an element idx ∈ Map(x, x) for all x ∈ C0.

Corollary 1.21. A category C determines and is determined by a set ob(C) of
objects; for every pair (y, x) of objects, a set Map(y, x) of morphisms from y to x; for
every triple (z, y, x) of objects, a map ◦ : Map(y, x)×Map(z, y)→ Map(z, x); and
for every object x, an identity map idx ∈ Map(x, x); such that for every pair (y, x)
of objects and every f ∈ Map(y, x), idx ◦f = f = f ◦ idy; and for every quadruple
(w, z, y, x) of objects and every triple (h, g, f) ∈ Map(w, z)×Map(z, y)×Map(y, x),
f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Proof. This follows from the discussion above. �

Example 1.22. Let us use Corollary 1.21 to define the category of small k-vector
spaces, where k is a field. Recall that a (right) k-vector space is a triple (V,+, · )
of a set V and two maps +: V × V → V and · : V × k → V satisfying the vector
space axioms. So a k-vector space consists of a set V with some additional structure
on that set, namely, the vector sum and the scalar multiplication. If (V,+, · ) and
(W,+, · ) are k-vector spaces, then a map f : W → V is k-linear, if it has the
property that it preserves the additional structure. So we define

Map((W,+, · ), (V,+, · )) ⊂ Map(W,V )

to be the subset consisting of the maps f : W → V that are k-linear. We now
check that the composition of two k-linear maps is a k-linear map and that the

12



identity map is a k-linear map. So given three k-vector spaces (W,+, · ), (V,+, · ),
and (U,+, · ), the pointwise composition of maps of sets

Map(V,U)×Map(W,V )
◦ // Map(W,U)

restricts to a pointwise composition of k-linear maps

Map((V,+, · ), (U,+, · ))×Map((W,+, ·), , (V,+, · ))
◦ // Map((W,+, · ), (U,+, · ))

and idV ∈ Map((V,+, · )). So the set ob(Vectk) of small (right) k-vector spaces
with the above sets of morphisms, composition, and identity maps define a category
Vectk that we call the category of small (right) k-vector spaces.

Remark 1.23. Theorem 1.17 does not hold for the category Vectk of small right
k-vector spaces: the category Vectk is not a topos.

Exercise 1.24. Let f : y → x be a morphism in a category C. Show that if an inverse
g : x→ y of f : y → x exists, then it is unique.

Exercise 1.25. Let G be a group, and let BG be the category from Example 2 in
the lecture notes. Show that if G is non-trivial, then BG does not admit products.

[Hint: Show that no triple (0, g1 : 0→ 0, g2 : 0→ 0) can be a product of (0, 0).]

Exercise 1.26. We consider a commutative diagram

y′′ y′ y

x′′ x′ x

h′ //
g′

//

f ′′

��

f ′

��

f

��
h //

g
//

in a category C.

(a) Show that if the left-hand square and the right-hand square both are carte-
sian, then so is the outer square.

(b) Show that if the right-hand square and the outer square both are cartesian,
then so is the left-hand square.

(c) Give an example, where the left-hand square and the outer square both are
cartesian, but where the right-hand square is not cartesian.

13



2. Limits and colimits

We essentially have two methods for building new sets out of old ones, namely,
by forming sets of solutions to systems of equations or by gluing sets together. The
first method is formalized into the notion of a limit, and the second is formalized
into the notion of a colimit, and these notions are the subject of this lecture.

We first give a proper definition of a diagram in a category. A diagram is the
same as a functor, and functors are the morphisms between categories, in the same
way as k-linear maps are the morphisms between k-vector spaces.

Definition 2.1. Let K = (K0,K1, s, t, e, ◦) and C = (C0,C1, s, t, e, ◦) be categories.
A functor p : K → C is a pair of maps (p0 : K0 → C0, p1 : K1 → C1) such that the
following diagrams commute.

K1
p1 //

s

��

C1

s

��

K1
p1 //

t

��

C1

t

��

K1
p1 // C1 K2

p2 //

◦
��

C2

◦
��

K0
p0 // C0 K0

p0 // C0 K0
p0 //

e

OO

C0

e

OO

K1
p1 // C1

Here, in the last diagram, the map p2 is defined by p2(f, g) = (p1(f), p1(g)). It is
well-defined by the commutativity of the first two diagrams.

Let p : K → C be a functor, let (j, i) be a pair of objects in K, and let (y, x) be
the pair of objects in C0, where x = p0(i) and y = p0(j). The commutativity of the
first two diagrams in Definition 2.1 expresses that p1 : K1 → C1 restricts to a map

Map(j, i) Map(y, x)
p1,(i,j)

//

between the indicated sets of morphisms, and the commutativity of the remaining
two diagrams expresses that the following hold:

(i) For every object i in K,

p1,(i,i)(idi) = idx,

where x = p0(i).
(ii) For every triple (i, j, k) of objects in K, diagram

Map(j, i)×Map(k, j)
◦ //

p1,(i,j)×p1,(j,k)

��

Map(k, i)

p1,(i,k)

��

Map(y, x)×Map(z, y)
◦ // Map(z, x),

where x = p0(i), y = p0(j), and z = p0(k), commutes.

Conversely, a map p0 : K0 → C0 and a family of maps (p1,(i,j))(i,j)∈K0×K0
as above

that satisfy (i)–(ii) determine a unique functor p : K → C.

As is common, in the following we will now abuse notation and write p for the
maps p0, p1, and p1,(i,j). Let us now prove the simple, but very useful, fact that
every functor preserves isomorphisms.

Lemma 2.2. Let p : K → C be a functor. If the morphisms a : j → i and b : i→ j
in K are each other’s inverses, then so are the morphisms p(a) : p(j) → p(i) and
p(b) : p(i)→ p(j) in C.
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Proof. Indeed, since p : K → C is a functor, we have

p(a) ◦ p(b) = p(a ◦ b) = p(idi) = idp(i)

p(b) ◦ p(a) = p(b ◦ a) = p(idj) = idp(j)

which proves the lemma. �

A category G is defined to be a groupoid if all morphisms in G are isomorphisms.
The categories K and BG in the following example are both groupoids.

Example 2.3. (1) Let K be a set, and let also K denote the static category with
object set K. A functor p : K → C determines and is determined by the map of
sets p0 : K → C0, that is, a K-indexed family of objects in C. Indeed, the map
p1 : K → C1 is necessarily given by p1 = e ◦ p0, and the pair (p0, p1) satisfies the
axioms in the definition of a functor.

(2) Let G be a group, and let BG be the groupoid that has a single object 1, whose
group of automorphism is Map(1, 1) = G. A functor p : BG→ Set determines and
is determined by the pair (X, ρ) of the set X = p(1) and the group homomorphism
ρ = p : G → Aut(X), that is, by a set with left G-action. Similarly, if k is a field,
then a functor p : BG → Vectk determines an is determined by the pair (V, π) of
the k-vector space V = p(1) and the group homomorphism π = p : G → Autk(V ),
that is, by a k-linear representation of G. Note that the fact that the map π takes
values in the Autk(V ) ⊂ Endk(V ) is a consequence of Lemma 2.2.

Definition 2.4. A functor p : K → C is faithful (resp. full, resp. fully faithful) if
for every pair (i, j) of objects in K, the map

Map(j, i)
p
// Map(y, x),

where x = p(i) and y = p(j), is injective (resp. surjective, resp. bijective).

Example 2.5. A subcategory of a category C is a category C′ such that C′0 ⊂ C0

and C′1 ⊂ C1. We write C′ ⊂ C to indicate that C′ is a subcategory C. The canonical
inclusions of subsets i0 : C′0 → C0 and i1 : C′1 → C1 define a functor i : C′ → C that
we call the canonical inclusion functor. It is always faithful, but it need not be
full. If it is full, then we say that C′ ⊂ C is a full subcategory. We note that a full
subcategory C′ ⊂ C is uniquely determined by the subset C′0 ⊂ C0.

It is tempting to define a category, whose objects are all small categories and
whose morphisms are all functors between them, but while it is possible to do so,
this misses an important point about functors, which is that we also want to have
morphisms, or at least isomorphisms, between functors. These are called natural
transformations and natural isomorphisms, respectively.

Definition 2.6. Let p, q : K → C be functors with a common source and target.
A natural transformation from q to p is a family ϕ = (ϕi : q(i) → p(i))i∈K0

of
morphisms in C indexed by the set K0 of objects in K such that for every morphism
a : j → i in K, the diagram

q(j)
ϕj
//

q(a)

��

p(j)

p(a)

��

q(i)
ϕi // p(i)
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in C commutes. A natural transformation is a natural isomorphism if the morphisms
ϕi all are isomorphisms in C. We write ϕ : q → p to indicate that ϕ is a natural
transformation from q to p.

The word “natural” has the precise mathematical meaning expressed by the fact
that the diagrams in Definition 2.6 commute. So, in mathematics, we should never
use the word “natural,” except in this precise meaning. This means that if we feel
an urge to say that something is natural, then we should think more and identify
the functors that this something is a natural transformation between.

Example 2.7. (1) Continuing Example 2.3, if G is a group, and if p, q : BG → Set
are functors corresponding to two sets with left G-action (X, ρ) and (Y, σ), then a
natural transformation ϕ : q → p determines and is determined by the G-equivariant
map f = ϕ0 : Y → X. Similarly, if p, q : BG → Vectk are functors corresponding
to k-linear representations (V, π) and (W, τ) of G, then a natural transformation
ϕ : q → p determines and is determined by the k-linear map f = ϕ0 : W → V that
intertwines between τ and π.

(2) If p : K → C is a functor, then the family of identity morphisms (idp(i))i∈K0
is

(obviously) a natural isomorphism from p to p. We write idp and sometimes just p
for this natural isomorphism.

If we compare two categories, then it is not resonable to ask if they are equal,
just as it is not reasonable to ask if two vector spaces are equal. But it is also not
reasonable to ask if they are isomorphic. The reasonable way to compare categories
is via the notion of an equivalence, which we now define.

Definition 2.8. A functor p : D → C is an equivalence, if there exists a functor
q : C→ D and natural isomorphisms ε : p ◦ q → idC and η : idD → q ◦ p.

Example 2.9. Let k be a field, let Vectk be the category of k-vector spaces, and let

Vectωk ⊂ Vectk

be the full subcategory spanned by the finite-dimensional k-vector spaces. We define
a new category K as follows. The set of objects is the set ω of finite ordinals, and
for every pair (m,n) of objects, the mapping set

Map(n,m) = Mm,n(k)

is the set of (m× n)-matrices with entries in the field k. The identity morphism of
the object n is the (n× n)-identity matrix, and composition

Map(n,m)×Map(p, n)
◦ // Map(p,m)

is the map given by matrix multiplication. We have a functor

K
p
// Vectωk

that to the object n assigns the (right) k-vector space p(n) = Mn,1(k), and that on
mapping sets is given by the map

Map(n,m) = Mm,n(k)
p
// Map(p(n), p(m)) = Homk(Mn,1(k),Mm,1(k))

defined by p(A)(y) = Ay. As we learn in linear algebra, this map is a bijection, so
the functor p is fully faithful. We claim that it is an equivalence. Indeed, this we
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also learn in linear algebra. In order to define a functor

Vectωk
q
// K,

we choose a basis (v1, . . . ,vm) of every finite-dimensional k-vector space V , and
the functor q will depend on this choice.4 We now define q to be the functor that
to a finite-dimensional vector space V assigns its dimension q(V ) = dimk(V ), and
that on mapping sets is given by the map

Map(W,V ) = Homk(W,V )
q
// Map(n,m) = Mm,n(k)

that to a k-linear map f : W → V assigns the matrix A ∈Mm,n(k) that represents
f with respect to the chosen bases of V and W . If f : V → U and g : W → V are
composable k-linear maps, then q(f ◦ g) = q(f) ◦ q(g), because we calculate q(f)
and q(g) using the same basis for V , and q(idV ) = idq(V ), because we calculate
q(idV ) using the same basis of the domain and target. So q is a functor.

It remains to define ε : p ◦ q → idVectωk
and η : idK → q ◦ p. To define ε, we again

use the choice of bases that we made in order to define q, and let

(p ◦ q)(V ) = Mm,1(k)
εV // V

be the map given by εV (x) = v1x1 + · · · + vmxm. It is an isomorphism by the
definition of a basis. In order that ε be a natural transformation, we must show
that for every k-linear map f : W → V , the diagram

(p ◦ q)(W ) = Mn,1(k)
εW //

(p◦q)(f)

��

y 7→Ay

��

W

f

��

(p ◦ q)(V ) = Mm,1(k)
εV // V

commutes. But the matrix A that represents f with respect to the chosen bases is
exact defined so that this is true. So ε is a natural isomorphism. Finally, define

m m = (q ◦ p)(m)
ηm //

to be matrix Q ∈Mm,m(k) = Map(m,m) that represents the identity map

Mm,1(k) Mm,1(k)
idMm,1(k)

//

with respect to the standard basis (e1, . . . , em) of the domain and the (possibly
different) chosen basis (v1, . . . ,vm) of the target. The matrix Q is invertible, so
ηm is an isomorphism. It is also natural, again by the fact that the matrix that
represents the composition of two linear maps with respect to given bases of the
three vector spaces involved is equal to the product of the matrices that represent
the two linear maps separately with respect to the given bases.

Remark 2.10. It may appear from Example 2.9 that the “inverse” of an equivalence
of categories p : D → C is not unique in any way. But in fact it is unique, up to
contractible ambiguity: isomorphism among objects in a 1-category and equivalence
among 1-categories are both special cases the notion of equivalence among objects
in an∞-category, and the “inverse” of an equivalence in an∞-category is as unique

4 This uses the axiom of choice.
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as it can possibly be, namely, the collection of all inverses of a given equivalence is
organized into an anima and that anima is contractible.

Now that we have the proper language to discuss diagrams, it is time to define
limits and a colimits of a diagrams. We first define the join of two categories. Given
categories J and K, their join is a category J ?K, whose set of objects is the disjoint
union of the sets of objects in J and K, and where, in addition to the morphisms
in J and K, there is a unique morphism from every object in J to every object in
K, but not vice versa. So J ? K and K ? J are typically not equivalent!

Definition 2.11. The join of two categories J and K is the category J ?K defined
as follows. The set of objects in J ? K is the disjoint union

(J ? K)0 = J0 tK0

of the sets of objects in J and K, respectively, and the set of morphisms in J ? K
is the disjoint union

(J ? K)1 = J1 tK1 t J0 ×K0

of the sets of morphisms in J and K, respectively, and the product of the sets of
objects in J and K. The source map s : (J ? K)1 → (J ? K)0 is the unique map
that makes the diagrams

J1
i1 //

s

��

(J ? K)1

s

��

K1
i2oo

s

��

J0 ×K0
i3 //

p1

��

(J ? K)1

s

��

J0
i1 // (J ? K)0 K0

i2oo J0
i1 // (J ? K)0

commute, and the target map t : (J ?K)1 → (J ?K)0 is the unique map that makes
the diagrams

J1
i1 //

t

��

(J ? K)1

t

��

K1
i2oo

t

��

J0 ×K0
i3 //

p2

��

(J ? K)1

t

��

J0
i1 // (J ? K)0 K0

i2oo K0
i1 // (J ? K)0

commute. Note that, with these definitions, the set of composable morphisms in
the join J ? K is given by the disjoint union

(J ? K)2 = J2 tK2 t J1 ×K0 t J0 ×K1.

The composition ◦ : (J ?K)2 → (J ?K)1 is the unique map that makes the diagrams

J2
i1 //

◦
��

(J ? K)2

◦
��

K2
i2oo

◦
��

J1 ×K0
i3 //

s×K0

��

(J ? K)2

◦
��

J0 ×K1
i4oo

J0×t
��

J1
i1 // (J ? K)1 K1

i2oo J0 ×K0
i3 // (J ? K)1 J0 ×K0

i3oo

18



commute. Finally, the identity map e : (J ?K)0 → (J ?K)1 is the unique map that
makes the diagram

J1
i1 // (J ? K)1 K1

i2oo

J0
i1 //

e

OO

(J ? K)0

e

OO

K0
i2oo

e

OO

commute.

There are functors i1 : J → J ? K and i2 : K → J ? K defined by the canonical
inclusions, both of which are fully faithful. Indeed, in J ?K, we have added a unique
morphism from every object in J to every object in K, but we have not added any
new morphisms within either J or K. We now specialize to the case, where one of
J and K is the static category 1 with a single object.

Definition 2.12. The left cone on a category K is the join K/ = 1 ? K, and the
right cone on the category K is the join K. = K ? 1.

Informally, the left cone K/ is obtained by formally adjoining an initial object
to the category K. We write i : K → K/ for the canonical inclusion, and given a
functor f : K/ → C, we also write f |K = f ◦ i : K → C and call it the restriction of
f to K. Similarly, the right cone K. is obtained by formally adjoining a final object
to K. We again write i : K → K. for the canonical inclusion, and given a functor
g : K. → C, we write g|K = g ◦ i : K → C and call it the restriction of g to K.

Definition 2.13. Let p : K → C be a functor.

(1) A limit of p : K → C is a functor p̄ : K/ → C with p̄|K = p and such that
for every functor f : K/ → C with f |K = p, there exists a *unique* natural
transformation ϕ : f → p̄ with ϕ|K = idp.

(2) A colimit of p : K → C is a functor p̄ : K. → C with p̄|K = p and with the
property that for every functor g : K. → C with g|K = p, there exists a
*unique* natural transformation ψ : p̄→ g with ψ|K = idp.

A limit p̄ : K/ → C of a diagram p : K → C, if it exists, is unique, up to unique
isomorphism. Therefore, we also write lim p : K/ → C for any choice of a limit of
p : K → C with the understanding that it is well-defined, up to unique isomorphism
only. Similarly, a colimit of p : K → C is unique, up to unique isomorphism, and we
write colim p : K. → C for any choice of a such a colimit.5

Example 2.14. (1) Let K be a static category, and let p : K → C be a functor
corresponding to a K-indexed family (xi)i∈K of objects of C. A diagram p̄ : K/ → C

with p̄|K = p determines and is determined by a pair (y, (pi : y → xi)i∈K) of
an object y in C and a family of morphisms as indicated. Moreover, the diagram
p̄ : K/ → C is a limit of p : K → C if and only if the pair (y, (pi : y → xi)i∈K) is a
product of (xi)i∈K .

Similarly, a diagram p̄ : K. → C is a pair (y, (is : xs → y)s∈K) of an object y in
C and a family of morphisms, and the diagram p̄ : K. → C is a colimit of p : K → C

if an only if the pair (y, (is : xs → y)s∈K) is a coproduct of (xs)s∈K .

5 Alternative notation for the limit (resp. colimit) is lim←− p (resp. lim−→ p), and an alternative name

for the limit (resp. colimit) is projective limit (resp. inductive limit).
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(2) Let G be a group, let K = BG, and let p : K → Set be a functor corresponding
to a pair (X, ρ) of a set X with left G-action ρ : G → Aut(X) of a group G.
A diagram p̄ : K/ → Set with p̄|K = p determines and is determined by a pair
(Y, p : Y → X) of a set Y and a map p : Y → X such that ρ(g)◦p = p for all g ∈ G.
Moreover, the diagram p̄ : K/ → Set is a limit of p : K → Set if and only if the map
p : Y → X induces a bijection of Y onto the subset

XG = {x ∈ X | ρ(g)(x) = x for all g ∈ G} ⊂ X

of fixed points for the left G-action. Similarly, a diagram p̄ : K. → Set with p̄|K = p
is a pair (Y, i : X → Y ) of a set Y and a map i : X → Y such that i ◦ ρ(g) = i for
all g ∈ G. The diagram p̄ : K. → Set is a colimit of p : K → Set if and only if the
map i : X → Y induces a bijection from the quotient set

X // XG = X/R

of orbits for the left G-action onto Y . Here R ⊂ X ×X is the relation

R = {(ρ(g)(x), x) ∈ X ×X | g ∈ G, x ∈ X},

which is an equivalence relation, because G is a group, as opposed to a monoid.

The description of the limit and colimit of a diagram p : BG → Set is typical
for diagrams of sets. Let us show that every diagram p : K → Set with K a small
category admits a limit and a colimit.

Proposition 2.15. The category Set admits all small limits and colimits.

Proof. Let p : K → Set be diagram with K small, and let Xi = p(i). We first show
that this diagram admits a limit. To this end, we let

Y ⊂ X =
∏
i∈K0

Xi

be the set of solutions x = (xi)i∈K0 to the system of equations

p(a)(xj) = xi

indexed by the set K1 of morphisms a : j → i in K. Define p̄ : K/ → Set to be the
extension of p : K → Set, whose value at the cone point is Y , and whose value at
the unique morphism from the cone point to the object i ∈ K0 is the composition

Y //
∏
s∈K0

Xs
pi // Xi

of the canonical inclusion and the projection on the ith factor. It is clear that the
diagram p̄ : K/ → Set is a limit of p : K → Set.

We next show that the diagram p : K → Set admits a colimit. We let

X =
∐
i∈K0

Xi

be the coproduct of the family (Xi)i∈K0
. Last time, we proved that coproducts in

Set are universal. This implies, in particular, that the map∐
(i,j)∈K0×K0

Xi ×Xj
// X ×X

induced by the canonical inclusions is a bijection. We now define

S =
⋃

(a : j→i)∈K1
Sa ⊂ X ×X
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to be the relation, where for a : j → i a morphism in K,

Sa = {(p(a)(x), x) ∈ Xi ×Xj | x ∈ Xi} ⊂ Xi ×Xj ⊂ X ×X.
The relation S ⊂ X×X is reflexive and transitive, but it is generally not symmetric.
So S ⊂ X ×X is generally *not* an equivalence relation. However, there exists a
smallest equivalence relation R ⊂ X ×X with S ⊂ R, and we let

X =
∐
i∈K0

Xi
// Y = X/R

be the quotient of X by this equivalence relation. We now define p̄ : K. → Set to
be extension of p : K → Set, whose value at the cone point is Y , and whose value
at the unique morphism from s ∈ K0 to the cone point is the composition

Xs
is //

∐
i∈K0

Xi
// Y

of the inclusion of the sth summand and the canonical projection. We claim that
the diagram p̄ : K. → Set is a colimit of p : K → Set. Indeed, let f : K. → Set be
any diagram with f |K = p, let Z be the value of f at the cone point, and for all
i ∈ K0, let hi : Xi → Z be the map induced by the unique maps from i to the cone
point, and let h =

∑
i∈K0

hi : X → Z. The map h defines the equivalence relation

Q = {(x, y) ∈ X ×X | h(x) = h(y)} ⊂ X ×X,
and S ⊂ Q, since hi = p(a) ◦ hj : Xj → Z for every morphism a : j → i in K. But
then R ⊂ Q, so h : X → Z factors through the canonical projection X → Y . �

Remark 2.16. There is a stark asymmetry between limits and colimits of diagrams
of sets. If p̄ : K/ → Set is a limit of the diagram p : K → Set, then the set p̄(0) is
quite explicitly given as the set of solutions to a system of equations. By contrast,
if p̄ : K. → Set is a colimit of p : K → Set, then the set p̄(0) is all but unknowable
in general. Indeed, while the diagram p : K → Set gives a “concrete” description
of the relation S ⊂ X × X in the proof of Proposition 2.15, it is in general very
difficult to understand the equivalence relation R ⊂ X ×X that it generates.

Exercise 2.17. First, let p, q, r : K → C be functors, and let ϕ : q → p and ψ : r → q
be natural transformations.

(a) Show that the family of morphisms

(ϕk ◦ ψk)k∈K

constitute a natural transformation ϕ · ψ : r → p.

The natural transformation ϕ · ψ : r → p is called the vertical composition of the
natural transformations ϕ : q → p and ψ : r → q.

Next, let p, q : J → C and r, s : K → J be functors, and let ϕ : q → p and
ψ : s→ r be natural transformations. (So these are different from the functors and
natural transformations considered above.)

(b) Show that for all k ∈ K, the diagram

(q ◦ s)(k) (q ◦ r)(k)

(p ◦ s)(k) (p ◦ r)(k)

q(ψk)
//

ϕs(k)

��

ϕr(k)

��p(ψk)
//
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commutes.

We let (ϕ ◦ ψ)k : (q ◦ s)(k) → (p ◦ r)(k) denote the common composition of the
morphisms in diagram in (b).

(c) Show that the family of morphisms

((ϕ ◦ ψ)k)k∈K

constitutes a natural transformation ϕ ◦ ψ : q ◦ s→ p ◦ r.
The natural transformation ϕ ◦ψ : q ◦ s→ p ◦ r is called the horizontal composition
of ϕ : q → p and ψ : s→ r.

Remark 2.18. The following diagram

K C
q

//

r

!!

p

==

ψ
��

φ
��

depicts the “vertical composition” in (a), whereas the diagram

K J C

s

&&

r

88

q

&&

p

88ψ
��

φ
��

depicts the “horizontal composition” in (b) and (c).
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3. Adjoint functors

Let us recall the fundamental difference between set theory and category theory.
In a set, it is a property of two elements x and y that equality x = y holds, whereas
in a category, we must provide the structure of a morphism f : y → x to compare
two objects x and y. We are familiar with this phenomenon from linear algebra,
where we must provide a k-linear map f : W → V in order to compare two k-vector
spaces V and W . The structure encoded in the morphisms in a category gives rise
to new phenomena that are very general and yet very powerful, and that have
applications in all parts of mathematics. Adjunctions, which is the subject of this
lecture, is such a phenomenon.

Definition 3.1. Let C and D be categories. An adjunction from D to C is a
quadruple (f, g, ε, η) of two functors f : D → C and g : C → D and two natural
transformations ε : f ◦ g → idC and η : idD → g ◦ f such that the diagrams of
natural transformations

f

f ◦ g ◦ f

f g

g ◦ f ◦ g

g

f◦η
??

ε◦f

��

η◦g
??

g◦ε

��

commute.

Suppose that (f, g, ε, η) is an adjunction. We say that f is the left adjoint functor
of the adjunction, that g is the right adjoint functor of the adjunction, that ε is the
counit of the adjunction, and that is η the unit of the adjunction. We also express
that the two diagrams in the definition of an adjunction commute by saying that
the triangle identities hold.

Remark 3.2. Let us spell out what it means for the triangle identities to hold. The
natural transformation f ◦ η is the horizontal composition of η : idD → g ◦ f and
the identity natural transformation idf : f → f , which, by abuse of notation, we
simply denote by f . So, by definition, we have (f ◦ η)y = f(ηy). Similarly, the
natural transformation ε ◦ f is the horizontal composition of the identity natural
transformation idf : f → f and ε : f ◦ g → idC. So (ε ◦ f)y = εf(y). Now, for the
left-hand diagram to commute means that the vertical composition of ε◦f and f ◦η
equal to idf , which, in turn, means that for all y ∈ D, the diagram

f(y)

f(g(f(y)))

f(y)

f(ηy)

??

εf(y)

��idf(y)
//

of objects and morphisms in C commutes. Similarly, for the right-hand diagram in
Definition 3.1 to commute means that for all x ∈ C, the diagram

g(x)

g(f(g(x)))

g(x)

ηg(x)

??

g(εx)

��idg(x)
//

of objects and morphisms in D commutes.
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Example 3.3. Let Set be the category of small sets, and let Vectk be the category
of small k-vector spaces, where k is a field. We define an adjunction (f, g, ε, η) from
Set to Vectk as follows. The functor f : Set→ Vectk assigns to a set S the k-vector
space f(S) = (f(S),+, · ) with f(S) the set consisting of maps x : S → k, whose
support6 is finite, and with vector sum and scalar multiplication defined by

(x+ y)(s) = x(s) + y(s)

(x · a)(s) = x(s) · a.
Moreover, the functor f : Set → Vectk assigns to a map p : T → S of sets the
k-linear map f(p) : f(T )→ f(S) of k-vector spaces defined by

f(p)(y)(s) =
∑

t∈p−1(s)

y(t),

where the sum is well-defined, because y has finite support. It is straightforward
to check that the map f(p) is k-linear. The functor g : Vectk → Set assigns to a
k-vector space (V,+, · ) its “underlying” set g(V,+, · ) = V and to a k-linear map
h : (W,+, · )→ (V,+, · ) the same map g(h) = h : W → V . The counit

(f ◦ g)(V,+, ·) (V,+, · )
ε(V,+, · )

//

is the k-linear map that to a map x : V → k of finite support assigns the sum

ε(V,+,· )(x) =
∑
v∈V

v · x(v) ∈ V,

which is well-defined, because x has finite support, and the unit

S g(f(S))
ηS //

is the map that to s ∈ S assigns the δ-function ηS(s) = δs : S → k defined by

δs(t) =

{
1 if s = t,

0 if s 6= t.

Let us check that the triangle identities hold. We note that (δs)s∈S is a basis of the
k-vector space f(S). Indeed, every x ∈ f(S) can be written uniquely as

x =
∑
s∈S

δs · x(s).

To verify the first triangle identity, we must prove that the composite map

f(S) f(g(f(S))) f(S)
f(ηS)

//
εf(S)

//

is the identity map. We find that

(εf(S) ◦ f(ηS))(x) =
∑

y∈f(S)

y · f(ηS)(x)(y) =
∑

y∈f(S)

y ·
∑

s∈η−1
S (y)

x(s)

=
∑
s∈S

ηS(s) · x(s) =
∑
s∈S

δs · x(s) = x,

as desired. Here the first two identities consist in spelling out the definitions, the
third identity holds, because ηS : S → g(f(S)) is injective, and the final identity

6 The support of x : S → k is the subset supp(x) = {s ∈ S | x(s) 6= 0} ⊂ S.
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holds, because (δs)s∈S is a basis of f(S). Similarly, to verify the second triangle
identity, we must prove that the composite map

g(V ) g(f(g(V ))) g(V ),
ηg(V )

//
g(εV )

//

where we abbreviate V = (V,+, · ), is the identity map. So we calculate

(g(εV ) ◦ ηg(V ))(v) =
∑
w∈V

w · ηg(V )(v)(w) =
∑
w∈V

w · δv(w) = v,

which shows what we wanted.

The example above illustrates one source of adjunctions (f, g, ε, η). We have a
category C, whose objects are pairs consisting of a set and some structure on that
set, and whose morphisms are maps of sets that preserve the given structure. In the
example, the structure is a structure of k-vector space. The right adjoint functor
g : C→ Set is given by forgetting the structure, so we call it a forgetful functor. It
is faithful, because for maps to preserve structure is a property. The corresponding
left adjoint functor f : Set → C assigns to a set S the free example of a set with
the structure in question generated by the set S.

Proposition 3.4. If (f, g, ε, η) is an adjunction from D to C, then for all pairs
(y, x) of an object in D and an object in C, the maps

Map(f(y), x) Map(y, g(x))
α(y,x)

//

β(y,x)

oo

defined by α(y,x)(a) = g(a) ◦ ηy and β(y,x)(b) = εx ◦ f(b) are each other’s inverses.

Proof. By definition, the morphism α(y,x)(a) is the composite morphism

y g(f(y)) g(x)
ηy
//

g(a)
//

so the morphism (β(y,x) ◦ α(y,x))(a) is the composition of the upper horizontal
morphisms and right-hand vertical morphism in the following diagram.

f(y) f(g(f(y))) f(g(x))

f(y) x

(f◦η)y
//

f(g(a))
//

εf(y)

��

εx

��a //

But the left-hand triangle commutes by the triangle identities, and the right-hand
square commutes by the naturality of ε. So we find that (β(y,x) ◦ α(y,x))(a) = a, as
desired. Similarly, the morphism β(y,x)(b) is the composite morphism

f(y) f(g(x)) x
f(b)

//
εx //

so (α(y,x) ◦ β(y,x))(b) is the composition of the left-hand vertical morphism and the
lower horizontal morphisms in the following diagram.

y g(x)

g(f(y)) g(f(g(x))) g(x)

b //

ηy

��

ηg(x)

��g(f(b))
//

g(εx)
//
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Again, the left-hand square commutes by the naturality of η, and the right-hand
triangle commutes by the triangle identities, so (α(y,x) ◦ β(y,x))(b) = b. �

Example 3.5. For the adjunction in Example 3.3, Proposition 3.4 gives a bijection

Map(S, g(V,+, · )) Map(f(S), (V,+, · ))
β
//

that to a map v : S → V assigns the k-linear map β(v) : f(S)→ (V,+, · ) given by

β(v)(x) =
∑
s∈S

v(s) · x(s).

We also say that a map v : S → V is a family of vectors in V indexed by S, and
we sometimes write (vs)s∈S instead of v : S → V . In linear algebra, we define
three important properties of such families, namely, the property of being linearly
independent, the property of being a generating family, and the property of being a
basis. We can now state these definitions in a way that it is easy both to understand
and to remember: A family v : S → V is

(i) linearly independent, if the map β(v) : f(S)→ (V,+, · ) is injective,
(ii) a generating family, if the map β(v) : f(S)→ (V,+, · ) is surjective, and

(iii) a basis, if the map β(v) : f(S)→ (V,+, · ) is bijective.

This also makes it clear why the correct definition of a basis of (V,+, · ) is that it
is a family of vectors in V that satisfies (iii) and not e.g. a subset of V with some
property. Indeed, it is for families of vectors that we have the bijection β.

We proceed to discuss an extremely useful interaction between adjoints functors
and limits and colimits. In preparation, we need a generalization of Proposition 3.4.
If f, g : K → C are functors with a common domain and a common target, then we
write Map(f, g) for the set of natural transformations ϕ : f → g.

Addendum 3.6. Let (f, g, ε, η) be an adjunction from D to C, and let p : K → D

and q : K → C be functors. There are mutally inverse maps

Map(f ◦ p, q) Map(p, g ◦ q)
α(p,q)

//

β(p,q)

oo

defined by α(p,q)(ϕ) = (g ◦ ϕ) · (η ◦ p) and β(p,q)(ψ) = (ε ◦ q) · (f ◦ ψ).

Proof. The diagram of functors and natural transformations

f ◦ p f ◦ g ◦ f ◦ p f ◦ g ◦ q

f ◦ p q

f◦η◦p
//

f◦g◦ϕ
//

ε◦f
��

ε

��ϕ
//

commutes and shows that (β(p,q) ◦ α(p,q))(ϕ) = ϕ. Similarly, the diagram

p g ◦ q

g ◦ f ◦ p g ◦ f ◦ g ◦ q g ◦ q

ψ
//

η◦p

��

η◦g◦q

��g◦f◦ψ
//

g◦ε◦q
//

commutes and shows that (α(p,q) ◦ β(p,q))(ψ) = ψ. �
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We now prove that every left adjoint functor preserves colimits and that every
right adjoint functor preserves limits.

Proposition 3.7. Let (f, g, ε, η) be an adjunction from D→ C.

(1) Suppose that p̄ : K. → D is a colimit of p : K → D. In this situation, the
composite functor f ◦ p̄ : K. → C is a colimit of f ◦ p : K → C.

(2) Suppose that p̄ : K/ → C is a limit of p : K → C. In this situation, the
composite functor g ◦ p̄ : K/ → D is a limit of g ◦ p : K → D.

Proof. We prove (1); the proof of (2) is analogous. Given a diagram h : K. → C

such that h|K = f ◦ p : K → C, we must show that there exists a unique natural
transformation ϕ : f ◦ p̄ → h such that ϕ|K = f ◦ p. By Addendum 3.6, we may
instead show that there exists a unique natural transformation ψ : p̄ → g ◦ h such
that ψ|K = η ◦ p. Now, since K. = K ? 1 is obtained from K by adjoining the final
object 0 ∈ 1, there exists a unique exists a unique natural transformation

q
ζ
// g ◦ h

such that q|K = p, q|1 = g ◦ h|1, ζ|K = η ◦ p, and ζ|1 = g ◦ h|1. Indeed, the only
part that remains undefined is the value of the functor q on the unique morphism
a : i→ 0 from an object i ∈ K to the object 0 ∈ 1. But in order that ζ be a natural
transformation, the diagram

q(i) = p(i) (g ◦ h)(i) = (g ◦ f ◦ p)(i)

q(0) = (g ◦ h)(0) (g ◦ h)(0)

ζi=(η◦p)i
//

q(a)

��

(g◦h)(a)

��ζ0=id(g◦h)(0)
//

must commute, so this determines q(a) : q(i)→ q(0) uniquely. Since p̄ : K. → D is
a colimit of p : K → D, there exists a unique natural transformation ξ : p̄→ q such
that ξ|K = p. But then the composition of the natural transformations

p̄
ξ
// q

ζ
// g ◦ h

is the desired unique natural transformation ψ : p̄→ g◦h such that ψ|K = η◦p. �

Example 3.8. Let (f, g, ε, η) be the adjunction from Set to Vectk that we defined
in Example 3.3. Given a small diagram p : K → Set, we proved in Proposition 2.15
that it admits a colimit p̄ : K. → Set. So it follows from Proposition 3.7 that
f ◦ p̄ : K. → Vectk is a colimit of f ◦ p : K → Vectk.

Now, suppose that K is static. We claim that for every q : K → Vectk, there
exists a diagram of sets p : K → Set and natural isomorphism

f ◦ p
ϕ
// q.

Indeed, if we choose, for every i ∈ K, a basis ψi : p(i)→ g(q(i)) of the k-vector space
q(i), then, since K is static, the family of sets (p(i))i∈K determine a unique functor
p : K → Set and the family of maps (ψi : p(i) → g(q(i)))i∈K determine a unique
natural transformation ψ : p→ g ◦ q. Moreover, by the definition of what it means
to be a basis, which we recalled in Example 3.5, the adjunct natural transformation
ϕ = α(ψ) : f ◦ p→ q is a natural isomorphism. This proves the claim.
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Let p̄ : K. → Set be a coproduct of p : K → Set, so that f ◦ p̄ : K. → Vectk is a
coproduct of f ◦ p : K → Vectk. If we choose a natural isomorphism

f ◦ p̄
ϕ̄
// q̄

such that ϕ̄|K = ϕ, then q̄ : K. → Vectk is a coproduct of q : K → Vectk. In less
precise terms, we may restate this conclusion by saying that the canonical map⊕

i∈K f(Si) // f(
∐
i∈K Si)

is an isomorphism. Note also that the forgetful functor g : Vectk → Set does not
preserve colimits, since it does not preserve (binary) coproducts. Therefore, we
conclude from Proposition 3.7 that g does not admit a right adjoint.

If K is not static, then not every diagram q : K → Vectk is naturally isomorphic
to a diagram of the form f ◦ p : K → Vectk for some p : K → Vectk. For example,
if G is a group, then a diagram q : BG → Vectk determines and is determined
by a k-linear representation (V, π) of G, and q ' f ◦ p if and only if the k-linear
representation (V, π) is a permutation representation.

The data of an adjunction (f, g, ε, η) is redundant. In particular, as the following
result shows, it suffices to specify the value of one of the two functors f and g on
objects, only. The requirement that it be part of an adjunction then automatically
determines its value on morphisms.7

Proposition 3.9. Let C and D be categories.

(1) Let f : D → C be a functor and suppose given a map g0 : C0 → D0 and a
family of morphisms (εx : f(g0(x)) → x)x∈C0 such that for every x ∈ C0

and y ∈ D0, the composite map

Map(y, g0(x)) Map(f(y), f(g0(x))) Map(f(y), x)
f
//

εx◦(−)
//

is a bijection. In this case, there exists a unique adjunction (f, g, ε, η) from
D to C such that g(x) = g0(x) for all x ∈ C0 and such that ε = (εx)x∈C0

.
(2) Let g : C → D be a functor and suppose given a map f0 : D0 → C0 and a

family of morphisms (ηy : y → g(f0(y)))y∈D0 such that for every y ∈ D0

and x ∈ C0, the composite map

Map(f0(y), x) Map(g(f0(y)), g(x)) Map(y, g(x))
g
//

(−)◦ηy
//

is a bijection. In this case, there exists a unique adjunction (f, g, ε, η) from
D to C such that f(y) = f0(y) for all y ∈ D0 and such that η = (ηy)y∈D0

.

Proof. We sketch a proof of (1); the proof of (2) is analogous. We claim that there
is a unique functor g : C → D such that the map of object sets is the given map
g0 : C0 → D0 and such that ε : f ◦ g → idC is a natural transformation. Indeed, if
a : y → x is a morphism in C, then for ε : f ◦g → idC to be a natural transformation,

7 The analogous result for adjunctions between ∞-categories also holds, and it is one of the

main tools available in ∞-category theory for defining functors.
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the desired morphism g(a) : g(y)→ g(x) must make the diagram

Map(g(y), g(y)) Map(f(g(y)), f(g(y))) Map(f(g(y)), y)

Map(g(y), g(x)) Map(f(g(y)), f(g(x))) Map(f(g(y)), x)

f
//

εy◦(−)
//

g(a)◦(−)

��

f(g(a))◦(−)

��

a◦(−)

��
f
//

εx◦(−)
//

commute. But the composition of the maps in the top and bottom rows are assumed
to be bijections, so there is a unique morphism g(a) : g(y)→ g(x) with this property,
namely, the unique solution to the equation

εx(f(g(a))) = a ◦ εy(f(idg(y))).

We leave it as an exercise to show that, with this definition, g : C→ D is a functor
and ε : f ◦g → idC is a natural transformation. It remains to define the unit natural
transformation η : idD → g ◦ f . But in order to ensure that the triangle identities
hold, we are forced to define ηy : y → g(f(y)) to be the unique morphism that is
mapped to idf(y) : f(y)→ f(y) by the composite map

Map(y, g(f(y))) Map(f(y), f(g(f(y)))) Map(f(y), f(y)).
f
//

εf(y)◦(−)
//

We leave it as an exercise to check that η is a natural transformation and that the
triangle identities are hold. �

Exercise 3.10. We consider categories and functors

A B

C D

f
//

f ′
oo

g

��

g′

OO

h

��

h′

OO

k //

k′
oo

and assume that f (resp. g, resp. h, resp, k) is left adjoint to f ′ (resp. g′, resp. h′,
resp. k′) and that counits and units for these adjunctions have been chosen. Prove
the following statements:

(a) A natural transformation ϕ : g ◦ f → k ◦h determines and is determined by
a natural transformation ϕ′ : h′ ◦ k′ → f ′ ◦ g′.

(b) A natural transformation ϕ : g ◦ f → k ◦ h is a natural isomorphism if and
only if the corresponding natural transformation ϕ′ : h′ ◦ k′ → f ′ ◦ g′ is a
natural isomorphism.

Exercise 3.11. Let K and C be categories with K small, and let Fun(K,C) be the
category, whose objects are the functors f : K → C, and whose morphisms are the
natural transformations between such functors. Let

C
∆
// Fun(K,C)

be the “diagonal” functor that to an object x of C assigns the constant functor
∆(x) : K → C with value x, and that to a morphism f : y → x in C assigns the
natural transformation ∆(f) : ∆(y)→ ∆(x) with ∆(f)i = f for all i ∈ K0.
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(a) Suppose that every p : K → C admits a limit p̄ : K/ → C. Show that there
is an adjunction (∆, g, ε, η) from C to Fun(K,C) such that

g(p) = p̄(0)

and such that εp : (∆◦g)(p)→ p is the natural transformation, whose value
εp,i : (∆ ◦ g)(p)(i) = p̄(0)→ p(i) at i ∈ K0 is the image by p̄ of the unique
morphism 0→ i in K/.

(b) Suppose that every p : K → C admits a colimit p̄ : K. → C. Show that there
is an adjunction (f,∆, ε, η) from Fun(K,C) to C such that

f(p) = p̄(0)

and such that ηp : p→ (∆◦f)(p) is the natural transformation, whose value
ηp,i : p(i)→ p(0) = (∆ ◦ f)(p)(i) at i ∈ K0 is the image by p̄ of the unique
morphism i→ 0 in K..

[Hint: Use Proposition 3.9.]

We have defined limits and colimits “pointwise” which is to say one diagram at
a time. Exercise 3.11 promotes these definitions to functors.

Exercise 3.12. Given a category K, we define the category K/ = 1 ?K by formally
adjoining an initial object 0 to K. Suppose that K already has an initial object i.

(a) Show that the initial object i ∈ K0 determines and is determined by a limit

K/ K
idK //

of the identity functor idK : K → K.
(b) Show that the initial object i ∈ K0 determines and is determined by a limit

K/ C
p̄
//

for any K-indexed diagram p : K → C with C any category.

If K admits a final object i, then the dual statements for colimits hold, as follows
from the canonical equivalence (K.)op ' (Kop)/.
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4. The Yoneda embedding

The Yoneda lemma is a very powerful result in category theory that, at the same
time, is very easy to prove. For instance, it allows us to transfer definitions made
in the category of sets to a general category.

Given categories K and C with K small, we define the category of presheaves

PC(K) = Fun(Kop,C)

as follows. The set of objects PC(K)0 is the set of all functors F : Kop → C and the
set of morphisms Map(G,F) for F,G ∈ PC(K) is the set of natural transformations
ϕ : G → F. Given F ∈ PC(K)0, the identity morphism idF : F → F is the identity
natural transformation, and given F,G,H ∈ PC(K)0, the composition

Map(G,F)×Map(H,G)
◦ // Map(H,G)

is the vertical composition of natural transformations. A functor F : Kop → C is said
to be a C-valued presheaf on K and a natural transformation ϕ : G → F between
such functors is said to be a map of C-valued presheaves on K.

We will only consider C = Set the category of small set, and write P(K) instead
of PSet(K). We define the Yoneda embedding to be the functor

K
h // P(K)

given as follows. If S ∈ K0, then h(S) : Kop → Set is the functor that to T ∈ Kop
0

assigns the small set h(S)(T ) = Map(T, S) of morphisms in K from T to S, and if
g : U → T is a morphism in K, then h(S)(g) : h(S)(T )→ h(S)(U) is the map that
to f : T → S assigns f ◦ g : U → S. Finally, if f : T → S is a morphism in K, then
h(f) : h(T ) → h(S) is the natural transformation, whose value at U ∈ K0 is the
map h(f)U : h(T )(U)→ h(S)(U) that to g : U → T assigns f ◦ g : U → S.

Theorem 4.1 (Yoneda lemma). Let K be a small category. For every object S in
K and every functor F ∈ Kop → Set, the map

Map(h(S),F) F(S)
ε(F,S)

//

that to ϕ : h(S)→ F assigns ε(F,S)(ϕ) = ϕS(idS) is a bijection.

Proof. Suppose that ϕ : h(S) → F is a natural transformation and that f : T → S
is an element of h(S)(T ). On the one hand, the diagram

h(S)(S) F(S)

h(S)(T ) F(T )

ϕS //

h(S)(f)

��

F(f)

��
ϕT //

commutes, by the naturality of ϕ, and shows that

ϕT (f) = (ϕT ◦ h(f))(idS) = (F(f) ◦ ϕS)(idS) = F(f)(ε(F,S)(ϕ)),

and on the other hand, given a ∈ F(S), the same formula ϕT (f) = F(f)(a) defines
a natural transformation ϕ : h(S)→ F. �

Theorem 4.1 has the following corollary, which explains the “embedding” part
of the name for the functor h : K → P(K).
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Corollary 4.2. For every small category K, the Yoneda embedding

K
h // P(K)

is fully faithful.

Proof. Indeed, by Theorem 4.1, for all S, T ∈ K0, the maps

h(S)(T ) = Map(T, S) Map(h(T ), h(S))
h(S,T )

//

ε(h(S),T )

oo

are each other’s inverses. �

Example 4.3. Let G be a group, and let BG be the category with a single object
0 and Map(0, 0) = G. A functor F : BGop → Set determines and is determined by
the right G-set (X, ρ), where X = F(0), and where ρ : Gop → Aut(X) is the group
homomorphism given by ρ(g)(x) = F(g) : X → X. In this situation, the functor

BG
h // P(BG)

takes the unique object 0 in BG to the right G-set (G, ρ) with ρ(g)(f) = fg, and
it is given on morphism sets by the map

G = Map(0, 0) End(G, ρ) = Map(h(0), h(0))
h(0,0)

//

defined by h(0,0)(f)(g) = fg. By Corollary 4.2, the latter map is a bijection. From
this, we learn two things. First, we have End(G, ρ) ⊂ End(G), by definition, but
we learn that, in fact, End(G, ρ) ⊂ Aut(G). Second, we learn that

G
λ // Aut(G)

given by λ(f)(g) = fg is injective. This shows that the group G is canonically
isomorphic to the subgroup λ(G) ⊂ Aut(G) of the group Aut(G) of permutations
of the set G, which is a classical theorem attributed to Cayley.

To state and prove the next result, it is convenient to introduce a bit of notation.
Given an object S in K, we define

P(K) Set
Γ(S,−)

//

to be the functor that takes a presheaf F to the set Γ(S,F) = F(S) and that takes
a map of presheaves ϕ : G→ F to the map Γ(S, ϕ) = ϕS : G(S)→ F(S), and given
a morphism f : T → S in K, we define a natural transformation

Γ(S,−) Γ(T,−),
Γ(f,−)

//

whose value at F is the map Γ(f,F) = F(f) : F(S)→ F(T ). Note that the natural
transformation Γ(f,−) goes in the opposite direction of the morphism f . We say
that Γ(S,F) is the set of sections of the presheaf F over S and that Γ(f,F) is the
restriction along f .

Proposition 4.4. Let K be a small category.

(1) A small diagram p̄ : J. → P(K) is a colimit of p = p̄ ◦ i : J → P(K) if and
only if Γ(S, p̄) : J. → Set is a colimit of Γ(S, p) : J → Set for all S ∈ K0.
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(2) A small diagram p̄ : J/ → P(K) is a limit of p = p̄ ◦ i : J → P(K) if and
only if Γ(S, p̄) : J/ → Set is a limit of Γ(S, p) : J → Set for all S ∈ K0.

(3) The Yoneda embedding h : K → P(K) preserves all small limits that exist
in K.

In particular, the category P(K) admits all small colimits and limits.

Proof. We first prove (1); the proof of (2) is analogous. So let p : J → P(K) be
a small diagram. For every S ∈ K0, the composite functor Γ(S, p) : J → Set is a

small diagram of sets, so it admits a colimit Γ(S, p) : J. → Set. We wish to show

that there exists a unique functor p̄ : J. → P(K) such that Γ(S, p̄) = Γ(S, p) for all

S ∈ K0, and that p̄ is a colimit of p. Since Γ(S, p) is a colimit of Γ(S, p), there is,
for every morphism f : T → S in K, a unique natural transformation

Γ(S, p) Γ(T, p)
Γ(f,p)

//

whose restriction along i : J → J. is Γ(f, p) : Γ(S, p) → Γ(T, p). The uniqueness of
these natural transformations implies that for every S ∈ K0,

Γ(idS , p) = id
Γ(S,p)

,

and that for every pair (f : T → S, g : U → T ) of composable morphism in K,

Γ(f ◦ g, p) = Γ(g, p) ◦ Γ(f, p).

So there is a unique functor p̄ : J. → P(K) such that Γ(S, p̄) = Γ(S, p) for every

object S in K and such that Γ(f, p̄) = Γ(f, p) for every morphism f : T → S in
K. We must verify that p̄ is indeed a colimit of p. By definition, the restriction of
p̄ : J. → P(K) along i : J → J. is equal to p : J → P(K), and if q : J. → P(K)
is another functor with this property, then for every S ∈ K0, there is a unique
natural transformation ϕS : Γ(S, p̄) → Γ(S, q) such that ϕS ◦ i = Γ(S, p), and by
the uniqueness of these natural transformations, we conclude that there is a unique
natural transformation ϕ : p̄ → q such that Γ(S, ϕ) = ϕS for all objects S in
K. But this unique natural transformation satisfies ϕ ◦ i = p, which shows that
p̄ : J. → P(K) is a colimit of p : J → P(K). This proves (1).

To prove (3), let p̄ : J/ → K be a limit of p : J → K. By definition of the Yoneda
embedding, we have Γ(S, h ◦ p) = Map(S, p) and Γ(S, h ◦ p̄) = Map(S, p̄) as functor
from J and J/, respectively, to Set. Since p̄ is a limit of p, it follows from the
definition of limit that Map(S, p̄) is a limit of Map(S, p) for all S ∈ K0. So by (2),
we conclude that h ◦ p̄ : J/ → P(K) is a limit of h ◦ p : J → P(K) as stated. �

Example 4.5. Let K be a small category and suppose that K admits finite products.
We define a group object in K to be a pair (G,µ) of an object G and a morphism
µ : G × G → G such that the pair (Map(S,G),Map(S, µ)) is a group for every
S ∈ K0. For example, the category Mfdω of compact smooth manifolds and smooth
maps is essentially small8 and admits finite products. A group object in Mfdω is
called a compact Lie group.

8 A category is defined to be essentially small if it is equivalent to a small category.
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Example 4.6. Let K be a small category and suppose that K admits finite products.
A morphism in K of the form (s, t) : R → X × X is defined to be an equivalence
relation if for every S ∈ K0, the induced map of sets

Map(S,R) Map(S,X)×Map(S,X)
(Map(S,s),Map(S,t))

//

is an equivalence relation. This means that it is injective, and that its image is
symmetric, reflexive, and transitive.

The Yoneda embedding h : K → P(K) does not preserve colimits that might
exist in K. Instead, we will now prove that h : K → P(K) exhibits P(K) as the
category freely generated by K under small colimits. We first prove two lemmas.

Lemma 4.7. Let C be a category. A morphism f : y → x in C is an isomorphism
if and only if for all object z in C, the induced map of sets

Map(x, z) Map(y, z)
Map(f,z)

//

is a bijection.

Proof. If C is small, then this follows from the Yoneda lemma applied to Cop. But
let us give a direct proof. The “only if” part of the statement is clear, and to prove
the “if” part, we let z = y, and define g : x → y to be the unique morphism in C

such that Map(f, y) = idy, or equivalently, such that g◦f = idy. It remains to show
that also f ◦ g = idx. This is an equality in Map(x, x), which, by assumption, is
equivalent to the equality f ◦ g ◦ f = f in Map(y, x). But this equality holds, since
g ◦ f = idy, so we conclude that f ◦ g = idx, as desired. �

To state the next lemma, let K be a small category, and let h : K → P(K) be
the Yoneda embedding. Given an object F of P(K), we define the slice category
K/F as follows. The object set is the set of pairs (S, ϕ), where S is an object of
K, and where ϕ : h(S) → F is a morphism in P(K). A morphism from (T, ψ) to
(S, ϕ) is a morphism f : T → S in K with the property that ψ = ϕ◦h(f). We claim
that K/F is essentially small. Indeed, let K ′/F be the category, where an object is

a pair (S, x) of an object S in K and an element x ∈ F(S), and where a morphism
f : (T, y) → (S, x) is a morphism f : T → S in K such that F(f)(x) = y. It is a
small category, since K is small and since the sets F(S) are all small. Moreover, the
Yoneda lemma shows that the functor

K/F
e // K ′/F

that to (S, ϕ) assigns (S, ϕS(idS)) and that to f : (T, ψ)→ (S, ϕ) assigns the same
map f : (T, ψT (idT ))→ (S, ϕS(idS)) is an equivalence. So K/F is essentially small,
as claimed. The category K ′/F is called the category of elements in F.

We define q : K/F → K to be the functor that, on object sets, takes (S, ϕ) to S,
and that, on morphism sets, takes f : (T, ψ) → (S, ϕ) to f : T → S. It is a faithful
functor that, typically, is not full.

Lemma 4.8. In the situation above, a colimit of p = h ◦ q : K/F → P(K) is given
by the functor p̄ : (K/F). → P(K), whose restriction to K/F is p, whose value at
the cone point 0 is F, and whose value at the unique morphism from (S, ϕ) to 0 is
the morphism ϕ : h(S)→ F.
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Proof. By lemma 4.7, it suffices to show that for every object G of P(K),

((K/F)op)/ = ((K/F).)op Set
Map(p̄,G)

//

is a limit of Map(p,G) : (K/F)op → Set. As we now explain, this is a consequence of
the Yoneda lemma and the definitions. We replace K/F with the equivalent small
category K ′/F of elements in F. There is a natural transformation

Map(p,G)
α // G ◦ q,

where α(S,x) : Map(p,G)(S, x) → G(S) is the map that to ψ : p(S, x) = h(S) → G

assigns ψS(idS) ∈ G(S). The Yoneda lemma shows that this natural transformation
is a natural isomorphism. Moreover, by definition,

Map(p̄,G)(0) = Map(F,G)

is the set of natural transformations from ξ : F → G, and the composition

Map(p̄,G)(0) Map(p̄,G)(S, x) G(S)//
α(S,x)

//

of the map induced by the unique morphism to the cone point and the bijection
α(S,x) takes ξ to ξS(x) ∈ G(S). In order that the diagram Map(p̄,G) of sets be a
limit of the diagram Map(p,G) of sets, the family (ξS(x))(S,x) is required to have
the property that for every morphism f : (T, y)→ (S, x) in K ′/F, the map

G(S) G(T )
G(f)

//

takes ξS(x) to ξT (y) = ξT (f(x)). But this is precisely the definition of what it
means for ξ : F → G to be a natural transformation. �

A presheaf F on a small category K is defined to be representable if it belongs
to the essential image of the Yoneda embedding h : K → P(K), that is, if there
exists and object S in K and an isomorphism ϕ : h(S)→ F in P(K). Thus, stated
in less precise terms, Lemma 4.8 shows that every presheaf on K is a small colimit
of representable presheaves on K.

Proposition 4.9. If K is a small category, and if C is a category that admits small
colimits, then the Yoneda embedding induces an equivalence

Funcolim(P(K),C) ⊂ Fun(P(K),C) Fun(K,C)
Fun(h,C)

//

from the full subcategory spanned by the functors F : P(K)→ C that preserve small
colimits to the category of functors f : K → C.

Proof. We first use Proposition 3.9 to produce a functor

Fun(K,C)
h! // Funcolim(P(K),C).

that is left adjoint to the composite functor h∗ in the statement. Given a functor
f : K → C, we must define a colimit-preserving functor h!(f) : P(K) → C and a
natural transformation ηf : f → h∗h!(f) such that the map α(f,G) given by

Map(h!(f), G)
h∗ // Map(h∗h!(f), h∗(G))

−◦ηf
// Map(f, h∗(G))
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is a bijection for every colimit-preserving functor G : P(K)→ C. Let qF : K/F → K
be the canonical projection. We proved in Lemma 4.8 that the composite diagram
pF = h ◦ qF : K/F → P(K) admits the colimit p̄F : K.

/F → P(K) with p̄F(0) = F.

By the assumption that the category C admits small colimits, we may choose a
colimit r̄F : K.

/F → C of the composite diagram rF = f ◦ qF : K/F → C and define

h!(f)(F) = r̄F(0).

Moreover, if F = h(S), then we define the morphism

f(S)
ηf,S
// h!(f)(h(S)) = h∗h!(f)(S)

to be the image by r̄h(S) : (K/h(S))
. → C of the unique morphism from (S, idh(S)) to

the cone point 0. We note that ηf,S is in fact an isomorphism, because (S, idh(S)) is
a final object in K/h(S). The defining universal property of the colimit implies that
the family (ηf,S)S∈K0 is a natural transformation ηf : f → h∗h!(f), which, in fact,
is a natural isomorphism. To prove that the map α(f,G) is a bijection, we define
an inverse map β(f,G). By definition, if ϕ̄ : h!(f) → G is a natural transformation,
then, at S in K, ϕ = α(f,G)(ϕ̄) : f → h∗(G) is given by the composite morphism

f(S)
ηf,S

// h!(f)(h(S))
ϕ̄h(S)

// G(h(S)).

Conversely, a natural transformation ϕ : f → h∗(G) induces

rF = f ◦ qF
ϕ◦qF // G ◦ h ◦ qF = G ◦ pF

which extends uniquely to a natural transformation between their colimits

r̄F
ϕ◦qF // G ◦ p̄F.

Its value at the cone point 0 is a morphism

h!(f)(F)
ϕ̄F // G(F)

that we take as our definition ϕ̄F = β(f,G)(ϕ)F. The universal property of colimits
implies that the family (ϕ̄F) is a natural transformation ϕ̄ = β(f,G)(ϕ). So we con-
clude from Proposition 3.9 that there is an adjunction (h!, h

∗, ε, η) from Fun(K,C)

to Funcolim(P(K),C) with h!(f) and ηf : f → h∗h!(f) as above.

We have already seen that η is a natural isomorphism, so it remains only to
prove that the same is true for ε. By definition, εG : h!h

∗(G) → G is the image by
the map β(h∗(G),G) of idh∗(G) : h∗(G) → h∗(G), and its value at F is calculated as
follows. The identity natural transformation

rF = h∗(G) ◦ qF
h∗(G)◦qF

// G ◦ h ◦ qF = G ◦ pF
extends uniquely to a natural transformation between the chosen colimits

r̄F
h∗(G)◦qF // G ◦ p̄F,

and the its value at the cone point 0 is the morphism

h!h
∗(G)(F)

εG,F
// G(F).

It is an isomorphism, since colimits are unique, up to unique isomorphism. �
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The category P(K) is not small, unless K is the empty category, but we learn
from Proposition 4.9 that it nevertheless controlled by the small category K.

Example 4.10. The simplest non-trivial case of Proposition 4.9 is, where K = 1 a
static category with a single object 0, and Γ(0,−) : P(1) → Set is an equivalence.
In this case, we learn that the functor

Funcolim(Set,C) // C.

given by evaluation at a singleton set 1 = {0} is an equivalence. Informally, this
statement says that the category Set of small sets is freely generated under small
colimits by the singleton set 1 = {0}.

The category P(K) of presheaves on a small category K is an example of what
is called a topos. Here is a general definition.

Definition 4.11 (Grothendieck). A category X is a topos if there exists a small
category K and a fully faithful embedding ι : X→ P(K) that admits a left adjoint
functor L : P(K)→ X that preserves finite limits.

We stress that to be a topos is a property of a category X. In Grothendieck’s
philosophy, a topos is similar to the category of sets in all respects, except for one:
The axiom of choice does not hold in a general topos. The axiom of choice is the
statement that every epimorphism p : Y → X admits a section s : X → Y . We use
the axiom of choice to prove that free modules are projective. In a general topos,
the corresponding statement fails and leads to the notion of cohomology.9

Example 4.12. Let us see that the axiom of choice fails in the topos

X = P(BG),

where G is any non-trivial group. We have earlier identified X with the category of
right G-sets (X, ρ) and G-equivariant maps. Such a map p : (Y, σ) → (X, ρ) is an
epimorphism if and only if the map p : Y → X is surjective. Let (Y, σ) = (G, σ),
where σ : Gop → Aut(G) is action by right multiplication, and let (X, ρ) = (1, ρ),
where 1 = {0} and ρ : Gop → Aut(1) is the unique map. The unique map

(Y, σ)
p
// (X, ρ)

is G-equivariant, but it does not admit a G-equivariant section. Indeed, such a map
s : (X, ρ) → (Y, σ) would map 0 ∈ X to a point s(0) ∈ Y that is fixed by the
G-action. But the G-action on Y is free, so in particular, it there are no points in
Y that are fixed by the G-action.

Exercise 4.13. Let j : K ′ → K be a functor between small categories, and let

P(K)
j∗
// P(K ′)

be the functor defined by j∗(F)(S′) = F(j(S′)) and j∗(ϕ)S′ = ϕj(S′).

(1) Show that j∗ preserves small colimits.
(2) Show that j∗ preserves small limits.

9 Coherent cohomology on a scheme (X,OX) is given by Hi(X,F) = ExtiOX
(OX ,F), so the

rank 1 free OX -module OX is not generally not projective!
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Exercise 4.14. Let Grpω be the category of finitely generated10 groups and group
homomorphisms, and let F : Grpω → Set be the forgetful functor that to a group
(G,µ) assigns the set G, and that to a group homomorphism f : (G′, µ′) → (G,µ)
assigns the same map f : G′ → G. We view F as a presheaf on K = (Grpω)op.

(1) Show that the forgetful functor F : Grpω → Set is representable.

Let C be a category, and let x be an object of C. The composition of morphisms in
C gives the set End(x) = Map(x, x) the structure of a monoid.

(2) Describe the monoid End(F), where F : Grpω → Set is the forgetful functor.

10 The only reason that we consider finitely generated groups instead of all groups is to not

have to deal with set-theoretic issues.
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5. Grothendieck’s theorem

In this last lecture, we introduce two very important tools in category theory,
namely, Kan extensions and Grothendieck’s theorem that, in the category of sets,
filtered colimits and finite limits commute. For example, every theorem concerning
sheaves (in algebraic geometry and elsewhere) is obtained by an application of some
(often clever) combination of these two tools.

Let K be a small category, and let f : K → 1 be the unique functor to the final
category 1, which is static and has a single object 0. We have seen that for any
category C, the functor f induces a “diagonal” functor

C ' PC(1)
f∗
// PC(K) ' Fun(Kop,C).

We have further seen that an adjunction (f!, f
∗, ε, η) determines and is determined

by a colimit F̄ : (Kop). → C of every diagram F : Kop → C, and similarly, that an
adjunction (f∗, f∗, ε, η) determines and is determined by a limit F̄ : (Kop)/ → C for
every diagram F : Kop → C.

The Kan extensions concern the “in families” generalization of the discussion
above. We replace f : K → 1 by an arbitrary functor f : L → K between small
categories and replace the diagonal functor by the functor

PC(K)
f∗
// PC(L)

defined by f∗(−) = (−) ◦ fop as before. The “in families” generalization of colimit
is the left Kan extension f! and the “in families” generalization of limit is the right
Kan extension f∗. We now show that if these exist in the absolute case of K → 1,
then they also exist in the relative case of L→ K.

Theorem 5.1. Let f : L→ K be a functor between small categories.

(1) If C is a category that admits small colimits, then f∗ admits a left adjoint

PC(L)
f! //

PC(K).
f∗
oo

(2) If C is a category that admits small limits, then f∗ admits a right adjoint

PC(K)
f∗
//
PC(L).

f∗

oo

Proof. It suffices to prove (1), since (2) is (1) for Cop. Given G : Lop → C, we define
f!(G) : Kop → C as follows. Let S be an object of K, and let LS/ be the slice
category. We recall that the objects of LS/ are all pairs (T, a) of an object T of
L and a morphism a : S → f(T ) in K and that a morphism in L/S from (U, b) to
(T, a) is a morphism h : U → T in L with the property that a = f(h) ◦ b. We also
recall the functor qS : LS/ → L that to h : (U, b) → (T, a) assigns h : U → T . A
morphism k : S → R in K gives rise to a functor Lk/ : LR/ → LS/ in the opposite
direction that to h : (U, b)→ (T, a) assigns h : (U, b ◦ k)→ (T, a ◦ k). Moreover, the
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diagram

LR/
Lk/

//

qR
��

LS/

qS
��

L

commutes. Now, given G : Lop → C, we define f!(G) : Kop → C as follows. If S is an
object of K, then we let pS : (LS/)

op → C be the composite functor

(LS/)
op

qopS // Lop G
// C

and choose a colimit p̄S : ((LS/)
op). → C thereof and define

f!(G)(S) = p̄S(0)

to be the value at the cone point 0. Moreover, if k : S → R is a morphism in K, then
there is a unique natural transformation ϕ : p̄R → p̄S ◦ ((Lk/)

op). that restricts to
the identity natural transformation of pR = ps ◦ (Lk/)

op on (LR/)
op, and we define

f!(G)(R) f!(G)(S)
f!(G)(k)=ϕ0

//

to be the value of ϕ at the cone point. This defines the presheaf f!(G). We define

G(T )
ηG,T

// f∗f!(G)(T ) = f!(F)(f(T ))

to be the image by p̄f(T ) of the unique morphism (T, idf(T )) → 0. It remains to
show that the composite map

Map(f!(G),F)
f∗
// Map(f∗f!(G), f∗(F))

−◦ηG
// Map(G, f∗(F))

is a bijection. We define the inverse map as follows. Given ψ : G→ f∗(F), we extend
the functor pS : (LS/)

op → C to a functor rS : ((LS/)
op). → C that to the unique

morphism (T, a : S → f(T ))→ 0 assigns the composite morphism

G(T )
ψT // F(f(T ))

F(a)
// F(S).

There is a unique natural transformation ϕ : p̄S → rS with ϕ|(LS/)op = pS , and its
value at the cone point is a morphism

f!(G)(S)
ϕ0 // F(S).

The uniqueness property of the colimit implies that the family consisting of these
morphisms is a natural transformation f!(G) → F. One checks that this is indeed
an inverse to the map in question. �

Remark 5.2. We record the formulas for f!(G)(S) and f∗(G)(S), which we derived
during the proof of Proposition 5.1. Here G : Lop → C is a presheaf on L with values
in C, and S is an object of K. If we let pS = G ◦ qop

S : (LS/)
op → C and choose a

colimit p̄S of p, then f!(G)(S) ' p̄S(0). Similarly, if pS : G ◦ qop
S : (L/S)op → C and if

p̄S is a limit of pS , then f∗(G)(S) ' p̄S(0). So informally, we have

f!(G)(S) = lim−→(T,a : S→f(T ))
G(T ),

f∗(G)(S) = lim←−(T,a : f(T )→S)
G(T ).
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We now specialize to the case, where C = Set is the category of small sets, where
we have the following more useful characterization of the Kan extensions.

Proposition 5.3. Let f : L → K be a functor between small categories. Up to
unique natural isomorphism, the right Kan extension along f is the unique functor
that preserves small colimits and makes the diagram

L
f

//

hL

��

K

hK

��

P(L)
f! // P(K)

commute, up to unique natural isomorphism.

Proof. By definition, the right Kan extension has this property, and the uniqueness
statement follows from Proposition 4.9. �

Proposition 5.3 further characterizes f∗ as a right adjoint of f! and f∗ as a right
adjoint of f∗, both of which are unique, up to unique natural isomorphism. This
has the following useful consequence.

Corollary 5.4. Let C be a category that admits small limits and colimits, and let

L
f
//
K

g
oo

be an adjoint pair of functors between small categories. In this situation, there are
unique natural isomorphisms between adjoint functors

PC(L)

f!
))

f∗'g∗ // PC(K)
f∗'g!oo

g∗ii

Proof. If C = Set, then Proposition 5.3 shows that g! is a right adjoint to f!. But so
is f∗, and therefore, we conclude, by the uniqueness of right adjoints, up to unique
natural isomorphism, that f∗ and g! are uniquely naturally isomorphic as stated. By
the same argument, we further conclude that also f∗ and g∗ are uniquely naturally
isomorphic. For general C, we use the fact, which we proved in Lemma 4.8, that
limits and colimits in categories of C-valued presheaves are calculated pointwise to
reduce to the case C = Set. �

Example 5.5. A small category K admits an initial object if and only if the unique
functor p : K → 1 admits a left adjoint s : 1→ K. In this case, Corollary 5.4 shows
that p! ' s∗, which is the familiar fact that the a colimit indexed by a small category
that admits a final object is given by evaluation at said final object.

Similarly, a small category K admits a final object if and only if the unique
functor p : K → 1 admits a right adjoint s : 1→ K. So we conclude that p∗ ' s∗, or
equivalently, that limits indexed by a small category that admits an initial object
are given by evaluation at said initial object.

Let K and L be small categories. We define K × L to be the category, whose
set of objects is K0 ×L0, whose set of morphisms is K1 ×L1, and whose structure
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maps are the products of the structure maps for K and L. We would like to say
that K × L is the “product” of K and L and that the diagram

K × L
q′
//

p′

��

K

p

��

L
q

// 1,

where 1 is a final category, where p and q are the unique functors, and where p′

and q′ are the canonical projection functors, is a “cartesian” diagram of categories.
These statements are both true, but to make sense of them, we need to pass to
∞-categories.11 The induced diagram of restriction functors

PC(K × L) PC(K)
q′∗
oo

PC(L)

p′∗

OO

PC(1)

p∗

OO

q∗
oo

commutes, but it does not make sense to ask if the “base-change” diagram

PC(K × L)

p′∗

��

PC(K)
q′∗
oo

p∗

��

PC(L) PC(1)
q∗

oo

does so, because, the functors p∗ and p′∗ are well-defined, up to unique natural
isomorphism only. However, by the commutativity of the diagram of restriction
functors, we may consider the composite natural transformation

q∗p∗
ηq∗p∗ // p′∗p

′∗q∗p∗ = p′∗q
′∗p∗p∗

p′∗q
′∗ε
// p′∗q

′∗

between the two composite functors in the “base-change” diagram, and we can ask
whether or not it is a natural isomorphism. We call this natural transformation the
base-change map, and we say that base-change holds, if it is a natural isomorphism.
For cartesian diagrams of categories in general, this is not true, but it is so in the
case that we consider, because the functor p : K → 1 is “proper.” The following is
a special case of proper base-change for presheaves on categories.

Proposition 5.6. Let C be a category that admits small limits, and let K and L
be small categories. The base-change map q∗p∗ → p′∗q

′∗ for the diagram

PC(K × L)

p′∗

��

PC(K)
q′∗
oo

p∗

��

PC(L) PC(1),
q∗

oo

is a natural isomorphism.

11 It suffices to pass to (2, 1)-categories, but it is easier to pass to (∞, 1)-categories right away.
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Proof. We wish to prove that for every F ∈ PC(K), the base-change map

q∗p∗(F) // p′∗q
′∗(F)

in PC(L) is an isomorphism. This map, in turn, is an isomorphism if and only if for
every object T in L, the induced map

q∗p∗(F)(T ) // p′∗q
′∗(F)(T )

in C is an isomorphism. To prove that this is so, we consider the diagram

K
T ′ //

p

��

K × L
q′
//

p′

��

K

p

��

1
T // L

q
// 1,

where T ′ is the functor that to S in K assigns (S, T ) in K×L. Now, we can rewrite
the map in C, which we wish to prove is an isomorphism, as the map

T ∗q∗p∗(F) // T ∗p′∗q
′∗(F)

induced by the base-change map for the right-hand square. But the composition

T ∗q∗p∗(F) // T ∗p′∗q
′∗(F) // p∗T

′∗q′∗(F)

of this map and the map induced by the base-change map for the left-hand square
is the base-change map for the outer square, which is the identity map of p∗(F), so
we may instead show that the right-hand map is an isomorphism. In fact, we will
show for all G ∈ P(K × L), the base-change map

T ∗p′∗(G) // p∗T
′∗(G)

for the left-hand square is an isomorphism. To this end, we consider the diagram

(K × L)/T

K K × L

1 L,

qT

  

r

$$

f

""g

bb

T ′ //

p

��

p′

��
T //

where f((S, T ′), a : T ′ → T ) = S and g(S) = ((S, T ), idT : T → T ). (The outer
square and the top triangular diagram do not commute.) We now have

T ∗p′∗(G) ' r∗q∗T (G) ' p∗f∗q∗T (G) ' p∗g∗q∗T (G) ' p∗T ′∗(G),

where the first isomorphism is the formula for the right Kan extension that we gave
in Remark 5.2, and where the next to last isomorphism follows from Corollary 5.4.
We leave it to the reader to check that the composite isomorphism is equal to the
base-change map. This completes the proof. �
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We may now repeat this process. So we consider the diagram

PC(K × L)

p′∗
��

q′! // PC(K)

p∗

��

PC(L)
q! // PC(1)

and use the fact that Proposition 5.6 gives rise to a natural transformation

q!p
′
∗

q!p
′
∗η // q!p

′
∗q
′∗q′! q!q

∗p∗q
′
!

∼oo
εp∗q

′
! // p∗q

′
! ,

where the “wrong-way” arrow is the base-change map. Indeed, by Proposition 5.6,
the base-change morphism is a natural isomorphism, so it has a unique inverse
natural transformation, and it is this unique inverse natural transformation that
we use to form the composite natural transformation q!p

′
∗ → p∗q

′
! . Informally, a

presheaf on K × L is a functor H : Kop × Lop → C of two variables, and q!p
′
∗ takes

H to the object of C obtained by first taking the limit in the Kop-variable and
then the colimit in the Lop-variable, whereas p∗q

′
! instead takes H to the object

of C obtained by first taking the colimit in the Lop-variable and then the limit in
the Kop-variable. For this reason, we call q!p

′
∗ → p∗q

′
! the limit-colimit-interchange

map, and we also write it informally as

lim−→Lop
lim←−Kop

H // lim←−Kop
lim−→Lop

H

even though the functors p′∗ and q′! are not really limits and colimits. In general, it
is not a natural isomorphism. Let us give a counterexample.

Example 5.7. In order to produce a counterexample, it is always good to think
about extreme cases. So let us suppose that K and L are both the empty category.
In this case, also K×L is the empty category, and H : Kop×Lop → C is necessarily
the unique functor. Similarly, p′∗(H) : Lop → C and q′!(H) : Kop → C are both the
unique functors, since this is the only possibility. So q!p

′
∗(H) : 1op → C is an initial

object of C, whereas p∗q
′
!(H) : 1op → C is a final object of C, and therefore, the

limit-colimit-interchange map is the unique morphism q!p
′
∗(H)→ p∗q

′
!(H) from an

initial object to a final object in C. If C = Set, then this is not an isomorphism,
since the unique initial object in Set is the empty set ∅, whereas a final object in
Set is any set with exactly one element.

In the case C = Set, Grothendieck’s theorem gives sufficient12 conditions for the
limit-colimit-interchange map to be a natural isomorphism.

Definition 5.8. A category J is filtered the following conditions are satisfied.13

(1) The category J is non-empty.
(2) For every pair of objects (i, j) in J , there exists a pair of morphisms

i

j

k

a
))

b

55

12 It turns out that, for C = Set, these conditions are also necessary.
13 Equivalently, a category J is filtered, if every functor p : K → J from a finite category K

extends to a functor p̃ : K. → J .
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with the given objects as sources and with a common target.
(3) For every pair of parallel morphisms (a : i→ j, b : i→ j) in J , there exists

a morphism c : j → k such that the two composite morphisms

i
a //

b
// j

c // k

are equal.

Example 5.9. Here is a typical example of a filtered category. Let X be a topological
space, and let x ∈ X be a point. Let K be category, whose objects are open subsets
x ∈ U ⊂ X that contain x, and where there is a unique morphism iVU : U → V if
U ⊂ V . If U 6⊂ V , then there are no morphisms from U to V . In this case, the
opposite category J = Kop is filtered. We also say that K is cofiltered.

We proved in Proposition 2.15 that Set admits all small colimits, but we also
remarked in Remark 2.16 that if p̄ : J → Set is a colimit of p : J → Set, then the
set p̄(0) =: lim−→J

p is all but unknowable, in general. However, for J filtered, the

situation turns out to be much better.

Proposition 5.10. Let J be a small filtered category, let p : J → Set be a diagram,
and let p̄ : J → Set be a colimit. Let X =

∐
j∈J0 Xj, and let R ⊂ X × X be the

relation that consists of the pairs (xi, xj) with xi ∈ p(i) and xj ∈ p(j) for which
there exists a : i→ k and b : j → k such that p(a)(xi) = p(b)(xj) ∈ p(k).

(1) The relation R ⊂ X ×X is an equivalence relation, and the map X → p̄(0)
induced by the unique maps j → 0 in J. factors through a bijection

X/R // p̄(0).

(2) Given (xi, xj) ∈ R with xi ∈ p(i) and xj ∈ p(j), there exists k ∈ J0 and
xk ∈ p(k) such that both (xi, xk), (xj , xk) ∈ R.

(3) Given (xi, x
′
i) ∈ R with xi, x

′
i ∈ p(i), there exists a : i → j in J such that

p(a)(xi) = p(a)(x′i) ∈ p(j).

Proof. The statement (1) is clear, once we prove that R is an equivalence relation.
Moreover, it is clear that R is both reflexive and symmetric, so only transitivity
needs proof. So we assume that (xi, xj) ∈ R and (xj , xk) ∈ R with xi ∈ p(i),
xj ∈ p(j), and xk ∈ p(k) and must prove that (xi, xk) ∈ R. We use this the
assumption and the fact that J is filtered to choose morphisms

k

j

i

m

l

n o

88
&&

88
&&

88
&&

//
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such that the two composite morphisms j → o are equal and such that, in the
induced diagram of sets

p(k)

p(j)

p(i)

p(m)

p(l)

p(n) p(o),

77

''

77

''

77

''
//

the elements xi ∈ p(i) and xj ∈ p(j) have the same image xm ∈ p(l) and the
elements xj ∈ p(j) and xk ∈ p(k) have the same image xn ∈ p(m). Since p is a
functor, we conclude that xi ∈ p(i), xj ∈ p(j), and xk ∈ p(k) all have the same
image xo ∈ p(o), which shows that (xi, xk) ∈ R, as desired.

The statement (2) follows immediately from the fact that J is filtered, so it
remains only to prove (3). If (xi, x

′
i) ∈ R with xi, x

′
i ∈ p(i), then, by definition,

there exists f, g : i → i′ such that p(f)(xi) = p(g)(x′i) ∈ p(i′). Since J is filtered,
we can choose h : i′ → j such that h ◦ f = h ◦ g : i → j. Hence, if a : i → j is the
common morphism, then we find that

p(a)(xi) = (p(h) ◦ p(f))(xi)) = (p(h) ◦ p(g))(x′i) = p(a)(x′i),

as desired. �

We define a category K to be finite if both the set of object K0 and the set of
morphisms K1 are finite. For example, the empty category is finite. We can now
state and prove Grothendieck’s theorem.

Theorem 5.11. Let K and L be small categories. If K is finite and if L is cofiltered,
then, in the diagram of categories of presheaves of small sets

P(K × L)

p′∗
��

q′! // P(K)

p∗

��

P(L)
q! // P(1),

the limit-colimit-interchange map

q!p
′
∗

// p∗q
′
!

is a natural isomorphism.

Proof. We wish to show that the limit-colimit-interchange map

q!p
′
∗(H) // p∗q

′
!(H)

is a bijection for every presheaf H : Kop × Lop → Set. In order to do so, we first
determine the source and target of this map by using the description of limits
given in Proposition 2.15 and the description of filtered colimits given in Propo-
sition 5.10 above. An element of q!p

′
∗(H) is an equivalence class of families of the

form (xi,j)i∈K0
, where xi,j ∈ H(i, j) and H(a, j)(xi,j) = xi′,j for all a : i′ → i in
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K, and two such families (xi,j)i∈K0
and (x′i,k)i∈K0

are equivalent if there exists

morphisms b : l→ j and c : l→ k in L such that H(i, b)(xi,j) = H(i, c)(x′i,k) for all

i ∈ K0. Similarly, an element of p∗q
′
!(H) is a family (class(xi,j))i∈K0 of equivalence

classes of elements xi,j ∈ H(i, j), where xi,j and xi,k are equivalent if there exists
morphisms b : l → j and c : l → k such that H(i, b)(xi,j) = H(i, c)(xi,k), and this
family is required to satisfy that class(H(a, j)(xi,j)) = class(xi′,j) for all a : i′ → i
in K. Finally, the limit-colimit-interchange map is given by

class((xi,j)i∈K0)
� // (class(xi,j))i∈K0

.

Since K is finite, it follows immediately from Proposition 5.10 that it is a bijection.
Indeed, given an element (class(xi,j))i∈K0 of p∗q

′
!(H), we can find a common m ∈ L0

and a family (xi,m)i∈K0
of representatives of the given classes such that every

morphism a : i′ → i in K, we have H(a,m)(xi,m) = xi′,m. Hence, the map

class((xi,m)i∈K0) (class(xi,j))i∈K0

�oo

is inverse to the limit-colimit-interchange map. �

Exercise 5.12. Use Proposition 5.10 to check that the limit-colimit-interchange map
is an isomorphism in the case, where K is the empty category and L is a small
cofiltered category.

Remark 5.13. Theorem 5.11 is valid for presheaves with values in a topos X, but it
does not hold for presheaves with values in a general category C. For example, it
fails for the category C = Setop.

Exercise 5.14. Let C be a category that admits small limits, and let K and L be
small categories. We consider the diagram of categories of C-valued presheaves

PC(K × L)
q′! // PC(K)

PC(L)
q! //

p′∗

OO

PC(1).

p∗

OO

Show that the composite natural transformation

q′!p
′∗ q′!p

′∗η
// q′!p
′∗q∗q! ' q′!q′∗p∗q!

εp∗q! // p∗q!

is a natural isomorphism.

[Hint: Show that this statement is equivalent to Proposition 4 for Cop.]

Exercise 5.15. Let K be a small category that admits finite coproducts, and let

PΣ(K) ⊂ P(K)

be the full subcategory spanned by the functors F : Kop → Set that preserve finite
products. Since finite products in Kop are given by finite coproducts in K, the
requirement that F preserve finite products amounts to the requirement that for
every finite family (xi)i∈I of objects in K, the canonical map

F(
∐
i∈I xi)

//
∏
i∈I F(xi)

is a bijection.
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(1) Show that the PΣ(K) ⊂ P(K) is closed under small filtered colimits. More
precisely, given a functor p : J → PΣ(K) with J small, we know that its
composition q = i ◦ p : J → P(K) with the inclusion i : PΣ(K) → P(K)
admits a colimit q̄ : J. → P(K). Show that if J is filtered, then there exists
a (unique) functor p̄ : J. → PΣ(K) such that q̄ = i ◦ p̄.

(2) Conclude that small filtered colimits in PΣ(K) are calculated pointwise.14

Remark 5.16. As an application of Exercise 5.15, we let CAlg(Ab) be the category
of commutative rings and ring homomorphisms, and let K ⊂ CAlg(Ab) to be the
full subcategory spanned by the polynomial rings Z[x1, . . . , xn] in finitely many
variables, including n = 0. It admits finite coproducts. There is a functor

CAlg(Ab)
h // PΣ(K)

defined by h(R)(−) = Map(−, R), and this functor is an equivalence of categories.
Thus, the fact that small filtered colimits in PΣ(K) are calculated pointwise implies
that a diagram p̄ : J. → CAlg(Ab) with J small and filtered is a colimit diagram
of commutative rings if and only its composition q̄ : J. → Set with the forgetful
functor CAlg(Ab)→ Set is a colimit diagram of sets.15

Nagoya University, Japan, and University of Copenhagen, Denmark

Email address: larsh@math.nagoya-u.ac.jp

14 More generally, small sifted colimits in PΣ(K) are calculated pointwise.
15 Again, this statement is true more generally for small sifted diagrams.
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