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1. The Zariski space of a ring

In this course, every ring will be commutative, unless explicitly stated otherwise.
The basic idea, due to Grothendieck, is that every such ring R deserves to be viewed
as the ring of “functions” on some geometric object. Concretely, this geometric
object will be defined to be a pair

Spec(R) = (|Spec(R)|,OSpec(R))

of a topological space and a sheaf of rings on this topological space. In this lecture,
we define the topological space |Spec(R)|, which we call the Zariski space of R. For
every f ∈ R, it should have a closed subset

Z(f) = V (f) ⊂ |Spec(R)|,

given by the locus where “f = 0.”

Definition 1.1. Let R be a ring. Its Zariski space is the topological space

|Spec(R)|

given by the set of prime ideals p ⊂ R with the topology with closed subsets

V (S) = {p ∈ |Spec(R)| | S ⊂ p},

where S ranges over all subsets S ⊂ R.

Here we interpret V (S) as the locus, where “f = 0” for all f ∈ S.

We will check that this is a topological space later, but let us first give some
motivation for this definition. How did we decide that the points of |Spec(R)|
should be the prime ideals of R? Two principles:

(1) A ring homomorphism ϕ : R→ R′ should give rise to a continuous map

|Spec(R′)|
p
// |Spec(R)|,

and this assignment should be functorial.
(2) For a field k, |Spec(k)| is a point. Indeed, every f ∈ k is either a unit or 0,

so the locus “f = 0” is either empty or the whole space.

According to these two principles, every ring homomorphism ϕ : R → k to a field
should determine a point x ∈ |Spec(R)|. But every such ring homomorphsm factors
canonically as the composition

R // R/p // Frac(R/p)
ϕ̄
// k,

where p ⊂ R is the kernel of ϕ. Here R/p is an integral domain, and Frac(R/p)
is its quotient field. We write k(x) for this field and call it the residue field at
x ∈ |Spec(R)|. Now, according to the functoriality of principle (1), the commutative
diagram of rings and ring homomorphisms

k(x) k

R

ϕ̄
//

ψ

^^

ϕ

@@
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gives rise to a commutative diagram of topological spaces and continuous maps

|Spec(k(x))| | Spec(k)|

|Spec(R)|

p̄
oo

q

!!

p

}}

and according to the principle (2), the topological spaces in the top row are both
one-point spaces, so the map p̄ is necessarily a homeomorphism. Thus, the maps
p and q define the same point x ∈ | Spec(R)|. But the map q only depends on the
prime ideal p ⊂ R. Whence the definition of the Zariski space.

We now fix a ring R. We will also write

|X| = |Spec(R)|
for its Zariski space and x ∈ |X| for a point therein. So x ∈ |X| determines and is
determined by a prime ideal p ⊂ R. In fact, we literally have x = p, but it is useful
to have the separate notation. We have already defined the residue field

k(x) = Frac(R/p)

at x ∈ |X| and the canonical map ψ : R→ k(x). We write

f(x) ∈ k(x)

for the image of f ∈ R by this map and call it the value of f ∈ R at x ∈ |X|. This
is the beginning of the definition of the sheaf of functions OX , which we will give
in Lecture 4. Its stalk at x ∈ |X| will be the localization

OX,x = Rp

of R with respect to the multiplicative subset R r p ⊂ R. We call OX,x the local
ring at x ∈ |X|, and we think of elements of OX,x as “germs of functions defined in
a neighborhood of x ∈ |X|.” We will write

mx ⊂ OX,x

for the unique maximal ideal pRp ⊂ Rp, and we note that k(x) is also the residue
field OX,x/mx of the local ring OX,x.

Example 1.2. The ring of integers R = Z has a prime ideal pZ ⊂ Z for every prime
number p, and, in addition, the zero ideal {0} ⊂ Z is a prime ideal. So

|X| = |Spec(Z)| = {pZ ⊂ Z | p is a prime number} ∪ {{0}},
and the closed subsets are V = |X| and the finite subsets V ⊂ |X|r {{0}}. So this
is not a Hausdorff space. In fact, it even has a non-closed point. Indeed, the only
closed subset that contains η = {0} ∈ |X| is all of |X|. So not only is the subset

A = {η} ⊂ |X|
not closed, but its closure is all of |X|. We say that such a point is a generic point.
The residue fields at the various points in |X| are k(pZ) = Fp and k(η) = Q, and if
n ∈ Z, then its value at x = pZ ∈ |X| is

n(x) = n+ pZ ∈ Z/pZ = k(x),

whereas its value at η = {0} ∈ |X| is

n(η) = n ∈ Q = k(η).
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Example 1.3. Let k = k̄ be an algebraically closed field, and let R = k[x1, . . . , xn].
In this case, Hilbert’s Nullstellensatz shows that the map

kn // |X| = |Spec(R)|

that to (a1, . . . , an) assigns the maximal ideal (x1−a1, . . . , xn−an) is injective that
its image precisely is the subset

|max-Spec(R)| ⊂ |Spec(R)|
consisting of the maximal ideals m ⊂ R. Moreover, if

x = (x1 − a1, . . . , xn − an) ∈ |max-Spec(R)|,
then k(x) = k and f(x) ∈ k(x) is literally the value of f at (a1, . . . , an). However,

|max-Spec(R)| ( |Spec(R)|,
unless n = 0. For example, the generic point

η = {0} ∈ |Spec(R)|
is not in |max-Spec(R)|.

Remark 1.4. Why not use |max-Spec(R)| instead of |Spec(R)|? One reason is that
it is not functorial. For example, for Z→ Q, which point in |max-Spec(Z)| should
the unique point in |max-Spec(Q)| map to? Another reason is that the extra points
in |Spec(R)| are useful. E.g. “spreading out”:

(1) For many properties of points on a variety over a algebraically closed field,
if the generic point has the property, then so do all points in an open
neighborhood of the generic point. In dimension 1, for example, this means
that if the property holds for the generic point, then it holds for all but
finitely many “classical” points, that is, points that correspond to maximal
ideals.

(2) Similar techniques let you reduce statements about varieties over fields of
characteristic 0 to varieties over fields of positive characteristic p. This is
surprisingly useful! (Mori’s bend-and-break technique is of this kind.) For
example, given a variety over Q, one first spreads it out to a scheme over
Z[1/N ] for some N , and then specializes it to a scheme over Fp for p - N .

Let R be a ring, and let |X| = |Spec(R)| be its Zariski space. Is f ∈ R determined
by its values f(x) ∈ k(x) for all x ∈ |X|? Equivalently, if f(x) = 0 for all x ∈ |X|,
then is f = 0? Well, that f(x) = 0 for all x ∈ |X| is equivalent to saying that f ∈ p
for all prime ideals p ⊂ R. So the answer to the question is “yes” if and only if⋂

p⊂R p = {0}.
However, as the following result shows, this is not always the case.

Lemma 1.5. If R is a ring, then f ∈
⋂

p⊂R p if and only if f ∈ R is nilpotent.

Proof. If f ∈ R is nilpotent, then fN = 0 for some N ≥ 0. In particular, fN belong
to every ideal in R. If p ⊂ R is a prime ideal, then fN ∈ p implies that f ∈ p. So
we conclude that if f ∈ R is nilpotent, then f ∈

⋂
p⊂R p.

Conversely, suppose that f ∈
⋂

p⊂R p. We consider the localization

R
γ
// Rf = R[1/f ]
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at the multiplicative subset {1, f, f2, . . . } ⊂ R. It has the universal property that
if ϕ : R → R′ is a ring homomorphism such that ϕ(f) ∈ R′ is a unit, then there
exists a unique ring homomorphism ϕ̄ : Rf → R′ that makes the diagram

R R′

Rf

ϕ
//

γ
�� ϕ̄

@@

commute. So if R′ = k be a field, then a ring homomorphism ϕ̄ : Rf → k determines
and is determined by a ring homomorphism ϕ : R → k such that ϕ(f) 6= 0, or
equivalently, such that f /∈ ker(ϕ). But ker(ϕ) ⊂ R is a prime ideal, so we conclude
from our hypothesis that the ring Rf does not admit a ring homomorphism to a
field. This implies that Rf does not have any maximal ideals, which, by Zorn’s
lemma, implies that Rf = {0}. So 1 = 0 in Rf , which by the usual construction
of Rf , means that there exists some N ≥ 0 such that fN · 1 = fN · 0 in R. So we
conclude that f is nilpotent. �

Therefore, ifR contains nonzero nilpotent elements, then f ∈ R is not determined
by its values f(x) ∈ k(x) for all x ∈ |X|. So we cannot think of f ∈ R as a function
in the usual sense. Why not just restrict ourselves to reduced rings? (A ring R
reduced if 0 ∈ R is the only nilpotent element.)

First, nilpotent elements make some statements much clearer. To wit, if k = k̄ is
an algebraically closed field, then two curves C,D ⊂ P2

k of degree m and n intersect
in m · n points, generically, but not always. For example, the curves y = x2 and
y = 0 intersect only in the point (x, y) = (0, 0). However, in this example, the
“scheme-theoretic intersection” of the two curves is

Spec(k[x]/(x2)),

which, as a topological space, is a single point, but since

dimk(k[x]/(x2)) = 2,

it gives the correct multiplicity 2 · 1. Moreover, the scheme-theoretic intersection is
also easier to determine:

k[x, y]/(y − x2)⊗k[x,y] k[x, y]/(y) ' k[x, y]/(y, x2) ' k[x]/(x2).

Second, nilpotent elements are useful for studying reduced rings. Consider

R // OX,x // ÔX,x = limn OX,x/m
n+1
x .

To understand the ring R, we begin with information at k(x) = OX,x/mx and lift
successively to the “nilpotent thickenings” OX,x/m

n+1
x for all n ≥ 0, and hence, by

passing to the limit, to the complete local ring

ÔX,x = limn OX,x/m
n+1
x .

If R is noetherian, then OX,x → ÔX,x is faithfully flat, so we can pass to OX,x by
faithfully flat descent. Finally, we pass to R by varying x ∈ |X|. This is a powerful
strategy in which the nilpotent elements play a key role.

Third, as we will prove next week, f ∈ R is determined by its germs fx ∈ OX,x
for all x ∈ |X|. This provides a workable salvage for the failure of f ∈ R to be
determined by its values f(x) ∈ k(x) for all x ∈ |X|.
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After this motivation, we now return to study the Zariski space

|X| = |Spec(R)|.

We wish to show that, as S varies over all subsets of R, the subsets

V (S) = {x ∈ |X| | f(x) = 0 for all f ∈ S} ⊂ |X|

form the closed subsets of a topology on the set of prime ideals in R. We prove the
following more detailed result.

Proposition 1.6. Let R be a ring, and let |X| = |Spec(R)| be its Zariski space.

(1) V (R) = ∅
(2) V ({0}) = |X|
(3) V (

⋃
i Si) =

⋂
i V (Si)

(4) V (S · T ) = V (S) ∪ V (T )

(5) V (S) ⊂ V (T ) if and only if T ⊂
√

(S)

(6) V (S) = V (T ) if and only if
√

(S) =
√

(T )

Here (S) ⊂ R is the ideal generated by S ⊂ R, and
√

(S) ⊂ R is its radical.

Proof. Parts (1)–(4) are straightforward, as is the fact that (5) implies (6), so we
only prove (5).

Suppose that T ⊂
√

(S). If x ∈ V (S), then f(x) = 0 for all f ∈ S. This implies

that f(x) = 0 for all f ∈ (S), which, in turn, implies that f(x) = 0 for all f ∈
√

(S).
So f(x) = 0 for all f ∈ T , which shows that V (S) ⊂ V (T ).

Conversely, suppose that V (S) ⊂ V (T ), or equivalent, suppose that for every
ring homomorphism ϕ : R→ k to a field, S ⊂ ker(ϕ) implies that T ⊂ ker(ϕ). This,
in turn, implies that every ring homomorphism ϕ̄ : R/(S)→ k to a field annihilates
all f ∈ T . By Lemma 1.5, this implies that every f ∈ T has nilpotent image in
R/(S), or equivalently, that every f ∈ T belongs to

√
(S) ⊂ R. So T ⊂

√
(S). �

Corollary 1.7. Let R be a ring.

(1) There exists a unique topology on the set of prime ideals in R, the closed
subsets of which are the subsets of the form V (S) for some subset S ⊂ R.

(2) Every closed subset in this topology is equal to V (I) for a unique radical
ideal I ⊂ R.

The topology on the Zariski space defined in Definition 1.1 is called the Zariski
topology. We note that since V (S) = ∩f∈SV ({f}), we only really need to remember
the closed subsets V (f) = V ({f}).

Definition 1.8. Let R be a ring, and let |X| = |Spec(R)| be its Zariski space. The
distinguished open subset corresponding to f ∈ R is the subset

|Xf | = D(f) = |X|r V (f) = {x ∈ |X| | f(x) 6= 0} ⊂ |X|.

Corollary 1.9. Let R be a ring, and let |X| = |Spec(R)| be its Zariski space. The
family of distinguished open subsets |Xf | ⊂ |X| indexed by f ∈ R forms a basis for
the Zariski topology on |X|. It is closed under finite intersections, since

|Xf | ∩ |Xg| = |Xfg|

for all f, g ∈ R.
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Remark 1.10. For many purposes, the points of |X| = |Spec(R)| are irrelevant! It
is only the underlying locale of the topological space |X| that is relevant. This, in
turn, is uniquely determined by the family of distinguished open subsets together
with the following information:

(1) |Xf | ⊂ |Xg| if and only if f ∈
√

(g).

(2) The family (|Xfi | ⊂ |Xg|)i∈I is a cover if and only if g ∈
√

(fi)i∈I .

Remark 1.11. Let R be a ring. As we have already remarked, its Zariski space |X| is
typically not Hausdorff or even T1. If x, y ∈ |X| are points corresponding to prime
ideals p, q ⊂ R, then the following statements are equivalent:

(1) y ∈ {x}
(2) If f ∈ R and f(x) = 0, then f(y) = 0.
(3) p ⊂ q

If these equivalent statements hold, then we say that x specializes to y and write
x  y. In particular, a point x ∈ |X| is closed if and only if the corresponding
prime ideal p ⊂ R is a maximal ideal.

Example 1.12. A ring R is an integral domain if and only if the zero ideal {0} ⊂ R is
a prime ideal. Suppose that this is the case. Since every prime ideal p ⊂ R contains
the zero ideal, the point η ∈ |X| corresponding to the zero ideal is a generic point:
its closure is all of |X|. So every point y ∈ |X| is a specialization of the generic
point η ∈ |X|.

Remark 1.13. Specialization is a partial order on |X|. Therefore, it gives rise to
a topology on |X| called the specialization topology or the Alexandroff topology,
in which a subset V ⊂ |X| is defined to be closed if it is specialization closed
in the sense that if x ∈ V and x  y, then y ∈ V . A Zariski closed subset
is specialization closed, but the converse is generally not true. For instance, the
complement V = |Spec(Z)|r {η} ⊂ |Spec(Z)| of the generic point is specialization
closed but not Zariski closed.

Finally, we establish the functoriality of the Zariski space.

Proposition 1.14. If ϕ : R→ R′ is a ring homomorphism, then the map

|Spec(R′)|
p
// |Spec(R)|

defined by p(p′) = ϕ−1(p) is well-defined and continuous.

Proof. To show that p is well-defined we must prove that if p′ ⊂ R′ is a prime ideal,
then so is p = ϕ−1(p′) ⊂ R. This is elementary, e.g. if we write p′ as the kernel of
a homomorphism R′ → k to a field (the residue field of p′), then p is the kernel of
the composite R→ R′ → k, hence also prime.

To prove that p : |X ′| → |X| is continuous, it suffices to show that for every
distinguished open subset |Xf | ⊂ |X|, the inverse image p−1(|Xf |) ⊂ |X| is open.
In fact, the inverse image is itself a distinguished open subset, namely,

p−1(|Xf |) = |Xϕ(f)| ⊂ |X ′|.

Indeed, by the definition of p, the left-hand side of this equality is the subset

{p ⊂ R | f /∈ ϕ−1(p)} ⊂ |Spec(R)|,
7



whereas the right-hand side of the equality is the subset

{p ⊂ R | ϕ(f) /∈ p} ⊂ |Spec(R)|.
So equality holds by the definition of inverse image of a map. �

We will occasionally (but rarely) write |Spec(ϕ)| for the map p in Proposi-
tion 1.14 to indicate its dependence on the map ϕ. With this notation, we now
prove the promised functoriality of the Zariski space construction.

Addendum 1.15. The following statements hold:

(1) For every ring R, the map

|Spec(R)|
| Spec(idR)|

// |Spec(R)|

is the identify map.
(2) For every commutative diagram

R′′ R′

R

ϕ′
oo

ψ

^^

ϕ

@@

of rings and ring homomorphisms, the diagram

|Spec(R′′)| | Spec(R′)|

|Spec(R)|

| Spec(ϕ′)|
//

| Spec(ϕ)|
{{

| Spec(ψ)|
""

of topological spaces and continuous maps commutes.

Proof. Both properties are immediate consequences of the definition of the map
p = |Spec(ϕ)| given in Proposition 1.14. �

Remark 1.16. Addendum 1.15 is the statement that the Zariski space is a functor

CAlg(Ab)op
| Spec(−)|

// Top

from the opposite of the category rings and ring homomorphisms to the category
of topological spaces and continuous maps. Here “opposite” refers to the fact that
|Spec(−)| reverses the direction of maps. This functor looses *a lot* of information.
For example, it maps every field to a one-point space. We will remedy this disaffect
in Lecture 4, when we upgrade the Zariski space to an object of geometry, as
opposed to an object of topology.
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2. Sheaves

Last time, we assigned to a ring R a topological space |X|, the Zariski space.
Later, we will define a sheaf of rings OX on |X|, and it is the pair

X = (|X|,OX)

of the Zariski space |X| and the (structure) sheaf OX that is the scheme associated
with R. In this kind of situation, a sheaf of “functions” is what separates geometry
from topology. For example, a complex manifold is similarly a pair X = (|X|,OX)
of a topological space |X| and a sheaf OX of “holomorphic functions” on |X| such
that, locally on |X|, the pair (|X|,OX) is isomorphic to a pair U = (|U |,Ohol

U ), where
U ⊂ Cd is an open subset, and where Ohol

U is the sheaf of holomorphic functions
on |U |. But before we can define the structure sheaf OX on the Zariski space |X|,
me first need to make ourselves familiar with sheaves. So in this lecture, we will
concern ourselves entirely with sheaves on a topological space |X|.

Since there will be no geometry this time, we will write X instead of |X| for a
topological space. A sheaf on X is an abstraction that encodes the way in which we
expect “functions on X” to behave. In fact, functions and sheaves are both precise
modern manifestations of the less precise concept of function that existed before
set theory was introduced.

Now, given a topological space X, we define XZar to be the category with objects
the open subsets of X and with a single morphism

U
iVU // V

whenever U ⊂ V . So if U 6⊂ V , then there are no morphisms from U to V in XZar.

Definition 2.1. Let X be a topological space. A presheaf on X is a functor

Xop
Zar

F // Set

and a map between presheaves ϕ : F → G on X is a natural transformation. We
write P(X) for the category of presheaves on X and maps between these.

If we think of F(V ) as a set of “functions defined on V ,” then we should think
of the map F(iVU ) : F(V )→ F(U) as the operator that restricts a “function defined
on V ” to a “function defined on U .” To enforce this understanding, we also write

F(V )
resVU // F(U)

for this operator and call it restriction from V to U . Moreover, if s ∈ F(V ), then
we will also write s|U ∈ F(U) for resVU (s) ∈ F(U).

Remark 2.2. More generally, if X is a topological space and C a category, then we
define a C-valued presheaf on X to be a functor

Xop
Zar

F // C,

and we again define a map between C-valued presheaves ϕ : F → G to be a natural
transformation. We write P(X,C) for the category of C-values presheaves on X and
maps between these. So P(X) = P(X,Set).
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If C = Ab is the category of abelian groups, then we also say that a C-valued
presheaf is a presheaf of abelian groups. The category P(X,Ab) of presheaves of
abelian groups on X behaves very similar to the category Ab of abelian groups.

Lemma 2.3. Let X be a topological space. The category P(X,Ab) of presheaves of
abelian groups on X is abelian, and it admits all (small) products and coproducts.
Moreover, products, coproducts, kernels, and cokernels are calculated pointwise.

The statement that e.g. cokernels in P(X,Ab) are computed pointwise means
that if ϕ : F → G is a morphism in this category, then its cokernel is given by

coker(F
ϕ−−→ G)(U) = coker(F(U)

ϕU−−−→ G(U)).

Proof. The proof is a series of straightforward checks. �

Remark 2.4. Let K be any (small) category. Lemma 2.3 holds more generally for
the category Fun(K,Ab), whose objects are the functors F : K → Ab, and whose
morphisms are the natural transformations between such functors. Moreover, the
category Fun(K,Ab) admits all (small) limits and colimits, and these are calculated
pointwise in the following sense. Let evk : Fun(K,Ab)→ Ab be the functor given by
evaluation at k ∈ ob(K). So evk(F) = F(k), and evk(ϕ) = ϕk. Now, suppose that
p̄ : J/ → Fun(K,Ab) is a limit of p : J → Fun(K,Ab). That this limit is calculated
pointwise means that for every k ∈ ob(K), the composite functor

J/
p̄
// Fun(K,Ab)

evk // Ab

is the limit of the composite functor

J
p
// Fun(K,Ab)

evk // Ab.

So the value of a limit in Fun(K,Ab) at the object k ∈ ob(K) is given by the
corresponding limit in Ab. The similar statement is true for colimits.

We now define sheaves. The definition encodes the property of a “function” that
if we know it locally, then we know it globally. A sheaf is defined to be a presheaf
that has this property. Before we state the definition, we recall that by a family
of elements in a set A indexed by a set I, we mean a map a : I → A. We also
use the notation (ai)i∈I instead of a : I → A, where ai = a(i). The definition of a
sheaf involves families of open subsets of a topological space X. So here A is the
set ob(XZar) of open subsets of X.

Definition 2.5. Let X be a topological space. A presheaf F on X is a sheaf if
it satisfies the following condition: For every open subset U ⊂ X and every open
covering (Ui)i∈I of U , the map

F(U)
(resUUi

)
//
∏
i∈I F(Ui)

induces a bijection between F(U) and the subset of
∏
i∈I F(Ui) consisting of the

tuples (si)i∈I with si ∈ F(Ui) such that

si|Ui∩Uj = sj |Ui∩Uj ∈ F(Ui ∩ Uj)
for all (i, j) ∈ I × I.

We refer to the condition in Definition 2.5 as the “sheaf condition.”
10



Remark 2.6. The sheaf condition applied to the case, where U = ∅ ⊂ X, and where
(Ui)i∈I is the empty covering (meaning that I = ∅), shows that F(∅) is a singleton
set (meaning a set with exactly one element). Indeed, the product of the empty
family of sets is a singleton set.

Example 2.7. Let X be a topological space. If A is any set, then we may consider
the presheaf F ∈ P(X) defined by

F(U) = {constant functions s : U → A}
and resVU (s)(u) = s(u). It is basically never a sheaf. Instead, its “sheafification”
(more on this later) is the sheaf ass(F) ∈ P(X) defined by

ass(F) = {locally constant functions s : U → A}
and where resVU (s)(u) = s(u). We note that there is a canonical map of presheaves

F
η
// ass(F),

since every constant function is locally constant. We say that ass(F) is the constant
sheaf associated with A. It is often denoted by A. We note that if A has at least
two elements, then for all ∅ 6= U ⊂ X, the map

A = F(U)
ηU // ass(F)(U) = A(U)

is a bijection if and only if U ⊂ X is connected. This gives a first indication
indicattion that sheaf theory can be a useful tool for understanding the topology
of X. This observation deepens significantly in the context of sheaf cohomology.

Let us state the sheaf condition for C-valued presheaves.

Definition 2.8. Let X be a topological space, and let C be a category that admits
(small) limits. A C-valued presheaf F on X is a sheaf if for all open subsets U ⊂ X
and all open coverings (Ui)i∈I of U , the diagram

F(U)
(resUUi

)
//
∏
i∈I F(Ui)

α //

β
//
∏

(i,j)∈I×I F(Ui ∩ Uj)

is a limit diagram (= an equalizer). Here α and β are the unique maps such that

pr(i,j) ◦α = resUiUi∩Uj ◦ pri

pr(i,j) ◦β = res
Uj
Ui∩Uj ◦ prj

for all (i, j) ∈ I × I.

Remark 2.9. A diagram of abelian groups (resp. rings) is a limit diagram if and
only if the underlying diagram of sets is a limit diagram. Hence, a presheaf of
abelian groups (resp. rings) is a sheaf if and only if the underlying presheaf of sets
is a sheaf. For example, if A is an abelian group, then the presheaf F of constant
functions and the sheaf A = ass(F) of locally constant functions that we considered
in Example 2.7 both acquire the structure of a presheaf (resp. sheaf) of abelian
groups on X with addition given by the pointwise addition of functions.

Example 2.10. Let X be a topological space. If A is a topological abelian group
(such as A = (R,+)), then we obtain a presheaf of abelian groups C(−, A), where

C(U,A) = {continuous functions ϕ : U → A}
11



with pointwise addition of functions, and where resVU (ϕ)(u) = ϕ(u). It is a sheaf,
since the condition for a function to be continuous is a local condition. In particular,
if Aδ is the topological abelian group obtained from an abelian group A by giving
it the discrete topology, then we have

C(−, Aδ) = A.

So the sheaf of continuous functions generalizes the constant sheaf.

Example 2.11. Let X be a topological space. The presheaf of abelian groups F,
where

F(U) = {bounded continous functions ϕ : U → R}
with pointwise addition, and where resVU (ϕ)(u) = ϕ(u), is generally not a sheaf.
Indeed, the condition for a function to be bounded is not a local condition. In fact,
every continuous function ϕ : U → R is locally bounded, but not every continuous
function ϕ : U → R is globally bounded.

Example 2.12. The presheaf C∞(−,R) of abelian groups on X = Rd, where

C∞(U,R) = {smooth functions ϕ : U → R}

with pointwise addition, and where resVU (ϕ)(u) = ϕ(u), is a sheaf. Indeed, the
condition of a map ϕ : U → R to be smooth is a local condition.

Abstract context for these examples: We say that F′ ∈ P(X) is a sub-presheaf
of F ∈ P(X) and write F′ ⊂ F if F′(U) ⊂ F(U) for every open subset U ⊂ X.

Lemma 2.13. Let X be a topological space, and let F be a sheaf on X. Suppose
that F′ ⊂ F is a sub-presheaf, which satisfies the following condition: For every
open subset U ⊂ X and every open covering (Ui)i∈I of U , a section s ∈ F(U)
belongs to F′(U) ⊂ F(U) if and only if the local sections s|Ui ∈ F(Ui) belongs to
F′(Ui) ⊂ F(Ui) for all i ∈ I. In this case, the presheaf F′ is a sheaf.

Proof. This follows immediately from the definition of a sheaf. �

Let X be a topological space, and let A be a set. The presheaf F ∈ P(X), where

F(U) = {all maps ϕ : U → A},

and where resVU (ϕ)(u) = ϕ(u), is a sheaf. The examples that we have considered
above are all sub-presheaves of this sheaf, and in each examples, we have indicated
whether or not the condition in Lemma 2.13 is satisfied.

Example 2.14. Let f : Y → X be a continuous map between topological spaces,
and let C(−, Y ) be on X that we considered in Example 2.10. We define

secf ⊂ C(−, Y )

to be the sub-presheaf of those s : U → Y that satisfy f ◦ s = iXU : U → X. We
say that continuous map s : U → Y , which satisfies this condition, is a section of
f : Y → X over U ⊂ X. It follows from Lemma 2.13 that secf is a sheaf. We may
view a section s ∈ secf (U) as a generalization of a function on U , where the value
of s at x ∈ U is a point s(x) ∈ f−1(x) ⊂ Y of a space, which depends on x ∈ U . In
particular, if p : Y = X ×F → X is the canonical projection, then secp = C(−, F ).

12



Remark 2.15. In fact, if F is any sheaf on a topological space X, then there exists
a continuous map f : Y → X and an isomorphism ϕ : F → secf of sheaves on X.
(This is the “espace étalé” construction.) However, this is really not a useful point
of view for us, but nevertheless, it influences our terminology in that we refer to
elements s ∈ F(U) as sections of F over U .

We next define the stalks of a presheaf. This involves the filtered colimits of sets,
which we have considered in Problem set 1. The slogan is:

• To understand a presheaf, you need to understand F(U) for all U ⊂ X
(plus restriction maps).
• To understand a sheaf is a bit easier: you only need to understand F(U)

for all “sufficiently small U ⊂ X” (plus restriction maps), namely, for all
Ui ⊂ X that lie in some element of a fixed open covering (Ui)i∈I of X.
• However, you can get good, but not complete, knowledge by looking at

“germs of sections defined in a neighborhood of every point x ∈ X.”

We proceed to make sense of the last slogan. Let X be a topological space. The
category of neighborhoods of x ∈ X is the full subcategory of XZar spanned by the
U ⊂ X such that x ∈ U . Its opposite category is filtered.

Definition 2.16. Let X be a topological space. The stalk of a presheaf F ∈ P(X)
at the point x ∈ X is the filtered colimit

Fx = colimx∈U⊂X F(U)

indexed by the opposite of the category of neighborhoods of x ∈ X.

In Problem set 1, we gave a description of a filtered colimit of sets. Spelling this
out in the case at hand, we see that the stalk Fx of F ∈ P(X) at x ∈ X is given by
the quotient of the set of pairs (U, s) of an open neighborhood x ∈ U ⊂ X and a
section s ∈ F(U) by the equivalence relation that identifies (U, s) and (V, t) if there
exists x ∈W ⊂ U ∩ V ⊂ X such that s|W = t|W ∈ F(W ). We say that an element
of Fx is a germ of sections of F at x ∈ X.

Notation 2.17. Let X be a topological space, let F ∈ P(X), and let x ∈ X. For
every open neighborhood x ∈ V ⊂ X, we have a canonical map

F(V ) // Fx = colimx∈U⊂X F(U),

which is part of what it means to be a colimit. Given s ∈ F(V ), then we write
sx ∈ Fx for its image under this map and call it the germ of s at x ∈ X.

Example 2.18. The derivative of a smooth function ϕ ∈ C∞(R,R) at x ∈ R depends
only on its germ ϕx ∈ C∞(−,R)x at x ∈ R.

Remark 2.19. We recall from Problem set 1 that, as a consequence of Grothendieck’s
theorem that filtered colimits and finite limits of sets commute, the forgetful functor

Ab
fgt
// Set

creates (small) filtered colimits. This means that if J is a (small) filtered category,
then a diagram p̄ : J. → Ab of abelian groups is a colimit of p = p̄|J : J → Ab if
and only if the diagram fgt ◦ p̄ : J. → Set is a colimit of fgt ◦ p : J → Set. Therefore,
if F ∈ P(X,Ab) is a presheaf of abelian groups on X, then its stalk

Fx = colimx∈U⊂X F(U) ∈ Ab
13



is given by the stalk of the underlying presheaf of sets with the unique structure of
abelian group, which makes it the colimit in the category of abelian groups. The
analogous statement is true for filtered colimits of presheaves of rings.

We now state some results, which show that stalks/germs give useful information
about sheaves. We will prove them in the next lecture.

Proposition 2.20. Let X be a topological space.

(1) Let F be a sheaf on X, and let U ⊂ X be open. Two sections s, t ∈ F(U)
are equal if and only if their germs sx, tx ∈ Fx are equal for all x ∈ U .

(2) A map ϕ : F → G of sheaves on X is an isomorphism if and only if the
induced map of stalks ϕx : Fx → Gx is an isomorphism for all x ∈ X.

The statement (2) is referred to by saying that the topos of sheaves on X has
enough points. We note that (2) does *not* say that if there exists an isomorphism
between Fx and Gx for all x ∈ X, then there exists an isomorphism between F

and G. You need to have a map ϕ : F → G. If you have the map, then you can
test whether or not it is an isomorphism on stalks. But you cannot get the map
of sheaves from having maps of stalks. This is a general phenomenon. You cannot
make global constructions using stalks; you can only use stalks to test properties
of global construction that you have already made.

Given F,G ∈ P(X), we write Map(F,G) for the set of maps of presheaves.

Definition 2.21. Let X be a topological space. A map ϕ : F → F′ from a presheaf
on X to a sheaf on X is a sheafification if composition with ϕ induces a bijection

Map(F′,G) // Map(F,G).

for every sheaf G on X.

It follows immediately that a sheafification of ϕ : F → F′ of F is unique, up to
unique isomorphism. We will show later that it exists. The following result is the
main theorem of sheaf theory.

Theorem 2.22. Let X be a topological space. A map ϕ : F → F′ from a presheaf
on X to a sheaf on X is a sheafification if and only if the induced map of stalks

Fx
ϕx // F′x

is a bijection for all x ∈ X.

14



3. Sheafification

We continue the discussion of sheaf theory. So let X be a topological space. We
recall that the stalk of F ∈ P(X) at x ∈ X is the filtered colimit

Fx = colimx∈U⊂X F(U)

indexed by the opposite category of the category of open neighborhoods x ∈ U ⊂ X.
It is given by the quotient of the set of pairs (U, s) with x ∈ U ⊂ X open and
s ∈ F(U) by the equivalence relation that identifies (U, s) and (V, t) if there exists
x ∈W ⊂ U ∩ V open such that s|W = t|W ∈ F(W ). The canonical map

F(U) // Fx

takes the local section s ∈ F(U) to the germ sx ∈ Fx given by the equivalence
class of the pair (U, s). Moreover, if F ∈ P(X,Ab) (resp. F ∈ P(X,CAlg(Ab))) if a
presheaf of abelian groups (resp. a presheaf of rings), then there is a unique abelian
group structure (resp. a unique ring structure) on Fx such that F(U) → Fx is a
group homomorphism (resp. ring homomorphism) for all x ∈ U ⊂ X open. More
concretely, if sx, tx ∈ Fx, then we choose representatives (U, s) and (V, t) of these
equivalence classes as well as an open neighborhood x ∈W ⊂ U ∩ V and define

sx + tx ∈ Fx (resp. sx + tx, sx · tx ∈ Fx)

to be the equivalence class of the pair (W, s|W + t|W ) (resp. the equivalence classes
of the pairs (W, s|W + t|W ) and (W, s|W · t|W )), where we use the given addition
(resp. the given addition and multiplication) on the set F(W ).

Lemma 3.1. Let X be a topological space, and let x ∈ X. The functor

P(X) // Set

that to F assigns Fx preserves finite limits and all (small ) colimits.

Proof. The statement concerning finite limits is a particular case of Grothendieck’s
theorem that finite limits and filtered colimits of sets commute. The statement
about colimits is a particular case of the general fact that if C is any category that
admits small colimits, and if p : K × L → C is a diagram indexed by a product of
two (small) categories, then the canonical maps

colimk∈K coliml∈L p(k, l)

colim(k,l)∈K×L p(k, l)

coliml∈L colimk∈K p(k, l)
�� ��

are isomorphisms. We refer to this statement as “colimits commute.” �

A functor F : A→ B between additive categories is additive if it preserves finite
sums, or equivalently, if it preserves finite products. A functor F : A→ B between
abelian categories is left exact (resp. right exact) if it preserves finite limits (resp.
finite colimits), or equivalently, if it is additive and preserves kernels (resp. it is
additive and preserves cokernels). It is exact if it is both left exact and right exact.
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Corollary 3.2. Let X be a topological space, and let x ∈ X. The functor

P(X,Ab) // Ab

that to F assigns Fx is exact and preserves all (small ) sums.

Proof. We give two proofs. First, since the forgetful functor fgt : Ab → Set creates
all (small) limits and all (small) filtered colimits, it follows from Lemma 3.1 that the
functor P(X,Ab)→ Ab preserves finite limits. It also preserves all (small) colimits,
since “colimits commute.” This completes the proof.

Second, we give a more pedestrian proof, using the characterization of exactness
in terms of kernels and cokernels, which is perhaps more familiar. The functor
preserves all (small) colimits, by the general fact that “colimits commute.” So it
is additive and preserves cokernels as well as all (small) sums. It remains to prove
that it preserves kernels. So given a map ϕ : F → G of presheaves of abelian groups
on X, we wish to prove that the canonical map

ker(F
ϕ−−→ G)x // ker(Fx

ϕx−−−→ Gx)

is an isomorphism. A map of abelian groups is an isomorphism if and only if the
underlying map of sets is an isomorphism if and only if the underlying map of sets
is both injective and surjective.

To prove injectively, let s ∈ ker(ϕ)(U) and suppose that sx ∈ ker(ϕx) ⊂ Fx is
zero. In this case, there exists x ∈ V ⊂ U such that s|V ∈ F(V ) is zero. Hence, the
equivalence class sx ∈ Fx of (V, s|V ) is also zero, which is what we wanted to prove.

To prove surjectivity, let s ∈ F(U) and suppose that ϕx(sx) = ϕU (s)x ∈ Gx is
zero. In this case, there exists x ∈ V ⊂ U such that ϕU (s)|V ∈ G(V ) is zero. This
shows that s|V ∈ F(V ) belongs to ker(ϕ)(V ), which is what we wanted to prove. �

Lemma 3.3. Let X be a topological space, and let F be a sheaf of sets on X. Let
U ⊂ X be an open subset, and let s, t ∈ F(U). If sx = tx ∈ Fx for all x ∈ U then
s = t ∈ F(U).

Proof. Given x ∈ U , since sx = tx ∈ Fx, there exists an open subset x ∈ Ux ⊂ U
such that s|Ux = t|Ux ∈ F(Ux). The family (Ux)x∈U is an open cover of U , and by
our assumption, the local sections s, t ∈ F(U) have the same image by the map

F(U)
(resUUx )

//
∏
x∈U F(Ux).

Since F is a sheaf, this map is injective, so we conclude that s = t as desired. �

Proposition 3.4. Let X be a topological space, and let ϕ : F → G be a map of
sheaves of sets on X. If the induced map ϕx : Fx → Gx is a bijection for all x ∈ X,
then the map ϕ : F → G is an isomorphism.

Proof. We wish to show that for all U ⊂ X open, the map ϕU : F(U) → G(U) is
a bijection. So we fix U ⊂ X open and prove that the map in question is both
injective and surjective.

To prove injectivity, let s, t ∈ F(U) and suppose that ϕU (s) = ϕU (t) ∈ G(U).
This implies that ϕx(sx) = ϕU (s)x = ϕU (t)x = ϕx(tx) ∈ Gx for all x ∈ U , so by
our assumption that ϕx : Fx → Gx is a bijection for all x ∈ X, we conclude that
sx = tx ∈ Fx for all x ∈ U . Hence, by Lemma 3.3, we conclude that s = t ∈ F(U).
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To prove surjectively, we let t ∈ G(U) and must find s ∈ F(U) with ϕU (s) = t.
Now, for every x ∈ U , our assumption that ϕx : Fx → Gx is a bijection implies that
there exists x ∈ Ui ⊂ X and si ∈ F(Ui) such that ϕUi(si)x = tx ∈ Gx. Moreover, by
shrinking x ∈ Ui ⊂ X, if necessary, we can assume that ϕUi(si) = t|Ui . We claim
that si|Ui∩Uj = sj |Ui∩Uj . Indeed, we have

ϕUi∩Uj (si|Ui∩Uj ) = t|Ui∩Uj = ϕUi∩Uj (sj |Ui∩Uj ),

and we have already proved that ϕUi∩Uj is injective. Since F is a sheaf, the claim
implies that there exists s ∈ F(U) such that s|Ui = si ∈ FUi for all i. Finally,

ϕU (s)|Ui = ϕUi(s|Ui) = ϕUi(si) = t|Ui
for all i, and since G is a sheaf, we conclude from Lemma 3.3 that ϕU (s) = t. �

Remark 3.5. In the proof of Proposition 3.4, our proof that ϕU : F(U) → G(U) is
surjective used the fact that this map is injective, which we had proved first. In fact,
if ϕ : F → G is a map of sheaves of sets on X such that ϕx : Fx → Gx is surjective
for all x ∈ X, then ϕU : F(U) → G(U) is generally *not* surjective for all U ⊂ X
open!

The proofs above all use the following general principle: In a filtered colimit of
sets, any finitary construction/property reduces to a construction/property at some
stage of the filtered colimit. This, in turn, follows from the description of a filtered
colimit of sets that we gave in Problem set 1.

We proceed to prove the main theorem of sheaf theory, which we stated at the
end of Lecture 2. We first make a definition.

Definition 3.6. Let X be a topological space, and let C be a category that admits
all (small) limits. The category of C-valued sheaves on X is the full subcategory

Sh(X,C) ⊂ P(X,C)

spanned by the C-valued sheaves on X.

We write ι : Sh(X,C) → P(X,C) for the canonical inclusion functor. We recall
that a map ϕ : F → ι(F′) with F ∈ P(X,C) and F′ ∈ Sh(X,C) is defined to be a
sheafification if for every G ∈ Sh(X,C), the composite map

Map(F′,G)
ι // Map(ι(F′), ι(G)) // Map(F, ι(G)),

where the second map is given by composition with ϕ : F → ι(F′), is a bijection.

Proposition 3.7. Let X be a topological space. There exists a functor

P(X)
ass
// Sh(X)

and a natural transformation η : id→ ι ◦ ass such that the following hold:

(1) For every x ∈ X, the induced map of stalks

Fx
ηF,x

// (ι ◦ ass)(F)x

is a bijection.
(2) The map ηF : F → (ι ◦ ass)(F) is a sheafification.
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Proof. As a first approximation, we consider the Godement construction. It is given
by the functor God: P(X)→ Sh(X) with

God(F)(U) =
∏
x∈U Fx

and with restriction maps given by the canonical projections. It is clear that the
presheaf God(F) is indeed a sheaf. Moreover, the maps

F(U)
η̃F,U
// (ι ◦God)(U)

that to a local section s ∈ F(U) assigns the tuple (sx)x∈U ∈ (ι ◦God)(F)(U) form
a natural transformation η̃ : id→ ι ◦God.

The Godement construction is too large. For example, if F is the presheaf of
constant functions with values a set A, then God(F) is the sheaf of all functions
with values in A, and we want ass(F) to be the subsheaf of locally constant functions
with values in A. So for general F ∈ P(X), we define

ass(F) ⊂ God(F)

to be the subsheaf, where ass(F)(U) ⊂ God(F)(U) is the subset that consists of
tuples (s(x))x∈U with the property that there exists an open cover (Ui)i∈I of U
and local sections si ∈ F(Ui) such that s(x) = si,x for all i ∈ I and x ∈ Ui.
Since this is a local condition, it follows from Lemma 13 in Lecture 2 that ass(F) is
indeed a sheaf. Moreover, the natural transformation η̃ : id→ ι ◦God takes values
in ι ◦ ass ⊂ ι ◦God, so it induces a natural transformation η : id→ ι ◦ ass.

We next prove (1). Let us first remark that, in general, if ϕ : q → p is a natural
transformation between diagrams p, q : J → Set indexed by a filtered category J ,
and if ϕj : q(j) → p(j) is injective for all j ∈ ob(J), then also the induced map
colimJ ϕ : colimJ q → colimj p is injective. Indeed, a map f : Y → X between sets
is injective if and only if the diagram

Y
id //

id

��

Y

f

��

Y
f
// X

is a limit diagram, so the statement follows from Grothendieck’s theorem that, in
the category of sets, finite limits and filtered colimits commute. Now, in order to
prove (1), we consider the commutative diagram

Fx (ι ◦ ass)(F)x

(ι ◦God)(F)x

ηF,x
//

η̃F,x
�� ��

in which the two slanted maps are injective by the remark above. Therefore, the
map ηF,x is injective. But is also surjective, by the definition of ass(F), so (1) holds.
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Finally, we prove (2). So let ϕ : F → ι(G) be a map with G ∈ Sh(X). We must
show that there exists a unique map ϕ̄ : ass(F)→ G that makes the diagram

F (ι ◦ ass)(F)

ι(G)

ηF //

ϕ
��

ϕ̄
��

commute. Uniqueness holds, since, locally, every locally section of (ι◦ass)(F) comes
from a local section of F, and to prove existence, we consider the diagram

F
ηF //

ϕ

��

(ι ◦ ass)(F)

(ι◦ass)(ϕ)

��

ι(G)
ηι(G)

// (ι ◦ ass ◦ι)(G).

which commutes by the naturality of η : id → ι ◦ ass. It follows from (1) that
the bottom horizontal map induces a bijection on stalks, and therefore, it is an
isomorphism by Proposition 3.4. So the composition of its inverse and the right-
hand vertical map gives the desired map ϕ̄. �

We can now prove the “main theorem of sheaf theory,” which we stated as
Theorem 2.22.

Theorem 3.8. Let X be a topological space, and let ϕ : F → ι(F′) be map from a
presheaf on X to a sheaf on X. The following are equivalent:

(1) For every x ∈ X, the induced map of stalks

Fx
ϕx // ι(F′)x

is a bijection.
(2) For every sheaf G on X, the composite map

Map(F′,G)
ι // Map(ι(F′), ι(G)) // Map(F, ι(G)),

where the second map is given by composition with ϕ, is a bijection.

Proof. We first show that (2) implies (1). Since both the maps ϕ : F → ι(F′) and
ηF : F → (ι ◦ ass)(F) satisfy (2), we have unique factorizations

F ι(F′)

(ι ◦ ass)(F)

F (ι ◦ ass)(F)

ι(F′)

and

ϕ
//

ηF
��

η̄F
��

ηF //

ϕ
��

ϕ̄
��

and η̄ and ϕ̄ are each other’s inverses. We consider the induced diagrams

Fx ι(F′)x

(ι ◦ ass)(F)x

Fx (ι ◦ ass)(F)x

ι(F′)x

and

ϕx //

ηF,x
��

η̄F,x
��

ηF,x
//

ϕx
��

ϕ̄x
��

of stalks at x ∈ X. The maps ϕ̄x and η̄F,x are each other’s inverses, because ϕ̄
and η̄F are so, because taking stalks is a functor, and because any functor takes
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isomorphisms to isomorphisms. In particular, both maps are bijections. But the
map ηF,x is also a bijection, because ηF : F → (ι ◦ ass)(F) satisfies (1). It follows
that also ϕx is a bijection, so ϕ : F → ι(F′) satisfies (1).

Conversely, suppose that ϕ : F → ι(F′) satisfies (1). Since η : id → ι ◦ ass is a
natural transformation, the diagram

F

ϕ

��

ηF // (ι ◦ ass)(F)

(ι◦ass)(ϕ)

��

ι(F′)
ηι(F′)

// (ι ◦ ass)(ι(F′))

commutes. Moreover, in the induced diagram

Fx

ϕx

��

ηF,x
// (ι ◦ ass)(F)x

(ι◦ass)(ϕ)x

��

ι(F′)x
ηι(F′),x

// (ι ◦ ass)(ι(F′))x

of stalks at x ∈ X, we know that all maps, except (ι ◦ ass)(ϕ)x, are bijections, so
therefore, this map is a bijection, too. Hence, we conclude from Proposition 3.4
that, in the top diagram, both (ι ◦ ass)(ϕ) and ηι(F′) are isomorphisms, and since
ηF : F → (ι ◦ ass)(F) satisfies (2), the same is true for ϕ : F → ι(F′). �

Remark 3.9. There is a completely different way to construct the sheafification
functor ass : P(X) → Sh(X) than the one given in the proof of Proposition 3.7.
However, what matters is the theorem as stated, not the precise construction. For
example, it follows directly from (2) that sheafification is a functor, so Theorem 3.8
also implies Proposition 3.7.

Addendum 3.10. Let X be a topological space.

(1) The category Sh(X) admits all (small ) limits and colimits. Limits therein
are calculated pointwise, whereas colimits are given by

colimK p ' ass(colimK(ι ◦ p)).

(2) The sheafification functor ass : P(X) → Sh(X) preserves finite limits and
all (small ) colimits.

Proof. First, the full subcategory Sh(X) ⊂ P(X) is preserved under limits, since the
sheaf condition itself is expressed in terms of limits and since “limits commute.” It
follows that Sh(X) admits all (small) limits and that they are calculated pointwise,
since this is true in P(X).

Next, the statement that η : id → ι ◦ ass is a sheafification is precisely the
statement that the functor ass : P(X) → Sh(X) is a left adjoint of the functor
ι : Sh(X) → P(X). Also, in any category C that admits K-indexed colimits, the
colimit functor colimK : Fun(K,C) → C is left adjoint to the diagonal functor
∆: C → Fun(K,C). The statement that (small) colimits in Sh(X) exist and are
given by the stated formula now follows from the canonical bijections

Map(ass(colimK(ι ◦ p)),G) ' Map(colimK(ι ◦ p), ι(G)) ' Map(ι ◦ p,∆(ι(G)))

' Map(ι ◦ p, ι(∆(G))) ' Map(p,∆(G)),
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where the final bijection, because the functor ι : P(X)→ Sh(X) is fully faithful.

Finally, it is a general fact that any left adjoint functor preserves all colimits that
exist in its domain category, and any right adjoint functor preserves all limits that
exist in its domain category. So ass : P(X)→ Sh(X) preserves all (small) colimits,
and ι : Sh(X) → P(X) preserves all (small) limits. Thus, it remains only to prove
that ass : P(X)→ Sh(X) preserves finite limits. So let F : J → P(X) be a diagram
indexed by a finite category J . We wish to show that the canonical map

ass(limj∈J Fj) // limj∈J ass(Fj)

is an isomorphism. Since ι : Sh(X)→ P(X) is fully faithful and preserves all limits,
this is equivalent to showing that the induced map

(ι ◦ ass)(limj∈J Fj) // ι(limj∈J ass(Fj)) ' limj∈J(ι ◦ ass)(Fj)

is an isomorphism. By Proposition 3.4, this, in turn, is equivalent to showing that
for all x ∈ X, the induced map of stalks

(ι ◦ ass)(limj∈J Fj)x // (limj∈J(ι ◦ ass)(Fj))x

is a bijection. To this end, we embed this map in the commutative diagram

(limj∈J Fj)x //

(η limj∈JFj
)x

��

limj∈J(Fj,x)

limj∈J (ηFj ,x)

��

(ι ◦ ass)(limj∈J Fj)x // (limj∈J(ι ◦ ass)(Fj))x // limj∈J((ι ◦ ass)(Fj)x),

where the vertical maps are bijections by part (1) of Theorem 3.8, and where the top
horizontal and lower right-hand horizontal maps are bijections, by Grothendieck’s
theorem that finite limits and filtered colimits of sets commute. So also the lower
left-hand horizontal map is a bijection, which is what we want to prove. �

Since sheafification preserves finite limits, and hence, finite products, it follows
that it induces a sheafification functor from presheaves of abelian groups (resp.
presheaves of rings) to sheaves of abelian group (resp. sheaves of rings), which is
left adjoint to the canonical inclusion functor.

Corollary 3.11. Let X be a topological space.

(1) The category Sh(X,Ab) is abelian and admits all (small )sums and products.
Moreover, products and kernels are calculated pointwise, whereas sums and
cokernels are calculated by sheafifying the corresponding sums and cokernels
of the underlying presheaves.

(2) The sheafification functor is exact and preserves all (small ) sums.
(3) A sequence of sheaves F′ → F → F′′ is exact (at F ) if and only if the

induced sequence of stalks F′x → Fx → F′′x is exact (at Fx ) for all x ∈ X.

Proof. Let A be an abelian category that admits all (small) sums and products,
and let B ⊂ A be a full subcategory. If the canonical inclusion ι : B → A admits
a left adjoint functor L : A → B that preserves kernels, then B is abelian; B ⊂ A

is closed under (small) products and kernels; and (small) sums and cokernels are
obtained by applying L : A → B to the corresponding sums and cokernels in A.
So (1) and (2) follow from Theorem 3.8 and Addendum 3.10.
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It remains to prove (3). Suppose that F′ → F → F′′ is exact. In order to proved
that F′x → Fx → F′′x is exact, it suffices to show that the functor F 7→ Fx preserves
kernels and cokernels. (Recall: image = kernel of cokernel.) Now, more precisely,
this functor is the composition

Sh(X,Ab)
ι // P(X,Ab)

(−)x
// Ab

of the canonical inclusion functor and the functor that to a presheaf assigns its stalk
at x ∈ X. The former preserves all (small) limits, and the latter preserves finite
limits, so in particular, the composite functor preserves kernels. To see that it also
preserves cokernels, let ϕ : F → G be a map of sheaves. By (1), we have

coker(ϕ) ' ass(coker(ι(ϕ))),

from which we conclude that

ι(coker(ϕ))x ' (ι ◦ ass)(coker(ι(ϕ)))x ' coker(ι(ϕ))x ' coker(ι(ϕ)x)

as we wanted to prove. Here the middle isomorphism follows from Theorem 3.8 (1),
and the right-hand isomorphism follows from the fact that “colimits commute.”

Conversely, suppose that F′x → Fx → F′′x is exact for all x ∈ X. In order to
prove that F′ → F → F′′ is exact, it suffices to prove that kernels and cokernels are
detected on stalks. For kernels, we wish to prove that if we have maps of sheaves

F′
ϕ
// F

ψ
// F′′

such that ϕx : F′x → Fx is a kernel of ψx : Fx → F′′x for all x ∈ X, then ϕ : F′ → F

is a kernel of ψ : F → F′′. Now, if we let γ : K → F be a kernel of ψ : F → F′′ and
consider the unique factorization

F′ F

K

ϕ
//

ϕ̄
�� γ

BB

of the map ϕ, then the statement “ϕ is a kernel of ψ” is equivalent to the statement
“ϕ̄ is an isomorphism.” Since Proposition 3.4 shows that the latter statement can
be checked on stalks, we conclude that kernels are detected on stalks. The proof
that cokernels are detected on stalks is analogous. �

We need one final preliminary on sheaves, before we are ready to define the
structure sheaf on the Zariski space. Let X be a topological space, and suppose
that B is a basis for the topology on X. So B is a subset of the set of open subsets
of X with the property that for every x ∈ X and every x ∈ U ⊂ X open, there
exists V ∈ B such that x ∈ V ⊂ U . We let BZar ⊂ XZar be the full subcategory
spanned by the V ∈ B and define

P(B) = Fun(Bop
Zar,Set).

We say that F ∈ P(B) satisfies the sheaf condition if for every V ∈ B and every
cover (Vi)i∈I of V with Vi ∈ B, the map

F(V )
(resVVi

)
//
∏
i∈I F(Vi)
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is injective and its image consists of the tuples (si)i∈I with the property that

si|V = sj |V
for every pair (i, j) ∈ I × I and every V ∈ B such that V ⊂ Vi ∩ Vj . We define

Sh(B) ⊂ P(B)

to be the full subcategory spanned by the sheaves.

Remark 3.12. If B is closed under finite intersections, then s ∈ P(B) satisfies the
sheaf condition if and only if for every V ∈ B and every cover (Vi)i∈I with Vi ∈ B,
the map (resVVi) : B →

∏
i∈I F(Vi) is injective and its image consists of the tuples

(si)i∈I with the property that si|Vi∩Vj = sj |Vi∩Vj for all (i, j) ∈ I × I.

Theorem 3.13. Let X be a topological space, and let B be a basis for the topology
on X. The restriction functor

Sh(X) // Sh(B)

is an equivalence of categories.

Proof. We obtain a quasi-inverse by mimicking the construction of the sheafification
functor in the proof of Proposition 3.7: Given F ∈ Sh(B) and x ∈ X, we define

Fx = colimx∈V,V ∈B F(V ).

Now, if U ⊂ X is open, then we define

F′(U) ⊂
∏
x∈U Fx

to be the subset consisting of the tuples (s(x))x∈U for which there exists a covering
(Vi)i∈I of U with Vi ∈ B and si ∈ F(Vi) such that for all x ∈ Vi, the canonical map
F(Vi)→ Fx takes si to s(x), and we define the restriction maps

F′(U ′)
resU

′
U // F′(U)

to be the maps induced by the canonical projections. We observe that F′ ∈ Sh(X).
Moreover, if V ∈ B, then the canonical map αV : F(V ) → F′(V ) is a bijection. So
the family consisting of these maps define an isomorphism

F
α // F′|B

in Sh(B). Similarly, if G ∈ Sh(X) and if U ⊂ X is open, then also the canonical map
βU : G(U)→ (G|B)′(U) is a bijection, so this family of maps define an isomorphism

G
β
// (G|B)′

in Sh(X). This completes the proof. �

Remark 3.14. Let X be a topological space, and let B be a basis for the topology.
We may similarly define Sh(B,Ab) and show that the restriction functor

Sh(X,Ab) // Sh(B,Ab)

is an equivalence. A better point of view is that the category Sh(X,Ab) of sheaves of
abelian groups is canonically equivalent to the category Ab(Sh(X)) of abelian group
object in the category of sheaves of sets. So given the category Sh(X) of sheaves of
sets, we obtain the category of sheaves of abelian groups by taking abelian group
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objects in this category, and the equivalence Sh(X)→ Sh(B) induces an equivalence
of the corresponding categories of abelian group objects.
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4. The structure sheaf

Let R be a ring. In Lecture 1, we defined the Zariski space |X| associated with
R. In this lecture, we will define the structure sheaf OX on this space. The pair

X = (|X|,OX)

is called the prime spectrum associated with R. This is Grothendieck’s geometric
object associated with R. It comes equipped with a natural ring homomorphism

R
εR // OX(|X|)

from the ring R to the ring of global sections of the structure sheaf, which is in fact
an isomorphism. It allows us to view elements of R as global functions on X.

We first recall localization. Let R be a ring. A subset S ⊂ R is defined to be
multiplicative if 1 ∈ S and if s, t ∈ S implies that st ∈ S.

Definition 4.1. Let R be a ring, and let S ⊂ R be a multiplicative subset. A ring
homomorphism γ : R→ R′ is a localization of R with respect to S ⊂ R if

(1) for every s ∈ S, the element γ(s) ∈ R′ is invertible, and
(2) if ϕ : R → A is a ring homomorphism with the property (1), then there

exists a unique ring homomorphism ϕ̄ : R′ → A that makes the diagram

R R′

A

γ
//

ϕ
��

ϕ̄
��

commute.

We refer to (2) by saying that γ : R → R′ is initial among ring homomorphism
with the property (1). If both γ : R → R′ and γ′ : R → R′′ are localizations of
R with respect to S ⊂ R, then the unique ring homomorphism γ̄′ : R′ → R′′ and
γ̄ : R′′ → R′ are each other’s inverses. In this way, a localization of R with respect
to S ⊂ R is a unique, up to unique isomorphism. We will write

R
γ
// S−1R

for any choice of a localization of R with respect to S ⊂ R. Since any two are
uniquely isomorphic, it does not matter, which one we choose. A localization exists
by general category theoretical principles. But let us show that it can be constructed
by means of (left) fractions.

So let S \S be the category with objects the elements of S, with morphisms from
s1 to s2 the elements t ∈ S such that ts1 = s2, and with composition of morphisms
given by multiplication in S. We will use that S \S is a filtered category:

(i) For all s1, s2 ∈ S, there exists t1, t2 ∈ S such that t1s1 = t2s2.
(ii) For all s, s1, s2 ∈ S such that s1s = s2s, there exists t ∈ S such that

ts1 = ts2.

There is a functor from S \S to the category of right R-modules that takes each
object s to R and that takes the morphism t : s1 → s2 to the map lt : R→ R given
by left multiplication by t. We define

B = colims∈S \S R
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to be the colimit of this functor. The general description of a filtered colimit of sets,
which we gave on Problem set 1, identifies B with the set of fractions s−1a with
s ∈ S and a ∈ R, where s−1

1 a1 = s−1
2 a2 if and only if there exists t1, t2 ∈ S with

t1a1 = t2a2 and t1s1 = t2s2. Now, for all s ∈ S, the map rs : B → B given by right
multiplication by s is an isomorphism. This means that:

(iii) Given a ∈ R and s ∈ S with as = 0, there exists t ∈ S with ta = 0.
(iv) Given a ∈ R and s ∈ S, there exists b ∈ R and t ∈ S such that ta = bs.

The assumptions (i)–(iv) are trivially verified.

Proposition 4.2. Let R be a ring. If γ : R→ S−1R is the localization with respect
to a multiplicative subset S ⊂ R, then the map

B = colims∈S \S R
u // S−1R

that to s−1a assigns γ(s)−1γ(a) is an isomorphism of right R-modules. In particu-
lar, the ring homomorphism γ : R→ S−1R is flat.

Proof. The abelian group End(B) of endomorphisms of the underlying additive
abelian group of B has a canonical noncommutative ring structure with multipli-
cation given by composition of maps, and moreover, there is a ring homomorphism
r : Rop → End(B) that to a ∈ R assigns the map ra : B → B given by right
multiplication by a. Since (iii)–(iv) hold, the map r extends uniquely to a ring
homomorphism r̄ : S−1Rop → End(B). Thus, the structure of right R-module on
B extends uniquely to a structure of right S−1R-module. Moreover, the map u in
question is S−1R-linear, since every element of S−1R is a finite products of elements
of the form γ(s)−1 and γ(a) with s ∈ S and a ∈ R. Finally, since B is generated
as a right S−1R-module by the fraction (1)−11, and since u maps this generator to
the identity element in S−1R, we conclude that u is an isomorphism. �

As motivation for the definition of the structure sheaf, we prove a lemma.

Lemma 4.3. Let R be a ring, and let |X| be its Zariski space. An element f ∈ R
is a unit if and only if f(x) 6= 0 in k(x) for all x ∈ |X|.

Proof. If f ∈ R is a unit, then so is its image by every ring homomorphism. In
particular, for every x ∈ |X|, the image f(x) ∈ k(x) of f ∈ R by the canonical
ring homomorphism ψ : R → k(x) is a unit. But an element of a field is a unit if
and only if it is nonzero. Conversely, the assumption that f(x) 6= 0 for all x ∈ |X|
implies that |Xf | = |X|. So 1 ∈

√
(f), which implies that 1 ∈ (f), so there exists

g ∈ R such that 1 = fg, which is what we wanted to show. �

Now, given f ∈ R, the localization φf : R→ Rf with respect to the multiplicative
subset S = {1, f, f2, . . . } is initial among ring homomorphisms ϕ : R→ A that map
f ∈ R to a unit. Therefore, Lemma 4.3 suggests that we define

OX(|Xf |) = Rf .

To make this suggestion even more convinsing, we prove another lemma.

Lemma 4.4. Let R be a ring, let f ∈ R, and let φf : R → Rf be the localization
with respect to S = {1, f, f2, . . . } ⊂ R. The induced map of Zariski spaces

|Y | = |Spec(Rf )|
j
// |X| = |Spec(R)|
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is a homeomorphism onto the subspace |Xf | ⊂ |X|. Moreover, a subset V ⊂ |Y | is
a distinguished open subset if and only if j(V ) ⊂ |X| is a distinguished open subset
that is contained in |Xf | ⊂ |X|.

Proof. We already know that j is continuous and if U ⊂ |X| is a distinguished open
subset, then so is j−1(U) ⊂ |Y |. So it suffices to prove:

(1) The map j : |Y | → |X| is injective with image |Xf | ⊂ |X|.
(2) If V ⊂ |Y | is a distinguished open subset, then so is j(V ) ⊂ |X|.

To prove (1), we let x ∈ |X| and consider the canonical map ψ : R→ k(x). By the
defining property of the localization φf : R → Rf , this map takes f ∈ R to a unit
if and only if it factors as a composition

R k(x)

Rf

ψ
//

φf
��

ψ̄

BB

so (1) ensues. To prove (2), let V = |Yh| with h ∈ Rf . We can write h = g/fN with
g ∈ R and N ≥ 1, and since f ∈ Rf is a unit, we have

|Yh| = |Yg| = j−1(|Xfg|) ⊂ j−1(|Xf |) = |Y |.

Finally, since j is a bijection by (1), this shows that

j(|Yh|) = |Xfg| ⊂ |Xf |,

so j(|Yh|) ⊂ |X| is open, as we wanted to prove. �

We use Lemma 4.4 to prove the following remarkable property of the distin-
guished open subsets of the Zariski space of a ring.

Proposition 4.5. Let R be a ring, and let |X| be its Zariski space. If U ⊂ |X| is
a distinguished open subset, then U is quasicompact.

Proof. By Lemma 4.4, we may assume that U = |X|. So we let (Ui)i∈I be an open
cover of |X| and must show that it admits a finite subcover. Since the distinguished
open subsets form a basis of the Zariski topology on |X|, we may further assume
that each Ui is a distinguished open subset, say, Ui = |Xfi |. Now, the statement
that the family (Ui)i∈I of distinguished open subsets covers |X| is equivalent to the
statement that the family (fi)i∈I generates the unit ideal (1) = R. In this case,
there exists finitely many i1, . . . , in ∈ I and g1, . . . , gn ∈ R such that

1 = fi1g1 + · · ·+ fingn ∈ R.

Therefore, the subfamily (Uik)1≤k≤n covers |X|, as we wanted to prove. �

Remark 4.6. Let R be a ring, and let |X| be its Zariski space. In general, an open
subset U ⊂ |X| is quasicompact if and only if there exists a finite set S ⊂ R such
that |X|rU = V (S). In particular, if the ring R is noetherian (every ideal is finitely
generated), then every open subset is quasicompact.

We will prove the following theorem, which produces the structure sheaf OX on
the Zariski space |X|.
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Theorem 4.7. Let R be a ring, and let |X| = |Spec(R)|. Up to unique isomor-
phism, there is a unique pair (OX , εR : R → OX(|X|)) of a sheaf of rings on |X|
and ring homomorphism such that for every f ∈ R, the composite map

R
εR // OX(|X|) // OX(|Xf |))

is a localization with respect to S = {1, f, f2, . . . } ⊂ R.

Proof. Let XZar be the category of open subsets of |X| and with a single map from U
to V , if U ⊂ V , and with no maps from U to V , otherwise, and let u : DZar → XZar

be the inclusion of the full subcategory spanned by the distinguished open subsets.
The distinguished open subsets constitute a basis for the Zariski topology of |X|,
and the intersection of two distinguished open subsets is again a distinguished open
subset. Therefore, by Theorem 13 from Lecture 3, the forgetful functor

Sh(XZar)
u∗ // Sh(DZar)

is an equivalence of categories. Here, the right-hand side is the full subcategory

Sh(DZar) ⊂ P(DZar)

spanned by the presheaves F : Dop
Zar → Set that satisfy the sheaf condition:

For every U ∈ DZar and every covering (Ui)i∈I of U with Ui ∈ DZar, the map

F(U)
(resUUi

)
//
∏
i∈I F(Ui)

is injective and its image consists of the tuples (si)i∈I with si ∈ F(Ui) with the
property that si|Ui∩Uj = sj |Ui∩Uj ∈ F(Ui ∩ Uj) for all (i, j) ∈ I × I.

Therefore, it will suffice to show that, up to unique isomorphism, there is a unique
pair (OD, εR : R→ OD(|X|)) of a sheaf of rings on DZar and a ring homomorphism
with the property that for every f ∈ R, the composite map

R
εR // OD(|X|) // OD(|Xf |)

is a localization with respect to S = {1, f, f2, . . . } ⊂ R. The uniqueness, up to
unique isomorphism, of a solution to this problem is clear, so it remains to prove
existence. We first prove (a) that a pair (OD, εR : R → OD(|X|)), where OD is a
presheaf of rings on DZar with the desired properties, exists, and then prove (b)
that the presheaf OD satisfies the sheaf condition.

We first note that if |Xf | ⊂ |Xg|, then the localization φf : R → Rf maps g
to a unit. Indeed, this follows form Lemmas 4.3 and 4.4, because g(x) 6= 0 for all
x ∈ |Xf |. Therefore, by the universal property of localization, if |Xf | ⊂ |Xg|, then
there is a unique ring homomorphism φf,g : Rg → Rf that makes the diagram

R

Rg Rf

φg

��

φf

��φf,g
//

commute. We claim that this proves (a). Indeed, if U ⊂ |X| is a distinguished open
subset, then we choose f ∈ R with U = |Xf | and a localization φf : R → Rf and
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define OD(U) = Rf . Moreover, if U ⊂ V ⊂ |X| is a pair of distinguished open
subsets with U = |Xf | and V = |Xg|, then we define

OD(V )
resVU // OD(U)

to be the map φf,g : Rg → Rf . This defines a functor

Dop
Zar

OD // CAlg(Ab).

Indeed, if |Xf | ⊂ |Xg| ⊂ |Xh|, then φf,h = φf,g ◦ φg,h by the uniqueness property
of these maps. Finally, we define the map

R
εR // OD(|X|)

to be the localization φe : R → Re that corresponds to our choice of e ∈ R such
that |Xe| = |X|. We could of course choose e = 1 and φe = idR, but there is no
need to do so. But we note that, whatever the choice of e ∈ R, the map εR will be
an isomorphism. This proves (a).

It remains to prove that the presheaf OD satisfies the sheaf condition. It says
that if f ∈ R and if (fi)i∈I is a family of elements fi ∈ R such that

|Xf | =
⋃
i∈I |Xfi |,

then the map

Rf
(φf,fi ) //

∏
i∈I Rfi

is injective and its image consists of those tuples (gi)i∈I with gi ∈ Rfi such that

φfi,fifj (gi) = φfj ,fifj (gj) ∈ Rfifj
for all (i, j) ∈ I × I. To prove this, we make a series of reductions.

First reduction: We can assume that I is finite.

We must show that if OD satisfies the sheaf for every finite cover, then it satisfies
the sheaf condition in general. So let U ∈ DZar and let (Ui)i∈I be a cover of U with
Ui ∈ DZar. By Proposition 4.5, the topological space U is quasicompact, so we can
find a finite subset K ⊂ I such that (Ui)i∈K covers U . The same is therefore true
for every finite subset K ⊂ J ⊂ I, and the set I is the union of the finite subsets
K ⊂ J ⊂ I. Now, for each such J , we consider the commutative diagram

OD(U)
(resUUi

)
//
∏
i∈I OD(Ui)

��

OD(U)
(resUUi

)
//
∏
i∈J OD(Ui)

where the right-hand vertical map is the canonical projection. Since OD satisfies the
sheaf condition for finite covers, the bottom horizontal map is injective, and hence,
so is the top horizontal map. It remains to prove that if a tuple (si)i∈I satisfies
si|Ui∩Uj = sj |Ui∩Uj for all (i, j) ∈ I × I then it is in the image of the top horizontal
map. The image of (si)i∈I by the right-hand projection is (si)i∈J , and it is in the
image of the lower horizontal map, because OD satisfies the sheaf condition for
finite covers. So there exists a global section sJ ∈ OD(U) such that resUUi(sJ) = si
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for all i ∈ J . Moreover, if K ⊂ J ⊂ J ′ ⊂ I are two such finite subsets and if
sJ , sJ′ ∈ OD(U) are the corresponding global sections, then

resUUi(sJ′) = si = resUUi(sJ)

for all i ∈ J , so we conclude that sJ = sJ′ . This shows that the global section
s = sJ ∈ OD(U) is independent of K ⊂ J ⊂ I and satisfies resUUi(s) = si for all
i ∈ I. So OD indeed satisfies the sheaf condition for the cover (Ui)i∈I .

Second reduction: We can assume that f = 1 and Rf = R.

We recall from Lemma 4.4 that if f ∈ R, then the localization φf : R→ Rf induces
an open embedding j : |Y | → |X| between the corresponding Zariski spaces. More-
over, if DZar ⊂ XZar and EZar ⊂ YZar denote the full subcategories spanned by
the distinguished open subsets, then the functor v : EZar → DZar that to V ⊂ |Y |
assigns j(V ) ⊂ |X| is fully faithful and its image consists for the distinguished open
subsets U ⊂ |X| such that U ⊂ |Xf |. Now, if we write h ∈ Rf as h = g/fN with
g ∈ R and N ≥ 1, then we have the commutative diagram

R

Rf Rfg

φf

��

φfg

��φf,fg
//

and the map φf,fg is a localization of Rf with respect to T = {1, h, h2, . . . }. Hence,
up to unique isomorphism, both OD(|Xfg|) and OE(|Yh|) are given by Rfg, and
since v(|Yh|) = |Xfg|, we obtain an isomorphism

v∗OD // OE

of presheaves on EZar. Moreover, since the functor v : EZar → DZar is fully faithful,
the functor v∗ preserves sheaves. (Compare with Problem Set 3.) Therefore, if OD
satisfies the sheaf condition, then so does OE , which is what we wanted to prove.

After these reductions, it suffices to prove that OD satisfies the sheaf condition
for finite families (fi)i∈I such that |X| =

⋃
i∈I |Xfi |. Given such a family, let us

define Glue(fi)i∈I (R) to be the equalizer of the two maps

∏
i∈I Rfi

α //

β
//
∏

(i,j)∈I×I Rfifj

defined by pr(i,j) ◦α = φfi,fifj ◦pri and pr(i,j) ◦β = φfj ,fifj ◦prj . The sheaf condition

for the finite family (fi)i∈I now amounts to the statement that the map

R
(φfi ) // Glue(fi)i∈I (R)

is an isomorphism. We now prove three lemmas.

Lemma 4.8. Let ϕ : R → R′ be a flat ring homomorphism, let (fi)i∈I be a finite
family with fi ∈ R, and let (f ′i)i∈I be the finite family with f ′i = ϕ(fi) ∈ R′. In this
situation, the map ϕ induces an isomorphism of R′-modules

Glue(fi)i∈I (R)⊗R R′ // Glue(f ′i)i∈I
(R′).
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Proof. By flatness, the functor − ⊗R R′ preserves kernels. It also preserves finite
products, since these are finite sums, and since − ⊗R R′ preserves all sums. So it
suffices to prove that for all f ∈ R, the map ϕ induces an isomorphism

Rf ⊗R R′ // R′ϕ(f).

But this follows immediately from the universal property of localization. �

Lemma 4.9. Let R be a ring, and let |X| be its Zariski space. Let (fi)i∈I be a
family with fi ∈ R such that |X| =

⋃
i∈I |Xfi |. A map of R-modules ϕ : N →M is

an isomorphism if and only if the induced maps of Rfi-modules

N ⊗R Rfi
ϕ⊗id

// M ⊗R Rfi
are isomorphisms for all i ∈ I.

Proof. The “only if” statement holds, because −⊗R Rfi is a functor, and because
any functor preserves isomorphisms, so we must prove the “if” statement. The
functor −⊗R Rfi is exact, because φfi : R→ Rfi is flat by Proposition 4.2. Hence,
by considering the kernel and cokernel of ϕ : N → M , it suffices to show that
if P is an R-module such that P ⊗R Rfi is zero for all i ∈ I, then P is zero.
Now, the assumption that |X| =

⋃
i∈I |Xfi | is equivalent to the statement that

1 ∈ (fi | i ∈ I). So it suffices to show that the subset

annR(P ) = {f ∈ R | P ⊗R Rf is zero} ⊂ R

is an ideal. We note that P ⊗R Rf is zero if and only if for all x ∈ P , there exists
n ≥ 1 such that x · fn = 0. It is clear that if f ∈ annR(P ) and g ∈ R, then
f · g ∈ annR(P ), and if f, f ′ ∈ annR(P ) and x ∈ P , then there exists n, n′ ≥ 1 such

that x · fn = 0 = x · f ′n′ . But in this situation, the binomial formula shows that

x · (f + f ′)n+n′ = 0

so also f + f ′ ∈ annR(P ). This completes the proof. �

Lemma 4.10. Let X be a topological space, let U ⊂ X be an open subset, and let
(Ui)i∈I be a covering of U by open subsets. If Uk = U for some k ∈ I, then every
presheaf F ∈ P(X) satisfies the sheaf condition for (Ui)i∈I .

Proof. Let F ∈ P(X) be a presheaf. If Uk = U , then the map

F(U)
(resUUi

)
//
∏
i∈I F(Uj)

is injective, since resUUk = idF(U) is so, and moreover, a tuple (si)i∈I with si ∈ F(Uj)
satisfies si|Ui∩Uj = si|Ui∩Uj for all (i, j) ∈ I × I if and only if

si = si|Ui = si|Ui∩Uk = sk|Ui∩Uk = sk|Ui = resUUi(sk)

for all j ∈ I. So F satisfies the sheaf condition for (Uj)j∈I . �

With these three lemmas in hand, we now let (fi)i∈I be a finite family of elements
of R such that |X| =

⋃
i∈I |Xfi | and prove that the map

R
(φfi ) // Glue(fi)i∈I (R)
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is an isomorphism. By Lemma 4.9, if suffices to show that

Rfj
(fi)⊗id

// Glue(fi)i∈I (R)⊗R Rfj
is an isomorphism for all j ∈ I. Moreover, by Lemma 4.8, the canonical map

Glue(fi)i∈I (R)⊗R Rfj // Glue(φfj (fi))(Rfj )

is an isomorphism, since φfj : R → Rfj is flat. But the composition of these two
maps is precisely the corresponding map

Rfj
(φfj (fi))

// Glue(φfj (fi))i∈I (Rfj )

for the ring Rfj and the family (φfj (fi))i∈I . But φφfj (fj) : Rfj → (Rfj )φfj (fj) is an

isomorphism, so this map is an isomorphism by Lemma 4.10. �

Remark 4.11. Let R be a ring, and let |X| be its Zariski space. Theorem 4.7 specifies
the value of the structure sheaf OX on the distinguished open subsets U ⊂ |X|. Its
value on a general open subset V ⊂ |X| is specified by the sheaf condition. Indeed,
if we write V =

⋃
i∈I Ui as the union of a family (Ui)i∈I of distinguished open

subsets, then we have the equalizer diagram

OX(V )
(resVUi

)
//
∏
i∈I OX(Ui)

α //

β
//
∏

(i,j)∈I×I OX(Ui ∩ Uj),

where pr(i,j) ◦α = resUiUi∩Uj◦pri and pr(i,j) ◦β = res
Uj
Ui∩Uj◦ prj .

Remark 4.12. Let R be a ring, and let |X| be its Zariski space. The proof of
Theorem 4.7 did not use that OX is a sheaf of rings, but only that it is a sheaf of
R-modules. So given an R-module M , we get a sheaf M̃ of R-modules on |X| such
that

M̃(|Xf |) = M ⊗R Rf
for every f ∈ R.

Remark 4.13. Let R be a ring, and let |X| be its Zariski space. Why did we only
specify the value of OX directly on distinguished open subsets? Let us say that
an R-algebra ϕ : R → A is distinguished if it is a localization with respect to the
multiplicative subset S = {1, f, f2, . . . } ⊂ R for some f ∈ R. Now, if U ⊂ |X| is a
distinguished open subset, then the composite ring homomorphism

R
εR // OX(|X|) // OX(U),

is a distinguished R-algebra, and if ϕ : R → A is a distinguished R-algebra, then
the image U ⊂ |X| of the induced map of Zariski spaces

|Y | = |Spec(A)|
j
// |X| = |Spec(R)|

is a distinguished subset. In fact, the functor

CAlg(Ab)dist
R/

// Dop
Zar

given by the latter assignment is an equivalence of categories. In particular, every
distinguished open subset U ⊂ |X| is uniquely determined by the (distinguished)
R-algebra R → OX(U). This is not true for open subsets U ⊂ |X| in general. In
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fact, by Hartog’s principle, in most situations, where U ⊂ |X| is an open subset of
codimension > 1, the restriction map

OX(|X|) // OX(U)

is an isomorphism! Simplest example: Let R = k[x, y], and let

U = |X|r V (x, y) = |Xx| ∪ |Xy| ⊂ |X|.
The sheaf condition tells us that the diagram of rings

OX(U) //

��

OX(|Xx|)

��

OX(|Xy|) // OX(|Xxy|)

is cartesian, which becomes

OX(U) //

��

k[x±1, y]

��

k[x, y±1] // k[x±1, y±1],

which shows that OX(|X|)→ OX(U) is an isomorphism. However, a closer look, us-
ing cohomology, reveals that, in this case, the structure sheaf can in fact distinguish
U from |X|. Without explaining cohomology, here is how it appears: The cartesian
diagram above can be rewritten as an exact sequence

0 // OX(U) // k[x±1, y]⊕ k[x, y±1] // k[x±1, y±1].

The right-hand map, however, is *not* surjective, so the sequence is not short exact!
Its cokernel is H1(U,OX), which is therefore nonzero. By contrast, for an open cover
of a distinguished open subsets by distinguished open subsets, the corresponding
exact sequence is short exact. So there is no cohomology. We will revisit this later.

We will now give Grothendieck’s definition of a scheme. First, we define a ringed
space to be a pair X = (|X|,OX) of a topological space |X| and a sheaf of rings
OX thereon, and we define a map of ringed spaces f : Y → X to be a pair

(|Y |,OY )
(p,φ)

// (|X|,OX)

of a continuous map p : |Y | → |X| and a map φ : OX → p∗(OY ) of sheaves of rings
on |X|. Here, by definition, p∗(OY ) (called the pushforward of OY along f is the
sheaf on |X| with

(p∗OY )(U) = OY (f−1U).

Intuitively speaking, the data φ tells us how we’re supposed to pull back (locally
defined) functions on X to (locally defined) functions on Y ,

Example 4.14. The pair V sm = (|V |,Osm
V ) of an open subset |V | ⊂ Rd and the

sheaf Osm
V of standard smooth functions on |V | is a ringed space. By definition, a

ringed space X = (|X|,OX) is a smooth manifold if it is locally isomorphic to V sm

for some open subset |V | ⊂ Rd. (It is common to also require |X| to be Hausdorff
and second countable, but let us not do so.) In 1956, Milnor made the remarkable
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discovery that there are 28 different isomorphism classes of smooth manifolds X
such that |X| is homeomorphic to the 7-sphere S7!

Definition 4.15 (Grothendieck). The prime spectrum of a ring R is the ringed
space X = (|X|,OX) given by its Zariski space |X| and the structure sheaf OX
thereon. A ringed space is a scheme if it is locally isomorphic to the prime spectrum
of a ring.

So a ringed space X = (|X|,OX) is a scheme if for every x ∈ |X|, there exists
an open neighborhood x ∈ U ⊂ |X| and an isomorphism of ringed spaces

(U,OX |U ) // (|V |,OV )

to the prime spectrum of some ring. Such a ring, if it exists, necessarily must vary
with x ∈ U ⊂ |X|, since it must be isomorphic to OX(U). We say that a scheme is
affine if it is (globally) isomorphic to the prime spectrum of a ring. So, equivalently,
a ringed space is a scheme if it is locally isomorphic to an affine scheme.

Example 4.16. Let X = (|X|,OX) be the prime spectrum of a ring R. If U ⊂ |X|
is any open subset, then the ringed space (U,OX |U ) is a scheme. Indeed, we can
write U =

⋃
i∈I Ui for some family (Ui)i∈I of distinguished open subset Ui ⊂ |X|

and the ringed space (Ui,OX |Ui) is isomorphic to the prime spectrum of OX(Ui).
We say that (U,OX |U ) is an open subscheme of (|X|,OX). In the case of

U = |Spec(k[x, y])|r V (x, y) ⊂ |X|
as before, the scheme (U,OX |U ) is not affine. It is only quasiaffine in the sense that
it is a quasicompact open subscheme of an affine scheme.

Caution. The notion of a map of schemes is more subtle than the definition of a
scheme suggests. It is *not* true that the category of schemes is the full subcategory
of the category of ringed spaces spanned by the schemes. We will discuss this in the
next lecture.
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5. The category of schemes

In the last lecture, we defined a scheme to be ringed space with the property
that, locally, it is isomorphic to the prime spectrum of a ring. In this lecture, we
will define the notion of maps (or morphisms) between schemes.

Let us first recall that we defined a ringed space to be a pair

X = (|X|,OX)

of a topological space |X| and a sheaf of rings OX on |X|, and we defined a map of
ringed spaces f : Y → X to be a pair

(|Y |,OY )
(p,φ)

// (|X|,OX)

of a continuous map p : |Y | → |X| and a map φ : OX → p∗(OY ) of sheaves of rings on
|X|. The map φ determines and is determined by a family of ring homomorphisms

OX(U)
φU // p∗(OY )(U) = OY (p−1(U))

indexed by the set of open subsets U ⊂ |X| with the property that the diagram

OX(V )
φV //

resVU
��

OY (p−1(V ))

res
p−1(V )

p−1(U)
��

OX(U)
φU // OY (p−1(U))

commutes for all open subsets U ⊂ V ⊂ |X|. We remark that since OX and OY are
sheaves, as opposed to presheaves, it suffices to specify the maps φU for the open
subsets U ⊂ |X| in a basis of the topology on |X|.

Let us also spell out that the composition of two composable maps of ringed
spaces

(|Z|,OZ)
(q,ψ)

// (|Y |,OY )
(p,φ)

// (|X|,OX)

is the map of ringed spaces

(|Z|,OZ)
(r,ξ)

// (|X|,OX),

where r = p ◦ q, and where ξ is the composite map

OX
φ
// p∗(OY )

p∗(ψ)
// p∗q∗(OZ) ' r∗(OZ)

of sheaves of rings on |X|. The map ξ determines and is determined by the family
(ξU )U⊂|X| consisting of the composite ring homomorphisms

OX(U)
φU // OY (p−1(U))

ψp−1(U)
// OZ(q−1p−1(U)) = OZ(r−1(U))

with U ⊂ |X| open. With these definitions, ringed spaces and maps of ringed spaces
form a category.

By definition, a ringed space X = (|X|,OX) is a scheme, if for every x ∈ |X|,
there exists an open subset x ∈ U ⊂ |X| and an isomorphism of ringed spaces

(U,OX |U ) // (|V |,OV )
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to the prime spectrum of some ring. To be a scheme is a *property* of a ringed space.
This might suggest that we define the category of schemes to be the full subcategory
of the category of ringed spaces, but this is *not* the correct definition.

Example 5.1. Let Y = Spec(Q) and X = Spec(Z), and let

(|Y |,OY )
(p,φ)

// (|X|,OX)

be the map ringed spaces, where p : Y → X sends the unique point ηY ∈ |Y | to
the point x = p(ηY ) ∈ X corresponding to some (arbitrarily chosen) prime number
p ∈ Z, and where φ|Xf | : OX(|Xf |)→ OY (p−1(|Xf |)) is the unique ring homorphism

Z[ 1
f ] // Q

if p ∈ |Xf | (that is, if p does not divide f) and zero map Z[ 1
f ]→ {0} otherwise.

The map in Example 5.1 is a map ringed spaces, but it should not be a map of
schemes. Two ways to understand the problem:

(1) The continuous map p : |Y | → |X| does not have the property that the inverse
image of a distinguished open subset of |X| is the corresponding distinguished open
subset of |Y |. Indeed, we have p−1(|Xp|) = ∅, which is not |Yφ(p)| = |Y |.
(2) The map p : |Y | → |X| sends the unique point ηY ∈ |Y | to the “wrong” point
x ∈ |X|. The algebra of the structure sheaf suggests that p : |Y | → |X| should map
ηY ∈ |Y | to the generic point ηX ∈ |X|, but that is not what is does. In particular,
there is no induced map on residue fields, as there is no ring homomorphism Fp → Q.

To understand the first problem, we extend the notion of distinguished open
subsets to ringed spaces in general.

Definition 5.2. Let X = (|X|,OX) be a ringed space. The distinguished open
subset associated with f ∈ OX(V ), where V ⊂ |X| is open, is the subset

|Xf | = {x ∈ V | fx ∈ OX,x is a unit} ⊂ V ⊂ |X|,
where OX,x is the stalk of OX at x ∈ |X|, and fx is the germ of f at x ∈ |X|.

We will show that |Xf | ⊂ U is characterized as the “largest” open subset on
which the local section f ∈ OX(V ) is invertible.

Lemma 5.3. Let X = (|X|,OX) be a ringed space, let V ⊂ |X| be an open subset,
and let f ∈ OX(V ) be a local section.

(1) The subset |Xf | ⊂ V is open.
(2) If U ⊂ V is open, then U ⊂ |Xf | if and only if f |U ∈ OX(U) is a unit.

Proof. (1) By definition, if x ∈ |Xf |, then fx ∈ OX,x is a unit, so there exists
gx ∈ OX,x such that fx · gx = 1 in OX,x. Since this stalk is the colimit

OX,x = colimx∈U⊂V OX(U)

indexed by the opposite category of the filtered category of open neighborhoods
x ∈ U ⊂ V , we conclude that there exists x ∈ U ⊂ V open and g ∈ OX(U) such
that f |U · g = 1 in OX(U). But this implies that fy · gy = 1 in OX,y for all y ∈ U ,
so x ∈ U ⊂ |Xf |, which proves (1).

(2) If f ∈ OX(U) is a unit, then so is fx ∈ OX,x for all x ∈ U , so U ⊂ |Xf |. To
prove the converse implication, it suffices to prove that f ∈ OX(|Xf |) is a unit.
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Now, as in the proof of (1), for every x ∈ |Xf |, we can find x ∈ Ux ⊂ |Xf | open
and gUx ∈ OX(Ux) such that f |Ux · gUx = 1 in OX(Ux). Moreover, for every pair of
elements (x, y) ∈ |Xf | × |Xf |, we automatically have

(gUx)|Ux∩Uy = (gUy )|Ux∩Uy ,

since both are inverses of f |Ux∩Uy and inverses are unique! Therefore, since OX
is a sheaf, the family of local sections (gUx)x∈|Xf | glues to give a global section
g ∈ OX(|Xf |). Finally, for every x ∈ |Xf |, we have

(f · g)|Ux = f |Ux · g|Ux = f |Ux · gUx = 1 = 1|Ux ,

and since OX is a sheaf, this implies that f · g = 1. �

We next let X = Spec(R) and prove that the stalk OX,x of the structure sheaf
at x ∈ |X| corresponding to p ⊂ R indeed is the local ring Rp.

Lemma 5.4. Let X = Spec(R) be the prime spectrum of a ring, let x ∈ |X|, and
let p ⊂ R be the corresponding prime ideal. In this situation, the composite map

R
εR // OX(|X|) // OX,x

is a localization with respect to the multiplicative subset S = R r p. In particular,
the stalk OX,x is a local ring.

Proof. Since the set of distinguished open subsets is a basis for the topology on the
Zariski space |X|, the canonical map

colimx∈|Xf |⊂|X|Rf
// colimx∈U⊂|X| OX(|Xf |) = OX,x

is an isomorphism. But x ∈ |Xf | if and only if f ∈ S, so we conclude that the
composite map in the statement exactly has the universal property of a localization
with respect to S ⊂ R. �

Corollary 5.5. If X = (|X|,OX) is a scheme, then the stalk OX,x is a local ring
for every x ∈ |X|.

Proof. Indeed, given x ∈ |X|, there exists an open neighborhood x ∈ U ⊂ |X| and
an isomorphism of ringed spaces

(U,OX |U )
(p,φ)

// (|V |,OV ) = Spec(R).

Hence, if v = p(x) ∈ |V |, then φv : OV,v → OX,x is an isomorphism, and Lemma 5.4
shows that OV,v is a local ring. �

Suppose that R and R′ are local rings and that m ⊂ R and m′ ⊂ R′ are their
respective maximal ideals. We recall that a ring homomorphism φ : R → R′ is
defined to be local, if the following equivalent conditions hold:

(a) m ⊂ φ−1(m′), or equivalently, φ(m) ⊂ m′.
(b) m = φ−1(m′).
(c) If f ∈ R and φ(f) ∈ R′ is a unit, then f ∈ R is a unit.

We note that the condition (c) is meaningful also if R and R′ are not local rings. So
we will say, more generally, that a ring homomorphism φ : R→ R′ between general
rings is local if the condition (c) is satisfied.
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Example 5.6. The unique ring homomorphism Z(p) → Fp is local, whereas the
unique ring homomorphism Z(p) → Q is not.

Geometrically, the spectrum of a local ring has a unique closed point, and all
the other points are generalizations of it. A local map of local rings is one whose
induced map on spectra (in the opposite direction) sends the closed point to the
closed point.

Proposition 5.7. Let f = (p, φ) : (|Y |,OY )→ (|X|,OX) be a map of ringed spaces.
The following are equivalent:

(1) For all U ⊂ |X| open and f ∈ OX(U),

p−1(|Xf |) = |YφU (f)| ⊂ p−1(U).

(2) For all y ∈ Y with image x = p(y) ∈ X, the ring homomorphism

OX,x
φy
// OY,y

is local.

Proof. Suppose that (1) holds. We let y ∈ Y with image x = p(y) ∈ X. We must
show that if fx ∈ OX,x and if φy(fx) ∈ OY,y is a unit, then so is fx ∈ OX,x. To this
end, we lift fx ∈ OX,x to f ∈ OX(U) for some x ∈ U ⊂ X open. Now, if

φU (f)y = φy(fx) ∈ OY,y

is a unit, then y ∈ |YφU (f)|, and since we assume that (1) holds, we conclude that
x = p(y) ∈ |Xf |. So fx ∈ OX,x is a unit by the definition of |Xf | ⊂ U .

Conversely, suppose that (2) holds. If U ⊂ |X| is open and f ∈ OX(U), then, by
definition, y ∈ |YφU (f)| if and only if φU (f)y ∈ OY,y is a unit. By the assumption
that (2) holds, this happens if and only if fx ∈ OX,x is a unit if and only if
x = p(y) ∈ |Xf | if and only if y ∈ p−1(|Xf |). So we conclude that (1) holds. �

Definition 5.8. A map of ringed spaces is local if it satisfies the equivalent condi-
tions of Proposition 5.7.

Remark 5.9. (1) Given two composable maps of ringed spaces

(|Z|,OZ)
(q,ψ)

// (|Y |,OY )
(p,φ)

// (|X|,OX),

if both are local, then so is their composite map

(|Z|,OZ)
(r,ξ)

// (|X|,OX).

Indeed, if the given maps satisfy (1) of Proposition 5.7, then so does the composite
map. So ringed spaces and local maps of ringed spaces form a category. We remark
that this category is a *non-full* subcategory of the category of ringed spaces and
all maps of ringed spaces. By imposing the additional requirement that maps be
local, we have discarded the troublesome maps.

(2) An isomorphism of ringed spaces is local: If φ : R→ R′ is a ring homomorphism
and if f ∈ R is a unit, then φ(f) ∈ R′ is a unit. If φ is invertible, then the converse
is true, since also φ−1 : R′ → R is a ring homomorphism. So an isomorphism of
ringed spaces automatically satisfies (2) in Proposition 5.7.

We define a map of schemes to be a local map of ringed spaces. Equivalently:
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Definition 5.10. The category of schemes is the full subcategory of the category
of ringed spaces and *local* maps spanned by the schemes.

Why is this the correct definition? Let f = (p, φ) : Y → X be a map of schemes,
and let y ∈ |Y | with image x = p(y) ∈ |X|. The requirement that the induced
map φx : OX,x → OY,y be local is equivalent to the requirement that there exists a
(necessarily unique) map φ(x) making the following diagram commute.

OX,x
φx //

��

OY,y

��

k(x)
φ(x)

// k(y)

Therefore, if x ∈ U ⊂ |X| is an open neighborhood and f ∈ OX(U), then the value
of g = φ(f) at y ∈ |Y | only depends on the value of f at x ∈ |X|, namely,

g(y) = φ(x)(f(x)) ∈ k(y).

We prove two lemmas, which reduce the problem of understanding maps between
general schemes to understanding maps between affine schemes. We write

Map(Y,X) = Map((|Y |,OY ), (|X|,OX))

for the set of maps between two schemes X and Y . We also recall from Example 16
of Lecture 4 that if |V | ⊂ |Y | is an open subset, then the ringed space (|V |,OY ||V |)
is a scheme. We denote this scheme by V = (|V |,OV ) and say that it is an open
subscheme of Y = (|Y |,OY ). We have a map of schemes

V = (|V |,OV )
j=(h,η)

// Y = (|Y |,OY ),

where h : |V | → |Y | the canonical inclusion, and where

OY
η
// h∗h

∗(OY ) ' h∗(OY |V ) ' h∗(OV )

is the unit of the adjunction (h∗, h∗) from Problem set 3. We say that the map
of schemes j : V → Y is the open immersion of V in Y . We refer to the following
result by saying that “maps of schemes are local on the source.”

Lemma 5.11. Let X = (|X|,OX) and Y = (|Y |,OY ) be schemes, and let F be the
presheaf on |Y | that to V ⊂ |Y | open assigns the set of maps of schemes

F(V ) = Map((V,OY |V ), (|X|,OX))

and that to V ⊂W ⊂ |Y | assign the map resWV : F(W )→ F(V ) given by composition
with the open immersion j : (V,OY |V )→ (W,OY |W ). The presheaf F is a sheaf.

Proof. Let V ⊂ |Y | be an open subset, and let (Vi)i∈I be a covering of V by open
subsets. We wish to prove that F satisfies the sheaf condition: The diagram

F(V )
(resVVi

)
//
∏
i∈I F(Vi)

α //

β
//
∏

(i,j)∈I×I F(Vi ∩ Vj),

where pr(i,j) ◦α = resViVi∩Vj ◦ pri and pr(i,j) ◦β = res
Vj
Vi∩Vj ◦ prj , is a limit diagram.

So we suppose that for every i ∈ I, we are given a map of schemes

(Vi,OY |Vi)
(pi,φi)

// (|X|,OX)
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and that for all (i, j) ∈ I × I, the diagram of maps of schemes

(Vi ∩ Vj ,OY |Vi∩Vj ) //

��

(Vi,OY |Vi)

(pi,φi)

��

(Vj ,OY |Vj )
(pj ,φj)

// (|X|,OX)

commutes. The top horizontal map and the left-hand vertical map are the open
immersions. We must show that there exists a unique map of schemes

(V,OY |V )
(p,φ)

// (|X|,OX)

such that for all i ∈ I, the diagram of maps of schemes

(Vi,OY |Vi)

(V,OY |V )

(|X|,OX)

<<
(p,φ)

""(pi,φi)
//

commutes. The left-hand slanted map is the open immersion. We have already seen
in Example 14 in Lecture 2 that there exists a unique continuous map p : V → |X|
with this property. Moreover, for every i ∈ I and U ⊂ |X| open, we are given a ring
homomorphism φi,U : OX(U)→ OY (p−1(U) ∩ Vi) such that the composite maps

OX(U)
(φi,U )

//
∏
i∈I OY (p−1(U) ∩ Vi)

αU //

βU

//
∏

(i,j)∈I×I OY (p−1(U) ∩ Vi ∩ Vj)

are equal. Since OY is a sheaf, we conclude:

(a) For every U ⊂ |X| open, there exists a unique map

OX(U)
φU // OY (p−1(U))

such that for all i ∈ I, the diagram

OX(U)

OY (p−1(U))

OY (p−1(U) ∩ Vi)

φU
<<

φi,U
//

res
p−1(U)

p−1(U)∩Vi
""

commutes.

(b) For every U ⊂ U ′ ⊂ |X|, the diagram

OX(U ′)
φU′ //

resU
′

U

��

OY (p−1(U ′))

res
p−1(U′)
p−1(U)

��

OX(U)
φU // OY (p−1(U))

commutes.

(c) For every i ∈ I, the map φU is a ring homomorphism.

It remains only to prove that the map (p, φ) is local. But this is clear from the
characterization (2) in Proposition 5.7. �

Lemma 5.12. Suppose that (p, φ) : (|Y |,OY ) → (|X|,OX) is a map of schemes,
and that U ⊂ |X| is an open subset. The following are equivalent:
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(1) The image of p : |Y | → |X| is contained in U ⊂ |X|.
(2) There exists a unique map of schemes (q, ψ) that makes the diagram

(|Y |,OY )

(U,OX |U )

(|X|,OX)

(q,ψ)
<<

(p,φ)
//

(h,η)

""

commute.

Proof. It is clear that (2) implies (1). Conversely, the statement (1) is equivalent
to the statement that there exists a map q : |Y | → U such that p = h ◦ q. The map
q is unique with this property, because h is injective, and it is continuous, by the
universal property of the subspace topology. Moreover, if V ⊂ |X| is open, then

p−1(V ) = (h ◦ q)−1(V ) = q−1(h−1(V )) = q−1(U ∩ V ) = p−1(U ∩ V ),

and the diagram following diagram commutes.

OX(V )
φV //

resVU∩V

��

OY (p−1(V ))

OX(U ∩ V )
φU∩V // OY (p−1(U ∩ V ))

So we conclude that there is a unique map of sheaves ψ that makes the diagram

OX

h∗(OX |U )

p∗(OY ) ' h∗q∗(OY )

η
<<

h∗(ψ)

""
φ
//

commute, namely, the map ψ with ψV = φV for V ⊂ U open. Finally, it is clear
from the characterization (2) in Proposition 5.7 that the map (q, ψ) is local. �

It follows from Lemmas 5.11 and 5.12 that we can understand maps between all
schemes if we understand maps between affine schemes. Indeed:

Lemma 5.13. Let f : Y → X be a map of schemes. For every y ∈ |Y |, there exists
open immersions jU : U → X and jV : V → Y with U and V affine such that y is
contained in the image of jV : V → Y and such that f ◦ jV factors uniquely as

V
g
//

jV

��

U

jU

��

Y
f
// X.

Proof. Let f = (p, φ) : Y → X. We first choose a cover (Ui)i∈I of |X| be affine
open subsets. This is possible, because X is a scheme. Next, for every i ∈ I, we
choose a cover (Vi,j)j∈Ji of p−1(Ui) be affine open subsets. This is possible, since
(p−1(Ui),OY |p−1(Ui)) is a scheme. So we can choose V = Vi,j such that y ∈ V and
let U = Ui. That f factors uniquely as stated follows form Lemma 5.12. �

It remains to understand maps between affine schemes. We will a more general
result, describing arbitrary maps with target an affine scheme. Let Schemes be the
category of schemes and maps of schemes.
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Theorem 5.14. There is an adjunction

Schemes
F //

CAlg(Ab)op

G
oo

where F (Y ) = OY (|Y |) and G(R) = Spec(R), and where the counit is the ring
homomorphism εR : R→ OSpec(R)(|Spec(R)|) from Theorem 7 of Lecture 4.

Proof. The theorem amounts to the statement that for every scheme Y and every
ring R with prime spectrum X = Spec(R), the composition

Map(Y,X) // Map(OX(|X|),OY (|Y |)) // Map(R,OY (|Y |))

of the map that is part of the functor F and the map induced by εR is a bijection.
To produce an inverse map, we let ϕ : R→ OY (|Y |) be a ring homomorphism and
proceed to produce a map of schemes (p, φ) : (|Y |,OY ) → (|X|,OX). We define
p : |Y | → |X| to be the map that to y ∈ |Y | assigns the prime ideal p ⊂ R given by
the kernel of the composite ring homomorphism

R
ϕ
// OY (|Y |)

ψ
// k(y).

We note that this definition is forced upon us by the requirement that (p, φ) be a
local map that maps to ϕ by the composite map in question. We claim that

p−1(|Xf |) = |Yϕ(f)|

for f ∈ R. Indeed, by definition, we have p(y) ∈ |Xf | if and only (ψ ◦ ϕ)(f) 6= 0 in
k(y) if and only if ψ(ϕ(f)) 6= 0 in k(y) if and only if y ∈ |Yϕ(f)|. In particular, the
map p : |Y | → |X| is continuous. By Lemma 5.3, ϕ(f) ∈ OY (|Yϕ(f)|) is invertible,
so there is a unique map φ|Xf | that makes the following diagram commute.

R
εR //

ϕ

��

OX(|X|)
res
|X|
|Xf |
// OX(|Xf |)

φ|Xf |

��

OY (|Y |)
res
|Y |
|Yϕ(f)|

// OY (|Yϕ(f)|)

Given f, g ∈ R such that |Xg| ⊂ |Xf |, we must show that φ|Xf | and φ|Xg| are
compatible with the respective restriction maps. But this follows automatically
from the uniqueness of these maps. So (p, φ) is a map of ringed spaces. Finally,
this map is local, by construction. Similarly, the map that to ϕ assigns (p, φ) is an
inverse to the map in question, since the definition of (p, φ) was forced upon us by
the requirement that it be so. �

The most important special of this theorem says that maps of affine schemes
Spec(R)→ Spec(R′) are in natural bijection with homomorphisms of rings R′ → R.

Remark 5.15. The proof of Theorem 5.14 does not use that Y is a scheme, but only
that it is a locally ringed space, that is, a ringed space with the property that for
all y ∈ |Y |, the stalks OY,y are local rings. So in fact we have an adjunction

LocallyRingedSpaces
F ′ //

CAlg(Ab)op,
G′
oo
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Moreover, since the functor G′ takes values in the full subcategory spanned by the
schemes, this adjunction induces the adjunction in Theorem 5.14.

Remark 5.16. The unit of the adjunction in Theorem 5.14 is a natural transforma-
tion

Y
ηY // Spec(OY (|Y |)).

Moreover, it follows from the theorem that this map is the universal map of schemes
from X to an affine scheme in the sense that the composition

Map(R,OY (|Y |)) // Map(Spec(OY (|Y |)),Spec(R)) // Map(Y,Spec(R))

of the map that is part of the functor G and the map induced by ηY is a bijection,
namely, the inverse of the composite map in the statement of the theorem.

Example 5.17. In any adjunction, the left adjoint functor preserves all colimits that
exist in its domain, whereas the right adjoint functor preserves all limits that exist
in its domain. In the case of the adjunction in Theorem 5.14, it follows that Spec
takes all colimits that exist in the category of rings to limits in the category of
schemes. In particular, it takes the initial object Z in the category of rings to a
final object Spec(Z) in the category of schemes. So for every scheme Y , there is a
unique map of schemes (p, φ) : Y → Spec(Z), and the proof of Theorem 5.14 shows
that the continuous map p : |Y | → |Spec(Z)| is given by

p(y) = char(k(y))Z ⊂ Z,

where char(k) is the characteristic of the field k.

Example 5.18. We recall that the polynomial ring Z[T ] is the free ring on a single
generator T in the sense that the map

Map(Z[T ], R)
α // R

defined by α(ϕ) = ϕ(T ) is a bijection. The affine scheme

A1
Z = Spec(Z[T ])

is called the affine line. Composing the two bijections

Map(Y,A1
Z) // Map(Z[T ],OY (|Y |)) // OY (|Y |),

we see that the affine line rescues the idea that every element g ∈ OY (|Y |) can
be considered as a function on Y , namely, the map of schemes f : Y → A1

Z that
corresponds to g under this composite bijection.

Moreover, we conclude from Theorem 5.14 that the natural ring structure on the
set OY (|Y |) gives rise to a structure of ring object on the scheme A1

Z. We denote
this ring scheme by O. It follows that we have a natural ring isomorphism

Map(Y,O) // OY (|Y |).

Example 5.19. Similarly, the polynomial ring Z[T1, . . . , Tn] is the free ring generated
by the set {T1, . . . , Tn}, and the affine scheme

AnZ = Spec(Z[T1, . . . , Tn])

is called the affine space of dimension n. A map of schemes f : Y → AnZ determines
and is determined by a family (f1, . . . , fn) of n elements in OY (|Y |).
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Example 5.20. The open subscheme A1
Z r {0}Z ⊂ A1

Z defined by the open comple-
ment of closed subset V (T ) ⊂ |A1

Z| is itself an affine scheme, namely,

A1
Z r {0}Z = Spec(Z[T±1]).

Indeed, the open subset |A1
Zr{0}Z| ⊂ |A1

Z| is the distinguished open subset |(A1
Z)T |.

Arguing as in Example 5.18, we obtain a natural bijection

Map(Y,A1
Z r {0}Z) // OY (|Y |)×

from the set of maps of schemes f : Y → A1
Z r {0}Z onto the set OY (|Y |)× of units

in the ring OY (|Y |). Again, the natural group structure gives rise to a group object
structure on the scheme A1

Z r {0}Z. We write Gm for this group scheme and call it
the multiplicative group (scheme). So have a natural group isomorphism

Map(Y,Gm) // OY (|Y |)×.

Example 5.21. The open subscheme AnZ r {0}Z ⊂ AnZ defined by the open com-
plement of the closed subset V (T1, . . . , Tn) ⊂ |AnZ| is not affine for n ≥ 2, but
instead

|AnZ r {0}Z| = |(AnZ)T1
| ∪ · · · ∪ |(AnZ)Tn | ⊂ |AnZ|.

It follows from Lemma 5.12 that for every scheme Y , the open immersion

AnZ r {0}Z
j
// AnZ

induces an injective map

Map(Y,AnZ r {0}Z) // Map(Y,AnZ) ' OY (|Y |)n

and that its image consists of the tuples (f1, . . . , fn) with the property that for
every y ∈ |Y |, there exists 1 ≤ i ≤ n such that fi(y) ∈ k(y) is nonzero.

Example 5.22. The projective line P1
Z is defined to be the pushout

A1
Z r {0}Z

j1 //

j2

��

A1
Z

j′2
��

A1
Z

j′1 // P1
Z

in the category of schemes, where the open immersions j1 and j2 correspond to the
ring homomorphisms Z[T ]→ Z[T±1] that to T assign T and T−1, respectively.1 It
follows from Lemmas 5.11 and 5.12 that a map of schemes

Y
h // P1

Z

determines and is determined by a quadruple (U, V, f, g), where U, V ⊂ |Y | are open
subsets and f ∈ OY (U) and g ∈ OY (V ) are local sections such that

|Yf | = U ∩ V = |Yg|

1 One has to prove that this pushout exists! It is a general fact, which is not difficult to prove,

that the pushout of two open immersions of schemes exists. Informally, we can always “glue” two
schemes along a common open subscheme. However, if we want to “glue” more than two schemes

along open immersions, then the “transition functions” must satisfy the “cocycle condition.”
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and f |U∩V · g|U∩V = 1 in OY (U ∩ V ). However, two such quadruples can give rise
to the same map, so this is not the best possible description of maps to P1. We will
return to this later.
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6. Quasicoherent OX-modules

In this lecture, we will assign to every scheme X an abelian category QCoh(X)
of “quasicoherent OX -modules” based on the following two ideas:

(1) If X ' Spec(R), then QCoh(X) ' ModR.
(2) The assigment X 7→ QCoh(X) is “local” on X.

Here ModR is the category of R-modules. We will define QCoh(X) to be a full
subcategory of the larger category ModOX of OX -modules.

Definition 6.1. Let X = (|X|,OX) be a scheme. An OX -module is a pair (M, µ)
of a sheaf of abelian groups M on |X| and a map µ : OX ×M → M of sheaves of
sets on |X| with the property that for all U ⊂ |X| open, the map

OX(U)×M(U) ' (OX ×M)(U)
µU // M(U)

makes (M(U), µU ) an OX(U)-module. A map of OX -modules h : (M, µ)→ (M′, µ′)
is a map h : M→M′ of sheaves of abelian groups on |X| such that for every U ⊂ |X|
open, the map hU : M(U)→M′(U) is OX(U)-linear.

We will abuse notation and write M instead of (M, µ) for an OX -module, just
as we abuse notation and write OX for the ring object (OX ,+, · ).

Remark 6.2. In Grothendieck’s philosophy, the category Sh(|X|) of sheaves of sets
on |X| behaves just like the category Set of sets with the one exception that, in
general, the axiom of choice fails in Sh(|X|). So sheaves of abelian groups, sheaves
of rings, and OX -modules are simply the abelian group objects, ring objects, and
OX -module objects in Sh(|X|).

Just as the category Sh(|X|,Ab) of sheaves of abelian groups and the category
ModR of R-modules both are abelian, so is the category ModOX of OX -modules.
Limits, or equivalently, products and kernels, of OX -modules are calculated sec-
tionwise, whereas colimits, or equivalently, sums and cokernels, of OX -modules are
calculated by sheafifying the sectionwise colimits. Finally, the sheafification of an
OX -module presheaf is calculated by the “same” formula as the sheafification of a
presheaf of sets,2 and a sequence of OX -modules

M′ // M // M′′

is exact if and only if the sequence of OX,x-modules

M′x
// Mx

// M′′x

is exact for all x ∈ |X|.
You may think, based on the above, that products (and limits) of OX -modules

are better behaved than sums (and colimits). In fact, the opposite is true:

(1) Sums (and colimits) commute with taking stalks: Given (Mi)i∈I , the map⊕
i∈I(Mi)x // (

⊕
i∈I Mi)x

2 Indeed, sheafification preserves finite limits, in general, and finite products, in particular,
and an OX -module structure on a (pre)sheaf of sets M is given by a pair of maps between finite

products of (pre)sheaves, namely, +: M×M→ M and µ : OX ×M→ M.
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is an isomorphism. This is true presheaves, and sheafification preserves all
(small) colimits, so it is also true for sheaves. By contrast, the corresponding
statement for infinite products (and infinite limits) is false.

(2) Sums are exact: Given (hi : Mi →M′i)i∈I , the maps⊕
i∈I ker(hi) // ker(

⊕
i∈I hi)

⊕
i∈I coker(hi) // coker(

⊕
i∈I hi)

are isomorphisms. Indeed, we can check this on stalks, where the statements
follow from the analogous statements for families of maps of abelian groups.
The cokernel statement fails for infinite products.

(3) Sums (and colimits) commute with restriction to open subsets: Given a
family of OX -modules (Mi)i∈I , the canonical map⊕

i∈I(Mi)|U // (
⊕

i∈I Mi)|U

is an isomorphism. The same is true for products (and limits), but for sums
(and colimits), a more general statement is true: For every map of schemes
f : Y → X, the inverse image functor

ModOX

f∗
// ModOY ,

which is left adjoint to the pushforward fucntor, preserves sums (and col-
imits). This can be checked on stalks, or it can be proved by showing that
f∗ admits a right adjoint f∗, and hence, preserves all colimits that exist in
its domain. The corresponding statement for infinite products (and infinite
limits) is false.

Finally, if X is a scheme, then a special feature of the topology on |X| makes sums
(and colimits) even more manageable:

Lemma 6.3. Let |X| be a topological space such that the set of quasicompact open
subsets U ⊂ |X| form a basis for the topology and is closed under finite intersections.
Given a family (Mi)i∈I of sheaves of abelian groups on |X|, the canonical map⊕

i∈I Mi(U) // (
⊕

i∈I Mi)(U)

is an isomorphism for every quasicompact open subset U ⊂ |X|.

Proof. As the category of sheaves on |X| is equivalent to the category of sheaves on
the basis of quasicompact open subsets, it suffices to show that the presheaf sum
satisfies the sheaf condition on this basis. Moreover, since the basis elements are
quasicompact, it suffices to check the sheaf condition for finite covers. But the sheaf
condition for finite covers involves kernels and finite products, and finite products
are the same as finite sums, since we consider (pre)sheaves of abelian groups, and
both kernels and sums preserve sums. �

Remark 6.4. Lemma 6.3 shows that, to calculate the value of a sum of sheaves of
abelian groups on a quasicompact open subset, we do not need to sheafify. The
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same is *not true* for cokernels! Indeed, taking kernels and cokernels do generally
not commute, as the example

Z 2 id //

4 id

��

Z

2 id

��

Z id // Z
shows. If we first take horizontal cokernels and then vertical kernels, then we get
Z/2Z, but if we do this in the opposite order, then we get 0.

Corollary 6.5. Let X be a scheme, and let (Mi)i∈I be a family of OX-modules.
For every affine open subscheme U ⊂ X, the canonical map⊕

i∈I Mi(U) // (
⊕

i∈I Mi)(U)

is an isomorphism.

Proof. We have already seen that restriction to any open subset preserves sums. So
we can assume that X = U is affine, and in this case, Lemma 6.3 applies. �

We make one final general observation:

Lemma 6.6. If X is a ringed space, and if M is an OX-module, then the map

HomOX (OX ,M) // M(|X|)

that to h : OX →M assigns hX(1) ∈M(|X|) is a bijection.

Proof. If R is a ring, and if M is an R-module, then the map

HomR(R,M) // M

that to an R-linear map h : R→M assigns h(1) ∈M is a bijection. Thus, the map

HomOX (OX ,M) //
∏
U ⊂ |X| open M(U)

that to h : OX → M assigns (hU (1))U ⊂ |X| open is injective and its image consists
of the tuples (sU )U ⊂ |X| open such that for all U ⊂ V ⊂ |X| open, sV |U = sU . But
such a tuple determines and is determined by the component sX . �

Remark 6.7. To explain Lemma 6.6 in more detail, there are adjunctions

Set
p∗
//
Sh(|X|)

φ∗
//

p∗
oo ModOX ,

φ∗

oo

where p∗ is the functor that to a sheaf F assigns its set p∗(F) = F(|X|) of global
sections, and where φ∗ is the forgetful functor that to an OX -module M assigns
its underlying sheaf of sets φ∗(M). The left adjoint functor p∗ takes a set S to the
constant sheaf p∗(S) given by the sheafification of the presheaf U 7→ S, and the left
adjoint functor φ∗ takes a sheaf of sets F to the “free OX -module spanned by F”
given by the sheafification of the presheaf that to U assigns the free OX(U)-module
spanned by F(U). If 1 is a set with a single element, then φ∗p∗(1) ' OX , so the
lemma is the special case S = 1 of the statement that the natural map

HomOX (φ∗p∗(S),M) // Map(S, p∗φ∗(M)),

which is part of the data of an adjunction, is a bijection.
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Let us now look at OX -modules on X = Spec(R). The adjunction

Set
p∗
//
Sh(|X|)

p∗
oo

from Remark 15.3 gives rise to an adjunction

ModR
p∗
//
Modp∗(R)

p∗
oo

between categories of modules. Moreover, we have the ring homomorphism

R
ε // OX(|X|) ' p∗(OX),

which was part of the definition of the structure sheaf, and its adjunct

p∗(R)
ψ
// OX

is a a map of sheaves of rings on |X|. So we also have an adjunction

Modp∗(R)

ψ∗
//
ModOX ,

ψ∗

oo

where ψ∗ is given by restriction of scalars along ψ, and where its left adjoint ψ∗ is
given by extension of scalars along ψ. In the composite adjunction

ModR
ψ∗p∗

//
ModOX ,

p∗ψ
∗

oo

the right adjoint p∗ψ∗ takes an OX -module M to the set M(|X|) of global sections
with the R-module structure obtained by restriction of scalars along R→ OX(|X|),
and the left adjoint ψ∗p∗ takes an R-module M to the OX -module

M̃ ' ψ∗p∗(M)

that we defined in Lecture 4. The unit of the composite adjunction

M
η
// p∗ψ∗ψ

∗p∗(M) ' M̃(|X|)

was part of our definition of M̃ : the pair (M̃, η) is characterized uniquely, up to
unique isomorphism, by the requirement that for every f ∈ R, the composition

M
η
// M̃(|X|) // M̃(|Xf |)

is a localization with respect to S = {1, f, f2, . . . } ⊂ R. Since the localization with
respect to S is given by a filtered colimit, it preserves finite limits (and colimits).
So the functor

M 7→ M̃ ' φ∗p∗(M)

is exact! The counit

M̃(|X|) ' ψ∗p∗p∗ψ∗(M)
ε // M

is a map of OX -modules. So the R-module of global sections M(|X|) it is trying
to tell the OX -module M via this map what its sections should be over every open
subset U ⊂ |X|. But M does not have to listen.
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Theorem 6.8. Let X ' Spec(R) be an affine scheme, and let M be an OX-module.
The following are equivalent:

(1) The counit ε : M̃(X)→M is an isomorphism.
(2) There exists an exact sequence of OX-modules⊕

j∈J OX
//
⊕

i∈I OX
// M // 0.

(3) For every x ∈ |X|, there exists x ∈ U ⊂ |X| open and an exact sequence⊕
j∈J OX |U //

⊕
i∈I OX |U // M|U // 0

of OX |U -modules.

Moreover, the full subcategory QCoh(X) ⊂ ModOX spanned by the OX-modules that
satisfy these conditions is closed under kernels and cokernels, and hence, is abelian.
It is also closed under arbitrary sums.

Proof. We assume (1), so that M ' M̃ with M 'M(|X|). We choose a presentation⊕
j∈J R

//
⊕

i∈I R
// M // 0

and apply the exact functor (̃−) ' ψ∗p∗ to get⊕
j∈J OX

//
⊕

i∈I OX
// M // 0.

This proves (2). It is clear that (2) implies (3), so it remains to show that (3)
implies (1), which is the hard part. Let us first show that (2) implies (1). So we
assume that there exists an exact sequence of OX -modules⊕

j∈J OX
h //

⊕
i∈I OX

// M // 0

and show that this sequence arises by applying the exact functor (̃−) ' ψ∗p∗ to an
exact sequence of R-modules⊕

j∈J R
g
//
⊕

i∈I R
// M // 0.

By exactness, for this it suffices to show that every map h as above arises from

some map g as above by applying (̃−). Because maps out of a direct sum are the
same as separate maps out of each factor, this reduces to the case where J has car-
dinality 1. By Lemma 6.6, in this case maps h amount to elements of (⊕i∈IOX)(X)
and maps g amoung to elements of ⊕i∈IR. Thanks to Lemma 6.5, these agree and
we get the claim.

Finally, to prove that (3) implies (2), it suffices to show that if (|Xfi |)iıI is a
finite family of distinguished open subsets of |X| that cover |X|, and if the map

M̃(|Xfi |)
ε // M||Xfi |

is an isomorphism for all i ∈ I, then so is the map

M̃(|X|) ε // M.
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It suffices to show that for all i ∈ I, the restriction of the latter map

M̃(|X|)||Xfi |
ε // M||Xfi |

to |Xfi | ⊂ |X| is an isomorphism. This map factors as a composition

M̃(|X|)||Xfi |
// M̃(|Xfi |) // M||Xfi |,

where the right-hand map is an isomorphism, by assumption. So it suffices to show
that the left-hand map is an isomorphism, or equivalently, that if |Xg| ⊂ |Xfi |, then
the induced map of Rg-modules

M(|X|)g // M(|Xfi |)g

is an isomorphism. Clearly, it suffices to consider g = fi. Now, since M is a sheaf,
we have an exact sequence of R-modules

0 // M(|X|) //
∏
j∈I M(|Xfj |) //

∏
(j,k)∈I×I M(|Xfjfk |),

and the two products are finite products. Hence, they agree with the corresponding
sums, and therefore, they commute with localization. It follows that that in the
following commutative diagram, the two horizontal sequence is exact.

0 // M(|X|)fi //

��

∏
j∈I M(|Xfj |)fi //

��

∏
(j,k)∈I×I M(|Xfjfk |)fi

��

0 // M(|Xfi |) //
∏
j∈I M(|Xfifj |) //

∏
(j,k)∈I×I M(|Xfifjfk |)

The bottom horizontal sequence is also exact, because M is a sheaf, and the middle
and right-hand vertical maps are isomorphisms by assumption. Hence, the left-hand
vertical map is an isomorphism, too, as we wanted to show.

We have now proved that (1)–(3) are equivalent. Since (̃−) ' ψ∗p∗ is exact and
since the global sections functor p∗ψ∗ preserves limits, we conclude from (1) that
QCoh(X) ⊂ ModOX is closed under kernels. Finally, it is clear from (2) that it is
also closed under colimits. This completes the proof. �

Remark 6.9. In the proof of Theorem 6.8, we saw that the functor

ModR // QCoh(X)

that to an R-module M assigns the quasicoherent OX -module M̃ is an equivalence
of categories. A quasi-inverse is given by the functor that takes a quasicoherent
OX -module M to its R-module of global sections M(|X|).

Example 6.10. Let V be a discrete valuation ring with maximal ideal m ⊂ V . Its
Zariski space is the Sierpinski space |X| = {η, s}, where η corresponds to the zero
ideal {0} ⊂ V and is a generic point, and where s corresponds to the maximal ideal
m ⊂ V and is a closed point. So the open subsets of |X| are |X| ⊃ {η} ⊃ ∅, and the
values of the structure sheaf on these open subsets are V → K → 0, where K is the
quotient field of V and 0 is the zero ring. Now, an OX -module M determines and
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is determined, up to unique isomorphism, by the V -module M(|X|), the K-vector
space M({η}), and the K-linear restriction map

K ⊗V M(|X|) // M({η}).

It is a quasicoherent OX -module if and only if this map is an isomorphism.

Theorem 6.11. Let X = (|X|,OX) be a scheme, and let M be an OX-module. The
following are equivalent:

(1) For every x ∈ |X|, there exists x ∈ U ⊂ |X| affine open such that

M|U ' Ñ

for some OX(U)-module N .
(2) For every affine open subset U ⊂ |X|, there exists an isomorphism

M|U ' Ñ

for some OX(U)-module N .
(3) For every x ∈ |X|, there exists x ∈ U ⊂ |X| open and an exact sequence⊕

j∈J OX |U //
⊕

i∈I OX |U // M|U // 0

of OX |U -modules.

Moreover, the full subcategory QCoh(X) ⊂ ModOX spanned by the OX-modules that
satisfy these conditions is closed under kernels and cokernels, and hence, is abelian.
It is also closed under arbitrary sums.

Proof. That (1) implies (3) follows from the affine case, and that (2) implies (1)
is trivial. To prove that (3) implies (2), we note that (3) for M implies (3) for
M|U , since restriction along an open immersion j : U → X preserves colimits, or
equivalently, preserves sums and cokernels. So that (3) implies (2) also follows from
the affine case. In fact, restriction along an open immersion j : U → X preserves
both limits and colimits, so the final statement concerning QCoh(X) ⊂ ModOX

also reduces to the corresponding statement for X affine. �

Remark 6.12. Let X be a scheme. The canonical inclusion

QCoh(X) // ModOX

preserves all colimits and finite limits.3 In particular, a sequence of quasicoherent
OX -modules is exact in QCoh(X) if and only if it is exact in ModOX . So we can
check exactness on stalks. The following are equivalent:

(1) The sequence of quasicoherent OX -modules

M′ // M // M′′

is exact.
(2) For every *affine* open U ⊂ |X|, the induced sequence of OX(U)-modules

M′(U) // M(U) // M′′(U)

is exact.

3 But it but it does not preserve infinite products.
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(3) For some covering (Ui)i∈I of |X| by *affine* open subsets, the sequences

M′(Ui) // M(Ui) // M′′(Ui)

of OX(Ui)-modules are exact for all i ∈ I.

It is clear that (2) implies (3) and that (3) implies (1). To see that (1) implies (2),
we use that if j : U → X is open immersion with U affine, then the functor

QCoh(U) // ModOX(U)

that to N assigns N(U) is an equivalence of categories, so the sequence

M′|U // M|U // M′′|U
in QCoh(U) is exact if and only if the sequence in ModOX(U) obtained by taking
global sections is exact.
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7. Affine maps, closed immersions, and vector bundles

Last time, we associated to a scheme X = (|X|,OX) the full subcategory

QCoh(X) ⊂ ModOX

of the abelian category of OX -module objects in the category Sh(|X|) spanned by
the OX -modules M that satisfy the following equivalent conditions:

(1) For every x ∈ |X|, there exists x ∈ U ⊂ |X| open and an exact sequence⊕
j∈J OX |U //

⊕
i∈I OX |U // M|U // 0

of OX |U -modules.
(2) For every affine open subset U ⊂ |X|, there exists an isomorphism

M|U ' Ñ
of OX |U -modules.

We also saw that the OX(U)-module N in (2) necessarily is isomorphic to M(U).

As an application of this technology, we will define affine maps of schemes and
the relative prime spectrum of a quasicoherent OX -algebra. For this purpose, we
need gluing of schemes, which is the following result.

Theorem 7.1. The category of schemes admits quotients by equivalence relations

R Y × Y
(s,t)

//

such that Y =
∐
i∈I Yi and R =

∐
(i,j)∈I×I Ui,j and such that s and t restrict to

open immersions s|Ui,j : Ui,j → Yi and t|Ui,j : Ui,j → Yj.

Proof. Given an equivalence relation as is the statement, we let p : |Y | → |X| be a
coequalizer of r, s : |R | → |Y | in the category of topological spaces and continuous
maps. We claim that the map p|Yi : |Yi| → p(|Yi|) is a homeomorphism for all i ∈ I.
First, it is a bijection, because the maps s|Ui,i : |Ui,i| → |Yi| and t|Ui,i : |Ui,i| → |Yi|
necessarily are equal. Indeed, they are both open embeddings, and the diagonal
map ∆: Yi → Yi × Yi factors through (s, t)|Ui,i : Ui,i → Yi × Yi, because (s, t) is an
equivalence relation. Second, it is an open map. For if |V | ⊂ |Yi| is open, then so is

p−1(p(|V |)) =
∐
j∈I(t ◦ s−1)(|V | ∩ |Ui,j |) ⊂

∐
j∈I Yj = |Y |.

This proves the claim. Finally, the sheaf of rings OX given by the equalizer

OX p∗OY q∗OR,
φ
//

p∗σ //

p∗τ
//

where h = f ◦ s = f ◦ t, makes (|X|,OX) a scheme and makes the diagram

R
s //

t
// Y

f
// X

a coequalizer in the category of schemes. �

Example 7.2. Let us show that, in the category of schemes, every scheme X is
the colimit of its affine open subschemes V ⊂ X. Let us write V ⊂ X with the
understanding that we only consider affine open subschemes. We have

colimV⊂X V ' Y/R
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with Y =
∐
V⊂X YV and R =

∐
V,W⊂X UV,W , where YV = V and UV,W = V ∩W ,

and with s|UV,W : UV,W → YV and t|UV,W : UV,W → YW given by the respective open
immersions V ∩W → V and V ∩W → W . Hence, we conclude from Theorem 7.1
that the colimit exists. Moreover, the open immersions V → X for V ⊂ X define a
unique map of schemes

colimV⊂X V
f
// X

and we claim that it is an isomorphism. First, the underlying map of topological
spaces is a homeomorphism, since continuity is a local property. Second, the map
of structure sheaves is an isomorphism, or equivalently, the diagram

OX p∗OY q∗OR,
φ
//

p∗σ //

p∗τ
//

is a limit diagram. Taking sections over U ⊂ X affine open, we get

OX(U) //
∏
V⊂X OX(U ∩ V )

//
//
∏
V,W⊂X OX(U ∩ V ∩W )

which is a limit diagram of rings, because OX is a sheaf. Finally, since the inclusion
of sheaves in presheaves reflects limits, we conclude that the diagram of sheaves in
question is a limit diagram.

In general, if C is a category and X and object of C, then the slice category C/X
is the category, whose objects are the maps f : Y → X in C with target X, and
whose maps are commutative triangular diagrams in C of the form

Z Y

X

h //

g
��

f
��

with h a map from g to f . If C = Sch is the category of schemes, then we say that
the slice category Sch/X is the category of schemes over X. We now construct the
relative prime spectrum functor.

Proposition 7.3. Let X be a scheme. There exists a functor

CAlg(QCoh(X))op Spec
// Sch/X

that to a quasicoherent OX-algebra φ : OX → A assigns the map of schemes

Spec(A) ' colimV⊂X Spec(A(V ))
f
// X

exhibited during the course of the proof.

Proof. We first argue as in Example 7.2 that the colimit in the statement exists.
The colimit is again indexed by the partially ordered set of affine open subschemes
V ⊂ X, and we must show that if V ⊂W ⊂ X are affine open, then the map

Spec(A(V )) // Spec(A(W ))
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induced by the restriction is an open immersion. Now, it follows from the assumption
that A is quasicoherent that the diagram of rings

OX(W ) //

φW

��

OX(V )

φV

��

A(W ) // A(V )

is cocartesian. It follows that the induced diagram of schemes

Spec(A(V ))
j′
//

��

Spec(A(W ))

��

Spec(OX(V ))
j
// Spec(OX(W ))

is cartesian. Indeed, we saw in Lecture 4 that the prime spectrum functor

CAlg(Ab)op Spec
// Sch

is a right adjoint, and therefore, it preserves all limits that exist in its domain.
The lower horizontal map is canonically isomorphic to j : V → W , and hence, is
an open immersion. But open immersions are preserved under base-change, so also
the upper horizontal map j′ is an open immersion, as we wanted to prove. Hence,
we conclude from Theorem 7.1 that the colimit exists. The map f : Spec(A)→ X
is the unique map from the colimit, whose V th component is the composition

Spec(A(V )) // Spec(OX(V )) ' V // X

of the map induced by φV : OX(V ) → A(V ), the canonical isomorphism, and the
open immersion of V in X. Finally, given a map of quasicoherent OX -algebras
ψ : A→ B, there is a unique map Spec(ψ) that makes the diagram

Spec(B(V ))
Spec(ψV )

//

��

Spec(A(V ))

��

Spec(B)
Spec(ψ)

// Spec(A)

commute for all V ⊂ X affine open. The uniqueness statement implies that this
defines a functor, as stated. �

Definition 7.4. A map of schemes f : Y → X is affine if it satisfies the following
equivalent conditions:

(1) The map f : Y → X is in the essential image of the relative prime spectrum
functor.

(2) For every affine open subscheme V ⊂ X, the open subscheme f−1(V ) ⊂ Y
is affine.

(3) There exists a covering (Vi)i∈I of X by affine open subschemes such that
for all i ∈ I, the open subscheme f−1(Vi) ⊂ Y is affine.
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Let us define (Sch/X)aff ⊂ Sch/X to be the full subcategory spanned by the affine
maps f : Y → X. The relative prime spectrum functor

CAlg(QCoh(X))op Spec
// (Sch/X)aff

is an equivalence of categories. A quasi-inverse assigns to f : Y → X affine the
quasicoherent OX -algebra φ : OX → f∗OY .

Example 7.5. Let Y be a scheme. The unique map of schemes f : Y → Spec(Z) is
an affine map if and only if the scheme Y is affine.

We next consider the special case of closed immersions.

Proposition 7.6. Let f : Y → X be a map of scheme. The following are equivalent:

(1) The map f : Y → X is affine, and the map of sheaves φ : OX → f∗OY is
surjective.

(2) The underlying map of topological space p : |Y | → |X| is a closed embedding,
and the map of sheaves φ : OY → f∗OX is surjective.

(3) For every affine open subscheme V ⊂ X, the open subscheme f−1(V ) ⊂ Y
is affine and isomorphic to Spec(R/I) for some ideal I ⊂ R ' OX(V ).

(4) There exists a cover (Vi)i∈I of X by affine open subschemes such that for
all i ∈ I, the open subscheme f−1(Vi) ⊂ Y is affine and isomorphic to
Spec(Ri/Ii) for some ideal Ii ⊂ Ri ' OX(Vi).

Proof. It is clear that (3) implies (4).

If (4) holds, then f : Y → X is affine, since f−1(Vi) ⊂ Y is affine for all i ∈ I.
Moreover, since f−1(Vi) → Vi is isomorphic to Spec(Ri/Ii) → Spec(Ri), the map
φVi : OX(Vi) → (f∗OY )(Vi) is isomorphic to the canonical projection Ri → Ri/Ii,
and hence, is surjective. It follows that the map of sheaves φ : OX → f∗OY is
surjective. In fact, as a map of presheaves, φ : OX → f∗OY is locally surjective.

If (1) holds, then the map f : Y → X is recovered as the relative prime spectrum
of φ : OX → f∗OY . The latter is a surjective map of quasicoherent OX -modules,
so for V ⊂ X affine open, the map φV : OX(V ) → (f∗OY )(V ) ' OY (f−1(V )) is
surjective. So p : |Y | → |X| is locally on |X| a closed embedding, and therefore, it
is globally a closed embedding.

The final implication that (2) implies (3) is more tricky. We skip the proof. �

Definition 7.7. A map of schemes f : Y → X is a closed immersion if it satisfies
the equivalent conditions of Proposition 7.6.

Corollary 7.8. Let f : Y → X and f ′ : Y ′ → X be closed immersions. The follow-
ing are equivalent:

(1) There exists a isomorphism h : Y → Y ′ of schemes over X. If so, then h is
unique.

(2) The closed subsets p(|Y |) ⊂ |X| and p′(|Y ′|) ⊂ |X| are equal, and the maps
φ : OX → p∗OX and φ′ : OX → p′∗OX have the same kernel.

Proof. Clear from Proposition 7.6. �

Definition 7.9. A closed subscheme of a scheme X is an isomorphism class of
closed immersions f : Y → X.
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It follows form Corollary 7.8 that there are mutually inverse maps

{closed subschemes of X}
α // {quasicoherent ideals I ⊂ OX},
β
oo

where α takes a closed immersion f : Y → X to the quasicoherent ideal given by
the kernel of φ : OX → f∗OY , and where β take a quasicoherent ideal I ⊂ OY to
the closed immersion f : Spec(OX/I)→ Spec(OX) ' X.

If X is a scheme, and Z ⊂ |X| a closed subset, then there are in general many
different closed subschemes f : Y → X with p(|Y |) = Z ⊂ |X|. For example, we

have |Spec(R/I)| = |Spec(R/
√
I)| for any ideal I ⊂ R.

However, there is always a minimal choice. The nilradical of a ring R is the ideal√
(0) ⊂ R

which consists of the elements f ∈ R such that fN = 0 for some N ≥ 0. The ring
R is said to be reduced if its nilradical is equal to {0}.

Definition 7.10. A scheme X is reduced if for every open subscheme U ⊂ X, the
ring OX(U) is reduced, or equivalently, if for every affine open subscheme V ⊂ X,
the ring OX(V ) is reduced.

Example 7.11. A ring R is reduced if and only if its prime spectrum X is reduced.
If X is reduced, then so is R ' OX(X). Conversely, if R is reduced, then so is every
localization S−1R of R, so X is reduced.

So for every scheme X, there exists a canonical closed immersion

Xred
// X

corresponding to the quasicoherent ideal N ⊂ OX such that N(U) ⊂ OX(U) is the
nilradical for every affine open subscheme U ⊂ X. We have |Xred| = |X| and

OXred
(U) ' OX(U)/N(U).

If |Z| ⊂ |X| is a closed subset, then there exists a unique reduced closed subscheme
structure on |Z|. We write Zred ⊂ X for this reduced subscheme.

Example 7.12. Let X = Spec(Z), and let |Z| ⊂ |X| be the closed subset consisting
of the single closed point z corresponding to the maximal ideal pZ ⊂ Z. The map

Z(n) = Spec(Z/pn+1Z)
i(n)
// X = Spec(Z)

induced by the canonical projection is a closed immersion for all n ≥ 0. It is reduced
if and only if n = 0. Grothendieck tells us to think of the closed immersions

Zred = Z(0) // Z(1) // · · · // Z(n) // · · · // X

as increasing “infinitesimal neighborhoods” of the closed point Z(0) = Spec(Fp).
These schemes all have the same underlying topological space |Z| ⊂ |X|, but their
structure sheaves vary with n ≥ 0.
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Finally, we will discuss vector bundles on schemes. It is possible to mimic the
geometric definition of a vector bundle, but this requires more technology than we
currently have available.4 So we are going to give an algebraic definition, which, in
the end, turns out to be equivalent to the geometric definition.

Definition 7.13. Let X be a scheme. A quasicoherent OX -module E is a vector
bundle if for every x ∈ |X|, there exists an open neighborhood x ∈ U ⊂ |X| and an
isomorphism of quasicoherent OX |U -modules ϕ : E|U → (OX |U )⊕d for some d ≥ 0.

We also say, more precisely, that a quasicoherent OX -module E that satisfies the
condition in Definition 7.13 is a locally free OX -module of finite rank. Note that
it’s not necessary to require in advance that E is quasicoherent, as the defining
condition for being a vector bundle clearly implies quasicoherence by definition.

A vector bundle E on a scheme X gives rise to the family (E(x))x∈|X| of finite
dimensional vector spaces, where

E(x) ' Ex ⊗OX,x k(x).

It is a vector space over the residue field k(x) at x ∈ |X|, and its dimension

dimk(x) E(x) = d

is the rank of the locally free OX -module E in some open neighborhood of x ∈ |X|.
Moreover, these vector spaces vary nicely with x ∈ |X|. For instance:

Lemma 7.14. If E is a vector bundle on a scheme X, then the function

|X| d // Z≥0

defined by d(x) = dimk(x) E(x) is continuous for the discrete topology on Z≥0.

Proof. To say that d is continuous for the discrete topology on Z≥0 is equivalent
to saying that d is locally constant. But given x ∈ |X|, there exists by definition
an open subset x ∈ U ⊂ |X| and an isomorphism of quasicoherent OX |U -modules
ϕ : EU → (OX |U )⊕d, and therefore, we have d(y) = d for all y ∈ U . �

Corollary 7.15. If E is a vector bundle on a scheme X such that the underlying
topological space |X| is connected, then d : |X| → Z≥0 is constant.

Proof. This is clear from the definition of a connected topological space. �

Example 7.16. An irreducible topological space is connected.

A vector bundle E on a scheme X is, in particular, a quasicoherent OX -module,
and therefore, its restriction E|U to an affine open subset U ⊂ |X| determines
and is determined by the OX(U)-module E(U). This begs the question as to which
R-modules correspond to vector bundles on Spec(R).

Theorem 7.17. Let R be a ring with Zariski spectrum X, and let M be an R-
module. The following are equivalent:

(1) The quasicoherent OX-module E = M̃ is a vector bundle on X.

4 The problem is that maps between vector bundles should be fiberwise linear. To encode this,

we need to have a category of schemes over X with Gm-action.

59



(2) There exists a finite family (f1, . . . , fn) of elements of R that generates the
unit ideal such that for every 1 ≤ i ≤ n, the Rfi-module Mfi is free of finite
rank.

(3) The R-module M is finitely presented and flat.
(4) The R-module M is finitely generated and projective.
(5) The R-module M is a direct summand of a free R-module of finite rank.

Proof. We first show that (1) implies (2). Since E is a vector bundle, given x ∈ |X|,
we can find x ∈ Ux ⊂ |X| open and an isomorphism ϕx : E|Ux → (OX |Ux)⊕dx

for some dx ≥ 0, and we can assume that Ux = |Xfx | ⊂ |X| is a distinguished
open subset. The family (Ux)x∈|X| covers |X|, and since |X| is compact, some finite
subfamily (Ux1 , . . . , Uxn) covers |X|, or equivalently, the finite family (fx1 , . . . , fxn)
generates the unit ideal. Finally, the isomorphisms ϕxi induces isomorphisms

Mfxi
' E(Ufxi )

// (OX |Uxi )
⊕dxi (Uxi) ' (Rfxi )

⊕dxi

of Rfi-modules, so (2) follows.

Conversely, let us show that (2) implies (1). By assumption, there exists an
isomorphism of Rfi-modules ϕi : Mfi → (Rfi)

⊕di for all 1 ≤ i ≤ n. But E is a
quasicoherent OX -module and Ui = |Xfi | ⊂ |X| is affine open, so this isomorphism
determines an isomorphism of quasicoherent OX |Ui -modules E|Ui → (OX |Ui)⊕di .
Finally, since (f1, . . . , fn) generates the unit ideal, the family (U1, . . . , Un) covers
|X|, so (1) follows.

We have now proved that the local definitions (1) and (2) are equivalent, and we
proceed to show that the commutative algebra definitions (3)–(5) are equivalent.

We first show that (5) implies both (3) and (4). If M is a summand of R⊕n, then
M is a quotient of R⊕n, and hence, finitely generated. But the kernel of projection
R⊕n → M is the complementary summand, so it is also a quotient of R⊕n, and
hence, finitely generated. This shows that M is finitely presented. Finally, as R is
flat and projective, so is R⊕n, and hence, so is any summand of R⊕n. This proves
that (3) and (4) hold.

Suppose next that (4) holds. By the assumption that M is finitely generated, we
can choose a surjective map of R-modules p : R⊕n → M , and by the assumption
that M is projective, this map admits an R-linear section s : M → R⊕n. This
shows that (5) holds. So (4) and (5) are equivalent and imply (3). To prove that (3)
implies (5), we will use the following results:

Lemma 7.18 (Lazard). Let R be a ring. An R-module M is flat if and only if it
is the colimit of a filtered diagram of finitely generated free R-modules.

Proof. We give a proof in the appendix. �

Lemma 7.19 (Grothendieck). Let R be a ring. An R-module M is finitely presented
if and only if the functor HomR(M,−) : ModR → ModR preserves filtered colimits.

Proof. A finite presentation of M identifies HomR(M,N) with a set of finitely many
elements of N satisfying finitely many equations. So the description of a filtered
colimit of sets (and hence, of R-modules) that we gave on problem set 1 shows that
such colimits are preserved by the functor HomR(M,−).
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Conversely, we first observe that every R-module M can be written as a filtered
colimit of finitely presented R-modules. Indeed, we may write

M ' coker(
⊕

j∈J R
h //

⊕
i∈I R )

' colim(I0,J0) coker(
⊕

j∈J0 R
h′ //

⊕
i∈I0 R ),

where the colimit is indexed by the filtered partially ordered set of pairs (I0, J0) of
finite subsets I0 ⊂ I and J0 ⊂ J with the property that h restricts to a map⊕

j∈J0 R
h′ //

��

⊕
i∈I0 R

��⊕
j∈J R

h //
⊕

i∈I R.

So we write M ' colimk∈KMk as a filtered colimit of finitely presented R-modules
and use the assumption that HomR(M,−) preserves filtered colimits to conclude
that the canonical map

colimk∈K HomR(M,Mk) // HomR(M, colimk∈KMk) // HomR(M,M)

is an isomorphism. In particular, the identity map of M is in the image. So by the
description of filtered colimits for problem set 1, we conclude that there exists a
map r : M →Mk such that composition

M
r // Mk

i // M

is equal to the identity map of M . So M is a summand of the finitely presented
R-module Mk, and hence, is itself finitely presented. �

Now we use the two lemmas to see that (3) implies (5). Since M is flat, Lazard’s
lemma shows that we can write M as a filtered colimit

M ' colimk∈K R
⊕dk

of finitely generated free R-modules. And since M is finitely presented, we conclude
from Grothendieck’s lemma that HomR(M,−) preserves filtered colimits, so

colimk∈K HomR(M,R⊕dk) // HomR(M, colimk∈K R
⊕dk) // HomR(M,M)

is an isomorphism. In particular, the identity map of M is in the image, so we
conclude as above that M is a summand of R⊕dk for some k ∈ K, as desired.

We have proved that (1)–(2) are equivalent, and that (3)–(5) are equivalent, so
let us now prove that (4) implies (2). Since M is finitely generated and projective
R-module, it follows that also Mx is a finitely generated and projective Rx-module
for all x ∈ |X|. But Nakayama’s lemma shows that a finitely generated projective
module over a local ring is finitely generated free. Therefore, for every x ∈ |X|, we
can choose an isomorphism of Rx-modules

Mx
ϕx // (Rx)⊕dx

for some dx ≥ 0. Moreover, using that both M and R⊕dx are finitely presented, we
can lift ϕx to an isomorphism of Rf -modules

Mf

ϕf
// (Rf )⊕dx
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for some f ∈ R with x ∈ |Xf | ⊂ |X|. Indeed, an isomorphism between finitely
presented modules if finitary, so if it appears in a filtered colimit, then it must
appear at some finite stage. Concretely, we can take f ∈ R to be the product all
denominators which appear in ϕx : Mx → (Rx)⊕dx . This proves (2).

Finally, we prove that (2) implies (3). This follows from the following lemma.

Lemma 7.20. Let R be a ring, and let (fi)i∈I be a family of elements, which
generate the unit ideal.

(1) If Mfi is a flat Rfi-module for all i ∈ I, then M is a flat R-module.
(2) If Mfi is a finitely presented Rfi-module for all i ∈ I, then M is a finitely

presented R-module.

Proof. To prove (1), we let N ′ → N be an injective map of R-modules and must
show that the induced map M ⊗ N ′ → M ⊗ N is injective, or equivalently, that
its kernel is zero. But begin zero is a local property, so it suffices to show that
(M ⊗ N ′)fi → (M ⊗ N)fi is injective for all i ∈ I. This, in turn, is equivalent to
showing that Mfi ⊗N ′fi → Mfi ⊗Nfi is injective for all i ∈ I, which follows from
the assumption that the Mfi is a flat Rfi-module for all i ∈ I.

To prove (2), we use that, by the equivalent of categories

ModR
(̃−)

// QCoh(X)

and the sheaf property for (̃−), the diagram

HomR(M,N) //
∏
i∈I HomR(Mfi , Nfi)

//
//
∏

(i,j)∈I×I HomR(Mfifj , Nfifj )

is a limit diagram for all M,N ∈ ModR. Now, the assumption that Mfi is a finitely
presented Rfi-module for all i ∈ I implies that also Mfifj is a finitely presented
Rfifj -module for all (i, j) ∈ I × I. Moreover, both I and I × I are finite. So by
Lemma 7.19 and by Grothendieck’s theorem that, in the category of sets, finite
limits and filtered colimits commute, we conclude that the functor HomR(M,−)
preserves filtered colimits. So by Lemma 7.19, the R-module M is a finitely pre-
sented. �

This completes the proof of the theorem. �

Finally, we give a proof of Lazard’s lemma, which shows that three different
characterization of flatness are equivalent. The second of these characterizations is
known as the “equational criterion for flatness.”

Lemma 7.21 (Lazard). Let R be a ring, and let M be an R-module. The following
are equivalent.

(1) The R-module M is flat.
(2) Given maps of R-modules

F ′
a // F

x // M
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with F and F ′ finitely generated free and xa = 0, there exists a factorization

F F ′′

M

b //

x
��

y
��

with F ′′ finitely generated free and ba = 0.
(3) The R-module M is a filtered colimit of finitely generated free R-modules.

Proof. We first assume (1) and prove (2). We have a diagram of R-modules

F ′ F C 0

M

a
//

p
//

x

��

//

x̄

}}

with the top row exact. Moreover, since F and F ′ are dualizable, and since M is
flat, this diagram determines and is determined by the diagram

M ⊗ F ′∨ M ⊗ F∨ M ⊗ C∨ 0.

R

M⊗a∨
oo

M⊗p∨
oo oo

x̃

OO

˜̄x

88

The map ˜̄x determines and is determined by the element ˜̄x(1) ∈ M ⊗ C∨. This
element, in turn, can be written, non-canonically, as a finite sum pure tensors, and
therefore, the map ˜̄x admits a factorization

M ⊗ F ′∨ M ⊗ F∨ M ⊗ C∨ 0

A M ⊗ F ′′∨

M⊗a∨
oo

M⊗p∨
oo oo

x̃

OO

ỹ
//

M⊗c

OO

with F ′′, and hence, its dual finitely generated free. So if b : F → F ′′ the unique
map such that b∨ = p∨c, then x = yb with ba = 0, which proves (2).

We next prove that (2) implies (3). Let Modff
R ⊂ ModR be the full subcategory

of the category R-modules spanned by the finitely generated free R-modules. Given
any R-module M , the diagram

((Modff
R)/M ).

p̄
// ModR

that to (F, x : F → M) assigns F and to the cone point assigns M is a colimit

diagram. But the category (Modff
R)/M is additive, so (2) is exactly the statement

that it is filtered. Hence, (2) implies (3), and it is clear that (3) implies (1). �
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8. Line bundles

Last time, we associated to a scheme X = (|X|,OX) the full subcategory

Vect(X) ⊂ QCoh(X)

of vector bundles on X. A quasicoherent OX -module E is a vector bundle if, locally
on X, there exists an isomorphism ϕ : E → O⊕dX . We say that a vector bundle E is
trivial (of rank d) if such an isomorphism exists globally.

We proved that for X ' Spec(R), the quasicoherent OX -module M̃ associated
with an R-module M is a vector bundle if and only if M satisfies the following
equivalent conditions:

(1) The R-module M is finitely presented and flat.
(2) The R-module M is finitely generated and projective.
(3) The R-module M is a direct summand of a free R-module of finite rank.

Let us give some examples of non-trivial vector bundles on affine schemes.

The first example is rather strange from the perspective of scheme theory, but
still: Let X be a compact Hausdorff topological space, and let

R = C(X,R)

be the ring of continuous real valued functions on X. A real vector bundle on X is
the data of a continuous map p : V → X and a structure of real vector spaces on
the fiber Vx = p−1(x) ⊂ V for every x ∈ X (so in particular the fiber is non-empty),
and this data much satisfy the condition that there exists a covering (Ui)i∈I of X
by open subsets and a family (ϕi)i∈I of homeomorphisms

p−1(Ui)
ϕi // Ui × Rdi

with the property that (1) the diagram

p−1(Ui)
ϕi //

p

��

Ui × Rdi

pr1

��

Ui Ui

commutes, and (2) for every x ∈ Ui, the induced map of fibers

Vx = p−1(x)
ϕi,x

// pr−1
1 (x) = Rdi

is R-linear. It is common to abuse language and say that p : V → X is a real vector
bundle, although this ignores the structure of real vector space on the fibers of this
map. A map of real vector bundles over X from q : W → X to p : V → X is a
continuous map h : W → V with the property that (1) the diagram

W
h //

q

��

V

p

��

X X

commutes, and (2) for every x ∈ X, the induced map of fibers

Wx = q−1(x)
hx // Vx = p−1(x)
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is R-linear. This defines the category Vect(X) of real vector bundles on X.

If p : V → X is a real vector bundle, then the set of sections

Γ(X,V ) = {s : X → V | s is continuous and p ◦ s = idX}

is given an R-module structure with addition and scalar multiplication defined as
follows. If s, t ∈ Γ(X,V ) and ϕ ∈ R, then

(s+ t)(x) = s(x) + t(x)

(ϕ · s)(x) = ϕ(x) · s(x),

where the sum and scalar multiplication on the right-hand side uses the real vector
structure on Vx. If h : W → V is a map of real vector bundles, then the map

Γ(X,W )
Γ(X,h)

// Γ(X,V )

that to t : X →W assigns s = h ◦ t : X → V is R-linear. This defines a functor

Vect(X)
Γ(X,−)

// ModR,

and by using a partition of unity, one shows that its essential image is contained in
the full subcategory of vector bundles on Spec(R). In fact:

Theorem 8.1 (Serre–Swan). If X is a compact Hausdorff spaces, then the functor

Vect(X)
Γ̃(X,−)

// Vect(Spec(C(X,R)))

is an equivalence of categories.

Proof. This is proved by showing that, since X is compact Hausdorff, every real
vector bundle on X is a summand of a trivial vector bundle pr1 : X ×Rd → X. �

Example 8.2. The Möbius band is a non-trivial real vector bundle of rank 1 on the
circle S1, so by Theorem 8.1, we get a non-trivial vector bundle of rank 1 on the
scheme Spec(C(S1,R)).

Remark 8.3. Let X be a compact Hausdorff space, and let R = C(X,R) be the
ring of continuous real valued functions on X. There is a map

X // |Spec(R)|

that to x ∈ X assigns the closed point in the Zariski space given by the maximal
ideal m ⊂ R consisting of the continuous functions ϕ : X → R such that ϕ(x) = 0.
This map is continuous and is an embedding onto the subspace of the Zariski
space consisting of the closed points. There are many non-closed points in the
Zariski space, however, so this map is very far from being a bijection, let alone
a homeomorphism. The structure of the non-closed points is extremely weird and
depends on our model of set theory, even for X = S1.

The second example is much better: Dedekind domains.

Definition 8.4. A ring R is a Dedekind domain, if it is a noetherian integral
domain and if the maximal ideal mx ⊂ OX,x of the local ring at every closed point
x ∈ |X| of its Zariski space is a nonzero principal ideal.
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By definition, if R is a Dedekind domain, then the local ring OX,x at a closed
point x ∈ |X| of its Zariski space is a noetherian local ring, whose maximal ideal
mx ⊂ OX,x is principal. This implies that every nonzero ideal I ⊂ OX,x is of the
form I = mnx for some n ≥ 0; see [5, Theorem 11.2] for a proof. So if f ∈ OX,x is a
nonzero element, then there is a unique n ≥ 0 such that f ∈ mnx and f /∈ mn+1

x . We
say that this non-negative integer n is the order of vanishing of f at x and write

ordx(f) = n.

So in particular, a nonzero element f ∈ OX,x is a unit if and only if ordx(f) = 0.

Let X be any scheme, and let x ∈ |X| be a closed point. The problem set this
week will construct a natural map of schemes

Spec(OX,x)
fX,x

// X

and show that the image of the map of underlying topological spaces precisely
consists of the elements η ∈ |X| such that x is contained in the closure of {η} ⊂ |X|.
(This is the set of points η ∈ |X| that specialize to x ∈ |X|.) If x ∈ U ⊂ |X| for
some affine open subset, then the map fX,x is equal to the composition

Spec(OX,x) // Spec(OX(U)) // X

of the map induced by the localization OX(U)→ OX,x and the canonical inclusion.
In particular, the image of fX,x is contained in an affine open subset of X.

Proposition 8.5. If R is a Dedekind domain, then every prime ideal p ⊂ R is
either zero or maximal.

Proof. Let |X| be the Zariski space of R. The zero ideal {0} ⊂ R is a prime ideal,
since R is an integral domain. The corresponding point η ∈ |X| is a generic point.
The prime ideals of the local ring OX,x at a closed point x ∈ |X| are {0} and mx.
Now, let p ⊂ R be a prime ideal, and let p ⊂ m ⊂ R be a maximal ideal that
contains it. Hence, if x, y ∈ |X| are the points corresponding to m, p ⊂ R, then x is
a specialization of y. Therefore, the point y is in the image of the map

Spec(OX,x)
fX,x

// X

from this week’s problem set. It follows that either y = x or y = η, or equivalently,
either p = m or p = {0}, as we wanted to show. �

So if R is a Dedekind domain, then its Krull dimension is equal to 1. In general,
if R is a ring and M an R-module, then we say that M is torsion free if for f ∈ R
and y ∈M , fy = 0 implies that f = 0 or y = 0.

Lemma 8.6. If R is a Dedekind domain and M an R-module, then M is flat if
and only if M is torsion free.

Proof. We abuse notation and write f : R→ R for the map given by multiplication
by f ∈ R. If f ∈ R is nonzero, then f : R→ R is injective, because R is an integral
domain. Hence, if M is flat, then also f : M →M is injective, which shows that M
is torsion free.

It remains to prove that if M is torsion free, then M is flat. We may assume
that M is finitely generated, since, we can write a general torsion free R-module
as the filtered colimit of its finitely generated (and torsion free) submodules. To
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prove that M is flat R-module, it suffices to prove that its localization Mx is a
flat OX,x-module for all x ∈ |X| = |Spec(R)|. Since R is a Dedekind domain, the
only point in |X|, which is not closed, is the generic point η, and OX,η is a field, so
flatness at η is automatic. So it suffices to show that Mx is a flat OX,x-module for
every closed point x ∈ |X|. Since we assume that M is a finite generated R-module,
it follows that Mx is a finitely generated OX,x-module. But OX,x is a principal ideal
domain, so to prove that Mx is flat, it suffices to show that

Tor
OX,x
i (Mx, k(x)) = 0

for all i > 0. For this purpose, we may use the resolution

0 // OX,x
f
// OX,x // k(x) // 0

of the OX,x-module k(x) by free OX,x-modules. So we see that the assumption that
M is torsion free implies that the Tor-groups in question vanish. So M is flat. �

We conclude that if R is a Dedekind domain, then every finitely generated torsion
free R-module determines a vector bundle on X = Spec(R). Indeed, since R is
noetherian, every finitely generated R-module is finitely presented.

Example 8.7. If R is a Dedekind domain, then every nonzero ideal I ⊂ R determines
a vector bundle of rank 1 on X = Spec(R). Indeed, it is finitely generated, since R
is noetherian, and it is torsion free, since I ⊂ R and R is torsion free. Moreover, if
F is the quotient field of R, then the inclusion I → R induces an isomorphism

I ⊗R F // R⊗R F.

For the map is injective, because F is a flat R-module, and it is surjective, because
if f ∈ I is any nonzero element, then f ⊗ 1 is mapped to a nonzero element in the
1-dimensional F -vector space in the target. It follows that

d(η) = dimk(η) Ĩ(η) = 1,

so Ĩ has rank 1 at η ∈ |X|. But then Ĩ has rank 1 at every x ∈ |X|, since |X| is
irreducible, and hence, connected.

We conclude that every non-principal ideal I ⊂ R gives rise to a non-trivial
vector bundle of rank 1 on X = Spec(R).

Example 8.8. Let Q → F be a finite field extension. The integral closure OF ⊂ F
of Z ⊂ Q is a Dedekind domain. If F = Q(

√
−5), then OF = Z[

√
−5], and in this

case, the ideal I = (3, 1 +
√
−5) ⊂ OF is not a principal ideal.

Example 8.9. Let k be a field, and let f : X → Spec(k) be a smooth affine curve.
In this case, the coordinate ring OX(|X|) is a Dedekind domain. Moreover, if k is
algebraically closed, then, by Hilbert’s Nullstellensatz, the closed points of X are
in one-to-one correspondence with the k-valued points of f : X → Spec(k), that is,
the set X(k) of sections x : Spec(k) → X of f : X → Spec(k). The maximal ideal
m ⊂ OX(|X|) corresponding to x ∈ X(k) is very rarely principal.

The Dedekind domain examples are all line bundles:

Definition 8.10. Let X be a scheme. A vector bundle L on X is a line bundle if
its rank is constant equal to 1.
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Equivalently, a line bundle on a scheme X is a quasicoherent OX -module L that,
locally on X, is isomorphic to OX .

If L is a line bundle on a scheme X, then how can we understand that it is not
possible to find a global isomorphism ϕ : L→ O? The answer is that we can do so
by “descent” which allows us build quasicoherent OX -modules from local data.

We fix a scheme X and a cover (Ui)i∈I of |X| by open subsets. The following
statement is true, but useless: A quasicoherent OX -module M determines and is
determined by a family (Mi)i∈I of quasicoherent OX |Ui-modules such that

Mi|Ui∩Uj = Mj |Ui∩Uj
for all (i, j) ∈ I × I. (To go backwards, note that the set of open subsets U ⊂ |X|
such that U ⊂ Ui for some i ∈ I is a basis for the topology on |X|.) Why is this
statement useless? Because it is not invariant under isomorphism: If we replace the
Mi by isomorphic quasicoherent OX |Ui-modules M′i, then the family (M′i)i∈I will
typically no longer have the property that

M′i|Ui∩Uj = M′J |Ui∩Uj
for all (i, j) ∈ I × I. This we cannot tolerate. For one thing, isomorphisms show up
all the time, and for another, the very definition of a vector bundle involves such
local isomorphisms, so to study them, we need to have this flexibility.

The solution to this problem is to relax the above requirement to the requirement
that there an exist isomorphism of quasicoherent OX |Ui∩Uj -modules

Mj |Ui∩Uj
αi,j

// Mi|Ui∩Uj ,

for all (i, j) ∈ I × I. However, there is a subtlety: It is not enough to impose the
condition that such isomorphisms exist. We need to specify the isomorphisms as
part of the data. Without the specific choice of isomorphisms, we cannot assem-
ble the quasicoherent OX |Ui-modules Mi to a quasicoherent OX -module M. So the
isomorphisms are structure, not a property. Moreover, there is an additional sub-
tlety: This extra data needs to satisfy a condition over triple intersections. For all
(i, j, k) ∈ I × I × I, the diagram

Mk|Ui∩Uj∩Uk Mi|Ui∩Uj∩Uk

Mj |Ui∩Uj∩Uk

αi,k|Ui∩Uj∩Uk
//

αj,k|Ui∩Uj∩Uk
%%

αi,j |Ui∩Uj∩Uk

99

must commute. We refer to this condition as the “cocycle condition.”

Definition 8.11. Let X be a scheme and (Ui)i∈I a cover of |X| by open subsets.
A descent datum for quasicoherent OX -modules with respect to the given cover is
the data of (Mi)i∈I and (αi,j)(i,j)∈I×I , where Mi is a quasicoherent OX |Ui-module
and αi,j is an isomorphism of quasicoherent OX |Ui∩Uj -modules

Mj |Ui∩Uj
αi,j

// Mi|Ui∩Uj

subject to the requirement that the family of isomorphism (αi,j)(i,j)∈I×I satisfies
the cocycle condition.
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Remark 8.12. The cocycle condition implies that αi,i is the identity map and that
αi,j and αj,i are each other’s inverses. Hence, if we specify an order < on I, then it
suffices to give αi,j for (i, j) ∈ I × I with i < j.

Descent data form a category Desc(X, (Ui)i∈I): A map of descent data

(Mi, αi,j) // (Ni, βi,j)

is a family (hi : Mi → Ni)i∈I of maps of quasicoherent OX |Ui -modules such that
the diagram

Mj |Ui∩Uj
hj |Ui∩Uj

//

αi,j

��

Nj |Ui∩Uj

βi,j

��

Mi|Ui∩Uj
hi|Ui∩Uj

// Ni|Ui∩Uj
commutes for all (i, j) ∈ I × I.

Theorem 8.13. Let X be a scheme, and let (Ui)i∈I a cover of |X| by open subsets.
The functor QCoh(X) → Desc(X, (Ui)i∈I) that to a quasicoherent OX-module M

assigns the descent datum (M|Ui , id) is an equivalence of categories.

Proof. To go backwards, given a descent datum (Mi, αi,j), we wish to construct a
quasicoherent OX -module M. As already noted, it suffices to specify M(U) for all
open subsets U ⊂ |X| with the property that U ⊂ Ui for some i ∈ I. Given such an
open subset U ⊂ |X|, we choose arbitrarily an i ∈ I such that U ⊂ Ui and define

M(U) = Mi(U).

Given two such open subsets V ⊂ U ⊂ |X|, we may have chosen different i, j ∈ I
with V ⊂ Ui and U ⊂ Uj . So we define the restriction map

M(U)
resUV // M(V )

to be the composite map

M(U) = Mi(U)
resUV // Mi(V )

αj,i
// Mj(V ) = M(V ).

Finally, given three such open subsets W ⊂ V ⊂ U ⊂ |X|, we must verify that

resUW = resVW ◦ resUV ,

and this precisely holds, by the assumption that (αi,j)(i,j)∈I×I satisfies the cocycle
condition. This defines the functor in the opposite direction. We must also define
natural isomorphisms between the two compositions of the two functors and the
respective identity functors. You can do that. �

What does this tell us about line bundles? Given a scheme X and a cover (Ui)i∈I
of |X| by open subsets, Theorem 8.13 gives an equivalence of categories

{ Line bundles on X, which can be trivialized on (Ui)i∈I}
' {Descent data (Mi, αi,j) such that Mi ' OX |Ui},

and the canonical inclusion functor gives a further equivalence of categories

{Descent data (Mi, αi,j) such that Mi = OX |Ui}
' {Descent data (Mi, αi,j) such that Mi ' OX |Ui}.
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What does such a descent datum amount to? For any scheme X, the map

EndOX (OX) // OX(|X|)

that to h : OX → OX assigns hX(1) is an isomorphisms of rings. The multiplication
in the endomorphism ring is given by the composition of maps. Any isomorphism
of rings induces an isomorphism of the respective groups of units, which, in the case
that we consider, is an isomorphism of groups

AutOX (OX) // OX(|X|)×

from the group of OX -linear automorphism of OX to the group of global units.

Using this translation, we see that the category of line bundles on X, which can
be trivialized on (Ui)i∈I is equivalent to the category, where an object is a family

(αi,j)(i,j)∈I×I

with αi,j ∈ OX(Ui ∩ Uj)× such that the identity

αi,k|Ui∩Uj∩Uk = αi,j |Ui∩Uj∩Uk · αj,k|Ui∩Uj∩Uk
holds in OX(Ui ∩ Uj ∩ Uk)× for all (i, j, k) ∈ I × I × I, and where a map

(βi,j)(i,j)∈I×I // (αi,j)(i,j)∈I×I

is a family (λi)i∈I with λi ∈ OX(Ui)
× such that the identity

λi|Ui∩Uj · βi,j = αi,j · λj |Ui∩Uj
holds in OX(Ui ∩ Uj) for all (i, j) ∈ I × I.

Given the data of a line bundle L on X and a family (ϕi)i∈I of trivializations

L|Ui
ϕi // OX |Ui ,

we obtain the descent datum (αi,j)(i,j)∈I×I with αi,j ∈ OX(Ui ∩ Uj)× given by

αi,j = ϕi|Ui∩Uj · (ϕj |Ui∩Uj )−1.

This descent datum defines a globally trivial line bundle if and only if there exists
a family of units (λi)i∈I with OX(Ui)

× such that

αi,j = λi|Ui∩Uj · (λj |Ui∩Uj )−1

for all (i, j) ∈ I × I.

The set of isomorphism classes of line bundles on X which can be trivialized on
(Ui)i∈I forms an abelian group under tensor product. Later we will see that the
above discussion identifies this group with the Čech cohomology group

Ȟ1((Ui)i∈I ,Gm)

with respect to the given covering.

Example 8.14. We construct a line bundle O(n) on P1
Z for all n ∈ Z. Recall that P1

Z
is defined as the pushout of schemes

Spec(Z[x±1]) //

��

Spec(Z[x])

��

Spec(Z[y]) // P1
Z
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with the left-hand vertical map induced by the unique ring homorphism

Z[y] // Z[x±1]

that sends y to x−1. So by the above discussion, we can specify a line bundle on P1
Z

which is trivial on each the open subsets Spec(Z[x]) and Spec(Z[y]) by specifying a
single unit u ∈ Z[x, x−1]×. (There is no cocycle condition to verify, since there are
no non-degenerate triple intersections.) The Z-module P1

Z(L) of global sections of
the corresponding line bundle L is given by the pullback

P1
Z(L) //

��

Z[y]

��

Z[x] // Z[x±1],

where the right-hand vertical map is the unique Z[y]-linear map that to 1 assigns
u, or equivalently, the map that to the polynomial p(y) ∈ Z[y] assigns the Laurent
polynomial u·p(x−1) ∈ Z[x±1]. Choosing u = xn ∈ Z[x±1]×, we obtain a line bundle
O(n) on P1

Z. If n ≥ 0, then its Z-module of global sections is the free Z-module

P1
Z(O(n)) = Z{(xi, yn−i) | 0 ≤ i ≤ n},

which has rank n+ 1, and if n < 0, then its Z-module of global sections is zero.

We recall that, in general, we have

P1
Z(L) ' HomO(O,L).

Hence, if n < 0, then the only map of quasicoherent O-modules h : O → O(n) is
the zero map, so O(n) is not a direct summand of a free O-module. It follows that
the characterization of vector bundles on an affine scheme that we established in
Lecture 7 does not extend to non-affine schemes. By constrast, every real vector
bundle on a compact Hausdorff space is a summand of a trivial vector bundle, so
here the distinction between geometry and topology begins to show!

Remark 8.15. In the pullback square that calculates P1
Z(O(n)), the map

Z[x]⊕ Z[y] // Z[x±1]

is surjective for n ≥ −1, but for n ≤ −2, its cokernel is a free Z-module of rank
1− n generated by the family consisting of the classes of xi with n < i < 0. Later,
we will recognize this cokernel as the coherent cohomology group H1(P1

Z,O(n)).
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9. Invertible OX-modules and effective Cartier divisors

A line bundle on a scheme X is a quasicoherent OX -module L such that, locally
on X, there exists an isomorphism ϕ : L→ OX . Last time, we used descent to show
that if such isomorphisms exist on the elements of a cover (Ui)i∈I of X by open
subsets, then we can describe L in terms of the transition functions

αi,j ∈ OX(Ui ∩ Uj)×,
describing the passage from the trivialization ϕj : L|Uj → OX |Uj to the trivialization
of ϕi : L|Ui → OX |Ui over Ui∩Uj . Today, we continue the discussion of line bundles.
As a preliminary, we introduce tensor product and inverse image of quasicoherent
OX -modules. The constructions of both are a bit complicated, but their properties
are simple, which is better than the other way around.

Given OX -modules M and N, their tensor product is an OX -bilinear map

M×N // M⊗N

with the “universal” property that composition with this map induces a bijection

HomOX (M⊗N,P) // BilOX (M×N,P)

for all OX -modules P. This property determines the map M×N→M⊗N uniquely,
up to unique isomorphism under M × N. Comparing universal properties, we see
that this map is the sheafification of the map of presheaves that to U ⊂ |X| open
assigns the tensor product of OX(U)-modules M(U)×N(U)→M(U)⊗N(U). We
will often abuse language and say that the OX -module M⊗N is the tensor product
of M and N. We enumerate some proporties of the tensor product.

(1) The functors M⊗− and −⊗N preserve colimits, or equivalently, preserve
sums and cokernels.

(2) The projection M× OX →M induces a bijection

HomOX (M,P) // BilOX (M× OX ,P),

which gives a canonical isomorphism M ⊗ OX ' M. Similarly, there is a
canonical isomorphism OX ⊗N ' N.

(3) If U ⊂ |X| is open, then there is a canonical isomorphism

(M⊗N)|U ' (M|U )⊗ (N|U ),

since sheafification and restriction to open subsets commute.
(4) If M,N ∈ QCoh(X), then M ⊗ N ∈ QCoh(X). Indeed, by (3), we can

localize and assume that M and N admits presentations, in which case, we
conclude from (1) and (2) that also M⊗N admits a presentation.

(5) If M,N ∈ Vect(X), then M⊗N ∈ Vect(X) by proof as in (4). Also,

dim(M⊗N) = dim(M) · dim(N)

as functions from X to Z≥0. So if M,N ∈ Line(X), then M⊗N ∈ Line(X).
Moreover, a trivialization of M and N on an open cover (Ui)i∈I of |X| with
transition functions αi,j , βi,j ∈ OX(Ui ∩Uj)× determines a trivialization of
M⊗N on (Ui)i∈I with transition functions αi,j · βi,j ∈ OX(Ui ∩ Uj)×.

We now characterize line bundles in terms of tensor products:

Proposition 9.1. Let X be a scheme, and let M be an OX-module. The following
are equivalent:
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(1) The OX-module M is a line bundle.
(2) There exists an OX-module N such that M⊗N ' OX .

In particular, any such M is quasicoherent (as is its inverse).

Before we prove the proposition, we need to understand (2) better.

Definition 9.2. Let X be a scheme. An inverse for an OX -module M is a pair
(N, ι) of an OX -module N and an isomorphism ι : M⊗N→ OX .

Lemma 9.3. Let X be a scheme, and let M be an OX-module. If (N, ι) and (N′, ι′)
are inverses of M, then there exists a unique isomorphism α : N→ N′ such that

M⊗N
ι //

M⊗α
��

OX

M⊗N′
ι′ // OX

commutes.

Proof. This is a purely category theoretical statement, valid in any symmetric
monoidal category. The isomorphism α is the composite isomorphism

N ' OX ⊗N M⊗N′ ⊗N 'M⊗N ⊗N′
ι⊗N′

//
ι′⊗N
oo OX ⊗N′ ' N′.

In fact, the statement that (N, ι) is an inverse of M is equivalent to the statement
that for all OX -modules P, the composition

HomOX (P,N) // HomOX (M⊗ P,M⊗N) // HomOX (M⊗ P,OX)

of the map given by tensoring with M and the map given by composition with ι is a
bijection. This latter statement characterizes (N, ι), up to unique isomorphism. �

Corollary 9.4. Let X be a scheme, and let M be an OX-module. The existence of
an inverse of M can be checked locally: If (Ui)i∈I is an open cover of |X|, and if
M|Ui admits an inverse for all i ∈ I, then M admits an inverse.

Proof. For every i ∈ I, we choose an inverse (Ni, ιi) of M|Ui . We apply Lemma 9.3
to obtain, for every (i, j) ∈ I × I, a unique isomorphism

Nj |Ui∩Uj
αi,j

// Ni|Ui∩Uj

such that for every (i, j) ∈ I × I, the diagram

M|Ui∩Uj ⊗Nj |Ui∩Uj
ιj
//

M|Ui∩Uj⊗αi,j
��

OX |Ui∩Uj

M|Ui∩Uj ⊗Ni|Ui∩Uj
ιi|Ui∩Uj

// OX |Ui∩Uj

commutes. The uniqueness of the isomorphisms αi,j implies that they satisfy the
cocycle condition. So we get a global inverse (N, ι) by descent. �
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Proof of Proposition 9.1. If (1) holds, then M is locally isomorphic to OX , and
since (2) can be checked locally by Lemma 9.3, we are reduced to proving (2) in
the case M = OX . But in this case, the pair (N, ι) consisting of N = OX and the
canonical isomorphism ι : OX⊗OX → OX is an inverse. To show that (2) implies (1),
we need a preliminary.

Lemma 9.5. Let R be a local ring. If an R-module M is invertible, then it is
isomorphic to R.

Proof. Since M is invertible, the functor

ModR
M⊗−

// ModR

is an equivalence of categories. Indeed, an inverse (N, i) provides a quasi-inverse of
this functor. Now, the properties of an R-module M to be finitely presented and
to be projective are purely category theoretical properties. Indeed, the statement
that M is finitely presented is equivalent to the statement that the functor

ModR
HomR(M,−)

// Set

preserves filtered colimits, and the statement that M is projective is equivalent to
the statement that this functor preserves reflexsive coequalizers, that is, if it takes
a colimit diagrams of R-modules of the form

M1

d0
**

d1

44
M0

s0oo
d0 // M

to a colimit diagram of sets.5 At any rate, the only thing that is important for us is
that, because the properties of being finitely presented and of being projective are
expressable in terms of category theoretic terms, the are preserved by an equivalence
of categories. In the case at hand, where we assume M to invertible, so that the
functor M⊗− to be an equivalence of categories, we conclude that since R is finitely
presented and projective, so is M ' M ⊗ R. As we used last time, it follows from
Nakayama’s lemma that a finitely presented and projective module over a local ring
is free of finite rank. So we conclude that M ' R⊕d for some d ≥ 0. If (N, i) is an

inverse of M , then similarly N ' R⊕d′ for some d′ ≥ 0. It follows that

R 'M ⊗N ' (R⊕d)⊗ (R⊕d
′
) ' R⊕dd

′
,

which shows that dd′ = 1, and hence, d = d′ = 1, as desired.6 �

We fix x ∈ |X| and proceed to show that there exists x ∈ U ⊂ |X| open and an
isomorphism ϕ : M|U → OX |U . First, if M and N are any OX -modules, then

(M⊗N)x // Mx ⊗Nx

is an isomorphism with the tensor product on the left-hand side that of OX -modules
and the tensor product on the right-hand side that OX,x-modules. Therefore, for

5 One can combine these two properties and show that an R-module M is finitely presented
and projective if and only if the functor HomR(M,−) preserves sifted colimits.

6 Here we use that the rank of a finitely generated free R-module is well-defined. This is true
for all commutative rings, and more generally, for not necessarily commutative rings that admit

a map to a field. But it fails for general non-commutative rings.
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the invertible OX -module M in question, Lemma 9.5 shows that the stalk Mx is
a free OX,x-module of rank 1. Thus, if (N, ι) is an inverse of M, then there exists
sx ∈ Mx ' OX,x and tx ∈ Nx ' OX,x such that ιx(sx ⊗ tx) = 1 ∈ OX,x. We can
find x ∈ U ⊂ |X| open and local sections s ∈ M(U) and t ∈ N(U) such that s
and t represent sx and tx and such that ιU (s ⊗ t) = 1 ∈ OX(U). We claim that
s : OX |U →M|U is an isomorphism. Indeed, for all y ∈ U , the composite map

OX,y
sy

// My

My⊗ty
// My ⊗Ny ' (M⊗N)y

ιy
// OX,y

is the identity map, so the map sy is a split injection between free OX,y-modules
of rank 1, and hence, an isomorphism. This show that s : OX |U → M|U is an
isomorphism, so (1) holds. �

In particular, if M is a line bundle on X, then so is any inverse N of M. We will
write M−1 for “the” inverse of M, which is justified by Lemma 9.3. Moreover, if M
is trivialized over the open cover (Ui)i∈I of |X| with transitions functions

αi,j ∈ OX(Ui ∩ Uj)×,

then M−1 is also trivialized over (Ui)i∈I with transition functions

α−1
i,j ∈ OX(Ui ∩ Uj)×.

So much for tensor products.

We next consider inverse image functors. In general, if f = (p, φ) : Y → X is a
map of ringed spaces, then we have an adjunction

ModOX (P(|X|))
fp
//
ModOY (P(|Y |))

fp

oo

between the category of presheaves of OX -modules and the category of presheaves
of OY -modules. The right adjoint functor fp is easy to define, namely,

fp(N)(U) = N(p−1(U)),

and it preserves sheaves in the sense that it restricts to a functor

ModOX (P(|X|)) ModOY (P(|Y |))
fp
oo

ModOX (Sh(|X|))

ιX

OO

ModOY (Sh(|Y |))
f∗oo

ιY

OO

between the respective categories of sheaves. The left adjoint fp is more complicated
to define, but it has better properties. It is given by

fp(M)(V ) ' colimp(V )⊂U⊂|X|M(U)⊗OX(U) OY (V ),

where the colimit ranges over open subsets p(V ) ⊂ U ⊂ |X|, and where the Uth
term in the colimit is the cobase-change of the OX(U)-module M(U) along the
composite ring homomorphism

OX(U)
φU // OY (p−1(U)) // OY (V ),
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where the right-hand map is the restriction along p−1(U) ⊂ V . It has the key
property that if y ∈ |Y | with image x = p(y) ∈ |X|, then the canonical map

fp(M)y // Mx ⊗OX,x OY,y

is an isomorphism. Hence, if a map h : M → M′ of presheaves of OX -modules
becomes an isomorphism after sheafification, then so does the induced map of
presheaves of OY -modules fp(h) : fp(M)→ fp(M′). Now, the functor

ModOX (Sh(|X|)
f∗
// ModOY (Sh(|Y |)

defined by f∗ ' assY ◦fp ◦ ιX is left adjoint to the functor f∗, and in the diagram

ModOX (P(|X|))
fp
//

assX

��

ModOY (P(|Y |))
fp

oo

assY

��

ModOX (Sh(|X|))
f∗
//

ιX

OO

ModOY (Sh(|Y |)),
f∗

oo

ιY

OO

the identity natural isomorphism fp ◦ ιY → ιX ◦ f∗ induces a natural isomorphism
f∗ ◦ assX → assY ◦fp. Moreover, if j : U → X is an open immersion, then

j∗(M) 'M|U ,

since, in this case, the category that indexes the colimit that defines jp(M)(V ) has
the terminal object j(V ) = j(V ) ⊂ |X|.

We enumerate the some properties of the inverse image functor f∗ associated
with a map of schemes f : Y → X.

(1) The canonical map f∗(OX)→ OY is an isomorphism.
(2) Being a left adjoint, the functor f∗ preserves colimits.
(3) The functor f∗ restricts to a functor f∗ : QCoh(X) → QCoh(Y ). Indeed,

we can work locally, where this follows from (1) and (2).
(4) If f : Y → X is the map of prime spectra corresponding to a map of rings

φ : A→ B, then we have a diagram of adjunctions

ModA
φ∗

//

p∗

��

ModB
φ∗

oo

q∗

��

QCoh(X)
f∗
//

p∗

OO

QCoh(Y ),
f∗

oo

q∗

OO

where p∗ and q∗ are the respective global section functors, and where φ∗ is
the restriction of scalars functor. Again, the identity natural isomorphism
φ∗ ◦ q∗ → p∗ ◦ f∗ induces a natural isomorphism f∗ ◦ p∗ → q∗ ◦ φ∗.

(5) The canonical natural map

f∗(M⊗M′) // f∗(M)⊗ f∗(M′)

is a natural isomorphism.
(6) The functor f∗ restricts to a functor f∗ : Vect(X)→ Vect(Y ).
(7) The functor f∗ restricts to a functor f∗ : Line(X)→ Line(Y ).
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If g : Z → Y and f : Y → X are composable maps of schemes, then the identity
natural isomorphism f∗ ◦ g∗ → (f ◦ g)∗ induces a natural isomorphism

(f ◦ g)∗ // g∗ ◦ f∗.

This natural isomorphism is also an instance of the fact that a left adjoint functor
of a given functor, if it exists, is unique, up to unique isomorphism. We apply this
to another special case, namely, the inclusion of a point map

Spec(k(x))
ix // X,

the inverse image functor of which is given by

i∗x(M) 'M(x).

Let f : Y → X be a map of schemes, and let y ∈ |Y | with image x = f(y) ∈ |X|.
From the commutative diagram of schemes

Spec(k(y))
f(x)

//

iy

��

Spec(k(x))

ix
��

Y
f

// X

and the natural isomorphism above, we find that

f∗(M)(y) ' (i∗y ◦ f∗)(M) ' (f ◦ iy)∗(M) ' (ix ◦ f(x))∗(M)

' (f(x)∗ ◦ i∗x)(M) 'M(x)⊗k(x) k(y).

So if we think of a line bundle L on X as encoding the family of 1-dimensional
vector spaces L(x) over k(x), then the line bundle f∗(M) on Y encodes the family
of 1-dimensional vector spaces L(x)⊗k(x) k(y) over k(y), where x = f(y).

We next define a generalization of distinguished open subsets. Let X be a scheme,
let L be a line bundle on X, let U ⊂ |X| be an open subsets, and let s ∈ L(U) be
a local section. In this situation, we define

|Xs| = {x ∈ U | s(x) 6= 0 in L(x)} ⊂ |X|.

Proposition 9.6. Let X be a scheme, let L be a line bundle on X, let U ⊂ |X| be
an open subset, and let s ∈ L(U) be a local section.

(1) The subset |Xs| ⊂ |X| is open.
(2) If V ⊂ U is open, then V ⊂ |Xs| if and only if the restriction

OX |V
s|V
// LV

is an isomorphism.

Proof. We can work locally on X, and therefore, we may assume that there exists
an isomorphism ϕ : L→ OX . But in this case, the proposition reduces to what we
have already proved earlier. �

Informally, the proposition states that |Xs| ⊂ U is the largest open subset over
which the map s : OX |U → L|U becomes an isomorphism. Let f : Y → X is a map
of schemes, let L be a line bundle on X, let U ⊂ |X| be an open subset, and let
V = f−1(U) ⊂ |Y |. We recall that a local section s ∈ LX(U) determines and is
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determined by a map of OX |U -modules s : OX |U → L|U , so by applying the inverse
image functor (f |V )∗, it determines a map of OY |V -modules

OY |V ' f∗(OX)|V ' (f |V )∗(OX |U )
f∗(s)

// (f |V )∗(L|U ) ' f∗(L)|V ,

and hence, a local section f∗(s) ∈ f∗(L)(V ). In this situation, we have

|Yf∗(s)| = f−1(|Xs|) ⊂ |Y |,
which follows from the definition of the distinguished open subsets and from the
isomorphism f∗(L)(y) ' L(x)⊗k(x) k(y) for y ∈ V with image x = f(y) ∈ U .

Remark 9.7. Let L be a line bundle on an affine scheme X, let U ⊂ |X| be an open
subset, and let s ∈ L(U) be a local section. The distinguished open subset

|Xs| ⊂ |X|
is an affine open subset, although it is not necessarily equal to a distinguished open
subset of the form |Xf | ⊂ |X| with f ∈ OX(U), due to the non-triviality of L. Why
is it affine? Well, if L ' OX is trivial, then |Xs| ⊂ |X| is a standard distinguished
open subset, and hence, an affine open subset. Since L is locally trivial, we conclude
that the open immersion j : Xs → X is an affine map, and because X is affine, so
is Xs. More directly, the affine map j : Xs → X is classified by the quasicoherent
OX -algebra A ' colimn L

⊗n with the maps in the diagram given by

L⊗n ' L⊗n ⊗ OX
L⊗n⊗s

// L⊗n+1.

Finally, we will give an example of a geometrically relevant source of line bundles,
namely, that of effective Cartier divisors.

Definition 9.8. An effective Cartier divisor on a scheme X is a closed subscheme

D ⊂ X
that, locally on X, is defined by a single non-zero-divisor.

That D ⊂ X is defined, locally on X, by a single non-zero-divisor means that
there exists a cover (Ui)i∈I of X by affine open subschemes and a family of local
sections (fi)i∈I with fi ∈ OX(Ui) a non-zero-divisor such that

D ∩ Ui ' Spec(OX(Ui)/fi)

as schemes over Ui ' Spec(OX(Ui). Morally, an effective Cartier divisor D ⊂ X is
of pure codimension 1.

Lemma 9.9. Let X be a scheme. If D ⊂ X is an effective Cartier divisor, then
the corresponding quasicoherent ideal, denoted OX(−D) ⊂ OX , is a line bundle.

Proof. If f ∈ R is a non-zero-divisor, then f : R→ (f) ⊂ R is an isomorphism. �

Definition 9.10. If D ⊂ X is an effective Cartier divisor on a scheme, then the
twist of OX along D is the line bundle OX(D) on X given by the inverse of OX(−D).

Why do we take the inverse? Because, by convention in algebraic geometry, we
prefer line bundles that admit nonzero global sections, as opposed to line bundles
whose inverses admit nonzero global sections. We note that the canonical inclusion

OX(−D)
i // OX
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gives, by taking inverse line bundles, a canonical map of OX -modules

OX
sD // OX(D).

This defines a canonical global section sD ∈ OX(D)(X). Explicitly, the restriction

(OX(D))(U) // (OX(D))(V ) ' OX(V )

along the open inclusion V = U r (U ∩D)→ U is injective, and its image consists
of the local sections that, locally, is of the form f = g/π, where g and π are the
restrictions of an element of OX(U) and a generator of OX(−D)(U) ⊂ OX(U). So
informally, we think of sections of OX(D) as “meromorphic functions on X with at
most a simple pole along D.”. In this picture, the canonical section

OX
sD // OX(D)

is the inclusion of the functions without poles along D.

Remark 9.11. If D ⊂ X is an effective Cartier divisor, then the distinguished open
subscheme defined by the canonical section of the line bundle OX(D) is given by

XsD = X rD ⊂ X.
Also, let f : Y → X is a map of schemes, let i : D → X be an effective Cartier
divisor, and let i′ : D′ → Y be the base-change given by the fiber product7

D′
i′ //

f ′

��

Y

f

��

D
i // X.

It is common to write f−1(D) ⊂ Y for the closed subscheme D′ ⊂ Y , although
this is not literally an inverse image in a set-theoretic sense. In this situation, if we
further assume that f−1D ⊂ Y is also a Cartier divisor, then we have

f∗(OX(D)) ' OY (f−1(D)).

Both claims can be checked locally, picking a generator of OX(−D) to trivialize
everything, then keeping track of transition functions.

7 We have not yet properly proved that the category of schemes admits finite limits, and hence,

fiber products, but we will make sense of this later.
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10. Projective space and its functor of points

What is the projective space Pn supposed to be? In the standard description,
it is the space of lines (through the origin) in a fixed (n + 1)-dimensional vector
space F⊕(n+1). In particular, there should be a “tautological” line bundle L over
PnZ, whose fiber Lx at the point x ∈ PnZ is the corresponding line in k(x)⊕(n+1).
However, on P1

Z, this line bundle L is the line bundle O(−1), which has no nonzero
global sections. This corresponds to the fact that there is no consistent algebraic
way to pick a point in a line in F⊕(n+1), expect to always pick the origin. But the
situation improves if we pass to the inverse line bundle O(1). In general, on PnZ,
this corresponds to the dual vector space of the tautological line, that is, the linear
functionals on the tautological line. And the very embedding of the tautological
line in F⊕(n+1) is encoded in the n + 1 linear functionals on the tautological line,
the n + 1 coordinate projections: Given a 1-dimensional F -vector space L and a
family (si)0≤i≤n of elements of L∨ ' HomF (L,F ), the map

L
(si)

//
∏

0≤i≤n F

is injective if and only if the family (si)0≤i≤n spans the dual line L∨ ' L−1.

This suggests that, for a field F , the set of maps η : Spec(F )→ PnZ should be the
set of isomorphism classes of pairs (L, s) of a 1-dimensional F -vector space L and a
surjective F -linear map s : F⊕(n+1) → L, or equivalently, the set of codimension 1
subspaces of F⊕(n+1). More generally, for a scheme X, the set of maps η : X → PnZ
should be the set of isomorphism classes of pairs (L, s) of a line bundle L on X and
a surjective map of OX -modules

O
⊕(n+1)
X

s // L,

where we define an isomorphism of pairs α : (L, s)→ (L′, s′) to be an isomorphism
of OX -modules α : L→ L′ that makes the diagram

O
⊕(n+1)
X

s // L

α

��

O
⊕(n+1)
X

s′ // L′

commute. Since s and s′ are surjective, such an isomorphism α is unique, if it exists.
In other words, the category of such pairs (L, s) and isomorphisms between them
is a discrete groupoid, which is just as good as a set. Again, we could also say that
the set of maps η : X → PnZ should be the set of sub-OX -modules

K ⊂ O
⊕(n+1)
X

with the property that the quotient O
⊕(n+1)
X /K is a line bundle on X, which would

eliminate the need to speak about isomorphisms.

We claim that there exists a scheme PnZ with this property. Let us first justify this
somewhat loosely and then provide the proper theoretical context for the argument.
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Given L ∈ Line(X), how to understand surjections s : O
⊕(n+1)
X → L? Such a

map s determines and is determined by a family of global sections

( OX
si // L )0≤i≤n

of L, and the map s is surjective if and only if the family (si,x)0≤i≤n generates the
stalk Lx as an OX,x-module for all x ∈ |X|. By Nakayama’s lemma, this happens if
and only if the family (si(x))0≤i≤n spans the k(x)-vector space L(x) for all x ∈ |X|.
But the k(x)-vector space L(x) is 1-dimensional, so the family (si(x))0≤i≤n spans
it if and only if there exists some 0 ≤ i ≤ n such that si(x) 6= 0. Hence, in terms of
the distinguished open subschemes Xsi ⊂ X from last time, we see that⋃

0≤i≤nXsi = X

if and only if the map of OX -modules s : O
⊕(n+1)
X → L is surjective. The restriction

of si : OX → L along the open immersion ji : Xsi → X is an isomorphism, so it gives
a trivialization of L|Xsi . Using this trivialization, we can transport the n remaining

local sections sj |Xsi over to local sections of OX |Xsi , namely,

gi,j = (si|Xsi )
−1sj |Xsi ∈ OX(Xsi),

or equivalently, maps of schemes

Xsi

gi,j
// Spec(Z[xj ])

with 0 ≤ j ≤ n and j 6= i. The family of maps (gi,j), in turn, determines and is
determined by the single map of schemes

Xsi

gi // Spec(Z[x0, . . . , x̂i, . . . , xn])

classified by the unique ring homomorphism

Z[x0, . . . , x̂i, . . . , xn]
φi // OX(Xsi)

with φi(xj) = gi,j . Moreover, if 0 ≤ i 6= j ≤ n, then Xsi ∩Xsj is equal to both

g−1
i (Spec(Z[x0, . . . , x̂i, . . . , xn][x−1

j ])) ⊂ Xsi

and
g−1
j (Spec(Z[x0, . . . , x̂j , . . . , xn][x−1

i ])) ⊂ Xsj ,

because, as we showed last time, the inverse image of generalized distinguished open
subsets are again generalized distinguished open subsets. In fact, it is also clear that
we have a canonical isomorphism of rings

Z[x0, . . . , x̂i, . . . , xn][x−1
j ] ' Z[x0, . . . , x̂j , . . . , xn][x−1

i ],

since both rings are canonically isomorphic to

Z[x0, . . . , xn]/(xixj − 1).

So this tells us how to build the scheme PnZ. Namely, glue the n+ 1 copies

Spec(Z[x0, . . . , x̂i, . . . , xn])

with 0 ≤ i ≤ n of the affine space AnZ along the canonical isomorphisms

Spec(Z[x0, . . . , x̂i, . . . , xn])xj ' Spec(Z[x0, . . . , x̂j , . . . , xn])xi

for all 0 ≤ i 6= j ≤ n. We can also build a line bundle O(1) on PnZ by descent: We
take the trivial line bundle on Spec(Z[x0, . . . , x̂i, . . . , xn]) for all 0 ≤ i ≤ n with the
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transition function αi,j given by multiplication by xi. We further get n + 1 global
sections s0, . . . , sn of O(1) such that

(PnZ)si = Spec(Z[x0, . . . , x̂i, . . . , xn]) ⊂ PnZ
for all 0 ≤ i ≤ n, and such that for any scheme X, the set of maps of schemes

X
f
// PnZ

is canonically bijective to the set of isomorphism classes of pairs (L, s) of a line
bundle L on X and a surjective map of OX -modules

O
⊕(n+1)
X

t // L.

Indeed, to a map of schemes f : X → PnZ we assign the isomorphism class of the pair
(f∗(O(1)), f∗(s0), . . . , f∗(sn)), and to a pair (L, t0, . . . , tn), we assign the unique
map of schemes f : X → PnZ that, on Xti ⊂ X, is given by the map

Xti

hi // Spec(Z[x0, . . . , x̂i, . . . , xn])

classified by the unique ring homomorphism

Z[x0, . . . , x̂i, . . . , xn]
φi // OX(Xti)

that to xj assigns (ti|Xti )
−1(tj |Xti ).

The theoretical context for the above is the “functor of points” perspective or
the “moduli” perspective or the “Yoneda” perspective. We consider the functor

Sch
h // Fun(Schop,Set)

that to a scheme X assigns its functor of points hX : Schop → Set defined by

hX(T ) = Map(T,X).

By the Yoneda lemma, this functor is fully faithful,8 so knowing a scheme X is
equivalent to knowing the set of maps η : T → X into X for all schemes T , and how
these relate under pullback along maps g : T ′ → T .

Example 10.1. (1) If X = A1
Z is the affine line, then the functor of points hX takes

a scheme T to the set of global sections OT (T ), forgetting its ring structure.

(2) If X = Spec(Z[x, y]/(y2−x3 +1)), then the functor of points hX takes a scheme
T to the set of solutions to the equation “y2 − x3 + 1 = 0” in the ring of global
sections OT (T ). So hX(T ) = {(f, g) ∈ OT (T )× OT (T ) | f2 − g3 + 1 = 0}.

We say that a functor F : Schop → Set is representable if it is in the essential
image of the Yoneda embedding. While the Yoneda embedding is fully faithful,
it is far from being essentially surjective. So not every functor F : Schop → Set
is representable. However, note that if we have isomorphisms ϕ : hX → F and
ψ : hY → F , then the composite isomorphism ϕ ◦ ψ−1 : hY → hX is induced by a
unique isomorphism of schemes f : Y → X. Hence, if F is representable, then it
determines the scheme that represents it uniquely, up to unique isomorphism.

So what special properties do the representable functors hX : Schop → Set satisfy
among all functors F : Schop → Set?

8 Since the category Sch of schemes is large, the functor category Fun(Schop, Set) only exists

in a larger universe. We ignore this is issue here.
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First, the functor F = hX is a Zariski sheaf in the sense that if U is a scheme,
and if (Ui)i∈I is a cover of U by open subschemes, then the diagram

F (U)
γ
//
∏
i∈I F (Ui)

α //

β
//
∏

(i,j)∈I×I F (Ui ∩ Uj)

with α, β, and γ defined as usual is a limit diagram. Since F (−) = Map(−, X), this
follows from the statement that that the diagram∐

(i,j)∈I×I Ui ∩ Uj
α //

β
//
∐
i∈I Ui

γ
// U

is a colimit diagram in the categories of schemes, which we proved in Theorem 1
in Lecture 7. This sheaf property captures the locality property of representable
sheaves. But the most important part of being a scheme is the property of being
locally affine. How to express this for a general functor F : Schop → Set?

Definition 10.2. A subobject of an object F of a category C is an isomorphism
class in C/F of monomorphisms j : G→ F .

Remark 10.3. (1) Let C be a category. An isomorphism in C/F from j : G → F to
j′ : G′ → F is an isomorphism α : G→ G′ in C with the property that the diagram

G G′

F

α //

j
��

j′

��

commutes. If j and j′ are monomorphisms, then such an isomorphism is unique, if
it exists. Thus, the (non-full) subcategory of C/F spanned by the monomorphisms
j : G→ F and the isomorphisms between these is a discrete groupoid.

(2) If C = Fun(Schop,Set), then every isomorphism class in C/F of monomorphisms
j : G → F has a unique representative with the property that for every T ∈ Sch,
the injective map jT : G(T )→ F (T ) is equal to the canonical inclusion of a subset.
Thus, a subobject of F is uniquely specified by giving a subset G(T ) ⊂ F (T ) for
every T ∈ Sch with the property that for every map f : T → S in Sch, the induced
map F (f) : F (S)→ F (T ) restricts to a map G(f) : G(S)→ G(T ). In this case, we
write G ⊂ F and say that G is a subfunctor of F .

Definition 10.4. Let F : Schop → Set be a functor. A subfunctor G ⊂ F is open
if its base-change j′ : G′ → hT along any map f : hT → G from a representable
functor is representable by an open subscheme U ⊂ T .

We spell out the definition. First, given the maps j : G→ F and f : hT → F , we
can form the pullback diagram

G′
f ′
//

j′

��

G

j

��

hT
f
// F,

and in this situation, we say that j′ is the base-change of j along f and that f ′

is the base-change of f along j. Moreover, the statement that an open subscheme
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U ⊂ T represents the map j′ : G′ → hT translates to the statement that a map
g : T ′ → T in Sch factors through U ⊂ T if and only if the composite map

hT ′
hg
// hT

f
// F

in Fun(Schop,Set) factors through G ⊂ F .

We can interpret this further. By the Yoneda lemma, the map

Map(hT , F ) // F (T )

that to f : hT → F assigns fT (idT ) ∈ F (T ) is a bijection. So G ⊂ F is an open
subfunctor if and only if for all T ∈ Sch and for all s ∈ F (T ), there exists an open
subset U ⊂ T with the property that a map g : T ′ → T factors through U ⊂ T if
and only if F (g)(s) ∈ F (T ′) belongs to the subset G(T ′) ⊂ F (T ′). We refer to this
statement by saying that the locus of those s ∈ F (T ) which lie in G(T ) ⊂ F (T ) is
open in T .

Example 10.5. If U ⊂ X is open, then hU ⊂ hX is open. Indeed, if f : T → X,
then the base-change of hU → hX along hf : hT → hX is hf−1(U) → hT . In fact,
the Yoneda embedding restricts to a bijection

{U ⊂ X | open subset} // {G ⊂ hX | open subfunctor}.

The inverse map is obtained by applying the definition to idhX : hX → hX .

Theorem 10.6. A functor F : Schop → Set is representable if and only if it is a
sheaf for the Zariski topology and it is locally affine in the sense that there exists a
family (Fi)i∈I of open subfunctors Fi ⊂ F such that F '

⋃
i∈I Fi as Zariski sheaves

and such that each Fi is representable by an affine scheme.

That F '
⋃
i∈I Fi as Zariski sheaves means that the canonical map

⋃
i∈I Fi → F

becomes an isomorphism after sheafification, or equivalently, that it becomes a
surjection after sheafification. This, in turn, is equivalent to the statement that for
every scheme T and every map f : hT → F , there exists an open cover (Ui)i∈I of T
such that the restriction f |Ui : hUi → F factors through Fi → F .

Proof. Suppose first that F ' hX is representable. We proved earlier that F is a
Zariski sheaf, so we must prove that F is locally affine. In fact, if (Ui)i∈I is an affine
open cover of X, then hX =

⋃
i∈I hUi as Zariski sheaves. Indeed, given T ∈ Sch

and f : hT → hX , there is a unique map g : T → X with f = hg, so (g−1(Ui))i∈I is
the required open cover of T .

Conversely, if F is both a sheaf for the Zariski topology and locally affine, then we
may write F =

⋃
i∈I Fi as a Zariski sheaf with Fi representable by an affine scheme

Yi. Moreover, the intersection Fi ∩ Fj is representable both by an open subscheme
Ui,j ⊂ Yi and by an open subscheme Uj,i ⊂ Yj . So by the Yoneda lemma, we get
an isomorphism ϕi,j : Ui,j → Uj,i between these open subschemes. This gives us
the gluing data to build a scheme X using Theorem 1 of Lecture 7. Indeed, we let
Y =

∐
i∈I Yi and R =

∐
i,j Ui,j and define (s, t) : R→ Y × Y to be the map, where

s|Ui,j is the composite map

Ui,j // Yi // Y,
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and where t|Ui,j is the composite map

Ui,j
ϕi,j
// Uj,i // Yj // Y.

We must argue that (s, t) : R → Y × Y is an equivalence relation, or equivalently,
that the family of isomorphisms (ϕi,j)(i,j)∈I×I satisfies the cocycle condition. Now,
for the family consisting of the corresponding isomorphisms between the functors
Fi ∩ Fj represented by the Ui,j ’s, the cocycle condition is tautologically satisfied.
But then it is also satisfied for the family (ϕi,j)(i,j)∈I×I by the Yoneda lemma.
Hence, it follows from Theorem 1 of Lecture 7 that the quotient scheme X ' Y/R
exists. It remains to show that the scheme X represents F . But, as Zariski sheaves,
we have F '

⋃
i∈I Fi and hX '

⋃
i∈I hYi and the isomorphisms Fi ' hYi glue to

give the desired isomorphism. �

Let us now revisit the construction of PnZ. We define a functor

Schop F // Set

as follows. It takes a scheme T to the set F (T ) of isomorphism classes of tuples

(L, s0, . . . , sn),

where L a line bundle on T , and where s0, . . . , sn ∈ L(T ) are global sections with
the property that T =

⋃
0≤i≤n Tsi . And it takes a map of schemes f : T ′ → T to the

map F (f) : F (T ) → F (T ′) that to the isomorphism class of (L, s0, . . . , sn) assigns
the isomorphism class of (f∗(L), f∗(s0), . . . , f∗(sn)). It is well-defined, because

T ′f∗(si) = f−1(Tsi),

as we proved last time. We wish to show that F is representable, so we must check
that it satisfies the hypotheses of Theorem 10.6.

Lemma 10.7. The functor F : Schop → Set is a Zariski sheaf.

Proof. Given a scheme U and a covering (Ui)i∈I of U by open subschemes, we must
show that the diagram

F (U)
γ
//
∏
i∈I F (Ui)

α //

β
//
∏

(i,j)∈I×I F (Ui ∩ Uj)

is a limit diagram. So let (xi)i∈I be a family with xi ∈ F (Ui) such that

resUiUi∩Uj (xi) = res
Uj
Ui∩Uj (xj)

for all (i, j) ∈ I × I. If we choose a representative (Li, s0,i, . . . , sn,i) of xi for all
i ∈ I, then for all (i, j) ∈ I × I, there is a unique isomorphism

Lj |Ui∩Uj
αi,j
// Li|Ui∩Uj

with the property that αi,j(sh,j |Ui∩Uj ) = sh,i|Ui∩Uj for all 0 ≤ h ≤ n. Indeed, as
we noted earlier, if such an isomorphism exists, then it is unique. Therefore, these
isomorphisms necessarily satisfy the cocycle condition, so we can glue to get

(L, s0, . . . , sn),

which represents an element x ∈ F (U) with γ(x) = (xi)i∈I . A similar argument
shows that γ is injective, so we are done. �

85



Lemma 10.8. The functor F : Schop → Set is locally affine.

Proof. We define Fi ⊂ F to be the subfunctor such that Fi(T ) ⊂ F (T ) consists of
the x ∈ F (T ) that are represented by tuples (L, s0, . . . , sn) such that Tsi = T .

It is an open subfunctor. Indeed, if T is a scheme and if (L, s0, . . . , sn) represents
an element x ∈ F (T ), then for f : T ′ → T , the tuple f∗(L, s0, . . . , sn) represents
an element of Fi(T

′) if and only if f−1(Tsi) = T ′ if and only if f : T ′ → T factors
through the open subscheme Tsi ⊂ T .

Moreover, as Zariski sheaves F '
⋃

0≤i≤n Fi. Indeed, if T is a scheme and if the

tuple (L, s0, . . . , sn) represents an element x ∈ F (T ), then T =
⋃

0≤i≤n Tsi , and

therefore, the restriction x|Tsi ∈ F (Tsi) belongs to Fi(Tsi).

The subfunctor Fi ⊂ F is represented by an affine scheme, namely,

Fi ' hXi
with Xi = Spec(Z[x0, . . . , x̂i, . . . , xn]). Indeed, the map

Fi(T ) // F ′i (T ) = {(g0, . . . , ĝi, . . . , gn) | gi ∈ OT (T )}

that to the class of (L, s0, . . . , sn) assigns (g0, . . . , ĝi, . . . , gn) with gj = s−1
i sj is a

bijection, whose inverse is the map that to (g0, . . . , ĝi, . . . , gn) assigns the class of
(OT , g0, . . . , 1, . . . , gn), and the natural transformation

hXi // F ′i

corresponding to (x0, . . . , x̂i, . . . , xn) ∈ F ′i (Xi) is a natural isomorphism. �

Given Lemmas 10.7 and 10.8, we conclude from Theorem 10.6 that the functor

Schop F // Set

is representable. We define projective n-space over Z to be a pair

(X,ϕ)

of a scheme X and a natural isomorphism ϕ : hX → F . Such a pair exists and is
unique, up to unique isomorphism over F , which justifies that we write PnZ for any
such X.

By the Yoneda lemma, to give a natural transformation

hX
ϕ
// F

amounts to giving a tuple (O(1), s0, . . . , sn), where O(1) is a line bundle on X, and
where s0, . . . , sn ∈ O(1)(X) are global sections such that

X =
⋃

0≤i≤nXsi .

Moreover, for ϕ to be an isomorphism, it must have the additional property that
for every scheme T and every tuple (L, t0, . . . , tn), where L is a line bundle on T ,
and where t0, . . . , tn ∈ L(T ) are global sections such that T =

⋃
0≤i≤n Tti , there

exists a unique map of scheme f : T → X such that

(L, t0, . . . , tn) ' f∗(O(1), s0, . . . , sn).

This is a very abstract description of PnZ, but it really matches the intuitive idea!
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11. Fiber products and proper maps

A fiber product in a category C is a limit diagram of the form

Y ′
g′
//

f ′

��

Y

f

��

X ′
g
// X.

We also express this by saying that the diagram is cartesian. Spelling out the
definition of a limit diagram, this means that, given any commutative diagram

Z
b //

a

��

Y

f

��

X ′
g
// X,

there exists a unique map h : Z → Y ′ such that a = f ′ ◦ h and b = g′ ◦ h. In this
situation, we also say that f ′ is the base-change of f along g and that g′ is the
base-change of g along f . We also write (a, b) : Z → Y ′ for the unique map.

Example 11.1. In the category of sets, a square diagram

Y ′
g′
//

f ′

��

Y

f

��

X ′
g
// X

is cartesian if and only if the map Y ′ → X ′ × Y that to y′ assigns (f ′(y′), g′(y′) is
injective and its image consists of the pairs (x′, y) such that f(y) = g(x′).

Example 11.2. In the functor category P(C) = Fun(Cop,Set), a diagram

G′ //

��

G

��

F ′ // F

is cartesian if and only if the induced diagram of sets

G′(S) //

��

G(S)

��

F ′(S) // F (S)

is cartesian for all objects S in C. This is a special case of the general fact that, in
a functor category, limits and colimits are calculated pointwise.

The definition of a fiber product and the description of fiber products in the
category of sets shows immediately that the Yoneda embedding

C
h // P(C)
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preserves and reflects fiber products. This means that a diagram

Y ′
g′
//

f ′

��

Y

f

��

X ′
g
// X

in C is cartesian if and only if its image diagram

hY ′
hg′
//

hf′

��

hY

hf

��

hX′
hg
// hX

in P(C) is cartesian. Now, for every diagram in C of the form

Y

f

��

X ′
g
// X,

the induced diagram in P(C) can be completed to a cartesian diagram

G′
(hg)′

//

(hf )′

��

hY

hf

��

hX′
hg
// hX .

Hence, the original diagram in C can be completed to a fiber product

Y ′
g′
//

f ′

��

Y

f

��

X ′
g
// X

if and only if the functor G′ is representable. In this case, we say that C admits
fiber products. It is also common to write Y ×X X ′ for Y ′ with the understanding
that this object, if it exists, is well-defined, up to unique isomorphism.

Theorem 11.3. The category of schemes admits fiber products.

Proof. We have already translated the problem into the problem of showing that
in every cartesian diagram in P(Sch) of the form

G′
(hg)′

//

(hf )′

��

hY

hf

��

hX′
hg
// hX ,

the functor G′ : Schop → Set is representable, and to prove this, we apply Theorem 6
from Lecture 10. Since the sheaf property is expressed in terms of limits, the full
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subcategory spanned by the Zariski sheaves

Sh(Sch) ⊂ P(Sch)

is closed under limits. In particular, the functor G′ is a Zariski sheaf. So it remains
to prove that it is locally affine.

In Theorem 15 of Lecture 5, we proved that there is an adjunction

Sch
O(−)

//
CAlg(Ab)op.

Spec
oo

The opposite of the category of commutative rings admits fiber products

B′ B
ψ′
oo

A′

φ′

OO

A,
ψ

oo

φ

OO

which are given by the tensor product B′ ' B ⊗A A′. Being a right adjoint, the
functor Spec preserves all limits that exist in its domain, so we conclude that the
functor G′ : Schop → Set is representable, if X, Y , and X ′ are affine schemes.

Lemma 11.4. If U ⊂ X, V ⊂ Y , and U ′ ⊂ X ′ are open subschemes with f(V ) ⊂ U
and g(U ′) ⊂ U , then hV ×hU hU ′ ⊂ hY ×hX hX′ is an open subfunctor.

Proof. A map α : hT → hY ×hX hX′ determines and is determined by a diagram

T
b //

a

��

Y

f

��

X ′
g
// X

of schemes. Moreover, given a map of schemes q : T ′ → T , the composite map

hT ′
hq
// hT

α // hY ×hX hX′

factors through the subfunctor hV ×hU hU ′ ⊂ hY ×hX hX′ if and only if q factors
through a−1(U ′) ∩ b−1(V ) ⊂ T , which is an open subscheme. So the subfunctor in
question is open as stated. �

Hence, to show that hY ×hX hX′ is locally affine, it suffices to show that

hY ×hX hX′ '
⋃

(V,U,U ′) hV ×hU hU ′

as Zariski sheaves, where the union ranges over triples (V,U, U ′) of affine open
subschemes V ⊂ Y , U ⊂ X, and U ′ ⊂ X ′ with f(V ) ⊂ U and g(U ′) ⊂ U . Indeed,
we proved in Lemma 11.4 that hV ×hU hU ′ is an open subfunctor of hY ×hX hX′ ,
and we proved earlier that it representable by an affine scheme. To this end, we
first choose a cover (Ui)i∈I of X by affine open subschemes. Next, for every i ∈ I,
we choose affine open covers (Vi,j)j∈Ji of f−1(Ui) and (U ′i,k)k∈Ki of g−1(Ui). Now,
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given a scheme T and a map α : hT → hY ×hX hX′ corresponding to a diagram

T
b //

a

��

Y

f

��

X ′
g
// X

of schemes, the family (Wi,j,k)i∈I,j∈Ji,k∈Ki consisting of the of open subschemes

Wi,j,k = b−1(Vi,j) ∩ a−1(U ′i,k) ⊂ T

covers T , and the restriction

hWi,j,k

α|Wi,j,k
// hY ×hX hX′

factors through hVi,j ×hUi hU ′i,k ⊂ hY ×hX hX′ . This completes the proof. �

Example 11.5. Suppose that j : U → X is the open immersion of an open subscheme
and that g : X ′ → X is any map of schemes. In this situation, the diagram

U ′
g′
//

j′

��

U

j

��

X ′
g
// X,

where j′ : U ′ → X ′ is the open immersion of the open subscheme, whose underlying
topological space is the open subset g−1(|U |) ⊂ |X ′| is cartesian. Indeed, we have
proved that for every scheme Z, composition with j defines an injective map

Map(Z,U) // Map(Z,X)

whose image consists of the set of maps of schemes f = (p, φ) : Z → X with the
property that p(|Z|) ⊂ |U | ⊂ |X|.

Why do we care about fiber products? As we will see below, they perform many
important roles. The first role is that of intersections of subschemes.

Definition 11.6. A subscheme of a scheme X is an isomorphism class in Sch/X of
maps f : Y → X with the property that hf : hY → hX is a monomorphism.

That hf : hY → hX is a monomorphism means that for every factorization

W

Y X

g

��

g̃

�� f
//

of a map g : W → X through f : Y → X, the map g̃ : W → Y is uniquely determined
by g. Thus, the existence of such a factorization is a condition on the map g.

Example 11.7. (1) An open subscheme U ⊂ X and a closed subscheme Z ⊂ X are
both subschemes of X.

(2) If f : Y = Spec(k[t])→ X = Spec(k) is the affine line, then hf : hY → hX is not
a monomorphism. Indeed, a factorization of idX : X → X through f : Y → X is a
section s : X → Y of f : Y → X. Given a ∈ k, the unique k-algebra homomorphism
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φa : k[t] → k with φa(t) = a defines a section sa : X → Y , and conversely, every
section is of this form. In particular, sections s of f are not unique.

Definition 11.8. If f : Y → X and g : X ′ → X represent subschemes, then the
scheme-theoretic intersection of the two subschemes in question is the subscheme
represented by the composite map fg′ = gf ′ : Y ′ → X, where

Y ′
g′
//

f ′

��

Y

f

��

X ′
g
// X

is a fiber product.

Example 11.9. (1) If U, V ⊂ X are open subschemes, then

U ×X V ' U ∩ V ⊂ X.
So their scheme-theoretic intersection and their set-theoretic intersections agree and
form an open subscheme of X.

(2) Suppose that f : Y → X and g : X ′ → X are closed immersions, so that their
isomorphism classes in Sch/X are closed subschemes of X. So they correspond to
quasicoherent ideals J ⊂ OX and I′ ⊂ OX , and we claim that the square

Y ′ ' Spec(OX/J⊗OX OX/I
′)

g′
//

f ′

��

Y ' Spec(OX/J)

f

��

X ′ ' Spec(OX/I
′)

g
// X ' Spec(OX)

is cartesian. Indeed, this follows from the proof of Theorem 11.3: If X, X ′ and Y are
all affine, then so is Y ′ and the statement follows from the first part of the proof.
In general, we choose a covering (Ui)i∈I of X by affine open subschemes. The maps
f and g are, in particular, affine, so the families (f−1(Ui))i∈I and (g−1(Ui))i∈I are
affine open covers of Y and X ′, respectively. Since f and g are closed immersions,
if Ui ' Spec(Ri), then f−1(Ui) ' Spec(Ri/Ji) and g−1(Ui) ' Spec(Ri/I

′
i), so

f−1(Ui)×Ui g−1(Ui) ' Spec(Ri/Ji ⊗Ri Ri/I ′i),
which proves the claim. We note that OX/J ⊗OX OX/I

′ is a quotient of OX by a
quasicoherent ideal.

Example 11.10. Let us now calculate the scheme-theoretic intersection of the closed
subschemes “y = x2” and “y = 0” in X = Spec(k[x, y]) that we first considered in
Lecture 1. By definition, it is given by the fiber product

Spec(k[x, y]/(y − x2))×Spec(k[x,y]) Spec(k[x, y]/(y)

' Spec(k[x, y]/(y − x2, y)) ' Spec(k[x, y]/(x2, y)) ' Spec(k[x]/(x2)),

so the desired multiplicity 2 of this intersection is encoded by the scheme-theoretic
intersection.

The second role of the fiber product is that of product of varieties. If k is a field,
then we (re)define a variety over k to be a map of schemes

Y
f
// X ' Spec(k)
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that is quasicompact and, locally on Y , isomorphic in Sch/X to the map of prime
spectra induced by a finitely generated and reduced k-algebra φ : k → A. The
product of varieties of k is (re)defined to be the fiber product of schemes over
X ' Spec(k). For example, we have

A1
k ×Spec(k) A1

k ' A2
k,

because k[x]⊗k k[y] ' k[x, y].

The third role is that of fibers of maps. If f : Y → X is a map of schemes, then
we define its fiber over x ∈ |X| to be the fiber product

Yx
i′x //

fx

��

Y

f

��

Spec(k(x))
ix // X.

So we may think of the map f as a “family of varieties” parametrized by the base
scheme X. This may not be literally true, since the map fx may not be a variety
over k(x) — it is just a general k(x)-scheme. Still, it’s important to note that there
are two very different ways to think of a map of schemes: We may either think of
it as a family of schemes and write it vertically as

Y

f

��

X

or we may think of it as a Y -valued point of X and write it horizontally as

Y
f
// X.

Both points of view are due to Grothendieck, and he was the first person to write
a map vertically!

Example 11.11. The map of schemes

Y ' Spec(Z[x, y]/(y2 − x3 + 7x+ 2))

f

��

X ' Spec(Z)

is a family of plane curves

Y ′ ' Spec(k[x, y]/(y2 − x3 + 7x+ 2))
i′ //

f ′

��

Y ' Spec(Z[x, y]/(y2 − x3 + 7x+ 2))

f

��

X ′ ' Spec(k)
i // X ' Spec(Z).

We note that given f : Y → X and g : Z → X, the diagram

Yx ×Spec(k(x)) Zx //

��

Y ×X Z

��

Spec(k(x)) // X
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is cartesian. This tells us that the fiber of Y ×X Z → X over x ∈ |X| is the product
of varieties Yx ×Spec(k(x)) Zx over k(x).

Warning 11.12. If f : Y → X and g : X ′ → X are maps of schemes, then there is
a continuous surjective map of topological spaces

|Y ×X X ′|
p
// |Y | ×|X| |X ′|

and one can show that if f(y) = x = g(x′), then

p−1(y, x′) ' |Spec(k(y)⊗k(x) k(x′))|.

So the map p is typically not injective!

Remark 11.13. Grothendieck formulated the principle that for a property of maps of
schemes to be considered a geometric property, it must be stable under base-change.
This means that if f : Y → X has the property in question, then the base-change

Y ′
g′
//

f ′

��

Y

f

��

X ′
g
// X

of f along *any* map g must again have the same property. The properties of being
an open immersion and a closed immersion are both geometric properties.

Finally, we will define a new geometric property of maps of schemes, namely,
that of being proper. A map f : Y → X is defined to be proper, if it satisfies the
following conditions, to be explained:

(1) The map f is locally of finite type and qcqs (“quasicompact quasisepa-
rated”).

(2) The map f satisfies the valuative criterion for properness.

Definition 11.14. A scheme X is qcqs if it is a finite union of affine open sub-
schemes Ui such that each intersection Ui ∩ Uj also is a finite union of affine open
subschemes. A map of schemes f : Y → X is qcqs if f−1(U) ⊂ Y is qcqs for every
affine open U ⊂ X.

A scheme X is qcqs if and only if its underlying space |X| is quasicompact and
the intersection of every pair of quasicompact open subsets of |X| is quasicompact.

Definition 11.15. A map of schemes f : Y → X is locally of finite type, if there
exists a cover (Ui)i∈I of X by affine open subschemes such that f−1(Ui) is locally
isomorphic in Sch/Ui to the map of prime spectra induced by a finitely generated
OX(Ui)-algebra.

Remark 11.16. In Definition 11.15, we only require that for some cover (Ui)i∈I
of X by affine open subschemes, the base-change of f : Y → X along the open
immersions ji : Ui → X is, locally on Y ×X Ui, isomorphic to the map of prime
spectra induced by a finitely generated OX(Ui)-algebra. However, this implies that
for any map g : X ′ → X from an affine scheme, the base-change f ′ : Y ′ → X ′ of f
along g is, locally on Y ′, Y ′, isomorphic to the map of prime spectra induced by a
finitely generated OX′(X

′)-algebra.
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Being qcqs and locally of finite type are just reasonable finiteness conditions.
The key to properness lies in the valuative criterion. For intuition, let us first think
of the case X ' Spec(k) and work in the context of varieties, but using the scheme-
theoretic language. The idea is that a variety f : Y → X ' Spec(k) is proper, if it
has no missing point. For example, projective space

Y ' Pnk
f
// X

is proper, but if Z ⊂ Y is a closed subscheme with Z 6= ∅ and Z 6= Y , then the
open complement U = Y rZ → X is not proper. How can we “see” that the points
in Z are missing? There are still generic points in U , which “touch” the missing Z
in that they specialize into Z. More precisely, if we let z ∈ |Z| and let OY,z be the
local ring of Y at z, then under the canonical map

Spec(OY,z) // Y,

a generic point η ∈ Spec(OY,z) is mapped to a point in U , whereas the closed point
z ∈ Spec(OY,z) is mapped to z ∈ Z ⊂ Y . We can simplify a bit and replace the
local ring OY,z by its image in the residue field of the generic point.

OY,z k(η)

ÕY,z

//

�� �� /�

??

The ring ÕY,z is still local, and the quotient map is a local map. So we can “see”
missing points as maps from prime spectra of fields to U , which do not extend to
the prime spectra of certain local rings contained in the field. This leads to:

Definition 11.17. A map of schemes f : Y → X satisfies the valuative criterion
for properness if for every diagram

Spec(F )
η
//

��

Y

f

��

Spec(R)
η̄0 // X

with F a field and R ⊂ F a local subring, there exists R ⊂ R′ ⊂ F with R′ a local
ring and R→ R′ a local map and a unique map η̄′ : Spec(R′)→ Y such that

Spec(F )
η
//

��

Y

f

��

Spec(R′)
η̄′0 //

η̄′
::

X

commutes.

We can simplify the definition to eliminate the enlargement R ⊂ R′ ⊂ F .

Definition 11.18. A valuation ring is an integral domain R with the property
that for every nonzero element x ∈ F in its quotient field, x ∈ R or x−1 ∈ R.
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Lemma 11.19. (1) If R is an integral domain with quotient field F , then R is a
valuation ring if and only if R is local and if the only R ⊂ R′ ⊂ F with R′ a local
ring and the inclusion R→ R′ being a local map is R′ = R.

(2) If F is a field and if R ⊂ F is a local ring, then there exists a valuation ring
R ⊂ R′ ⊂ F such that R→ R′ is local.

Proof. See e.g. [5]. �

With this simplification, we can restate the definition of the valuative criterion
for properness as follows:

Definition 11.20. A map of schemes f : Y → X satisfies the valuative criterion
for properness if for every solid diagram

Spec(F )
η
//

��

Y

f

��

Spec(R)
η̄0 //

η̄

::

X

in which F is a field and R ⊂ F is a valuation ring, there exists a unique dotted
map η̄ : Spec(R)→ Y making the diagram commute.

To first approximation, you can think of the case where R has two points, one
closed and one generic. The map η̄0 then picks out a specialization of points in X,
and the commutative square gives a lift of the more generic point to Y . Then the
dashed arrow says the whole specialization lifts.
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12. Proper maps and cohomology

We recall that a valuation ring is an integral domain R with the property that
for every nonzero element x ∈ F in its quotient field, x ∈ R or x−1 ∈ R or both.
Equivalently, an integral domain R with quotient field F is a valuation ring if it is
maximal among local rings contained in F in the sense that

(1) the ring R is local, and
(2) if R ⊂ R′ ⊂ F is a local ring and m′ ∩R = m, then R = R′.

Moreover, given any local integral domain R0 with quotient field F , there exists a
valuation ring R ⊂ F such that R0 ⊂ R and m ∩R0 = m0.

Definition 12.1. A map of schemes f : Y → X satisfies the valuative criterion for
properness if for every solid diagram

Spec(F )
η
//

��

Y

f

��

Spec(R)
η̄0 //

∃!η̄
::

X

in which F is a field and R ⊂ F is a valuation ring, there exists a unique dotted
map η̄ : Spec(R)→ Y making the diagram commute.

An advantage of this kind of “lifting property” definition is that it makes it easy
to prove that it is geometric.

Lemma 12.2. In the category of schemes, the following holds:

(1) If f : Y → X satisfies the valuative criterion for properness, then so does
the base-change f ′ : Y ′ → X ′ along any map g : X ′ → X.

(2) If f : Y → X and g : Z → Y satisfy the valuative criterion for properness,
then so does their composition f ◦ g : Z → X.

(3) If f : Y → X has the property that there exists a cover (Ui)i∈I of X by
open subschemes such that f |f−1(Ui) : f−1(Ui) → Ui satisfies the valuative
criterion for properness for all i ∈ I, then f satisfies the valuative criterion
for properness.

(4) Given composable maps f : Y → X and g : Z → Y , if f ◦ g and f satisfy
the valuative criterion for properness, then so does g.

Proof. (1) By the universal property of fiber products, given a diagram of schemes

Spec(F )
η
//

��

Y ′
g′
//

f ′

��

Y

f

��

Spec(R)
η̄0 // X ′

g
// X

with F a field and R ⊂ F a valuation ring, a lift in the right-hand square determines
and is determined a lift in the outer square.
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(2) Given a diagram

Spec(F )
η
//

��

Z

g

��

Y

f

��

Spec(R)
η̄0 //

gη ::

η̄

@@

X

with F a field and R ⊂ F a valuation ring, we first find the lift gη using that f
satisfies the valuative criterion for properness, and then find the lift η̄ using that g
satisfies the valuative criterion for properness.

(3) Suppose that we are given a diagram

Spec(F )
η
//

��

Y

f

��

Spec(R)
η̄0 // X

with F a field and R ⊂ F a valuation ring. Since R is a local ring, we know from
Problem set 8 that the image of η̄0 is fully contained in Ui ⊂ X for some i ∈ I, and
hence, the image of η is fully contained in Vi = f−1(Ui) ⊂ Y . In the diagram

Spec(F )
η
//

��

Vi //

f |Vi
��

Y

f

��

Spec(R)
η̄0 //

η̄

::

Ui // X,

the right-hand square is cartesian, so the indicated lift in the left-hand square, which
exists and is unique by our assumption that f |Vi satisfies the valuative criterion for
properness, gives the desired unique lift in the outer square.

(4) Given a diagram

Spec(F )
η
//

��

Z

g

��

Spec(R)
η̄0 //

η̄

::

Y

f

��

X

with F a field and R ⊂ F a valuation ring, we first find a unique lift η̄ with the
property that fgη̄ = fη̄0 using that fg satisfies the valuative criterion of properness,
and then use that f satisfies (the uniqueness part of) the valuative criterion for
properness to conclude that gη̄ = η̄0. �

Remark 12.3. In Lemma 12.2, we refer to (1)–(3) by saying that the property
of satisfying the valuative criterion for properness is stable under arbitrary base-
change, is stable under composition, and is local on the base, or equivalently, on the
target. We note that, in (4), we only used that f : Y → X satisfies the uniqueness
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part of the valuative criterion for properness. This part is called the valuative
criterion for separatedness.

Now let us give the definition of quasicompact and quasiseparated. The condition
of being both quasicompact and quasiseparated is equivalent to the condition of
being qcqs mentioned in the previous lecture.

Definition 12.4. A map of schemes f : Y → X is quasicompact if for every quasi-
compact open subscheme U ⊂ X, the inverse image f−1(U) ⊂ Y is a quasicompact
open subscheme, and it is quasiseparated if the diagonal map ∆f : Y → Y ×X Y is
quasicompact.

A map of schemes f = (p, φ) : : Y → X is quasiseparated if and only if it has
the following property: If U ⊂ |X| and V,W ⊂ |Y | are quasicompact open subsets
with p(V ), p(W ) ⊂ U , then the open subset V ∩W ⊂ |Y | is quasicompact.

Lemma 12.5. The properties of maps of schemes of being quasicompact and of
being quasiseparated are both stable under base-change along arbitrary maps and
under composition. Moreover, they are local on the base.

Proof. We skip the proof. This is stated in [3, Propositions 1.1.2 and 1.2.2], but
the proofs are partly given in [2]. The proofs are not difficult and ultimately rest
on the facts that a scheme, by definition, admits a cover by affine open subschemes
and that affine schemes are quasicompact. �

The assumption that a map of schemes be quasicompact and quasiseparated is
a very mild assumption.

Remark 12.6. You have proved on Problem set 6 that if f : Y → X is quasicompact
and quasiseparated, then the direct image functor restricts to a functor

QCoh(OY )
f∗ //

��

QCoh(OX)

��

ModOY

f∗ // ModOX

between the respective full subcategories spanned by the quasicoherent modules.

A map of rings φ : A → B is defined to be of finite type if it exhibits B as a
finitely generated A-algebra, or equivalently, if it admits a factorization

A // A[x1, . . . , xn]
ψ
// B

with ψ surjective.

Definition 12.7. A map of schemes f = (p, φ) : Y → X is locally of finite type if
for all affine open subsets V ⊂ |Y | and U ⊂ |X| with p(V ) ⊂ U , the composite map

OX(U)
φU // OY (p−1(U)) // OY (V )

is ring homomorphism of finite type.

Lemma 12.8. The property of a map of schemes of being locally of finite type is
stable under base-change along arbitrary maps and under composition, and it is
local on the base.
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Proof. We skip the proof. This is stated in [3, Proposition 1.3.4], but the proof is
given in [2, Proposition 6.6.6]. �

The assumption that a map of schemes be of locally of finite type is one that
permeates algebraic geometry. In arithmetic geometry, there are very reasonable
situations, where this assumption is not satisfied.

Definition 12.9. A map of schemes is proper if it is quasicompact, quasiseparated,
locally of finite type, and satisfies the valuation criterion for properness.

This definition is often stated differently, but equivalently, as a map being proper
if it is separated of finite type and universally closed.

Corollary 12.10. The property of a map of schemes of being proper is stable under
base-change along arbitrary maps and under composition. Moreover, it is local on
the base.

We remark that the assumption that a map of schemes satisfy the valuative
criterion of properness is a very strong assumption. So we will encounter many
maps that are not proper, for instance f : A1

Z → Spec(Z) and f : A1
Z → P1

Z. But let
us now show that there are some non-trivial examples.

Proposition 12.11. A closed immersion of schemes is a proper map.

Proof. Since the property of a map of schemes of being proper is local on the base,
and since closed immersions are affine, it suffices to consider the case of the map
of prime spectrum i : Y → X induced by the canonical projection π : A→ A/I for
some ideal I ⊂ A. It is clear that the map is quasicompact, quasiseparated, and
locally of finite type, but we must prove that it satisfies the valuative criterion for
properness. So we let F be a field and R ⊂ F a valuation ring, and let

Spec(F )
η
//

��

Y

i

��

Spec(R)
η̄0 //

η̄

::

X

be a diagram of schemes, which determines and is determined by a diagram

A
φ̄0 //

π

��

R

ι

��

A/I
φ
//

φ̄
<<

F

of rings. We have (ι ◦ φ̄0)(I) = (φ ◦ π)(I) = {0} ⊂ F , and since ι is injective, we
conclude that φ̄0(I) = {0} ⊂ R. So φ̄0 = φ̄ ◦ π for a unique map φ̄ : A/I → R, as
we wanted to show. �

We conclude from Proposition 12.11 that if f = (p, φ) : Y → X is a proper map
of schemes, then the map p : |Y | → |X| need not be surjective.

Proposition 12.12. The unique map π : PnZ → Spec(Z) is proper for all n ≥ 0.
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Proof. It is clear that the map is quasicompact, quasiseparated, and locally of finite
type, so we must show that it satisfies the valuative criterion of properness. So given
a diagram of schemes of the form

Spec(F )
η
//

��

PnZ
π

��

Spec(R)
η̄0 //

η̄

99

Spec(Z)

with F a field and R ⊂ F a valuation ring, we must show that a unique lift exists.
The lower triangular diagram automatically commutes, since Spec(Z) is a final
object in the category of schemes, but we must prove that the restriction

PnZ(Spec(R)) // PnZ(Spec(F ))

along R ⊂ F is a bijection. Since R and F are local, every line bundle on their
prime spectra is trivial, so we can identify the map in question with the map

(Rn+1 rmn+1)/R× // (Fn+1 r {0})/F×

induced by the inclusion R→ F .

We first show that the map is injective. So let (f0, . . . , fn) and (f ′0, . . . , f
′
n) be

in Rn+1 r mn+1, and suppose that there exists λ ∈ F× such that f ′i = λfi for all
0 ≤ i ≤ n. Since some fi ∈ R× = R r m, we conclude that λ ∈ R, and since some
f ′i ∈ R×, we further conclude that λ ∈ R×. This proves injectivity.

It remains to prove surjectivity. Given (f0, . . . , fn) ∈ Fn+1 r{0}, we can assume
that fi ∈ R for all 0 ≤ i ≤ n by clearing the denominators. We claim that

f0 | f1 | . . . | fn,

up to reordering. Indeed, by the definition of a valuation ring, given f, g ∈ R, we
have f |g or g|f or both. In particular, we have f0 ∈ R r {0}, so we can divide by
it to get f0 = 1 ∈ Rrm, which shows that the class of (f0, . . . , fn) is in the image.
This proves surjectivity. �

Definition 12.13. A map of schemes f : Y → X is projective if, locally on X, it
can be factored as

Y
i //

f
""

PnX

π′

��

X

with π′ the base-change of the unique map π : PnZ → Spec(Z) along the unique map
g : X → Spec(Z) and with i a closed immersion.

Theorem 12.14. Every projective map of schemes is proper.

Proof. Since π : PnZ → Spec(Z) is proper, so is π′ : PnX → X, because proper maps
are stable under base-change. So both i and π′ are proper, and therefore, so is
f = π′ ◦ i, because proper maps are stable under composition. Since the condition
of being proper is also local on the base, we conclude the desired claim. �
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There do exists non-projective proper maps, even if X = Spec(k) with k a field
and even with k = C. (Hironaka: Certain “blow-up” of a 3-dimensional projective
variety.) Another hint that proper maps are better than projective maps is the
following result, which is proved in Serre’s GAGA paper [7].

Theorem 12.15. A map of finite type f : X → Spec(C) is proper if and only if
the space of closed points X(C) with the euclidean topology is compact Hausdorff.

For example, the space AnC(C) = Cn is Hausdorff, but not compact.

Nevertheless, one can often reduce the study of proper maps to the study of
projective maps thanks to the following result, whose proof we omit.

Theorem 12.16 (Chow’s lemma). Suppose that f : Y → X is proper with X locally
noetherian. In this situation, there exists a diagram of schemes

Y ′
π //

f ′

""

Y

f

��

X

with π and f ′ projective and a dense open subscheme U ⊂ Y such that

U ′ ' π−1(U)
π′ // U

is an isomorphism.9

Let us also give examples of non-proper maps. We let k be a field, and let
f : X → Spec(k) be any proper map. Let us assume that X is irreducible. So for
example, X ' Pnk will do.

Lemma 12.17. Let k be a field, and let f : X → Spec(k) be a proper map with X
irreducible. If Z ⊂ |X| be a closed subset with Z 6= ∅ and Z 6= X, then

U ' X r Z
f |U

// Spec(k)

is not proper.

Proof. Let η ∈ |X| be the point, and let F = k(η). The generic point is unique,
because we assume X to be irreducible. We let x ∈ Z and factor OX,x → F as

OX,x // // OX,x
� � // F.

The middle ring is again local, as is the left-hand map. We choose a factorization
of the right-hand map as a composition

OX,x
� � // R �

�
// F

with R a valuation ring and with the left-hand map local, and consider the diagram

Spec(F )
η

//

��

U

f |U
��

// X

f

��

Spec(R)
η̄0 // Spec(k) Spec(k).

9 We refer to the latter property by saying that π is birational.
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Since f is proper, there exists a unique lift η̄ : Spec(R) → X in the outer square.
Let s ∈ |Spec(R)| be the unique closed point. Since OX,x → R is local, we have

η̄(s) = x ∈ Z ⊂ |X|.

Therefore, there cannot exist a lift η̄′ : Spec(R) → U in the left-hand square. For
this would give a lift in the outer square, and this lift would be distinct from the
lift η̄ : Spec(R) → X, since η̄′(s) ∈ U ⊂ |X|, whereas η̄(s) ∈ Z ⊂ |X|. This shows
that f |U : U → Spec(k) is not proper, as stated. �

We will now consider cohomology. We recall that if

0 // F′ // F // F′′ // 0

is a short exact sequence of sheaves of abelian groups on a topological space X,
then the sequence of abelian groups of global sections

0 // F′(X) // F(X) // F′′(X)

is exact, but, in general, the right-hand map is not surjective. Let us give an example
with quasicoherent OX -modules on X = P1

k.

First, a non-example. Take an arbitrary point on X, say, 0 ∈ Spec(k[t]) ⊂ X
with associated quasicoherent ideal I0 ⊂ OX given by the functions that vanish at
0. So we have a short exact sequence of quasicoherent OX -modules

0 // I0
// OX // OX/I0

// 0.

We calculated in Lecture 8 that OX(X) ' k. Similarly, since

(OX/I0)(Spec(k[t])) ' k[t]/t ' k
(OX/I0)(Spec(k[t−1])) ' 0,

we also have (OX/I0)(X) ' k. The map OX → OX/I0 is given by restriction of
functions, so the induced map on global sections is given by the composite map

k // k[t] // k[t]/t ' k,

which is an isomorphism, and hence, in particular surjective.

Now, an example: use I⊗2
0 ' OX(−2) instead of I0 ' OX(−1). We again have a

short exact sequence of quasicoherent OX -modules

0 // I⊗2
0

// OX // OX/I
⊗2
0

// 0,

and taking global sections, we get an exact sequence

0 // (I⊗2
0 )(X) // k // k[t]/t2,

where, this time, the right-hand map is not surjective. The explanation is that, in
the former case, H1(X,OX(−1)) = 0, but in the latter case, H1(X,OX(−2)) 6= 0.

In general, the abelian category Sh(X,Ab) of sheaves of abelian groups on a
topological space X has enough injectives. So to the left exact functor

Sh(X,Ab)
p∗ // Ab
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that to a sheaf F assigns the abelian group p∗(F) = F(X) of global sections, we can
assign a family of right derived functors Rip∗(−), one for all i ≥ 0, together with
“boundary maps” that to every short exact sequence

0 // F′ // F // F′′ // 0

assigns a long exact sequence

0 // R0p∗(F
′) // R0p∗(F) // R0p∗(F

′′)

// R1p∗(F
′) // R1p∗(F) // R1p∗(F

′′)

// R2p∗(F
′) // R2p∗(F) // · · ·

We usually write Hi(X,−) = Rip∗(−), so that the long exact sequence becomes

0 // H0(X,F′) // H0(X,F) // H0(X,F′′)

// H1(X,F′) // H1(X,F) // H1(X,F′′)

// H2(X,F′) // H2(X,F) // · · ·

In principle, we calculate these by taking choosing an injective resolution

0 // F // I0 // I1 // I2 // · · ·

and calculating Hi(X,F) as the ith cohomology group of the complex

I0(X) // I1(X) // I2(X) // · · · ,

albeit this is really not practical. We are mainly interested in the quasicoherent OX -
modules on a scheme X. There are three possible variants of cohomology, gotten
by restricting the source category for the derived functors:

(1) (2) (3)

QCoh(X) // ModOX (Sh(X,Ab)) // Sh(X,Ab)

p∗

��

Ab

Each of (1)–(3) is an abelian category with enough injectives, so we could consider
the right derived functors of F 7→ p∗(F) ' F(X) with each of (1)–(3) as its source
category. The horizontal functors above are all exact, but this is no guarantee that
all these right derived functors agree! However:

(a) For every scheme X, every M ∈ ModOX (Sh(X,Ab)) admits an injective
resolution such that each term in the resolution also is injective as a sheaf
of abelian group on X. This implies that

Hi
(2)(X,M) ' Hi

(3)(X,M).

(b) For every locally noetherian scheme X, every M ∈ QCoh(X) admits an
injective resolution such that each term in the resolution is also injective as
an OX -module in sheaves of abelian groups. So in this situation,

Hi
(1)(X,M) ' Hi

(2)(X,M).
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So for locally noetherian schemes X, all three options agree. The “official” definition
is (3): The cohomology of M ∈ QCoh(X) is the cohomology of the underlying sheaf
of abelian groups. Why?

(1) There are non-quasicoherent sheaves of abelian groups on a scheme X,
whose cohomology is interesting, e.g.

H1(X,O×X) ' Pic(X).

(2) There are maps of quasicoherent OX -modules, which are not OX -linear, but
where we still want to have an induced map on Hi(X,−), e.g. the de Rham
complex

OX
d // Ω1

X
d // Ω2

X
// · · ·

whose differential is not OX -linear.

The most important basic result on the cohomology of quasicoherent OX -modules
is the following:

Theorem 12.18. If X is an affine scheme, then

Hi(X,F) = 0

for all F ∈ QCoh(X) and all i > 0.

Proof. We cheat and assume that X ' Spec(R) is noetherian. In this case, we
can calculate the cohomology groups in question as the right derived functors of
the functor QCoh(X) → Ab that to M assigns the abelian group M(X) of global
sections. But the functor QCoh(X)→ ModR(Ab) that to M assigns the R-module
M(X) of global sections is an equivalence of categories. So we want to calculate the
right derived functors of the functor ModR(Ab)→ Ab that to an R-module assigns
its underlying abelian group. But this functor is exact, so its (higher) right derived
functors are all zero. �

Remark 12.19. The conclusion of Theorem 12.18 does not hold for general sheaves
of abelian groups. For example, H1(X,O×X) ' Pic(X) is the group of isomorphism
classes of line bundles, and we saw that for X ' Spec(R) with R a Dedekind
domain, this group is typically nonzero.

We explain how to really calculate cohomology of quasicoherent OX -modules.

Lemma 12.20 (Mayer–Vietoris). Let X be a topological space, let F be a sheaf of
abelian groups on X, and for U ⊂ X open, let Hi(U,F) = Hi(U,F|U ). Suppose that
U, V ⊂ X are open and that X = U ∪ V . There is a long exact sequence

0 // H0(X,F) // H0(U,F)⊕H0(V,F) // H0(U ∩ V,F)

∂ // H1(X,F) // H1(U,F)⊕H1(V,F) // H1(U ∩ V,F)

∂ // H2(X,F) // H2(U,F)⊕H2(V,F) // · · · ,

where the left-hand maps are given by (resXU , resXV ), and where the right-hand maps
are given by resUU∩V +(− resVU∩V ).10

10 The minus sign is necessary for the composition of the two maps to be zero, but we could
also have used e.g. (resXU ,− resXV ) and resUU∩V + resVU∩V instead. So this choice is non-canonical.

A consistent choice of signs is made in [4, Definition 1.1.2.11].
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Proof. First, we claim that if I is an injective sheaf of abelian groups, then the map
I(W ) → I(W ′) associated to any inclusion W ′ ⊂ W of open subsets is surjective.
Indeed, this follows by considering the inclusion hW ′ → hW of representable sheaves
of sets, the induced inclusion Z[hW ′ ] → Z[hW ] of free abelian group presheaves,
and then the sheafification of these, which is still injective, because sheafification
preserves limits. Mapping out to I and using the definition of injectivity, we deduce
the claim.

Given this, it follows that there is a Mayer–Vieteris short exact sequence

0 // I(X) // I(U)⊕ I(V ) // I(U ∩ V ) // 0.

The result follows by taking an injective resolution of F, and using the fact from
homological algebra that a short exact sequence of complexes gives rise to a long
exact sequence of cohomology groups. �

Corollary 12.21. Let X be a scheme and suppose that U, V ⊂ X are affine open
subschemes with X = U ∪ V and with U ∩ V affine. In this situation,

Hi(X,M) '


ker(M(U)⊕M(V )→M(U ∩ V )) if i = 0,

coker(M(U)⊕M(V )→M(U ∩ V )) if i = 1,

0 if i ≥ 2,

for all M ∈ QCoh(X).

Proof. This follows immediately from Mayer–Vietoris and vanishing of higher co-
homology of quasicoherent sheaves on affines. �

The corollary applies X = P1
k with U = Spec(k[t]) and V = Spec(k[t−1]) and

with intersection U ∩ V = Spec(k[t±1]), for any field (or indeed any ring) k. So we
can easily calculate

Hi(X,OX(n))

for all integers n and i ≥ 0. We note that OX(−1) is the only line bundle all of
whose cohomology groups, including H0, vanish.

What if it takes more than two open affine subschemes to cover X? Two options:

(1) Use induction on the number of affines and Mayer–Vietoris.
(2) Direct generalization of Mayer–Vietoris: Čech cohomology.

Theorem 12.22. Let X be a scheme, and let (Ui)i∈I be a family of open sub-
schemes that cover X. Suppose that for all k ≥ 0 and all (i0, . . . , ik) ∈ Ik+1, the
open subscheme Ui0 ∩ · · · ∩Uik ⊂ X is affine. The cohomology of M ∈ QCoh(X) is
given by the cohomology of the Čech complex Č((Ui)i∈I ,M) with kth term

Čk((Ui)i∈I ,M) =
∏

(i0,...,ik)∈Ik+1 M(Ui0 ∩ · · · ∩ Uik).

Proof. Omitted. �

Remark 12.23. If X is separated in the sense that ∆: X → X × X is a closed
immersion, then the intersection of a finite number of affine open subsets of X is
again affine.
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Remark 12.24. The Čech complex can be made smaller: If we choose a total order
on the index set I, then complex with kth term∏

i0<···<ik M(Ui0 ∩ · · · ∩ Uik)

also calculates the cohomology of M ∈ QCoh(X). If I has two elements, then this
recovers Mayer–Vietoris.
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13. Finiteness of coherent cohomology, curves

Given a scheme X, we defined the ith cohomology functor Hi(X,−) for i ≥ 0 to
be the ith right derived functor of the left exact functor

ModOX (Sh(X,Ab))
p∗ // Ab

that to a sheaf of OX -modules F assigns the abelian group F(X) of global sections.
More generally, given a map of schemes f : Y → X, we have the left exact functor

ModOY (Sh(Y,Ab))
f∗ // ModOX (Sh(X,Ab))

so we may consider its ith right derived functor Rif∗ for i ≥ 0.11 There are three
fundamental theorems concerning these cohomology functors.

First, we have “Acyclicity of affines with quasicoherent coefficients.”

Theorem 13.1. If f : Y → X is affine, then

Rif∗(F) '

{
f∗(F) if i = 0,

0 if i > 0,

for every quasicoherent OY -module F.

Corollary 13.2. Let f : Y → X and g : Z → Y be composable maps of schemes.
If the map g is affine, then there is a canonical natural isomorphism

Ri(f ◦ g)∗(G) ' (Rif∗ ◦ g∗)(G)

for all i ≥ 0 and all quasicoherent OZ-modules G.

Proof. It follows from Theorem 13.1 that if

0 // G // J0 // J1 // J2 // · · ·

is an injective resolution of G, then

0 // g∗(G) // g∗(J
0) // g∗(J

1) // g∗(J
2) // · · ·

is a resolution of g∗(G). But g∗ admits the exact left adjoint functor g∗, so it
preserves injective objects. Hence, the complex

(f∗ ◦ g∗)(J0) // (f∗ ◦ g∗)(J1) // (f∗ ◦ g∗)(J2) // · · ·

calculates both the left-hand side and the right-hand side in the statement, up to
unique natural isomorphism. �

Corollary 13.3. If f : Y → X is an affine map of schemes, then there is a
canonical natural isomorphism Hi(Y,F) ' Hi(X, f∗(F)) for all i ≥ 0 and all
F ∈ QCoh(Y ).

Proof. Same proof. �

11 If X ' Spec(Z), then the category ModOX
(Sh(X,Ab)) is not equivalent to Ab, but its full

subcategory QCoh(X) is so. We return to this in Remark 13.7.
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Corollary 13.4. Let X be a scheme, and let F be a quasicoherent OX-module.
Suppose that X admits a covering (Ui)i∈I by open subschemes such that for all
k ≥ 0 and all (i0, . . . , ik) ∈ Ik+1, Ui0 ∩ · · · ∩ Uik is affine. There is a canonical
natural isomorphism between Hi(X,F) and the ith cohomology of the Čech complex

Č0((Ui)i∈I ,F)
d // Č1((Ui)i∈I ,F)

d // Č2((Ui)i∈I ,F) // · · · ,

whose kth term is given by the product

Čk((Ui)i∈I ,F) =
∏

(i0,...,ik)∈Ik+1 F(Ui0 ∩ · · · ∩ Uik),

and whose differential is the alternating sum

d =
∑

0≤s≤k(−1)sds

of the “coface” maps, which are the unique maps that make the diagrams

Čk−1((Ui)i∈I ,F)
ds //

pr(i0,...,is−1,is+1,...,ik)

��

Č((Ui)i∈I ,F)

pr(i0,...,ik)

��

F(Ui0 ∩ · · · ∩ Uis−1
∩ Uis+1

· · · ∩ Uik)
res
// F(Ui0 ∩ · · · ∩ Uik)

commute for all (i0, . . . , ik) ∈ Ik+1.

We recall from Problem set 6 that if the map f : Y → X is quasicompact and
quasiseparated, then the functor f∗ restricts to a functor

QCoh(Y )
f∗ // QCoh(X)

between the respective full subcategories of quasicoherent modules. In this situation,
a relative version of the Čech complex shows:

Corollary 13.5. If f : Y → X is a quasicompact and quasiseparated, then

Rif∗(F) ∈ QCoh(X)

for all i ≥ 0 and all F ∈ QCoh(Y ).

Proof. We omit it. To properly organize this proof, one first generalizes the Čech
complex to allow for “hypercoverings.” �

Corollary 13.6. If f : X → Spec(R) is quasicompact and quasiseparated, then

Rif∗(F) ' ˜Hi(X,F)

for all i ≥ 0 and all F ∈ QCoh(X).

Proof. Let S ' Spec(R). If we choose an injective resolution

0 // F // I0 // I1 // I2 // · · ·
of F as an OX -module in Sh(X,Ab), then

0 // f∗(I
0) // f∗(I

1) // f∗(I
2) // · · ·

is a complex of injective OS-modules in Sh(S,Ab), and Corollary 13.5 shows that its
ith cohomology Rif∗(F) is a quasicoherent OS-module for all i ≥ 0. We claim that
for this specific complex, taking global sections commutes with taking cohomology
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(i.e. kernel modulo cokernel of the differentials in the complex). Granting this for
the moment, we conclude that

Hi(X,F) ' (Rif∗(F))(S),

and since the OS-module Rif∗(F) is quasicoherent, we are done.

To prove the claim, let us show more generally that if F• is a complex of sheaves
of abelian groups on a topological space such that for all n ≥ 0, both sheaves
Fn and Hn(F•) have vanishing sheaf cohomology (i.e. right derived functors of
global sections) in degrees > 0, then taking global sections commutes with taking
cohomology (i.e. kernel modulo cokernel). Indeed, consider the list of sheaves

ker(d0), im(d0), ker(d1), im(d1), . . .

Inductively, working our way along this list, and using the appropriate short exact
sequences, we deduce that all these sheaves all have vanishing sheaf cohomology in
degrees > 0. Finally, using the long exact sequence in sheaf cohomology associated
to the short exact sequence giving ker(dk)/ im(dk−1) yields the result. �

Remark 13.7. In particular, if f : X → Spec(Z) is quasicompact and quasiseparated,
then for all F ∈ QCoh(X), the equivalence of categories

QCoh(Spec(Z)) // Ab

takes Rif∗(F) to Hi(X,F). So in this situation, the relative sheaf cohomology agrees
with the absolute sheaf cohomology.

Remark 13.8. Let f : Y → X be a map of schemes, and let U ⊂ X be an open
subscheme with inverse image V = f−1(U) ⊂ Y . For all i ≥ 0 and for all sheaves F

of abelian groups on Y , there is a canonical natural isomorphism

(Rif∗(F))|U // Ri(f |V )∗(F|V ).

Hence, if f : Y → X is quasicompact and quasiseparated and F ∈ QCoh(Y ), then
by letting U range over an affine open cover of X and using Corollary 13.6, we
can reduce the calculation of the relative cohomology Rif∗(−) to the calculation of
absolute cohomology Hi(U,−).

Second, we have “Finite dimensionality.”

Theorem 13.9. If X is a scheme of Krull dimension ≤ d, then

Hi(X,F) = 0

for all i > d and all sheaves F of abelian groups on X.

Proof. For simplicity, we assume that d = 1 and that X is irreducible with unique
generic point η ∈ |X|. There are two ingredients in the proof:

First, for all x ∈ |X| and i > 0, we have

colimx∈U⊂|X|H
i(U,F) = 0.

Indeed, this filtered colimit is the ith right derived functor of the exact functor
F 7→ Fx, and hence, is zero for i > 0.
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Second, if U ⊂ |X| is a non-empty open subset, then |X|r U = {x1, . . . , xn} is
a finite set of closed points, because d = 1 and X is irreducible. In this situation,
there exists a “Mayer–Vietoris” sequence of the form

0 // H0(X,F) // H0(U,F)⊕
⊕

1≤i≤n Fxi
// Fη

∂ // H1(X,F) // H1(U,F) // 0

∂ // H2(X,F) // H2(U,F) // 0

∂ // H3(X,F) // · · ·

To produce this, given an open cover of X of the form (U,U1, . . . , Un) with xi ∈ Ui,
we an associated Čech complex with coefficients in F. Now take the filtered colimit
of these Čech complexes as (U1, . . . , Un) varies over all such neighborhoods.

Now, suppose that s ∈ Hi(X,F) with i > 1. By the first ingredient, there exists
a non-empty open subset U ⊂ |X| such that s|U = 0. (This only uses that i > 0.)
Hence, by the second ingredient, we conclude that s = 0. �

To state the third fundamental theorem, we define the full subcategory

Coh(X) ⊂ QCoh(X)

of coherent OX -modules.

Definition 13.10. (1) Let R be a ring. An R-module M is coherent if it is finitely
generated and if every finitely generated submodule N ⊂M is finitely presented.

(2) Let X be a scheme. A quasicoherent OX -module M is coherent if there exists
a cover (Ui)i∈I of X by affine open subschemes such that M(Ui) is a coherent
OX(Ui)-module for all i ∈ I.

The full subcategory Coh(X) ⊂ QCoh(X) is closed under the kernel, cokernels,
and extensions, and hence, is abelian. Moreover, the inclusion functor is exact.

Remark 13.11. If X is a locally noetherian scheme, then, in Definition 13.10 (2),
the requirement that the OX(Ui)-modules M(Ui) be finitely presented is equivalent
to the (otherwise weaker) requirement that they be finitely generated. In particular,
if X is locally noetherian, then OX is a coherent OX -module, and therefore, so is
every locally free OX -module of finite rank.

Now, the third fundamental theorem concerning coherent cohomology is the
following “Finiteness of proper maps” theorem.

Theorem 13.12. Let f : Y → X be a proper map of schemes with X locally
noetherian. If F is a coherent OY -module, then Rif∗(F) is a coherent OX-module
for all i ≥ 0.

Before we prove the theorem, we discuss a few consequences.

Corollary 13.13. Let f : X → Spec(k) be a proper map with k a field. If F is a
coherent OX-module, then Hi(X,F) is a finite dimensional k-vector space.

So for f : X → Spec(k) proper with k a field, the Euler characteristic

χ(X,F) =
∑
i≥0(−1)i dimkH

i(X,F)
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is well-defined. Indeed, by “Finiteness of proper maps,” all summands are finite,
and the Krull dimension d of X is finite, so by “Finite dimensionality,” only the
summands 0 ≤ i ≤ d are nonzero.

The Riemann–Roch problem consists in giving a nice formula for χ(X,F). This
is especially useful in combination with vanishing theorems, which say that, for
particular X and F, the cohomology groups Hi(X,F) with i > 0 vanish. Indeed, in
this case, the Riemann–Roch formula determines the dimension

dimk F(X) = dimkH
0(X,F)

of the k-vector space of global sections of F. We will see examples of this later,
when we discuss curves.

Proof of Theorem. We divide the proof in a number of steps.

Step 0: The properties of being coherent and being proper are both local on the
base, so we can assume that X ' Spec(R).

Step 1: The theorem holds for π : Y ' PnX → X. We will prove this case by using
Hilbert syzygy: Every coherent OY -modules admits a finite resolution, where each
term is a finite sum of coherent OY -modules of the form

π∗(G)⊗ OY (m)

for some coherent OX -module G and m ∈ Z. Using the long exact sequence for
Riπ∗, we reduce, by induction on the length of the resolution, to showing that

Riπ∗(π
∗(G)⊗ OY (m))

is a coherent OX -module. For this, we calculate using the Čech complex for the
standard affine open cover of PnX . We find that the “projection formula”

Riπ∗(π
∗(G)⊗ OY (m)) ' G⊗Riπ∗(OY (m))

holds and that Riπ∗(OY (m)) is a coherent OX -module given by a very explicit
formula; see e.g. [6, §8, Lemma 1.1].

Step 2: The theorem holds for f : Y → X projective. Working locally, we choose
a factorization

Y
i //

f

  

PnX
π

��

X

with i a closed immersion and use that, since i is affine, we have

Rif∗(F) ' Rπ∗(i∗(F))

by Corollary 13.2. But i∗ preserves coherent modules, because i is a closed immer-
sion. Indeed, if M is a finitely generated R/I-module, then the R-module obtained
from M by restriction of scalars along R→ R/I is also finitely generated.

Step 3: General case. Since f : Y → X is proper and X ' Spec(R) is noetherian,
it follows that also Y is noetherian. Since the topological space |Y | is noetherian,
we can apply noetherian induction. So to prove the statement for (Y,F), we can
assume that it has been proved for (Z,G), where i : Z → Y is a closed immersion,
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whose image is not all of Y , and G is a coherent OZ-module. This implies that the
statement holds for (Y, i∗(G)). Now, by Chow’s lemma, there exists

Y ′
p
//

q
""

Y

f

��

X

with p and q projective and a dense open subscheme U ⊂ Y such that

U ′ ' π−1(U)
p|U′ // U

is an isomorphism. The idea is to relate Rif∗(F) to Riq∗(p
∗(F)). The latter is

coherent. For p∗(F) is coherent, because F is coherent and Y ′ is noetherian, so
the claim follows form Step 2. We claim that the “difference” between Rif∗(F)
and Riq∗(p

∗(F)) is built from Rif∗(i∗(G)) as above, and hence, is controlled by
noetherian induction. To see this, we choose an injective resolution

0 // p∗(F) // J0 // J1 // J2 // · · ·

and look at the adjunct complex

0 // F // p∗(J
0) // p∗(J

1) // p∗(J
2) // · · ·

in which each p∗(J
i) is injective. Let us write F′· for the complex. We have

Hi(F′·) '


ker(F → p∗p

∗(F)) if i = −1,

coker(F → p∗p
∗(F)) if i = 0,

Rip∗p
∗(F) if i ≥ 1,

which, by Step 2, are coherent OY -modules. But we also have Hi(F′·)|U ' 0,
because the map p|U ′ : U ′ → U is an isomorphism. Now we prove:

Lemma 13.14. If F is a coherent OY -module such that F|U ' 0, then there exists
a closed immersion i : Z → Y with Y r Z = U and a coherent OZ-module G with

F ' i∗(G).

Proof. Suppose for simplicity that Y ' Spec(A) is affine. By shrinking U , we can
assume that U = Yf is a distinguished open subscheme. In this case, the statement
is that if M is an A-module such that Mf ' 0, then there exists N ≥ 0 such that
the map fN : M → M given by multiplication by fN ∈ R is the zero map, or
equivalently, such that the R-module M is obtained from an A/fN -module N by
restriction of scalars along A → A/fN . But M is generated as an A-module by a
finite family (xi)i∈I , and the image of each xi in the filtered colimit Mf is zero.
So for all i ∈ I, there exists Ni ≥ 0 such that fNixi = 0, and since I is finite, the
maximum N of the the Ni will do. �

We can now argue by “dévissage” to complete the proof. Let us state this in
the language of stable ∞-categories, which makes the argument much clearer. (It
is possible to argue with injective resolutions and Grothendieck spectral sequences,
but this obscures the simple idea.) We define F′ to be the fiber

F′ // F
η
// Rp∗p

∗(F).
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of the unit map and apply Rf∗ to this fiber sequence to obtain the fiber sequence

Rf∗(F
′) // Rf∗(F)

η
// Rf∗Rp∗p

∗(F) ' Rq∗(p∗(F)).

Hence, to prove that the cohomology of the middle term are coherent OX -modules,
it will suffice to show that the cohomology of the remaining terms are coherent
OX -modules. This is true for the right-hand term by Step 2, since q is projective
and p∗(F) a coherent OY ′ -module. It is also true for the left-hand term. For we have
proved that F′ admits a finite filtration such that the graded pieces for the filtration
all are of the form i∗(G) for some closed immersion i : Z → Y with Y rZ = U and
some coherent OZ-module G. It follows that, by applying Rf∗, we obtain a finite
filtration of Rf∗(F

′), whose graded pieces are of the form

Rf∗(i∗(G)) ' R(f ◦ i)∗(G).

Hence, it suffices to show the cohomology of R(f ◦ i)∗(G) are coherent OX -modules.
But this follows from the inductive hypothesis, since the dimension of Z is strictly
smaller than the dimension of Y . The basic case dim(Y ) = 0 follows from Step 2,
since f : Y → X is a closed immersion in this case. �

We now shift gear and consider curves over a field. To be a curve is a property
of a map of schemes. However, the definition varies throughout the literature, and
the precise definition is often unclear. An exception is anything written by Deligne,
whom one can always trust to give precise (and reasonable) definitions. So we will
follow [1, I.1.0], except that, at the outset, we will not assume curves to be proper.

Definition 13.15. Let k be a field. A map of schemes f : X → Spec(k) is a curve
if it is separated and of finite type and if X has Krull dimension 1.

Often is also assumed that the scheme X be reduced and irreducible.

Example 13.16. The curve f : Spec(k[x, y]/xy)→ Spec(k) consists of the coordinate
lines in the plane and is not irreducible. The curve f : Spec(k[x, y]/y3)→ Spec(k)
is an infinitesimal thickening of the x-axes in the plane and is not reduced.

Lemma 13.17. If a scheme X is reduced and irreducible, then the ring OX(U) is
an integral domain for every non-empty affine open subscheme U ⊂ X.

Proof. If X is reduced and irreducible, then its unique generic point η ∈ |X| belongs
to every non-empty affine open subscheme U ⊂ X, and U is again reduced and
irreducible. Therefore, it suffices to show that if R is a nonzero reduced ring such
that |Spec(R)| is irreducible, then R is an integral domain. So suppose that f, g ∈ R
and fg = 0. We have |Spec(R)| = V (f) ∪ V (g), and since |Spec(R)| is irreducible,
we either have |Spec(R)| = V (f) or |Spec(R)| = V (g) or both. So at least one of
f, g ∈ R is nilpotent, and since R is reduced, at least one of f, g ∈ R is zero. �

The assumption that a noetherian scheme X be reduced and irreducible is fairly
harmless, since, in general, the reduced scheme Xred ⊂ X will be the finite union
of its irreducible components.

However, curves f : X → Spec(k) with X reduced and irreducible can still be
complicated, because of two phenomena:
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(1) Singularities: For example, the curve

X = Spec(k[x, y]/y2 − x2(x+ 1)
f
// Spec(k)

has a “nodal singularity” at the origin: Close to the origin (this can be
made precise using the complete local ring), it looks like the coordinate
axes. And the curve

X = Spec(k[x, y]/y2 − x3)
f
// Spec(k)

has a “cuspical singularity” at the origin: Close to the origin, it looks like
a double line.

(2) Non-properness: For exampe, the curve

X = P1
k r {0, 1,∞}

f
// Spec(k)

is not proper.

In general, the first phenomenon is much more complicated than the second. Let
us now give some precise definitions.

Definition 13.18. If f : X → Spec(k) is a curve with X reduced, then a closed
point x ∈ |X| is regular if the reduced closed subscheme {x}red ⊂ X is an effective
Cartier divisor. A generic point η ∈ |X| is regular.

So a closed point x ∈ |X| is regular if there exists x ∈ U ⊂ |X| affine open such
that {x}red = Spec(OX(U)/f) ⊂ U for some non-zero-divisor f ∈ OX(U).

Proposition 13.19. Let f : X → Spec(k) be a curve with X reduced and irre-
ducible, and let x ∈ |X| be a closed point. The following are equivalent:

(1) The closed point x ∈ |X| is regular.
(2) There exists a nonzero element f ∈ OX,x such that mx = (f).
(3) The local ring OX,x is a discrete valuation ring: There exists a function

k(X) ' Frac(OX,x)
ordx // Z ∪ {∞}

with the following properties:
(i) For all f, g ∈ k(X), ordx(fg) = ordx(f) + ordx(g).
(ii) For all f, g ∈ k(X), ordx(f + g) ≥ min{ordx(f), ordx(g)}.

(iii) For all f ∈ k(X), ordx(f) =∞ if and only if f = 0.
(iv) For all f ∈ k(X), ordx(f) ≥ 0 if and only if f ∈ OX,x.
(v) There exists π ∈ OX,x such that ordx(π) = 1.

The intuition is that k(X) is the field of meromorphic functions on X and that
the function ordx : k(X) → Z ∪ {∞} measures the order of vanishing at x ∈ |X|.
Poles have finite depth, but the zero function has zeros of infinite order.

Proof. It is clear that (1) implies (2). Conversely, if (2) holds, then we can find a
lift of f to f ∈ OX(U) for some x ∈ U ⊂ |X| affine open. Since X is reduced and
f ∈ OX(U) is nonzero, the closed subset V (f) ⊂ |X| is not all of |X|. So V (f) is
a finite set of closed points, and x ∈ V (f) by construction. Finally, by shrinking
x ∈ U ⊂ |X|, we can remove the other points, which shows that (1) holds.

114



We now assume (2) and prove (3). We consider the sequence of ideals

· · · ⊂ mnx ⊂ · · · ⊂ m2
x ⊂ m1

x ⊂ m0
x = OX,x.

Their intersection is an ideal I =
⋂
n≥0 m

n
x ⊂ OX,x. It is finitely generated, because

the ring OX,x is noetherian, and by construction, it satisfies mxI = I. So we conclude
from Nakayama’s lemma that I = 0. Hence, for every nonzero f ∈ OX,x, there exists
a unique integer n = ordx(f) ≥ 0 such that f ∈ mnx r mn+1

x . More generally, for
nonzero f ∈ k(X), we write f = g/h and define

ordx(f) = ordx(g)− ordx(h).

Let π ∈ mx be a generator, which exists by (2). Then, equivalently, for every
nonzero f ∈ k(X), there exists a unique integer n = ordx(f) such that f = πnu
with u ∈ O×X,x, and one readily verifies that (i)–(v) are satisfied. So (3) holds.

Finally, we show that (3) implies (2). We choose π ∈ OX,x with ordx(π) = 1 and
show that mx = (π). We note that f ∈ O×X,x if and only if ordx(f) = 0. Hence,

we have f ∈ mx if and only if ordx(f) > 0, since OX,x is local. So π ∈ mx, which
implies that (π) ⊂ mx. Conversely, if f ∈ mx is nonzero, then we can write

f = πordx(f)u

with u ∈ k(X)×. But then ordx(u) = 0, so u ∈ O×X,x, and since ordx(f) ≥ 1, we

conclude that f ∈ (π). So (2) holds. �

Remark 13.20. There are many equivalent characterizations of discrete valuation
rings, including (1)–(3) below, where (1) follows from the proof of Proposition 13.19.

(1) A ring R is a DVR if and only if R is a noetherian local ring, which is not
a field, whose maximal ideal is principal.

(2) A ring R is a DVR if and only if R is an integrally closed12 noetherian local
ring of Krull dimension 1.

(3) A ring R is a DVR if and only if R is a noetherian valuation ring.

Suppose that R is a discrete valuation ring with quotient field F and with valuation
v : F → Z ∪ {∞}. We should at least see that R is a valuation ring. So let x ∈ F
be a nonzero element. If v(x) ≥ 0, then x ∈ R, and if v(x) ≤ 0, then v(x−1) ≥ 0,
so x−1 ∈ R. So a discrete valuation ring is indeed a valuation ring.

Theorem 13.21. If f : X → Spec(k) is a curve with X reduced, then the subset

Reg(X) ⊂ |X|
consisting of the regular points is open.

Proof. Omitted. �

Remark 13.22. In the situation of Theorem 13.21, the open subset Reg(X) ⊂ |X|
contains the generic points of X, since generic points, by definition, are regular. It
follows that there are only finitely many singular (= non-regular) points in |X|.

We define a map of scheme f = (p, φ) : Y → X to be finite if it is affine and if for
every affine open subset U ⊂ |X| with inverse image V = p−1(U) ⊂ |Y |, the map of
rings φU : OX(U)→ OY (V ) exhibits OY (V ) as a finitely generated OX(U)-module.

12 An integral domain R with quotient field R ⊂ F is integrally closed if it has the following

property: If a ∈ F is a root in a monic polynomial p(x) ∈ R[x], then a ∈ R.
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Theorem 13.23 (Resolution of singularities for curves). If f : X → Spec(k) is a
curve with X reduced, then there exists a diagram of schemes

X ′ X

Spec(k)

π //

f ′

��
f

��

with the following properties:

(1) The map f ′ : X ′ → Spec(k) is a curve with X ′ reduced and Reg(X ′) = X ′.
(2) The map π : X ′ → X is finite and restricts to an isomorphism

π−1(Reg(X))
π′ // Reg(X).

Moreover, the map π : X ′ → X is unique, up to unique isomorphism in Sch/X .

Remark 13.24. The uniqueness of π : X ′ → X, up to unique isomorphism in Sch/X ,
is very specific to curves. In general, resolutions of singularities are not unique.

Proof. (Sketch) We assume for simplicity that X is irreducible and let η ∈ |X| be
the unique generic point. We take π : X ′ → X to be the normalization of X defined
as follows: Let F = OX,η be the function field of X. If U ⊂ |X| is a non-empty affine
open subset, then the canonical map OX(U) → OX,η identifies F as the quotient
field of OX(U). It follows that the sheaf on X that to U ⊂ |X| non-empty affine
open assigns Frac(OX(U)) is the constant sheaf p∗(F ) with value F . We define

A ⊂ p∗(F )

to be the sub-OX -algebra sheaf such that for U ⊂ |X| non-empty affine open,

A(U) ⊂ F
is the subset consisting of the elements a ∈ F that are roots of monic polynomials
with coefficients in OX(U). We claim that the OX -algebra A is quasicoherent and
that φU : OX(U)→ A(U) exhibits A(U) as a finitely generated OX(U)-module for
every non-empty affine open subset U ⊂ |X|. Granting this, the map

X ′ ' Spec(A)
π // X

induced by φ : OX → A satisfies (1)–(2) thanks to the characterization of discrete
valuation rings as integrally closed noetherian local rings of Krull dimension 1. �

Example 13.25. Let us do the example of the cuspidal cubic

X ' Spec(R)
f
// Spec(k)

with R = k[x, y]/y2 − x3. The origin is a singular point, since the corresponding
maximal ideal m = (x, y) needs two generators. In this case, we have X ′ ' Spec(R′),
where R′ ⊂ F = Frac(R) is the subset of a ∈ F that are roots in some monic
p(T ) ∈ R[T ]. We should have R′ 6= R. Why? We have a = y/x ∈ F and

a2 = y2/x2 = x3/x2 = x,

which shows that a is a root of T 2 − x. So a ∈ R′, but a /∈ R, because x does not
divide y in R. In fact, the unique k[T ]-algebra map

k[T ] // R[T ]/(T 2 − x)
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is an isomorphism, whose inverse maps x and y to T 2 and T 3, respectively, and the
common ring is integrally closed. So the unique k-algebra map k[T ]→ F that to T
assigns y/x is an isomorphism onto R′ ⊂ F . Hence, in this case, we find that the
regular curve f ′ : X ′ → Spec(k) is the affine line. The map

X ′
π // X

is a homeomorphism of underlying spaces, but the fiber

X ′(0,0) ' Spec(R′ ⊗R k) ' Spec(k[T ]/T 2)

is a non-reduced point.

Example 13.26. Let us also do the example of the nodal cubic

X ' Spec(R)
f
// Spec(k)

with R = k[x, y]/y2−x2(x+1). We assume the characteristic of k is 6= 2. Again, the
origin is the only singular point, and we find as before that the unique k[T ]-algebra
map

k[T ] // R[T ]/(T 2 − (x+ 1))

is an isomorphism onto the integral closure R′ ⊂ F of R in its quotient field. So
the regular curve f ′ : X ′ → Spec(k) is again the affine line, but the map

X ′
π // X

is no longer a homeomorphism of underlying spaces, since the fiber

X ′(0,0) ' Spec(R′ ⊗R k) ' Spec(k[T ]/(T 2 − 1))

' Spec(k[T ]/(T − 1)× k[T ]/(T + 1))

' Spec(k[T ]/(T − 1)) t Spec(k[T ]/(T + 1))

consists of two reduced points.

In general, the structure of the fiber of π : X ′ → X is more complicated than
these examples might indicate. For example, let (a, b) be a pair or relatively prime
positive integers and assume without loss of generality that a < b. We can consider
the generalized cuspidal curve of degree b given by

X ' Spec(R)
f
// Spec(k)

with R = k[x, y]/(ya − xb). Its normalization is given by the map

X ′ ' Spec(k[T ])
π // X ' Spec(R)

induced by the unique k-algebra map R → R′ = k[T ] that to x and y assign T a

and T b, respectively. In this case, the fiber over the singular point is

X ′(0,0) ' Spec(R′ ⊗R k) ' Spec(k[T ]/(T a, T b)).

The k-algebra k[T ]/(T a, T b) is finite, and its length is

lengthk(k[T ]/(T a, T b)) = 1
2 (a− 1)(b− 1),

as was first proved by Sylvester [8]. For example, if a = 3 and b = 5, then

R′ ⊗R k = k[T ]/(T 3)×k k[T 4]/(T 8).
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14. Proper regular curves, Riemann–Roch

Let k be a field and let S = Spec(k). Last time, we defined a map of schemes

X
f
// S

to be a curve over S, if the map f is separated and of finite type, and if the scheme
X has Krull dimension 1. For any such curve, there exists a diagram of curves

X

f

��

Xred
ioo

fred

��

X ′red
πoo

j
//

f ′red
��

X ′red

f ′red
��

S S S S,

which is unique, up to unique isomorphism in Sch/S , where i is the closed immersion
of the underlying reduced curve, and where π is the normalization of Xred, which is
a finite birational map. The final map j is an open immersion of the regular curve
Y ' X ′red → S into a proper regular curve Y → S. In this way, the study of general
curves begins with the study of proper regular curves.

Remark 14.1. If f : X → S is a regular curve, then the irreducible components of
X do not intersect. Indeed, if C,D ⊂ X are irreducible components and x ∈ C ∩D,
then x ∈ Spec(OX,x) has more than one generalization, so OX,x is not a discrete
valuation ring. So if f : X → S is a regular curve, then X is irreducible if and only
if X is connected. Hence, a proper regular curve is the finite sum

X =
∐
i∈I Xi

f=
∑
i∈I fi

// S

of proper regular curves fi : Xi → S with Xi connected, or equivalently, irreducible.
So we focus on this case.

Proposition 14.2. Let k be a field and S = Spec(k). Given a map

Y X

S

f=(p,φ)
//

h
��

g
��

between proper regular curves with X and Y irreducible, either:

(1) the image of p : |Y | → |X| consists of a single closed point x ∈ |X|, or
(2) the map p : |Y | → |X| is surjective, and for every x ∈ |X|, the fiber

Yx
fx // Spec(k(x))

is finite.

Proof. Let η ∈ |X| be the unique generic point. We classify f : Y → X according
to whether or not η ∈ p(|Y |).

Suppose first that η /∈ p(|Y |). In this case, the generic fiber

Yη
fη
// Spec(k(η))
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is empty. We choose finite covers (Ui)i∈I and (Vi)i∈I of X and Y by affine open
subschemes such that f : Y → X restricts to maps fi = f |Vi : Vi → Ui for all
i ∈ I. Let us write Ai = OX(|Ui|) and Bi = OY (|Vi|). Since we assumed X to be
irreducible, we have η ∈ |Ui| for all i ∈ I. So the open immersion Vi → Y induces
a map of fibers Vi,η → Yη. Since Yη is empty, so is Vi,η, or equivalently,

Bi ⊗Ai k(η) = 0.

We claim that φi : Ai → Bi is finitely generated, or equivalently, that fi : Vi → Ui
is of finite type. Indeed, since the map hi : Vi → S is both locally of finite type and
quasicompact, it is of finite type, and since it factors as hi = fi ◦ gi : Vi → S, it
follows that fi is of finite type as claimed. Hence, there exists ai ∈ Ai such that

Bi ⊗Ai Ai[a−1
i ] = 0.

Moreover, since I is finite, the subset

|U | =
⋂
i∈I |Spec(Ai[a

−1
i ])| ⊂ |X|

is open, and since U ×X Vi is empty for all i ∈ I, we conclude that

U ×X Y = ∅.

This shows that p(|Y |) ⊂ |X|r |U |. But η ∈ |U |, so |U | ⊂ |X| is dense, and hence

|X|r |U | = {x1, . . . , xn}

is a finite set of closed points in |X|. Finally, since |Y | is connected, so is

p(|Y |) ⊂ {x1, . . . , xn} ⊂ |X|,

so we have p(|Y |) = {xj} for some 1 ≤ j ≤ n.13

Suppose next that η ∈ p(|Y |), and let us write ηX = η and ηY for the generic
points of X and Y , respectively. We claim that ηX = p(ηY ). If this is not the case,
then ηX = p(y) for some closed point y ∈ |Y |, in which case, we get a map

k(η)
f(η)

// k(y)

of k-algebras. However:

Lemma 14.3. Let g : X → S = Spec(k) be a curve over a field k.

(1) If η ∈ |X| is a generic point, then tr.degk(k(η)) = 1.
(2) If x ∈ |X| is a closed point, then tr.degk(k(x)) = 0.

Proof. We may assume that X = Spec(A) is affine. By Noether normalization,
there exists a ring homomorphism k[T ]→ A that exhibits A as a finitely generated
k[T ]-module. It follows that, in case (1), the induced map

k(T ) // Frac(A) = k(η)

is finite as stated. In case (2), the closed point x ∈ |X| lies above a closed point of
|Spec(k[T ])|, so we are reduced to X = Spec(k[T ]). �

13 This argument is an example of spreading out : if something happens at the generic point,
then it happens in a neighborhood of the generic point. Also, note that so far we did not use the

assumptions of regularity and properness.
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So p(ηY ) = ηX . The induced map of residue fields

k(ηX)
f(ηX)

// k(ηY )

is a map of k-algebras of transcendence degree 1, and hence, is finite extension of
fields. Now, let x ∈ |X| be a closed point. The integral closure

ÕX,x ⊂ k(ηY )

of the local ring OX,x in k(ηY ) is a discrete valuation ring. So by the valuative
criterion for properness, there exists a unique lifting in the diagram

Spec(k(ηY )) //

��

Y

f

��

Spec(ÕX,x) //

∃!

88

X,

This shows that there exists y ∈ |Y | such that x = p(y) ∈ |X|, as stated. �

Remark 14.4. In the case of 2, we can actually be much more precise about the fibers
Yx at points x ∈ X: namely they all have the same scheme-theoretic cardinality in
the sense that the function X → N defined by

x 7→ dimk(x) OYx(Yx)

is constant. Indeed, f : Y → X, being a map between proper k-schemes, is itself
proper; but 2) also says it has finite fibers. It is a theorem (called “Zariski’s main
theorem”) that any such map is in fact affine. Let A = f∗OY be the quasicoherent
sheaf of algebras on X whose spectrum recovers f . Then, by base-change, OYx(Yx)
identifies with A(x) as a k(x)-algebra, so to prove the desired constancy, it suffices
to show that A is a vector bundle. Being a coherent sheaf, it corresponds locally
to a finitely generated module over an affine, but by regularity every such affine
is a Dedekind domain. Thus, by the characterization of flatness over a Dedekind
domain, it suffices to show that A is OX -torsionfree. However, the map

OX(U) // A(U) = OY (f−1(U))

is injective, because we can compare with the generic point, where we have a map
of fields, hence injective. Thus, the statement follows because OY is torsionfree over
itself, due to Y being integral.

In case (2) of Proposition 14.2, remarkably, the behavior at the generic point
determines everything.

Proposition 14.5. Let S = Spec(k) with k a field, and suppose that g : X → S
and h : Y → S are proper, regular, connected curves. The map from the set of maps

Y X

S

f
//

h
��

g

��

of schemes over S with f non-constant to the set of k-algebra maps k(X)→ k(Y )
that to f assigns the induced map f(η) of residue fields at the generic point η ∈ |X|
is a bijection.
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Proof. In fact, we will only use that Y is regular, that X is reduced and irreducible,
and that g : X → S is proper.

To prove injectivity, let f, f ′ : Y → X be non-constant maps with fg = f ′g = h
such that f(η) = f ′(η) : k(X) → k(Y ). We wish to prove that f = f ′, and it
suffices to prove that this equality holds locally on Y . So it suffices to show that
given U ⊂ X and V ⊂ Y affine open with f(V ), f ′(V ) ⊂ U , then f |V = f ′|V . Thus,
we are reduced to proving that if φ, φ′ : A→ B are maps between integral domains
that induce the same map on quotient fields, then φ = φ′. But B → Frac(B) is
injective, so this is true.

To prove surjectivity, given a map φ : k(X) → k(Y ), we obtain, by spreading
out, a map fV : V → U from a dense open subscheme V ⊂ Y to a dense open
subscheme U ⊂ X such that fV (η) = φ. So we wish to find a filler

V
fV //

��

U

��

Y
f
// X.

Since |Y |r |V | = {y1, . . . , ym} is finite, it suffices, by induction on m ≥ 0, to show
that we can extend fV over y1 ∈ |Y |. Since g : X → S is proper, the valuative
criterion for properness gives us a unique lift in the diagram

Spec(k(Y )) //

��

X

g

��

Spec(OY,y1) //

∃!

99

S,

where the top horizontal map is induced by fV : V → X. By spreading out, we
obtain a map fW : W → X from an open subscheme W ⊂ Y with y1 ∈ |W |, which
generically agrees with fV : V → X. Hence, by shrinking W ⊂ Y , we can arrange
that fW |V ∩W = fV |V ∩W as desired. �

Theorem 14.6. Let k be a field, and let S = Spec(k). The functor from the opposite
of the non-full subcategory of Sch/S spanned by the proper, regular, connected curves
g : X → S and non-constant maps to the full subcategory of CAlg(Ab)k/ spanned by
the finitely generated k-algebras φ : k → F , which are fields of transcendence degree
1, that to a curve g : X → S assigns its function field k → k(X),(

proper, irreducible, regular curves

over S, non-constant maps

)op

//

(
f.g. k-algebras which are fields

of tr. deg. 1, k-algebra maps

)
,

is an equivalence of categories.

Proof. Proposition 14.5 shows that the functor is fully faithful, so it remains to
prove that it is essentially surjective. So let φ : k → F be a finitely generated k-
algebra which is a field extension of transcendence degree 1. We factor φ as the
composition

k // k(T ) // k(T, α1, . . . , αn) = F

of a purely transcendental extension of transcendence degree 1 over k and a finite
algebraic field extension of k(T ). Let R ⊂ F be the sub-k-algebra generated by
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(T, α1, . . . , αn). If d ∈ k[T ] is the product of the denominators of all coefficients of
minimal polynomials of α1, . . . , αn over k(T ), then

k[T ][d−1] // R

is finite, so by Noether normalization, the map

U = Spec(R)
g0 // S = Spec(k)

is a reduced, irreducible curve with function field k(U) = F . Finally, we resolve
singularites and add missing points to obtain a proper, regular, irreducible curve

X
g
// S

with the same function field k(X) = F . �

We now consider the Riemann–Roch problem for curves. So we let k be a field
and S = Spec(k), let f : X → S be a proper, regular, irreducible curve, and let L

be a line bundle on X.

Problem: How to calculate h0(L) = dimkX(L) = dimkH
0(X,L)?

Answer: Try first to understand the Euler characteristic

χ(L) = h0(L)− h1(L) = dimkH
0(X,L)− dimkH

1(X,L).

Why is this easier?

Lemma 14.7. Let f : X → S be as above. If 0→M′ →M→M′′ → 0 is an exact
sequence of coherent OX-modules, then

χ(M′)− χ(M) + χ(M′′) = 0.

Proof. Since X has Krull dimension 1, it follows from “Finite dimensionality” that
the associated long exact sequence in coherent cohomology takes the form

0 // H0(X,M′) // H0(X,M) // H0(X,M′′)

∂ // H1(X,M′) // H1(X,M) // H1(X,M′′) // 0.

Moreover, it follows from “Finiteness for proper maps” that the k-vector spaces in
the sequence all are finite dimensional. The lemma now follows from the general
fact that for a bounded cochain complex C · of finite dimensional k-vector spaces,∑

n∈Z(−1)n dimk(Cn) =
∑
n∈Z(−1)n dimk(Hn(C ·)).

We apply this general fact to the bounded cochain complex given by the long exact
sequence in of coherent cohomology. �

Before stating Riemann–Roch for curves, we need a definition.

Definition 14.8. Let f : X → S be as above. Given a line bundle L on X and a
closed point x ∈ |X|, set L(x) = L⊗ OX(x).

Remark 14.9. Beware that this is not the same as the fiber of L at x, though we
sometimes use the same notation for that! The L(x) defined above is a line bundle
on X, whereas the fiber of L at x is a one-dimensional k(x)-vector space.
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The interpretation is that sections of the line bundle L(x) are meromorphic
sections of the original line bundle L that are regular away from x ∈ |X| and have
at worst a simple pole at x ∈ |X|.

Definition 14.10. The Picard group of a scheme X is the abelian group Pic(X)
given by the set of isomorphism classes of line bundles onX with the group structure
given by tensor product of line bundles.

Theorem 14.11 (Riemann–Roch for curves). Let k be a field and S = Spec(k), and
let f : X → S be a proper, regular, irreducible curve. The exists a unique function

Pic(X)
deg

// Z

with the following properties:

(1) If L ' OX is a trivial line bundle on X, then

deg(L) = 0.

(2) If L is any line bundle L on X and x ∈ |X| a closed point, then

deg(L(x)) = deg(L) + dimk k(x).

Moreover, the following hold:

(a) The degree map deg : Pic(X)→ Z is a group homomorphism.
(b) (Riemann–Roch formula). If L is a line bundle on X, then

χ(L) = χ(OX) + deg(L).

(c) The degree of a line bundle L on X can be calculated easily in terms of local
trivializations, as specified in the proof.

Proof. To show existence (and the Riemann–Roch formula), it suffices to show
that the map that to the class of L assigns χ(L)−χ(OX) satisfies (1) and (2). It is
trivial that it satisfies (1), and to verify (2), we consider the short exact sequence
of coherent OX -modules

0 // Jx // OX // OX/Jx // 0,

where Jx ⊂ OX is the quasicoherent ideal that defines the closed immersion

Spec(k(x))
ix // X.

Being a closed immersion, it is affine, so

Hi(X,OX/Jx) ' Hi(Spec(k(x)),OSpec(k(x))) '

{
k(x) if i = 0,

0 if i > 0,

from which we conclude that

χ(OX/Jx) = dimk(k(x)).

We now apply the exact functor − ⊗ L(x) to the exact sequence of OX -modules
and remember that, by definition, we have OX(x) ' J−1

x , to get

0 // L // L(x) // OX/Jx ⊗ L(x) // 0.

The right-hand term is

ix∗(k(x))⊗ L(x) ' ix∗(k(x)⊗ i∗x(L(x))) ' ix∗(k(x)),
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where the right-hand isomorphism holds, because the k(x)-vector space i∗x(L(x))
is 1-dimensional, and hence, isomorphic to k(x). From Lemma 14.7 and the above
calculation of χ(OX/Jx), we conclude that

χ(L)− χ(L(x)) + dimk(k(x)) = 0,

which shows that L 7→ χ(L)− χ(OX) satisfies (2).

To prove the uniqueness of the degree map and that it is a group homomorphism,
we consider divisors on X, that is, formal sums

D =
∑
x∈|X| nx · x,

where the sum ranges over the closed points of |X|, where nx ∈ Z, and where all but
finitely many of the nx are equal to zero. So the abelian group Div(X) of divisors
on X is the free abelian group spanned by the set of closed points of |X|. To a
divisor D on X, we assign the line bundle14

OX(D) =
⊗

x∈|X| OX(x)⊗nx ,

extending the definition for effective divisors that we made in Definition 9.10. The
interpretation of this line bundle is that sections of OX(D) are meromorphic func-
tions on X, whose pole order at x ∈ |X| is at most nx. If nx is negative, then this
means that the function has a zero at x ∈ |X| of order at least −nx.

By the definition of OX(D), the map

Div(X)
∂ // Pic(X)

that to a divisor D assigns the isomorphism class of OX(D) is a homomorphism of
abelian groups. The key claim is that this map is surjective. Granting this claim,
we complete the proof of the theorem as follows. By induction on

∑
x∈|X| |nx|, we

conclude from (1) and (2) that

deg(OX(D)) =
∑
x∈|X| nx dimk(k(x)),

which proves the uniqueness of the degree map. More precisely, the left-hand side
gives the value of the composite map

Div(X)
∂
// Pic(X)

deg
// Z

on the divisor D =
∑
x∈|X| nx · x. It is evident from this formula that deg ◦ ∂ is

additive, and by the claim that ∂ is surjective, this implies that deg is additive.

It remains to prove the claim. We use a variant of the idea of local trivializations
and transition functions. We first fix a trivialization

L|U
sη
// OX |U

over some dense open subset η ∈ U ⊂ |X|. Next, for every x ∈ |X| r U , we fix a
germ of trivializations near x, that is, an isomorphism of OX,x-modules

Lx
sx // OX,x.

Now, for x ∈ |X|r U , we get meromorphic transition functions

fx = sη · s−1
x ∈ Frac(OX,x)× = k(X)×

14 The assignment D 7→ OX(D) produces a line bundle on X that is well-defined, up to unique

isomorphism, and not merely an isomorphism class of line bundles on X.
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and the family (fx)x∈|X|rU of these transition functions determines L, up to unique
isomorphism. We claim that there exists an isomorphism L ' OX(D) with

D =
∑
x∈|X|rU ordx(fx) · x,

where ordx : k(X) → Z ∪ {∞} is the discrete valuation of OX,x, normalized such
that ordx(πx) = 1 for a generator πx of the maximal ideal mx ⊂ OX,x. To prove
this claim, note that we have a canonical trivialization

OX(D)|U
tη
// OX |U

over U ⊂ |X|, and that for every x ∈ |X|rU , we can use as germ of a trivializations
near x the isomorphism of OX,x-modules

OX(D)x
tx // OX,x,

given by multiplication by π
ordx(fx)
x . But fxπ

− ordx(fx)
x ∈ O×X,x, so the line bundles

determined by the families (fx)x∈|X|rU and (π
ordx(fx)
x )x∈|X|rU are isomorphic. This

proves the claim, and hence, the theorem. �

We give one corollary of Riemann–Roch now; more in the next lecture.

Corollary 14.12. If p : X → Spec(k) is a proper, regular, irreducible curve, then∑
x∈|X| ordx(f) = 0

for all f ∈ k(X)×.

The interpretation is that if φ is a nonzero meromorphic function on X, then its
number of zeros and poles are equal, when counted with multiplicity.

Proof. We have deg(OX) = 0 and we now also calculate this degree using the local
trivializations. As the generic trivialization, we choose

OX |U
f
// OX |U ,

where the map multiplies by f , and where U ⊂ |X| is the complement of the finite
set of point x ∈ |X|, where f has either a non-trivial zero of pole. As the germ of
trivializations near x for x ∈ |X|r U , we choose the identity map

OX,x
id // OX,x.

Now, the recipe for calculating the degree in terms of local trivializations gives

deg(OX) =
∑
x∈|X|rU ordx(f) =

∑
x∈|X| ordx(f),

which proves the corollary. �

Example 14.13. If we apply Corollary 14.12 to the projective line

X = P1
k

p
// Spec(k)

and f ∈ k[T ] ⊂ k(T ) = k(X), then we find that, counted with multiplicity, the
number of zeros of f in A1

k ⊂ P1
k is equal to − ord∞(f) = deg(f).15

15 The identity deg(f) = − ord∞(f) is proved by using that T−1 is a uniformizer at ∞.
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We note that properness is crucial here! If we remove ∞, then there is no hope
to have such a formula. In the proof of Riemann–Roch, properness entered exactly
through the finiteness of coherent cohomology, which made

deg(L) = χ(L)− χ(O)

well-defined.
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15. Applications of Riemann–Roch

Let k be a field, let S = Spec(k), and let

X
f
// S

be a proper, regular, connected curve over S. Last time, we defined the degree

Pic(X)
deg
// Z

of line bundles on X and proved the Riemann–Roch formula

χ(L) = χ(OX) + deg(L).

The degree of a line bundle can be calculated as the number of zeros minus the
number of poles, both counted with multiplicity, of a rational section of L. In the
proof, we assigned a line bundle OX(D) to a divisor

D =
∑
x∈|X|0 nx · x ∈ Div(X)

and showed that its degree is given by

deg(OX(D)) =
∑
x∈|X|0 nx dimk(k(x)).

In this lecture, we will mostly assume that k is algebraically closed so that k(x) = k
for every closed point x ∈ |X|0 ⊂ |X|. To get more out of Riemann–Roch, we
combine it with Serre duality:

Theorem 15.1 (Serre duality). Let k be a field, let S = Spec(k), and let f : X → S
be a proper, regular, connected curve. There exists a canonical line bundle KX on
X and a canonical isomorphism

H1(X,KX)
tr // k

such that for every line bundle L on X and 0 ≤ i ≤ 1, the composite map

Hi(X,L)⊗H1−i(X,L−1 ⊗KX)
∪ // H1(X,KX)

tr // k

is a perfect pairing.

Writing hi(X,L) for the dimension of the k-vector space Hi(X,L) as usual, it
follows from Serre duality that for all 0 ≤ i ≤ 1 = dim(X), we have

hi(X,L) = h1−i(X,L−1 ⊗KX).

In particular, for the Euler characteristic, we obtain the identity

χ(L) = −χ(L−1 ⊗KX).

An important numerical invariant of a curve f : X → S is its genus.

Definition 15.2. Let k be a field, and let S = Spec(k). If f : X → S is a proper,
regular, connected curve, then its genus is the non-negative integer

g = h1(X,OX) = h0(X,KX).
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Remark 15.3. By comparison, we claim that if k is algebraically closed, then

h0(X,OX) = h1(X,KX) = 1.

The k-algebra H0(X,OX) of global sections is a finite dimensional k-algebra, which
is reduced, and any such k-algebra is isomorphic to a finite product

∏
i∈I ki of finite

field extensions ki of k. Since X is connected, there are no non-trivial idempotents
in this k-algebra, so I has cardinality 1. Hence, the k-algebra H0(X,OX) is a finite
field extension of k, so if k is algebraically closed, then the unit map k → H0(X,OX)
is necessarily an isomorphism.

Hence, for a proper, regular, connected curve f : X → S of genus g over an
algebraically closed field, Riemann–Roch takes the form

χ(L) = χ(OX) + deg(L) = 1− g + deg(L).

Moreover, using Serre duality, we find that

deg(KX) = χ(KX)− χ(OX) = 2g − 2.

We wish to have criterion for a line bundle L, which ensures that h1(X,L) = 0,
because for such line bundles, h0(X,L) = χ(L), and hence, the Riemann–Roch
formula will calculate the dimension of the k-vector space L(X) of global sections
of L. By Serre duality, we may instead look for a criterion on line bundles L, which
ensure that h0(X,L) = 0. There is an easy sufficient condition:

Lemma 15.4. Let k be a field, let S = Spec(k), and let f : X → S be a proper,
regular, connected curve. If deg(L) < 0, then h0(X,L) = 0.

Proof. We must show that if h0(X,L) 6= 0, then deg(L) ≥ 0. But we can calculate
the degree using 0 6= s ∈ H0(X,L), and since such an s has only zeros and no poles,
we find that deg(L) ≥ 0. �

Corollary 15.5. Let f : X → S = Spec(k) be a proper, regular, connected curve of
genus g over an algebraically closed field. Let L be a line bundle on X, and suppose
that deg(L) > 2g − 2. In this situation, h1(X,L) = 0, and hence,

h0(X,L) = 1− g + deg(L).

Proof. By Serre duality, h1(X,L) = h0(X,L−1 ⊗KK), and since the degree map
is a group homomorphism, we have

deg(L−1 ⊗KX) = −deg(L) + deg(KX) < −(2g − 2) + 2g − 2 = 0,

so the desired conclusion follows from Lemma 15.4. �

The key takeaway from Corollary 15.5 is that if deg(L) > 2g − 2, then

h0(X,L(x)) = h0(X,L) + 1.

As an application, we consider the set PnS(X) of maps

X
f

//

q

��

PnS
p

��

S

in Sch/S , where S is the prime spectrum of an algebraically closed field k, and
where q is a proper, regular, connected curve. We have identified this set with the
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set of isomorphism classes of tuples (L, s0, . . . , sn), where L is a line bundle on X,
and where s0, . . . , sn ∈ H0(X,L) are global sections such that for every x ∈ |X|,
there exists 0 ≤ i ≤ n such that si(x) 6= 0. (In fact, we proved that the functor
that to X assigns the latter set is representable, and we defined p to be the unique
map, up to unique isomorphism over S, that represents this functor.)

Proposition 15.6. Let q : X → S = Spec(k) be a proper, regular, connected curve
of genus g over the an algebraically closed field. If L is a line bundle on X with
deg(L) > 2g − 1, then there exists a map of S-schemes

X
f
// Ph

0(X,L)−1
S

such that f∗(O(1)) ' L.

Proof. Let (s0, . . . , sn) be a basis of H0(X,L), so that h0(X,L)− 1 = n. We claim
that the tuple (L, s0, . . . , sn) defines the desired map. To prove the claim, it will
suffice to show that for every x ∈ |X|, there exists s ∈ H0(X,L) such that s(x) 6= 0.
Moreover, we may assume that x ∈ |X|0 is closed. Indeed, if y specializes to x and
s(x) 6= 0, then also s(y) 6= 0. So we fix x ∈ |X|0 and consider the sub-line bundle

L(−x) ⊂ L,

whose sections are the sections of L that vanish at x. But deg(L(−x)) > 2g− 2, so
we conclude from the “key takeaway” that

h0(X,L) = h0(X,L(−x)) + 1,

which proves the claim. �

Addendum 15.7. Let q : X → S = Spec(k) be a proper, regular, connected curve
of genus g over an algebraically closed field, and let L is a line bundle on X. Suppose
that deg(L) > 2g. In this situation, the map

X
f
// Ph

0(X,L)−1
S

of schemes over S provided by Proposition 15.6 is a closed immersion.

Proof (Sketch). Let us prove that any such map f is injective on closed points. So
we let x, y ∈ |X|0 be distinct closed points and consider the line bundle L(−x− y).
Since deg(L) > 2g, we conclude as in the proof of Proposition 15.6 that

h0(X,L(−x− y)) = h0(X,L)− 2 = h0(X,L(−x))− 1 = h0(X,L(−y))− 1.

This shows that there exists a section s of L with s(x) = 0 and s(y) 6= 0. Equiva-
lently, that there exists a homogeneous degree one function s in the homogeneous
coordinates of PnS with n = h0(X,L) − 1 such that s vanishes at f(x) but not at
f(y). So f(x) 6= f(y). This shows that f is injective on closed points, but this is not
the same as saying that f is a closed immersion. For example, the map f could look
like the normalization of a cusp. To rule this out, we take x = y and consider the line
bundle L(−2x). The same argument shows that f does not collapse “infinitesimally
close points of x,” and then it must indeed be a closed immersion. �

We express the conclusion of Addemdum 15.7 by saying that L is very ample
line bundle. A line bundle L is ample if L⊗n is very ample for some n ≥ 1.
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Corollary 15.8. Every proper, regular, connected curve over an algebraically closed
field is projective.

Proof. We let e ∈ |X|0 be a closed point and consider the degree N line bundle

L = OX(Ne).

If N > 2g, then Addendum 15.7 shows that there exists a closed immersion

X
f
// Ph

0(X,L)−1
S ,

so q : X → S is projective, as stated. �

Let us make this conclusion explicit in low genus.

Proposition 15.9. If q : X → S = Spec(k) is a proper, regular, connected curve
of genus g = 0 over an algebraically closed field, then there exists an isomorphism

X
f
// P1
S

of schemes over S.

Proof. Let e ∈ |X|0 be a closed point. By the “key takeaway,” we have

h0(X,OX(e)) = h0(X,OX) + 1.

Hence, there exists a rational function x on X with a single pole at e, and this pole
is a simple pole. The triple (OX(e), 1, x) defines a map of S-schemes

X
f
// P1
S ,

which is non-constant, since (1, x) is a linearly independent family in H0(X,OX(e)).
(In fact, we know from Addendum 15.7 that this map is a closed immersion, but
we will not need this fact here.) We consider the fibers

Xy

i′y
//

fy

��

X

f

��

Spec(k(y))
iy
// P1
S

over points y ∈ |P1
S | of the projective line. If y is a closed point, then iy is a closed

immersion, and hence affine, so its base-change i′y is the affine map

Xy ' Spec(f∗iy∗OS)
i′y
// X

defined by the quasi-coherent OX -algebra f∗iy∗OS . But f∗ takes the sequence

0 // OP1
S

1 // OP1
S
(y) // iy∗OS // 0

to the sequence

0 // OX
1 // OX(e) // ie∗OS // 0,

so we conclude that fy is an isomorphism. By Remark 14.4, we conclude that also
the fiber fη at the generic point is an isomorphism. But then Theorem 14.6 shows
that f is an isomorphism. �
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Proposition 15.10. Let q : X → S = Spec(k) be a proper, regular, connected
curve of genus g = 1 over an algebraically closed field. There exists a regular closed
immersion f : X → P2

S with image a cubic curve defined by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Proof (Sketch). Let e ∈ |X|0 be a closed point. We have

h0(X,OX) = h0(X,OX(e)) = 1,

but for N ≥ 1, Riemann–Roch kicks in and shows that

h0(X,OX((N + 1)e)) = h0(X,OX(Ne)) + 1.

Now, let us look at bases for these k-vector spaces.

For N = 0 and N = 1, the family consisting of 1 is a basis of the 1-dimensional
k-vector space H0(X,OX(Ne)).

For N = 2, a basis of the 2-dimensional k-vector H2(X,OX(2e)) is given by the
family (1, x) consisting of 1 and a new rational function x, which has a double pole
at e and is regular away from e.

For N = 3, a basis of the 3-dimensional k-vector space H3(X,OX(3e)) is given
by the family (1, x, y) consisting of 1 and x and a new rational function y, which
has a triple pole at e and is regular away from e.

For N = 4, a basis of the 4-dimensional k-vector space H0(X,OX(4e)) is given
by the family (1, x, y, x2), and for N = 5, a basis of the 5-dimensional k-vector
space H0(X,OX(5e)) is given by the family (1, x, y, x2, xy).

For N = 6, the family (1, x, y, x2, xy, x3, y2) generates the 6-dimensional k-vector
space H0(X,OX(6e)). However, the family has 7 elements, so its elements satisfy a
linear equation, which, by changing x and y, can be written in the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

with a1, a2, a3, a4, a6 ∈ k. �

Remark 15.11. (1) The case g = 0 is misleading: All proper, regular, connected
curves of genus g = 0 over an algebraically closed field are isomorphic. This is not
the case for g > 0. Moreover, two line bundles on such a curve are isomorphic, if
they have the same degree. This is also not true for g > 0. For instance, if q : X → S
is a proper, regular, connected curve of genus g = 1 over an algebraically closed
field, and if e ∈ |X| is a closed point, then the subgroup

Pic0(X) ⊂ Pic(X)

consisting of the isomorphism classes of line bundles of degree 0 is bijective to the
set |X|0 of closed points in X via the map that to x ∈ |X|0 assigns the class of the
line bundle OX(x − e). Since Pic0(X) is an abelian group, this bijection defines a
structure of abelian group on |X|0 for which e ∈ |X| is the zero element.

(2) The case g = 1 is also misleading: For g > 1 and 2 ≤ N ≤ 2g − 2, the values
of h0(X,OX(Ne)) depend on X!
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