

## Algebra I/Introduction to Algebra V

Due: Please upload solutions to TACT by Tuesday, June 27, 2023.

**Problem 1.** Let  $k$  be an algebraically closed field, and let  $G$  be a finite group, whose order is not divisible by the characteristic of  $k$ . Let  $H \subset G$  be a subgroup, and let  $(V, \sigma)$  be a finite dimensional  $k$ -linear representation of  $H$ . Given  $a \in G$ , we define  $H^a \subset G$  be the subgroup  $H^a = aHa^{-1}$ , and we define  $(V, \sigma^a)$  to be the representation of  $H^a$  given by  $\sigma^a(g) = \sigma(a^{-1}ga)$  for  $g \in H^a$ .

Suppose that  $\sigma$  is irreducible. Show that the induced representation  $\text{Ind}_H^G(\sigma)$  is irreducible if and only if for all  $a \in G$  such that  $a \notin H$ ,

$$\dim_k \text{Hom}(\text{Res}_{H \cap H^a}^H(\sigma), \text{Res}_{H \cap H^a}^{H^a}(\sigma^a)) = 0.$$

[Hint: By Schur's lemma, a finite dimensional  $k$ -linear representation  $\pi$  of  $G$  is irreducible if and only if  $\dim_k \text{Hom}(\pi, \pi) = 1$ .]

**Problem 2.** Let  $k$  be a field, let  $G$  be a finite group, and let  $H \subset G$  be a subgroup. Let  $\sigma$  be a finite dimensional  $k$ -linear representation of  $H$ , let  $\pi = \text{Ind}_H^G(\sigma)$  be the induced  $k$ -linear representation of  $G$ , and let  $\chi_\sigma: H \rightarrow k$  and  $\chi_\pi: G \rightarrow k$  be their characters. Given  $g \in G$ , we denote by

$$(G/H)^g = \{aH \in G/H \mid gaH = aH\} \subset G/H$$

the subset fixed by left multiplication by  $g$ . Show that

$$\chi_\pi(g) = \sum_{aH \in (G/H)^g} \chi_\sigma(a^{-1}ga).$$

Note that the summand  $\chi_\sigma(a^{-1}ga)$  corresponding to  $aH \in (G/H)^g$  only depends on  $aH$  and not on the choice of  $a \in aH$ , since  $\chi_\sigma: H \rightarrow k$  is a class function.

[Hint: One possibility is to use that  $\text{Ind}_H^G = f_* \simeq p_* \circ i_*$  and that  $i_* \simeq r^*$ , where  $r: [G \setminus (G/H)] \rightarrow BH$  is a quasi-inverse of  $i: BH \rightarrow [G \setminus (G/H)]$ .]