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Preface

Basic idea: If k is a field and V is a k-vector space, then the set of k-linear
automorphisms of V form a group GL(V ) under composition. The basic idea is to
study a general group G by considering group homomorphisms

G
π // GL(V ).

We think of g ∈ G as being complicated and of π(g) ∈ GL(V ) as being easier.
Indeed, we can use the methods of linear algebra to study π(g) ∈ GL(V ).

Textbook: E. B. Vinberg, Linear representations of groups, Translated from the
1985 Russian original by A. Iacob. Reprint of the 1989 translation. Modern Birkhäuser
Classics. Birkhäuser/Springer, New York, 2010.ISBN: 978-3-0348-0062-4.

Schedule: The plan is to cover one chapter in the textbook each week, beginning
with Chapter 0.
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1. Basic definitions

Let k be a field (typically k = R or k = C), and let V be a k-vector space. The
group of k-linear automorphisms of V is given by the set

GL(V ) = {f : V → V | f is k-linear and an isomorphism}

with group structure given by the map

GL(V )×GL(V )
◦ // GL(V )

that to (f, g) assigns f ◦ g.

Definition 1.1. A k-linear representation of a group G is a pair (V, π) of a k-vector
space V and a group homomorphism π : G→ GL(V ).

So elements g ∈ G are represented by k-linear operators π(g) : V → V such that

π(g · h) = π(g) ◦ π(h)

and such that

π(e) = idV .

Here e ∈ G is the identity element.

Suppose that dimk(V ) = n <∞. A choice of a basis (e1, . . . , en) of V determines
an isomorphism of groups

GL(V )
α // GLn(k)

that to the k-linear automorphism f : V → V assigns the invertible n × n-matrix
α(f) = (aij), whose entries aij ∈ k are the unique solutions to the equations

f(ej) = e1a1j + e2a2j + · · ·+ enanj

for 1 ≤ j ≤ n. Hence, a k-linear representation π : G → GL(V ) determines and is
determined by the composite group homomorphism

G
π // GL(V )

α // GLn(k).

We stress that the group isomorphism α depends on the choice of basis! We say
that the composite map α ◦ π : G→ GLn(k) is a matrix representation of G.

Definition 1.2. A matrix representation of a group G over a field k is a group
homomorphism π : G→ GLn(k).

In order to do calculations, it can be convenient to choose a basis of a vector
space and calculate in coordinates. However, for theoretical considerations, it is
always best to avoid making a choice of basis.

If we study mathematical objects given by sets equipped with some structure,
then we should at the same time study the maps between such objects that preserve
this structure. If V1 and V2 are k-vector spaces, then the maps f : V1 → V2 that
preserve the structure of a k-vector space are the k-linear maps. And if X1 and X2

are topological spaces, then the maps f : X1 → X2 that preserve the structure of a
topological space are the continuous maps. The maps that preserve the structure
of a k-linear representation of a fixed group G, which we now define, are called the
intertwining (or equivariant) maps.
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Definition 1.3. If (V1, π1) and (V2, π2) are k-linear representations of G, then an
intertwining map f : (V1, π1)→ (V2, π2) is a k-linear map f : V1 → V2 such that

f(π1(g)(x)) = π2(g)(f(x))

for all g ∈ G and x ∈ V1.

If (V, π) is a k-linear representation of G, then we will sometime abbreviate

gx = π(g)(x).

So if both (V1, π1) and (V2, π2) are representations of the same group G, then a
k-linear map f : V1 → V2 is intertwining if and only if

f(gx) = gf(x)

for all g ∈ G and x ∈ V1.

Definition 1.4. Let (V1, π1) and (V2, π2) be k-linear representations of a group G.
An intertwining map f : (V1, π1) → (V2, π2) is an isomorphism, if there exists an
intertwining map g : (V2, π2)→ (V1, π1) such that g ◦ f = idV1

and f ◦ g = idV2
.

We show in the problem set that an intertwining map f : (V1, π1) → (V2, π2) is
an isomorphism if and only if the map f : V1 → V2 is a bijection.

Remark 1.5. Let (V1, π1) and (V2, π2) be two k-linear representations of a group G.
We say that (V1, π1) and (V2, π2) are isomorphic and write (V1, π1) ' (V2, π2), if
there exists an isomorphism f : (V1, π1) → (V2, π2). However, note that it is much
better to know that “the map f : (V1, π1) → (V2, π2) is an isomorphism” than it
is to know that “(V1, π1) and (V2, π2) are isomorphic.” Indeed, in the former case,
the given isomorphism f : (V1, π1) → (V2, π2) tells us *how* to translate between
the two representations, whereas in the latter case, we only know that, in principle,
such a translation is possible.

We consider examples of representations and begin with the group

G = (R,+)

of real numbers under addition. Given a ∈ R, the exponential function

G
πa // GL1(R)

defined by πa(t) = eat is a matrix representation. Indeed, we have

πa(t+ u) = ea(t+u) = eat+au = eateau = πa(t)πa(u)

and

πa(0) = ea0 = e0 = 1,

as required. This begs the question as to whether every 1-dimensional representation
π : G→ GL1(R) of G is of this form. The answer is “Yes,” provided that we require
the map π to be continuous. We prove the following weaker result:

Lemma 1.6. Let G = (R,+) be the additive group of real numbers. For every
differentiable 1-dimensional representation π : G → GL1(R), there exists a unique
a ∈ R such that π = πa : G→ GL1(R), namely, a = π′(0).
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Proof. We will assume the stronger hypothesis that π be differentiable instead of
continuous. That π is a representation means that π(0) = 1 and that for all t, u ∈ R,

π(t+ u) = π(t) · π(u).

We differentiate the latter equation with respect to u at u = 0, which gives the
ordinary differential equation

π′(t) = π(t) · π′(0).

Every solution to the ODE is of the form π(t) = Ceat, where a = π′(0) ∈ R, and
the initial condition π(0) = 1 implies that C = 1. This proves the lemma in the
case, where π is differentiable. �

We let Mn(k) be the set of n×n-matrices with entries in k, considered as a ring
under matrix addition and matrix multiplication.1 If k = R or k = C, then we have
the matrix exponential of A ∈Mn(k) defined by the series

eA =
∑
n≥0

1

n!
An ∈Mn(k),

which converges in operator norm, because

‖ 1

n!
An‖ ≤ 1

n!
‖A‖n ≤ e‖A‖.

If AB = BA, then eA+B = eAeB , but this is generally *not* true without this
assumption! In particular, the map

G = (R,+)
πA // GLn(k)

defined by πA(t) = etA is a group homomorphism, and hence, an n-dimensional
matrix representation of G, where k = R or k = C.

Lemma 1.7. If π : G = (R,+)→ GLn(k) is a differentiable real or complex repre-
sentation, then π = πA : G→ GLn(k) with A = π′(0) ∈Mn(k).

Proof. As before, we obtain the ordinary differential equation

π′(t) = π(t) · π′(0)

with the initial condition π(0) = E ∈Mn(k), and it has π = πA with A = π′(0) as
its unique solution. �

Example 1.8. We consider

A =

(
0 −1
1 0

)
∈M2(R)

and calculate

An =

{
(−1)mE if n = 2m is even

(−1)mA if n = 2m+ 1 is odd,

1 The book writes Ln(k) instead of Mn(k).
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which shows that

etA =
∑

n ≥ 0, even

1

n!
(tA)n +

∑
n ≥ 0, odd

1

n!
(tA)n

=
∑
m≥0

(−1)mt2m

(2m)!
E +

∑
m≥0

(−1)mt2m+1

(2m+ 1)!
A

= cos t · E + sin t ·A

=

(
cos t − sin t
sin t cos t

)
.

So we conclude that the map π : G = (R,+)→ GL2(R) defined by

π(t) =

(
cos t − sin t
sin t cos t

)
is a 2-dimensional real representation of G.

In general, if (V, π) is a k-linear representation of a group G, then we call

ker(π) = {g ∈ G | π(g) = idV } ⊂ G
the kernel of π. It is a normal subgroup ofG. The representation (V, π) will obviously
not be of any help to study the elements in ker(π) ⊂ G. We recall that ker(π) = {e}
if and only if π : G→ GL(V ) is injective.

Definition 1.9. A k-linear representation (V, π) of a group G is faithful if the
group homomorphism π : G→ GL(V ) is injective.

Example 1.10. (1) The representation πa : (R,+)→ GL1(R) defined by πa(t) = eat

is faithful if and only if a 6= 0.

(2) The representation π : (R,+)→ GL2(R) defined by

π(t) =

(
cos t − sin t
sin t cos t

)
is not faithful, since ker(π) = 2πZ ⊂ R.

Example 1.11. We next let G = Sn be the (finite) symmetric group on n letters. It
is defined to be the set of all bijections

{1, 2, . . . , n} σ // {1, 2, . . . , n}

equipped with the group structure

Sn × Sn
◦ // Sn

that to (σ, τ) assigns the composite bijection σ ◦ τ .

If k is any field, then we define the n-dimensional matrix representation

Sn
P // GLn(k)

to be the map that to σ ∈ Sn assigns the permutation matrix2

P (σ) =
(
eσ(1) eσ(2) . . . eσ(n)

)
∈ GLn(k).

2 One much check that P (σ ◦ τ) = P (σ) · P (τ) and that P (e) = E, which is not difficult, but

we will give a high-tech proof later in Example 1.13.
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Clearly, the kernel of P is trivial, so P : Sn → GLn(k) is a faithful representation.
We recall that the determinant defines a group homomorphism

GLn(k)
det // GL1(k),

and therefore, the composite map

Sn
P // GLn(k)

det // GL1(k)

is a 1-dimensional matrix representation of Sn. It is called the sign representation,
since the sign of σ, by definition, is given by

sgn(σ) = det(P (σ)) ∈ {±1} ⊂ GL1(k).

If 2 6= 0 in k, then the kernel ker(Sn) = An ⊂ Sn is the alternating group on n
letters. In particular, the sign representation is not faithful, except in trivial cases.

We next consider the regular representation. If X is any set and k is a field, then
we view the set of all maps f : X → k as a k-vector space k[X] with vector sum
and scalar multiplication defined by

(f + g)(x) = f(x) + g(x)

(a · f)(x) = a · f(x).

The k-linear representation (k[G], L) of a group G, where L : G→ k[G] is given by

L(g)(f)(x) = f(g−1x),

is called the left regular representation, and the k-linear representation (k[G], R) of
G, where R : G→ GL(k[G]) is given by

R(g)(f)(x) = f(xg),

is called the right regular representation. We check that (k[G], L) and (k[G], R) are
representations of G. First, we clearly have

L(e) = idk[G] = R(e),

and second, the calculations

L(gh)(f)(x) = f((gh)−1x) = f(h−1g−1x) = L(h)(f)(g−1x)

= L(g)(L(h)(f))(x) = (L(g) ◦ L(h))(f)(x)

R(gh)(f)(x) = f(xgh) = R(h)(f)(xg)

= R(g)(R(h)(f))(x) = (R(g) ◦R(h))(f)(x)

show that L(gh) = L(g)◦L(h) and R(gh) = R(g)◦R(h) as required. The left regular
representations give rise to a representation on a subspace V ⊂ k[X], provided that
V is G-invariant in the sense that L(g)(V ) ⊂ V for all g ∈ G. Similarly, for the
right regular representation.

Example 1.12. If G = (R,+), then we have

L(t)(f)(x) = f(−t+ x) = f(x− t),

so the following subspaces are G-invariant:

V = {f ∈ k[G] | f is a polynomial function} ⊂ k[G],

W = span(cos, sin) ⊂ R[G].
6



In the case of W ⊂ R[G], we have

L(t)(cos)(x) = cos(−t+ x) = cos t cosx+ sin t sinx

L(t)(sin)(x) = sin(−t+ x) = − sin t cosx+ cos t sinx,

so we recover the representation π : G→ GL2(R) given by

π(t) =

(
cos t − sin t
sin t cos t

)
.

Finally, we consider premutation representations. Let X be any set, and let S(X)
be the group of all bijections σ : X → X with the composition group structure
defined by (σ ◦ τ)(x) = σ(τ(x)). For example, the group Sn = S({1, 2, . . . , n}) is
the symmetric group on n letters. If k is any field, then we may define a k-linear
representation (k[X], π) of S(X) by 3

π(σ)(f)(x) = f(σ−1(x)).

A left action by a group G on a set X is defined to be a group homomorphism
ρ : G→ S(X). Thus, given a left action by G on X, the composite map

G
ρ
// S(X)

π // GL(k[X])

defines a k-linear representation (k[X], π ◦ρ) of the group G. We say that a k-linear
representation of this form is a permutation representation.

Example 1.13. The identity map ρ : Sn → S({1, 2, . . . , n}) is a left action, where

ρ(σ)(i) = σ(i).

So we obtain the permutation representation

Sn GL(k[{1, 2, . . . , n}]).
π=π◦ρ

//

Let us calculate the corresponding matrix representation with respect to the basis

(e∗1, e
∗
2, . . . , e

∗
n)

of k[{1, 2, . . . , n}], where e∗i : {1, 2, . . . , n} → k is the map defined by

e∗i (j) =

{
1 if i = j,

0 if i 6= j.

By the definition of π, we have

π(σ)(e∗i )(j) = e∗i (σ
−1(j))

=

{
1 if i = σ−1(j)

0 if i 6= σ−1(j)

=

{
1 if σ(i) = j

0 if σ(i) 6= j

= e∗σ(i)(j),

which shows that

π(σ)(e∗i ) = e∗σ(i).

3 The book writes σ∗(f) instead of π(σ)(f).
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Hence, we conclude that the matrix that represents the k-linear map

k[{1, 2, . . . , n}] k[{1, 2, . . . , n}]
π(σ)

//

with respect to the basis (e∗1, e
∗
2, . . . , e

∗
n) is the permutation matrix

P (σ) =
(
eσ(1) eσ(2) . . . eσ(n)

)
∈ GLn(k).

So we recover the matrix representation

Sn
P // GLn(k)

from Example 1.11. In particular, we may conclude that the identities

P (σ ◦ τ) = P (σ) · P (τ)

and P (e) = E hold.
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2. Complete reducibility and semisimplicity

In this lecture, we define semisimple representations and we prove three theorems
that we will use repeatedly to show that various representations are semisimple. We
apply these theorems to three important examples, all of which are representations
of the group G = GL(V ) with V a finite dimensional k-vector space.

Definition 2.1. Let (V, π) be a k-linear representation of a group G. A subspace
U ⊂ V is said to be π-invariant if for all g ∈ G and u ∈ U , π(g)(u) ∈ U .

We note that the subspaces U = {0} ⊂ V and U = V ⊂ V always are π-invariant.

Example 2.2. Let G = (R,+) be the additive group of real numbers, and let
(R[G], L) be the left regular representation of G on the real vector space R[G]
of all functions f : R→ R, which, we recall, is defined by

L(t)(f)(x) = f(−t+ x).

We say that a function f : R→ R of the form

f(x) =
∑

0≤n≤d

anx
n

with a0, a1, . . . , ad ∈ R is a polynomial function of degree ≤ d, and we claim that the
subspace Ud ⊂ R[G] of polynomial functions of degree ≤ d is L-invariant. Indeed,
for t ∈ G and f : R→ R as above, we calculate that

L(t)(f)(x) = f(−t+ x) =
∑

0≤n≤d

an(−t+ x)n

=
∑

0≤n≤d

an(
∑

0≤i≤n

(−t)n−ixi) =
∑

0≤i≤d

(
∑
i≤n≤d

an(−t)n−i)xi,

which shows that L(t)(f) ∈ Ud, as required.

Remark 2.3. Suppose that (V, π) is a k-linear representation of a group G with
dimk(V ) <∞, and let U ⊂ V be a subspace. We first choose a basis (e1, . . . , em) of
U , and then extend it to a basis (e1, . . . , em, em+1, . . . , em+n) of V . In this situation,
the subspace U ⊂ V is π-invariant if and only if the matrix that represents the k-
linear map π(g) : V → V with respect to this basis is of the form(

A(g) B(g)

O D(g)

)
with A(g) ∈Mm(k), B(g) ∈Mm,n(k), and D(g) ∈Mn(k).

We recall from algebra that if V is a k-vector space and U ⊂ V is a subspace,
then the quotient vector space V/U is defined to be the set

V/U = {v + U ⊂ V | v ∈ V }

equipped with the vector sum (v + U) + (v′ + U) = (v + v′) + U and the scalar
multiplication (v + U) · a = (v · a) + U . Moreover, a k-linear map f : V → V with
the property that f(U) ⊂ U gives rise to a k-linear map

V/U
f/U

// V/U
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defined by (f/U)(v +U) = f(v) +U . If f1, f2 : V → V are two such maps, then we
have (f1 ◦ f2)/U = (f1/U) ◦ (f2/U). Hence, if GL(V,U) ⊂ GL(V ) is the subgroup
of k-linear automorphisms f : V → V such that f(U) ⊂ U , then the map

GL(V,U) GL(V/U)
−/U

//

that to f : V → V assigns f/U : V/U → V/U is a group homomorphism.4

Definition 2.4. Let (V, π) is a k-linear representation of a group G, and let U ⊂ V
is a π-invariant subspace.

(1) The representation (U, πU ), where πU : G→ GL(U) is defined by

πU (g)(u) = π(g)(u)

for u ∈ U , is called the subrepresentation of (V, π) on U .
(2) The representation (V/U, πV/U ), where πV/U : G→ GL(V/U) is defined by

πV/U (g)(v + U) = π(g)(v) + U

for v + U ∈ V/U , is called the quotient representation of (V, π) on V/U .

It is common to abuse language and simply say that πU is a subrepresentation
of π and that πV/U is a quotient representation of π.

Remark 2.5. Let (V, π) be a k-linear representation of a group G, and let U ⊂ V be
a π-invariant subspace. Suppose that dimk(V ) <∞. If we choose a basis (e1, . . . em)
of U and extend it to a basis (e1, . . . , em, em+1, . . . , em+n) of V , then the family
(em+1 + U, . . . , em+n + U) is a basis of V/U , and moreover, the matrices that
represent the maps πU (g) : U → U and πV/U (g) : V/U → V/U with respect to
these bases are A(g) and D(g), if π(g) : V → V is represented by the matrix(

A(g) B(g)

O D(g)

)
with respect to the basis (e1, . . . , em, em+1, . . . , em+n).

Definition 2.6. A k-linear representation (V, π) of a group G is irredicible (or
simple) if V 6= {0} and if the only π-invariant subspaces of V are {0} ⊂ V and
V ⊂ V .5

We note the formal similarity of the definition of an irreducible representation
to the definition of a prime number.

Example 2.7. (1) Every 1-dimensional representation if irreducible. In particular,
the trivial representation of G on k given by the constant map π : G→ GL(k) that
to every g ∈ G assigns idk ∈ GL(k) is irreducible.

(2) The identity representation π = idGL(V ) : G = GL(V )→ GL(V ) is irreducible.

(3) The 2-dimensional representation π : G = (R,+)→ GL2(R) given by

π(t) =

(
cos t − sin t
sin t cos t

)
4 It is also common to write f̄ instead of f/U .
5 The assumption V 6= {0} is missing in the book.
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is irreducible. Indeed, the map π(t) : R2 → R2 is given by counterclockwise rotation
through t radians around the origin, so it leaves no line through the origin invariant,
unless t ∈ ker(π) = 2πZ.

(4) Let G = (R,+), and let (Ud, πUd) be the subrepresentation of the left regular
representation (R[G], L) from Example 2.2. If d ≥ 1, then πUd is not irreducible,
since any Ue ⊂ Ud with 0 ≤ e < d is πUd -invariant and {0} $ Ue $ Ud.

(5) Let G = Sn be the symmetric group on n letters, and let π : G → GLn(k) be
the standard permutation representation on V = kn. The subspaces

V0 = {x ∈ V |
∑

1≤i≤n xi = 0} ⊂ V
V1 = k · (1, 1, . . . , 1) ⊂ V

are π-invariant subspaces of dimension n−1 and 1, respectively. Moreover, if char(k)
does not divide n, then V1 ∩ V0 = {0}, so in this case, the intertwining map

V0 ⊕ V1
// V

induced by the canonical inclusions is an isomorphism. We claim that both the
subrepresentations π0 = π|V0

and π1 = π|V1
are irreducible. This is clear for π1,

since dimk(V1) = 1. To prove that also π0 is irreducible, we let {0} 6= U ⊂ V0 be a
π0-invariant subspace and prove that U = V0. We choose a nonzero vector

x =
∑

1≤i≤n eixi ∈ U.

Since x /∈ V1, the coordinates xi are not all equal, and since U ⊂ V0 is π0-invariant,
we may assume that x1 6= x2. But then

π0((12))(x)− x = (e1 − e2)(x2 − x1) ∈ U,

so e1− e2 ∈ U . Again, since U ⊂ V0 is π0-invariant, it follows that ei− ej ∈ U , for
all 1 ≤ i < j ≤ n. But this shows that

V0 = spank(ei − ej | 1 ≤ i < j ≤ n) ⊂ U,

so we conclude that U = V0. Hence, π0 is irreducible as claimed.

Definition 2.8. A k-linear representation (V, π) of a group G is completely re-
ducible if for every π-invariant subspace U ⊂ V , there exists a π-invariant subspace
W ⊂ V such that the map induced by the canonical inclusions

U ⊕W // V

is an isomorphism.

If U,W ⊂ V are as in the definition, then we say that W ⊂ V is a π-invariant
complement of U ⊂ V . We note, in this situation, that the composition

W
i
// V

p
// V/U

of the canonical inclusion and the canonical projection is a k-linear isomorphism,
which intertwines between πW and πV/U . We also remark that if a π-invariant
complement W ⊂ V of U ⊂ V exists, then it is typically *not* unique.

Remark 2.9. If (V, π) is a k-linear representation of a group G with dimk(V ) <∞,
then a π-invariant subspace U ⊂ V admits a π-invariant complement if and only
if we can find bases (e1, . . . , em) of U and (e1, . . . , em, em+1, . . . , em+n) of V such

11



that for all g ∈ G, the matrix that represents π(g) : V → V with respect to the
latter basis is a block matrix (

A(g) O

O D(g)

)
.

Example 2.10. We consider two representations (R2, πA) of the form

G = (R,+)
πA // GL2(R)

where πA(t) = etA with A ∈M2(R).

We first let

A =

(
0 1
0 0

)
.

Since A2 = O, we have

πA(t) = etA = E + tA =

(
1 t
0 1

)
.

It follows that the subspace

U = spanR

(
1
0

)
⊂ R2,

is πA-invariant but has no πA-invariant complement. Therefore, the representation
πA is not completely reducible.

We next let

A =

(
1 1
0 0

)
so that A2 = A. It follows that

πA(t) = etA = E + (et − 1)A =

(
et et − 1
0 1

)
.

In this case, the same subspace

U = spanR

(
1
0

)
⊂ R2

is πA-invariant, but it now has the πA-invariant complement

W = spanR

(
1
−1

)
⊂ R2.

Moreover, the subspaces U,W ⊂ V = R2 are the only 1-dimensional πA-invariant
subspaces, so we conclude that πA is completely reducible; compare Theorem 2.13.

We now prove three theorems that we will use repeatedly. The theorems are
listed as Theorem 1, 2, and 3 in Chapter 1 of the book.

Theorem 2.11. Let (V, π) be a k-linear representation of a group G, and let U ⊂ V
be a π-invariant subspace. If π is completely reducible, then so is πU .
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Proof. Let U1 ⊂ U be a πU -invariant subspace. We must show that U1 ⊂ U admits
a πU -invariant complement W1 ⊂ U . Now, since U1 ⊂ V is π-invariant, there exists,
by the assumption that π is completely reducible, a π-invariant subspace W ⊂ V
such that the map induced by the canonical inclusions

U1 ⊕W // V

is an isomorphism. But then

U = (U1 +W ) ∩ U = (U1 ∩ U) + (W ∩ U) = U1 + (W ∩ U),

so W1 = W ∩ U ⊂ U is a πU -invariant subspace, and the map

U1 ⊕W1
// U

induced by the canonical inclusions is an isomorphism. This shows that W1 ⊂ U is
a πU -complement of U1 ⊂ U as desired. �

Theorem 2.12. Let (V, π) be a completely reducible k-linear representation of a
group G with dimk(V ) < ∞. There exists π-invariant subspaces V1, . . . , Vm ⊂ V
such that the map induced by the canonical inclusions

V1 ⊕ · · · ⊕ Vm // V

is an isomorphism and such that πV1
, . . . , πVm are irreducible.

Proof. We argue by induction on n = dimk(V ). If n = 0, then the statement is
trivial, so we assume, inductively, that the statement has been proved for n < r
and prove it for n = r. We claim that there exists a π-invariant subspace V1 ⊂ V
such that πV1 is irreducible. Granting the claim, there exists, by the assumption
that π is completely reducible, a π-invariant complement W ⊂ V of V1 ⊂ V , and
since dimk(V1) ≥ 1, we have

dimk(W ) = dimk(V )− dimk(V1) < r.

So by the inductive hypothesis, there exist πW -invariant subspaces V2, . . . , Vm ⊂W
such that the map induced by the canonical inclusions

V2 ⊕ · · · ⊕ Vm // W

is an isomorphism and such that πV2 , . . . , πVm are irreducible. It follows that the
map induced by the canonical inclusions

V1 ⊕ V2 ⊕ · · · ⊕ Vm // V

is an isomorphism and the subrepresentations πV1 , πV2 , . . . , πVm all are irreducible,
which proves the induction step. It remains to prove the claim. The set S of nonzero
π-invariant subspaces U ⊂ V is partially ordered under inclusion. It is nonempty,
since V ∈ S, and it has a minimal element, since dimk(V ) = r < ∞. Let V1 ∈ S
be such a smallest element.6 If {0} 6= U ⊂ V1 is a πV1

-invariant subspace, then we
necessarily have U = V1, since otherwise U ∈ S is smaller than V1 ∈ S. This shows
that πV1 is irreducible, which proves the claim. �

6 In general, a minimal element V1 ∈ S is not unique.
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Theorem 2.13. Let (V, π) be a k-linear representation of a group G, and suppose
that there exist π-invariant subspaces V1, . . . , Vm ⊂ V such that

V = V1 + · · ·+ Vm

and such that πV1
, . . . πVm are irreducible. If U ⊂ V is a π-invariant subspace, then

there exist {i1, . . . , ip} ⊂ {1, . . . ,m} such that the map

U ⊕ Vi1 ⊕ · · · ⊕ Vip // V

induced by the canonical inclusions is an isomorphism. In particular, π is completely
reducible.

Proof. We let S be the set of subsets {i1, . . . , ip} ⊂ {1, . . . ,m} with the property
that the map induced by the canonical inclusions

U ⊕ Vi1 ⊕ · · · ⊕ Vip // V

is injective. The set S is partially ordered under inclusion. It is nonempty, since
∅ ∈ S, and it is finite, since there are only finitely many subsets of {1, . . . ,m},
and therefore, it has a maximal element. So we let {i1, . . . , ip} ∈ S be a maximal
element and prove that map induced by the canonical inclusions

U ⊕ Vi1 ⊕ · · · ⊕ Vip // V

is an isomorphism. By the definition of S, we know that the map is injective, so we
only need to show that the map is surjective, or equivalently, that

V = U + Vi1 + · · ·+ Vip .

Moreover, since V = V1 + · · ·+ Vm, it suffices to show that

Vi ⊂ U + Vi1 + · · ·+ Vip

for all 1 ≤ i ≤ m. If i ∈ {i1, . . . , ip}, then there is nothing to prove, so suppose that
i /∈ {i1, . . . , ip}. We consider the maps

U ⊕ Vi1 ⊕ · · · ⊕ Vip ⊕ Vi // (U + Vi1 + · · ·+ Vip)⊕ Vi // V

induced by the canonical inclusions. Since {i1, . . . , ip} ∈ S, the left-hand map is an
isomorphism, and since {i1, . . . , ip} ∈ S is maximal, the composite map is *not*
injective, so we conclude that the right-hand map is not injective. Therefore, its
kernel, which is equal to

(U + Vi1 + · · ·+ Vip) ∩ Vi ⊂ Vi
is nonzero. But πVi is irreducible, so this implies that

(U + Vi1 + · · ·+ Vip) ∩ Vi = Vi,

so Vi ⊂ U + Vi1 + · · ·+ Vip as desired. �

Remark 2.14. A representation (V, π) is defined to be semisimple, if there exists a
finite number of π-invariant subspaces V1, . . . , Vm ⊂ V such that the map

V1 ⊕ · · · ⊕ Vm // V

induced by the canonical inclusions is an isomorphism and such that each of the
subrepresentations πVi is irreducible. Thus, Theorems 2.12 and 2.13 shows that
a finite dimensional representation is semisimple if and only if it is completely
reducible.
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Corollary 2.15. Let (V, π) be a k-linear representation of a group G, and let
U ⊂ V be a π-invariant subspace. If dimk(V ) <∞ and if π is completely reducible,
then also the quotient representation πV/U is completely reducible.

Proof. By Theorem 2.12, there exists π-invariant subspaces V1, . . . , Vm ⊂ V such
that the map induced by the canonical inclusions

V1 ⊕ · · · ⊕ Vm // V

is an isomorphism and such that each πVi is irreducible. We let V i ⊂ V/U be the
image of the composition

Vi // V // V/U

of the canonical inclusion and the canonical projection and note that V i is zero if
and only if Vi ⊂ U . So let S = {i1, . . . , ip} ⊂ {1, . . . ,m} be the subset consisting
those i ∈ {1, . . . ,m} for which Vi 6⊂ U . The subspace Vi ∩ U ⊂ Vi is πVi -invariant,
so if i ∈ S, then Vi ∩ U = {0}, because πVi is irreducible. Therefore, if i ∈ S, then
the canonical map Vi → V i is an isomorphism. This shows that the πV/U -invariant
subspaces V i1 , . . . , V ip ⊂ V/U satisfy the hypothesis of Theorem 2.13, we conclude
that πV/U is completely reducible, as stated. �

We consider three examples, in all of which G = GL(V ) with V a k-vector space
of finite dimension n. We first consider the k-vector space Endk(V )7 of all k-linear
maps f : V → V with vector sum and scalar multiplication defined by

(f1 + f2)(v) = f1(v) + f2(v)

(a · f)(v) = a · f(v).

We consider the representation of G on Endk(V ) by left multiplication:

Proposition 2.16. Let V be a k-vector space of finite dimension n, and define

G = GL(V )
λ // GL(Endk(V ))

by λ(g)(f) = g ◦ f . The representation (Endk(V ), λ) is completely reducible.

Proof. We choose a basis (v1, . . . ,vn) of V and define

Lj = {f ∈ Endk(V ) | f(vi) = 0 for i 6= j} ⊂ Endk(V ).

It is a λ-invariant subspace. Indeed, if g ∈ G and f ∈ Lj , then

λ(g)(f)(vi) = g(f(vi)) = 0

for i 6= j, because g is k-linear, so λ(g)(f) ∈ Lj . Moreover, the map

Lj
hj
// V

defined by hj(f) = f(vj) is an isomorphism. It is also intertwining between λ and
the identity representation of G on V . Indeed,

hj(λ(g)(f)) = hj(g ◦ f) = (g ◦ f)(vj) = g(f(vj)) = id(g)(f(vj)) = id(g)(hj(f)).

7 The book writes L(V ) instead of Endk(V ).
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Thus, hj : (Lj , λLj )→ (V, id) is an isomorphism, and since (V, id) is irreducible, so
is (Lj , λLj ). Finally, the map induced by the canonical inclusions

L1 ⊕ · · · ⊕ Ln // Endk(V )

is an isomorphism, since every f ∈ Endk(V ) can be written uniquely as

f = f1 + · · ·+ fn

with fj ∈ Endk(V ) defined by

fj(vi) =

{
f(vj) if i = j

0 if i 6= j.

Hence, Theorem 2.13 shows that (Endk(V ), λ) is completely reducible, as stated.
�

We next consider the adjoint representation of G on Endk(V ). It is an example of
the adjoint representation Ad: G→ GL(g) of a reductive group on its Lie algebra.

Proposition 2.17. Let V be a k-vector space of finite dimension n, and define

G = GL(V )
Ad // GL(Endk(V ))

by Ad(g)(f) = g ◦ f ◦ g−1. The adjoint representation (Endk(V ),Ad) is completely
reducible, provided that char(k) does not divide n.

Proof. We let t ⊂ Endk(V ) be the 1-dimensional subspace spanned by idV , and let
sln ⊂ Endk(V ) be the subspace consisting of the k-linear maps f : V → V with
tr(f) = 0. Both subspaces are Ad-invariant. In the case of sln, we use the fact from
linear algebra that tr(g ◦f ◦g−1) = tr(f). By our assumption that char(k) does not
divide n, we have tr(idV ) = n 6= 0 ∈ k, so t ∩ sln = {0}, and hence, the map

t⊕ sln // Endk(V )

induced by the canonical inclusions is an isomorphism. It turns out that Adt and
Adsln both are irreducible. This is trivial in the case of the t, but the proof for sln
is not so simple. We prove this for n = 2 in the appendix. So Theorem 2.13 shows
that π is completely reducible. �

Finally, we consider a representation of G = GL(V ) on the k-vector space

B(V ) = {f : V × V → k | f is k-bilinear} ' Homk(V ⊗k V, k)

of k-bilinear forms on V .

Proposition 2.18. Let V be a k-vector space of finite dimension n, and define

G = GL(V )
π // GL(B(V ))

by π(g)(f)(x,y) = f(g−1(x), g−1(y)). The representation (B(V ), π) is completely
reducible, provided that char(k) 6= 2.
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Proof (Incomplete). Let B±(V ) ⊂ B(V ) be the subspaces of symmetric forms and
skew-symmetric forms, respectively. We recall that f ∈ B+(V ) if and only if

f(x,y) = f(y,x)

for all x,y ∈ V , and that f ∈ B−(V ) if and only if

f(x,y) = −f(y,x)

for all x,y ∈ V . Clearly, B±(V ) ⊂ B(V ) are both π-invariant, and if char(k) 6= 2,
then the map induced by the canonical inclusions

B+(V )⊕B−(V ) // B(V )

is an isomorphism. One can prove that πB±(V ) both are irreducible, but we will not
do so here. So Theorem 2.13 shows that π is completely reducible. �

Appendix: Direct sum of vector spaces

Let k be a field. If V1 and V2 are two k-vector spaces, then their direct sum is a
triple (V1 ⊕ V2, i1, i2) of a k-vector space V1 ⊕ V2 and two k-linear maps

V1
i1 // V1 ⊕ V2 V2

i2oo

with the property that if (W, f1, f2) is any triple of a k-vector space W and k-linear
maps f1 : V1 →W and f2 : V2 →W , then there exists a *unique* k-linear map

V1 ⊕ V2
f
// W

such that f1 = f ◦ i1 and f2 = f ◦ i2. The commutative diagram

V1
i1 //

f1
((

V1 ⊕ V2

∃!f
��

V2
i2oo

f2
vv

W

indicates this definition. In this situation, we also write f1 + f2 : V1 ⊕ V2 → W for
the unique k-linear map f : V1 ⊕ V2 →W .

A direct sum (V1⊕V2, i1, i2) of k-vector spaces V1 and V2 is not unique, but it is
unique, up to *unique* isomorphism, which is just as good, or even better. Indeed,
if also (V1 ⊕′ V2, i

′
1, i
′
2) is a direct sum of V1 and V2, then since (V1 ⊕ V2, i1, i2) is a

direct sum of V1 and V2, there is a unique k-linear map i′ making the diagram

V1
i1 //

i′1 &&

V1 ⊕ V2

i′

��

V2
i2oo

i′2xx

V1 ⊕′ V2
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commute, and similarly, since (V1 ⊕′ V2, i
′
1, i
′
2) is a direct sum of V1 and V2, there

is a unique k-linear map i making the diagram

V1

i′1 //

i1
&&

V1 ⊕′ V2

i

��

V2

i′2oo

i2
xx

V1 ⊕ V2

commute. It follows that both f = i ◦ i′ makes the diagram

V1
i1 //

i1
&&

V1 ⊕ V2

f

��

V2
i2oo

i2
xx

V1 ⊕ V2

commute, but clearly f = idV1⊕V2
does so, too, and therefore, by the uniqueness

statement in the definition of a direct sum, we conclude that i ◦ i′ = idV1⊕V2
. The

same argument shows that i′◦i = idV1⊕′V2
, so we have proved that the unique maps

i and i′ are each other’s inverses.8

We will often abuse language and say that (V1⊕V2, i1, i2) is *the* direct sum of
V1 and V2, since we unique isomorphisms between any two choices of a direct sum.
We may also abuse notation and write that V1⊕ V2 is the direct sum of V1 and V2,
omitting the k-linear maps i1 and i2 that are part of the structure.

Now, suppose that V1, V2 ⊂ V are subspaces of a k-vector space V . The canonical
inclusions j1 : V1 → V and j2 : V2 → V give rise to the unique k-linear map

V1 ⊕ V2
j
// V

such that j1 = j ◦ i1 and j2 = j ◦ i2. In general, the map j is neither surjective nor
injective. The image of j is a subspace of V that we denote by

V1 + V2 ⊂ V,

and a kernel of j is given by the k-linear map9

V1 ∩ V2
i1−i2 // V1 ⊕ V2

that to x ∈ V1 ∩ V2 assigns i1(x)− i2(x) ∈ V1 ⊕ V2. In other words, the sequence

0 // V1 ∩ V2
i1−i2 // V1 ⊕ V2

j
// V1 + V2

// 0

of k-vector spaces and k-linear maps is exact. In particular, we see that

V1 ⊕ V2
j
// V

is an isomorphism if and only if V1 ∩ V2 = {0} and V1 + V2 = V . Please note that
we will *never* use V1 ⊕ V2 to denote a subspace of V .

8 This is general fact in category theory: Objects that are defined by a universal property are

unique, up to *unique* isomorphism.
9 The map i2 − i1 : V1 ∩ V2 → V1 ⊕ V2 is also a kernel of j.
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Appendix: The adjoint representation

We include a proof of the following theorem, which we used above.

Theorem 2.19. If char(k) 6= 2, then the adjoint representation

GL2(k)
Ad // GL(sl2(k))

is irreducible.

Proof. We must show that if U ⊂ sl2(k) is an Ad-invariant subspace, then either
U = {0} or U = sl2(k). So we assume that U 6= {0} and proceed to prove that
U = sl2(k). We fix the basis (H,X, Y ) of sl2(k), where

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

We claim that H ∈ U if and only if X ∈ U if and only if Y ∈ U . First, we have(
0 1
1 0

)
X

(
0 1
1 0

)
= Y,

(
0 1
1 0

)
Y

(
0 1
1 0

)
= X,

so if X ∈ U , then Y ∈ U and vice versa. Second, we use the fact that X2 = 0 so
that 1 +X ∈ GL2(k) with inverse 1−X. Hence, the calculation

HX = X, XH = −X, XHX = 0

shows that

(1 +X)H(1−X) = H −HX +XH −XHX = H − 2X.

Therefore, if H ∈ U , then 2X ∈ U , and hence X ∈ U , since we are assuming that
2 6= 0 in k. Similarly, the calculation

Y X =

(
0 0
0 1

)
, XY =

(
1 0
0 0

)
, XY X = X

shows that

(1 +X)Y (1−X) = Y − Y X +XY −XYX = Y +H −X.

Therefore, since we have already seen that Y ∈ U if and only if X ∈ U , we conclude
that if Y ∈ U , then H = (Y +H −X)− Y +X ∈ U . This proves the claim.

It remains to prove that at least one of H, X, and Y is in U . Since U is nonzero,
there exists 0 6= A ∈ sl2(k). We write

A = aH + bX + cY =

(
a b
c −a

)
,

with (a, b, c) 6= (0, 0, 0). For all t ∈ k∗, we have

g(t) =

(
t 0
0 1

)
∈ GL2(k)

with inverse g(t)−1 = g(t−1). Since U is assumed Ad-invariant, the calculation

Ad(g(t))(A) = g(t)Ag(t)−1 =

(
a tb

t−1c −a

)
= aH + tbX + t−1cY
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shows that aH + tbX + t−1cY ∈ U for all t ∈ k∗. We wish to conclude that each of
aH, bX, and cY is in U . So we wish to show that the system of linear equations

aH + rbX + r−1cY = aH

aH + sbX + s−1cY = bX

aH + tbX + t−1cY = cY

has a solution with r, s, t ∈ k∗. The calculation

det

1 r r−1

1 s s−1

1 t t−1

 = −(rst)−1(r − s)(r − t)(s− t)

shows that a solution exists, provided that k∗ has order at least three. Hence, if
this is the case, then aH, bX, and cY are all in U , and since (a, b, c) 6= (0, 0, 0), it
follows that at least one of H, X, and Y is in U , so we are done.

The only missing case is k = F3, where k∗ = {±1} only has order 2. In this case,
the argument above shows that

spank(aH + bX + cY, aH − bX − cY ) ⊂ U,
so aH ∈ U and bX + cY ∈ U . If a 6= 0, then H ∈ U . Also, if a = b = 0, then c 6= 0,
so Y ∈ U , and similarly, if a = c = 0, then b 6= 0, so X ∈ U . Hence, it only remains
to prove that both the subspaces

V = spank(Ad(g)(X + Y ) | g ∈ GL2(k)) ⊂ U
W = spank(Ad(g)(X − Y ) | g ∈ GL2(k)) ⊂ U

are equal to U . The calculation

Ad(

(
1 −1
1 1

)
)(X + Y ) =

(
1 −1
1 1

)
(X + Y )

(
−1 −1

1 −1

)
= H

shows that H ∈ V , so that V = U , and the calculation

Ad(

(
1 1
0 1

)
)(X − Y ) =

(
1 1
0 1

)
(X − Y )

(
1 −1
0 1

)
= −H −X − Y

shows that H+X+Y ∈W , so W = U , since, by the argument above, H ∈W . �

Remark 2.20. We note that if char(k) = 2, then the adjoint representation

GL2(k)
Ad // GL(sl2(k))

is not irreducible. Indeed, since H = 1, the 1-dimensional subspace

spank(H) ⊂ sl2(k)

is Ad-invariant.
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3. Unitarity of finite dimensional complex representations

We recall from last time that a k-linear representation (V, π) of a group G is
defined to be completely reducible if for every π-invariant subspace U ⊂ V , there
exists a π-invariant subspace W ⊂ V such that the map

U ⊕W // V

induced by the canonical inclusions is an isomorphism. In this lecture, we will show
that every finite dimensional continuous real or complex representation of a compact
topological group is completely reducible.

Definition 3.1. A finite dimensional real (resp. complex) representation (V, π) of
a group G is orthogonal (resp. unitary), if there exists an inner product (resp. a
hermitian inner product) 〈−,−〉 : V × V → k such that

〈π(g)(v1), π(g)(v2)〉 = 〈v1,v2〉

for all g ∈ G and v1,v2 ∈ V .10

Remark 3.2. If f : V → V is a linear endomorphism of a finite dimensional real
(resp. complex) vector space with inner product (resp. hermitian inner product)
〈−,−〉, then its adjoint f∗ : V → V is the unique linear map such that

〈f∗(v1),v2〉 = 〈v1, f(v2)〉

for all v1,v2 ∈ V . Hence, in Definition 3.1, the requirement that

〈π(g)(v1), π(g)(v2)〉 = 〈v1,v2〉

for all g ∈ G and v1,v2 ∈ V is equivalent to the requirement that

π(g)∗ = π(g−1)

for all g ∈ G.

Definition 3.3. Let (V, 〈−,−〉) be a finite dimensional real inner product space
(resp. hermitian inner product space). The orthogonal group (resp. the unitary
group) is the subgroup11 O(V, 〈−,−〉) ⊂ GL(V ) (resp. U(V, 〈−,−〉) ⊂ GL(V )) of
all k-linear maps f : V → V with the property that

〈f(v1), f(v2)〉 = 〈v1,v2〉

for all v1,v2 ∈ V .

So a finite dimensional real (resp. complex) representation (V, π) is orthogonal
(resp. unitary) if and only if the group homomorphism π : G→ GL(V ) takes values
in the subgroup O(V, 〈−,−〉) ⊂ GL(V ) (resp. U(V, 〈−,−〉) ⊂ GL(V )) for some
inner product (resp. hermitian inner product) 〈−,−〉 on V .

Proposition 3.4. Every orthogonal (resp. unitary) representation is completely
reducible.

10 So that (V, π) is orthogonal (resp. unitary) means that it has the *property* that such an

inner product (resp. a hermitian inner product) exists. It does not mean that the *structure* of

such an inner product (resp. hermitian inner product) has been chosen.
11 Often O(V, 〈−,−〉) and U(V, 〈−,−〉) are abbreviated O(V ) and U(V ), but we will not do so.
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Proof. We let (V, π) be an orthogonal (resp. unitary) representation of a group G
and choose an inner product (resp. a hermitian inner product) 〈−,−〉 on V such
that π(g)∗ = π(g−1) for all g ∈ G. If U ⊂ V is a subspace, then its orthogonal
complement with respect to 〈−,−〉 is the subspace defined by

U⊥ = {v ∈ V | 〈v,u〉 = 0 for all u ∈ U} ⊂ V.

We claim that U ⊂ V is π-invariant if and only if U⊥ ⊂ V is π-invariant. Indeed,
given any linear endomorphism f : V → V , we have

f(U) ⊂ U ⇔ f∗(U⊥) ⊂ U⊥,

and therefore, we conclude that

U ⊂ V is π-invariant ⇔
π(g)(U) ⊂ U for all g ∈ G ⇔

π(g)∗(U⊥) ⊂ U⊥ for all g ∈ G ⇔

π(g−1)(U⊥) ⊂ U⊥ for all g ∈ G ⇔

π(g)(U⊥) ⊂ U⊥ for all g ∈ G ⇔

U⊥ ⊂ V is π-invariant,

as claimed. In particular, every π-invariant subspace U ⊂ V has a π-invariant
complement, namely, U⊥ ⊂ V , so π is completely reducible. �

We first consider finite groups.

Theorem 3.5. Every finite dimensional real (resp. complex) representation of a
finite group is orthogonal (resp. unitary).

Proof. Let (V, π) be a finite dimensional real (resp. complex) representation of
a finite group G. We choose an arbitrary inner product (resp. hermitian inner
product) 〈−,−〉0 : V × V → k and define 〈−,−〉 : V × V → k by

〈v1,v2〉 =
1

|G|
∑
x∈G
〈π(x)(v1), π(x)(v2)〉0.

It is easy to check that 〈−,−〉 is an inner product (resp. a hermitian inner product),
and we claim that it is π-invariant. Indeed, for all g ∈ G, we have

〈π(g)(v1), π(g)(v2)〉 =
1

|G|
∑
x∈G
〈π(x)(π(g)(v1)), π(x)(π(g)(v2))〉0

=
1

|G|
∑
x∈G
〈(π(x) ◦ π(g))(v1), (π(x) ◦ π(g))(v2)〉0

=
1

|G|
∑
x∈G
〈π(xg)(v1), π(xg)(v2)〉0

=
1

|G|
∑
y∈G
〈π(y)(v1), π(y)(v2)〉0

= 〈v1,v2〉

as desired. �
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Definition 3.6. A topological group is a group G with a topology such that the
maps µ : G × G → G and ι : G → G given by µ(g, h) = gh and ι(g) = g−1 are
continuous. A compact group is a topological group, whose underlying topological
space is compact and Hausdorff.

Example 3.7. (1) A finite group with the discrete topology is a compact group.

(2) If V is a finite dimensional real or complex vector space, then GL(V ) is a
topological group with the compact-open topology. It is a locally compact group,
but it is not compact, unless V = {0}.
(3) If (V, 〈−,−〉) is a finite dimensional real inner product space (resp. hermitian

inner product space), then O(V, 〈−,−〉) (resp. U(V, 〈−,−〉)) is a topological group
with the compact-open topology. It is a compact group.

We will only consider (real or complex) representations (V, π) of a topological
group G that are continuous in the sense that the group homorphism

G
π // GL(V )

is continuous.

Example 3.8. Suppose that (V, 〈−,−〉) be a finite dimensional real inner product
space (resp. hermitian inner product space). The canonical inclusion

O(V, 〈−,−〉) π // GL(V )

is continuous and a group homomorphism, so (V, π) is a continuous representation.

Theorem 3.9. Let G be a compact group, and let (V, π) be a finite dimensional
continuous real (resp. complex) representation of G. Then (V, π) is orthogonal
(resp. unitary), and hence, completely reducible.

We will give two different proofs of the theorem. The first proof uses the following
deep theorem. This is a important and useful theory, but it will take us too far afield
to prove it here. A proof can be found in [2, Chapter 7, §1, No. 2, Theorem 1].

Theorem 3.10. Let G be a compact group. There exists a map

C0(G,C) C

f
∫
G
f(x)dx

//

� //

with the following properties:

(1) It is linear.
(2) It is positive in the sense that if f ∈ C0(G,C) takes non-negative real values,

then
∫
G
f(x)dx ≥ 0, and the integral is zero only if f = 0.

(3) It is right invariant in the sense that for all f ∈ C0(G,C) and g ∈ G,∫
G

f(xg)dx =

∫
G

f(x)dx.

(4) The constant function 1 ∈ C0(G,C) with value 1 ∈ C has integral∫
G

1 dx = 1.
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Remark 3.11. (1) If G is a compact group, then there is a unique measure µ on G
called the Haar measure such that

∫
G
f(x)dx =

∫
G
fdµ. If G is finite, then∫

G

f(x)dx =
1

|G|
∑
x∈G

f(x),

and in this case, the Haar measure is called the counting measure.

(2) In fact, parts (1)–(3) of Theorem 3.10 hold for every locally compact group
such as G = (R,+). Moreover, for compact G (but not for locally compact G),
part (3) can be replaced by the stronger statement that∫

G

f(xg)dx =

∫
G

f(x)dx =

∫
G

f(gx)dx

for all f ∈ C0(G,C) and g ∈ G.

Proof (of Theorem 3.9). We repeat the proof for G finite, replacing sum by integral.
So given any choice 〈−,−〉0 of inner product (resp. hermitian inner product) on V ,
we define 〈−,−〉 : V × V → C by

〈v1,v2〉 =

∫
G

〈π(x)(v1), π(x)(v2)〉0dx,

where we use the integral provided by Theorem 3.10. The linearity of the integral
implies that 〈−,−〉 is an inner product (resp. a hermitian inner product), and we
claim that it is π-invariant. Indeed, given v1,v2 ∈ V , we define f ∈ C0(G,C) by

f(x) = 〈π(x)(v1), π(x)(v2)〉0
so that 〈v1,v2〉 =

∫
G
f(x)dx. The right-invariance of the integral shows that

〈π(g)(v1), π(g)(v2)〉 =

∫
G

f(xg)dx =

∫
G

f(x)dx = 〈v1,v2〉

for all g ∈ G, as claimed. We conclude that π is orthogonal (resp. unitary), so
Proposition 3.4 shows that it is completely reducible. �

Remark 3.12. We explain the idea in the proof above, assuming that π is a real
representation. The representation π induces a representation

G
ρ
// GL(B+(V ))

on the space B+(V ) of real symmetric bilinear forms on V defined by

ρ(g)(〈−,−〉)(v1,v2) = 〈π(g−1)(v1), π(g−1)(v2)〉.

The subset I(V ) ⊂ B+(V ) consisting of the real inner products is an open cone,
and it is preserved by ρ in the sense that ρ(I(V )) ⊂ I(V ) for all g ∈ G. Thus, given
〈−,−〉0 ∈ I(V ), we have ρ(G)(〈−,−〉0) ⊂ I(V ), which expresses that the G-orbit
through 〈−,−〉0 is fully contained in I(V ). The π-invariant inner product

〈v1,v2〉 =

∫
G

〈π(x)(v1), π(x)(v2)〉0dx

may thus be seen as an “average” over the G-orbit through 〈−,−〉0.

The second proof is to construct the π-invariant inner product 〈−,−〉 as a center
of mass. We recall the definition of the center of mass.
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Definition 3.13. Let W be a finite dimensional real vector space, and let µ be a
Lebesgue measure12 on W . Suppose that K ⊂W is a Lebesgue measurable subset
with positive volume µ(K) > 0. The center of mass of K ⊂W is the vector

c(K) =
1

µ(K)

∫
K

xdx ∈W.

We prove three lemmas in the situation of Definition 3.13.

Lemma 3.14. If K ⊂W is a Lebesgue measurable subset with µ(K) > 0, then

c(f(K)) = f(c(K))

for all f ∈ GL(W ).

Proof. Substituting y = f(x) and dy = det(f)dx, we find that

c(f(K)) =
1

µ(f(K))

∫
f(K)

ydy =
1

det(f)µ(K)

∫
K

x det(f)dx = c(K)

as desired. Here we use that det(f) is a scalar, independent of x ∈ K. �

We recall that if K ⊂ W is any subset, then its convex hull is defined to be the
subset conv(K) ⊂W that consists of all linear combinations of the form

x0a0 + · · ·+ xmam ∈W

with m ≥ 0, x0, . . . ,xm ∈ K, a0, . . . , am ∈ [0, 1], and a0 + · · · + am = 1. We say
that a linear combination of this form is a convex combination.

Lemma 3.15. If K ⊂W is compact, then so is conv(K) ⊂W .

Proof. Let n = dimR(W ). A classical theorem of Carathéodory states that every
w ∈ conv(K) is a convex combination of at most n+ 1 points x0, . . . ,xn ∈ K. So
in fact, the subset conv(K) ⊂W consists of all convex combinations

x0a0 + · · ·+ xnan ∈W

with x0, . . . ,xn ∈ K, a0, . . . , an ∈ [0, 1], and a0 + · · · + an = 1. It follows that we
have a continuous surjection

Kn+1 ×∆n p
// conv(K)

that to (x0, . . . ,xn, a0, . . . , an) assigns x0a0 + · · ·+ xnan. Here

∆n ⊂ [0, 1]n+1

is the subspace of tuples (a0, . . . , an) with a0 + · · · + an = 1. So conv(K) is the
image of a compact space by a continuous map, and therefore, it is compact. �

Lemma 3.16. If K ⊂W is a compact13 subset with µ(K) > 0, then

c(K) ∈ conv(K).

12 The normalization of µ is irrelevant for this definition.
13 Every compact subset K ⊂W is Lebesgue measuable.
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Proof. By the theory of (Lebesgue) integration,

c(K) = lim
r→∞

1

µ(K)

r∑
i=1

xiµ(Ki),

where K =
∐r
i=1Ki is a decomposition of K into r disjoint Lebesgue measurable

subsets, and where xi ∈ Ki is any point. By definition, we have

1

µ(K)

r∑
i=1

xiµ(Ki) ∈ conv(K)

for all r ≥ 1. But by Lemma 3.15, conv(K) ⊂W is a compact subset of a Hausdorff
space, and hence, closed, so c(K) ∈ conv(K) as stated. �

Proof (of Theorem 3.9). We first suppose that (V, π) is a finite dimensional real
representation of the compact group G and show that π is orthogonal. Let B+(V )
be the real vector space of symmetric bilinear forms on V , and let

G
ρ
// GL(B+(V ))

be the group homomorphism defined by

ρ(g)(〈−,−〉)(v1,v2) = 〈π(g−1)(v1), π(g−1)(v2)〉.

The pair (B+(V ), ρ) is a representation of G. The subspace I(V ) ⊂ B+(V ) of inner
products is an open cone, and it is ρ-invariant in the sense that for all g ∈ G,

ρ(g)(I(V )) ⊂ I(V ).

We now choose 〈−,−〉0 ∈ I(V ) and 〈−,−〉0 ∈ K0 ⊂ I(V ) with K0 compact, and
define K ⊂ I(V ) to be the image of the composite map

G×K0
G×i
// G×B+(V )

ρ
// B+(V ),

where i : K0 → B+(V ) is the canonical inclusion. Since both maps are continuous,
so is the composite map, and since G×K0 is compact, so is the image K ⊂ B+(V ).
Moreover, we have K ⊂ I(V ), because K0 ⊂ I(V ) and because I(V ) ⊂ B+(V ) is
ρ-invariant. We have µ(K) ≥ µ(K0) > 0, so the center of mass

〈−,−〉 = c(K) ∈ conv(K) ⊂ B+(V )

is defined. But K ⊂ I(V ) and I(V ) ⊂ B+(V ) is convex, being an open cone, so we
have conv(K) ⊂ I(V ), and hence,

〈−,−〉 = c(K) ∈ conv(K) ⊂ I(V )

is an inner product. By Lemma 3.14, it is ρ-invariant, which is equivalent to the
statement that 〈−,−〉 is a π-invariant inner product on V . In particular, (V, π) is
orthogonal, and hence, completely reducible by Proposition 3.4.

Finally, if instead (V, π) is a finite dimensional complex representation of G,
then we argue in the same way, but with B+(V ) replaced by the *real* vector
space H+(V ) of hermitian forms on V , and with I(V ) ⊂ B+(V ) replaced by the
open cone J(V ) ⊂ H+(V ) of hermitian inner products. �
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Appendix: Hermitian forms and hermitian inner products

Since we have already used the notions of a hermitian form and a hermitian
inner product on a complex vector space, let us recall the definition. So let V be a
(right) complex vector space. A hermitian form on V is a map

V × V C
〈−,−〉

//

such that for x,x1,x2,y,y1,y2 ∈ V and a ∈ C, the following hold:14

(H1) 〈x,y1 + y2〉 = 〈x,y1〉+ 〈x,y2〉
(H2) 〈x1 + x2,y〉 = 〈x1,y〉+ 〈x2,y〉
(H3) 〈x,y · a〉 = 〈x,y〉 · a
(H4) 〈x · a,y〉 = a · 〈x,y〉
(H5) 〈y,x〉 = 〈x,y〉

Here a ∈ C is the complex conjugate of a ∈ C. By (H5), we have in particular that
〈x,x〉 ∈ R, and a hermitian form is defined to be a hermitian inner product if, in
addition to (H1)–(H5), it has the following positivity property:

(P) 〈x,x〉 ≥ 0 and 〈x,x〉 > 0 unless x = 0.

As we have also used, the set H+(V ) of hermitian forms on V form a *real* vector
space with vector sum and scalar multiplication defined by

(〈−,−〉1 + 〈−,−〉2)(x,y) = 〈x,y〉1 + 〈x,y〉2
(〈−,−〉 · a)(x,y) = 〈x,y〉 · a.

with x,y ∈ V and a ∈ R ⊂ C. The subset J(V ) ⊂ H+(V ) of hermitian inner
products is an open cone. Indeed, while J(V ) ⊂ H+(V ) is closed under vector sum,
it is only closed under scalar multiplication by *positive* real numbers a.

Appendix: Caratheodory’s theorem

Let us prove Caratheodory’s theorem that we used in the second proof above.
So we let W be a finite dimensional real vector space, and recall that, by definition,
the convex hull of a subset K ⊂W is the union

conv(K) =
⋃

−1≤m<∞

convm(K) ⊂W,

where convm(K) ⊂ W is the subset of all convex combinations of m + 1 points in
W , that is, the subset of all vectors of the form

x0a0 + · · ·+ xmam

with x0, . . . ,xm ∈ K, a0, . . . , am ∈ [0, 1] and a0 + · · ·+ am = 1.

Theorem 3.17. Let W be a real vector space of finite dimension n, let K ⊂ W
be any subset, and let −1 ≤ d ≤ n be the dimension of the smallest affine subspace
that contains K. In this situation,

conv(K) = convd(K).

14 We use the physics convention that 〈−,−〉 is linear in the second variable and conjugate

linear in the first variable. Much of the mathematical literature, including the book, uses the
opposite convention that 〈−,−〉 is linear in the first variable and conjugate linear in the second

variable.
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Proof. By the definition of the convex hull, we may assume that K ⊂W is a finite
subset. We prove the statement by induction on the cardinality N of K. If N = 0,
then K = ∅, so conv(K) = ∅ = conv−1(K), and hence, the statement holds in this
case. So we let N = r > 0 and assume that the statement has been proved for
N < r. We let K ⊂ W be a subset of cardinality r, and write K = L ∪ {x} as
the union of a subset L ⊂ W of cardinality r − 1 and a singleton. Let d and e be
the dimensions of the smallest affine subspaces that contain K and L, respectively.
Clearly, either d = e or d = e+ 1. By the inductive hypothesis, we have

conv(L) = conve(L) =
⋃

1≤i≤s

∆e
i ,

where each ∆e
i ⊂ W is an e-simplex, whose e + 1 vertices are elements of L, and

this implies that

conv(K) = conv(L ∪ {x}) =
⋃

1≤i≤s

conv(∆e
i ∪ {x}).

So it will suffice to prove that

conv(∆e
i ∪ {x}) ⊂ convd(K)

for all 1 ≤ i ≤ s. If d = e+ 1 or if d = e and x ∈ ∆e
i , then there is nothing to prove.

So we assume that d = e and that x /∈ ∆e
i . For every subset M ⊂W , we have

conv(M ∪ {x}) =
⋃

u∈M
conv({u,x}),

so it suffices to show that for every u ∈ ∆e
i , the line segment

conv({u,x}) = {ua+ xb ∈W | a, b ∈ [0, 1], a+ b = 1}
is contained in a d-simplex, whose vertices are elements of K. Since u ∈ ∆e

i , we can
write u as a convex combination

u = x0a0 + · · ·+ xeae

with a0, . . . , ae ∈ [0, 1] and a0 + · · ·+ ae = 1. Thus, every y ∈ conv({u,x}) can be
written as a convex combination

y = ua+ xb = (x0a0 + · · ·+ xeae)a+ xb

with a, b ∈ [0, 1] and a + b = 1. Since d = e and x /∈ ∆e
i , we can arrange that at

least one of the a0, . . . , ae be equal to zero. By rearranging the xi, if necessary, we
can assume that a0 = 0. But then

conv({u,x}) ⊂ conv({x1, . . . ,xe,x}),
which is an e-simplex with vertices in K as required. This proves the induction step
and the theorem. �

28



4. Dual representation, tensor product of representations

We first discuss the dual vector space. To do so (and not make mistakes), we will
let k be any skew-field. So we do not assume a · b and b · a are equal for a, b ∈ k.
A skew-field k = (k,+, · ) has an opposite skew-field kop = (k,+, ?) with the same
underlying set and the same addition, but with the new multiplication

a ? b = b · a.
By a k-vector space, we will always mean a *right* k-vector space. So we agree that
scalars multiply from the right and not from the left. We have to do so, if we want
matrices (that represent linear maps) to multiply from the left, and I think that we
all agree that we want that. Let us recall how this works.

So let ϕ : W → V be a linear map between right k-vector spaces, which we will
assume to be finite dimensional, and let (v1, . . . ,vm) and (w1, . . . ,wn) be bases
for V and W , respectively. Every w ∈W and v ∈ V can be unique written as

v = v1x1 + v2x2 + · · ·+ vmxm

w = w1y1 + w2y2 + · · ·+ wnyn

with x = (xj) ∈Mm,1(k) and y = (yi) ∈Mn,1(k). Now, there is a unique matrix

A = (aij) ∈Mm,n(k)

such that for all v ∈ V and w ∈ W , v = ϕ(w) if and only if x = Ay, namely, the
matrix whose entries aij are the unique solutions to the linear equations

ϕ(wj) = v1a1j + v2a2j + · · ·+ vmamj

with 1 ≤ j ≤ n. So the jth column in A is the coordinate vector of ϕ(wj) with
respect to the basis (v1,v2, . . . ,vn). We say that A is the matrix that represents
ϕ : W → V with respect to the bases (v1, . . . ,vm) and (w1, . . . ,wn).

If U = (U,+, · ) is a *left* k-vector space, then we view it as a right kop-vector
space U = (U,+, ?) with the same underlying set (of vectors) and the same vector
sum, but with the new scalar multiplication ? : U × kop → U given by

u ? a = a · u.
We now discuss the dual vector space. So suppose that V = (V,+, · ) is a *right*
k-vector space. Its dual is the *left* k-vector space15

V ∗ = (Homk(V, k),+, · )
with vector sum and *left* scalar multiplication given by

(f + g)(v) = f(v) + g(v)

(a · f)(v) = a · f(v).

Let us check that a · f ∈ V ∗. It is clear that a · f is additive, and the calculation

(a · f)(v · b) = a · f(v · b) = a · (f(v) · b) = (a · f(v)) · b = (a · f)(v) · b.

shows that it is also preserves right multiplication by b, as required. Note that this
would not be true, if we instead let a multiply from the right, unless a · b = b · a.
We agreed to consider this left k-vector space as the right kop-vector space

V ∗ = (Homk(V, k),+, ?),

15 The book writes V ′ instead of V ∗.
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with the right scalar multiplication by a ∈ kop given by

(f ? a)(v) = (a · f)(v) = a · f(v) = f(v) ? a.

If dimk(V ) <∞, then a basis (v1, . . . ,vm) of the right k-vector space V gives rise
to a basis (v∗1, . . . ,v

∗
m) of the dual right kop-vector space V ∗ defined by

v∗i (vj) =

{
1 if i = j

0 if i 6= j,

which we call the dual basis.

A k-linear map ϕ : W → V between right k-vector spaces V and W determine a
kop-linear map ϕ∗ : V ∗ →W ∗ between right kop-vector spaces defined by

ϕ∗(f)(w) = f(ϕ(w)).

Moreover, if V and W are finite dimensional, and if A ∈Mm,n(k) is the matrix that
represents ϕ : W → V with respect to bases (v1, . . . ,vm) and (w1, . . . ,wn) of V
and W , respectively, then the matrix that represents the map ϕ∗ : V ∗ → W ∗ with
respect to the dual bases (v1, . . . ,v

∗
m) and (w∗1, . . . ,w

∗
n) is the transpose matrix

At = (aji) ∈Mn,m(kop).

If V is a right k-vector space, then its double dual V ∗∗ = (V ∗)∗ is also a right
k-vector space, so it is possible to compare them. There is a natural k-linear map

V
δV // V ∗∗

defined by δ(v)(f) = f(v). That the map δV is natural16 means that if ϕ : W → V
is any k-linear map, then the diagram

W W ∗∗

V V ∗∗

δW //

ϕ

��

ϕ∗∗

��δV //

commutes. If dimk(V ) < ∞, then δV is an isomorphism. Indeed, if (v1, . . . ,vm) is
a basis of V , then (v∗∗1 , . . . ,v

∗∗
m ) is a basis of V ∗∗, and the calculation

δV (vi)(v
∗
j ) = v∗j (vi) =

{
1 if i = j

0 if i 6= j

shows that δV (vi) = v∗∗i .

16 We use the word “natural” to indicate natural transformations between functors, whereas
we use the word “canonical” to indicate some particular or preferred choice. So “natural” has a

precise mathematical meaning, whereas “canonical” does not.
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Warning 4.1. By contrast, there is *no* preferred way to compare V and V ∗. If V
is a right k-vector space, then V ∗ is a right kop-vector space. So to convert V ∗ into
a right k-vector space σ∗(V

∗), we need a ring homomorphism

k
σ // kop.

Such a ring homomorphism may not exist, and if it does, then it may not be unique.
For instance, if k = C, then we can choose σ to be the identity map, but we can
also choose σ to be the map given by complex conjugation, which is different! Given
σ : k → kop, we must choose a map of right k-vector spaces

V
b // σ∗(V

∗).

The map b determines and is determined by the map

V × V k
〈−,−〉

//

defined by 〈x,y〉 = b(x)(y), and b is a well-defined and k-linear map if and only if
the map 〈−,−〉 satisfies

(S1) For all x,y, z ∈ V , 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉.
(S2) For all x,y ∈ V and a ∈ k, 〈x,y · a〉 = 〈x,y〉 · a.
(S3) For all x,y, z ∈ V , 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.
(S4) For all x,y ∈ V and a ∈ k, 〈x · a,y〉 = 〈x,y〉 ? σ(a) = σ(a) · 〈x,y〉.

We say that 〈−,−〉 is a σ-sesquilinear form, and we say that it is non-singular
if the map b is an isomorphism. Therefore, in order to compare V and V ∗, we
must both choose a ring homomorphism σ : k → kop and a σ-sesquilinear form
〈−,−〉 : V × V → k. Obviously, we should never do so, if we can avoid it! Let us
also mention that if σ ◦ σ = idk, then the σ-sesquilinear form 〈−,−〉 is said to be
σ-hermitian if, in addition, it satisfies:

(H) For all x,y ∈ V , 〈y,x〉 = σ(〈x,y〉).

The requirement (H) is equivalent to the statement that the diagram

V
b //

δV

��

σ∗(V
∗)

V ∗∗ σ∗((σ∗(V
∗))∗)

σ∗(b
∗)

OO

commutes.

We now assume that k is a field. Since a · b = b · a for all a, b ∈ k, the identity
map is a ring homomorphism idk : k → kop. If V is a right k-vector space, then we
agree that we will *always* use the identity map σ = idk : k → kop to view the
right kop-vector space V ∗ as a right k-vector. In particular, if k = C, then we will
*not* use complex conjugation to view V ∗ as a right C-vector space.

Definition 4.2. Let k be a field, and let (V, π) be a k-linear representation of a
group G. The dual representation is the pair (V ∗, π∗) of the dual k-vector space V ∗

and the group homomorphism

G
π∗ // GL(V ∗)
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defined by π∗(g) = π(g−1)∗.

Let us check that π∗ is indeed a group homomorphism. We have

π∗(g · h) = π((g · h)−1)∗ = π(h−1 · g−1)∗ = (π(h−1) ◦ π(g−1))∗

= π(g−1)∗ ◦ π(h−1)∗ = π∗(g) ◦ π∗(h)

as required. Also, if V is finite dimensional, and if the matrix

A(g) ∈Mn(k)

represents π(g) : V → V with respect to the basis (v1, . . . ,vn), then the matrix

A(g−1)t = (A(g)−1)t ∈Mn(k)

represents π∗(g) : V ∗ → V ∗ with respect to the dual basis (v∗1, . . . ,v
∗
n).

Example 4.3. Let (V, π) be a finite dimensional real representation of a group G.
We claim that if π is orthogonal, then π∗ ' π. To see this, recall that π is said to
be orthogonal if there exists an inner product 〈−,−〉 : V × V → R such that

〈π(g)(x), π(g)(y)〉 = 〈x,y〉

for all g ∈ G and x,y ∈ V . Therefore, the matrix Q(g) ∈ Mn(R) that represents
π(g) : V → V with respect to a basis (v1, . . . ,vn) that is orthonormal with respect
to 〈−,−〉 is orthogonal, that is, it satisfies Q(g) = (Q(g)−1)t. So the map

V
b // V ∗

defined by b(x)(y) = 〈x,y〉 is intertwining between π and π∗. Since 〈−,−〉 is an
inner product, the map b is also an isomorphism of vector spaces, so the claim
follows. We note, as in Warning 4.1, that the isomorphism π ' π∗ is not canonical,
let alone natural, but depends on the choice of inner product.

Example 4.4. If k is a field and if (V, π) is a k-linear representation of a group G,
then the map δV : V → V ∗∗ is intertwining between π and π∗∗ = (π∗)∗. Indeed,

π∗∗(g) = π∗(g−1)∗ = π(g)∗∗,

and the diagram

V V ∗∗

V V ∗∗

δV //

π(g)

��

π(g)∗∗

��δV //

commutes by the naturality of δ.

Theorem 4.5. Let k be a field, and let (V, π) be a finite dimensional k-linear
representation of a group G.

(1) π is irreducible if and only π∗ is so.
(2) π is completely reducible if and only if π∗ is so.

Proof. Indeed, the sequence

0 // U
i // V

p
// W // 0
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is exact (resp./ split exact) if and only if the sequence

0 // W ∗
p∗
// V ∗

i∗ // U∗ // 0

is exact (resp. split exact). �

Remark 4.6. In elementary particle physics, an elementary particle is an irreducible
representation π of the gauge group G. The corresponding antiparticle is the dual
(irreducible) representation π∗.

Sums of representations

We will next define (direct) sums of representations. There are two version, the
exterior sum denoted “�” and the (interior) sum denoted “⊕.” First, let

V1
i1 // V1 ⊕ V2 V2

i2oo

be a direct sum of k-vector spaces V1 and V2. Given v1 ∈ V1 and v2 ∈ V2, we write

v1 ⊕ v2 = i1(v1) + i2(v2) ∈ V1 ⊕ V2.

If f1 : W1 → V1 and f2 : W2 → V2 are k-linear maps, then there is a unique k-linear
map f1 ⊕ f2 : W1 ⊕W2 → V1 ⊕ V2 that makes the diagram

W1
j1 //

f1

��

W1 ⊕W2

f1⊕f2
��

W2
j2oo

f2

��

V1
i1 // V1 ⊕ V2 V2

i2oo

commute. In terms of elements, we have

(f1 ⊕ f2)(w1 ⊕w2) = f1(w1)⊕ f2(w2).

Moreover, if also g1 : V1 → U1 and g2 : V2 → U2 are k-linear maps, then

(g1 ⊕ g2) ◦ (f1 ⊕ f2) = (g1 ◦ f1)⊕ (g2 ◦ f2).

In particular, we have a well-defined group homomorphism

GL(V1)×GL(V2)
⊕
// GL(V1 ⊕ V2)

that to (f1, f2) assigns f1 ⊕ f2.

Definition 4.7. Let (V1, π1) and (V2, π2) be k-linear representations of two groups
G1 and G2, respectively. The k-linear representation (V1⊕V2, π1�π2) of the product
group G1 ×G2, where π1 � π2 is the composite group homomorphism

G1 ×G2 GL(V1)×GL(V2) GL(V1 ⊕ V2),
π1×π2 //

⊕
//

is called the exterior sum of (V1, π1) and (V2, π2).

Spelling out the definition in terms of elements, we have

(π1 � π2)(g1, g2)(v1 ⊕ v2) = π1(g1)(v1)⊕ π2(g2)(v2)

for g1 ∈ G1, g2 ∈ G2, v1 ∈ V1 and v2 ∈ V2.
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For every group G, the diagonal map

G G×G
∆G //

defined by ∆G(g) = (g, g) is also a group homomorphism.

Definition 4.8. Let (V1, π1) and (V2, π2) be k-linear representations of the *same*
group G. The k-linear representation (V1⊕V2, π1⊕π2) of G, where π1⊕π2 is defined
to be the composite group homomorphism

G G×G GL(V1 ⊕ V2),
∆G //

π1�π2 //

is called the sum of π1 and π2.17

Again, spelling out the definition in terms of elements, we have

(π1 ⊕ π2)(g)(v1 ⊕ v2) = π1(g)(v1)⊕ π2(g)(v2)

for g ∈ G, v1 ∈ V2, and v2 ∈ V2.

Remark 4.9. If (V1, π1) and (V2, π2) both are k-linear representations of the same
group G, then it may seem as if there is not much difference between the represen-
tations π1 � π2 and π1 ⊕ π2. However, there is a big difference, which is that the
former is a representation of the group G×G, while the latter is a representation
of the much smaller group G.

Example 4.10. Let (V, π) be a k-linear representation of a group G. If U1, U2 ⊂ V
are π-invariant subspaces, then the canonical inclusion maps

U1
j1 // V U2

j2oo

are intertwining between πUi and π, and hence, the induced map

U1 ⊕ U2 V
j1+j2 //

is intertwining between πU1
⊕ πU2

and π. We recall that j1 + j2 is surjective if and
only if U1 + U2 = V and that j1 + j2 is injective if and only if U1 ∩ U2 = {0}. In
particular, if j1 + j2 is bijective, then π ' πU1 ⊕ πU2 .

We can now restate Theorems 2.12 and 2.13 as follows:

Theorem 4.11. A finite dimensional k-linear representation (V, π) of a group G
is completely reducible if and only if π ' π1 ⊕ · · · ⊕ πm with π1, . . . , πm irreducible.

Theorem 4.12. Let (V, π) be a k-linear representation of a group G, and suppose
that π ' π1 ⊕ · · · ⊕ πm with π1, . . . , πm irreducible. If U ⊂ V is π-invariant, then
πU is isomorphic to the sum of some of the πi, and πV/U is isomorphic to the sum
of the remaining πi.

Lemma 4.13. Let (V, π) be a k-linear representation of a group G, and sup-
pose that V1, . . . , Vm ⊂ V are π-invariant subspaces such that the representations
πV1

, . . . , πVm are irreducible and pairwise non-isomorphic. In this case, the canon-
ical map

V1 ⊕ · · · ⊕ Vm // V

is injective, so πV1 ⊕ · · · ⊕ πVm is a subrepresentation of π.

17 The book writes π1 + π2 instead of π1 ⊕ π2.
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Proof. We argue by induction on m ≥ 0, the case m = 0 being trivial. So we
assume that the statement has been proved for m < r and prove it for m = r. By
the inductive hypothesis, the canonical map

V1 ⊕ · · · ⊕ Vr−1
// V

is injective with image V1 + · · ·+ Vr−1, so the kernel of the canonical map

V1 ⊕ · · · ⊕ Vr−1 ⊕ Vr // V

is equal to (V1 + · · ·+ Vr−1) ∩ Vr. Since πVr is irreducible, the kernel in question is
nonzero if and only if Vr ⊂ V1 + · · ·+ Vr−1. However, by Theorem 4.12, this is not
possible, because πVr 6' πVi for all 1 ≤ i < r. �

We can now prove the following analogue of unique prime factorization for
semisimple representations.

Theorem 4.14. Let π1, . . . , πm and ρ1, . . . , ρn be irreducible k-linear representa-
tions of a group G, and suppose that π1 ⊕ · · · ⊕ πm ' ρ1 ⊕ · · · ⊕ ρn. In this case,
m = n and, up to a reordering, πi ' ρi for all 1 ≤ i ≤ m.

Proof. The proof is by induction on m ≥ 0, the case m = 0 being trivial. So we
assume that the statement has been proved for m < r and prove it for m = r. We
choose any 0 < s < r and consider the two subrepresentations

π1 ⊕ · · · ⊕ πs, πs+1 ⊕ · · · ⊕ πr ⊂ π1 ⊕ · · · ⊕ πr ' ρ1 ⊕ · · · ⊕ ρn.

Theorem 4.12 shows that π1 ⊕ · · · ⊕ πs is a sum of some of the ρi, and that πs+1 ⊕
· · · ⊕ πr is the sum of the remaining ρi. Since we s < r and r − s < r, it follows
from the inductive hypothesis that, up to a reordering, πi ' ρi for 1 ≤ i ≤ s and
for s+ 1 ≤ i ≤ r. This proves the induction step, and hence, the theorem. �

Tensor products of representations

We finally define tensor products of representations, and again there is both an
exterior tensor product “�” and an interior tensor product “⊗.” First, we recall
that a tensor product of two k-vector spaces is a k-bilinear map

V1 × V2 V1 ⊗ V2

pV1,V2 //

with the property that for every k-bilinear map

V1 × V2
b // U

there is exists a unique k-linear map b̂ : V1 ⊗ V2 → U that makes the diagram

V1 × V2 V1 ⊗ V2

U

pV1,V2 //

b

  
b̂

~~
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commute. We say that this property of the tensor product is its defining universal
property. In particular, we conclude that if also qV1,V2 : V1×V2 → V1 ⊗̃V2 is a tensor
product of V1 and V2, then the unique k-linear maps

V1 ⊗ V2 V1 ⊗̃V2

q̂
//

p̂
oo

are each other’s inverses. In this way, a tensor product of V1 and V2 is unique, up
to unique isomorphism, so we often abuse language and call it *the* tensor product
of V1 and V2. Given v1 ∈ V1 and v2 ∈ V2, we write18

v1 ⊗ v2 = pV1,V2
(v1,v2) ∈ V1 ⊗ V2.

We recall that if the families (ei)i∈I and (f j)j∈J are bases of V1 and V2, respectively,
then the family (ei ⊗ f j)(i,j)∈I×J is a basis of V1 ⊗ V2. In particular, we have

dimk(V1 ⊗ V2) = dimk(V1) · dimk(V2).

Suppose that f1 : W1 → V1 and f2 : W2 → V2 are two k-linear maps. It follows
from the defining universal property of the tensor product, there is a unique k-linear
map f1 ⊗ f2 : W1 ⊗W2 → V1 ⊗ V2 that makes the diagram

W1 ×W2 W1 ⊗W2

V1 × V2 V1 ⊗ V2

pW1,W2 //

f1×f2
��

f1⊗f2
��pV1,V2 //

commute. Indeed, the map pV1,V2 ◦ (f1× f2) is k-bilinear. By the uniqueness of this
assignment, we conclude that there is a well-defined map

GL(V1)×GL(V2)
⊗
// GL(V1 ⊗ V2)

that to (f1, f2) assigns f1 ⊗ f2 and that this map is a group homomorphism.

Definition 4.15. Let (V1, π1) and (V2, π2) be k-linear representations of two groups
G1 and G2, respectively. The k-linear representation (V1⊗V2, π1�π2) of the product
group G1 ×G2, where π1 � π2 is the composite group homomorphism

G1 ×G2 GL(V1)×GL(V2) GL(V1 ⊗ V2),
π1×π2 //

⊗
//

is called the exterior tensor product of (V1, π1) and (V2, π2).19

Spelling out the definition in terms of pure tensors, we have

(π1 � π2)(g1, g2)(v1 ⊗ v2) = π1(g1)(v1)⊗ π2(g2)(v2),

where g1 ∈ G1, g2 ∈ G2, v1 ∈ V1, and v2 ∈ V2.

18 The tensors of the form v1⊗v2 are called pure tensors. They are the tensors that belong to
the image of the map pV1,V2

: V1 × V2 → V1 ⊗ V2. Every tensor can be written as a sum of pure

tensors, but it is almost never useful to do so, since the sum is not unique. A tensor that is not a

pure tensor is said to be entangled. This is the source of entanglement in quantum mechanics.
19 Confusingly, the book writes π1 ⊗ π2 instead of π1 � π2.
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Definition 4.16. Let (V1, π1) and (V2, π2) be k-linear representations of the *same*
group G. The k-linear representation (V1 ⊗ V2, π1 ⊗ π2), where π1 ⊗ π2 is defined
to be the composite group homomorphism

G G×G GL(V1 ⊗ V2).
∆G //

π1�π2 //

is called the tensor product of π1 and π2.20

Again, spelling out the definition in terms of pure tensors, we have

(π1 ⊗ π2)(g)(v1 ⊗ v2) = π1(g)(v1)⊗ π2(g)(v2).

Example 4.17. 1) We recall that sum and tensor product satisfy a distributive law
in the sense that the canonical map

(U ⊗ V1)⊕ (U ⊗ V2) // U ⊗ (V1 ⊕ V2)

is an isomorphism. So if τ : G→ GL(kn) is the trivial k-linear representation of G
on V = kn, and if π : G→ GL(U) is any k-linear representation, then

π ⊗ τ ' π ⊗ (k ⊕ · · · ⊕ k) ' (π ⊗ k)⊕ · · · ⊕ (π ⊗ k) ' π ⊕ · · · ⊕ π,

where there are n summands.

2) If U and V are right k-vector spaces, then there is a natural k-linear map

V ⊗ U∗ Homk(U, V )
αU,V

//

defined by α(v ⊗ f)(u) = v · f(u). It is an isomorphism if at least one of U and V
is finite dimensional. That the map αU,V is natural means that if ϕ : U2 → U1 and
ψ : V1 → V2 are k-linear maps, then the diagram

V1 ⊗ U∗1 Homk(U1, V1)

V2 ⊗ U∗1 Homk(U1, V2)

V2 ⊗ U∗2 Homk(U2, V2)

αU1,V1 //

αU1,V2 //

αU2,V2 //

ψ⊗U∗1
��

Hom(U1,ψ)

��

V2⊗ϕ∗

��

Hom(ϕ,V2)

��

commutes. In particular, if (V, π) is a k-linear represenstation of G, then

V ⊗ V ∗ Homk(V, V )

V ⊗ V ∗ Homk(V, V )

V ⊗ V ∗ Homk(V, V )

αV,V
//

αV,V
//

αV,V
//

π(g)⊗V ∗

��

Hom(V,π(g))

��

V⊗π(g−1)∗

��

Hom(π(g−1),V )

��

20 The book writes π1π2 instead of π1 ⊗ π2.
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commutes for all g ∈ G. The outer diagram is

V ⊗ V ∗ Endk(V )

V ⊗ V ∗ Endk(V ).

αV,V
//

αV,V
//

(π⊗π∗)(g)
��

Ad(π(g))

��

So if V is finite dimensional, then αV,V is isomorphism of k-linear representations

π ⊗ π∗ ' Ad ◦π,
where the right-hand side is the k-linear representation of G on V given by the
composite group homomorphism

G
π // GL(V )

Ad // GL(V ).

In particular, if we take G = GL(V ) and π = id, then π and π∗ are irreducible, but
their tensor product π ⊗ π∗ is not!

Remark 4.18. If π1 and π2 are irreducible representations, then it is an important
problem called “scattering” to determine how π1 ⊗ π2 decomposes as a sum

π1 ⊗ π2 ' ρ1 ⊕ · · · ⊕ ρm
of irreducible representations. The name “scattering” comes from physics. Indeed,
by colliding the elementary particles π1 and π2, one obtains the state π1⊗π2, which,
in turn, decays to the collection of elementary particles ρ1, . . . , ρm.
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5. Extension and restriction of scalars

Let f : A → B be a ring homomorphism. If N = (N,+, · ) is a right B-module,
then we define a right A-module

f∗(N) = (N,+, ?)

with the same underlying set and addition, but with right scalar multiplication by
elements a ∈ A on elements y ∈ N given by

y ? a = y · f(a).

Moreover, if h : N1 → N2 is a B-linear map between right B-modules N1 and N2,
then the same map is an A-linear map

f∗(N1) f∗(N2)
f∗(h)=h

//

between the right A-modules f∗(N1) and f∗(N2).

Conversely, if M = (M,+, · ) is a right A-module, then we define

f∗(M) = (M ⊗A B,+, · )
to be the right B-module, where for x ∈M and b1, b2 ∈ B,

(x⊗ b1) · b2 = x⊗ (b1b2).

If g : M1 →M2 is an A-linear map, then we define

f∗(M1) f∗(M2)
f∗(g)

//

to be the unique B-linear map such that for x ∈M and b ∈ B,

f∗(g)(x⊗ b) = g(x)⊗ b.
It is well-defined, because g is A-linear. Indeed, if x ∈M , a ∈ A, and b ∈ B, then

f∗(g)(xa⊗ b) = g(xa)⊗ b = g(x)a⊗ b = g(x)⊗ f(a)b = f∗(g)(x⊗ f(a)b).

We say that f∗ is the extension of scalars along f , and we say that f∗ is the
restriction of scalars along f . They are functors

ModA
f∗
//
ModB

f∗

oo

between the respective categories of right modules and linear maps. Indeed, it fol-
lows immediately from the definitions that, as required,

f∗(idM ) = idf∗(M)

f∗(g1 ◦ g2) = f∗(g1) ◦ f∗(g2)

and that
f∗(idN ) = idf∗(N)

f∗(h1 ◦ h2) = f∗(h1) ◦ f∗(h2).

Example 5.1. If σ : C→ C is the ring homomorphism given by complex conjugation,

σ(a+ ib) = a− ib,
and if V = (V,+, · ) is a right C-vector space, then

σ∗(V ) = (V,+, ?)

is the complex conjugate right C-vector space V̄ .
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Returning to the general situation above, we define the unit map

M f∗f
∗(M)

ηM //

by ηM (x) = x⊗ 1 and the counit map

f∗f∗(N) N
εN //

by εN (y⊗b) = yb. They are both natural transformations of functors, which means
that if g : M1 → M2 and h : N1 → N2 are an A-linear map and a B-linear map,
respectively, then the following diagrams commute:

M1 f∗f
∗(M1)

M2 f∗f
∗(M2)

ηM1 //

ηM2 //

g

��

f∗f
∗(g)

��

f∗f∗(N1) N1

f∗f∗(N2) N2

εN1 //

εN2 //

f∗f∗(h)

��

h

��

Moreover, for every right A-module M and every right B-module N , the diagrams

f∗(M) f∗f∗f
∗(M)

f∗(M)

f∗(ηM )
//

εf∗(M)

��

f∗(N) f∗f
∗f∗(N)

f∗(N)

ηf∗(N)
//

f∗(εN )

��

commute. We refer to this by saying that η and ε satisfy the triangle identities and
that the quadruple (f∗, f∗, ε, η) is an adjunction from ModB to ModA.

Proposition 5.2. In the above situation, the maps

HomB(f∗(M), N) HomA(M,f∗(N))
α //

β
oo

defined by α(g) = f∗(g) ◦ ηM and β(h) = εN ◦ f∗(h) are each other’s inverses.

Proof. By definition, the map α(g) is the composite map

M f∗f
∗(M) f∗(N)

ηM //
f∗(g)

//

so the map (β ◦ α)(g) = β(α(g)) is the composition of the upper horizontal maps
and right-hand vertical map in the following diagram:

f∗(M) f∗f∗f
∗(M) f∗f∗(N)

f∗(M) N

f∗(ηM )
//

f∗f∗(g)
//

εf∗(M)

��

εN

��g
//

But the left-hand triangle commutes by the triangle identities, and the right-hand
square commutes by the naturality of ε. So we conclude that (β ◦ α)(g) = g, as
desired. Similarly, the map β(h) is defined to be the composite map

f∗(M) f∗f∗(N) N
f∗(h)

//
εN //
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so the map (α ◦ β)(h) = α(β(h)) is the composition of the left-hand vertical map
and lower horizontal maps in the following diagram:

M f∗(N)

f∗f
∗(M) f∗f

∗f∗(N) f∗(N),

h //

ηM

��

ηf∗(N)

��f∗f
∗(h)
//

f∗(εN )
//

But the left-hand square commutes by the naturality of η, and the right-hand
triangle commutes by the triangle identities, so we conclude that (α◦β)(h) = h. �

Let f : k → k′ be an extension of fields. If V is a k-vector space, then the map

GL(V )
f∗
// GL(f∗(V ))

is a group homomorphism, because f∗ is a functor. Hence, if (V, π) is a k-linear
representation of a group G, then we obtain a k′-linear representation of G given
by the pair (f∗(V ), f∗π), where f∗π is the composite group homomorphism

G
π // GL(V )

f∗
// GL(f∗(V ))

We call f∗π the k′-linear representation obtained from the k-linear representation
π by extension of scalars along f .

Similarly, if V ′ is a k′-vector space, then the map

GL(V ′)
f∗ // GL(f∗(V

′))

is a group homomorphism, because f∗ is a functor. Hence, if (V ′, π′) is a k′-linear
representation of G, then we obtain a k-linear representation of G given by the pair
(f∗(V

′), f∗π
′), where f∗π

′ is the composite group homomorphism

G
π′ // GL(V ′)

f∗ // GL(f∗(V
′)).

We call f∗π
′ the k-linear representation obtained from the k′-linear representation

π′ by restriction of scalars along f .

Remark 5.3. If f : k → k′ is a field extension, then

dimk′(f
∗(V )) = dimk(V )

dimk(f∗(V
′)) = d · dimk′(V

′),

where d = [k′ : k] is the degree of the extension.

Theorem 5.4. Let f : k → k′ be a field extension. Two finite-dimensional k-linear
representations (V1, π1) and (V2, π2) of a group G are isomorphic if and only if the
k′-linear representations (f∗(V1), f∗π1) and (f∗(V2), f∗π2) are so.

Proof. If h : V1 → V2 is a k-linear isomorphism that is intertwining between π1 and
π2, then f∗(h) : f∗(V1) → f∗(V2) is a k′-linear isomorphism that is intertwining
between f∗π1 and f∗π2. This proves the “only if” part of the statement.
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To prove the “if” part of the statement, we assume that f∗π1 ' f∗π2 and prove
that π1 ' π2. The proof that we give here uses that the field k is infinite. A different
proof based on the Krull–Schmidt theorem works for all k. We first note that

dimk(V1) = dimk′(f
∗(V1)) = dimk′(f

∗(V2)) = dimk(V2),

where the middle equality holds by the assumption that f∗π1 ' f∗π2. So we may
consider π1 and π2 to be matrix representations

G GLn(k).
π1,π2 //

Moreover, by viewing k as a subfield k ⊂ k′, namely, as the image of the extension
f : k → k′, we may consider f∗π1 and f∗π2 as the matrix representations

G GLn(k) ⊂ GLn(k′).
π1,π2 //

Now, that π1 ' π2 means that there exists C ∈Mn(k) such that

(a) For all g ∈ G, C · π1(g) = π2(g) · C.
(b) The determinant det(C) is nonzero.

The requirement (a) is a system of linear equations of k in n2 variables. By Gauss
elimination, we know that a general solution has can be written uniquely as

C = t1C1 + · · ·+ tmCm

with (C1, . . . , Cm) a linearly independent family of vectors in the k-vector space
Mn(k) and with (t1, . . . , tm) a family of scalars in the field k. The requirement (b)
is the statement that there exists a family (t1, . . . , tm) of scalars in k such that the
value of the polynomial

p(x1, . . . , xm) = det(x1C1 + · · ·+ xmCm) ∈ k[x1, . . . , xm]

at (x1, . . . , xm) = (t1, . . . , tm) is nonzero. Similarly, that f∗π1 ' f∗π2 means that
there exists C ′ ∈Mn(k′) such that

(a’) For all g ∈ G, C ′ · π1(g) = π2(g) · C ′.
(b’) The determinant det(C ′) is nonzero.

But (a’) is the same system of linear equations as (a), so Gauss elimination tells us
that a general solution C ′ ∈Mn(k′) can be written uniquely as

C ′ = t′1C1 + · · ·+ t′mCm

with (C1, . . . , Cm) as before and with (t′1, . . . , t
′
m) a family of scalars in the field k′.

And (b’) is the requirement that there exists a family (t′1, . . . , t
′
m) of scalars in k′

such that the value of the polynomial

p(x1, . . . , xm) ∈ k[x1, . . . , xm] ⊂ k′[x1, . . . , x
′
m]

is nonzero. Since k, and hence, k′ is infinite, the k′-linear map

k′[x1, . . . , xm]
ev // Map((k′)m, k′)

is injective, so our assumption that f∗π1 ' f∗π2 implies that the polynomial

p(x1, . . . , xm) ∈ k[x1, . . . , xm]

is nonzero. But, since k is infinite, the k-linear map

k[x1, . . . , xm]
ev // Map(km, k)
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is injective, so we exists (t1, . . . , tm) ∈ km such that p(t1, . . . , tm) 6= 0. This shows
that π1 ' π2, as desired. �

Suppose that f : k → k′ is a Galois extension with Galois group

Γ = Autk(k′).

If V is a k-vector space, then the group homomorphism

Γ
ρ
// GL(f∗f

∗(V ))

given by the formula

ρ(γ)(x⊗ b) = x⊗ γ(b)

with x ∈ V and b ∈ k′ defines a k-linear representation of Γ on f∗f
∗(V ). Suppose

that we also have a k-linear representation

G
π // GL(V )

of some group G on V . In this situation, the group homomoprhism

G GL(f∗f
∗(V ))

f∗f
∗π
//

also defines a k-linear representation of the group G on f∗f
∗(V ). We note that for

all g ∈ G, the k-linear isomorphism f∗f
∗π(g) is intertwining with respect to γ.

Similarly, for all γ ∈ Γ, the k-linear isomorphism ρ(γ) is intertwining with respect
to f∗f

∗(π). Indeed, for all γ ∈ Γ, g ∈ G, x ∈ V , and b ∈ k′, we have

ρ(γ)(f∗f
∗π(g)(x⊗ b)) = ρ(γ)(π(g)(x)⊗ b)

= π(g)(x)⊗ γ(b)

= f∗f
∗π(g)(x⊗ γ(b))

= f∗f
∗π(g)(ρ(γ)(x⊗ b)).

Equivalently, the map

G× Γ
τ // GL(f∗f

∗(V ))

given by

τ(g, γ)(x⊗ b) = π(g)(x)⊗ γ(b)

is a group homomorphism and defines a representation of the group G× Γ on the
k-vector space f∗f

∗(V ). It follows that the subspace

W = (f∗f
∗(V ))Γ = {y ∈ f∗f∗(V ) | ρ(γ)(y) = y for all γ ∈ Γ} ⊂ f∗f∗(V )

is f∗f
∗π-invariant. Moreover, the unit map

V
η
// f∗f

∗(V )

is intertwining between π and f∗f
∗π and induces a map

V
η̃
// W = (f∗f

∗(V ))Γ

that is intertwining between π and (f∗f
∗π)W .
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Theorem 5.5. Let f : k → k′ be a finite Galois extension with group Γ = Gal(k′/k).
If (V, π) is a k-linear representation of a group G, then the map

V
η̃
// W = (f∗f

∗(V ))Γ

is an isomorphism between π and (f∗f
∗π)W .

Proof. By faithfully flat descent for modules, the diagram

V f∗f
∗(V ) f∗f

∗f∗f
∗(V )

ηV //
f∗f
∗(ηV )

//

ηf∗f∗(V )

//

is an equalizer. This only uses that f : k → k′ is faithfully flat, which is true for
every extension of fields. That the diagram is an equalizer means that the map ηV
is injective and that its image is equal to the subspace

W ′ = {y ∈ f∗f∗(V ) | f∗f∗(ηV )(y) = ηf∗f∗(V )(y)} ⊂ f∗f∗(V ).

So we wish to show that W = W ′ and write out the diagram above as

V V ⊗k k′ V ⊗k k′ ⊗k k′
ηV //

f∗f
∗(ηV )

//

ηf∗f∗(V )

//

with ηV (x) = x⊗ 1, f∗f
∗(ηV )(x⊗ b) = x⊗ 1⊗ b, and ηf∗f∗(V )(x⊗ b) = x⊗ b⊗ 1.

The assumption that f : k → k′ is a finite Galois extension with group Γ implies
that the ring homomorphism

k′ ⊗k k′
h //

∏
γ∈Γ k

′

with γth component hγ(b1 ⊗ b2) = b1γ(b2) is an isomorphism. Thus the subspace
W ′ ⊂ V ⊗k k′ is equal to the equalizer of the two composite maps

V ⊗k k′ V ⊗k k′ ⊗k k′
∏
γ∈Γ V ⊗k k′.

f∗f
∗(ηV )

//

ηf∗f∗(V )

//
V⊗h

//

Finally, the γth components of the two composite maps are given by

((V ⊗ hγ) ◦ f∗f∗(ηV ))(x⊗ b) = x⊗ γ(b)

((V ⊗ hγ) ◦ ηf∗f∗(V ))(x⊗ b) = x⊗ b,

which shows that W = W ′ as desired. �

This was rather abstract! Let us now specialize to the case

k = R
f
// k′ = C

which is Galois with group Γ = Gal(C/R) = {id, σ}, where σ : C → C is complex
conjugation. If V is a real vector space, then it is common to write

VC = f∗(V )

and call it the complexification of V . If V ′ is a complex vector space, then it is also
common to abuse of notation and write V ′ for the real vector space f∗(V

′). This
is very confusing, however, since V ′ is a complex vector space, whereas f∗(V

′) is a
real vector space.

44



If V is a real vector space, then so is f∗(VC), and we have the R-linear map

f∗(VC)
ρ(σ)
// f∗(VC)

where σ ∈ Γ = Gal(C/R) is complex conjugation. We will also refer to this map as
complex conjugation, and given y ∈ f∗(VC), we write

ȳ = ρ(σ)(y).

If we write y =
∑

xi ⊗ zi with xi ∈ V and zi ∈ C, then ȳ =
∑

xi ⊗ z̄i.
If W ⊂ VC is a complex subspace, then so is its image

W = ρ(σ)(W ) ⊂ VC
under complex conjugation. Indeed, if ȳ = ρ(σ)(y) ∈W and z ∈ C, then also

ȳ · z = ρ(σ)(y) · z = ρ(σ)(y · z̄) ∈W.

Lemma 5.6. Let V be a real vector space, and let W ⊂ VC be a complex subspace
of its complexification. The following are equivalent.

(1) The complex subspaces W,W ⊂ VC are equal.
(2) There exists a real subspace U ⊂ V such that W = UC ⊂ VC.

Proof. It is clear that (2) implies (1), so we assume (1) holds and prove (2). The
unit map ηV : V → f∗(VC) is R-linear, and we define

U = η−1
V (f∗(W )) ⊂ V.

By Proposition 5.2, the R-linear map

U f∗(W )
ηV |U

//

determines and is determined by the C-linear map

UC = f∗(U) W,
β(ηV |U )

//

and we claim that the latter map is an isomorphism. It is injective, because the
diagram commutes and because the left-hand vertical map is injective.21

f∗(U) W

f∗(V ) VC

β(ηV |U )
//

�� ��

To prove that it is also surjective, let y ∈ W . We have ȳ ∈ W , so by (1), we also
have ȳ ∈ W . It follows that both u = 1

2 (y + ȳ) and v = 1
2i (y − ȳ) belong to W .

But ū = u and v̄ = v, so by Theorem 5.5, we have

u,v ∈ im(V
ηV−−→ f∗(VC)).

and since also u,v ∈W , we have

u,v ∈ im(U
ηV |U−−−−→ f∗(W )).

21 Here we use that f : R → C is flat, as is any field extension. Indeed, extension of scalars

along a ring homomorphism f : A→ B preserves monomorphisms if and only if f : A→ B is flat.
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But this shows that

y = u + iv ∈ im(UC = f∗(U)
β(ηV |U )−−−−−−→W )

as desired. �

Example 5.7. We recall the real representation (R2, π) of the additive group of real
numbers G = (R,+) defined by

π(t) =

(
cos t − sin t
sin t cos t

)
.

It is an irreducible representation, but its complexification πC is not. Indeed, in the
basis (e1 + ie2, e1 − ie2) of (R2)C ' C2, we have

πC(t) =

(
eit 0
0 e−it

)
.

Theorem 5.8. Let π : G→ GL(V ) be a real representation.

(1) If πC is irreducible, then so is π.
(2) If π is irreducible, then either πC is irreducible or a sum of two irreducible

representations, which are each other’s conjugate.
(3) The represention π is semisimple if and only if πC is so.

Proof. (1) If U ⊂ V is π-invariant, then UC ⊂ VC is πC-invariant. So UC is equal to
either {0} or VC, which shows that U is equal to either {0} or V as desired.

(2) Let W ⊂ VC be a πC-invariant subspace with πC,W irreducible. In this situation,

W ∩W,W +W ⊂ VC
are both πC-invariant subspaces, and since

W ∩W = W ∩W = W ∩W

W +W = W +W = W +W,

it follows from Lemma 5.6 that both are complexifications of real subspaces of V .
By the assumption that V is irreducible, the only possibilities are that

(i) W ∩W = W +W = {0},
(ii) W ∩W = {0} ⊂W +W = VC, or

(iii) W ∩W = W +W = VC.

In case (i), we have W = {0}, in (ii), the map W ⊕ W → VC induced by the
canonical inclusions is an isomorphism; and in case (iii), we have W = VC. This
proves (2). Finally, (3) follows immediately from (1) and (2). �

Example 5.9. Let π : Σ3 → GL(R3) be the standard (permutation) representation
of the symmetric group. The subspaces

V1 = {x ∈ R3 | x1 = x2 = x3} ⊂ R3

V2 = {x ∈ R3 | x1 + x2 + x3 = 0} ⊂ R3

are π-invariant, and moreover, the representations π1 = πV1 and π2 = πV2 are both
irreducible and π2 is faithful. We claim that π2,C is irreducible. If not, then it is a
sum of two irreducible representations, and since

dimC(V2,C) = dimR(V2) = 2,
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each of these two irreducible representations much be 1-dimensional. But π2,C is
again faithful,22 so this would give an injective group homomorphism

Σ3
// GL1(C)×GL1(C),

which is impossible, since Σ3 is non-abelian, while GL1(C)×GL1(C) is abelian.

22 This is true, because f : R→ C is faithful
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6. Schur’s lemma and its applications

Let (V1, π1) and (V2, π2) be k-linear representations of a group G and recall that
a k-linear map f : V1 → V2 is intertwining between π1 and π2 if the diagram

V1
f
//

π1(g)

��

V2

π2(g)

��

V1
f
// V2

commutes for all g ∈ G. We will write

Hom(π1, π2) ⊂ Homk(V1, V2)

for the subspace of intertwining k-linear maps.

Theorem 6.1 (Schur’s lemma). Let (V1, π1) and (V2, π2) be two irreducible k-
linear representations of a group G. A k-linear map f : V1 → V2 that is intertwining
between π1 and π2 is either an isomorphism or the zero map.

Proof. It follows immediately from the fact that f : V1 → V2 is intertwining between
π1 and π2, that ker(f) ⊂ V1 is π1-invariant and that im(f) ⊂ V2 is π2-invariant.
Therefore, since π1 was assumed to irreducible, either ker(f) = {0} or ker(f) = V1,
and since π2 was assumed to be irreducible, either im(f) = {0} or im(f) = V2. �

Theorem 6.2. Suppose that ((Vs, πs))s∈S is a finite family of pairwise non-isomorphic
irreducible k-linear representations of a group G, and that U ⊂

⊕
s∈S Vs is a⊕

s∈S πs-invariant subspace. There exists a (unique) subset T ⊂ S such that

U =
⊕

t∈T Vt ⊂
⊕

s∈S Vs.

Proof. Let V =
⊕

s∈S Vs, let π =
⊕

s∈S πs, and let is : Vs → V be the canonical
inclusion, which is intertwining between πs and π. Theorem 4.12 shows that U ⊂ V
is the image of *some* injective k-linear map

⊕
t∈T Vt

f
// V

that is intertwining between
⊕

t∈T πt and π, and we wish to show that the map

⊕
t∈T Vt V

i=
∑
t∈T it

//

will do. Let ps : V → Vs be the unique map such that ps ◦ it : Vt → Vs is the identity
map of Vs if s = t and the zero map if s 6= t. We consider the composite maps

⊕
u∈T Vu

f
// V

ps

��

Vt

it

OO

fs,t
// Vs

48



for s ∈ S and t ∈ T . Theorem 6.1 shows that fs,t is zero if s 6= t, so the diagram⊕
t∈T Vt

V⊕
t∈T Vt

f

&&⊕
t∈T ft,t

��

i

88

commutes. Moreover, the maps ft,t cannot be zero, since the top slanted map is
injective, so Theorem 6.1 shows that the ft,t all are isomorphisms, and hence, the
left-hand vertical map is an isomorphism. In particular,

U = im(f) = im(i),

as we wanted to prove. �

If (V, π) is an irreducible k-linear representation of G, then Schur’s lemma shows,
in particular, that the endomorphism ring

End(π) ⊂ Endk(V )

is a division algebra D over k. In general, every finite dimensional division algebra
over k occurs as End(π) for a finite dimensional irreducible k-linear representation
of some group G.23 We now make the very simplifying assumption that

k = k̄

is an algebraically closed field, so that, up to unique isomorphism, the only finite
dimensional division algebra over k is D = k. In this case, Schur’s lemma implies
the following result, which is also known as Schur’s lemma.

Theorem 6.3. Let k be an algebraically closed field. If (V, π) is a finite dimensional
irreducible k-linear representation of a group G, then the map

k
η
// End(π)

defined by η(λ) = λ · idV is a ring isomorphism.

Proof. The map η is injective, because V is nonzero, and to prove that it surjective,
we let f : V → V be a k-linear map that is intertwining with respect to π. Since k is
algebraically closed, the map f has an eigenvalue λ ∈ k, and since f is intertwining
with respect to π, the eigenspace

{0} 6= Vλ ⊂ V

is a π-invariant subspace. Since π is irreducible, we conclude that Vλ = V , or
equivalently, that f = λ · idV , which shows that η is surjective. �

Corollary 6.4. Let (V1, π1) and (V2, π2) be isomorphic finite dimensional irre-
ducible k-linear representations of a group G. If k is algebraically closed, then

dimk Hom(π1, π2) = 1.

23 If D finite dimensional real division algebra, then D ' R, C, or H.
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Proof. We choose any k-linear isomorphism h : V1 → V2 that intertwines between
π1 and π2. (Such an h exists by assumption.) Now, if f : V1 → V2 is any k-linear
map that intertwines between π1 and π2, then f ◦ h−1 : V2 → V2 is intertwining
with respect to π2. Hence, by Theorem 6.3, f ◦ h−1 = λ · idV2

for a unique λ ∈ k,
so we find that f = λ · h. �

Remark 6.5. More precisely, Corollary 6.4 shows that the composition maps

Hom(π1, π2)× End(π1) Hom(π1, π2)

End(π2)×Hom(π1, π2) Hom(π1, π2)

◦ //
◦ //

simultaneously make Hom(π1, π2) a free right End(π1)-module of rank 1 and a free
left End(π2)-module of rank 1. However, neither module has a preferred generator:
There is no preferred way to compare π1 and π2.

In Theorem 6.2, we considered a finite sum of pairwise non-isomorphic irreducible
representations. In the next result, we will consider the opposite situation of a finite
sum of irreducible representations, all of which are isomorphic.

Theorem 6.6. Let k be an algebraically closed field, and let (U, τ) and (V, π) be
finite dimensional k-linear representations of a group G such that τ is trivial and
π is irreducible. Given a π ⊗ τ -invariant subspace W ⊂ V ⊗ U with (π ⊗ τ)W
irreducible, there exists (a non-unique) vector u ∈ U such that the map

V
iu // V ⊗ U

defined by iu(v) = v ⊗ u is an isomorphism from V onto W and is intertwining
between π and (π ⊗ τ)W .

Proof. The map iu is clearly k-linear and intertwining between π and π⊗ τ , so we
must show that u ∈ U can be chosen such that W = iu(V ) ⊂ V ⊗ U . We have
seen earlier that every irreducible subrepresentations of π ⊗ τ is isomorphic to π.
In particular, we may choose a k-linear isomorphism h : W → V that intertwines
between (π ⊗ τ)W and π. Now, for every f ∈ U∗, we let

V ⊗ U
cf
// V

to be the unique k-linear map such that cf (v⊗u) = v ·f(u). It intertwines between
π ⊗ τ and π, and since k is algebraically closed, Corollary 6.4 shows that

cf |W = λ(f) · h

for a unique λ(f) ∈ k. The map

U∗
λ // k

that to f assigns λ(f) is k-linear, so λ ∈ U∗∗. But the map

U
η
// U∗∗

is an isomorphism, since U is finite dimensional, so λ = η(u) for a unique u ∈ U .
We claim that for this u ∈ U , we have iu(V ) = W ⊂ V ⊗ U . To prove this, we
choose a basis (v1, . . . ,vn) of V and write w ∈W as

w =
∑

1≤i≤n vi ⊗ ui
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with ui ∈ U . (This way of writing w is unique, but we will not need this fact.)
Now, for every f ∈ U∗, we have∑

1≤i≤n vif(ui) = cf (w) = λ(f) · h(w) = f(u) · h(w).

Therefore, if f(u) = 0, then f(ui) = 0 for all 1 ≤ i ≤ n, and hence,

ui ∈ spank(u) ⊂ U.

This shows that {0} 6= W ⊂ iu(V ) ⊂ V ⊗ U , and since iu(V ) ' V is irreducible,
we conclude that W = iu(V ) as stated. Note that the vector u ∈ U depends on the
choice of the isomorphism h : W → V . �

Abelian groups

We will next show that if k is algebraically closed, then every finite dimensional
k-linear irreducible representation of an abelian group is 1-dimensional. We have
seen that the representation of the group (R,+) on R2 by rotation is irreducible,
so the assumption that k be algebraically closed is necessary.

Theorem 6.7. Let k be an algebraically closed field. If (V, π) is a finite dimensional
irreducible k-linear representation of an abelian group A, then

dimk(V ) = 1.

Proof. Since A is abelian, we have

π(g) ◦ π(h) = π(g · h) = π(h · g) = π(h) ◦ π(g)

for all g, h ∈ A. Hence, for all g ∈ A, the k-linear map

V
π(g)
// V

is intertwining with respect to π, so by Schur’s lemma, we have

π(g) = λ · idV

for some λ = λ(g) ∈ k. But this implies that every subspace W ⊂ V is π-invariant,
and since V is irreducible, this shows that dimk(V ) = 1. �

We recall that the abelianization of a group G is a group homomorphism

G
p
// Gab

with the property that for every group homomorphism f : G→ A with A abelian,
there exists a unique group homomorphism fab : Gab → A such that f = fab ◦ p.
This property characterizes the abelianization p : G→ Gab uniquely, up to unique
isomorphism under G. The group homomorphism p is surjective, and its kernel is
the commutator subgroup [G,G] ⊂ G. In particular, any 1-dimensional k-linear
representation π : G → GL(V ) of a group G determines and is determined by the
1-dimensional k-linear representation πab : Gab → GL(V ) of Gab. Moreover, if k
is algebraically closed, then a finite dimensional k-linear representation of Gab is
1-dimensional if and only if it is irreducible.
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Example 6.8. The abelianization of the symmetric group Σn is the signature

Σn
sgn
// {±1}.

Therefore, up to non-canonical isomorphism, the only 1-dimensional representations
of Σn over an algebraically closed field k are the trivial representation and the sign
representation.

Exterior tensor product

We have seen that tensor products of irreducible k-linear representations are
typically not irreducible, even if k is algebraically closed. We now show that the
exterior tensor product of irreducible k-linear representations is always irreducible.

Theorem 6.9. Let k be an algebraically closed field. If both π1 : G1 → GL(V1) and
π2 : G2 → GL(V2) are finite dimensional irreducible k-linear representations, then
so is their exterior tensor product

G1 ×G2 GL(V1 ⊗ V2).
π1�π2 //

Proof. We let {0} 6= W ⊂ V1 ⊗ V2 be a π1 � π2-invariant subspace and must show
that W = V1 ⊗ V2. We note that

(π1 � π2)(g1, e) = (π1 ⊗ τ)(g1)

(π1 � π2)(e, g2) = (τ ⊗ π2)(g2),

so W ⊂ V1 ⊗ V2 is both a π1 ⊗ τ -invariant subspace of the k-linear representation
π1⊗τ of G1×{e} ⊂ G1×G2 and a τ⊗π2-invariant subspace of the k-representation
τ ⊗ π2 of {e} × G2 ⊂ G1 × G2. Hence, by Theorem 6.6, there exists U2 ⊂ V2 and
U1 ⊂ V1 such that both the (injective) maps induced by the canonical inclusions

V1 ⊗ U2
// V1 ⊗ V2 U1 ⊗ V2

oo

have image W . So the square diagram of inclusions

U1 ⊗ U2
//

��

V1 ⊗ U2

��

V1 ⊗ U2
// W

is cocartesian, and the right-hand vertical map and the lower horizontal are both
isomorphisms. This implies (by the five-lemma) that

(V1/U1)⊗ U2 ' {0} ' U1 ⊗ (V2/U2),

which, in turn, implies that U1 = V1 and U2 = V2. So W = V1 ⊗ V2 as desired. �

Example 6.10. We show that, in Theorem 6.9, the assumption that k be alge-
braically closed is necessary. The representation π : G = (R,+) → GL(R2) defined
by

π(t)

(
x1

x2

)
=

(
cos t − sin t
sin t cos t

)(
x1

x2

)
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is irreducible, but we claim that π�π is not. Indeed, if π�π were irreducible, then
also (π�π)C would either be irreducible or a sum of two irreducible representations.
But this contradicts Theorem 6.7, since G×G is abelian and

dimC((π � π)C) = dimR(π � π) = 4.

Let k be a field, and let G be a group. We recall that k[G] is k-vector space of
all functions f : G→ k and that

G GL(k[G])
L,R

//

are the left and right regular k-linear representations defined by

L(g)(f)(h) = f(g−1h)

R(g)(f)(h) = f(hg).

Since the maps R(g1) and L(g2) commute, we obtain a representation

G×G GL(k[G])
Reg

//

defined by Reg(g1, g2) = L(g2) ◦R(g1) = R(g1) ◦L(g2). We call this representation
the two-sided regular representation. Spelling out the definition, we have

Reg(g1, g2)(f)(h) = f(g−1
2 hg1).

Given any k-linear representation

G
π // GL(V ),

the k-linear map

V ⊗ V ∗
µ
// k[G]

defined by µ(x⊗ f)(h) = f(π(h)(x)) is intertwining between π � π∗ and Reg. We
define the space of matrix coefficients (or matrix elements) of π to be its image

M(π) = µ(V ⊗ V ∗) ⊂ k[G].

The reason for this name is as follows. Suppose that V is finite dimensional. If we
let (v1, . . . ,vn) be a basis of V , let (v∗1, . . . ,v

∗
n) be the dual basis of V ∗, and let

A(h) = (aij(h)) ∈Mn(k)

be the matrix that represents π(h) with respect to (v1, . . . ,vn), then

aij(h) = µ(vj ⊗ v∗i )(h).

This shows that that space of matrix coefficients is the subspace

M(π) = spank(aij | 1 ≤ i, j ≤ n) ⊂ k[G]

spanned by the functions aij : G→ k, whence the name. The reason that we do not
take this formula as our definition of M(π) is that it is not a priori clear that the
subspace spank(aij) ⊂ k[G] is independent of the choice of basis.

Theorem 6.11. Let k be an algebraically closed field. If (V, π) is a finite dimen-
sional irreducible k-linear representation of a group G, then

π � π∗
µ
// RegM(π)

is an isomorphism of k-linear representations of G×G. In particular, the k-linear
representation RegM(π) is irreducible.
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Proof. The map µ : V ⊗ V ∗ →M(π) is surjective, by definition, and it intertwines
between π�π∗ and RegM(π). Since π is finite dimensional and irreducible, the same
is true for π∗, and since k is algebraically closed, Theorem 6.9 shows that π� π∗ is
irreducible. Hence, the kernel of µ is either zero or all of V ⊗ V ∗. But it is easy to
see that µ : V ⊗ V ∗ → k[G] is not the zero map. Indeed, choosing a basis of V as
above, we see that aii(e) = 1, so 0 6= aii ∈M(π) = im(µ). So µ is injective. �

We list some consequences of Theorem 6.11:

(1) If k is algebraically closed and if π is an irreducible k-linear representation
of finite dimension n, then

dimk(M(π)) = n2.

(2) For π as in (1), we have RM(π) ' π ⊕ · · · ⊕ π and LM(π) ' π∗ ⊕ · · · ⊕ π∗,
where there are n summands in both cases.

(3) If k is algebraically closed and if π1 and π2 are finite dimensional irreducible
k-linear representations, then RegM(π1) ' RegM(π2) implies that π1 ' π2.

(4) If k is algebraically closed and if π1, . . . , πm are pairwise non-isomorphic
finite dimensional irreducible k-linear representations of G, then

M(π1)⊕ · · · ⊕M(πm) // k[G]

is injective.

Unitary representations

Our final application of Schur’s lemma concerns unitary representations. A finite
dimensional complex representation (V, π) of a group G is unitary if there exists a
hermitian inner product 〈−,−〉 on V that is π-invariant in the sense that

〈π(g)(x), π(g)(y)〉 = 〈x,y〉,

for all g ∈ G and x,y ∈ V , or equivalently, if the induced isomorphism

V̄
b // V ∗

given by b(x)(y) = 〈x,y〉 is intertwining between π̄ and π∗. We will now show that
a π-invariant hermitian inner product is unique, up to scaling.

Theorem 6.12. Suppose that π : G → GL(V ) is a finite dimensional irreducible
unitary representation. If both 〈−,−〉1 and 〈−,−〉2 are π-invariant hermitian inner
products on V , then there exists a real number λ > 0 such that for all x,y ∈ V ,

〈x,y〉2 = λ · 〈x,y〉1.

Proof. We define h : V̄ → V̄ to be the composite isomorphism

V̄
b1 // V ∗

(b2)−1

// V̄ .

By assumption, both b1 and b2 are intertwining with respect to π̄ and π∗, so h is
intertwining with respect to π̄. Finally, since π̄ is irreducible, Schur’s lemma shows
that h = λ · idV̄ for some λ ∈ C, and λ 6= 0, because h is an isomorphism. Finally,
for any 0 6= x ∈ V , both 〈x,x〉1 and 〈x,x〉2 are positive real numbers, so λ is
necessarily real and positive. �
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Theorem 6.13. Let (V, π) be a finite dimensional unitary representation of a group
G, and suppose that U1, U2 ⊂ V are π-invariant subspaces with the property that
the representations π1 = πU1 and π2 = πU2 are non-isomorphic and irreducible. In
this situation, the subspaces U1, U2 ⊂ V are necessarily orthogonal with respect to
any π-invariant hermitian inner product on V .

Proof. We choose a π-invariant hermitian inner product 〈−,−〉 on V . Since U1 ⊂ V
is π-invariant, so is its orthogonal complement W1 ⊂ V with respect to 〈−,−〉, and
moreover, the composition of the canonical inclusion and the canonical projection

U1
i1 // V

q1 // V/W1

is a complex linear isomorphism h = q1◦i1 that intertwines between πU1
and πV/W1

.
The orthogonal projection p : V → U1 with respect to 〈−,−〉 is the composition

V
q1 // V/W1

h−1
// U1,

so it is intertwining between π and π1. Now, the composite map

U2
i2 // V

p1 // U1

is intertwining between π2 and π1, and since these representations are assumed to be
irreducible and non-isomorphic, it follows from Schur’s lemma that the composite
map is zero. This shows that the subspaces U1, U2 ⊂ V are orthogonal with respect
to 〈−,−〉, as stated. �
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7. Character theory for finite groups

Let us first show that, for every field k an irreducible k-linear representation of
a finite group G is necessarily finite dimensional.

Lemma 7.1. Let k be a field. If a k-linear representation (V, π) of a finite group
G is irreducible, then the k-vector space V is finite dimensional.

Proof. Let (V, π) be an irreducible k-linear representation of G. Since V is nonzero,
there exists a nonzero vector x ∈ V , so the subspace W ⊂ V spanned by the family
(π(g)(x))g∈G is nonzero. But it is also π-invariant, so W = V , by the assumption
that π is irreducible. Since G is finite, the family (π(g)(x))g∈G is a finite family, so
W = V is a finite generated, and hence, finite dimensional k-vector space. �

So let G be a finite group. Because of Lemma 7.1, we will only consider finite
dimensional k-linear representations ofG. We will also assume that k is algebraically
closed. Since G is finite, a basis of k[G] is given by the family (δx)x∈G, where

δx(y) =

{
1 if x = y,

0 if x 6= y.

We let (V, π) be a finite dimensional k-linear representation of G and recall that
the subspace of matrix coefficients

M(π) ⊂ k[G]

is defined to be the image of the map

V ⊗ V ∗
µ
// k[G]

given by µ(x⊗ ϕ)(h) = ϕ(π(h)(x)). It is a Reg-invariant subspace, where

G×G GL(k[G])
Reg

//

is the two-sided regular representation of G×G on V defined by

Reg(g1, g2)(f)(h) = f(g−1
2 hg1).

Since k is algebraically closed, Schur’s lemma implies the following statements,
which we proved last time.

(1) If π is irreducible, then RegM(π) ' π � π∗.

(2) If π1 and π2 are irreducible, then π1 ' π2 if and only if M(π1) = M(π2).
(3) If π1, . . . , πm are pairwise non-isomorphic and irreducible, then the map

M(π1)⊕ · · · ⊕M(πm) // k[G]

induced by the canonical inclusions is injective.

Theorem 7.2. If G is a finite group and if k is an algebraically closed field, then
G has at most |G| pairwise non-isomorphic irreducible k-linear representations.

Proof. It follows from (3) that

q ≤ dimk(M(π1)⊕ · · · ⊕M(πq)) ≤ dimk(k[G]) = |G|,

which proves the theorem. �
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Theorem 7.3. Let G be a finite group, and let k be an algebraically closed field of
characteristic zero. If π1, . . . , πq are representatives of the isomorphism classes of
irreducible k-linear representations, then the map

M(π1)⊕ · · · ⊕M(πq) // k[G]

induced by the canonical inclusions is an isomorphism.

Proof. The map is injective by (3) above, so it remains to prove that it is also
surjective. Let R : G → GL(k[G]) be the right regular representation, which, we
recall, is defined by R(g)(f)(h) = f(hg). We claim that

M(R) = k[G].

Indeed, let ε : k[G] → k be the k-linear map defined by ε(f) = f(e). So ε ∈ k[G]∗

and for all f ∈ k[G], the calculation

µ(f ⊗ ε)(h) = ε(R(h)(f)) = f(e · h) = f(h)

shows that f = µ(f ⊗ ε) ∈ M(R). Now, since G is a finite group, whose order |G|
is not divisible by the characteristic of k, it follows from Maschke’s theorem that
every finite dimensional k-linear representation of G is semisimple. So

R ' πn1
1 ⊕ · · · ⊕ πnqq .

But if ρ and τ are any finite dimensional k-linear representations of G, then

M(ρ⊕ τ) = M(ρ) +M(τ) ⊂ k[G].

Therefore, we conclude that

k[G] = M(R) ⊂M(π1) + · · ·+M(πq) ⊂ k[G],

which shows the surjectivity of the map in the statement. �

Addendum 7.4. Let G be a finite group, and let k be an algebraically closed field of
characteristic zero. If (V1, π1), . . . , (Vq, πq) are representatives of the isomorphism
classes of irreducible k-linear representations, then

|G| = n2
1 + · · ·+ n2

q,

where ni = dimk(Vi).

Proof. By Theorem 7.3, we have

|G| = dimk(k[G]) = dimk(M(π1)) + · · ·+ dimk(M(πq)),

and dimk(M(πi)) = n2
i . Indeed, since k is algebraically closed and πi irreducible, the

map µπi : Vi⊗V ∗i →M(πi) is an isomorphism, and dimk(V ∗i ) = dimk(Vi) = ni. �

Example 7.5. Let k be algebraically closed of characteristic zero.

1) A finite abelian group A has precisely |A| pairwise non-isomorphic irreducible
k-linear representations, all of which 1-dimensional.

2) Let G = Σ3. We have found three pairwise non-isomorphic irreducible k-linear
representations of G, namely,

(i) the 1-dimensional trivial representation τ ,
(ii) the 1-dimensional sign representation sgn, and
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(iii) the 2-dimensional representation π of G on

V = {x ∈ k3 | x1 + x2 + x3 = 0} ⊂ k3

defined by

π(σ)(

x1

x2

x3

) =

xσ(1)

xσ(2)

xσ(3)

 .

Since we have

|G| = 6 = 12 + 12 + 22 = dimk(τ)2 + dimk(sgn)2 + dimk(π)2,

we conclude from Addendum 7.4 that, up to non-canonical isomorphism, we have
found all irreducible representations of G.

We next prove a lemma concerning matrix coefficients.

Lemma 7.6. Let G be a group, let k be a field, and let (V, π) be a finite dimensional
k-linear representation of G. There is a commutative diagram

Endk(V ) k[G]

V ⊗ V ∗

µ′
//

α

``

µ

>>

with µ′(f)(h) = tr(π(h) ◦ f) and α(x⊗ϕ)(y) = x ·ϕ(y), and moreover, the map α
is an isomorphism. Accordingly, the subspace of matrix coefficients

M(π) ⊂ k[G]

is equal to the common image of µ and µ′.

Proof. Let (v1, . . . ,vn) be a basis of V , and let (v∗1, . . . ,v
∗
n) be the dual basis of

the dual k-vector space V ∗. For g ∈ G, let

A(g) = (aij(g)) ∈Mn(k)

be the matrix that represents π(g) with respect to the basis (v1, . . . ,vn) of V . As
we have calculated before, we have

µ(vj ⊗ v∗i )(g) = aij(g).

Now, we have α(vj ⊗ v∗i ) = vj · v∗i , and

(π(g) ◦ vj · v∗i )(vk) =

{
π(g)(vj) if i = k,

0 if i 6= k,

and therefore, we find that also

(µ′ ◦ α)(vj ⊗ v∗i )(g) = tr(π(g) ◦ vj · v∗i ) = aij(g),

which shows that indeed µ = µ′ ◦α as stated. Finally, the map α is an isomorphism,
since it maps the basis (vj ⊗ v∗i )1≤i,j≤n of the k-vector space V ⊗ V ∗ to the basis
(vj · v∗i )1≤i,j≤n of the k-vector space Endk(V ). �

Remark 7.7. In the situation of Lemma 7.6, the maps µ = µπ and µ′ = µ′π depend
on the k-linear representation (V, π), where as the map α = αV only depends on
the k-vector space V .
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Definition 7.8. Let k be a field, and let G be a group. If (V, π) is a finite dimen-
sional k-linear representation of G, then its character

χπ ∈ k[G]

is the function defined by χπ(g) = tr(π(g)).

We note that χπ belongs to the subspace of matrix coefficients. More precisely,

χπ = µ′π(idV ) ∈M(π) ⊂ k[G].

The main result of this lecture is that for G finite and k an algebraically closed
field of characteristic zero, the character χπ determines π, up to non-canonical
isomorphism. We first record some properties of the character.

Proposition 7.9. Let k be a field and let G be a group. The character of finite
dimensional k-linear representations of G has the following properties.

(1) If π1 ' π2, then χπ1 = χπ2 .
(2) The character of the dual of a representation is given by

χπ∗(g) = χπ(g−1).

(3) The character of a sum of representations is given by

χπ1⊕π2 = χπ1 + χπ2 .

(4) The character of a tensor product of representations is given by

χπ1⊗π2 = χπ1 · χπ2 .

(5) For all g, h ∈ G, χπ(ghg−1) = χπ(h).

Proof. (1) That π1 ' π2 means that there exists a k-linear isomorphism h : V1 → V2

such that π2(g) = h ◦ π1(g) ◦ h−1 for all g ∈ G. But then

χπ2
(g) = tr(π2(g)) = tr(h ◦ π1(g) ◦ h−1) = tr(π1(g)) = χπ1

(g).

(2) By definition, π∗(g) = π(g−1)∗, so

χπ∗(g) = tr(π∗(g)) = tr(π(g−1)∗) = tr(π(g−1)) = χπ(g−1).

(3) This follows immediately from the fact that tr(f1 ⊕ f2) = tr(f1) + tr(f2).
(4) Since tr(f1 ⊗ f2) = tr(f1) · tr(f2), we have, more generally, that

χπ1�π2
(g1, g2) = χπ1

(g1) · χπ2
(g2),

so restricting along ∆: G→ G×G, the stated formula follows.
(5) This follows from the fact that tr(f1 ◦ f2) = tr(f2 ◦ f1). �

Definition 7.10. Let k be a field, and let G be a finite group. A function f : G→ k
is central if f(ghg−1) = f(h) for all g, h ∈ G.

It is clear that the subset of k[G] that consists of the central functions is a k-linear
subspace. We denote this subspace by24

Z(k[G]) ⊂ k[G].

The explanation for this notation is as follows. The k-vector space k[G] becomes a
k-algebra under the convolution product ∗ defined by

(f1 ∗ f2)(g) =
∑
h1h2=g f1(h1)f2(h2),

24 The book write k[G]# for this subspace.
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and moreover, the map µ′π : Endk(V ) → k[G] is a k-algebra homomorphism with
respect to the composition product on Endk(V ) and the convolution product on
k[G] in the sense that µ′π is k-linear and

µ′π(f1 ◦ f2) = µ′π(f1) ∗ µ′π(f2)

for all f1, f2 ∈ Endk(V ). Now, the subspace Z(k[G]) ⊂ k[G] is the center of the
k-algebra (k[G],+, ∗) in the sense that f ∈ Z(k[G]) if and only if

f ∗ h = h ∗ f

for all h ∈ k[G].

Lemma 7.11. Let G be a finite group, and let k be an algebraically closed field of
characteristic zero. If π is an irreducible k-linear representation of G, then

Z(k[G]) ∩M(π) = spank(χπ).

Proof. We use that by Lemma 7.6, we have

M(π) = {µ′π(f) | f ∈ Endk(V )} ⊂ k[G],

where µ′π(f)(g) = tr(π(g) ◦ f). Since π is irreducible, the map µπ, and hence, also
the map µ′π is injective, so the induced map

Endk(V )
µ′π // M(π)

is an isomorphism. Now, we calculate that

µ′π(f)(ghg−1) = tr(π(ghg−1) ◦ f)

= tr(π(g) ◦ π(h) ◦ π(g)−1 ◦ f)

= tr(π(h) ◦ π(g)−1 ◦ f ◦ π(g))

= µ′π(π(g)−1 ◦ f ◦ π(g))(h),

which shows that the function µ′π(f) is central if and only if for all g ∈ G, we have

f = π(g)−1 ◦ f ◦ π(g).

So µ′π(f) is central if and only if f : V → V is π-invariant. By Schur’s lemma,
f : V → V is π-invariant if and only if f = c · idV for some c ∈ k. But

µ′π(c · idV ) = c · µ′π(idV ) = c · χπ,

which proves the lemma. �

Theorem 7.12. Let k be an algebraically closed field of characteristic zero, let G
be a finite group, and let π1, . . . , πq be representatives of the isomorphism classes of
irreducible k-linear representations of G. In this situation, the family

(χπ1
, . . . , χπq )

of their characters is a basis of the k-vector space Z(k[G]).

Proof. This follows immediately form Theorem 7.3 and Lemma 7.11. �

The promised main result concerning characters is the following corollary.
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Corollary 7.13. In the situation of Theorem 7.12, the following hold:

(1) The dimension of the k-vector space Z(k[G]) is equal to the number of
isomorphism classes of irreducible k-linear representations of G, which, in
turn, is equal to the number of conjugacy classes of elements of G.

(2) The isomorphism class of any finite dimensional k-linear representation π
of G (not necessarily irreducible) is determined by its character χπ.

Proof. (1) The fact that the dimension of the k-vector space Z(k[G]) is equal to
the number of isomorphism classes of irreducible k-linear representations follows
immediately from Theorem 7.12. But Z(k[G]) is defined to be the k-vector spaces
of central functions f : G→ k, and a function f : G→ k is central if and only if it
factors through the canonical projection p : G → G \Gad onto the set of orbits for
action by G on itself by conjugation. Hence, the dimension of Z(k[G]) is also equal
to the cardinality of G \Gad.
(2) Since π is semisimple, we have π ' πm1

1 ⊕ · · · ⊕ πmqq , so by Proposition 7.9,

χπ = m1χπ1 + · · ·+mqχπq .

But k has characteristic zero, so the unique ring homomorphism Z→ k is injective,
and therefore, this identity in k[G] determines the integers m1, . . . ,mq.

25 �

Let us use this result to determine the isomorphism classes of irreducible complex
representations of the symmetric group G = Σ4, which has order |G| = 24. We recall
that the cycle-type of a permutation of n letters is the partition of n obtained from
counting the number of elements in cycles.

Lemma 7.14. The map that to a permutation σ ∈ Σn assigns its cycle type induces
a bijection of the set of conjugacy classes of elements in Σn onto the set of cycle-
types of permutations of n letters.

Proof. Indeed, a conjugation of a permutation corresponds to a relabelling of the
elements in {1, 2, . . . , n}. �

For n = 4, there are five cycle-types, namely

1 + 1 + 1 + 1, 2 + 1 + 1, 2 + 2, 3 + 1, and 4,

and the permutations

e, (12), (12)(34), (123), and (1234)

represent the corresponding conjugacy classes of elements in G = Σ4. Hence,

dimC(Z(C[G])) = 5,

and there are five isomorphism classes of irreducible complex representations of G.
We know three of these already, namely,

(i) the 1-dimensional trivial representation π1 = τ ,
(ii) the 1-dimensional sign representation π2 = sgn, and

25 If instead the characteristic of k were a prime number `, then the identity in k[G] would

only determine the congruence classes of the integers m1, . . . ,mq modulo `.
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(iii) the 3-dimensional representation π3 of G on

V3 = {x ∈ C4 | z1 + z2 + z3 + z4 = 0} ⊂ C4

defined by

π3(σ)(


z1

z2

z3

z4

) =


zσ(1)

zσ(2)

zσ(3)

zσ(4)

 .

By Addendum 7.4, the dimensions n4 and n5 of the remaining two irreducible
complex representations π4 and π5 satisfy

24 = 12 + 12 + 32 + n2
4 + n2

5,

which implies that n4 = 3 and n5 = 2. We claim that

π4 ' π2 ⊗ π3.

To prove this, we must show that π2 ⊗ π3 is irreducible and not isomorphic to π3.
Now, the representation π2 ⊗ π3 is irreducible, because

sgn⊗ π2 ⊗ π3 = sgn⊗ sgn⊗ π3 ' π3,

and because π3 is irreducible, and to show that π2 ⊗ π3 is not isomorphic to π3, it
suffices by Corollary 7.13 to show that

χπ2⊗π3 = χπ2 · χπ3 = sgn ·χπ3 6= χπ3 .

To prove this, it will suffice to find σ ∈ G such that sgn(σ) = −1 and χπ3(σ) 6= 0.
To this end, we consider π = π1 ⊕ π3, which has

χπ = χπ1 + χπ3 = 1 + χπ3 .

But π is isomorphic to the standard permutation representation of G on C4, so the
matrix that represents π((12)) with respect to the standard basis of C4 is

A((12)) =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,

so χπ((12)) = 2, which shows that χπ3((12)) = 1 6= 0 as desired. This proves the
claim that π4 ' π2 ⊗ π3.

What about the remaining 2-dimensional irreducible complex representation π5?
In general, for every set X, there is a group homomorphism

Aut(X)
ιX // Aut(P(X))

from the group of permutations of the set X to the group of permutation of its
power set P(X) defined by

ιX(σ)(U) = {σ(x) ∈ X | x ∈ U} ⊂ X.

Hence, given a (left) action ρ : G → Aut(X) by a group G on a set X, we get the
induced action ιX ◦ ρ : G→ Aut(P(X)) of G on P(X). We let X = {1, 2, 3, 4}, and
let ρ : G→ Aut(X) be the identity map and consider the action

G Aut(P(P(X)))
ιP(X)◦ιX◦ρ

//
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on the iterated power set P(P(X)). It leaves the subset

Y = {{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}} ⊂ P(P(X))

with three elements invariant, so we obtain a group homomorphism

G
p
// Aut(Y ) ' Σ3.

Clearly, the kernel of p is the (necessarily normal) subgroup

N = {e, (12)(34), (13)(24), (14)(23)} ⊂ G,
so comparing orders, we conclude that p is surjective. Hence, the 2-dimensional
irreducible complex representation (V, π) of Σ3 defines the 2-dimensional irreducible
complex representation (V, π ◦ p) of G, and this is π5.

Remark 7.15. Geometrically, we can picture the group homomorphism

G
p
// Aut(Y )

above as follows. We may view G as the group of symmetries of the tetrahedron

•
•

•

•

It has 6 edges, and hence, 3 pairs of an edge and its opposing edge. Now the map
p takes a permutation of the 4 vertices to the induced permutation of these 3 pairs
of opposing edges.
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8. Transitive group actions. Schur orthogonality

Before we get to Schur orthogonality, we will finish some left-over business from
last week. We recall that a left G-set is defined to be a pair (X, ρ) of a set X and
a group homomorphism ρ : G → Aut(X), and we say that ρ is a left action by G
on X. As is common, we will abbreviate and write g · x or simply gx for ρ(g)(x),
where g ∈ G and x ∈ X. We define the isotropy subgroup (or stabilizer) at x ∈ X
for the left action by G on X to be the subgroup

Gx = {g ∈ G | gx = x} ⊂ G,

and we define the orbit through x ∈ X of the left action by G on X to be the subset

G · x = {gx ∈ X | g ∈ G} ⊂ X.

Moreover, there is a well-defined bijection

G/Gx
px // G · x

from the set of left cosets of the isotropy subgroup Gx ⊂ G, which is typically not
normal, and onto the orbit G · x ⊂ X defined by px(hGx) = hx. The map px is
equivariant with respect to the action of G on G/Gx by left multiplication and by
the action of G on G · x ⊂ X obtained by restriction of the action by G on X.
Indeed, given hGx ∈ G/Gx and g ∈ G, we find that

px(g · hGx) = px(ghGx) = gh · x = g · hx = g · px(hGx)

as required. The orbits of the action by G on X are the equivalence classes of the
equivalence relation R ⊂ X ×X defined by the image of the map

G×X X ×X
(µ,p)

//

where µ : G ×X → X is given by µ(g, x) = ρ(g)(x), and where p : G ×X → X is
the canonical projection. We write

G \X = {G · x ∈ P(X) | x ∈ X}

for the set of orbits. If there is only one orbit, in which case G \X = {X}, then we
say that the action by G on X is transitive. Equivalently, the action by G on X is
transitive if for all x, y ∈ X, there exists g ∈ G such that y = gx.

If two elements x, y ∈ X belong to the same orbit for the left action by G on X,
then their isotropy subgroups Gx, Gy ⊂ G are conjugate, albeit not canonically so.
Indeed, if we choose g ∈ G such that y = gx, then the map

Gx
cg
// Gy

defined by cg(h) = ghg−1 is a group isomorphism. We remark that this isomorphism
depends on the choice of g ∈ G with y = gx.

If H ⊂ G is a subgroup, then we define the subset of H-fixed points for the left
action by G on X to be the subset

XH = {x ∈ X | hx = x for all h ∈ H} ⊂ X.

It is generally not a G-invariant subset, so the action by G on X does generally not
restrict to an action by G on XH . However, we claim that the action by G on X
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restricts to an action by the normalizer subgroup

NG(H) = {g ∈ G | gHg−1 ⊂ H} ⊂ G

on XH . Indeed, if g ∈ NG(H), then for all h ∈ H, there exists some h′ ∈ H such
that hg = gh′, and therefore, if x ∈ XH , then hgx = gh′x = gx, which shows that
also gx ∈ XH . Let ρH : NG(H)→ Aut(XH) denote this action. By definition, this
group homomorphism maps every element of H ⊂ NG(H) to the identity map of
XH , so it factors (uniquely) as the composition

NG(H)

WG(H)

Aut(XH)
ρH //

pH

��

ρ̄H

@@

of the canonical projection pH of NG(H) onto the quotient

WG(H) = NG(H)/H

and a left action ρ̄H of WG(H) on XH . The group WG(H) is called the Weyl group
of H in G.

Example 8.1. 1) The group G = O(3) of orthogonal 3× 3-matrices acts on

S2 = {x ∈ R3 | ‖x‖ = 1} ⊂ R3

by left multiplication. The action is transitive, and the “North Pole”

x =

0
0
1

 ∈ S2

has isotropy subgroup

Gx =

{(
Q 0
0 1

)
∈ O(3) | Q ∈ O(2)

}
⊂ G.

Hence, writing Gx = O(2), by abuse of notation, we have a canonical bijection

O(3)/O(2)
px // S2.

This bijection is in fact a homeomorphism.

(2) Let k be a field. The action by GLm(k) on Mm,n(k) be left multiplication is
not transitive, except in trivial cases. The theorem in linear algebra, which we call
Gauss elimination, states that the map

{A ∈Mm,n(k) | A is on reduced echelon form} // GLm(k)\Mm,n(k)

that to A assigns the orbit GLm(k) · A is a bijection. Indeed, we learn in linear
algebra that two matrices B,C ∈Mm,n(k) belong to the same orbit for the action
by GLm(k) on Mm,n(k) if and only if B can be transformed to C by means of row
operations, and that every orbit for the action by GLm(k) on Mm,n(k) contains
exactly one matrix on reduced echelon form.26

26 Challenge problem: Let A ∈Mm,n(k) be a matrix on reduced echelon form. Determine the

isotropy subgroup GLm(k)A ⊂ GLm(k).
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Let G be a group. If H ⊂ G is a subgroup, then the action by G on G/H by
left multiplication is transitive, and conversely, if a left action by G on a set X is
transitive, then we have the G-equivariant bijection px : G/Gx → X, once we choose
an element x ∈ X. So every transitive left G-set is non-canonically isomorphic to
G/H for some subgroup H ⊂ G. Let k be a field. By analogy with the two-sided
regular representation of G×G on k[G], we have the k-linear representation

WG(H)×G
ρ̄
// GL(k[G/H])

defined by
ρ̄(g1H, g2)(f̄)(gH) = f̄(g−1

2 gg1H).

Moreover, from the general discussion above, we find that the two-sided regular
representation of G×G on k[G] restricts to a k-linear representation

WG(H)×G
ρ
// GL(k[G]H×{e}),

where we use that the canonical projection

WG×G(H × {e}) // WG(H)×G

is an isomorphism of groups. This representation is given by

ρ(g1H, g2)(f)(g) = f(g−1
2 gg1).

In this situation, we have the following result.

Lemma 8.2. Let p : G→ G/H be the canonical projection. The map

k[G/H]
p∗
// k[G]H×{e}

defined by p∗(f) = f ◦ p is a k-linear isomorphism that is intertwining with respect
to ρ̄ and ρ.

Proof. The right-hand side is the set consisting of the functions f : G→ k such that
f(gh) = f(g) for all g ∈ G and h ∈ H. But for every such function, there exists a
unique function f̄ : G/H → k such that f = f̄ ◦ p. So the map p∗ is a bijection, and
it is clear that it is k-linear and intertwining with respect to ρ̄ and ρ. �

If H ⊂ G is a subgroup of a group G, and if (V, π) is a k-linear representation of
G, then we write (V H , πH) for the k-linear representation of WG(H) on V H , where

WG(H)
πH // GL(V H)

is given by πH(gH)(x) = π(g)(x).

Theorem 8.3. Let G be a finite group, let H ⊂ G be a subgroup, and let k be an
algebraically closed field of characteristic zero. Let (V1, π1), . . . , (Vq, πq) be represen-
tatives of the isomorphism classes of the irreducible k-linear representations of G.
In this situation, the isomorphism

π1 � π∗1 ⊕ · · · ⊕ πq � π∗q
µ
// Reg

of k-linear representations of G×G restricts to an isomorphism

πH1 � π∗1 ⊕ · · · ⊕ πHq � π∗q RegH×{e}
µH×{e}

//
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of k-linear representations of WG(H)×G.

Proof. In general, if Γ is a group and K ⊂ Γ is a subgroup, then an isomorphism of
k-linear representations of Γ induces an isomorphism of the k-linear representations
of WΓ(K) obtained by taking K-fixed points. We apply this to Γ = G × G and
K = H × {e}. �

Let G be a finite group, and let (X, ρ) be a transitive left G-set. We will use
Theorem 8.3 to determine the structure of the left regular representation

G
L // k[X]

which, we recall, is given by L(g)(f)(x) = f(ρ(g)−1(x)).

Corollary 8.4. Let G be a finite group, let (X, ρ) be a transitive left G-set, and
let H = Gx ⊂ G be the isotropy subgroup of an element x ∈ X. Let k be an
algebraically closed field of characteristic zero, let (V1, π1), . . . , (Vq, πq) be represen-
tatives of the isomorphism classes of irreducible k-linear representations of G, and
let mi = dimk(V Hi ). In this situation, there exists a non-canonical isomorphism

L '
⊕q

i=1 π
mi
i

with L : G→ GL(k[X]) the left regular representation of G on k[X].

Proof. The map px : G/H → X defined by px(gH) = gx is an isomorphism of left
G-sets. Moreover, Lemma 8.2 and Theorem 8.3 give k-linear isomorphisms

k[G/H]
p∗
// k[G]H×{e}

⊕q
i=1 V

H
i × V ∗i ,

µ
oo

which are intertwining with respect to the respective representations of the group
WG(H)×G on these k-vector spaces. In particular, they are also intertwining with
respect to the subgroup G = {H} × G ⊂ WG(H) × G. Therefore, we conclude
that the representation π∗i appears with multiplicity dimk(πHi ) in L. But the dual
representations π∗1 , . . . , π

∗
q also form a set of representatives of the isomorphism

classes of irreducible k-linear representations of G, so we may equivalently conclude
that the representation πi appears with multiplicity dimk((π∗i )H) in L. Thus, it
remains to prove that dimk((π∗i )H) and dimk(πHi ) are equal.

More generally, for every finite dimensional k-linear representation (V, π) of G,
we will prove that dimk((V ∗)H) = dimk(V H). The composition

H // G
π // GL(V )

of the canonical inclusion and the representation π is a finite dimensional k-linear
representation of H, and hence, it decomposes as a sum

π ' ρm1
1 ⊕ · · · ⊕ ρmrr

of irreducible k-linear representations of H. It follows that

π∗ ' (ρ∗1)m1 ⊕ · · · ⊕ (ρ∗r)
mr .

Exactly one of ρ1, . . . , ρr is a trivial (1-dimensional) representation ofH, and exactly
one of ρ∗1, . . . , ρ

∗
r is a trivial (1-dimensional) representation of H. Moreover, ρi is
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trivial if and only if ρ∗i is trivial. Reordering, if necessary, we can assume that ρ1

and ρ∗1 are trivial. But then

πH ' πm1
1 ' (π∗1)m1 ' (π∗)H ,

so their dimensions agree, as we wanted to show. �

Remark 8.5. In addition to the choice of an element x ∈ X, the isomorphism in
Corollary 8.4 depends on a choice of basis of V Hi for all 1 ≤ i ≤ q, and therefore, it
is non-canonical.

Schur orthogonality

We now let k = C be the complex numbers and continue to let G be a finite
group. Given a finite dimensional complex representation of G, we have defined the
associated subspace of matrix coefficients

M(π) ⊂ C[G]

to be the common image of the maps µπ and µ′π in the diagram

EndC(V ) C[G]

V ⊗ V ∗

µ′π //

αV
∼

``

µπ

>>

which are defined by µπ(x⊗ϕ) = ϕ(π(g)(x)) and µ′π(h)(g) = tr(π(g)◦h). The map
αV in the diagram is defined by αV (x ⊗ ϕ)(y) = x · ϕ(y) and is an isomorphism.
We also saw that if (v1, . . . ,vn) is a basis of V and (v∗1, . . . ,v

∗
n) is the dual basis

of V ∗, then the family (µπ(vj ⊗ v∗i ))1≤i,j≤n always generates M(π), and if π is
irreducible, then the family is a basis of M(π).

Let 〈−,−〉 be a hermitian inner product on V . I will use the convention that

〈x · z,y · w〉 = z̄ · 〈x,y〉 · w,
which is the opposite of the convention used in the book. It determines and is
determined by the C-linear isomorphism

V
b // V ∗

defined by b(x)(y) = 〈x,y〉. So we may also identify M(π) ⊂ C[G] with the image
of the composite map

V ⊗ V V⊗b
// V ⊗ V ∗

µπ // C[G],

which is given by

(µ ◦ (V ⊗ b))(x⊗ y)(g) = b(y)(π(g)(x)) = 〈y, π(g)(x)〉.
So if (v1, . . . ,vn) is a basis of V that is orthonormal with respect to 〈−,−〉, then
the matrix A(g) = (aij(g)) ∈ Mn,n(C) that represents π(g) : V → V with respect
to this basis has entries given by

aij(g) = 〈vi, π(g)(vj)〉.
The hermitian inner product 〈−,−〉 on V gives rise to a hermitian inner product
〈−,−〉Frob on EndC(V ) called the Frobenius inner product. To define it, we recall
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that given a complex linear map h : V → V , its adjoint with respect to 〈−,−〉 is
the unique complex linear map h∗ : V → V such that

〈h∗(x),y〉 = 〈x, h(y)〉
for all x,y ∈ V . Equivalently, the adjoint with respect to 〈−,−〉 is the unique
complex linear map h∗ : V → V that makes the diagram

V
b //

h∗

��

V ∗

h∗

��

V
b // V ∗

commute. Here, the right-hand vertical map is given by h∗(ϕ)(x) = ϕ(h(x)). Now,
for h1, h2 ∈ EndC(V ), the Frobenius inner product is defined by

〈h1, h2〉Frob = tr(h∗1 ◦ h2).

It is a hermitian inner product, which, we stress, depends on the choice of the
hermitian inner product 〈−,−〉 on V .

Definition 8.6. Let G be a finite group. The Schur inner product on C[G] is the
hermitian inner product given by

〈f1, f2〉Sch =
1

|G|
∑
g∈G

f1(g) f2(g).

It is straightforward to verify that the Schur inner product is invariant with
respect to the two-sided regular representation of G×G on C[G] in the sense that

〈Reg(g1, g2)(f1),Reg(g1, g2)(f2)〉Sch = 〈f1, f2〉Sch

for all (g1, g2) ∈ G×G and f1, f2 ∈ C[G].

Theorem 8.7 (Schur orthogonality). Let G be a finite group.

(a) If π1 and π2 are non-isomorphic irreducible complex representations of G,
then their subspaces of matrix coefficients

M(π1),M(π2) ⊂ C[G]

are orthogonal with respect to the Schur inner product.
(b) If (V, π) is an irreducible complex representation of G that is unitary with

respect to an hermitian inner product 〈−,−〉 on V , then

〈µ′π(h1), µ′π(h2)〉Sch =
1

n
· 〈h1, h2〉Frob

for all h1, h2 ∈ EndC(V ), where n = dimC(V ).

Proof. (a) We wish to prove that the composition

M(π1)
i // C[G]

p
// M(π2)

of the canonical inclusion and the orthogonal projection with respect to the Schur
inner product 〈−,−〉Sch is the zero map. But the map is intertwining with respect to
RegM(π1) and RegM(π2), and we have proved before that, as complex representations
of G × G, RegM(π1) and RegM(π2) are irreducible and non-isomorphic. So Schur’s
lemma proves that the map is zero, as desired.
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(b) The representation π : G→ GL(V ) gives rise to a representation

G×G
ρ
// GL(EndC(V ))

defined by ρ(g1, g2)(h) = π(g1) ◦ h ◦ π(g2)−1, and we claim that the map

EndC(V )
µ′π // C[G]

is intertwining between ρ and Reg. Indeed, we have

µ′π(ρ(g1, g2)(h))(g) = tr(π(g) ◦ π(g1) ◦ h ◦ π(g2)−1)

= tr(π(g2)−1 ◦ π(g) ◦ π(g1) ◦ h)

= tr(π(g−1
2 gg1) ◦ h)

= Reg(g1, g2)(µ′π(h))(g).

Since π is irreducible, the map µ′π is injective, and hence, defines an isomorphism

EndC(V )
µ′π // M(π)

that is intertwining between ρ and RegM(π). Now, we have two hermitian inner

products on EndC(V ), namely, the Frobenius inner product 〈−,−〉Frob and, via the
isomorphism µ′π, the Schur inner product 〈−,−〉′Sch defined by

〈h1, h2〉′Sch = 〈µ′π(h1), µ′π(h2)〉,
and both are ρ-invariant. But ρ ' π�π∗ is irreducible, so Theorem 6.12 shows that
there exists a positive real number c such that

〈h1, h2〉′Sch = c · 〈h1, h2〉Frob

for all h1, h2 ∈ EndC(V ). It remains to determine the constant c.

We choose a basis (v1, . . . ,vn) of V that is orthonormal with respect to the given
hermitian inner product. Since π is unitary with respect to 〈−,−〉, the matrix

A(g) = (aij(g)) ∈Mn(C)

that represents π(g) : V → V with respect to the basis (v1, . . . ,vn) is a unitary
matrix. Therefore, we find that

〈aij , akl〉Sch =
1

|G|
∑
g∈G

aij(g) akl(g) =
1

|G|
∑
g∈G

aji(g
−1) akl(g),

where the second identity holds, because the matrix A(g) is unitary. This formula
gives us the idea to consider the sum∑

1≤i≤n

〈αV (vj ⊗ v∗i ), αV (vl ⊗ v∗i )〉′Sch =
∑

1≤i≤n

〈µπ(vj ⊗ v∗i ), µπ(vl ⊗ v∗i )〉Sch

=
1

|G|
∑

1≤i≤n

∑
g∈G

aji(g
−1)ail(g) =

1

|G|
∑
g∈G

∑
1≤i≤n

aji(g
−1)ail(g) = δjl,

where the last identity holds, because A(g−1) = A(g)−1. By comparison,∑
1≤i≤n

〈αV (vj ⊗ v∗i ), αV (vl ⊗ v∗i )〉Frob =
∑

1≤i≤n

tr(αV (vj ⊗ v∗i )
∗ ◦ αV (vl ⊗ v∗i ))

=
∑

1≤i≤n

tr(αV (vi ⊗ v∗j ) ◦ αV (vl ⊗ v∗i )) =
∑

1≤i≤n

δjl = n · δjl,
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so we find that c = 1
n , as stated. Let us explain the second and third identity in

this calculation. The matrix B that represents αV (vj⊗v∗i ) : V → V with respect to
the basis (v1, . . . ,vn) has only one nonzero entry, namely, bij = 1. Since the basis
(v1, . . . ,vn) is orthonormal with respect to 〈−,−〉, the matrix that represents the
adjoint map αV (vj ⊗ v∗i )

∗ : V → V with respect to this basis is the adjoint matrix
C = B∗, whose only nonzero entry is cji = 1. Similarly, the only nonzero entry in
the matrix D that represents αV (vl ⊗ v∗i ) with respect to (v1, . . . ,vn) is dil = 1.
Finally, the matrix that represents αV (vj⊗v∗i )

∗◦αV (vl⊗v∗i ) : V → V with respect
to the basis (v1, . . . ,vn) is F = C ·D, whose only nonzero entry is fjl = 1, so its
trace is indeed δjl as stated. �

Corollary 8.8. Let G be a finite group, and let Z(C[G]) ⊂ C[G] be the sub-C-
vector space consisting of the central functions. If π1, . . . , πq are representatives of
the irreducible complex representations of G, then the basis of Z(C[G]) given by the
family of their characters (χπ1

, . . . , χπq ) is orthonormal with respect to the Schur
inner product.

Proof. Theorem 8.7 (a) is precisely the statement that (χπ1
, . . . , χπq ) is orthogonal

with respect to the Schur inner product. Moreover, we have,

〈χπi , χπi〉Sch = 〈µ′πi(idVi), µ
′
πi(idVi)〉

′
Sch =

1

ni
〈idVi , idVi〉Frob,

where the second identity is Theorem 8.7 (b), and by definition

〈idVi , idVi〉Frob = tr(id∗Vi ◦ idVi) = tr(idVi ◦ idVi) = tr(idVi) = ni,

which shows that 〈χπi , χπi〉Sch = 1, as desired. �

Corollary 8.9. Let G be a finite group, and let π1, . . . , πq be representatives of the
irreducible complex representations of G. If (V, π) is any finite dimensional complex
representation of G, then there is a non-canonical isomorphism

π ' πm1
1 ⊕ · · · ⊕ πmqq ,

where mi = 〈χπ, χπi〉Sch.

Proof. By Corollary 7.13, it suffices to show that

χπ = m1χπ1
+ · · ·+mqχπq

with mi as stated. But this follows immediately from Corollary 8.8. �
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9. Six-functor formalism for QCoh([G \X])

Let (V, π) be a k-linear representation representation of a group G. If f : G′ → G
is a group homomorphism, then the composite group homomorphism

G′
f
// G

π // GL(V )

defines a k-linear representation of G′ that we write f∗(π) and call the restriction
of π along f . We will show that, given a k-linear representation (V ′, π′) of G′,
there are two ways to produce a k-linear representation of G. We write f!(π

′) and
f∗(π

′) for these two k-linear representation of G and call them compact induction
of π′ along f and induction of π′ along f , respectively. However, to define and
understand these, it is better to first generalize our notion of k-linear representation.
So, in this lecture, I will assume some familiarity with categories, functors, natural
transformations, and adjunctions. We have already encountered these in Lecture 5,
when we discussed extension/restriction of scalars.

If G is a group, then we define a category BG, whose set of objects is the singleton
set 1 = {0}, and whose set of morphisms is

Map(0, 0) = G.

We define the composition of morphisms in the category BG to be the product of
these as elements of the group G, that is,

g ◦ h = gh,

and we define the identity morphism of the unique object 0 in the category BG to
be the identity element in the group G, that is,

id0 = e.

Let k be a field, and let Vectk be the category, whose set of objects is the set of
(small, right) k-vector spaces, and whose set of morphisms is the set of k-linear
maps between such k-vector spaces. Composition of morphisms is defined to be
composition of maps, and the identity morphism of V is defined to be the identity
map idV . Now, a k-linear representation (V, π) of G determines a functor

BG
π // Vectk

that to the unique object 0 assigns the k-vector space π(0) = V and that to the
morphism g : 0→ 0 assigns the k-linear map π(g) : V → V . Indeed, it is a functor,
since for all morphisms g, h : 0→ 0 in BG, we have

π(g ◦ h) = π(gh) = π(g) ◦ π(h),

and for the unique object 0 in BG, we have

π(id0) = π(e) = idV = idπ(0) .

Conversely, a functor π : BG→ Vectk determines a k-linear representation

G
π // GL(V ),

where V = π(0), and where π(g) : V → V is the k-linear map π(g) : π(0) → π(0).
This map is invertible. Indeed, every morphism g : 0→ 0 in BG is an isomorphism,
and every functor takes isomorphisms to isomorphisms, but let us give the proof.
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Let g : 0 → 0 be a morphism in BG. That h : 0 → 0 is an inverse of g means that
g ◦ h = id0 and h ◦ g = id0. Since π : BG→ Vectk is a functor, we have

π(g) ◦ π(h) = π(g ◦ h) = π(id0) = idπ(0),

π(h) ◦ π(g) = π(h ◦ g) = π(id0) = idπ(0),

which shows that π(g) ∈ GL(V ), as claimed.

We generalize this as follows. Let G be a group and recall that a left G-set is
defined to be a pair (X, ρ) of a set X and a group homomorphism

G
ρ
// Aut(X).

As we explained in the Lecture 8, we also write g · x or gx instead of ρ(g)(x) and
we say that G acts from the left on the set X. Given a left G-set (X, ρ), we define
a category called the translation groupoid of (X, ρ) and denoted

[G \X]

as follows. The set of objects is the set [G \X]0 = X, and the set of morphisms is
the set [G \X]1 = G×X. The source and target maps

[G \X]1
s //

t
// [G \X]0

are given by s(g, x) = x and t(g, x) = gx, respectively, and the identity map

[G \X]0
e // [G \X]1

is given by e(x) = (e, x). So, in other words, we view the pair (g, x) as a morphism
from x to gx, and we define the identity morphism of x to be the pair (e, x). The
composition of (g, hx) : hx→ ghx and (h, x) : x→ hx is (gh, x) : x→ ghx:

x

hx

ghx.

(h,x) 22 (g,hx)

��(gh,x)
//

In the case of the trivial action of G on the set 1 = {0}, we recover the category

BG = [G \1].

We now define a k-linear representation of [G \X] to be a functor

[G \X]
π // Vectk .

Such a functor assigns k-vector spaces and k-linear maps as indicated below.

x

hx

ghx

π(x)

π(hx)

π(ghx)

(gh,x)

��

(h,x)

��

(g,hx)
��

� π // π(gh,x)

��

π(h,x)

��

π(g,hx)
~~
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The category [G \X] is a simple example of what is called a stack, and a functor
π : [G \X]→ Vectk is also called a quasi-coherent sheaf on this stack. We write

QCoh([G \X]) = Fun([G \X],Vectk)

for the category, whose objects are the functors π : [G \X] → Vectk, and whose
morphisms are natural transformations between such functors. So a morphism

π
h // π′

is a family (hx)x∈X of k-linear maps

π(x)
hx // π′(x)

such that for every (g, x) ∈ G×X, the diagram

π(x)
hx //

π(g,x)

��

π′(x)

π′(g,x)

��

π(gx)
hgx
// π′(gx)

commutes. In particular, the category

Repk(G) = QCoh(BG) = QCoh([G \1 ])

is the category of k-linear representations and intertwining k-linear maps.

It happens rarely that categories are equal or even that they are isomorphic.
Being equal or being isomorphic are not good notions for categories. (In fact, they
are so-called “evil” notions, because they involve equality.) Instead, the notion of
equivalence is a good notion. A functor

D
F // C

is defined to be an equivalence, if there exists a functor

C
H // D

in the opposite direction and natural transformations

F ◦H idC

idD H ◦ F

ε //

η
//

such that for all c ∈ C and d ∈ D, the morphisms

(F ◦H)(c) idC(c) = c

d = idD(d) (H ◦ F )(d)

εc //

ηd //

in C and D, respectively, are isomorphisms. In this situation, we say that ε and η
are natural isomorphisms, and that H is a quasi-inverse of F . We note, however,
that H is *not* uniquely determined by F .
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Remark 9.1. If F : D→ C is an equivalence (of categories), then it is always possible
to chooseH : C→ D and ε : F ◦H → idC and η : idD → H◦F such that the following
diagrams of natural transformations commute.

F

F ◦H ◦ F

F H

H ◦ F ◦H

H
idF //

F◦η
??

ε◦F

�� idH //

η◦H
??

H◦ε

��

In this situation, we say that ε and η satisfy the triangle identities and that the
quadruple (F,G, ε, η) is an adjoint equivalence from D to C.

Proposition 9.2. Let G be a group, and let (X, ρ) be a transitive left G-set. Let
x ∈ X, and let Gx ⊂ G be the isotropy subgroup. The canonical inclusion functor

BGx = [Gx\{x}]
i // [G \X]

is an equivalence.

Proof. To produce a quasi-inverse, we choose for all y ∈ X, an element hy ∈ G such
that y = hyx, and define

[G \X]
H // [Gx\{x}],

to be the functor given on objects and morphisms by

y

gy

x

x

(g,y)

��

(h−1
gy ghy,x)

��

� H //

We further define ε : i ◦H → id[G \X] and η : H ◦ i→ id[Gx \{x}] by

(i ◦H)(y) y

x y

εy
//

(hy,x)
//

x (H ◦ i)(x)

x x.

ηx //

(h−1
x ,x)

//

respectively. The family ε = (εy)y∈X is a natural transformation, since the diagram

x y

x gy

(hy,x)
//

h−1
gy ghy

��

(g,y)

��(hgy,x)
//

commutes for all (g, y) ∈ G×X, and similarly, the family η = (ηx)x∈{x} is a natural
transformation since the diagram

x x

x x

(h−1
x ,x)

//

(g,x)

��

(h−1
x ghx,x)

��(h−1
x ,x)

//

commutes for all g ∈ Gx. Both ε and η are automatically natural isomorphisms,
since all morphisms in [G \X] and [Gx\{x}] are isomorphisms. �
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A category G is defined to be a groupoid if all morphisms in G are isomorphisms.
The translation groupoid [G \X] of any left G-set (X, ρ) is indeed a groupoid.

Corollary 9.3. In the situation of Proposition 9.2, the restriction along i,

QCoh([G \X])
i∗ // QCoh([Gx\{x}]) = Repk(Gx),

which to π assigns π ◦ i, is an equivalence.

Proof. If H is a quasi-inverse of i, then H∗ is a quasi-inverse of i∗. �

Remark 9.4. Something better is true, namely, that, as opposed to the equivalence
i, the equivalence i∗ has a canonical quasi-inverse i! ' i∗ given by the left or right
Kan extension along i. Explicitly, the functors i! and i∗ are given by

i!(π)(y) ' lim−→(π | BGx ×[G \X] [G \X]/y)

' (
⊕

(h,x) : x→y π(x))/Gx

i∗(π)(y) ' lim←−(π | BGx ×[G \X] [G \X]y/)

' (
∏

(h,y) : y→x π(x))Gx .

It is the possibility of forming sums and products in Vectk, which we cannot do in
[G \X], that makes it possibly to define these functors.

Example 9.5. Let G be a group, and let H ⊂ G be a subgroup. The pair (X, ρ)
consisting of the set X = G/H of left cosets of H in G and the group homomorphism
ρ : G → Aut(X) defined by ρ(g)(g′H) = gg′H, is a transitive left G-set. If we use
Corollary 9.3 with x = H = eH ∈ G/H, then we find that

QCoh([G \(G/H)])
i∗ // Repk(H)

is an equivalence.

Let (X, ρ) be a left G-set, and let

X
p
// G \X

be the canonical projection onto the set of orbits. (We remark that

G \X ' π0([G \X])

is the set of isomorphism classes of objects in [G \X].) If we choose an element

x = s(x̄) ∈ x̄ = G · x ∈ G \X

in each orbit, then we obtain an isomorphism of left G-sets∐
x̄∈G \X G/Gx

// X

that to gGx assigns g · x. We note that this isomorphism is highly non-canonical,
since it depends on the choice a section s : G \X → X of p : X → G \X. Be that as
it may, given this choice, we obtain equivalences∐

x̄∈G \X BGx
//
∐
x̄∈G \X [G \(G/Gx)] // [G \X].

Finally, taking functors into Vectk, we obtain the following result.
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Proposition 9.6. Let G be a group, and let (X, ρ) be a left G-set. A choice of
representative x ∈ x̄ ∈ G \X of each orbit determines an equivalence

QCoh([G \X]) //
∏
x̄∈G \X Repk(Gx).

In Proposition 9.6, the big advantage of the left-hand side is that it only depends
on the left G-set (X, ρ), whereas the right-hand side also depends on a choice27 of
section s : G \X → X of the canonical projection p : X → G \X. We are now ready
to define the compact induction and induction functors.

So let G be a group, and let f : Y → X be a G-equivariant map between left
G-sets X and Y . We do not assume that G, X, or Y is finite. It induces a functor

[G \Y ]
f
// [G \X],

which, by abuse of notation, we again denote by f , and that maps

y

gy

f(y)

f(gy)

(g,y)

��

(g,f(y))

��

� f
//

Since the map f : Y → X is G-equivariant, we have f(gy) = gf(y), so this functor
is well-defined. The functor f induces a functor

QCoh([G \X])
f∗
// QCoh([G \Y ])

that to π assigns π ◦ f and that we call the restriction along f . It admits both a
left adjoint functor f! and a right adjoint functor f∗ given by the left Kan extension
along f and the right Kan extension along f , respectively. We call the functor f!

compact induction along f , and we call the functor f∗ induction along f . We now
spell these out two functions out in detail. First, the functor

QCoh([G \Y ])
f! // QCoh([G \X])

is given by

f!(τ)(x)

⊕
f(y)=x τ(y)

f!(τ)(gx)

⊕
f(y)=x τ(gy),

f!(τ)(g,x)
//

⊕
τ(g,y)

//

where the two sums are indexed by

f−1(x) = {y ∈ Y | f(y) = x},
and where we use that, since f : Y → X is G-equivariant, we have⊕

f(y′)=gx τ(y′) =
⊕

f(y)=x τ(gy).

We define natural transformations ε = (επ) and η = (ητ ) with28

f!f
∗(π) π τ f∗f!(τ)

επ //
ητ //

27 In general, we need the axiom of choice to even know that it is possible to make this choice!
28 We abbreviate and write f!f

∗ instead of f! ◦ f∗, etc.
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as follows. The k-linear map

f!f
∗(π)(x) π(x)

⊕
f(y)=x π(f(y)) π(x)

επ,x
//

∇ //

is the fold map (or co-diagonal), whose restriction to each summand is the identity
map of π(x) = π(f(y)), and the k-linear map

τ(y) f∗f!(τ)(y)

τ(y)
⊕

f(y′)=f(y) τ(y′)

ητ,y
//

iy
//

is the inclusion of the summand indexed by y. One verifies that ε and η are indeed
well-defined natural transformations and that the triangle identities

f!

f! f
∗f!

f! f∗

f∗f! f
∗

f∗
idf! //

f!η
??

εf!

�� idf∗
//

ηf∗
??

f∗ε

��

hold. As explained in Lecture 5, this immediately implies:

Theorem 9.7 (Frobenius reciprocity I). In the situation above, the maps

Map(f!(τ), π)
α //

Map(τ, f∗(π))
β
oo

defined by α(h) = f∗(h) ◦ ητ and β(k) = επ ◦ f!(k) are each other’s inverses.

Similarly, the functor

QCoh([G \Y ])
f∗ // QCoh([G \X])

is given by

f∗(τ)(x)

∏
f(y)=x τ(y)

f∗(τ)(gx)

∏
f(y)=x τ(gy),

f∗(τ)(g,x)
//

∏
τ(g,y)

//

where the products are indexed by f−1(x) as before. The natural transformations
ε = (ετ ) and η = (ηπ) with

f∗f∗(τ) τ π f∗f
∗(π)

ετ //
ηπ //

as follows. The k-linear map

f∗f∗(τ)(y) τ(y)

∏
f(y′)=f(y) τ(y′) τ(y)

ετ,y
//

py
//
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is the projection on the factor indexed by y, and the k-linear map

π(x) f∗f
∗(π)(x)

π(x)
∏
f(y)=x π(f(y))

ηπ,x
//

∆ //

is given by the diagonal map. One verifies that ε and η are well-defined natural
transformations and that they satisfy the triangle identities:

f∗

f∗f∗f
∗

f∗ f∗

f∗f
∗f∗

f∗
idf∗

//

f∗η
??

εf∗

�� idf∗ //

ηf∗

??
f∗ε

��

This gives the following result:

Theorem 9.8 (Frobenius reciprocity II). In the situation above, the maps

Map(f∗(π), τ)
α //

Map(π, f∗(τ))
β
oo

defined by α(h) = f∗(h) ◦ ηπ and β(k) = ετ ◦ f∗(k) are each other’s inverses.

There is a canonical natural transformation called the norm map

f! f∗.
Nmf

//

In our description of f! and f∗, it is given by the canonical inclusion

f!(τ)(x) f∗(τ)(x)

⊕
f(y)=x τ(y)

∏
f(y)=x τ(y)

Nmf,τ,x
//

//

of the sum in the product. We will say that a map f : Y → X is proper, if for all
x ∈ X, the inverse image f−1(x) ⊂ Y is finite.

Theorem 9.9. If f : Y → X is proper, then the norm map

f! f∗.
Nmf

//

is a natural isomorphism.

Proof. Indeed, finite sums and finite products of k-vector spaces agree. �

Finally, we will prove an important theorem called the base-change theorem. A
commutative diagram of left G-sets and G-equivariant maps

(9.10) Y ′
h′ //

f ′

��

Y

f

��

X ′
h // X
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induces a diagram of categories and functors

QCoh([G \Y ′]) QCoh([G \Y ])

QCoh([G \X ′]) QCoh([G \X])

h′∗oo

f ′∗

OO

f∗

OO

h∗oo

that commutes, up to unique natural isomorphism. The diagram (9.10) is defined
to be cartesian, if the map

Y ′ X ′ ×X Y = {(x′, y) ∈ X ′ × Y | h(x′) = f(y)} ⊂ X ′ × Y
(f ′,h′)

//

is a bijection. In this case, also the diagrams

QCoh([G \Y ′]) QCoh([G \Y ])

QCoh([G \X ′]) QCoh([G \X])

h′∗oo

f ′∗ (resp. f ′! )

��

f∗ (resp. f!)

��
h∗oo

commute, up to specified natural isomorphisms. Here is a precise statement:

Theorem 9.11 (Base-change). If a diagram of G-sets and G-equivariant maps as
in (9.10) is cartesian, then the following hold.

(1) The composite natural transformation

h∗f∗ f ′∗ f
′∗h∗f∗ ' f ′∗ h′∗f∗f∗ f ′∗ h

′∗ηh∗f∗ //
f ′∗h
′∗ε
//

is a natural isomorphism.
(2) The composite natural transformation

f ′! h
′∗ f ′! h

′∗f∗f! ' f ′! f ′∗h∗f! h∗f!

f ′! h
′∗η
//

εh∗f! //

is a natural isomorphimsm.

Proof. We first remark that (1) and (2) are in fact equivalent statements. Indeed,
the natural transformation h∗f∗ → f ′∗h

′∗ in (1), determines and is determined by a
natural transformation h′!f

′∗ → h!f
∗, which, up to interchanging the role of f and

h, precisely is the natural transformation in (2). So it suffices to prove (1). To this
end, let τ ∈ QCoh([G \Y ]), and let x′ ∈ X ′. On the one hand, we have

h∗f∗(τ)(x′) = f∗(τ)(h(x′)) =
∏
f(y)=h(x′) τ(y),

and, on the other hand, we have

f ′∗ h
′∗(τ)(x′) =

∏
f ′(y′)=x′ h

′∗(τ)(y′) =
∏
f ′(y′)=x′ τ(h′(y′)),

and since the diagram (9.10) is cartesian, the two products agree. Finally, one checks
that the composite map in the statement takes the factor indexed by (y, x′) with
f(y) = h′(x′) to the factor indexed by the unique y′ ∈ Y ′ such that f ′(y′) = x′ and
h′(y′) = y by the identity map

τ(y)
id // τ(h′(y′)).

So it is an isomorphism, which proves (1). �
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In the next lecture, we consider the special case, where G is a finite group, where
H,K ⊂ G are two subgroups, and where (9.10) is the cartesian diagram

G/H ×G/K G/H

G/K G/G.

h′ //

f ′

��

f

��
h //

Here, f and h are the unique maps (note that G/G = {G} only has one element),
and h′ and f ′ are the canonical projections. The left G-sets G/H and G/K are
both transitive, but G/H × G/K is not, unless either H = G or K = G or both.
Proposition 9.6 gives a product decomposition of QCoh([G \(G/H ×G/K)]), once
we fix a choice of representatives of the G-orbits in G/H × G/K. As we will see,
this turns out to be rather complicated!

Remark 9.12. The formulas for the left Kan extension f! and right Kan extension
f∗ that we have given above are based on the fact that the diagram of anima29

Y [G \Y ]

X [G \X]

//

�� ��
//

is cartesian. (This follows from Theorem 6.1.0.6 in Lurie’s Higher Topos Theory,
since anima form an ∞-topos.)

29 In Lurie’s Higher Topos Theory, anima are called “spaces.” However, since these are nothing
like topological spaces and are in fact discrete in nature, Clausen and Scholze have proposed to

use the name anima or animated sets instead.
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10. Induction and restriction

This time, we will apply the general theory that we developed last time to the
particular map of left G-sets given by the unique map

G/H
p
// G/G = {G},

where H ⊂ G is a subgroup.30 We have defined functors

BG

[G \(G/G)]

[G \(G/H)]

[H \(H/H)]

BH

f
oo

p

ZZ

iyy

f
oo

with i an equivalence of categories, and adjoint pairs of functors

Repk(G)

QCoh([G \(G/G)])

QCoh([G \(G/H)]).

QCoh([H \(H/H)])

Repk(H)

f∗
//

f∗

oo

p∗ ''

p∗

aa

i∗
==

i∗ww

ResGH //

IndGH

oo

We call ResGH = f∗ the restriction from G to H and its right adjoint IndGH = f∗
the induction from H to G. (We also defined a left adjoint f! of f∗, which we call

compact induction from H to G. It is sometimes written indGH in all lower-case.)
Since composition of functors is (strictly) associative, we have

f∗ = (p ◦ i)∗ = i∗ ◦ p∗,
but it is not true that

f∗ = (p ◦ i)∗ = p∗ ◦ i∗.
What is true, however, is that the two composite natural transformations

f∗ // p∗p
∗f∗ // p∗i∗i

∗p∗f∗ = p∗i∗f
∗f∗ // p∗i∗

p∗i∗ // f∗f
∗p∗i∗ = f∗i

∗p∗p∗i∗ // f∗i
∗i∗ // f∗

defined using the counits and units of the three adjunctions are each other’s inverses.
In this way, the two adjoints f∗ and p∗i∗ of f∗ are uniquely naturally isomorphic.
This is a general fact:

Proposition 10.1. Let (f∗, f∗, ε, η) and (f∗, f̄∗, ε̄, η̄) be two adjunctions with the
same left adjoint functor f∗. In this situation, the composite natural transformation

f∗
η̄◦f∗ // f̄∗ ◦ f∗ ◦ f∗

f̄∗◦ε // f̄∗

30 We do not assume that H ⊂ G is normal.
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is the unique natural transformation σ : f∗ → f̄∗ that makes the diagrams

f∗ ◦ f∗ f∗ ◦ f̄∗

id

f∗◦σ
//

ε
��

ε̄
��

f∗ ◦ f∗ f̄∗ ◦ f∗

id

σ◦f∗
//

η

__

η̄

??

commute. In particular, it is a natural isomorphism with inverse

f̄∗
η◦f̄∗ // f∗ ◦ f∗ ◦ f̄∗

f∗◦ε̄ // f∗.

Proof. This is not so easy to show. See for example Saunders MacLane, Categories
for the Working Mathematician, Chapter IV, Section 7, Theorem 2. �

Here is an application:

Corollary 10.2. The adjunction

QCoh([G \(G/H)])
i∗ //

Repk(H)
i∗
oo

is an adjoint equivalence.

Proof. In the adjunction (i∗, i∗, ε, η), the functors i∗ and i∗ are given by restriction
and right Kan extension along the canonical inclusion

BH = [H \(H/H)]
i // [G \(G/H)],

and we wish to prove that ε and η are natural isomorphisms. We have proved last
time that i is an equivalence of categories. So if h is a quasi-inverse of i, then h∗ is
a quasi-inverse of i∗, and we can choose natural isomorphisms ε̄ : i∗ ◦ h∗ → id and
η̄ : id → h∗ ◦ i∗ such that (i∗, h∗, ε̄, η̄) is an adjunction. By Proposition 10.1, the
natural transformation σ : i∗ → h∗ defined as the composition

i∗
η̄◦i∗ // i∗i

∗h∗
ε◦h∗ // h∗

is an isomorphism and is unique with the property that the diagrams

i∗ ◦ i∗ i∗ ◦ h∗

id

i∗◦σ //

ε
��

ε̄
��

i∗ ◦ i∗ h∗ ◦ i∗

id

σ◦i∗ //

η

__

η̄

??

commute. In particular, we conclude that ε and η are natural isomorphisms. �

Proposition 10.1 also implies that to “calculate” the induction functor

Repk(H) Repk(G),
IndGH //

it suffices to produce an adjunction (ResGH , IndGH , ε, η) with ResGH = f∗. For in this

situation, the proposition will give a unique natural isomorphism σ : IndGH → f∗ to
any other right adjoint functor f∗ of f∗, say, to the right Kan extension along the
functor f : BH → BG.
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Now, given a k-linear representation of H,

BH
τ // Vectk

with W = τ(0), we define the induced k-linear representation

BG Vectk
π=IndGH(τ)

//

as follows. The k-vector space π(0) = V = MapH(G,W ) is given by the set of all
maps f : G→W such that for all h ∈ H and x ∈ G,

f(h · x) = h · f(x) = τ(h)(f(x)),

with vector sum and scalar multiplication by a ∈ k defined pointwise by

(f + f ′)(x) = f(x) + f ′(x)

(f · a)(x) = f(x) · a,

and for g ∈ G, the k-linear map π(g) : V → V is given by

π(g)(f)(x) = f(xg).

We define the counit ετ : (ResGH ◦ IndGH)(τ)→ τ to be the k-linear map

MapH(G,W ) // W

that to f : G→W assigns ετ (f) = f(e), and the calculation

ετ (h · f) = (h · f)(e) = f(e · h) = f(h · e) = h · f(e) = h · ετ (f)

shows that it intertwines between the two k-linear representations of H in question.
Finally, given a k-linear representation π : BG → Vectk of G with V = π(0), we

define the unit ηπ : π → (IndGH ◦ResGH)(π) to be the k-linear map

V // MapH(G,V )

given by ηπ(v)(x) = π(x)(v). The calculation

ηπ(v)(h · x) = π(h · x)(v) = (π(h) ◦ π(x))(v) = π(h)(ηπ(v))

shows that ηπ ∈ MapH(G,V ), so the map is well-defined. And the calculation

ηπ(g · v)(x) = π(x)(π(g)(v)) = π(x · g)(v) = ηπ(v)(x · g) = (g · ηπ(v))(x)

shows that it intertwines between the two representations in question. Thus, we
obtain the following special case of Frobenius reciprocity II, which we proved in
Theorem 9.8.

Theorem 10.3 (Frobenius reciprocity II). In the situation above, the maps

Hom(ResGH(π), τ) Hom(π, IndGH(τ))
α //

β
oo

defined by α(h) = IndGH(h) ◦ ηπ and β(k) = ετ ◦ResGH(k) are each other’s inverses.

Example 10.4. Let G = Σ4 be the group of permutations of the set {1, 2, 3, 4}, and
let H ⊂ G be the subgroup of permutations σ such that σ(4) = 4. We identify H
with the group Σ3 of permutations {1, 2, 3} via the group isomorphism ρ : H → Σ3

defined by ρ(σ) = σ|{1,2,3}. We let π1, π2, π3, π4, π5 be the irreducible complex
representations ofG defined in Lecture 7, and let τ1, τ2, τ3 be the irreducible complex
representations of H defined in Lecture 1. So π1 and τ1 are the 1-dimensional trivial
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representations, π2 and τ2 are the 1-dimensional sign representations, π3 and τ3 are
the standard representations of dimension 3 and 2, respectively, π4 ' π2 ⊗ π3 is
3-dimensional, and π5 is 2-dimensional. We wish to understand

π = IndGH(τ1),

which has dimC(π) = [G : H] · dimC(τ1) = 4. We have the canonical isomorphism⊕
1≤i≤5 Hom(πi, π)⊗ πi // π

that to fi ⊗ xi assigns fi(xi), and by Frobenius reciprocity,

Hom(πi, π) = Hom(πi, IndGH(τ1)) ' Hom(ResGH(πi), τ1).

We see immediately from the definitions that

ResGH(π1) ' τ1
ResGH(π2) ' τ2
ResGH(π3) ' τ1 ⊕ τ3,

so by Schur’s lemma, we conclude that the canonical map

Hom(π1, π)⊗ π1 ⊕Hom(π3, π)⊗ π3
// π

is an isomorphism. Hence, less canonically, we have an isomorphism

IndGH(τ1) ' π1 ⊕ π3.

Let us finish the calculation of ResGH(πi). Using that π4 = π2 ⊗ π3, we get

ResGH(π4) = ResGH(π2 ⊗ π3) ' ResGH(π2)⊗ ResGH(π3)

' τ2 ⊗ (τ1 ⊕ τ3) ' τ2 ⊕ τ3,

where the second identification uses the “symmetric monoidal” structure on ResGH .
Finally, we consider the diagram of groups

1 // N // G
q
// H // 1,

H

f

OO

where N = {e, (12)(34), (13)(24), (14)(23)}, and where q maps g ∈ G to the unique
element q(g) ∈ H ∩ gN . In Lecture 7, we defined π5 = q∗(τ3), so we find that

ResGH(π5) = (f∗ ◦ q∗)(τ3) = (q ◦ f)∗(τ3) = τ3.

Remark 10.5. As Example 10.4 shows, if π is irreducible, then ResGH(π) may well
not be so. (Physicists call this “symmetry breaking.”) The example also shows that

if τ is irreducible, then IndGH(τ) may also not be irreducible.

Suppose H ⊂ G is a subgroup of finite index [G : H] = n. In this case, the map

G/H
p
// G/G

is proper, so by Theorem 9.9, the norm map Nmp : p! → p∗ is a natural isomorphism.

This means that, under this assumption, the functor IndGH is also left adjoint to

ResGH . Let us spell out the adjunction

(IndGH ,ResGH , ε
′, η′).
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We choose a family (g1, . . . , gn) of representatives of the right cosets Hg ∈ H \G.
If (V, π) is a k-linear representation of G, then we define the counit

(IndGH ◦ResGH)(π)
ε′π // π

to be the k-linear map ε′π : MapH(G,V )→ V given by ε′π(f) =
∑

1≤i≤n f(gi), and

if (W, τ) is a k-linear representation of H, then we define the unit

τ
η′τ // (ResGH ◦ IndGH)(τ)

to be the k-linear map η′τ : W → MapH(G,W ) given by

η′τ (w)(x) =

{
τ(x)(w) if x ∈ H,

0 if x /∈ H.

Therefore, by invoking Proposition 10.1, Frobenius reciprodicity I, which we proved
in Theorem 9.7, specializes to the following result.

Theorem 10.6. Let G be a group, and let H ⊂ G be a subgroup of finite index.
Given k-linear representations π and τ of G and H, respectively, the maps

Hom(IndGH(τ), π) Hom(τ,ResGH(π))
α′ //

β′
oo

defined by α′(h) = ResGH(h)◦η′τ and β′(k) = ε′π ◦ IndGH(k) are each other’s inverses.

Remark 10.7. The restriction ResGH = f∗ always has the left adjoint indKH = f!, but
the norm map Nmf : f! → f∗ is a natural isomorphism only if [G : H] <∞.

Let H,K ⊂ G be two subgroups, and let σ and τ be k-linear representations of
H and K, respectively. Frobenius reciprocity gives us the canonical isomorphism

Hom(IndGH(σ), IndGK(τ))
β
// Hom((ResGK ◦ IndGH)(σ), τ),

so we would like to understand the functor ResGK ◦ IndGH , and this is exactly what
the base-change theorem allows us to do. We first determine the set

MapG(G/H,G/K)

of G-equivariant maps f : G/H → G/K. Given such a map, we have f(H) = aK,
for some a ∈ G, and hence, by the G-equivariance of f , we have

f(gH) = gaK

for all g ∈ G. In particular, we have haK = aK for all h ∈ H, or equivalently,

a−1Ha ⊂ K.
Conversely, given a ∈ G such that a−1Ha ⊂ K, the map fa : G/H → G/K defined
by fa(gH) = gaK is G-equivariant. Moreover, we observe that fa = fb if and only
if aK = bK, or equivalently, if and only if

a−1b ∈ K.
If a−1Ha = K, then fa = ra is the G-equivariant map

G/H
ra // G/a−1Ka
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given by right multiplication by a. Indeed,

fa(gH) = gaa−1Ha = gHa = ra(gH).

In general, if a−1Ha ⊂ K, then fa factors in two ways

G/H G/aKa−1

G/a−1Ha G/K

paKa
−1

H //

ra

��

ra

��pK
a−1Ha //

fa

((

as the composition of ra and the canonical projections.

We now assume that G is finite and consider the cartesian square of left G-sets

X G/H

G/K G/G,

p1 //

p2

��

pGH
��pGK //

where H,K ⊂ G are subgroups and X = G/H ×G/K. The base-change theorem,
Theorem 9.11, gives a canonical natural isomorphism

(pGK)∗ ◦ (pGH)∗ // p2∗ ◦ p∗1,

so we wish to understand the left G-set X. The map s : G/K → X defined by
s(aK) = (H, aK) is not G-equivariant, unless H = G, but it induces a surjection

G/K
s̄ // G \X = π0([G \X])

that maps aK to the G-orbit s̄(aK) = G · (H, aK) through s(aK) = (H, aK), and
moreover, (H, aK) and (H, bK) are in the same G-orbit if and only if ab−1 ∈ H.
This shows that we have a bijection

H \G/K // G \X

that to HaK assigns the G-orbit G · (H, aK). Moreover, the isotropy subgroup at
(H, aK) for the left action by G on X is equal to

G(H,aK) = H ∩ aKa−1,

since (H, aK) = (gH, gaK) if and only if g ∈ H and g ∈ aKa−1. We now choose a
map a : {1, 2, . . . ,m} → G, whose composition with the canonical projection

{1, 2, . . . ,m} a // G
q
// H \G/K

is a bijection. We write as = a(s) and say that (a1, a2, . . . , am) is a family of double
coset representatives. With this choice, we obtain a G-equivariant bijection∐

1≤s≤mG/(H ∩ asKa−1
s )

u // X

that to g(H ∩ asKa−1
s ) assigns (gH, gasK). Moreover, we have

p1 ◦ u =
∑

1≤s≤m pH
H∩asKa−1

s

p2 ◦ u =
∑

1≤s≤m ras ◦ p
asKa

−1
s

H∩asKa−1
s
,
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where “Σ” is notation for the map from the disjoint union that on the sth summand
is given by the indicated map. Finally, we note that the diagram

B(aKa−1) [G \(G/aKa−1)]

BK [G \(G/K)],

iaKa−1
//

ca

��

ra

��
iK //

where ca : aKa−1 → K maps aka−1 to k, commutes, up to the natural isomorphism

iK ◦ ca // ra ◦ iaKa−1

defined by the isomorphism

(iK ◦ ca)(0) (ra ◦ iaKa−1)(0)

K aK

//

(a,K)
//

in the category [G \(G/K)].

With all these choices made, the base-change theorem gives rise to the following
result known as the double coset formula.

Theorem 10.8. In the situation above, there is a natural isomorphism

⊕
1≤s≤m cas∗ ◦ Ind

asKa
−1
s

H∩asKa−1
s
◦ResH

H∩asKa−1
s

// ResGK ◦ IndGH

that depends on the various choices made.

Proof. By the base-change theorem, the diagram

QCoh([G \X]) QCoh([G \(G/H)])

QCoh([G \(G/K)]) QCoh([G \(G/G)])

p2∗

��

p∗1oo

(pGH)∗
��(pGK)∗

oo

commutes, up to canonical natural isomorphism. Moreover, using the (non-canonical)
G-equivariant bijection

∐
1≤s≤mG/(H ∩ asKa−1

s )
u // X = G/H ×G/K,
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this translates into a diagram

∏
1≤s≤m Repk(H ∩ asKa−1

s ) Repk(H)

∏
1≤s≤m Repk(asKa

−1
s )

∏
1≤s≤m Repk(K)

Repk(K) Repk(G),

(ResH
H∩asKa

−1
s

)
oo

∏
Ind

asKa
−1
s

H∩asKa
−1
s��

IndGH

��

∏
cas∗

��

⊕
�� ResGKoo

which commutes, up to a natural isomorphism that depends on the (many) choices
made. The translation uses the fact, which we stated as Proposition 10.1, that
adjoints of functors, if they exist, are unique, up to unique natural isomorphism. �

We will use these results to prove a theorem called the intertwining number
theorem. So we let G be a finite group, and let H,K ⊂ G be subgroup. Let (V, σ)
and (W, τ) be k-linear representations of H and K, respectively. By Frobenius
reciprodicity I+II and the double coset formula, we obtain isomorphisms

Hom(IndGH(σ), IndGK(τ)) ' Hom((ResGK ◦ IndGH)(σ), τ)

'
⊕

1≤s≤m Hom((cas∗ ◦ Ind
asKa

−1
s

H∩asKa−1
s
◦ResH

H∩asKa−1
s

)(σ), τ)

'
⊕

1≤s≤m Hom(ResH
H∩asKa−1

s
(σ), (Res

asKa
−1
s

H∩asKa−1
s
◦ c∗as)(τ)).

We note that for a ∈ G, the k-vector space

Hom(ResHH∩aKa−1(σ), (ResaKa
−1

H∩aKa−1 ◦ c∗a)(τ))

consists of the k-linear maps f : V →W such that

f(σ(h)(v)) = τ(a−1ha)(f(v))

for all h ∈ G and v ∈ V , or equivalently, such that

f ◦ σ(h) = τ(k) ◦ f
for all (h, k) ∈ H × K with ha = ak. Let us write d(σ, τ ; s) for the dimension of
this k-vector space for a = as. To see that it only depends on σ, τ , and s, and not
on the choice of as ∈ HasK ∈ H \G/K, we rewrite the calculation of

Hom(IndGH(σ), IndGK(τ))

in a way that does not involve any choices. If we let

Xs
is // X = G/H ×G/K

be the inclusion of the sth orbit, then the calculation becomes

Hom((pGH)∗(σ), (pGK)∗(τ)) ' Hom(((pGK)∗ ◦ (pGH)∗)(σ), τ)

' Hom(p2∗ p
∗
1(σ), τ) ' ⊕1≤s≤m Hom(p2∗ is∗ i

∗
s p
∗
1(σ), τ)

' ⊕1≤s≤m Hom(p2! is! i
∗
s p
∗
1(σ), τ) ' ⊕1≤s≤m Hom(i∗s p

∗
1(σ), i∗s p

∗
2(τ)),
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which, in turn, gives the formula

d(σ, τ ; s) = dimk Hom(i∗s p
∗
1(σ), i∗s p

∗
2(τ)).

So this number manifestly only depends on σ, τ , and s. Finally, by taking dimensions
everywhere, we obtain the following theorem due to Mackey.

Theorem 10.9 (Intertwining number theorem). In the situation above,

dimk Hom(IndGH(σ), IndGK(τ)) =
∑

1≤s≤m d(σ, τ ; s).
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11. Representations of the symmetric groups

Let X be a finite set with n elements, and let G = Aut(X) be its group of
automorphisms. We proceed to construct representatives for all isomorphism classes
of irreducible complex representations of G. Since the set of isomorphism classes of
irreducible complex representations is bijective to the set C(G) of conjugacy classes
of elements in G, we first introduce some language to understand this set.

We recall that every permutation g ∈ G can be written as a product

g = g1 . . . gm

of disjoint cycles and that this product decomposition is unique, up to a reordering
of the factors. The cycle type of g ∈ G is the sequence (λ1, . . . , λm) of lengths of
the cycles g1, . . . , gm, listed in non-increasing order, and it is a basic fact that two
permutations g, h ∈ G are conjugate if and only if they have the same cycle type.

Definition 11.1. Let n ≥ 0 be an integer. A partition of n is a non-increasing
sequence λ = (λ1, λ2, . . . ) of non-negative integers such that

∑
i≥1 λi = n.

Let Part(n) be the set of partitions of n. The map that to a permutation g ∈ G
assigns its cycle type λ(g) ∈ Part(n) induces a bijection

C(G) // Part(n).

Example 11.2. Let n = 7, and let g ∈ G be the permutation given by

i

g(i)

1

5

2

1

3

6

4

3

5

2

6

4

7

7

We have g = (152)(643)(7), so g has cycle type λ(g) = (3, 3, 1).

Let us write Z>0 for the set of positive integers.

Definition 11.3. A Young diagram is a finite subset S ⊂ Z>0 × Z>0 with the
property that for all (i, j) ∈ Z>0 × Z>0, if either (i + 1, j) ∈ S or (i, j + 1) ∈ S or
both, then (i, j) ∈ S. The cardinality of the set S is called the size of the Young
diagram.

Example 11.4. We picture a Young diagram as a collection of boxes arranged as
the entries in a matrix. For instance, there are five Young diagrams of size n = 4:

We will see that these correspond to the five isomorphism classes of irreducible
complex representations G = Σ4.

Given a Young diagram S of size n, we define its row partition λ(S) by

λ(S)i = card({j ∈ Z>0 | (i, j) ∈ S}),
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and we define its column partition µ(S) by

µ(S)j = card({i ∈ Z>0 | (i, j) ∈ S}).

We write Young(n) for the set of Young diagrams of size n.

Proposition 11.5. The maps λ, µ : Young(n)→ Part(n) that to a Young diagram
assign its row partition λ(S) and column partition µ(S) are bijections.

Proof. This is clear from the definitions. �

Example 11.6. In Example 11.2, the row partition (resp. column partition) of the
first (resp. third) Young diagram is equal to the column partition (resp. row parti-
tion) of the second (resp. fourth) Young diagram. The row and column partitions
of the fifth Young diagram are equal.

Definition 11.7. Let X be a finite set. A Young tableau on X is an injective map

X
u // Z>0 × Z>0

whose image S = u(X) is a Young diagram.

Given a Young tableau, the map u : X → S = u(X) is a bijection. So to specify
a Young tableau u : X → Z>0 × Z>0 with a given Young diagram S as its image
amounts to assigning an element of X to each “box” in S.

Example 11.8. The figures

8 12 4 9 1

11 3 10

5 6 13

7 2

illustrate a Young tableau on X = {1, 2, . . . , 13} and its underlying Young diagram.

Let Tabl(X) be the set of Young tableaux on X. The group homomorphism

Gop = Aut(X)op ρ
// Aut(Tabl(X))

given by ρ(g)(u) = u◦g defines a right action by the group G on Tabl(X). It is free
action. Indeed, if u ◦ g = u, then g = e, since u is injective.

Proposition 11.9. The map that to a Young tableau assigns its image induces a
bijection

Tabl(X)/G // Young(n)

from the set of orbits of the right action by G on Tabl(X) onto the set of Young
diagrams of size n = card(X).

Proof. Indeed, the map is surjective, by the definition of a Young tableau, and it
is injective, since two Young tableaux u, v : X → Z>0 × Z>0 have the same image
if and only if there exists a bijection g : X → X such that v = u ◦ g. �
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Given a Young tableau u, we consider its composition with the projections

X

u

��

p◦u

��

q◦u

��

Z>0 Z>0 × Z>0
p
oo

q
// Z>0

given by p(i, j) = i and q(i, j) = j, respectively.

Definition 11.10. The row stabilizer H ⊂ G and the column stabilizer K ⊂ G of
a Young tableau u : X → Z>0 × Z>0 are the subgroups

H = {g ∈ G | p ◦ u ◦ g = p ◦ u} ⊂ G,
K = {g ∈ G | q ◦ u ◦ g = q ◦ u} ⊂ G.

More informally, the row stabilizer consists of the permutations, which permute
the elements within the rows of a Young tableau, but which do not permute elements
that belong to separate rows. Similarly for the column stabilizer.

Lemma 11.11. Let u : X → Z>0×Z>0 be a Young tableau. If H,K ⊂ G = Aut(X)
are its row and column stabilizers, then H ∩K = {e}.

Proof. Indeed, if p ◦ u ◦ g = p ◦ u and q ◦ u ◦ g = q ◦ u, then u ◦ g = u, and, as we
have already noticed, this implies that g = e, since u is injective. �

We give the set Part(n) of partitions of n the lexicographic order, where λ > µ
if there exists an m ≥ 1 such that λm > µm and λi = µi for 1 ≤ i < m. It is a total
order in the sense that if λ 6= µ, then either λ > µ or µ > λ.

Lemma 11.12. Let u, v : X → Z>0 × Z>0 be Young tableaux, let H be the row
stabilizer of u, and let K be the column stabilizer of v. Let S = u(X) and T = v(X)
be the underlying Young diagrams, and suppose that λ(S) ≥ λ(T ). If, in addition,
every row in u and every column in v have at most one element in common, then
S = T and there exists h ∈ H and k ∈ K such that u ◦ h = v ◦ k.

Proof. We prove the statement by induction on n = card(X), the case n = 1
being trivial. So we let n = m and assume that the statement has been proved
for n < m. Let Xi = (p ◦ u)−1(i) ⊂ X be the set of elements in the ith row of u,
and let Yj = (q ◦ v)−1(j) ⊂ X for the set of elements in the jth column of v. By
assumption, the intersection Xi ∩ Yj has at most one element for all (i, j). Also by
assumption, λ(S) ≥ λ(T ), so in particular that λ(S)1 ≥ λ(T )1. But since there are
λ(S)1 elements in X1, and since at most one of them belongs to each of the columns
Y1, . . . , Yλ(T )1 , we also have λ(S)1 ≤ λ(T )1, so λ(S)1 = λ(T )1. We can now choose
h ∈ H such that for all x ∈ X1,

(q ◦ u ◦ h)(x) = (q ◦ v)(x),

and we can further choose k ∈ K such that for x ∈ X1,

(p ◦ v ◦ k)(x) = (p ◦ u)(x) = 1.

It follows that for all x ∈ X1, we have

(p ◦ u ◦ h)(x) = (p ◦ u)(x) = (p ◦ v ◦ k)(x),

(q ◦ u ◦ h)(x) = (q ◦ v)(x) = (q ◦ v ◦ k)(x),
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which, in turn, implies that for all x ∈ X1, we have

(u ◦ h)(x) = (v ◦ k)(x).

We can now bring ourselves in a position to invoke the inductive hypothesis. Indeed,
we let X ′ = X rX1, and define u′, v′ : X ′ → Z>0 × Z>0 by

(p ◦ u′)(x) = (p ◦ u ◦ h)(x)− 1,

(q ◦ u′)(x) = (q ◦ u ◦ h)(x),

(p ◦ v′)(x) = (p ◦ v ◦ k)(x)− 1,

(q ◦ v′)(x) = (q ◦ v ◦ k)(x).

It is clear that S′ = u′(X ′) and T ′ = v′(X ′) again are Young diagrams, so that u′

and v′ are Young tableaux; that λ(S′) ≥ λ(T ′); and that every row in u′ and every
column in v′ at most have one element of X ′ in common. Let G′ = Aut(X ′), and
let H ′,K ′ ⊂ G′ be the row stabilizer of u′ and the column stabilizer of v′. Since
card(X ′) < card(X), we conclude from the inductive hypothesis that S′ = T ′ and
that there exist h′ ∈ H ′ and k′ ∈ K ′ such that u′ ◦ h′ = v′ ◦ k′. We conclude that
S = T . Moreover, since the group homomorphism ρ : G′ → G defined by

ρ(g′)(x) =

{
x if x ∈ X1,

g′(x) if x ∈ X ′,

maps H ′ and K ′ into H and K, respectively, we further conclude that

u ◦ h ◦ ρ(h′) = v ◦ k ◦ ρ(k′).

This completes the proof. �

We can now reap the benefits of the work that we did in the last two lectures
together with the lemmas above and classify all irreducible complex representations
of G = Aut(X), up to non-canonical isomorphism. Let S be a Young diagram, let
u : X → Z>0 × Z>0 be a Young tableau with u(X) = S, and let H,K ⊂ G be its
row and column stabilizers. We define

π+
S = (IndGH ◦ResGH)(τ)

π−S = (IndGK ◦ResGK)(σ),

where τ is the 1-dimensional trivial representation of G and σ is the 1-dimensional
sign representation of G.

Theorem 11.13. Let X be a finite set with n elements, and let G = Aut(X).

(1) If S is a Young diagram of size n, then, up to non-canonical isomorphism,
there is a unique irreducible complex representation πS of G, which occurs
in the decompositions of both π+

S and π−S .
(2) If S and T are distinct Young diagrams of size n, then the representations

πS and πT are non-isomorphic.
(3) If π is an irreducible complex representation of G, then π ' πS, for some

Young diagram S of size n.

Proof. To prove (1), it suffices to show that

dimC Hom(π+
S , π

−
S ) = 1,
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and to do so, we will use the results on induced representations that we proved in
the last two lectures. We consider the cartesian diagram of left G-sets

G/H ×G/K G/H

G/K G/G

p1 //

p2

��

pGH
��pGK //

f

((

where we have included f = pGH ◦ p1 = pGK ◦ p2. We have canonical isomorphisms

Hom(π+
S , π

−
S ) = Hom((pGH)∗(p

G
H)∗τ, (pGK)∗(p

G
K)∗σ)

' Hom((pGK)∗(pGH)∗(p
G
H)∗τ, (pGK)∗σ)

' Hom((pGK)! (p
G
K)∗(pGH)∗(p

G
H)∗τ, σ)

' Hom((pGK)! (p
G
K)∗(pGH)! (p

G
H)∗τ, σ)

' Hom((pGK)!p2!p
∗
1(pGH)∗τ, σ)

' Hom(f ! f
∗τ, σ)

' Hom(f∗τ, f∗σ).

Moreover, we defined a non-canonical isomorphism of left G-sets∐
1≤s≤mG/H ∩ asKa−1

s
// G/H ×G/K,

which depends on a choice of a family (a1, . . . , am) of representatives of the double
cosets H \G/K, among other things. So we conclude that

Hom(π+
S , π

−
S ) '

∏
1≤s≤m Hom(ResG

H∩asKa−1
s

(τ),ResG
H∩asKa−1

s
(σ)).

Since both ResGH∩aKa−1(τ) and ResGH∩aKa−1(σ) are 1-dimensional representations
of H ∩ aKa−1, we find that

dimC Hom(ResGH∩aKa−1(τ),ResGH∩aKa−1(σ))

=

{
1 if sgn(g) = 1 for all g ∈ H ∩ aKa−1,

0 otherwise.

For the double coset HaK = HK, we have

dimC Hom(ResGH∩K(τ),ResGH∩K(σ)) = 1,

sinceH∩K = {e} by Lemma 11.11. Hence, we must show that if a /∈ HK, then there
exists g ∈ H ∩ aKa−1 such that sgn(g) = −1. To this end, we consider, in addition
to the tableau u : X → Z>0 × Z>0, the tableau v = u ◦ a−1 : X → Z>0 × Z>0,
whose column stabilizer is aKa−1. We claim that there exists a row in u and a
column in v, which have at least two elements in common. Granting this claim, the
transposition g that interchanges these two elements belongs to H∩aKa−1 and has
sgn(g) = −1, which proves (1). To prove claim, we assume that every row in u and
every column in v have at most one element in common. In this case, Lemma 11.12
shows that there exists h ∈ H and aka−1 ∈ aKa−1 such that

u ◦ h = v ◦ aka−1 = u ◦ ka−1.

But then h = ka−1, so a = h−1k ∈ HK, which is a contradicts that a /∈ HK.
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To prove (2), it suffices to show that

dimC Hom(π+
S , π

−
T ) = 0.

Arguing as in the proof of (1), we see that it further suffices to show that for all
Young tableaux u, v : X → Z>0 × Z>0 with u(X) = S and v(X) = T , there exists
a row in u and a column in v that have at least two elements in common. But this
follows immediately from Lemma 11.12. Indeed, since the lexicographic order on
Part(n) is a total order, we can assume without loss of generality that λ(S) ≥ λ(T ).

Finally, we prove (3). We have constructed the family

(πS)S∈Young(n)

of pairwise non-isomorphic irreducible complex representations of G. But the set
of Young diagrams of size n and the set of conjugacy classes of elements in G
are bijective, so we have found all irreducible complex representations of G, up to
non-canonical isomorphism. �

The representation πS is called the Specht representation associated with the
Young diagram S. Its isomorphism class is independent of the choice of Young
tableau u that we made in its definition.

Remark 11.14. We defined π+
S = (IndGH ◦ResGH)(τ) and π−S = (IndGK ResGK)(σ), but

we could of course just as well have switched τ and σ in this definition.

If the subset S ⊂ Z>0 × Z>0 is a Young diagram of size n, then so is the subset

S′ = {(i, j) ∈ Z>0 × Z>0 | (j, i) ∈ S},

which we call the conjugate Young diagram of S.

Lemma 11.15. If S is a Young diagram of size n, and if S′ is its conjugate Young
diagram, then the associated Specht representations are related by

πS′ ' πS ⊗ σ.

Proof. Let u : X → Z>0 × Z>0 be a Young tableau with u(X) = S, and let H and
K be its row stabilizer and column stabilizer. Let u′ : X → Z>0×Z>0 be the unique
map with p◦u′ = q ◦u and q ◦u′ = p◦u. Then u′(X) = S′ and u′ has row stabilizer
K and column stabilizer H. Thus,

π+
S′ = (IndGK ◦ResGK)(τ) ' (IndGK ◦ResGK)(σ ⊗ σ)

' (IndGK ◦ResGK)(σ)⊗ σ ' π−S ⊗ σ

π−S′ = (IndGH ◦ResGH)(σ) ' (IndGH ◦ResGH)(τ ⊗ σ)

' (IndGH ◦ResGH)(τ)⊗ σ ' π+
S ⊗ σ.

Here we have used that, in general, for H ⊂ G, one has

ResGH(π ⊗ ρ) ' ResGH(π)⊗ ResGH(ρ)

IndGH(σ ⊗ ResGH(ρ)) ' IndGH(σ)⊗ ρ

for all representations π and ρ of G and σ of H. The latter identity is called the
projection formula. �
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Example 11.16. For H = Σ3, we have earlier found three irreducible finite dimen-
sional complex representations of H, namely, the 1-dimensional trivial representa-
tion τ1 and sign representation τ2, and the 2-dimensional standard representation
τ3. These correspond to the following Specht representations:

τ1 τ2 τ3

Similarly, for G = Σ4, we have earlier found five irreducible finite dimensional
complex representations of G, namely, the 1-dimensional trivial representation π1

and sign representation π2, the 3-dimensional standard representation π3 and its
tensor product π4 = π2 ⊗ π3 with the sign representation, and the 2-dimensional
representation π5. These correspond to the following Specht representations:

π1 π2 π3 π4 π5

Using Lemma 11.15, we see immediately from these listings that τ2 ⊗ τ3 ' τ3 and
that π2 ⊗ π5 ' π5. If we identify H with the subgroup of G consisting of all g ∈ G
with g(4) = 4, then one can also show that, in terms of Young diagrams, ResGH takes
an irreducible G-representation π to the sum with multiplicity one of all irreducible
H-representations τ corresponding to the Young diagrams obtained from the Young
diagram for π by removing one box. So we have

ResGH(π1) ' τ1
ResGH(π2) ' τ2
ResGH(π3) ' τ1 ⊕ τ3
ResGH(π4) ' τ2 ⊕ τ3
ResGH(π5) ' τ3

Similarly, one can show that IndGH takes an irreducible H-representation τ to the
sum with multiplicity one of all irreducible G-representations π corresponding to
the Young diagrams obtained from the Young diagram associated with τ by adding
one box. So we find that

IndGH(τ1) ' π1 ⊕ π3

IndGH(τ2) ' π2 ⊕ π3

IndGH(τ3) ' π3 ⊕ π4 ⊕ π5,

which is also what we have calculated directly before.

Finally, we mention that for Young diagrams S and T , Frobenius has given a
formula for the value χπS (g) of the character of the Specht representation πS on
an element g in the conjugacy class corresponding to T in terms of combinatorial
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data that can be read off from the Young diagrams S and T directly. The formula
is called the Frobenius character formula.
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12. The classical groups

This week’s lecture will cover Chapter 7 in the book, but I will begin more
generally by defining the socalled classical (matrix) groups. These will be subgroups
of the groups GLn(R), GLn(C), and GLn(H) of invertible n×n-matrices with entries
in the real numbers, the complex numbers, and the quaternions, respectively.

If k = (k,+, · ) is a ring, then we define the opposite ring kop = (k,+, ?) to have
the same set of elements and the same addition but the opposite multiplication

a ? b = b · a.

If k is a division ring, then so is kop.

Definition 12.1. Let k be a ring. A ring homomorphism

k
σ // kop

is an antiinvolution, if σ ◦ σ = id.

In particular, an antiinvolution is an isomorphism. We remark that the identity
map idk : k → k is an antiinvolution if and only if k is commutative. We will often
write a∗ or a instead of σ(a).

Example 12.2. (1) If k = R, then the identity map is an antiinvolution, and one
can show that it is the only one.

(2) If k = C, then the identity map and complex conjugation are antiinvolutions.

(3) If k = H, then quaternionic conjugation, which is the map σ : H → H that to
the quaternion q = a+ ib+ jc+ kd assigns the quaternion

q∗ = a− ib− jc− kd

is an antiinvolution. The identity map idH : H→ H is not an antiinvolution.

Definition 12.3. Let k be a division ring, and let σ : k → kop be an antiinvolution.
The adjoint matrix of A = (aij) ∈Mm,n(k) is A∗ = (a∗ji) ∈Mn,m(k).31

The number of rows in A∗ is equal to the number of columns in A and vice versa.
So it is only meaningful to ask whether A = A∗ if A is a square matrix. If k is a field
and σ : k → kop is the identity map, then it is customary to call A∗ the transpose
matrix of A and to denote it by At instead of A∗.

Proposition 12.4. Let k be a division ring, and let σ : k → kop be an antiin-
volution. For all matrices A, B, and C of appropriate dimensions, the following
hold:

(I1) (A+B)∗ = A∗ +B∗

(I2) (AB)∗ = B∗A∗

(I3) E∗ = E
(I4) (A∗)∗ = A

Proof. Let us prove (2). For the purpose of this proof, given A ∈Mm,n(k), we write
A∗ = (a′ij) ∈Mn,m(k). So a′ij = a∗ji by the definition of the adjoint matrix. We let

31 The notation A† for the adjoint matrix is also common, particularly in physics.
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A ∈Mm,n(k) and B ∈Mn,p(k) with product C = AB ∈Mm,p(k) and calculate

c′ik = c∗ki = (

n∑
j=1

akjbji)
∗ =

n∑
j=1

(akjbji)
∗ =

n∑
j=1

b∗jia
∗
kj =

n∑
j=1

b′ija
′
jk.

This proves (2), and the remaining identities are proved analogously. �

Definition 12.5. Let k be a division ring, and let σ : k → kop be an antiinvolution.
A square matrix A ∈ Mn(k) is hermitian, if A∗ = A, and it is skew-hermitian, if
A∗ = −A.

If k is a field and σ : k → kop is the identity map, then it is customary to say that
A ∈Mn(k) is symmetric, if At = A, and that A is skew-symmetric, if At = −A.

We will now consider vector spaces over the division ring k, and we will always
consider right vector spaces in the sense that scalars multiply from the right.

Definition 12.6. Let k be a division ring, let σ : k → kop be an antiinvolution,
and let V be a right k-vector space. A hermitian form on V is a map

V × V k
〈−,−〉

//

such that the following hold for all x,y, z ∈ V and a ∈ k:

(H1) 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉
(H2) 〈x,y · a〉 = 〈x,y〉 · a
(H3) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉
(H4) 〈x · a,y〉 = a∗ · 〈x,y〉
(H5) 〈y,x〉 = 〈x,y〉∗

Example 12.7. Let k be a division ring, and let σ : k → kop be an antiinvolution.
Let kn = Mn,1(k) be the right k-vector space of column n-matrices with entries in
k. If A ∈Mn(k) is a hermitian matrix, then the map 〈−,−〉 : kn × kn → k defined
by 〈x,y〉 = x∗Ay is a hermitian form. Conversely, if 〈−,−〉 : kn × kn → k is a
hermitian form, then the matrix A = (ai,j) ∈Mn(k) with entries aij = 〈ei, ej〉 is a
hermitian matrix.

If k = R, C, or H, and if σ : k → kop is the identity map, complex conjugation,
and quaternionic conjugation, respectively, then for all a ∈ k, a∗ = a if and only if
a ∈ R ⊂ k. In particular, if 〈−,−〉 is a hermitian form on a right real, complex, or
quaternionic vector space V , then for all x ∈ V , we have 〈x,x〉 ∈ R.

Definition 12.8. Let k = R, C, or H, and let σ : k → kop be the identity map,
complex conjugation, and quaternionic conjugation, respectively. A hermitian inner
product on a right k-vector space V is a hermitian form 〈−,−〉 : V × V → k such
that, in addition to (H1)–(H5), the following positivity property holds:

(P) For all 0 6= x ∈ V , 〈x,x〉 > 0.

Let k = R, C, or H, and let σ : k → kop be the identity map, complex conjugation,
and quaternionic conjugation, respectively. The standard hermitian inner product
on the right k-vector space kn = Mn,1(k) of column n-vectors is defined to be the
map 〈−,−〉 : kn × kn → given by the matrix product

〈x,y〉 = x∗y,

which is meaningful, since x∗ ∈M1,n(k) and y ∈Mn,1(k).
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Definition 12.9. Let (U, 〈−,−〉U ) and (V, 〈−,−〉V ) be right real, complex or
quaternionic vector spaces with hermitian inner products. A k-linear map f : V → U
is an isometry with respect to the given hermitian inner products if

〈f(x), f(y)〉U = 〈x,y〉V

for all x,y ∈ V .

An isometry f : U → V is always injective, but it need not be an isomorphism.
However, if it is an isomorphism, then the inverse map f−1 : U → V is automatically
an isometry. In particular, an endomorphism f : V → V of a finite dimensional real,
complex, or quaternionic vector space that is an isometry with respect to a given
hermitian inner product is automatically an isometric isomorphism.

Definition 12.10. Let (U, 〈−,−〉U ) and (V, 〈−,−〉V ) be right real, complex or
quaternionic vector spaces with hermitian inner products. Two k-linear maps f : V →
U and g : U → V are adjoint with respect to the given hermitian inner products if

〈x, f(y)〉U = 〈g(x),y〉V

for all x ∈ U and y ∈ V .

If both g : U → V and h : U → V are adjoint to f : V → U , then g = h, so if an
adjoint of f : V → U exists, then it is unique. If U and V are finite dimensional,
then an adjoint always exists.

Proposition 12.11. Let (U, 〈−,−〉U ) and (V, 〈−,−〉V ) be finite dimensional right
real, complex, or quaternionic vector spaces with hermitian inner products, and let
f : V → U be a linear map. Let (u1, . . . ,um) and (v1, . . . ,vn) be bases of U and V
that are orthonormal with respect to 〈−,−〉U and 〈−,−〉V , respectively.32

(1) There exists a unique linear map g : U → V that is adjoint to f : V → U
with respect to 〈−,−〉U and 〈−,−〉V .

(2) If the matrix A ∈ Mm,n(k) represents f : V → U with respect to the
given orthonormal bases, then the adjoint matrix A∗ ∈Mn,m(k) represents
g : U → V with respect to these bases.

Proof. We claim that if f : V → U and g : U → V are the linear maps represented
by A ∈ Mm,n(k) and A∗ ∈ Mn,m(k) with respect to the given orthonormal bases,
then these two maps are adjoint with respect to the given hermitian inner products.
Indeed, let u ∈ U and v ∈ V , and let x ∈ km and y ∈ kn be their coordinates with
respect to the given bases. Since the bases are orthonormal, we find

〈u, f(v)〉U = x∗Ay = x∗(A∗)∗y = (A∗x)∗y = 〈g(u),v)〉V .

This proves the proposition, since an adjoint map, if it exists, is unique. �

Lemma 12.12. Let k−R, C, or H, and let (U, 〈−,−〉)U and (V, 〈−,−〉V ) be right
k-vector spaces with hermitian inner product. If f : V → U and g : U → V are
adjoint with respect to 〈−,−〉U and 〈−,−〉V , then f : V → U is a linear isometry
with respect to 〈−,−〉U and 〈−,−〉V if and only if g ◦ f = idV .

32 This means that 〈ui,uj〉U = δij and 〈vi,vj〉V = δij .
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Proof. We find that f : V → U is a linear isometry if and only if

〈(g ◦ f)(x),y〉V = 〈x,y〉V
for all x,y ∈ V . If g ◦ f = idV , then this is certainly true, and conversely, we find,
by setting y = (g ◦ f)(x)− x, that

〈y,y〉V = 〈(g ◦ f)(x)− x,y〉V = 〈(g ◦ f)(x),y〉V − 〈x,y〉V = 0,

which shows that g ◦ f = idV , because 〈−,−〉V is an inner product. �

Theorem 12.13. Let k = R, C, or H, and let (U, 〈−,−〉U ) and (V, 〈−,−〉V ) be fi-
nite dimensional right k-vector spaces with hermitian inner products. Let f : V → U
be a linear map, and let A ∈Mm,n(k) be the matrix that represents f : V → U with
respect to bases (u1, . . . ,um) of U and (v1, . . . ,vn) of V that are orthonormal with
respect to the given hermitian inner products. The following (1)–(3) are equivalent.

(1) The map f : V → U is a linear isometry.
(2) The matrix identity A∗A = En holds.
(3) The family (a1, . . . ,an) of vectors in km consisting of the columns of A is

orthonormal with respect to the standard hermitian inner product.

In addition, the following (4)–(6) are equivalent.

(4) The map f : V → U is an isometric isomorphism.
(5) The matrix A is invertible and A−1 = A∗.
(6) The family (a1, . . . ,an) of columns of A is a basis of km that is orthonormal

with respect to the standard hermitian inner product.

Proof. By Proposition 12.11, the adjoint map g : U → V is represented by the
adjoint matrix A∗ ∈ Mn,m(k) with respect to the given bases, so the equilvalence
of (1) and (2) follows from Lemma 12.12. The (i, j)th entry in A∗A is a∗iaj , which,
by definition, is the standard hermitian inner product of ai,aj ∈ km, from which
the equivalence of (2) and (3) follows. To prove the equivalence of (4) and (5), we
note that f : V → U is an isomorphism if and only if A is invertible, in which case

A−1 = (A∗A)A−1 = A∗(AA−1) = A∗.

Finally, the equivalence of (5) and (6) uses that an n × n-matrix invertible if and
only if the family consisting of its columns is a basis of kn. �

Corollary 12.14. Let k = R, C, or H, and let (V, 〈−,−〉) be a finite dimensional
right k-vector space with hermitian inner product, and let (v1, . . . ,vn) be a basis of
V that is orthonormal with respect to 〈−,−〉. Let f : V → V be an endomorphism,
and let A ∈Mn(k) be the matrix that represents f : V → V with (v1, . . . ,vn).

(1) The endomorphism f : V → V is an isometry with respect to 〈−,−〉 if and
only if A∗A = En. If so, then A is invertible and A−1 = A∗.

(2) The endomorphism f : V → V is selfadjoint33 with respect to 〈−,−〉 if and
only if A∗ = A.

Proof. The statement (1) follows from Theorem 12.13 and from the fact that a
square matrix that has a right inverse is invertible. This fact, in turn, is a conse-
quence of Gauss elimination. The statement (2) follows from Proposition 12.11. �

33 This means that f : V → V and its adjoint g : V → V with respect to 〈−,−〉 are equal.
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Remark 12.15. A matrix P ∈ GLn(k) such that P ∗ = P−1 is said to be orthogonal,
if k = R, unitary, if k = C, and quaternionic unitary, if k = H. A matrix A ∈Mn(k)
such that A∗ = A is said to be symmetric, if k = R, hermitian, if k = C, and
quaternionic hermitian, if k = H.

We now define the classical groups. The subgroups

O(n) = {Q ∈ GLn(R) | Q∗ = Q−1} ⊂ GLn(R)

U(n) = {U ∈ GLn(C) | U∗ = U−1} ⊂ GLn(C)

Sp(n) = {S ∈ GLn(H) | S∗ = S−1} ⊂ GLn(H)

are called the orthogonal group, the unitary group, and the compact symplectic
group. They are topological groups with respect to the subspace topology from the
metric topology on Mn(k), and they are all compact. In particular, we have

O(1) = {x ∈ GL1(R) | x∗x = 1} ⊂ GL1(R)

U(1) = {z ∈ GL1(C) | z∗z = 1} ⊂ GL1(C)

Sp(1) = {q ∈ GL1(H) | q∗q = 1} ⊂ GL1(H),

so as topological spaces, these are the unit 0-sphere S0, the unit 1-sphere S1, and
the unit 3-sphere S3, respectively. If A = Q ∈ O(n) or A = U ∈ U(n), then

det(A)∗ = det(A∗) = det(A−1) = det(A)−1

so det(Q) ∈ O(1) and det(U) ∈ U(1). The subgroups

SO(n) = {Q ∈ O(n) | det(Q) = 1} ⊂ O(n)

SU(n) = {U ∈ U(n) | det(U) = 1} ⊂ U(n)

are called the special orthogonal group and the special unitary group, respectively.
There is no useful determinant of quaternionic square matrices, because the division
ring H is noncommutative.34

We embed C in H as the subfield L ⊂ H consisting of all quaternions of the
form q = a+ ib. The subfield L ⊂ H is a maximal subfield, and if also L′ ⊂ H is a
maximal subfield, then there exists q ∈ H such that L′ = qLq−1. So every maximal
subfield of H is isomorphic to C, but the embedding of C as a maximal subfield in
H is well-defined, up to conjugation, only. Left multiplication by q = z1 + jz2 ∈ H
defines an L-linear map λ(q) : H→ H, and hence, a ring homomorphism

H λ // EndL(H).

Since H is a division ring, the kernel of λ is either {0} or H, and since λ(1) = idH 6= 0,
we conclude that the kernel is {0}. Let us choose the basis (1, j) of H as a right
L-vector space. This defines a ring isomorphism

EndL(H)
µ
// M2(L)

that to an L-linear map f : H → H assigns the matrix A = µ(f) ∈ M2(L) that
represents f : H→ H with respect to the basis (1, j). The calculation

q · 1 = (z1 + jz2) · 1 = 1 · z1 + j · z2

q · j = (z1 + jz2) · j = j · z∗1 − 1 · z∗2

34 The best one has is the Dieudonné determinant in K1(H) = (R>0, · ).
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shows that the composite ring homomorphism

H M2(L)
f=µ◦λ

//

takes the quaternion q = z1 + jz2 to the matrix

f(q) =

(
z1 −z∗2
z2 z∗1

)
.

A map between topological groups is an isomorphism if and only if it is both an
isomorphism of groups and a homeomorphism of topological spaces.

Proposition 12.16. The ring homomorphism f : H→M2(L) induces an isomor-
phism of topological groups h : Sp(1)→ SU(2).

Proof. We have q∗ = (z1 + jz2)∗ = z∗1 + z∗2j
∗ = z∗1 − jz2. Therefore,

q∗q = (z∗1 − jz2)(z1 + jz2) = z∗1z1 + jz1z2 − jz2z1 + z∗2z2 = z∗1z1 + z∗2z2,

which shows that q ∈ Sp(1) if and only if f(q) ∈ SU(2). So the ring homomorphism
f : H → M2(K) restricts to a group homomorphism h : Sp(1) → SU(2), which
is continuous because f : H → M2(K) is continuous. We wish to prove that h is
both an isomorphism of groups and a homeomorphism of spaces, and to do so, it
suffices to show that h is a bijection. Indeed, the inverse map of a bijective group
homomorphism is automatically a group homomorphism, and the inverse map of
a continuous bijection from a compact space such as Sp(1) to a Hausdorff space
such as SU(2) is automatically continuous. Now, the map h is injective, because
the map f is injective, and the map h is surjective because, if

U =

(
z11 z12

z21 z22

)
∈ SU(2),

then U = f(q) with q = z11 + jz21. This completes the proof. �

Let k = R, C, or H. We define the Hilbert–Schmidt norm of A ∈Mn(k) by

‖A‖ =
√

tr(A∗A) .

It satisfies ‖A+B‖ ≤ ‖A‖+ ‖B‖ and ‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈Mn(k), so in
particular, the exponential series

exp(A) =

∞∑
n=0

An

n!

converges absolutely. If [A,B] = AB −BA = 0, then

exp(A+B) = exp(A) exp(B),

but in general the left-hand side and the right-hand side are different.35 Hence, the
matrix exp(A) is invertible with inverse exp(−A), so we get a map

Mn(k)
exp
// GLn(k).

Locally on Mn(k), this map is a diffeomorphism. For it is a smooth map (considered
as map between open subsets of Rm) with derivative id : Mn(k) → Mn(k), so the
inverse function theorem shows that it is a diffeomorphism locally on Mn(k).

35 The difference is given by the Baker–Campbell–Hausdorff formula.
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If G ⊂ GLn(k) is one of the classical groups, then we define its Lie algebra to
the be the subset g ⊂ Mn(k) consisting of all matrices A such that exp(tA) ∈ G,
for all t ∈ R. It is a real subspace of Mn(k).

Proposition 12.17. The Lie algebras of the classical groups are given by

o(n) = {A ∈Mn(R) | A∗ +A = 0 }
u(n) = {A ∈Mn(C) | A∗ +A = 0 }
sp(n) = {A ∈Mn(H) | A∗ +A = 0 }
so(n) = {A ∈ o(n) | tr(A) = 0 }
su(n) = {A ∈ u(n) | tr(A) = 0 }

Proof. We prove the statements for u(n) and su(n); the proofs in the remaining
cases are analogous. If A ∈ u(n), then for all t ∈ R, we have

exp(tA∗) = exp(tA)∗ = exp(tA)−1 = exp(−tA),

and since the exponential map is a local diffeomorphism, this implies that A∗ = −A.
Similarly, if A ∈ su(n), then we have in addition that for all t ∈ R,

exp(nt tr(A)) = exp(tr(tA)) = det(exp(tA)) = 1.

Since the exponential map is a local diffeomorphism, this implies that tr(A) = 0. �

Example 12.18. The Lie algebra sp(1) ⊂ H is the 3-dimensional real subspace of
purely imaginary quaternions. One can show that exp: sp(1)→ Sp(1) is given by

exp(v) = cos|v|+ v

|v|
sin|v|,

where |v| =
√
v∗v .

Lemma 12.19. Let G ⊂ GLn(k) be one of the classical groups, and let g ⊂Mn(k)
be its Lie algebra. If g ∈ G and A ∈ g, then gAg−1 ∈ g.

Proof. Indeed, for all t ∈ R, we have

exp(tgAg−1) = exp(gtAg−1) = g exp(tA)g−1,

so if exp(tA) ∈ G and g ∈ G, then also exp(tgAg−1) ∈ G. �

Definition 12.20. The adjoint representation of the classical group G ⊂ GLn(k)
on its Lie algebra g ⊂Mn(k) is the real representation

G
Ad // GL(g)

defined by Ad(g)(A) = gAg−1.

We consider the adjoint representation

Sp(1)
Ad // GL(sp(1))

of the compact symplectic group Sp(1) on its Lie algebra sp(1) of purely imaginary
quaternions, or equivalently, the adjoint representation

SU(2)
Ad // GL(su(2))
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of the special unitary group SU(2) on its Lie algebra su(2) given by the real vector
space of complex 2 × 2-matrices that are skew-hermitian and traceless. The map
that to v ∈ sp(1) assigns |v| =

√
v∗v is a norm on the real vector space sp(1), and

it determines a real inner product 〈−,−〉 on sp(1) given by36

〈v, w〉 =
1

2
(|v + w|2 − |v|2 − |w|2).

We claim that the adjoint representation takes values in the subgroup

SO(sp(1)) ⊂ GL(sp(1))

of linear isometries with respect to 〈−,−〉 that have determinant 1. To see this, we
first note that since Ad(q)(v) = qvq−1 = qvq∗, we have

(qvq∗)∗qvq∗ = qv∗q∗qvq∗ = qv∗vq∗ = v∗v,

where the last identity holds, because v∗v is an element of the center R of H. This
shows that Ad(q) is a linear isometry with respect to 〈−,−〉. Therefore, the adjoint
representation induces a group homomorphism

Sp(1)
Ad // O(sp(1))

to the subgroup O(sp(1)) ⊂ GL(sp(1)) of linear isometric isomorphisms. It is clearly
a continuous map, and since Sp(1) is connected, its image is fully contained in one
of the two components of O(sp(1)). But Ad(1) is the identity map of sp(1), which
has determinant 1, so we conclude that Ad(q) takes values in SO(sp(1)) as claimed.

Theorem 12.21. The adjoint representation induces a group homomorphism

Sp(1)
Ad
// SO(sp(1))

which is surjective with kernel {±1}.

We first prove two lemmas. If V is a real vector space with norm ‖−‖, then we
write S(V ) = {v ∈ V | ‖v‖ = 1} ⊂ V for the unit sphere.

Lemma 12.22. If H ⊂ SO(sp(1)) is a subgroup such that the restriction to H
of the standard action by SO(sp(1)) on S(sp(1)) is transitive and such that there
exists u ∈ S(sp(1)) with SO(sp(1))u ⊂ H, then H = SO(sp(1)).

Proof. Given g ∈ SO(sp(1)), we can find h ∈ H such that h · u = g · u. But then
h−1g · u = u, so h−1g ∈ SO(sp(1))u ⊂ H, and hence, g = h · h−1g ∈ H. �

Lemma 12.23. For all v ∈ S(sp(1)), there exists g ∈ Sp(1) such that

Ad(g)(v) = i.

Proof. We will use the spectral theorem for normal operators on finite dimensional
complex vector spaces. The ring homomorphism f : H→M2(C) that we considered
above induces isomorphisms h : Sp(1) → SU(2) and h′ : sp(1) → su(2). It maps
v ∈ sp(1) to X = h′(v) ∈ su(2) with det(X) = v∗v = 1. Since the matrix X
is skew-hermitian, it is normal.37 Therefore, by the spectral theorem for normal
matrices, there exists P ∈ U(2) such that PXP−1 = diag(λ1, λ2), where λ1 and

36 Writing v = ib+ jc+ kd, we have |v|2 = b2 + c2 + d2.
37 Indeed, X∗X = (−X)X = X(−X) = XX∗.
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λ2 are the eigenvalues of X. Since X is skew-hermitian and det(X) = 1, one shows
that λ1 = i and λ2 = −i. So we have P ∈ U(2) with

PXP−1 =

(
i 0
0 −i

)
= h′(i).

Since P ∈ U(2), we have det(P ) ∈ U(1), so we can choose z ∈ U(1) such that
z2 = det(P ). Then U = z−1P ∈ SU(2), and we still have UXU−1 = h′(i). Hence,
if g ∈ Sp(1) is the unique element with h(g) = U , then Ad(g)(v) = i. �

Proof of Theorem 12.21. We apply Lemma 12.22 to the subgroup H ⊂ SO(sp(1))
given by the image of Ad: Sp(1) → SO(sp(1)). Lemma 12.23 shows that H acts
transitively on S(sp(1)), and we proceed to show that for SO(sp(1))i ⊂ H. The
matrix that represents a general element of the isotropy subgroup SO(sp(1))i with
respect to the basis (i, j, k) of sp(1) has the form1 0 0

0 cos θ − sin θ
0 sin θ cos θ


for some θ ∈ R. We calculate that the matrix that represent Ad(eit) with respect
to the basis (i, j, k) of sp(1) is given by1 0 0

0 cos 2t − sin 2t
0 sin 2t cos 2t

 .

This shows that SO(sp(1))i ⊂ H, and therefore, we conclude from Lemma 12.22
that H = SO(sp(1)) as stated.

Finally, we show that ker(Ad) = {±1}. If we write g = a+ ib+ jc+ kd, then the
identity Ad(g)(i) = gig∗ = i implies that a2 − b2 − c2 − d2 = 1. Since we also have
a2 + b2 + c2 + d2 = 1, we conclude that a = ±1 and b = c = d = 0, as desired. �

Corollary 12.24. The map induced by the adjoint representation,

Sp(1)/{±1} Ad // SO(sp(1)),

is an isomorphism of topological groups.

Proof. We have not explicitly specified the topologies on these groups before, so
we do that now. We have identified both Sp(1) and SO(sp(1)) with subsets of
M2(C), and we give both the respective subspace topologies induced from the metric
topology onM2(C). Finally, we give Sp(1)/{±1} the quotient topology induced from
the topology on Sp(1). As a topological space, Sp(1)/{±1} is compact, because
Sp(1) is compact, and SO(sp(1)) is Hausdorff, because the metric topology on
M2(C) is Hausdorff. So it suffices to show that Ad is a group homomorphism and
a continuous bijection. Theorem 12.21 shows that it is a group isomorphism, so it
only remains to show that the map Ad is continuous. By the universal property
of the quotient topology, the map Ad is continuous if and only if the map Ad is
continuous. And by the universal property of the subspace topology, the map Ad
is continuous if and only if the map

Sp(1)
Ãd // EndR(M2(C))
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defined by Ãd(g)(X) = h(g)Xh(g)−1 is continuous. This, in turn, follows from the
definition of matrix multiplication and from Cramer’s formula for the inverse of a
matrix. �

If G is a topological group, then we write RepC(G) for the category, whose objects
are complex representations (V, π) of G such that π : G→ GL(V ) is continuous, and
whose morphisms are intertwining C-linear maps. Restriction along the continuous
group homomorphism Ad: Sp(1)→ SO(sp(1)) defines a functor

RepC(SO(sp(1)))
Ad∗ // RepC(Sp(1)),

and Corollary 12.24 shows that this functor is a fully faithful embedding and that
its essential image are the continuous complex representations (V, π) of Sp(1) with
the property that π(−1) = idV .

Another consequence of Corollary 12.24 is that, as a topological space, SO(3)
is homeomorphic to the real projective space P3(R). Indeed, as a topological space
Sp(1) is homeomorphic to S3, and the action of the subgroup {±1} ⊂ Sp(1) by left
multiplication is free.
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13. Representations of compact groups

We say that a topological group G is a compact group if its underlying space
is compact and Hausdorff. The classical groups are all compact topological groups
in this sense. It turns out that the theory of continuous finite dimensional complex
representations of compact groups is completely analogous to the theory of finite
dimensional complex represenations of finite groups, except that there will typically
be a countably infinite number of non-isomorphic irreducible such representations.
We first define the generalization to compact groups of the regular representation
for finite groups. It will a representation on a complex Hilbert space L2(G), the
definition of which requires some input from analysis, which we will assume.

One can show that there exists a Borel measure µ on G that is both left-invariant
and right-invariant in the sense that for every Borel subset A ⊂ G and g ∈ G,38

µ(g ·A) = µ(A) = µ(A · g),

and regular in the sense that for every Borel subset A ⊂ G,

µ(A) = inf{µ(U) | A ⊂ U , U ⊂ G open} = sup{µ(K) | K ⊂ A compact}.

Moreover, such a measure, which is called a Haar measure, is unique up to scaling.
In particular, there exists a unique Haar measure on G that is a probability measure
in the sense that µ(G) = 1.

Let C0(G,R) to be the (right) real vector space given by the set consisting of all
continuous functions ϕ : G→ R equipped with pointwise vector sum and pointwise
scalar multiplication. Given a Haar measure µ on G, we define a linear map

C0(G,R)
I // R

as follows. Given ϕ ∈ C0(G,R), we choose a real number 0 < d < 1 and define

An,r(ϕ) = {x ∈ G | ndr ≤ ϕ(x) < (n+ 1)dr} ⊂ G,

for all integers n and positive integers r. Since ϕ : G → R is continuous and G
compact, the subset ϕ(G) ⊂ R is compact and therefore bounded. It follows that
for every positive integer r, the subset An,r(ϕ) ⊂ G is non-empty for only finitely
many integers n. It is a Borel subset, and hence, we may form the sum∑

n∈Z nd
rµ(An,r(ϕ)) ∈ R.

One may show that the limit

I(ϕ) = limr→∞
∑
n∈Z nd

rµ(An,r(ϕ)) ∈ R

exists and is independent of the choice of 0 < d < 1. Finally, one may show that
the function I : C0(G,R)→ R defined in this way is indeed linear.

Similarly, let C0(G,C) be the (right) complex vector space given by the set of
all continuous complex functions ϕ : G → C equipped with pointwise vector sum
and scalar multiplication. Let f : R→ C be the canonical inclusion. Then we have
the map of right real vector spaces

C0(G,R) // f∗C
0(G,C)

38 More generally, if G is locally compact, then there exists a left-invariant, but not necessarily

right-invariant, measure on G.
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that to ϕ : G→ R assigns f ◦ ϕ : G→ C, and its adjunct map

f∗C0(G,R) = C0(G,R)⊗R C // C0(G,C)

is an isomorphism of complex vector spaces. Hence, we obtain a C-linear map

C0(G,C)
IC // C

defined to be the adjunct of the composite R-linear map

C0(G,R)
I // R

f
// f∗C.

We will only consider C-valued continuous functions on G, so we will abbreviate
and write C0(G) instead of C0(G,C) and I(ϕ) or

∫
G
f(x)dµ(x) instead of IC(ϕ).

Given ϕ,ψ ∈ C0(G), we define ϕψ ∈ C0(G) to be the pointwise product of ϕ
and ψ, and we define ϕ∗ to be the pointwise complex conjugate of ϕ. Since the map
I : C0(G)→ C is C-linear, it follows immediately that the map

C0(G)× C0(G)
〈−,−〉

// C

defined by 〈ϕ,ψ〉 = I(ϕ∗ψ) is a hermitian form. Moreover, this map is a hermitian
inner product. Indeed, if ϕ ∈ C0(G) and 〈ϕ,ϕ〉 = I(|ϕ|2) = 0, then ϕ = 0.

If (V, 〈−,−〉) is a complex vector space with hermitian inner product, then the
inner product gives rise to a metric d : V × V → R≥0 defined by

d(v, w) =
√
〈v − w, v − w〉,

and we say that (V, 〈−,−〉) is a Hilbert space if the metric space (V, d) is complete.39

If both (U, 〈−,−〉U ) and (V, 〈−,−〉V ) are complex vector spaces with hermitian
inner products, then we say that a linear map f : V → U is Cauchy-continuous if
for every sequence v : Z≥0 → V that is Cauchy with respect to dV , the sequence
f ◦ v : Z≥0 → U is Cauchy with respect to dU .40 Let HermC be the category, whose
objects are the complex vector spaces with hermitian inner products, and whose
morphisms are the Cauchy-continuous linear maps between these, and let HilbC be
the full subcategory of Hilbert spaces. In this situation, there is an adjunction

HermC
i∧ //

HilbC,
i∧
oo

where the right adjoint functor i∧ is the canonical inclusion, and where the left
adjoint functor i∧ takes a complex vector space with hermitian inner product
(U, 〈−,−〉U ) to a Hilbert space (V, 〈−,−〉V ) such that the underlying metric space
(V, dV ) is the completion of the metric space (U, dU ). The unit map

(U, 〈−,−〉U )
η
// (Û , 〈−,−〉Û ) = (i∧ ◦ i∧)(U, 〈−,−〉U )

is injective and its image η(U) ⊂ Û is a dense subset of the metric space (Û , dÛ ).
In the following, we will omit the hermitian inner products from the notation.

39 This means that every sequence in V that is Cauchy with respect to d converges with respect

to d. A sequence v : Z≥0 → V is Cauchy with respect to d, if for all ε > 0, there exists N ∈ Z≥0

such that d(vi, vj) < ε, for all i, j ≥ N , and it converges with respect to d, if there exists v ∈ V
such that for all ε > 0, there exists N ∈ Z≥0 such that d(v, vi) < ε, for all i ≥ N .

40 Every Cauchy-continuous map between two metric spaces is continuous, and every continu-
ous map between two complete metric spaces is Cauchy-continuous.
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We return to the complex vector space with hermitian inner product C0(G). It
is not a Hilbert space, unless G is finite, so we define the Hilbert space

L2(G) = Ĉ0(G)

to be its completion. As just explained the unit map

C0(G)
η
// L2(G)

is injective and its image is dense in L2(G). Hence, every element of L2(G) can be
written, non-canonically, as a limit of a Cauchy sequence of continuous C-valued
functions on G, but a general element of L2(G) is not a C-valued function on G,
unless G is finite. In particular, the value “f(x)” of f ∈ L2(G) at x ∈ G is not
meaningful.41 We will see below that the Hilbert space L2(G) is separable in the
sense that it admits a countably dimensional dense subspace.

Lemma 13.1. The map I : C0(G)→ C is Cauchy-continuous.

Proof. We must show that if the sequence ϕ : Z≥0 → C0(G) is Cauchy, then so is
the sequence I ◦ ϕ : Z≥0 → C. It suffices to show that for all ϕ,ψ ∈ C0(G),

|I(ϕ)− I(ψ)| = |I(ϕ− ψ)| ≤ I(|ϕ− ψ|),
which follows immediately from the definition of I : C0(G)→ C. �

Since C is complete, we conclude that I : C0(G) → C extends uniquely to a
continuous, or equivalently, Cauchy-continuous linear map

L2(G)
I // C.

Example 13.2. If G is a finite group, which we consider as a compact topological
group with the discrete topology, then the Haar probability measure on G is given
by the normalized counting measure that to A ⊂ G assigns µ(A) = |A|/|G|. It
follows that the corresponding integral I : C0(G)→ C is given by

I(f) = |G|−1
∑
x∈G f(x),

so we find that L2(G) = C0(G) = C[G].

We wish to extend the definition of the two-sided regular representation from
finite groups to compact groups. So let G be a compact topological group. Given
(g1, g2) ∈ G×G and ϕ ∈ C0(G), the formula

Reg(g1, g2)(ϕ)(x) = ϕ(g−1
2 xg1)

defines an element Reg(g1, g2)(ϕ) ∈ C0(G). Moreover, since a Haar measure on G
is both left-invariant and right-invariant, the map

C0(G) C0(G)
Reg(g1,g2)

//

is a linear isometry with respect to 〈−,−〉. Indeed, we have

‖Reg(g1, g2)(ϕ)‖2 =
∫
G
|ϕ(g−1

2 xg1)|2dµ(x) =
∫
G
|ϕ(x)|2dµ(x) = ‖ϕ‖2.

41 The linear map evx : C0(G) → C defined by evx(ϕ) = ϕ(x) is not Cauchy-continuous, and

hence, does not extend to a map evx : L2(G)→ C. However, it is possible to identify L2(G) with
the quotient of the complex vector space consisting of the functions f : G → C that are Haar

measurable and square-integrable by the subspace of functions that are zero almost everywhere.
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In particular, it is Cauchy-continuous, and therefore, it induces a map

L2(G) L2(G)
Reg(g1,g2)

//

which is a linear isometry with inverse Reg(g−1
1 , g−1

2 ). This defines a map

G×G U(L2(G))
Reg

//

to the group of linear isometric isomorphisms of L2(G).42 We wish to say that this
is a map of topological groups, so we much define a topology on U(L2(G)) and
show that the map is continuous. It turns out that the appropriate topology on
U(L2(G)) is the so-called strong operator topology.43

Proposition 13.3. The two-sided regular representation

G×G U(L2(G))
Reg

//

is continuous with respect to the strong operator topology.

Proof. The strong operator topology has the property that the map Reg in question
is continuous if and only if for every ϕ ∈ L2(G), the composite map

G×G U(L2(G)) L2(G)
Reg

//
evϕ

//

is continuous. Let us write Regϕ for this map. Since G×G is a topological group,
it suffices to prove that this map is continuous at (g1, g2) = (e, e).

We first let ϕ ∈ C0(G) and prove that Regϕ is continuous at (e, e). We have

‖Regϕ(g1, g2)− Regϕ(e, e)‖2 =
∫
G
|ϕ(g−1

2 xg1)− ϕ(x)|2dµ(x)

and wish to prove that this quantity goes to 0 as (g1, g2)→ (e, e). Since both ϕ and
multiplication and inversion in G are continuous, we have every x ∈ G,

lim(g1,g2)→(e,e)|ϕ(g−1
2 xg1)− ϕ(x)|2 = 0.

Moreover, for all x ∈ G, the integrand is dominated by

|ϕ(g−1
2 xg1)− ϕ(x)|2 ≤ 4 · sup{|ϕ(h)| | h ∈ G},

so by the dominated convergence theorem for the integral, we conclude that

lim(g1,g2)→(e,e)

∫
G
|ϕ(g−1

2 xg1)− ϕ(x)|2dµ(x) = 0

as desired.

We next prove that for any ϕ ∈ L2(G), the map Regϕ is continuous at (e, e).
Given ε > 0, we choose ϕε ∈ C0(G) such that ‖ϕ − ϕε‖ < ε, which is possible,

42 Traditionally, linear isometric isomorphisms of a Hilbert space h are called unitary operators,
and therefore, we write U(h) for the group consisting of these operators.

43 The uniform operator topology, which is given by the operator norm, is stronger than the
strong operator topology. It turns out that it is too strong for our purposes, since, even for

G = U(1), the map Reg is not continuous with respect to this topology.
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because C0(G) is dense in L2(G). Now

‖Regϕ(g1, g2)− ϕ‖ ≤ ‖Regϕ(g1, g2)− Regϕε(g1, g2)‖
+ ‖Regϕε(g1, g2)− ϕε‖+ ‖ϕε − ϕ‖

= 2‖ϕ− ϕε‖+ ‖Regϕε(g1, g2)− ϕε‖
< 2ε+ ‖Regϕε(g1, g2)− ϕε‖,

and by the first case, there exists an open neighborhood (e, e) ∈ U ⊂ G × G such
that ‖Regϕε(g1, g2)− ϕε‖ < ε, for all (g1, g2) ∈ U . So we conclude that

‖Regϕ(g1, g2)− ϕ‖ < 3ε,

for all (g1, g2) ∈ U . This proves that Regϕ is continuous at (e, e). �

If (V, π) is a finite dimensional complex representation of G, then we define the
associated space of matrix coefficients M(π) to be the image of the map

V ⊗ V ∗
µπ // C0(G) ⊂ L2(G)

defined by µπ(v ⊗ h)(g) = h(π(g)(v)). One verifies immediately that it intertwines
between π � π∗ and Reg, so that we obtain a map

π � π∗
µπ // RegM(π)

of continuous representations of G×G. It is an isomorphism, if π is an irreducible
representation of G, because then π� π∗ is an irreducible representation of G×G.

Lemma 13.4. Let G be a compact topological group, let π1 and π2 be irreducible
finite dimensional complex representations of G, and let M(π1),M(π2) ⊂ L2(G) be
their subspaces of matrix coefficients.

(1) If π1 ' π2, then M(π1) = M(π2).
(2) If π1 6' π2, then M(π1) ⊥M(π2).

Proof. To prove (1), we let V1 and V2 be the representation spaces of π1 and π2, re-
spectively, and let h : V1 → V2 be a linear isomorphism that is intertwining between
π1 and π2. In this situation, the diagram

V1 ⊗ V ∗2 V1 ⊗ V ∗1

V2 ⊗ V ∗2 L2(G)

id⊗h∗
//

h⊗id

��

µπ1

��µπ2 //

commutes, and therefore,

M(π1) = im(µπ1
) = im(µπ1

◦ (id⊗h∗)) = im(µπ2
◦ (h⊗ id)) = im(µπ2

) = M(π2).

To prove (2), we consider the composition

M(π1)
i // L2(G)

p
// M(π2)

of the canonical inclusion of M(π1) and the orthogonal projection onto M(π2). The
map i is intertwining between RegM(π1) and Reg, since M(π1) is a Reg-invariant
subspace, and the map p is intertwining between Reg and RegM(π2), since Reg is a
unitary representation. Therefore, the composite map p ◦ i is intertwining between

113



RegM(π1) and RegM(π2), which are non-isomorphic irreducible finite dimensional
complex representations of G×G, so by Schur’s lemma, p ◦ i = 0 as stated. �

The theorem of Peter and Weyl states that if G is a compact topological group,
then the two-sided regular representation of G × G decomposes as the completed
direct sum of the spaces of matrix coefficients, one for each isomorphism class of
irreducible finite dimensional continuous complex representations of G.

Theorem 13.5 (Peter–Weyl). Let G be a compact topological group, and let Ĝ be
the set of isomorphism classes of finite dimensional complex representations of G.

For every σ ∈ Ĝ, let (Vσ, πσ) be a representative of the class σ. The map⊕̂
σ∈Ĝ πσ � π∗σ

µ
// Reg,

whose σth component is given by µπσ (v ⊗ h)(g) = h(πσ(g)(v)), is an isomorphism
of continuous representations of G×G.

Proof. We will only prove the theorem for compact groups G that admit a faithful
continuous representation ρ : G→ GLn(C); for a proof in the general case, we refer
to [4, Theorem 5.4.1]. By Lemma 13.4, the canonical map⊕

σ∈Ĝ M(πσ) // C0(G)

is injective, and we proceed to prove that its image is dense with respect to the
L2-norm. To this end, we let aij = µρ(ej⊗e∗i ) ∈ C0(G) be the matrix coefficients of
ρ : G→ GLn(C) and consider the sub-C-algebra C[G] ⊂ C0(G) given by the image
of the unique C-algebra homomorphism

C[Xij , Yij | 1 ≤ i, j ≤ n] // C0(G)

that to Xij and Yi,j assign aij and a∗ij . We claim that C[G] ⊂ C0(G) is dense with

respect to the L2-norm. Indeed, by the Stone–Weierstrass theorem, C[G] ⊂ C0(G)
is dense with respect to the supremum norm ‖−‖∞, and since G has finite volume
µ(G), the calculation

‖ϕ‖22 =
∫
G
|ϕ(x)|2dµ(x) ≤

∫
G
‖ϕ‖2∞dµ(x) = ‖ϕ‖2∞µ(G)

shows that C[G] ⊂ C0(G) is also dense with respect to the L2-norm.

Now, for all m ≥ 0, we consider the finite dimensional subspace

Film C[G] ⊂ C[G]

given by the image by the C-algebra homomorphism

C[Xij , Yi,j | 1 ≤ i, j ≤ n] // C0(G)

of the subspace of polynomials of degree ≤ m. It is Reg-invariant, since the matrix
coefficients aij transform linearly under left and right translation on G, and⋃

m≥0 Film C[G] = C[G].

We consider the representation Rm : G → GL(Film C[G]) given by the restriction
of the right regular representation of G on L2(G) to this subspace. Since it is
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finite dimensional, it decomposes as a direct sum of irreducible finite dimensional
representations of G, so by Lemma 13.4, the inclusion M(Rm)→ C0(G) factors as

M(Rm) //
⊕

σ∈ĜM(πσ) // C0(G).

We define ε : C0(G) → C to be the linear map given by ε(ϕ) = ϕ(e) and consider
the map νm : Film C[G]→M(Rm) given by νm(ϕ) = µRm(ϕ⊗ ε). The calculation

νm(ϕ)(g) = µRm(ϕ⊗ ε)(g) = ε(Rm(g)(ϕ)) = Rm(g)(ϕ)(e) = ϕ(e · g) = ϕ(g)

shows that the composite map

Film C[G]
νm // M(Rm) //

⊕
σ∈ĜM(πσ) // C0(G)

is equal to the canonical inclusion, and hence, the canonical inclusion of C[G] into
C0(G) factors as a composition

C[G] =
⋃
m≥0 Film C[G] //

⊕
σ∈ĜM(πσ) // C0(G).

Since the image of the composite map is dense with respect to the L2-norm, so is
the image of the right-hand map. This completes the proof. �

Remark 13.6. Let G be a linear compact topological group, let ρ : G → GLn(C)
be a faithful continuous representation, and let C[G] ⊂ C0(G) be the subalgebra of
polynomial functions on G defined in the proof of Theorem 13.5. We claim that

C[G] =
⊕

σ∈ĜM(πσ) ⊂ C0(G).

For otherwise, there exists τ ∈ Ĝ such that M(πτ ) 6⊂ C[G], and since C[G] is a direct
sum of irreducible finite dimensional representations, it follows from Lemma 13.4
that M(πτ ) ⊥ C[G]. But this contradicts the fact that C[G] ⊂

⊕
σ∈ĜM(πσ) is

dense.

Remark 13.7. In general, a unitary representation of a topological groupG is defined
to be a pair (h, π) of a Hilbert space h and a continuous group homomorphism

G
π // U(h)

from G to the group U(h) of linear isometric isomorphisms of h equipped with the
strong operator topology. As a consequence of the Peter–Weyl theorem, one can
show that for G compact, every such representation admits a finite dimensional
π-invariant subspace V ⊂ h; for a proof, see [4, p. 301]. Hence, every irreducible
unitary representation of a compact topological group G is finite dimensional. By
contrast, locally compact topological groups such as G = GLn(C) that are not
compact have irreducible unitary representations that are infinite dimensional.

Example 13.8. We let G = U(1) and let τ : G→ GL(V ) be the standard represen-
tation on V = C. For every n ≥ 0, we have the representation

τn = Symn
C(τ)

of G on Symn
C(V ). It is an irreducible representation, because the complex vector

space Symn
C(V ) is 1-dimensional. Let (e1) be the standard basis of V so that (en1 )

is a basis of Symn
C(V ). Then for z ∈ G, we have

τn(z)(en1 ) = (e1z)
n = en1 z

n.
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The dual representation τ−n = τ∗n is also 1-dimensional, and hence, irreducible, and

τ−n(z)((e∗1)n) = ((e1z)
∗)n = (e∗1)nz−n.

So for all m,n ∈ Z, we have τm ' τn if and only if m = n. Up to isomorphism,
these are all irreducible finite dimensional continuous complex representations of
G. Hence, by the Peter–Weyl theorem, the map of unitary G×G-representations⊕̂

n∈Z τn � τ∗n
µ
// Reg

is an isomorphism.

Example 13.9. Let G = SU(2) and let π : G→ GL(V ) be the standard representa-
tion on V = C2. For every n ≥ 0, we have the representation

πn = Symn
C(π)

of G on the (n+ 1)-dimensional complex vector space Symn
C(V ). Let (e1, e2) be the

standard basis of V so that (en−i1 ei2 | 0 ≤ i ≤ n) is a basis of Symn
C(V ). We let

f : U(1)→ SU(2) be the group homomorphism defined by f(z) = diag(z, z−1) and
consider the representation f∗(πn) of U(1). For z ∈ U(1), the calculation

πn(f(z))(en−i1 ei2) = (e1z)
n−i(e2z

−1)i = en−i1 ei2z
n−2i

shows that the C-linear isomorphism⊕
0≤i≤n Symn−2i

C (C)
h // Symn

C(V ),

whose ith component is given by hi(v
n−2i
i ) = en−i1 ei2v

n−2i
i , is intertwining with

respect to
⊕

0≤i≤n τn−2i and f∗(πn). Therefore, every f∗(πn)-invariant subspace
of Symn

C(V ) is of the form W = h(
⊕

i∈S Symn−2i
C (C)) with S ⊂ {0, 1, . . . , n}. In

particular, if x =
∑

0≤i≤n e
n−i
1 ei2xi ∈W and xi 6= 0, then en−i1 ei2 ∈W .

If W ⊂ Symn
C(V ) is a non-zero πn-invariant subspace, then W is in particular

an f∗(πn)-invariant subspace. Hence, there exists 0 ≤ i ≤ n such that en−i1 ei2 ∈W .
We now consider

g =

(
1 1
0 1

)
∈ G

and first calculate

g · en−i1 ei2 = en−i1 (e1 + e2)i = en1 +
∑

0<j≤i
(
i
j

)
en−i−j1 ej2,

which shows that en1 ∈W , and next calculate

g∗ · en1 = (e1 + e2)n =
∑

0≤j≤n
(
n
j

)
en−j1 ej2,

which shows that en−j1 ej2 ∈ W for all 0 ≤ j ≤ n. Therefore, W = Symn
C(V ), and

hence, πn is irreducible. We will show later that, up to isomorphism, these are all
irreducible finite dimensional continuous complex representations of G. Hence, by
the Peter–Weyl theorem, the map of unitary G×G-representations⊕̂

n∈Z≥0
πn � π∗n

µ
// Reg

is an isomorphism.
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Example 13.10. Let G = SO(su(2)) ' SO(3). We recall from last time that restric-
tion along the adjoint representation

SU(2)
Ad // SO(su(2))

defines an equivalence of categories from RepC(SO(su(2)) onto the full subcategory
of RepC(SU(2)) that is spanned by the representations (V, π) of SU(2) for which
π(−I) = idV . Now, for the representation πn defined in Example 13.9, we have

πn(−I)(en−i1 ei2) = (−e1)n−i(−e2)i = (−1)nen−i1 ei2.

So there exists π̄n ∈ RepC(SO(su(2)) such that πn ' Ad∗(π̄n) ∈ RepC(SU(2)) if
and only if n = 2m is even. Therefore, by the Peter–Weyl theorem, we conclude
that the map of unitary G×G-representations⊕̂

m∈Z≥0
π̄2m � π̄∗2m

µ
// Reg

is an isomorphism.

Appendix: Tensors

Let k be a field and V a vector space.44 The tensor algebra of V is defined to be
the graded associative k-algebra given by the graded k-vector space

Tk(V ) =
⊕

n≥0 T
n
k (V ),

where Tk(V ) = V ⊗kn, equipped with the multiplication given by

(x1 ⊗ · · · ⊗ xm) · (y1 ⊗ · · · ⊗ yn) = x1 ⊗ · · · ⊗ xm ⊗ y1 ⊗ · · · ⊗ yn.

The symmetric algebra of V is defined to be the graded commutative k-algebra
given by the quotient

Symk(V ) =
⊕

n≥0 Symn
k (V ) = Tk(V )/I

of the tensor algebra of V by the graded two-sided ideal I ⊂ Tk(V ) generated by
the family (x⊗ y − y ⊗ x | x, y ∈ V ), and the exterior algebra of V is defined to be
the graded anticommutative k-algebra given by the quotient

Λk(V ) =
⊕

n≥0 Λnk (V ) = Tk(V )/J

of the tensor algebra of V by the graded two-sided ideal J ⊂ Tk(V ) generated by
the family (x⊗ x | x ∈ V ). If f : V → U is a k-linear map, then the map

Tnk (V ) Tnk (U)
Tnk (f)

//

that to x1 ⊗ · · · ⊗ xn assigns f(x1)⊗ · · · ⊗ f(xn) is k-linear and induce maps

Symn
k (V ) Symn

k (U) Λnk (V ) Λnk (U)
Symn

k (f)
//

Λnk (f)
//

that also are k-linear. This makes Tnk (−), Symn
k (−), and Λnk (−) functors from the

category of k-vector spaces and k-linear maps to itself.

44 We only use that k is a commutative ring and that V is a k-module. It is important, however,

that k be commutative, so k = H is not an option.
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In particular, if π : G → GL(V ) is a representation of a group G on a k-vector
space V , then the composite map

G GL(V ) GL(Symn
k (V ))

π //
Symn

k //

is a representation of G on the k-vector space Symn
k (V ), which we, by abuse of

notation, denote by Symn
k (π). Similarly, we define k-linear representations Tnk (π)

and Λnk (π) on Tnk (V ) and Λnk (V ).

We denote the classes of v1⊗· · ·⊗vn ∈ Tnk (V ) in Symn
k (V ) and Λnk (V ) by v1 . . . vn

and v1 ∧ · · · ∧ vn, respectively. If σ ∈ Σn is a permutation, then we

vσ(1) . . . vσ(n) = v1 . . . vn ∈ Symn
k (V )

and
vσ(1) ∧ · · · ∧ vσ(n) = sgn(σ)v1 ∧ · · · ∧ vn ∈ Λnk (V ).

These statements both follow immediately from the definitions. However, it is a
non-trivial theorem that if (ei)i∈I is a basis of V then the family

(ei1 ⊗ · · · ⊗ ein | i1, . . . , in ∈ I)

is a basis of Tnk (V ), and that if we choose a total order “≤” on I, then

(ei1 . . . ein | i1, . . . , in ∈ I, i1 ≤ · · · ≤ in)

is a basis of Symn
k (V ), and

(ei1 ∧ · · · ∧ ein | i1, . . . , in ∈ I, i1 < · · · < in)

is a basis of Λnk (V ). For instance, if dimk(V ) = d and (e1, . . . , ed) is a basis V , then
the fact that dimk(Λdk(V )) = 1 with basis e1 ∧ · · · ∧ ed is equivalent to the existence
of the determinant.

118



14. Smooth manifolds

We recall that a topological group is defined to be a group G = (G,µ, ι) together
with a topology on the set G such that the maps µ : G×G→ G and ι : G→ G are
continuous. Similarly, a Lie group is defined to be a group G = (G,µ, ι) together
with a structure of smooth manifold on the set G such that the maps µ : G×G→ G
and ι : G→ G are smooth. We first discuss smooth manifolds.

Smooth manifolds belong to geometry rather than topology. Geometric objects
are pairs (X,OX) of a topological space X and a sheaf of rings OX on X, where
for U ⊂ X open, the set Γ(U,OX) of sections of OX over U should be thought of
as the set “geometric functions” on U . The geometric functions that we allow will
depend on the geometric situation that we consider. For instance, we could consider
“smooth functions,” “analytic functions,” or “algebraic functions,” but note that we
have not yet assigned any precise mathematical meaning to these terms. Moreover,
in some situations, the elements of Γ(U,OX) may not be functions in the usual
sense. A map of geometric objects f : (Y,OY ) → (X,OX) is a pair f = (p, φ) of a
continuous map p : Y → X and a map of sheaves of rings φ : OX → p∗OY . Let us
now define sheaves properly.

Let X be a topological space, and let XZar be the category, whose objects are
the open subsets U ⊂ X, and whose morphisms are

HomXZar(U, V ) =

{
{inclVU} if U ⊂ V
∅ if U 6⊂ V.

So if U ⊂ V , then there is a unique morphism inclVU : U → V , and if U 6⊂ V , then
there are no morphisms from U to V . A presheaf of sets on X is a defined to be
a functor F : Xop

Zar → Set. To specify a functor F : Xop
Zar → Set, we must specify

for every open subset U ⊂ X, a set F(U), and for every inclusion U ⊂ V of open

subsets of X, a map F(inclVU ) : F(V )→ F(U). We may think of F (U) as the set of

“functions defined on U” and of F(inclVU ) as the map that to a “function defined
on U” assigns the restriction of this function to a “function defined on V .” To
emphasize this interpretation, we also write Γ(U,F) = F(U) and call it the set of

sections of F over U , and we write ResVU = F(inclVU ) and call it the restriction from
V to U . A presheaf F : Xop

Zar → Set is defined to be a sheaf if it satisfies the following
sheaf condition: For every covering (Ui → U)i∈I of an open subset U ⊂ X by open
subsets Ui ⊂ U , the diagram

F(U)
h //

∏
i∈I F(Ui)

a //

b
//
∏

(i,j)∈I×I F(Ui ∩ Uj)

is an equalizer. Here h is the unique map such that for all i ∈ I,

pri ◦h = ResUUi ,

and a and b are the unique maps such that for all (i, j) ∈ I × I,

pr(i,j) ◦ a = ResUiUi∩Uj ◦ pri

pr(i,j) ◦ b = Res
Uj
Ui∩Uj ◦ prj .

That the diagram is an equalizer means that for all (ϕi)i∈I ⊂
∏
i∈I F(Ui) such that

a((ϕi)i∈I) = b((ϕi)i∈I),
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there exists a unique ϕ ∈ F(U) such that

(ϕi)i∈I = (ResUUi(ϕ))i∈I .

Informally, the sheaf condition expresses that if we are given “functions” ϕi on Ui
for all i ∈ I such that ϕi|Ui∩Uj = ϕj |Ui∩Uj for all (i, j) ∈ I × I, then there exists a
unique “function” ϕ on U such that ϕi = ϕ|Ui for all i ∈ I.

Example 14.1. Let X be a topological space, and let k = R or k = C. The presheaf
Ocont
X : Xop

Zar → Set, where Ocont
X (U) is the set of continuous functions ϕ : U → k,

and where ResVU : Ocont
X (V )→ Ocont

X (U) is the map defined by ResVU (ϕ) = ϕ ◦ inclVU ,
is a sheaf, because “being continuous” is a local property.

We define the category of presheaves of sets on X to be the category

P(X) = Fun(Xop
Zar,Set),

whose objects are functors and whose morphisms are natural transformations, and
we define the category of sheaves on X to be the full subcategory

Shv(X) ⊂ P(X)

spanned by the sheaves on X. One can prove that there is an adjunction

P(X)
LX //

Shv(X)
ιX

oo

where the right adjoint functor ιX is the canonical inclusion of the subcategory of
sheaves in the category of presheaves, and where the left adjoint functor LX takes
a presheaf to its associated sheaf. The functor LX is called “sheafification.”

Example 14.2. Let X be a topological space, and let F ∈ P(X) be the presheaf of
constant functions, F(U) = {ϕ : U → k | ϕ constant}. It is not a sheaf, since “being
constant” is not a local property. The associated sheaf LX(F) ∈ Shv(X) is the sheaf
of locally constant functions, LX(F)(U) = {ϕ : U → R | ϕ locally constant}.

It is a fundamental result of Grothendieck45 that “sheafification” preserves finite
limits. (The inclusion functor ιX preserves all limits, as does every right adjoint
functor.) In particular, it preserves finite products, which implies that it takes
“presheaves of rings” to “sheaves of rings.” Indeed, we define a presheaves of rings
and sheaves of rings to be ring objects in P(X) and Shv(X), respectively. A ring
object in a category C with finite products is defined to be a sixtuple (R,+, · ,−, 0, 1)
of an object R ∈ C, two morphisms +, · : R × R → R, one morphism − : R → R,
and two morphisms 0, 1: e→ R that satisfy the usual ring axioms. Here the empty
product e = R0 ∈ C is a terminal object.

Let p : Y → X be a continous map. If U ⊂ X is open, then p−1(U) ⊂ Y is open,
so we obtain a functor u = p−1 : XZar → YZar. The functor

P(Y )
u∗ // P(X)

given by restriction along u has a left adjoint functor

P(X)
u! // P(Y )

45 This result and many results are consequences of Grothendieck’s theorem that, in the cate-

gory of sets, filtered colimits and finite limits commute.
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given by left Kan extension along u. More concretely, we have

u!(F)(V ) = colimp(V )⊂U F(U),

where the colimit is indexed by the opposite of the “slice category”

(XZar)V/

with objects open subsets U ⊂ X such that V ⊂ p−1(U) and with morphisms
inclusions among such open subsets. It is a cofiltered category, so u! preserves finite
limits by Grothendieck’s theorem. The functor u∗ preserves sheaves in the sense
that there is a unique functor p∗ making the diagram

Shv(Y )
p∗ //

ιX

��

Shv(X)

ιY

��

P(Y )
u∗ // P(X)

commute, but the functor u! does not. However, the functor

Shv(X)
p∗
// Shv(Y )

defined by p∗ = LY ◦u!◦ιX is left adjoint of p∗. We call p∗ the inverse image functor
and we call p∗ the direct image functor. So we have an adjunction

Shv(X)
p∗
//
Shv(Y )

p∗
oo

and the functor p∗ preserves finite limits. In particular, it preserves ring objects.

Example 14.3. (1) Let j : U → X be the inclusion of an open subset. It is an open
map in the sense that if V ⊂ U is open, then so is V = j(V ) ⊂ X. Therefore, the
slice category (XZar)V/ has j(V ) ⊂ X as its initial object, which, in turn, implies
that j∗(F)(V ) = F(j(V )). In this situation, we also write F|U = j∗(F).

(2) Let ix : {x} → X be the inclusion of a point and note that Shv({x}) ' Set.
Indeed, a presheaf G : {x}Zar → Set is a sheaf if and only if G(∅) is a one-element set,
so, up to unique isomorphism, a sheaf G ∈ Shv({x}) is determined by the set G({x}).
We say that Fx = i∗x(F)({x}) is the stalk of F ∈ Shv(X) at x ∈ X. Concretely,
we have Fx = colimx∈U F(U), where the colimit is indexed by the opposite of the
category of open neighborhoods x ∈ U ⊂ X under inclusion. One can prove that a
morphism h : F → F′ in Shv(X) is an isomorphism if and only if the induced map
of stalks hx : Fx → F′x is an isomorphism for all x ∈ X.46

The sheaf Ocont
X of continuous k-valued functions on X is a sheaf of commutative

rings, and therefore, its stalk Ocont
X,x at x ∈ X is a commutative ring.

Lemma 14.4. For every x ∈ X, Ocont
X,x is a local ring.

Proof. The elements h ∈ Ocont
X,x are germs of continuous k-valued functions at x ∈ X,

that is, equivalence classes of pairs (U,ϕ) of an open neighborhood x ∈ U ⊂ X and
a continuous function ϕ : U → k, where two such pairs (U1, ϕ1) and (U2, ϕ2) are
equivalent, if there exists x ∈ V ⊂ U1 ∩ U2 open such that ϕ1|V = ϕ2|V . The
map ψx : Ocont

X,x → k that to the class of (U,ϕ) assigns ϕ(x) is a surjective ring

46 We refer to this statement by saying that the Zariski topos Shv(X) has “enough points.”
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homomorphism to a field, so its kernel mx ⊂ Ocont
X,x is a maximal ideal. Now, if

h ∈ Ocont
X,x and h /∈ mx, then we can represent h by a pair (U,ϕ) such that ϕ(u) 6= 0

for all u ∈ U . This shows that h is invertible with h−1 given by the class of the pair
(U,ψ), where ψ(u) = ϕ(u)−1. This proves the lemma. �

Let p : Y → X be a continuous map. We define the map

Ocont
X

φ
// p∗O

cont
Y

of sheaves of rings on X as follows. If U ⊂ X is open with V = p−1(U) ⊂ Y , then

Ocont
X (U)

φU // (p∗O
cont
Y )(U) = Ocont

Y (V )

is the ring homomorphism that to ϕ : U → k continuous assigns ϕ ◦ p|V : V → k.
By adjunction, it determines and is determined by a map

p∗Ocont
X

φ̃
// Ocont
Y

of sheaves of rings on Y . We will abuse notation and write also φ instead of φ̃ for
this map. The induced map of stalks at y ∈ Y is a ring homomorphism

Ocont
X,x = i∗xO

cont
X ' (p ◦ iy)∗Ocont

X ' i∗yp∗Ocont
X

φy
// i∗yOY = Ocont

Y,y ,

where the indicated isomorphisms are the unique natural isomorphisms between
different choices of left adjoint functors of the functor ix∗ = (p ◦ iy)∗.

Lemma 14.5. The ring homomorphism φy : Ocont
X,x → Ocont

Y,y is a local homomor-
phism.

Proof. That φy is a local homomorphism means that it is a ring homomorphism
and that (φy)−1(my) = mx, or equivalently, that the following diagram commutes.

Ocont
X,x

ψx //

φy

��

k

id

��

Ocont
Y,y

ψy
// k

Now, if h ∈ Ocont
X,x is represented by the pair (U,ϕ), where x ∈ U ⊂ X is an open

neighborhood and ϕ : U → k is a continuous map, then y ∈ V = p−1(U) ⊂ Y is an
open neighborhood, and the pair (V, ϕ ◦ p|V ) represents py(h) ∈ OY,y. So

ψy(φy(h)) = (ϕ ◦ p|V )(y) = ϕ(p(y)) = ϕ(x) = ψx(h),

as desired. �

We will consider other kinds of “functions,” but we always want them to retain
the properties that we proved in Lemmas 14.4 and 14.5 for continuous functions.
We encode these properties in the following definition.

Definition 14.6. (1) A locally ringed space is a pair (X,OX) of a topological space
X and a sheaf of rings OX such that for all x ∈ X, the stalk OX,x is a local ring.

(2) A map of locally ringed spaces is a pair f = (p, φ) : (Y,OY ) → (X,OX) of a
continuous map p : Y → X and a map φ : OX → p∗OY of sheaves of rings on X
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with the property that given y ∈ Y with image x = p(y) ∈ X, the induced map of
stalks φy : OX,x → OY,y is a local ring homomorphism.

If (X,OX) is a locally ringed space, if U ⊂ X is open, and if ϕ ∈ OX(U), then
we define its value ϕ(x) at x ∈ U to be the image of ϕ by the composite map

OX(U)
iU // OX,x

ψx // k(x) = OX,x/mx.

We note that the value ϕ(x) ∈ k(x) is an element of a field k(x) that may vary with
x ∈ U . It may also happen that ϕ 6= 0 even though ϕ(x) = 0 for all x ∈ U .

We now define the “geometric functions” relevant for smooth manifolds, namely,
the smooth functions. However, our discussion below applies mutatis mutandis to
holomorphic functions and complex manifolds and to analytic functions and real
analytic manifolds. Let U ⊂ Rn be an open subset. A function ϕ : U → R is defined
to be smooth if the partial derivatives ∂ kϕ/∂xi1 . . . ∂xik : U → R exist and are
continuous for all k ≥ 0 and 1 ≤ i1, . . . , ik ≤ n. The sheaf of standard smooth
functions on U is defined to be the subsheaf Osm

U ⊂ Ocont
U given by

Γ(V,Osm
U ) = {ϕ : V → R | ϕ smooth} ⊂ Γ(V,Ocont

U )

for all V ⊂ U open. We say that a locally ringed space (X,OX) is an affine smooth
manifold, if there exists an isomorphism of locally ringed spaces

(X,OX)
f=(p,φ)

// (U,Osm
U )

with U ⊂ Rn open. The number n is uniquely determined by (X,OX) and is called
the dimension of the affine smooth manifold.

Definition 14.7. A smooth manifold47 is a locally ringed space (X,OX) for which
there exists an open covering (Ui → X)i∈I such that for all i ∈ I, (Ui,OX |Ui) is
an affine smooth manifold. A morphism f : (Y,OY ) → (X,OX) between smooth
manifolds is a morphism of locally ringed spaces.

Remark 14.8. (1) If (X,OX) is a smooth manifold, then OX is canonically isomor-
phic to a subsheaf of Ocont

X . Indeed, by definition, this is true locally, so by the sheaf
condition, it is also true globally. Moreover, if f = (p, φ) : (Y,OY ) → (X,OX) is a
morphism between smooth manifolds, then the diagram

OX p∗OY

Ocont
X p∗O

cont
Y

φ
//

� _

��
φ
//

� _

��

commutes, and therefore, the top horizontal map is uniquely determined by the
bottom horizontal map. Therefore, we may view “being smooth” as the property
of the continuous map p : Y → X that a map φ : OX → p∗OY making the diagram
commute exist. In particular, the map φ is uniquely determined by the map p. An
isomorphism between smooth manifolds is traditionally called a diffeomorphism.

47 In the literature, the requirement that X be Hausdorff is often included in the definition of

a smooth manifold, but we will not do so. Note that “being Hausdorff” is not a local property.
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(2) We define the dimension of a smooth manifold (X,OX) to be the map

X Z≥0
dim

//

that to x ∈ X assigns n = dim(x), if there exists x ∈ U ⊂ X open with (U,OX |U )
an affine smooth manifold of dimension n. It is well-defined and locally constant,
and if it is constant with value n, then we say that (X,OX) has pure dimension n or
that (X,OX) is a smooth n-manifold. We define a chart of (X,OX) around x ∈ X
to be a pair (U, h) of an open neighborhood x ∈ U ⊂ X and a diffeomorphism

(U,OX |U )
h // (V,Osm

V )

with V ⊂ Rdim(x) an open subset.

Proposition 14.9. The category of smooth manifolds and their morphisms admits
finite products. More precisely, if f : (Z,OZ)→ (X,OY ) and g : (Z,OZ)→ (Y,OY )
are morphisms between smooth manifolds, then, up to unique isomorphism, there
is a unique sheaf of rings OX×Y on X × Y such that (X × Y,OX×Y ) is a smooth
manifold and such that, in the diagram

(Z,OZ)

(X,OX) (X × Y,OX×Y ) (Y,OY ),

f

~~

g

  

(f,g)

��
p

oo
q
//

the projections p and q and the unique map (f, g) that makes the diagram commute
are morphisms of smooth manifolds.

Proof. Up to isomorphism, there is a unique sheaf OX×Y on X×Y such that given
(x, y) ∈ X × Y and charts h : (U,OX |U ) → (A,Osm

A ) and k : (V,OY |V ) → (B,Osm
B )

around x ∈ X and y ∈ Y , respectively, the map

(U × V,OX×Y |U×V )
h×k

// (A×B,Osm
A×B)

is a chart around (x, y) ∈ X × Y .48 Since the subsets of the form U × V ⊂ X × Y ,
where U ⊂ X and V ⊂ Y are open, form a basis for the product topology, this
shows that (X × Y,OX×Y ) is a smooth manifold. That the maps p, q, and (f, g)
are smooth can be checked locally in charts, where it is clear. �

One can construct new smooth manifolds by gluing existing smooth manifolds
together. To state the result, we introduce some terminology. In general, we define
a morphism (s, t) : R→ Y ×Y in a category C that admits finite products to be an
equivalence relation if for all Z ∈ C, the induced map of sets

Map(Z,R)
(s,t)

// Map(Z, Y )×Map(Z, Y )

exhibits Map(Z,R) as an equivalence relation on the set Map(Z, Y ) in the usual
sense. In particular, the morphism (s, t) is a monomorphism.

A map f : (Y,OY ) → (X,OX) of smooth manifolds is étale if there exists an
open covering (Vi → Y )i∈I such that each f |Vi : (Vi,OY |Vi) → (f(Vi),OX |f(Vi)) is

48 There is a canonical map OX ⊗k OY → OX×Y of sheaves of k-algebras on X × Y , but it is

not an isomorphism. Rather the target is a suitable completion of the source.
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a diffeomorphism. It is an open immersion if, in addition, the map f : Y → X is
injective. The image f(Y ) ⊂ X of an étale morphism is an open subset.

Proposition 14.10. Given an equivalence relation of smooth manifolds

(R,OR) (Y,OY )× (Y,OY )
(s,t)

//

such that Y =
∐
i∈I Yi and R =

∐
(i,j)∈I×I Ui,j and such that s and t restrict to

open immersions s|Ui,j : Ui,j → Yi and t|Ui,j : Ui,j → Yj, the coequalizer

(R,OR)
s //

t
// (Y,OY )

f
// (X,OX)

exists. Moreover, the morphism f is étale.

Proof. Suppose that s = (g, σ) and t = (h, τ). We let X = Y/R with the quotient
topology, and let p : Y → X be the canonical projection. It is the coequalizer of
g, h : R → Y in the category of topological spaces and continuous maps. We claim
that for all i ∈ I, the map p|Yi : Yi → f(Yi) is a homeomorphism. First, it is a
bijection, since the maps g|Ui,i : Ui,i → Yi and hUi,i : Ui,i → Yi necessarily are equal.
Indeed, they are both open immersions and the diagonal map ∆: Yi → Yi × Yi
factors through (g, h)|Ui,i : Ui,i → Yi × Yi, since (s, t) is an equivalence relation.
Second, it is an open map. Indeed, if V ⊂ Yi is an open subset, then so is the subset

p−1(p(V )) =
∐
j∈I(h ◦ g−1)(V ∩ Ui,j) ⊂

∐
j∈I Yj = Y.

This shows that p|Yi : Yi → p(Yi) ⊂ X is a homeomorphism.

Finally, the sheaf of rings OX given by the equalizer

OX
φ
// p∗OY

p∗(σ)
//

p∗(τ)
// q∗OR,

where q = p ◦ g = p ◦ h, makes (X,OX) a smooth manifold and makes the diagram
in the statement a coequalizer in the category of smooth manifolds and morphisms
of smooth manifolds. �

Remark 14.11. The morphisms s, t : (R,OR) → (Y,OY ) in Proposition 14.10 are
étale, but they are a very particular kind of étale morphisms. We would like the
result to hold more generally for every étale equivalence relation, that is, for every
equivalence relation (s, t) : (R,OR) → (Y × Y,OY×Y ) such that s and t are étale,
but this is not true.49 To remedy this, one builds the larger category of smooth
stacks in which the result holds for every étale equivalence relation.

Example 14.12. (1) Let A1
k = (R,Osm

R ) be the affine line, let A1
k r {0} ⊂ A1

k be the
open complement of {0} ⊂ A1

k, and let (s, t) be the equivalence relation with

R = R11 tR12 tR22 = A1
k t (A1

k r {0}) t A1
k

s //

t
// Y = Y1 t Y2 = A1

k t A1
k

where the maps s, t : R12 → Y1 are defined to be the canonical inclusion and the
map t 7→ t−1, respectively. The coequalizer (X,OX) is the projective line P1

k.

49 A counterexample is (s, t) : Z× S1 → S1 × S1, where s(n, z) = z and t(n, z) = wnz, where

w is some fixed irrational roation of the circle S1.
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(2) We consider the equivalence relation defined as in (1), except that we now define
both s, t : R12 → Y1 to be the canonical inclusion. The coequalizer (X,OX) is an
affine line with a double point at the origin. The space X is not Hausdorff.

We will use Proposition 14.10 to construct the tangent bundle of a smooth man-
ifold. It is a functor that to a smooth manifold (X,OX) assigns a morphism

T (X,OX) = (TX,OTX)
pX // (X,OX)

of smooth manifolds together with a structure of real vector space on the fiber

T (X,OX)x = p−1
X (x) ⊂ T (X,OX)

for all x ∈ X, and that to a morphism f : (Y,OY )→ (X,OX) of smooth manifolds
assigns a commutative diagram50 of morphisms of smooth manifolds

T (Y,OY )
df
//

pY

��

T (X,OX)

pX

��

(Y,OY )
f

// (X,OX)

such that for all y ∈ Y with image x = f(y) ∈ X, the induced map of fibers

T (Y,OY )y
dfy
// T (X,OX)x

is linear. The “chain rule” is the statement that this assignment is a functor.

First, if U ⊂ Rm is an open subset, then we define

T (U,Osm
U ) = (U × Rm,Osm

U×Rm)
pU // (U,Osm

U )

to the projection on the first factor. We define the structure of real vector space
on the fiber T (U,Osm

U )x by (x,v) + (x,w) = (x,v + w) and (x,v) · a = (x,v · a),
where v,w ∈ Rm and a ∈ R. If f : (V,Osm

V ) → (U,Osm
U ) is a morphism of smooth

manifolds with U ⊂ Rm and V ⊂ Rn open, then we define

T (V,Osm
V )

df
// T (U,Osm

U )

to be the morphism of smooth manifolds defined by

df(y,v) = (f(y), Dvf(y)),

where y ∈ V and v ∈ Rn, and where

Dvf(y) = limh→0(f(y + vh)− f(y))/h

is the directional derivative. If (e1, . . . , em) and (e1, . . . , en) are the standard bases
for Rm and Rn, respectively, and if we write f(y) =

∑m
i=1 eifi(y), then

Dejf(y) =
∑m
i=1 ei · (∂fi/∂yj)(y).

50 This diagram is cartesian, if f is étale, but not in general.
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It follows that the diagram

T (V,Osm
V )

df
//

pV

��

T (U,Osm
U )

pU

��

(V,Osm
V )

f
// (U,Osm

U )

commutes, and that for all y ∈ V with image x = f(y) ∈ U , the induced map

T (V,Osm
V )y

dfy
// T (U,Osm

U )x

is linear. Moreover, the chain rule from calculus shows that

d(f ◦ g) = df ◦ dg

for all composable morphisms of smooth manifolds

(W,Osm
W )

g
// (V,Osm

V )
f
// (U,Osm

U )

with U ⊂ Rm, V ⊂ Rn, and W ⊂ Rp open.

Second, given any smooth manifold (X,OX), we let (Yi, hi : Yi → Vi)i∈I be a
family of charts with Vi ⊂ Rni . The canonical map

(Y,OY ) =
∐
i∈I(Yi,OX |Yi)

f
// (X,OX)

is étale, the canonical inclusion

(R,OR) = (Y,OY )×(X,OX) (Y,OY )
(s,t)

// (Y,OY )× (Y,OY )

is an equivalence relation, and the diagram

(R,OR)
s //

t
// (Y,OY )

f
// (X,OX)

is a coequalizer. We have Y =
∐
i∈I Yi and R =

∐
(i,j)×I×I Ui,j with Ui,j = Yi ∩Yj ,

so the existence of the coequalizer also is a consequence of Proposition 14.10. We
now define pX : T (X,OX)→ (X,OX) to be the induced morphism of coequalizers

T (R,OR)
ds //

dt
//

pR

��

T (Y,OY )
df
//

pY

��

T (X,OX)

pX

��

(R,OR)
s //

t
// (Y,OY )

f
// (X,OX),

and we give the fiber T (X,OX)x the unique structure of real vector space such that
for any y ∈ Y with f(y) = x, the induced map of fibers

T (Y,OY )y
dfy
// T (X,OX)x

is a linear isomorphism. To see that pX : T (X,OX) → (X,OX) is well-defined, up
to canonical isomorphism, one has to prove two things. First, one much show that
the equivalence relation (ds, dt) satisfies the hypothesis of Proposition 14.10, which
is not difficult. Second, if p′X : T (X,OX)′ → (X,OX) is obtained as above but
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beginning with a different choice of family of charts (Y ′i , h
′
i : Y

′
i → V ′i )i∈I′ , then one

must produce a canonical diffeomorphism g making the diagram

T (X,OX)
g
//

pX

��

T (X,OX)′

p′X
��

(X,OX) (X,OX)

commute. This is more delicate, since we have not characterized the tangent bundle
by some universal property, and therefore, there is not a unique choice of “canonical”
diffeomorphism.51 We will not go further into this here.

Definition 14.13. A tangent vector field on a smooth manifold (X,OX) is a mor-
phism of smooth manifolds v : (X,OX)→ T (X,OX) such that pX ◦ v = idX .

We note that the value of the map v at x ∈ X is a vector v(x) ∈ T (X,OX)x in
a vector space that varies with x. We give the set Vect(X,OX) of tangent vector
fields on (X,OX) the structure of a left OX(X)-module, where

(v + w)(x) = v(x) + w(x)

(ϕ · v)(x) = ϕ(x) · v(x)

for v,w ∈ Vect(X,OX) and ϕ ∈ OX(X).

Let (X,OX) be a smooth manifold, and let v ∈ Vect(X,OX) be a tangent vector
field. The directional derivative along v is a k-linear map of sheaves

OX
Dv // OX ,

which we now define. We must define, for all U ⊂ X open, a k-linear map

OX(U)
Dv,U

// OX(U)

such that for all U ⊂ V ⊂ X open, the diagram

OX(V )
Dv,V

//

ResVU
��

OX(V )

ResVU
��

OX(U)
Dv,U

// OX(U)

commutes. We first note that the smooth tangent vector field v on (X,OX) restricts
to a smooth tangent vector field v|U on (U,OX |U ) for all U ⊂ X open. Indeed, if
j : U → X is the open immersion of U in X, then the diagram

T (U,OX |U )
dj
//

pU

��

T (X,OX)

pX

��

(U,OX |U )
j
// (X,OX)

51 It would of course be much better to give a global definition of the tangent bundle similar
to the definition pX : T (X,OX) = Spec(SymOX

(Ω1
X/k

))→ (X,OX) in algebraic geometry. The

liquid theory of Clausen–Scholze now makes this possible.
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is cartesian, and therefore, we may define v|U : (U,OX |U )→ T (U,OX |U ) to be the
unique morphism such that dj ◦ v|U = v ◦ j and pU ◦ v|U = idU . Next, we may
view ϕ ∈ OX(U) as a morphism of smooth manifolds ϕ : (U,OX |U )→ (R,Osm

R ), so
we have the commutative diagram

T (U,OX |U )
dϕ
//

pU

��

T (R,OR)

p R

��

U
ϕ

// R.

We also have a tangent vector field w on (R,Osm
R ) defined by w(t) = (t, e1), and

we now define Dv,U (ϕ) ∈ OX |U (U) to be the unique element such that

dϕ ◦ v|U = w ·Dv,U (ϕ).

It is clear from the definition that the map Dv,U is k-linear and that if U ⊂ V ⊂ X
are open subsets, then Dv,U ◦ ResVU = ResVU ◦Dv,V . Therefore, we have defined a
k-linear map of sheaves Dv : OX → OX as desired.

In general, given a morphism f : (X,OX)→ (S,OS) of locally ringed spaces and
a right OX -module F, an f∗OS-linear morphism of sheaves

OX
δ // F

is an f∗OS-linear derivation if for all U ⊂ X open and ϕ,ψ ∈ OX(U),

δU (ϕ · ψ) = δU (ϕ) · ψ + δU (ψ) · ϕ.

We write DerOS (OX ,F) for the set of f∗OS-linear derivations δ : OX → F. It has a
structure of abelian group given by the pointwise sum of derivations. Moreover, if
h : F → F is an OX -linear morphism and if δ : OX → F is an f∗OS-linear derivation,
then h ◦ δ : OX → F again is an f∗OS-linear derivation. So (h, δ) 7→ h ◦ δ defines a
structure of left EndOX (F)-module on the abelian group DerOS (OX ,F).

Lemma 14.14. If (X,OX) is a smooth manifold, then for all v ∈ Vect(X,OX),
the directional derivative Dv : OX → OX is a k-linear derivation.

Proof. Given v ∈ Vect(X,OX), an open subset U ⊂ X, and a point x ∈ U , we
give a formula for Dv,U (ϕ)(x) for ϕ ∈ OX |U (U). There exists a smooth curve
γ : (I,Osm

I )→ (U,OX |U ) defined on an open interval 0 ∈ I ⊂ R such that γ(0) = x
and such that, in the diagram

T (I,Osm
I )

dγ
//

pI

��

T (U,OX |U )
dϕ
//

pU

��

T (R,OR)

p R

��

(I,OI)
γ

// (U,OX |U )
ϕ
// (R,Osm

R ),

we have (dγ ◦w|I)(0) = v|U (x) = (v|U ◦ γ)(0). Therefore,

(dϕ ◦ v|U )(x) = (dϕ ◦ v|U ◦ γ)(0) = (dϕ ◦ dγ ◦w|I)(0) = (d(ϕ ◦ γ) ◦w|I)(0),

from which we obtain the formula

Dv,U (ϕ)(x) = (ϕ ◦ γ)′(0).
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Hence, for all ϕ,ψ ∈ Γ(U,OX), we have

Dv,U (ϕ · ψ)(x) = ((ϕ · ψ) ◦ γ)′(0) = ((ϕ ◦ γ) · (ψ ◦ γ))′(0)

= (ϕ ◦ γ)′(0) · (ψ ◦ γ)(0) + (ψ ◦ γ)′(0) · (ϕ ◦ γ)(0)

= Dv,U (ϕ)(x) · ψ(x) +Dv,U (ψ)(x) · ϕ(x),

and since x ∈ U was arbitrary, we conclude that

Dv,U (ϕ · ψ) = Dv,U (ϕ) · ψ +Dv,U (ψ) · ϕ

as desired. �

We now obtain the promised global description of the left OX(X)-module of
tangent vector fields.

Proposition 14.15. Let (X,OX) be a smooth manifold. The directional derivative

Vect(X,OX)
D
// Derk(OX ,OX)

is an isomorphism of left OX(X)-modules.

Proof. For all open subsets U ⊂ V ⊂ X, we have a commutative diagram

Vect(V,OX |V )
DV

//

ResVU
��

Derk(OX |V ,OX |V )

ResVU
��

Vect(U,OX |U )
DU

// Derk(OX |U ,OX |U ),

so the family (DU )U⊂X is a morphism of presheaves of left OX -modules

Vect(X,OX)
D
// Derk(OX ,OX).

Both of these presheaves are in fact sheaves, because they are defined in terms of
by local conditions. We will prove that this morphism of sheaves is an isomorphim.
Since the map in the statement is obtained from this morphism of sheaves by
applying the global sections functor Γ(X,−), this will prove the proposition.

Since the statement that the map of sheaves in question is an isomorphism is
local on X, we may assume that (X,OX) is equal to (U,Osm

U ) with U ⊂ Rn open.
We may further assume that U ⊂ Rn is convex, since every open subset of Rn
admits a covering by convex open subsets. So it suffices to prove that for U ⊂ Rn
convex open, the directional derivative

Vect(U,Osm
U )

D
// Derk(Osm

U ,Osm
U )

is an isomorphism of left Osm
U (U)-modules. The left-hand Osm

U (U)-module is free of
rank n, and a basis is given by the family (w1, . . . ,wn) of vector fields defined by
wi(x) = (x, ei), where (e1, . . . , en) is the standard basis of Rn. By the definition of
the directional derivative, we have

Dwi
(ϕ) = ∂ϕ/∂xi,

130



so we must prove that the family (∂/∂x1, . . . , ∂/∂xn) of derivations is a basis of the
left Osm

U (U)-module Derk(Osm
U ,Osm

U ). It is linearly independent, since

∂xi/∂xj =

{
1 if i = j

0 if i 6= j,

and to show that it also generates the left Osm
U (U)-module Derk(Osm

U ,Osm
U ), we prove

that for all δ ∈ Derk(Osm
U ,Osm

U ), the following identity holds,

δ =
∑n
i=1 δ(xi) · ∂/∂xi.

It suffices to show that for all δ ∈ Derk(Osm
U ,Osm

U ), ϕ ∈ Osm
U (U), and a ∈ U ,

δ(ϕ)(a) =
∑n
i=1 δ(xi)(a) · (∂ϕ/∂xi)(a).

Indeed, the sheaf F = Osm
U has the special property that a section ψ ∈ Osm

U (U) is
zero if and only if all its values ψ(a) ∈ F(a) = Fa ⊗Osm

U,a
k(a) are zero. Now, since

we assumed that the open subset U ⊂ Rn is convex, Corollary 14.21 below shows
that there exist unique ϕi,j ∈ Osm

U (U) such that

ϕ(x) = ϕ(a) +
∑n
i=1(xi − ai)(∂ϕ/∂xi)(a) +

∑n
i,j=1(xi − ai)(xj − aj)ϕi,j(x),

and since δ is a k-linear derivation, the desired identity ensues. �

Example 14.16. If (X,OX) is a smooth manifold, and if h : U → V is a chart with
V ⊂ Rn open, then the family of derivations (δ1, . . . , δn), where

δi(ϕ)(x) = (∂(ϕ ◦ h−1)/∂xi)(h(x)),

is a basis of the left OX(U)-module Derk(OX |U ,OX |U ). Hence, there is a unique
basis (v1, . . . ,vn) of the left OX(U)-module Vect(U,OX |U ) such that Dvi = δi.

According to Proposition 14.15, tangent vector fields may analogously be defined
to be k-linear derivations δ : OX → OX . This definition has the advantage of being
truly global. We define the “Lie bracket”

Derk(OX ,OX)⊗k Derk(OX ,OX)
[−,−]

// Derk(OX ,OX)

to be the map that to δ1 ⊗ δ2 assigns the k-linear morphism

[δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1.

To verify that [δ1, δ2] ∈ Derk(OX ,OX), we let ϕ,ψ ∈ Γ(U,OX |U ) and calculate

[δ1, δ2](ϕ · ψ) = δ1(δ2(ϕ · ψ))− δ2(δ1(ϕ · ψ))

= δ1(δ2(ϕ) · ψ + ϕ · δ2(ψ))− δ2(δ1(ϕ) · ψ + ϕ · δ1(ψ))

= δ1(δ2(ϕ)) · ψ + δ2(ϕ) · δ1(ψ) + δ1(ϕ) · δ2(ψ) + ϕ · δ1(δ2(ψ))

− δ2(δ1(ϕ)) · ψ − δ1(ϕ) · δ2(ψ)− δ2(ϕ) · δ1(ψ)− ϕ · δ2(δ1(ψ))

= [δ1, δ2](ϕ) · ψ + ϕ · [δ1, δ2](ψ).

It is clear that the map [−,−] is k-linear in both arguments so that we obtain
the stated map. A similar and equally straightforward calculation shows that given
three k-linear derivations δ1, δ2, and δ3, the “Jacobi identity”

[[δ1, δ2], δ3] + [[δ2, δ3], δ1] + [[δ3, δ1], δ2] = 0
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holds. This makes Derk(OX ,OX) a Lie algebra over k.52

We proved earlier that the category of smooth manifolds and morphisms of
smooth manifolds has finite products. It does not have all fiber products, but the
implicit function theorem shows that it does have some fiber products. Given a
cartesian square of smooth manifolds and morphism of smooth manifolds

(Y ′,OY ′)
g′
//

f ′

��

(Y,OY )

f

��

(X ′,OX′)
g
// (X,OX),

we say that f ′ is the base-change of f along g. If such a square exists for given f
and g, then we say that the base-change of f along g exists.

A morphism of smooth manifolds f : (Y,OY ) → (X,OX) is a submersion53

(resp. an immersion) if for all y ∈ Y with image x = f(y) ∈ X, the differential

T (Y,OY )y
dfy
// T (X,OX)x

is surjective (resp. injective). We note that, in this case, it follows from linear algebra
that dim(y) ≥ dim(x) (resp. dim(y) ≤ dim(x)).

Theorem 14.17 (Implicit function theorem). In the category of smooth manifolds
and morphisms of smooth manifolds, the base-change of a submersion along any
morphism exists and is a submersion.

Proof. This is based on the inverse function theorem. It states that a morphism of
smooth manifolds, which is both an immersion and a submersion, is étale. The proof
has a number of steps. First, if (Y,OY ) = (X × Z,OX×Z) and f is the projection
on the first factor, then the base-change along any g exists with Y ′ = X ′×Z, with
f ′ the projection on the first factor, and with g′ = g × idZ . Second, the inverse
function theorem shows if f is any submersion, then for all y ∈ Y , we can find open
neighborhoods y ∈ V ⊂ Y , x = f(y) ∈ U ⊂ X, and 0 ∈ W ⊂ Rp together with a
diffeomorphism h making the diagram

(V,OY |V )
h //

f |U
��

(U ×W,OX×W |U×W )

p

��

(U,OX |U ) (U,OX |U ),

where p is the canonical projection, commute. Hence, it follows from the first step
that the base-change of f |U along any morphism g exists and is a submersion.
Finally, we use Proposition 14.10 to glue together the local solutions obtained in the
second step to a global solution. To do so, we also use the fact that the base-change
of an open immersion along any morphism exists and is an open immersion and the
fact that base-change along an open immersion preserves both coequivalizers and
submersions. �

52 This Lie algebra is infinite dimensional, unless X is finite. We will define the Lie algebra of

a Lie group to be a subalgebra of this Lie algebra.
53 In algebraic geometry, the analogue of submersions are called smooth morphisms. It is for

this reason, that I say “morphism of smooth manifolds” instead of “smooth map.”
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Remark 14.18. Let f : (Y,OY ) → (X,OX) be a morphism of smooth manifolds.
We say that y ∈ Y is a regular point of f if dfy is surjective and that x ∈ X is a
regular value of f if every y ∈ Y with f(y) = x is a regular point. Therefore, given
a morphism g : (X ′,OX′) → (X,OX) for which there exists g(X ′) ⊂ U ⊂ X open
such that every x ∈ U is a regular point of f , then the base-change of f along g
exists and is equal to the base-change of f |f−1(U) along g.

Example 14.19. Let Y = Mn(R), and let X ⊂ Mn(R) be the subset of symmetric
matrices. So Y and X are both real vector spaces of dimension n2 and (n+ 1)n/2,
respectively, which we view as smooth manifolds of the same dimensions. The map
f : (Y,Osm

Y )→ (X,Osm
X ) defined by f(A) = A∗A is smooth, and we claim that

T (Y,Osm
Y )A

dfA // T (X,Osm
X )f(A)

is surjective for all A ∈ Y with f(A) = E ∈ X. To see this, we use the identity
maps of Y and X as charts and calculate

dfA(B) = limh→0(f(A+ hB)− f(A))/h

= limh→0((A+ hB)∗(A+ hB)−A∗A)/h

= limh→0(A∗A+ hA∗B + hB∗A+ h2B∗B −A∗A)/h

= A∗B +B∗A.

Now, if f(A) = A∗A = E, then given C = C∗ ∈ X, we set B = 1
2AC and calculate

dfA(B) = A∗B +B∗A = 1
2A
∗AC + 1

2C
∗A∗A = 1

2 (C + C∗) = C.

So the implicit function theorem shows that the base-change

(O(n),OO(n))
g′
//

f ′

��

(Y,Osm
Y )

f

��

({E},O{E})
g
// (X,Osm

X )

exists; see Remark 14.18. Hence, the subspace O(n) ⊂Mn(R) of orthogonal matri-
ces has a structure of smooth manifold of dimension n2− (n+ 1)n/2 = n(n− 1)/2.

Appendix: Hadamard’s lemma

We have used the following result, commonly referred to as Hadamard’s lemma.

Lemma 14.20. Let U ⊂ Rn be an open subset that is star-convex with respect to
a ∈ U , and let ϕ : U → R is a smooth function. Then there exists unique smooth
functions ϕi : U → R such that for all x ∈ U ,

ϕ(x) = ϕ(a) +
∑n
i=1(xi − ai)ϕi(x).

Moreover, for all 1 ≤ i ≤ n, ϕi(a) = (∂ϕ/∂xi)(a).
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Proof. We define h : [0, 1]→ R by h(t) = ϕ(a+ (x− a)t), which is possible by the
assumption that U ′ be star-convex with respect to a, and calculate that

ϕ(x)− ϕ(a) = h(1)− h(0) =
∫ 1

0
(dh/dt)(t)dt

=
∫ 1

0

∑n
i=1(∂ϕ/∂xi)(a+ (x− a)t)(xi − ai)dt

=
∑n
i=1(xi − ai)

∫ 1

0
(∂ϕ/∂xi)(a+ (x− a)t)dt.

So the lemma holds with ϕi(x) =
∫ 1

0
(∂ϕ/∂xi)(a+ (x− a)t)dt. �

Corollary 14.21. Let U ⊂ Rn be an open subset that is star-convex with respect
to a ∈ U , and let ϕ : U → R is a smooth function. Then there exists unique smooth
functions ϕi,j : U → R such that for all x ∈ U ,

ϕ(x) = ϕ(a) +
∑n
i=1(xi − ai)(∂ϕ/∂xi)(a) +

∑n
i,j=1(xi − ai)(xj − aj)ϕi,j(x).

Proof. We first write ϕ(x) as in the statement of Lemma 14.20 and the apply the
lemma again to write each of the functions ϕi : U → R as

ϕi(x) = ϕi(a) +
∑n
j=1(xj − aj)ϕi,j(x) = (∂ϕ/∂xi)(a) +

∑n
j=1(xj − aj)ϕi,j(x)

with ϕi,j : U → R smooth. �
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15. Lie groups

Definition 15.1. A Lie group is a group object G = ((G,OG), µ, ι) in the category
of smooth manifolds and morphisms of smooth manifolds.54 A morphism of Lie
groups is a homomorphism of group objects in the category of smooth manifolds
and morphisms of smooth manifolds.

One defines complex Lie groups similarly to be a group objects in the category
of complex manifolds and morphism of complex manifolds.

There is a “forgetful” functor from the category of Lie groups and morphisms of
Lie groups to that of topological groups and continuous group homomorphisms that
to ((G,OG), µ, ι) assigns (G,µ, ι). One can prove that this functor is fully faithful,55

so in particular, the sheaf OG is uniquely determined, up to unique isomorphism,
by the remaining data. Hence, we may view “being a Lie group” as a property of a
topological group.

Example 15.2. By using the implicit function theorem, we see that the classical
groups all are (real) Lie groups. The groups GLn(C) and SLn(C) are examples of
complex Lie groups.

If ((G,OG), µ, ι) is a Lie group, then we may consider the tangent space

g = T (G,OG)e

of the smooth manifold (G,OG) at the identity element e ∈ G. It is a real vector
space of dimension n = dim(e). We proceed to show that the group structure
morphisms µ and ι give rise to a structure of Lie algebra [−,−] on this real vector
space. Let us first define Lie algebras.

Definition 15.3. Let k be a field. A Lie algebra over k is a pair g = (g, [−,−]) of
a right k-vector space g and a k-linear map [−,−] : g⊗ g→ g such that:

(LA1) For all x ∈ g, [x, x] = 0.
(LA2) For all x, y, z ∈ g, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

A morphism of Lie algebras f : (h, [−,−])→ (g, [−,−]) is a k-linear map f : h→ g
such that for all x, y ∈ h, f([x, y]) = [f(x), f(y)].

We call [−,−] the “Lie bracket” and we refer to (LA1) and (LA2) by saying
that the Lie bracket is alternating and satisfies the Jacobi identity, respectively. It
follows that the Lie bracket is antisymmetric in that for all x, y ∈ g, [x, y] = −[y, x].
We warn the reader that the Lie bracket is neither associative nor does it have an
identity element, except in trivial cases. A Lie algebra a is defined to be abelian if
[x, x] = 0 for all x ∈ a.

Example 15.4. (1) An associative k-algebra A determines a Lie algebra with the
same underlying k-vector space as A and with Lie bracket [a, b] = a · b − b · a. In
particular, if V is a right k-vector space, then Endk(V ) is an associative k-algebra
under composition of k-linear maps. The associated Lie algebra is denoted gl(V ).

54 If (G,µ, ι) is a topological group and if {e} ⊂ G is closed, then the space G is automatically

Hausdorff. For the diagonal ∆(G) ⊂ G×G is the preimage by the continuous map µ ◦ (id×ι) of

the closed subset {e} ⊂ G and hence closed.
55 See [3, Theorem 9.2.16].
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(2) If (X,OX) is a smooth manifold, then the real vector space Derk(OX ,OX) has
a structure of real Lie algebra with Lie bracket [−,−] defined by56

[δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1.

Hence, there is a unique structure of Lie algebra on Vect(X,OX) for which the
directional derivative is an isomorphism of Lie algebras.

In particular, a morphism of Lie groups π : G→ GL(V ) gives rise to a morphism
of Lie algebras dπe : g → gl(V ). So a representation of a Lie group determines a
representation of its Lie algebra. This assignment is a functor, and we will prove
that its restriction to the full subcategory of connected Lie groups is faithful.

Let G = ((G,OG), µ, ι) be a Lie group. Given g ∈ G, we write

(G,OG) (G,OG)
Lg

//

for the morphism of smooth manifolds defined by Lg(x) = µ(g, x) = gx and call it
“left multiplication by g ∈ G.” The map Lg is not a group homomorphism, but it
is an automorphism of smooth manifolds, so we get a map

G
L // Aut(G,OG)

from G to the group of automorphism of the smooth manifold (G,OG), and this
map is a group homomorphism. We wish to consider the induced actions on the
“space” of tangent vector fields. We first prove a general result.

Proposition 15.5. Let f : (Y,OY )→ (X,OX) be a morphism of smooth manifolds,
and let Du ∈ Derk(OX ,OX) and Dv ∈ Derk(OY ,OY ) be the directional derivatives
along two tangent vector fields u ∈ Vect(X,OX) and v ∈ Vect(Y,OY ), respectively.
The following statements are equivalent.

(a) The diagram of smooth manifolds and morphisms of smooth manifolds

T (Y,OY ) T (X,OX)

(Y,OY ) (X,OX)

df
//

v

OO

u

OO

f
//

commutes.
(b) The diagram of sheaves of OX-modules and k-linear maps

OX f∗OY

OX f∗OY

f]
//

Du

��

f∗Dv

��f]
//

commutes.

56 If δ1, δ2 : OX → OX are k-linear derivations, then δ1 ◦ δ2 : OX → OX is typically not a

k-linear derivation. So (2) is not a special case of (1).
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Proof. We first assume (a) and prove (b). We must show that for all U ⊂ X open
with V = f−1(U) ⊂ Y and for all ϕ ∈ Γ(V,OY ), the identity

Dv(ϕ ◦ f |V ) = f |V ◦Du(ϕ)

holds. But this follows from the chain rule. Indeed, we consider the diagram

T (V,OY |V ) T (U,OX |U ) T (R,Osm
R )

(V,OY |V ) (U,OX |U ) (R,Osm
R )

df |V
//

dϕ
//

v|V

OO

u|U

OO

w

OO

f |V
//

ϕ
//

where w is the constant vector field defined by w(t) = (t, e1). We have

Dv(ϕ ◦ f |V ) · (w ◦ ϕ ◦ f |V ) = d(ϕ ◦ f |V ) ◦ v|V = dϕ ◦ d(f |V ) ◦ v|V
= dϕ ◦ u|U ◦ f |V = (Du(ϕ) ◦ f |V ) · (w ◦ ϕ ◦ f |V )

where the first and last identity hold by the definition of Du and Dv, the second
identity holds by the chain rule, and the third identity holds by (a).

We next assume (b) and prove (a). Since pX is a submersion, the implicit function
theorem shows that the base-change of pX along f exists,

T (X,OX)′
f ′
//

p′X
��

T (X,OX)

pX

��

(Y,OY )
f
// (X,OX).

We repeat the definition of the directional derivative to define a map

Vect(X,OX)′
D′
// Derk(OX , f∗OY )

from the set of morphism of smooth manifolds s : (Y,OY ) → T (X,OX)′ such that
p′X ◦ s = idY to the set of k-linear derivations δ : OX → f∗OY . Given U ⊂ X open
with V = f−1(U) ⊂ Y and ϕ ∈ Γ(U,OX), we consider the diagram

T (U,OX |U )′
(f |V )′

//

p′U
��

T (U,OX |U )

pU

��

dϕ
// T (R,Osm

R )

p R

��

(V,OY |V )
f |V

// (U,OX |U )
ϕ
// (R,Osm

R )

and define D′s(ϕ) ∈ Γ(U, f∗OY ) to be the unique element such that

D′s(ϕ) · (w ◦ ϕ ◦ f |V ) = dϕ ◦ (f |V )′ ◦ s|V .
Now, the two composites u ◦ f and df ◦ v of the morphisms in the top diagram in
the statement are both elements of Vect(X,OX)′, and we have

D′u◦f = f ] ◦Du = f∗Dv ◦ f ] = D′df◦v.

Indeed, the first and last identity follow immediately from the definitions of D and
D′, and the middle identity is (b). Hence, it will suffice to prove that the map D′

is injective.57 To this end, we proceed as in the proof of Proposition 15 last time.

57 The map D′ need not be surjective, because the sheaf f∗OY can be very complicated.
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We first observe that the map in question is equal to the map of global sections
induced by a map of sheaves of OY -modules

Vect(X,OX)′
D′ // Derk(OX , f∗OY ).

Hence, we may assume that (X,OX) is equal to (U,Osm
U ) with U ⊂ Rm an open

subset. In this case, the Γ(Y,OY )-module Vect(X,OX)′ is free of rank m, and a
basis is given by the family (s1, . . . , sm) with si = wi ◦ f , where wi(x) = (x, ei)
and where (e1, . . . , em) is the standard basis of Rm. Moreover, we have

D′si = D′wi◦f = f ] ◦Dwi
= f ] ◦ (∂/∂xi),

and since f ] : OX → f∗OY is a ring homomorphism, we find that

D′sj (xi) = f ] ◦ (∂xi/∂xj) =

{
1 if i = j

0 if i 6= j.

This shows that the family (f ] ◦ (∂/∂x1), . . . , f ] ◦ (∂/∂xm) is linear independent,
which, in turn, shows that D′ is injective as desired. �

Now, if (X,OX) is a smooth manifold, then we obtain a group homomorphism

Aut(X,OX)
τ // Autk(Vect(X,OX))

defined by τ(f)(v) = u, where u,v ∈ Vect(X,OX) are related as in the statement
of Proposition 15.5. We note that the map τ(f) is not a Γ(X,OX)-linear automor-
phism, but, instead, it is a Γ(X,OX)-linear isomorphism

Vect(X,OX)
τ(f)
// f ]∗Vect(X,OX)

from Vect(X,OX) to the left Γ(X,OX) obtained from Vect(X,OX) by extension of
scalars along f ] : Γ(X,OX)→ Γ(X,OX). We will not explore this further here and
will simply consider τ(f) as a k-linear automorphism of Vect(X,OX). However, it
is clear from Proposition 15.5 that for all v1,v2 ∈ Vect(X,OX),

[τ(f)(v1), τ(f)(v2)] = τ(f)([v1,v2]),

so we may view τ as a group homomorphism

Aut(X,OX)
τ // Autk(Vect(X,OX), [−,−])

to the group of automorphisms of the real Lie algebra of tangent vector fields on
the smooth manifold (X,OX).

We return to the case of a Lie group G. We define “left translation of tangent
vector fields” to be the composite group homomorphism

G
L
// Aut(G,OG)

τ // Autk(Vect(G,OG), [−,−]),

and we define a “left-invariant tangent vector field” to be a tangent vector field v
that is fixed under left translation by every g ∈ G.
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Definition 15.6. The Lie algebra of a Lie group G is the sub-Lie algebra

(Lie(G), [−,−]) = (Vect(G,OG), [−,−])G

of left-invariant tangent vector fields.58

We also write g instead of Lie(G). We now show that the k-vector space Lie(G)
is finite dimensional, and that the assignment of Lie(G) to G extends to a functor
from the category of Lie groups and morphisms of Lie groups to the category of Lie
algebras and morphisms of Lie algebras.59

Proposition 15.7. If G is a Lie group, then the map εG : g→ T (G,OG)e defined
by εG(v) = v(e) is a k-linear isomorphism. Moreover, if f : H → G is a morphism
of Lie groups, then the unique k-linear map Lie(f) that makes the diagram

Lie(H) Lie(G)

T (H,OH)e T (G,OG)e

Lie(f)
//

εH

��

εG

��
dfe //

commute is a morphism of Lie algebras.

Proof. A tangent vector field u ∈ Vect(G,OG) is left-invariant if for all g ∈ G,

u(g) = dLg,e(u(e)),

so the first part of the statement is clear. To prove the second part of the statement,
we note that if v ∈ Vect(H,OH), then u = Lie(f)(v) ∈ Vect(G,OG) is characterized
as the unique left-invariant vector field such that u ◦ f = df ◦ v. Equivalently, by
Proposition 15.5, the directional derivative Du ∈ Derk(OG,OG) is characterized in
terms of Dv ∈ Derk(OH ,OH) by the properties that (1) the diagram

OG
f]
//

Du

��

f∗OH

f∗Dv

��

OG
f]
// f∗OH

commutes, and (2) for all g ∈ G, the diagram

OG
L]g
//

Du

��

Lg∗OG

Lg∗Du

��

OG
L]g
// Lg∗OG

58 We could of course just as well have chosen to use right-invariant tangent vector fields, but

note that, in general, being left-invariant and being right-invariant are different properties.
59 The assignment of Vect(G,OG) to G does not extend to a functor between these categories.
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commutes. More generally, if s ∈ Endk(OG) and t ∈ Endk(OH) are any k-linear
morphisms, then we may ask that (1) the diagram

OG
f]
//

s

��

f∗OH

f∗t

��

OG
f]
// f∗OH

commutes, and (2) for all g ∈ G, the diagram

OG
L]g
//

s

��

Lg∗OG

Lg∗s

��

OG
L]g
// Lg∗OG

commutes. Let us write s ∼ t if this is the case. We now let vi ∈ Lie(H), and
let ui = Lie(f)(vi) ∈ Lie(G) so that Dui ∼ Dvi . Then the composite k-linear
morphisms Du1◦Du2 , Du2◦Du1 ∈ Endk(OH) and Dv1◦Dv2 , Dv2◦Dv1 ∈ Endk(OG)
also satisfy that Du1 ◦Du2 ∼ Dv1 ◦Dv2 and Du2 ◦Du1 ∼ Dv2 ◦Dv1 . But then

[Du1 , Du2 ] = Du1 ◦Du2 −Du2 ◦Du1 ∼ Dv1 ◦Dv2 −Dv2 ◦Dv1 = [Dv1 , Dv2 ],

which shows that

[u1,u2] = Lie(f)([v1,v2]),

as desired. �

Remark 15.8. Let G be a Lie group, and let us identify g = T (G,OG)e. The Lie
bracket on g may also be defined as follows. The group structure on (G,OG) induces
a group structure on T (G,OG), and the maps

g T (G,OG) G
i //

p
//

0

ff

where i = ie is the kernel of p = pG and where 0 = 0G is the zero section, all are
morphisms of Lie groups.60 Moreover, they exhibit the Lie group T (G,OG) as the
semidirect product of the Lie group G and the k-vector space g considered as a Lie
group under addition. This determines a morphism of Lie groups

G Autk(g)
Ad

//

called the adjoint representation. The induced map of tangent spaces at the identity
element e ∈ G is a k-linear map

g Endk(g)
ad
//

the adjunct of which is a k-linear map

g⊗ g g.
[−,−]

//

60 The fact that i is a group homomorphism was the subject of the problem set for week 14.
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To see that it satisfies the Jacobi identity, we argue as follows. If f : H → G is a
morphism of Lie groups, then the map Lie(f) = dfe : h→ g satisfies

Lie(f)([x, y]) = [Lie(f)(x),Lie(f)(y)]

for all x, y ∈ g. Moreover, if G = GL(V ), then bracket [−,−] defined here is equal
to the one defined in Example 15.4. In particular, for ad = Lie(Ad), we find that

ad([x, y]) = [ad(x), ad(y)] = ad(x) ◦ ad(y)− ad(y) ◦ ad(x)

for all x, y ∈ g, which is equivalent to the Jacobi identity.

We next compare the representation theory of a Lie group G to that of its Lie
algebra g. We will restrict our attention to representations (V, π), where V is a
finite dimensional complex vector spaces, and where

G
π // GL(V )

is a morphism of Lie groups. If we apply the Lie algebra functor to this morphism,
then we obtain a morphism of Lie algebras

g gl(V ).
Lie(π)

//

Hence, a representation π of a Lie group G on a finite dimensional complex vector
space V gives rise to the representation Lie(π) of the Lie algebra g on the same
vector space V . In particular, if Lie(π) is irreducible, then π is necessarily also ir-
reducible. We will now use the existence and uniqueness theorem for solutions to
ordinary differential equations to show that if G is connected, then the representa-
tion π is completely determined by the representation Lie(π).

A global flow on a smooth manifold (X,OX) is defined to be a left action

(R,Osm
R )× (X,OX)

φ
// (X,OX)

in the category of smooth manifolds and morphisms of smooth manifolds, of the
group object R = ((R,Osm

R ),+,−) on the object (X,OX). There is a unique tangent
vector field v ∈ Vect(X,OX) that makes the diagram

T (R×X,OR×X)
dφ
// T (X,OX)

(R×X,OR×X)
φ
//

w×0

OO

(X,OX)

v

OO

commute. Indeed, let i : X → R×X be the inclusion defined by i(x) = (0, x). Since
φ ◦ i = idX , we are forced to define v to be the composite morphism

v = v ◦ φ ◦ i = dφ ◦ (w × 0) ◦ i,

and with this definition, we have

v ◦ φ = dφ ◦ (w × 0) ◦ i ◦ φ = dφ ◦ (w ◦ 0),

where the second non-trivial identity holds, because φ is an action. We say that v
is the infinitesimal generator of the flow φ.

Conversely, given v ∈ Vect(X,OX), the existence and uniqueness theorem for
solutions to ordinary differential equations shows that there exists a morphism of

141



smooth manifolds φ : (U,OR×X |U ) → (X,OX) with {0} × X ⊂ U ⊂ R × X open
which makes the diagram

T (U,OR×X |U )
dφ
// T (X,OX)

(U,OR×X |U )
φ
//

(w×0)|U

OO

(X,OX)

v

OO

commute and satisfies φ(0, x) = x and φ(s, φ(t, x)) = φ(s+t, x) whenever this makes
sense. We say that φ is a local flow with infinitesimal generator v. In particular,
if there exists a global flow φ with infinitesimal generator v, then φ is uniquely
determined by v. If this is the case, then we say that v is complete.

If G is a Lie group, and if v ∈ g is a left-invariant vector field, then, by using
the group structure, one shows that every local flow with infinitesimal generator v
extends uniquely to a global flow φ = φv with infinitesimal generator v. We define
the exponential map of the Lie group G to be the map

g
exp
// G

given by exp(v) = φv(1, e). We remark that exp is not a group homomorphism,
unless the Lie algebra g is abelian.

Theorem 15.9. Let G be a Lie group with Lie algebra g. The exponential map is
a morphism of smooth manifolds

(g,Osm
g )

exp
// (G,OG).

Moreover, it is étale at 0 ∈ g.61

Proof. The structure of group object on the smooth manifold (G,OG) gives rise to
a structure of group object on T (G,OG). Moreover, there is a left-invariant tangent
vector field u on the Lie group T (G,OG) such that for every left-invariant tangent
vector field v on (G,OG), the diagram

T (G,OG)
dv // T (T (G,OG))

(G,OG)
v //

v

OO

T (G,OG)

u

OO

commutes. Now, there is a global flow ϕu on T (G,OG) with infinitesimal generator
u, and it follows from the uniqueness of solutions to ordinary differential equations
that for every v ∈ Vect(G,OG) with global flow ϕv on (G,OG), the diagram

(R,Osm
R )× (G,OG)

ϕv //

id×v
��

(G,OG)

v

��

(R,Osm
R )× T (G,OG)

ϕu // T (G,OG)

61 The exponential map may have critical points. One can show that x ∈ g is a critical point

for exp if and only if some 0 6= λ ∈ 2πiZ ⊂ C is an eigenvalue of ad(x) ∈ Endk(g).
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commutes. Therefore, the exponential map is equal to the composite map

(g,Osm
g ) (R,Osm

R )× T (G,OG) T (G,OG) (G,OG)
i1×ie // ϕu //

pG //

and since each of these three maps is a morphism of smooth manifolds, so is the
exponential map. Finally, it follows immediately from the definition that

g = T (g,Og)0 T (G,OG)e
d exp0 //

is equal to the isomorphism εG in Proposition 15.7, and therefore, the inverse func-
tion theorem shows that exp is étale at 0 ∈ g as stated. �

Corollary 15.10. If G is a connected Lie group, then every g ∈ G can be written
as a product g = exp(x1) · · · exp(xn) with n ≥ 0 and x1, . . . , xn ∈ g.

Proof. By Theorem 15.9, there exists open subsets 0 ∈ U ⊂ g and e ∈ V ⊂ G such
that exp |U : (U,Osm

U ) → (V,OG|V ) is a diffeomorphism. Hence, it suffices to show
that the subgroup H ⊂ G generated by V is equal to G.62 Since V ⊂ G is open, so
is H ⊂ G. But then gH ⊂ G is open, for all g ∈ G, which implies that

H = Gr (
⋃
g∈GrH gH) ⊂ G

is closed. Since G is connected, we conclude that H = G as desired. �

Corollary 15.11. Let G and H be Lie groups. If H is connected, then the map

Hom(H,G)
Lie
// Hom(h, g)

is injective.

Proof. Let f : H → G be a morphism of Lie groups. The diagram

h H

g G

expH //

Lie(f)

��

f

��expG //

commutes, by naturality of the exponential map. By Corollary 15.10, every element
of H is a product of elements of expH(h) ⊂ H. Since f is a group homomorphism,
this implies that it is uniquely determined by the map Lie(f). �

We use the last corollary to show that if π1 and π2 are two finite dimensional
real or complex representations of a connected Lie group G, then π1 ' π2 if and
only if Lie(π1) ' Lie(π2). In effect, we prove the following more precise result.

Corollary 15.12. Let π1 : G→ GL(V1) and π2 : G→ GL(V2) be representations of
a connected Lie group on finite dimensional real or complex vector spaces. A linear
isomorphism f : V1 → V2 intertwines between π1 and π2 if and only if it intertwines
between Lie(π1) and Lie(π2).

62 Here we also use that exp(x)−1 = exp(−x), since [x,−x] = −[x, x] = 0.
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Proof. That f intertwines between π1 and π2 means that the diagram of Lie groups

G

GL(V1)

GL(V2)

π1 11

π2 --

cf

��

where cf (h) = f ◦ h ◦ f−1, commutes. But then the diagram of Lie algebras

g

gl(V1)

gl(V2)

Lie(π1) 11

Lie(π2)
--

Lie(cf )

��

commutes, and since Lie(cf )(h) = f ◦h◦f−1, this shows that f intertwines between
Lie(π1) and Lie(π2). This part of the statement only uses that Lie(−) is a functor
and not that G is connected. Conversely, if f intertwines between Lie(π1) and
Lie(π2), then the bottom diagram commutes, and since G is connected, this implies,
by Corollary 15.11 that the top diagram commutes. �

This is marvelous! To a large extent, we have replaced the differential geometric
problem of finding representations of a Lie group with the linear algebraic problem
of finding representations of its Lie algebra. We illustrate this for G = SU(2), which
is a compact connected Lie group. We have already proved that for every integer
n ≥ 0, the representation πn given by the nth symmetric power

πn = Symn
C(π)

of the standard representation π of SU(2) on V = C2 is an irreducible representation
of dimension n+ 1. The associated representation of the Lie algebra g = su(2) is a
morphism of real Lie algebras

su(2) f∗gl(Symn
C(V ))

Lie(πn)
//

from the real Lie algebra su(2) to the real Lie algebra obtained by restriction of
scalars along f : R → C from the complex Lie algebra gl(Symn

C(V )). The adjunct
of Lie(πn) is a morphism of complex Lie algebras

su(2)C = f∗su(2) gl(Symn
C(V )).

L̃ie(πn)
//

We have earlier identified su(2) with the real vector space of traceless skew-hermitian
complex 2× 2-matrices. It has a basis given by the family (A1, A2, A3), where

A1 =

(
i 0
0 −i

)
, A2 =

(
0 −1
1 0

)
, and A3 =

(
0 i
i 0

)
.

The Lie bracket on su(2) is given by [A,B] = AB−BA. Similarly, the complex Lie
algebra sl(2,C) of the complex Lie group SL2(C) is given by the complex vector
space of all traceless complex 2 × 2-matrices with the Lie bracket given by the
same formula. So the inclusion of the set of traceless skew-hermitian complex 2×2-
matrices in the set of all traceless complex 2 × 2-matrices defines a morphism of
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real Lie algebras su(2)→ f∗sl(2,C), the adjunct of which is a morphism

su(2)C = f∗su(2) // sl(2,C).

of complex Lie algebras. We claim that the latter map is an isomorphism. Indeed,
one readily verifies that the family (A1, A2, A3) is a basis of both complex vector
spaces. Moreover, under this identification, the representation

sl(2,C) gl(Symn
C(V ))

L̃ie(πn)
//

is equivalent to the nth symmetric power of the standard representation of the
complex Lie algebra sl(2,C) on V .

Now, the complex vector space sl(2,C) has the much more convenient basis given
by the family (X,H, Y ), where63

X =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, and Y =

(
0 0
1 0

)
.

Indeed, in this basis, the Lie bracket is given by the simple formulas

[X,Y ] = H, [H,X] = 2X, and [H,Y ] = −2Y.

The complex representations of sl(2,C) can be completely understood, and this,
in turn, is the starting point for understanding the representation theory of all
complex reductive Lie algebras and Lie groups. Serre’s book [5] is a very readable
introduction to this beautiful theory.

Let π : sl(2,C)→ gl(V ) be a representation on a complex vector space V , which,
at the moment, we do not assume to be finite dimensional. We write V λ ⊂ V for
the eigenspace corresponding to the eigenvalue λ ∈ C of π(H) : V → V , and we say
that x ∈ V λ has weight λ. The canonical map⊕

λ∈C V
λ // V

is always injective. If the dimension of V is finite, then it is also surjective, but, in
general, this is not the case. If x has weight λ, then the calculation

(π(H) ◦ π(X))(x) = π([H,X])(x) + (π(X) ◦ π(H))(x)

= π(2X)(x) + π(X)(λx)

= (λ+ 2)π(X)(x)

(π(H) ◦ π(Y ))(x) = π([H,Y ])(x) + (π(Y ) ◦ π(H))(x)

= −π(2Y )(x) + π(Y )(λx)

= (λ− 2)π(Y )(x)

shows that π(X)(x) has weight λ + 2 and that π(Y )(x) has weight λ − 2. We say
that an element e ∈ V is primitive of weight λ if e 6= 0 and if π(H)(e) = λe and
π(X)(e) = 0.

63 The alternative notation e, h, and f for these matrices is also common.
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Theorem 15.13. Let π be an irreducible representation of sl(2,C) on a complex
vector space V of finite dimension n+ 1. The following hold.

(1) There exists a primitive element e ∈ V of weight λ = n.
(2) The family (e0, . . . , en), where ek = π(Y )k(e)/k!, is a basis of V .
(3) In this basis, the representation π is given by

π(H)(ek) = (λ− 2k)ek

π(X)(ek) =

{
0 if k = 0

(λ− k + 1)ek−1 if 0 < k ≤ n

π(Y )(ek) =

{
(k + 1)ek+1 if 0 ≤ k < n

0 if k = n.

Conversely, the formulas (3) define an irreducible representation of the complex Lie
algebra sl(2,C) on a complex vector space with basis (e0, . . . , en).

Proof. Since C is algebraically closed, there exists an eigenvector x ∈ V of the
linear endomorphism π(H) : V → V . The vectors π(X)k(x) with k ≥ 0 are either
eigenvectors of π(H) or zero. Since V is finite dimensional, there exists a maximal
k ≥ 0 such that e = π(X)k(x) 6= 0 and π(X)(e) = 0. Hence, this element e is a
primitive element of some weight λ ∈ C.

Now, for all k ≥ 0, we consider the elements ek ∈ V defined by

ek = π(Y )k(e)/k!,

and we also set e−1 = 0. We claim that for all k ≥ 0, the following hold:

(a) π(H)(ek) = (λ− 2k)ek
(b) π(Y )(ek) = (k + 1)ek+1

(c) π(X)(ek) = (λ− k + 1)ek−1.

Indeed, (b) holds, by definition, and (a) holds by the observation that π(Y ) lowers
weight by 2. We prove (c) by induction on k ≥ −1, the case k = −1 being trivial.
Assuming that (c) holds for k < m, the calculation

mπ(X)(em) = (π(X) ◦ π(Y ))(em−1)

= π([X,Y ])(em−1) + (π(Y ) ◦ π(X))(em−1)

= π(H)(em−1) + (λ−m+ 2)π(Y )(em−2)

= (λ− 2m+ 2 + (λ−m+ 2)(m− 1))em−1

= m(λ−m+ 1)em−1,

shows that (c) holds for k = m. This proves the claim.

Next, if the elements ek with k ≥ 0 all are non-zero, then (ek)k≥0 is a family
of eigenvectors for π(H) with pairwise distinct eigenvalues. But then this family
is linearly independent, which is not possible, because V is finite dimensional. We
also observe from (b) that ek = 0 implies that ek+1 = 0. So there exists m ≥ 0
such that ek 6= 0 for 0 ≤ k ≤ m and ek = 0 for k > m. Moreover, by (c), we have

0 = π(X)(em+1) = (λ−m)em,

so we conclude that λ = m.
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Finally, it follows immediately from (a)–(c) that the subspace W ⊂ V spanned
by (e0, . . . , em) is π-invariant. It is also non-zero, since 0 6= e = e0 ∈W , and since
(V, π) was assumed to be irreducible, we conclude that W = V and m = n. �

Corollary 15.14. Let n ≥ 0 be an integer.

(1) The complex Lie algebra sl(2,C) has a unique isomorphism class of irreducible
complex representations of dimension n+ 1.

(2) The real Lie algebra su(2) has a unique isomorphism class of irreducible complex
representations of dimension n+ 1.

(3) The real Lie group SU(2) has a unique isomorphism class of irreducible complex
representations of dimension n+ 1.

Proof. First, (1) follows immediately from Theorem 15.13. Second, (2) follows
from (1) and from the extension-of-scalars/restriction-of-scalars adjunction, since
we have an isomorphism of complex Lie algebras su(2)C → sl(2,C). Finally, we
conclude from (2) and from Corollary 15.12 that the connected Lie group SU(2)
has at most one isomorphism class of irreducible complex representations of dimen-
sion n+ 1. But we have already proved that πn : SU(2)→ GL(Symn

C(V )) is such a
representation, so (3) follows. �

Example 15.15. The adjoint representation

SU(2)
Ad
// GL(su(2))

is a 3-dimensional real representation. One can show that the adjoint representation
is irreducible, and that its complexification

SU(2) GL(su(2)C)
AdC //

also is irreducible. Therefore, by Corollary 15.14, it is isomorphic to the symmetric
square π2 of the standard representation π = π1.

In elementary particle physics, a gauge theory begins with a compact Lie group
G of “internal symmetries,” and the complexified adjoint representation

G GL(gC)
AdC //

provides the “gauge bosons” of the theory; they are the elements of a basis of
the complex vector space gC. For example, physicists write (W+,W 0,W−) for the
basis (X,H, Y ) of suC ' sl(2,C). Its elements are the W -bosons, which mediate
the weak force. Let me explain what this means. The “elementary fermions” in the
gauge theory are basis elements of certain irreducible finite dimensional complex
representations of G. The selection of the irreducible representations that should be
considered the “elementary fermions” of the theory, however, is entirely empirical.
If π : G→ GL(V ) is an irreducible finite dimensional complex representation, then

gC gl(V )
Lie(π)C

//

is a representation of the complexified Lie algebra on V , and moreover, this map is
intertwining with respect to the G-representations AdC on the domain and End(π)
on the target. It is by means of this Lie algebra representation that the gauge bosons
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acts on the elementary fermions. See the article [1] by Baez–Huerta for more on
this.
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