Geometry III/Introduction to Geometry III: Riemann Surfaces

Problem 1. Let $f: \mathbb{C} \to \mathbb{C}$ be an \mathbb{R} -linear map. (Recall that this means that f(z+w) = f(z) + f(w) for $z, w \in \mathbb{C}$ and that $f(\lambda z) = \lambda f(z)$ for all $\lambda \in \mathbb{R}$ and $z \in \mathbb{C}$.) Show that the following conditions are equivalent:

- (1) The map $f: \mathbb{C} \to \mathbb{C}$ is \mathbb{C} -linear.
- (2) The map $f: \mathbb{C} \to \mathbb{C}$ is given by multiplication by a complex number.
- (3) Either $f: \mathbb{C} \to \mathbb{C}$ is the zero map, or else f(i) is the 90-degree counterclockwise rotation of f(1).
- (4) Either f is the zero map, or else $f: \mathbb{C} \to \mathbb{C}$ preserves oriented angles.

Problem 2. Write down (for example as a power series) a holomorphic map

$$D(1,1) \xrightarrow{f} \mathbb{C}$$

with the property that $f(z)^5 = z$ for all $z \in D(1,1)$ and f(1) = 1. What is the result of analytically continuing f along a path, which starts at 1 and travels once counterclockwise around the origin, returning to the starting point 1? What about if you go N times counterclockwise around the origin, where N is an integer?