Geometry III/Introduction to Geometry III: Riemann Surfaces

Problem 1. This problem will prove some general facts about groupoids. They apply, in particular, to the fundmental groupoid of a Riemann surface. So let \mathcal{G} be a groupoid. Given objects x and y in \mathcal{G} , we write $\operatorname{Map}(y, x)$ for the set of maps from y to x in \mathcal{G} , and given objects x, y, and z in \mathcal{G} , we write

$$\operatorname{Map}(y, x) \times \operatorname{Map}(z, y) \xrightarrow{\circ} \operatorname{Map}(z, x)$$

for the composition. In particular, given an object x in \mathcal{G} , the composition defines a group structure on $\operatorname{Map}(x, x)$. We write $\operatorname{Aut}(x)$ for this group. Moreover, given objects x and y in \mathcal{G} , the composition

$$\operatorname{Map}(x, x) \times \operatorname{Map}(y, x) \xrightarrow{\circ} \operatorname{Map}(y, x)$$

is a left action by the group Aut(x) on the set Map(y, x).

(1) Let x and y be objects in \mathcal{G} . Show that if $\operatorname{Map}(y, x)$ is non-empty, then the left action by the group $\operatorname{Aut}(x)$ on this set is free and transitive.

Of course, the right action by the group Aut(y) on Map(y, x) is also free and transitive, provided that Map(y, x) is non-empty. Next, we let

$$B\operatorname{Aut}(x) \subset \mathcal{G}$$

be the full subcategory spanned by the object x of \mathcal{G} . The category $B\operatorname{Aut}(x)$ is a groupoid with a single object x and set of maps from x to x in $B\operatorname{Aut}(x)$ is the same as the set of maps from x to x in \mathcal{G} .

(2) Show that if Map(y, x) is non-empty for all y in \mathcal{G} , then the inclusion

$$B\operatorname{Aut}(x) \xrightarrow{f} \mathcal{G}$$

is an equivalence of categories. [Hint: To prove this, you must produce a functor $g: \mathcal{G} \to B \operatorname{Aut}(x)$ and natural transformations $\epsilon: g \circ f \to \operatorname{id}$ and $\eta: \operatorname{id} \to f \circ g$. The latter will automatically be natural isomorphisms, because \mathcal{G} and $B \operatorname{Aut}(x)$ are groupoids.]

As your proof of (2) will make clear, the inverse g of f is not unique. However, this is because we only consider 1-categories. In the world of ∞ -categories, the inverse of an equivalence of ∞ -categories is unique, up to contractible ambiguity, which is as unique as it can be.