

Problem 1. Let K_n be the complete graph with vertex set $V = \{1, 2, \dots, n\}$.¹

- (1) Find the adjacency matrix ∂_{K_n} .
- (2) Find the characteristic polynomial of ∂_{K_n}
[Hint: Try some small n ; guess the answer; prove that guess is correct.]
- (3) Conclude that K_n is an $(n - 1)$ -regular Ramanujan graph.

Problem 2. Let $\Gamma = (V, E, s: s^*(E) \rightarrow V)$ be a connected graph, and let

$$V \times V \xrightarrow{d} \mathbb{R}$$

be the map that to a pair of vertices (u, v) assigns the smallest non-negative integer m for which there exists a geodesic $\gamma: [0, m] \rightarrow \Gamma$ with $\gamma(0) = u$ and $\gamma(m) = v$.²
Prove the following statement:

- (1) The map d is a metric. This means:
 - (a) For all $u, v \in V$, $d(u, v) \geq 0$ and $d(u, v) = 0$ if and only if $u = v$.
 - (b) For all $u, v \in V$, $d(u, v) = d(v, u)$.
 - (c) For all $u, v, w \in V$, $d(u, w) \leq d(u, v) + d(v, w)$.

We define the diameter of Γ to be the diameter of the metric space (V, d) . It is the maximum value $\text{diam}(\Gamma)$ of the function $d: V \times V \rightarrow \mathbb{R}$, if such a maximum exists, and it is ∞ , otherwise. Obviously, if V is finite, then $\text{diam}(\Gamma) < \infty$.

- (2) Let $(X_n)_{n \geq N}$ be a family of connected k -regular graphs such that X_n has n vertices. Show that $\text{diam}(X_n) \rightarrow \infty$ as $n \rightarrow \infty$.

¹ So for all $1 \leq i, j \leq n$, there is a single edge e with $s(e) = j$ and $t(e) = i$, if $i \neq j$, and there is no edge e with $s(e) = j$ and $t(e) = i$, if $i = j$.

² We view d as a real-valued function, although it takes non-negative integer values.