

Perspectives in Mathematical Sciences I/III — Part 2

Problem 1. We recall that, in general, a graph is a triple

$$\Gamma = (V, E, s: s^*(E) \rightarrow V)$$

of a set (of vertices) V , a set (of edges) E with free action by the group

$$G = \{1, g\},$$

and a map s from the underlying set of E to V that to an edge $e \in E$ assigns its source $s(e) \in V$. We write $\bar{e} = g \cdot e \in E$ and call it the reverse edge of $e \in E$, and we define the target of $e \in E$ to be $t(e) = s(\bar{e}) \in V$.

Now, let V be a group. (I will abuse notation and write V both for the group and for its underlying set.) We let G act on V by $g \cdot v = v^{-1}$. (We say that G acts on V by inversion.) Let K be a set with free action by G , and let $f: K \rightarrow V$ be a G -equivariant map. (This means that $f(g \cdot k) = g \cdot f(k) = f(k)^{-1}$ for all $k \in K$.) Given this data, we define the Cayley graph

$$\Gamma = (V, E, s: s^*(E) \rightarrow V)$$

to have vertex set V the underlying set of the group V , to have G -set of edges E the set $K \times V$ with the (free) G -action defined by $g \cdot (k, v) = (g \cdot k, f(k) \cdot v)$, and to have source map s the map defined by $s(k, v) = v$.

- (1) Show that the Cayley graph Γ contains a loop if and only if there exists $k \in K$ such that $f(k) = 1 \in V$ is the identity element of the group V .
- (2) Show that the Cayley graph Γ is connected if and only if for every $v \in V$, there exists an n -tuple (k_1, \dots, k_n) of elements of K with $n \geq 0$, such that

$$v = f(k_n) \cdots f(k_1).$$

- (3) Show that the Cayley graph Γ is a tree if and only if for every $v \in V$, there exists a unique n -tuple (k_1, \dots, k_n) of elements in K with $n \geq 0$, such that

$$v = f(k_n) \cdots f(k_1).$$