

Perspectives in Mathematical Sciences I/III — Part 2

Problem 1. If $D = D(1, 1)_{\mathbb{Q}}$ is the standard quaternion algebra, and if p and ℓ are distinct prime numbers such that both $p - 1$ and $\ell - 1$ are divisible by 4, then the $(p + 1)$ -regular Ramanujan graph with vertex set

$$\Gamma(2\ell) \backslash \mathrm{PGL}_2(\mathbb{Q}_p) / \mathrm{PGL}_2(\mathbb{Z}_p),$$

which we defined in Lecture 5, may be identified with the Cayley graph¹ associated with the pair $(V, f: K \rightarrow V)$ defined as follows. The group V is given by

$$V = \begin{cases} \mathrm{PGL}_2(\mathbb{F}_\ell), & \text{if } p \text{ is a quadratic residue modulo } \ell, \\ \mathrm{PSL}_2(\mathbb{F}_\ell), & \text{if } p \text{ is a quadratic non-residue modulo } \ell. \end{cases}$$

The set K is the set of quaternions

$$q = a + ib + jc + ijd,$$

where a, b, c , and d are integers such that $a > 0$ and odd, such that b, c , and d are even, and such that the reduced norm

$$\mathrm{Nrd}(q) = q\bar{q} = a^2 + b^2 + c^2 + d^2$$

is equal to p . It has $p + 1$ elements. The group $G = \{1, g\}$ acts on K by

$$g \cdot q = \bar{q},$$

and this action is free. Finally, the map $f: K \rightarrow V$ is defined by

$$f(q) = \text{class of } \begin{pmatrix} a + \varepsilon b & c + \varepsilon d \\ -c + \varepsilon d & a - \varepsilon b \end{pmatrix},$$

where $\varepsilon \in \mathbb{F}_\ell$ is a square root of -1 .

- (1) Show that $f: K \rightarrow V$ is G -equivariant.²
- (2) Find the order of V , as a function of ℓ .
- (3) Choose two (small) primes p and ℓ that satisfy the assumptions above and write down the set K in this case.

¹ We will use the same notation as in Problem set 2.

² Recall that G acts on V by $g \cdot v = v^{-1}$.