Generating Mixed Hierarchical
Interaction Models by Selection
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ABSTRACT: This note is concerned with the class of hierarchical in-
teraction models for mixed discrete and continuous variables as defined by
Edwards (1990) and modified by Lauritzen (1996). In particular it is shown
that any hierarchical log-linear interaction model can be generated by se-
lection on a set of response variables in a directed Markov model over what
we have termed the selection graph of the model.

An inequality is established for the entries in the concentration matrix of
any Gaussian undirected Markov distribution obtained by conditioning on
the values of the response variables in the selection graph, thus demon-
strating that not all such distributions can be generated in this way.
Finally it is shown that in the mixed case only hierarchical models of the
type defined by Edwards (1990) can be generated by selection as above.

KEYWORDS: Bayesian networks; Conditional Gaussian distribution; Co-
variance selection; Gaussian graphical models; Log-linear interaction mod-
els; Recursive models.

1 Introduction

Although the class of log-linear models for contingency tables are well es-
tablished in the statistical literature (Bishop, Fienberg and Holland, 1975),
they remain less readily interpreted than undirected graphical models (Dar-
roch, Lauritzen and Speed, 1980) or recursive graphical models (Wermuth
and Lauritzen, 1983) also known as Bayesian networks (Pearl 1986, Jensen
1996).

In the following we shall investigate the possibility of interpreting hierar-
chical models through a selection process in simple recursive models. We
begin by describing the basic elements of Conditional Gaussian (CG) dis-
tributions in Section 2 and proceed to review the basic concepts associated
with mixed hierarchical interaction models.

We will show that all hierarchical log-linear models in the discrete case can
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indeed be generated by a simple selection process whereas this is not so for
the Gaussian and mixed cases.

2 Conditional Gaussian Distributions

These distributions were introduced by Lauritzen and Wermuth (1984,
1989). Following Lauritzen (1996) we consider a finite set of variables V|
partitioned as V' = AUT into variables of discrete (A) and continuous (I')
type. A typical element of the joint state space is denoted as in one of the
possibilities below:

2= (Ta)acv = (1,y) = {(is)seas (4 )rer},

where 45 are qualitative and y, are real-valued. A particular combination
i = (is)sena is referred to as a cell and the set of cells is denoted by Z. The
joint distribution of the variables is supposed to have a density f with

log f(z) = log f(i,y) = g(i) + h(i) "y —y K (i)y/2, (1.1)

in which case we say that X follows a Conditional Gaussian distribution or,
briefly, CG distribution. For each i, g(i) is a real number, h(i) = {h(i)y}yer
a vector in RI" and K (i) = {k(i),, }+.uer a positive definite |T'| x |T| ma-
trix. The triple (g, h, K) is the canonical characteristics of the distribution.
That X follows a CG distribution is equivalent to the statements

p(i) = P(Xa =i) >0 and L(Xr | Xa =1) =N {£(), 2(i)}

where X4 = (Xo)aeca and soon, Njp{£(i), ¥(i) } is the |T'|-variate Gaussian
distribution with mean £(i) and covariance matrix X, and

D) = K@), &) = K@) h().

The triple (p, &, X) are the moment characteristics of the distribution. The
moment characteristics can be calculated from the canonical characteristics
and vice versa by simple formulae, for details see Lauritzen (1996).

We say that the distribution is homogeneous if the covariance is indepen-
dent of 7, i.e. if X(i) = X or, equivalently, if K (i) = K.

3 Interaction Expansion of CG Densities

To discuss interactions and interaction models we must expand the loga-
rithm of the density into interaction terms. This is done in the following
way:

log f(71/) = Z Ad(i)'i' Z an(i)wwaé Z Z d’d(i)vuywyu- (1'2)

dCA dCA ~el dCA ~,pel
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Here and in the following ¢4(i) for d C A denotes a function of i = (is)sea
that depends on i through i, = (is)scaq only.

We refer to the terms A;(i) as discrete interactions among the variables
in d. If |[d| = 1 we also use the term main effect of the variable in d. The
terms nq(i), are linear interactions between + and the variables in d. If
d = () we also use the term linear main effect of the variable . Finally the
terms 14(i)~, are quadratic interactions between vy, p and the variables in
d. Again we speak of quadratic main effects if v = p and d = (.

The term Ay is constant and determined by normalization. If all variables
are discrete and I' = ), the discrete interactions are clearly the only ones
present. Similarly, if all variables are Gaussian and A = ) the only terms
present in the expansion are the linear and quadratic main effects and
quadratic interactions among pairs of continuous variables. For d # 0, n,4
and ¥, have no analogue in the pure cases. These terms are therefore proper
mized interactions and describe the interaction between the continuous and
discrete variables. A homogeneous CG distribution has no mixed quadratic
interactions, i.e. ¥4 = 0 for d # 0.

The interactions are related to the Markov property on an undirected graph
G = (V, E) in the usual way, stated precisely in the following version of the
Hammersley Clifford theorem.

Theorem 1 A CG distribution is Markov on the graph G if and only if
the density has an expansion into interaction terms which satisfy

Aa(i) = 0 wunless d is complete in G
na(i)y = 0 wunless dU{y} is complete in G
Ya(i)yy = 0 wunlessdU {vy,u} is complete in G.

Proof: A simple proof is given in Lauritzen (1996), based on a general
version of the Hammersley Clifford theorem. The main elements of the
proof are sketched below.

It is obvious that if the mentioned interaction terms vanish, then the density
factorizes on the graph.

To see the converse we choose a reference configuration z* = (i*,0) and

define interaction terms for d C A and ¢ C I" as

bae(z) = Z (_1)‘(““)\"“logf(mml"*V\a)
a:aCdUc
= Y ST ()N dog £l i g, Ors).
a:aCd b:bCc

Choosing the CG interactions appropriately leads to the following relations
ford C A, ¢CT, and v, u € ' with v # pu:

ga(z) = Aa(i)
d)du{w}(l") = na(1)yyy — wd(i)'wy?,/2
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¢dU{%,u}(m) = _1/)d(i)vuyvyu
Gdue(T) 0 for |¢| > 2.

Using conditional independence we find that the left-hand sides of these
equations must be identically equal to zero unless the corresponding subsets
are complete. The conclusions of the theorem follow. O

This result leads to the class of graphical interaction models, obtained by
restricting interactions between a group of variables to be zero unless all
variables in the group are mutual neighbours in the graph G.

4 Hierarchical Interaction Models

In this section we consider more general types of restriction on the inter-
action structure than those determined from the Markov properties of a
graph as above. On the other hand, we would not want to allow completely
arbitrary patterns of restriction.

Following up on the discussion of Edwards (1990), Lauritzen (1996) defines
a hierarchical mized interaction model as a system of zero restrictions on
the interaction parameters that satisfies the following rules

1. if A4 is restricted to zero and d C ¢, then \;, 1. and . are all
restricted to zero;

2. if nq()4 is restricted to zero and d C ¢, then n.(), and %.(),, are
both restricted to zero for all u € T';

3. if 1pa(), is restricted to zero and d C ¢, then t.()., is restricted to
Z€r0.

Note that this defines a hierarchical interaction model in a way which is
different from that of Edwards (1990) who also demands:

4. If 14()~ is restricted to be zero, then so is 14(),, be for all pu.

We shall refer to models given by restrictions that satisfy 1 through 4 as
MIM models, because the program MIM (Edwards, 1995) is based upon
such models. However, as noted in the discussion of Edwards (1990) there
seems to be no immediate justification for the conditon 4 above and indeed
there are sensible models that are not MIM models, but are hierarchical
models in the first sense. An example is the model which assumes variance
homogeneity in the regression of Y on Z for different levels of a discrete
variable I, see Example 6.31 of Lauritzen (1996) for details.
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5 Invariance Properties of Hierarchical Models

In the following we show that hierarchical models satisfy natural invariance
properties.

Suppose that we would demand the discrete interaction term Ay to be
identically equal to zero, but for some ¢ with d C ¢ allow A, to vary freely.
Then this would not restrict the class of densities at all, because if the
density has been expanded as above in (1.2), we can rewrite the density in
a way that fulfils the restriction by redefining

Rei) = Aeli) + M), M) = 0.

To avoid this happening, we demand of our model restriction that if Ay is
restricted to zero and d C ¢, then ), is also restricted to be zero. A similar
property must hold for any of the other terms n4(), and ¢q4(),, for the
same reason.

Next we investigate the effect of a change in location and scale on the
interaction terms. Let Y, = avl?',y —b, fora,be RITI. Then the density of
X = (I,Y) can be found to be

tog £(1,7) = §60) + (i) 5 ~ 53" K(0)3,
where
gy = g(i) =h()Tb—b K (@i)b/2+ ) loga,|
h(i)y = a,h(i)y, +a, Z k(1) by

nel
k() = ayauk(i)y,.

From these equations we derive similar expressions for the interactions:

Xa(i) = Xa(i) —nib—b"Wab/2+ Y logla,| (1.3)
Ma(i)y = ayna(i)y + ay Z Ya(i)yubu (1.4)
"/N)d(i)w = ayauPa(i)yu. (1.5)

Inspection of (1.3) shows that unless zero restrictions on the interaction
terms are to be affected by a change of location, we must demand that
whenever A, is restricted to be zero, then so are 74 and 4. Further, (1.4)
shows that if 14(), is restricted to zero, then so must t4(),, be for all
w € T'. Finally (1.5) gives no restrictions on the interaction terms. On the
other hand, the identities also show that a change of scale has no further
effect. A change of scale affects the linear and quadratic interaction terms,
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but it does not change absence to presence or conversely, as long as we have
not restricted any interactions to have fixed values (other than zero). Thus
we have given an argument that leads to restricting the interaction terms
exactly as summarized in 1 3 of Section 4.

An alternative justification is to investigate the behaviour of the interaction
terms under the process of selection or conditioning on a specific value of
a variable. The conditional density of the remaining variables given that a
variable X, has a specific value =z}, is obtained from the joint density by
renormalization. This means that when a = § is discrete the interaction
terms change as follows for § & d:

Aa(i) = A5(0) + Aaugsy (ia, i5)
77;(2.)7 = 772(”7 + Nau{sy (id7i:;)’v
"/’;(i)'ru = "/’;(Z)'ru + "/)du{a} (id7i§)7u'

The interaction terms for those d which have § € d vanish and all other
interaction terms are unchanged. Thus the conditions in 1 and 3 of Section 4
ensure that the model is robust under conditioning with a discrete variable.
Similarly, when conditioning with the value y;, of a continuous variable y,
the interaction terms change as

X)) = N5 +na()wyy — Ya@)uu(y,)? /2
na(i)y = na()y +a(t)yuy,,

the interaction terms involving p vanish, and the remaining terms are un-
changed. So the conditions in 1 and 2 of Section 4 ensure that the model
is robust under conditioning with a continuous variable.

For a thorough study of invariance properties of discrete hierarchical inter-
action models, see McCullagh (1997).

6 Generating Hierarchical Interaction Models

The previous considerations indicate that it can be difficult to interprete
models determined by restricting interactions in a way that does not satisfy
the conditions 1 3 of Section 4. However, this does not in itself lead to
simple interpretation of a hierarchical interaction model. The most readily
interpretable graphical models are the recursive models, i.e. the Markov
models associated with a directed acyclic graph (DAG) as such a graph can
be thought of as representing a generating mechanism (Cox and Wermuth,
1996) or it can be associated with a causal theory among the variables
(Pearl, 1995).

Below we shall investigate to what extent hierarchical interaction models
can be generated from simple recursive models by selection on one or more
response variables.
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6.1 The Discrete Case

Let us first investigate the discrete case. A log-linear hierarchical interaction
model is determined by a generating class A of subsets of the set of variables
A. Assume now that the logarithm of the probability of a given cell 7 is
expanded into interaction terms as

logp(i) = Y Xa(i).

de A

Associate a binary random variable Z¢ with every d € A and define a
DAG D over the variables A = A U A by having an arrow from § € A
to d € A if and only if § € d, and no further arrows. We shall term this
DAG the selection graph for the hierarchical model. The selection graph of
the hierarchical model with three variables A = {1,2,3} and only pairwise
interactions A = {{1,2},{2,3},{1,3}} is shown in Figure 1.

FIGURE 1. The selection graph of the hierarchical model with three variables
and only pairwise interactions. Conditionally on the values of the variables at
12, 13, and 23, the interaction structure of the remaining variables only involves
pairwise terms.

Note that the selection graph of an undirected graphical model has a re-
sponse variable for each clique of the graph.
Next, let
c= sup Aq(i)
1€Z,deA
and define the probability distribution ¢ as a directed Markov distribution
over the selection graph with

q(Zd =1]i)=1—-q(Z; =0]i) = exp{\a(i) — 2¢c}, q(i) =1/|Z].

This clearly defines a probability distribution which satisfies the directed
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Markov property over the selection graph and we have

q(i| Z* = 1for all d € A) o |Z| " ] exp{Xali) — 2¢} o p(i)
de A

and thus we must have
q(i| Z% =1 for all d € A) = p(i).

On the other hand, assume that ¢ is strictly positive and directed Markov
over the selection graph, i.e.

q(i,2) = [T atis) I a(z"lia)-

SEA de A

Let also z§ be a fixed value of z¢. Then the conditional distribution of
the variables in A given Z¢ = 27 for all d € A satisfies the restrictions
of the hierarchical model with generating class .A. This is easily seen by
associating with each 0 a specific d(d) with § € d(9) and defining

Aa(i) =logq(zf lia) + D logq(is).
5:d(8)=d

We summarize the findings above in the following theorem:

Theorem 2 A probability distribution over a set A of discrete random
variables satisfies the restrictions of a hierarchical log-linear interaction
model with generating class A if and only if it can be obtained by condi-
tioning on the values of the response variables in a recursive model over
the selection graph of A.

6.2 The Gaussian Case

In the case where all variables are continuous and their joint distribution is
multivariate Gaussian, there is no difference between the class of hierarchi-
cal and the class of graphical models, as all interaction terms involve only
pairs of variables. A given undirected graph G = (T, ) determines a Gaus-
sian graphical model by assuming that Y = Yr has a multivariate normal
distribution Ay (0,X) where K = X! is an element of S*(G), the set of
positive definite matrices K with k., = 0 unless v ~ p in G. Equivalently,
Y, and Y, are assumed to be conditionally independent unless v ~ p in G.
An undirected graphical Gaussian model is also known as a covariance
selection model (Dempster, 1972).

In analogy of the discrete case we shall investigate to which extent an arbi-
trary covariance selection model can be obtained from a recursive Gaussian
graphical model by selection, i.e. by conditioning on particular values of the
response variables.
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As before we associate a selection graph with the graph G. The selec-
tion graph D has vertices [ = ' U E where E is the set of edges in G.
There is an arrow from v to e € E in D if and only if v is an end-
point of the edge e. Figure 2 shows the selection graph of the 4-cycle

G =({1,2,3,4},{{1,2},{2,3},{3,4},{1,4}}). Clearly, the conditional dis-

FIGURE 2. The selection graph of the covariance selection model correspond-
ing to the 4-cycle. The variables Y; and Y3 are conditionally independent given
Y5, Ya, and the four response variables. Similarly, Y> and Y4 are conditionally
independent given Y7, Y3, and the four response variables.

tribution of the original variables given any value of the response variables
in the selection graph will satisfy the Markov restrictions of the original
graph. However, the converse to this assertion is not true, as we shall see
below. In fact, the concentration matrix of any distribution obtainable by
conditioning on the response variables satisfies an additional inequality.

Theorem 3 If there exists a multivariate Gaussian directed Markov dis-
tribution on the selection graph D such that the conditional distribution
LY | Y =y}) is Nip(0, K1), then K is in ST(G). Further K satisfies
the inequality
tr(K) > 2 Z Ky - (1.6)
{v.u}{v.n}eE
Proof: Assume that Yryg follows a multivariate Gaussian and directed

Markov distribution on the selection graph and let A denote the diagonal
concentration matrix of Yr. Let further e = {7, u} € E and assume

LY. [Yr) = N’(O‘Zl/v + alyu + ey, ‘73”)-

Define a) = o) /o,, and a¥ = ak/o,,. The concentration matrix K of
the conditional distribution of Y given any value of Yy is found to have
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elements

kyy = Ay + Z (GZ)2= kyu = ajal.
pipmy

But as we have the elementary inequality

(a)? + (a4)? > 2lajal] = 2/ky,],

i
we find
tr(K) = ka = Z {)‘77 + Z ((12)2}
yer ver ey
= tr(A) + > {(a2)” + (a%)?}
{v.u}t{v.uteE
> 2 >kl
{v.u}y{v.u}eE

which was to be proved. O

Note that for |I'| = 2 the inequality (1.6) is automatically fulfilled. In fact,
from the positive definiteness of K we get for all pairs {, u} that

20kyul < 20/ Eyykup < Kyy + Bup-

An example of a concentration matrix which is not obtainable by selection
on the response variables is the 3 x 3-matrix with 1 in the diagonal and p
outside the diagonal with p > 2/3. Because then tr(K) = 3 but the right-
hand side of the inequality (1.6) amounts to 6p which is then surely greater
than 4.

Similarly, let K be the 4 x 4-matrix with diagonal elements equal to 1 and
the off-diagonal elements given as

kio=p, kos=p, kas=p, kia=—p,

and all other elements equal to zero. Then K satisfies the restrictions of the
4-cycle and K is positive definite if and only if |p|* < 1/2. For p = 0.7, the
right-hand side of the inequality (1.6) becomes equal to 8|p| = 5.6, and as
tr(K) = 4, this concentration matrix cannot be obtained by conditioning
on the response variables in the selection graph of Figure 2.

6.3 The Mixed Case

We finally consider the mixed case and try to investigate what type of
restrictions we can obtain on the conditional distribution of a system of
discrete and continuous variables, given a set of responses. Clearly, the
situation here is more complicated than in any of the pure cases and it is
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therefore hardly likely that a simple and complete description can be given
of the model restrictions obtainable by conditioning on a system of response
variables. Clearly a discrete term A4(7) in the interaction expansion (1.2)
can be generated by conditioning on a binary response variable Z; as in the
discrete case. But consider a continuous response variable Z and assume
that
L(Ziyy) = N{a(i) + (i) "y,0° (i)}
with the density of X = (I,Y") being f(i,y). Let

a(t) = {z0 —a(i)}/o(), b() = B(i)/o(i).
Then conditioning on Z = 2y yields the density

log f(i,y|2z0) = constant + log f(i,y)
—a(i)*/2+ a(i)b(i) Ty — {yTb(i)}*/2
= constant + log f(i,y) + X(i) +n(i) Ty —y ¥(i)y/2,

where

i) = —a(i)?/2, n(i) = a(i)b(i), V(i) = b()b(i) "

If the distribution of Z is only allowed to depend on a subset d U ¢ of
variables where d C A and ¢ C T, this results in each of these functions
only depending on ¢ through 74 and further that

b(i)y = ba(i)y = 0 unless v € c.
Thus the conditioning on Z creates interaction terms of the form

Aa(@); ma(i)y,  Ya(i)yu, vpEC

If both 8(i) and o?(i) are assumed to be independent of i, then no mixed
quadratic interaction terms are created.

In the case where the regression of Z on Y is assumed to be homogeneous
and with slope independent of 7, i.e.

L(Z]i,y) = N{a(i) + 8Ty, 0%},

with a(i) only depending on i through i4, we get interaction terms of the
form

Xa(i) = —a(i)*/2, na(i)y = a(i)by, Yy = byby
but no mixed quadratic interactions.
Note that whenever a term of the form 1)4(7)., is created in any of the above
ways, there is simultaneously created terms of the form ©4(i)y~, ¥a(%)up.
na (i), and n4(4) .. Thus models obtained by selection in this way will satisfy
condition 4 of Section 4 and thus satisfy the restrictions of a MIM model.
So only models of the MIM type have a chance of being generated by
conditioning on response variables. Additionally, certain inequalities will
also restrict the class of models that can be generated in this way.
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