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CHAPTER 1

Estimating functions for
diffusion-type processes

Michael Sgrensen
University of Copenhagen

1.1 Introduction

In this chapter we consider parametric inference basedsmmete time obser-
vationsXy, X, , ..., X;, from ad-dimensional stochastic process. In most of
the chapter the statistical model for the data will be a diffa model given
by a stochastic differential equation. We shall, howevkso @onsider some
examples of non-Markovian models, where we typically asstimt the data
are partial observations of a multivariate stochasticedéftial equation. We
assume that the statistical model is indexed pyddimensional parametér

The focus will be on estimating functions. &stimating functioiis ap-dimen-
sional function of the parametérand the data:

Gn(e;XOatha . 'ath)'

Usually we suppress the dependence on the observations imothtion and
write G, (#). We obtain an estimator by solving the equation

Gn(0) = 0. (1.1)

Estimating functions provide a general framework for figdastimators and
studying their properties in many different kinds of stét& models. The es-
timating function approach has turned out to be very usefullfscretely sam-

pled parametric diffusion-type models, where the liketildunction is usually

not explicitly known. Estimating functions are typicallpmstructed by com-
bining relationships (dependent on the unknown parameg&tvween an obser-
vation and one or more of the previous observations thanéoemative about

the parameters.

As an example, suppose the statistical model for the dgtaXa, Xon, ...,

1



2 ESTIMATING FUNCTIONS FOR DIFFUSION-TYPE PROCESSES
X, is the one-dimensional stochastic differential equation
dXt = -0 tan(Xt)dt + th,

wheref > 0 andW is a Wiener process. The state-spade-is/2, 7/2). This
model will be considered in more detail in Subsection 1.Bdd.this process
Kessler & Sgrensen (1999) proposed the estimating function

G(6) = 3 sin(X(i 1)) [sin(Xia) — e D2 sin(X( 1))
=1
which can be shown to be a martingale, wifda the true parameter. For such
martingale estimating functions, asymptotic propertiethe estimators as the
number of observations tends to infinity can be studied bynmeamartingale
limit theory, see Subsection 1.3.1. An explicit estimaipmof the parametef
is obtained by solving the estimating equation (1.1):

2im Sin(Xi1)a) sin(X; )) 1
>oimysin(X(-1)a)? 2’

6,, = A " log (
provided that

D sin(X(-1)a) sin(Xia) > 0. (1.2)

i=1
If this condition is not satisfied, the estimating equatibri ] has no solution,
but fortunately it can be shown that the probability tha2] holds tends to one
asn tends to infinity. As illustrated by this example, it is quitessible that the
estimating equation (1.1) has no solution. We shall giveegarconditions that
ensure the existence of a unique solution as the number efwdi®ons tend to
infinity.
The idea of using estimating equations is an old one and gaels &t least
to Karl Pearson’s introduction of the method of moments. fémn estimat-
ing function may have been coined by Kimball (1946). In theremmetric
literature, the method was introduced by Hansen (1982) stkddwn as the
generalized method of moments (GMM).

A general asymptotic theory for estimating functions issgrged in Section
1.10, and Section 1.11 reviews the theory of optimal estimgafunctions.

Given a collection of relations between observations deiht time points
that can be used for estimation, this theory clarifies howotnlzine the rela-
tions in an optimal way, i.e. in such a way that the most efficestimator is

obtained. In Section 1.2 we present conditions ensuringdastamators from
estimating functions are consistent and asymptoticallyrmab under the so-
called low frequency asymptotics, which is the same as usugé sample
asymptotics. In Section 1.3 we present martingale estimgdtinctions for dif-

fusion models including asymptotics and two optimalitytemia. One of these
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criteria, smallA-optimality, is particular of diffusion models. Likelihdan-
ference is included as a particular case. It is also disdusse to implement
martingale estimating functions. There are several metlavdilable for cal-
culating approximations to the likelihood function. Thedariefly reviewed in
Section 1.4, where a particular expansion approach is ptedé detail. Non-
martingale estimating functions are considered in Secti&n In important
aspect of the statistical theory of diffusion processelas & number of alter-
native asymptotic scenarios particular to diffusions aeglable to supplement
the traditional large sample asymptotics. High frequesgyrptotics, high fre-
guency asymptotics in a fixed time-interval and small-diffun asymptotics are
presented in the Sections 1.6, 1.7, and 1.8. A number of narkd¥ian mod-
els are considered in Section 1.9, including observatidttsmeasurement er-
rors, integrated diffusions, sums of diffusions, stocicasilatility models and
compartment models. A general tool for these models ardqti@a-based es-
timating functions, which generalize the martingale eating functions and
share some of their convenient features.

1.2 Low frequency asymptotics

In this section, we assume that observations have been rmdeequidistant
time pointsiA, i = 1,...,n, and consider the classical large sample asymp-
totic scenario, where the time between observationgs fixed, and the num-
ber of observations;, goes to infinity. SinceA is fixed, we will generally
suppres\ in the notation in this section. We assume that the stadistiodel

is indexed by a-dimensional parametér € ©, which we want to estimate.
The corresponding probability measures are denotefiybylhe distribution

of the data is given by the true probability measure, whictdesote byP.

Under the true probability measur, it is assumed thatX;A } is a stationary
process with state spad@ C IR¢. We study the asymptotic properties of an
estimatorf,,, obtained by solving the estimating equation (1.1) wlgnis an
estimating function of the general form

1 n
Gn(0) = = > 9(X(i—rsnyar - Xini ), (1.3)

wherer is a fixed integer smaller tham, andg is a suitable function with
values inIR?. All estimators discussed in this chapter can be repredente
this way. We shall present several useful examples of fi@an be chosen in
the subsequent sections. A priori there is no guaranteathatque solution
to (1.1) exists, but conditions ensuring this for large skngizes are given
below. By aG,,—estimator, we mean an estimatdy, which solves (1.1) when
the data belongs to a subs&t C D", and is otherwise given a valde¢ ©.

We give results ensuring that, as— oo, the probability ofA,, tends to one.



4 ESTIMATING FUNCTIONS FOR DIFFUSION-TYPE PROCESSES

Let Q denote the joint distribution afX A, . . ., X, ), andQ(f) the expecta-

tion of f(Xa,...,X,a) forafunctionf : D" — IR. To obtain our asymptotic
results about,,—estimators, we need to assume that a law of large numbers
(an ergodic theorem) as well as a central limit theorem hjfrkcifically, we
assume that ag — oo

S K Xis) 22 QU (1.4

for any functionf : D" — IR such thatQ(|f|) < oo, and that the estimating
function (1.3) satisfies

1 — D
= D 0K s, Xiaif) T NO,V(0)) (1.5)

under P for any § € O for which Q(g(f)) = 0. HereV(0) is a positive
definitep x p-matrix. Moreoverg(6) denotes the functiofx,...,x,) —

g(z1,...,z.;0), convergence in probability undét is indicated byL, and
2, denotes convergence in distribution.
The following condition ensures the existence of a consigtg,—estimator.

We denote transposition of matrices byanddyrG,,(0) denotes the x p-
matrix, where thé;th entry isdy, G, (0);.

Condition 1.2.1 A parameter valué € int® and a neighbourhood’ of § in
O exist such that:

(1) The functiong(6) : (z1,...,z.) — g(z1,...,2,;0) is integrable with
respect taQ) forall § € N, and

Q (g(0)) =0. (1.6)
(2) The functior® — g(x1,...,x,;0) is continuously differentiable oN for
all (z1,...,2,) € D".

(3) The function(z1, ...,2,) — ||Oprg(z1,...,z;0)| is dominated for all
6 € N by a function which is integrable with respectd@o
(4) Thep x p matrix B

W = Q (97 9(9)) (2.7)
is invertible.

Here and latef)(¢(0)) denotes the vectdiQ(g;(0))),_, . whereg; is the
jth coordinate ofy, andQ (9= g(0)) is the matrix{Q (9g,9i(0)) }i j=1.....p-

To formulate the uniqueness result in the following thegresneed the con-
cept of locally dominated integrability. A functiofi : D" x © — R?is
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called locally dominated integrablsvith respect toQ if for eachd’ € ©
there exists a neighbourhod®. of #’ and a non-negativ@-integrable func-
tion hy : D" — IR such that f(x1,...,2.;0)| < hg(z1,...,z,) for all
(1’1,.. .,{Er,e) € D" x Uy.

Theorem 1.2.2 Assume Condition 1.2.1 and (1.5). Thed-aonsisteniG,,—
estimatorg,,, exists, and

Va(l, — 00) 2 N, (o, W*IVWT*) (1.8)
under P, whereV = V(). If, moreover, the functiop(x1, ..., z,;0) is lo-
cally dominated integrable with respectdpand

Q(g(0)) #0 forall 0 #0, (1.9)

then the es:[imatotﬁn is the unique’,,—estimator on any bounded subsetof
containingf with probability approaching one as — oc.

Remark:By a#-consistent estimator is meant tr@ati 6 asn — oo. If the
true model belongs to the statistical model, i.ePit= Py, for somef, € O,
then the estimataf,, is most useful if Theorem 1.2.2 holds with= 0. Note
that becausé € int©®, ad-consistent estimata®,,—estimatoid,, will satisfy
Gn(én) = 0 with probability approaching one as— oo.

In order to prove Theorem 1.2.2, we need the following umiféaw of large
numbers.

Lemma 1.2.3 Consider a functiorf : D" x K — IR?, whereK is a compact
subset of©. Supposef is a continuous function of for all (z4,...,z,) €
D", and that there exists §-integrable functionh : D" — IR such that
If(x1,...,2r;0)]| < h(x1,...,2,) forall & € K. Then the functiod —
Q(f(0)) is continuous, and

sup | 37 F(Xornaneo Xiai®) ~QUO) | 5 0. (110)

Proof: ThatQ(f(#)) is continuous follows from the dominated convergence
theorem. To prove (1.10), define fgr> 0:
k(n;xla"'axT): sup H.f('rla"'axT;ol)_f(xla"'vxT;e)H?
0,0'e M:||6'—0]|<n

and letk(n) denote the functioty, . . ., z,) — k(n; 21, ..., x,). Sincek(n) <
2h, it follows from the dominated convergence theorem tQét(n)) — 0 as

n — 0. Moreover,Q(f(6)) is uniformly continuous on the compact &t
Hence for any giver > 0, we can findp > 0 such thatQ(k(n)) < e and
such thaf|d — ¢'|| < nimplies that|Q(f(0)) — Q(f(9))]| < efor,d € K.
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Define the ballsB,,(8) = {¢' : ||0—¢'|| < n}. SinceK is compact, there exists
a finite covering

K g LWJ Bﬁ(ej)a

j=1
whereby, ..., 0,, € K, so for everyd € K we can findd, ¢ € {1,...,m},
such that) € B, (6,). Thus with
1 n
Fa(0) = =3 f(Xrinar- - Xiai )

i=r

we have
[ F5(0) — Q(f(9))]l
< E(O) = Fn(@o) [l + [ Fn(0c) — QUF (O + 1Q(F(0e)) — QUFO))l

< % Z k(ﬁ; X(ufrJrl)A, e 7XVA) + HFn(eé) - Q(f(ef))H te

< ‘%Zk(n;X(urJrl)Av"'?XVA) —Q(k(ﬁ))
+Q(k(n) + 1 Fn(8e) — Q(f(00))[ + €
< Zn, + 2,
where

1 n
Ly = E Z k(n;X(l/frJrl)Aa v 7XVA) - Q(k(n))

+ max [|F,(0¢) — Q(f(6e))]|.

1</<m

By (1.4),P(Z, > ¢) — 0 asn — oo, SO

P <sup 1E.(9) - QU] > 3e) ~0

e K
forall e > 0. O

Proof (of Theorem 1.2.2): The existence ofjeconsistent,,—estimatord,,
follows from Theorem 1.10.2. Condition (i) follows from &).and (1.6). De-
fine the functiodV (6) = Q (9, g(#)). Then condition (iii) in Theorem 1.10.2
is equal to Condition 1.2.1 (4). Finally, & be a compact subset &f con-
tainingd. Then the conditions of Lemma 1.2.3 are satisfiedffet dyr g, SO
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(1.158) is satisfied. The asymptotic normality, (1.20)|dek from Theorem
1.10.4 and (1.5).

In order to prove the last statement, Iétbe a compact subset 6f containing
6. By the finite covering property of a compact set, it followsrh the local
dominated integrability ofy that g satisfies the conditions of Lemma 1.2.3.
Hence (1.159) holds witt'(8) = Q(g(#)) andM = K. From the local domi-
nated integrability ofy and the dominated convergence theorem it follows that
G(0) is a continuous function, so (1.9) implies that
inf |G(9)| >0,

K\B.(0)
for all ¢ > 0, whereB.(0) is the closed ball with radius centered a®. By
Theorem 1.10.3 it follows that (1.161) holds witlh = K for everye > 0. Let
0, be aG,,—estimator, and define @, —estimator byl = 6/,1{f, € K} +
0,1{6!, ¢ K}, wherel denotes an indicator function, afid is the consistent
G ,—estimator we know exists. By (1.161) the estimﬁl;p'rs consistent, so by
Theorem 1.10.2P(A, # 0!) — 0 asn — oco. Henced,, is eventually the
uniqueG,,—estimator onk’.

O
1.3 Martingale estimating functions
In this section we consider observatiokig, X, , ..., X;, of ad-dimensional
diffusion process given by the stochastic differentialatopn
dX; = b(Xy; 0)dt + o(Xy; 0)dWy, (1.12)

whereo is ad x d-matrix andiV ad-dimensional standard Wiener process. We
denote the state space &fby D. Whend = 1, the state space is an interval
(¢,7), wherel could possibly be-oo, andr might beco. The driftb and the
diffusion matrixc depend on a paramet@mwhich varies in a subsé& of IR”.
The equation (1.11) is assumed to have a weak solution, andofficients

b ando are assumed to be smooth enough to ensure, for évery®, the
unigueness of the law of the solution, which we denoté?pyWe denote the
true parameter value 1#.

We suppose that the transition distribution has a density p(A, z,y;0)
with respect to the Lebesgue measuregrand thap(A, z,y;6) > 0 for all
y € D. The transition density is the conditional density unégrof X; A
given thatX; = x.

We shall, in this section, be concerned with statistica¢iehce based on esti-



8 ESTIMATING FUNCTIONS FOR DIFFUSION-TYPE PROCESSES

mating functions of the form

Gn(0) = > g(Ai, Xy, Xy,30). (1.12)
=1
whereg is ap-dimensional function which satisfies that
/ 9(A, 2,y 0)p(A, , y; 0)dy = 0 (1.13)
D

forall A > 0,z € D andf € ©. Thus, by the Markov property, the stochastic
process G, (0) } e is @ martingale with respect {0, } ,ev underP,. Here
and laterF,, = o(X;, : ¢ < n). An estimating function with this property is
called amartingale estimating function

1.3.1 Asymptotics

In this subsection we give asymptotic results for estinsaditained from mar-
tingale estimating functions as the number of observatimes to infinity. To
simplify the exposition the observation time points araiassd to be equidis-
tant, i.e.,t; = iA,7 = 0,1,...,n. SinceA is fixed, we will in most cases
suppress\ in the notation and write for exampiéz, y; 6) andg(z, y; 0).

It is assumed that the diffusion given by (1.11) is ergodiet tits invariant
probability measure has density functiop for all 8 € ©, and thatXy ~ ug
underP,. Thus the diffusion is stationary.

When the observed process, is a one-dimensional diffusion, the follow-
ing simple conditions ensurrgodicity, and an explicit expression exists for
the density of the invariant probability measure. Heale measuref X has
Lebesgue density

s(z;0) = exp (—2/; :2(&’799)) dy) , zelr), (1.14)

wherez# € (£,r) is arbitrary.

Condition 1.3.1 The following holds for alp € ©:
x#

/ﬂ: s(x; 0)dx = /K s(z;0)dx = o

and .
Abwwﬂwwﬂmzmm<w

Under Condition 1.3.1 the proceasis ergodic with an invariant probability
measure with Lebesgue density

po(z) = [A(0)s(x;0)0” (;0)] ", = € (€,7); (1.15)
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for details see e.g. Skorokhod (1989). For general one+usineal diffusions,
the measure with Lebesgue density proportiongl(e; 0)o?(x; 0)]~* is called
the speed measure.

Let Qp denote the probability measure & given by
Qo(dz, dy) = po(x)p(A, z,y; 0)drdy. (1.16)

This is the distribution of two consecutive observatioNs, ;;—1y, Xai). Under
the assumption of ergodicity the law of large numbers (k4hitisfied for any
function f : D? — IR such that)(| f|) < oo, see e.g. Skorokhod (1989).

We impose the following condition on the functigiin the estimating function
(1.12)

Qo (9(0)"g(0)) = (1.17)
/D2 9(y, z:0)" g(y, x; 0) o (x)p(x, y; 0)dydz < oo,

forall € ©. By (1.4),

1
=D 9(Xai Xai-0:0) — Qolg(0), (1.18)

i=1

for all 8,6 € ©. Since the estimating functio@,,(6) is a square integrable
martingale undePy, the asymptotic normality in (1.5) follows without further
conditions from the central limit theorem for martingalese Hall & Heyde
(1980). This result for stationary processes goes backlliodgley (1961). In
the martingale case the asymptotic covariance m&t(#k) in (1.5) is given by

V(0) = Qa, (9(0)g(6)") - (1.19)
Thus we have the following particular case of Theorem 1.2.2.

Theorem 1.3.2 Assume Condition 1.2.1 is satisfied with= 2, § = 6,, and
Q = Q,, Wheref, is the true parameter value, and that (1.17) holds for

0 = 6,. Then afy-consistents,,—estimator,, exists, and
Va0, — 00) 2 N, (o, W*IVWT*) (1.20)

under P,,, where is given by (1.7) with) = 6y, andV = V(6) with
V() given by (1.19). If, moreover, the functigt, y; 6) is locally dominated
integrable with respect t@)y, and

Qo,(9(0)) # 0 forall 6 # 6o, (1.21)

then the estimataf,, is the uniques,—estimator on any bounded subsetof
containingf, with probability approaching one as — oo.
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In practice we do not know the value éf, so it is necessary to check that the
conditions of Theorem 1.3.2 hold for any valuefgfe int ©.

The asymptotic covariance matrix of the estimatpcan be estimated consis-
tently by means of the following theorem.

Theorem 1.3.3Under Condition 1.2.1 (2) — (4) (with = 2, § = 6, and
Q = Qq,),

90

1 & ~ P
W, = ﬁ 269T9(X(i—1)A7XiA§ 9n) — W, (1-22)

whered,, is a fy-consistent estimator. The probability thHf,, is invertible
approaches one as — oo. If, moreover, the functioriz, y) — |lg(x,y;0)]l

is dominated for alld € N by a function which is square integrable with
respect tal)y,, then

n
1 - A Po,

Vn=— > 9(X-nya, Xiai0n)g(Xi-1ya, Xins 0,)" =2 V. (1.23)
i=1

Proof: Let C' be a compact subset @ such thatd, € intC. By Lemma
1.2.3,% Yoy Ogrg(X(i—1ya, Xia; 0) convergestdg, (Opr g(#)) in probabil-
ity uniformly for 6 € C. This implies (1.22) becausg converges in probabil-
ity to 6. The result about invertibility follows becauBé is invertible. Also the
uniform convergence in probability fér e C of % Yoy 9(Xi—1ya, Xias 0)
9(X(i—1)a, Xin; 0)T 10 Qg,(9(0)g(0)T) follows from Lemma 1.2.3.

a

1.3.2 Likelihood inference

The diffusion procesX is a Markov process, so the likelihood function based
on the observationXy, X, , - - -, X, conditional onXy, is

n
Ln(0) = [ [ p(t: — tion, X, Xo,30), (1.24)

=1
wherey — p(s,z,y;0) is the transition density anth = 0. Under weak
regularity conditions the maximum likelihood estimatoefficient, i.e. it has
the smallest asymptotic variance among all estimators.timsition density
is only rarely explicitly known, but several numerical appches and accurate
approximations make likelihood inference feasible fofudifon models. We
shall return to the problem of calculating the likelihoodétion in Subsection
1.4.
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The vector of partial derivatives of the log-likelihood fition with respect to
the coordinates of,

Un(60) = 9plog L (0) = > dplog p(As, Xo, ,, X1,;0), (1.25)
i=1

whereA; = t; — t;_1, is called thescore functionor score vector). Here it
is obviously assumed that the transition density is a difiéable function of
6. The maximum likelihood estimator usually solves the eating equation
U, (0) = 0. The score function is a martingale with respecf{f, } . under
Py, which is easily seen provided that the following interahpaiof differenti-
ation and integration is allowed:

Eg(ag 1ng(Ai,Xt Xti;9)|tha---aXti,1)

i-17

p(Alv Xt¢71 'Y, o)dy

/ 50P(Ai, Xtr1 ' Ys 9)
D p(Aia Xti,l » Y3 9)

= ag/p(Ai,Xtifl,y;G)dy:O.
D

Since the score function is a martingale estimating functibe asymptotic
results in the previous subsection applies to the maximkmliiood estimator.
Asymptotic results for the maximum likelihood estimatotlie low frequency
(fixed A) asymptotic scenario considered in that subsection wdableshed

by Dacunha-Castelle & Florens-Zmirou (1986). Asymptoéisults when the
observations are made at random time points were obtainédtifahalia &

Mykland (2003).

In the case of likelihood inference, the functi@h, (¢(¢)) appearing in the
identifiability condition (1.21) is related to the Kullbatleibler divergence
between the models. Specifically, if the following interafe of differentiation
and integration is allowed,

Qo, (99 log p(x,y,0)) = 9sQp, (log p(z, y,0)) = =06 K (0, 60o),

whereK (6, 6,) is the average Kullback-Leibler divergence between the- tra
sition distributions undePy, and P, given by

K(eae()):/;K(Gvooax)ﬂeo(dx)v
with
K(9790;:v)=/D10g[p(fv,y;9o)/p(fc,y;9)]p(x,y;90)dy-

Thus the identifiability condition can be written in the folmK (6, 60y) # 0
forall 8 # 6,. The quantityK (6, 6y) is sometimes referred to as the Kullback-
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Leibler divergence between the two Markov chain models ffier dbserved
process X;a } underPy, andPy.

A simple approximation to the likelihood function is obtathby approximat-
ing the transition density by a Gaussian density with theamifirst and second
conditional moments. For a one-dimensional diffusion we ge

o {_(y—F(A,x;e»?
2 (A, x; 0) P 2¢0(A, z;0)

p(A,z,y;0) = q(A,z,y;0) =
where
F(A,2:0) = Eg(Xa|Xo = 7) = / yp(A,z.y:0)dy.  (1.26)
¢

and
S(A, z;6) = (1.27)

Vary(Xa|Xo = o) = / ly— F(A,2:0)p(A, 2,y 0)dy.
Y4

In this way we obtain thguasi-likelihood

Ln(0) ~ QLn(0) = [ [ (A, X1, X130,

=1
and by differentiation with respect to the parameter vegterobtain the quasi-
score function

{ (%F(Ai’ Xtii] : 0) [Xti - F(Aiv Xti—l ) 9)] (128)

Oglog QL,(0) =
o5 QL) =2\ “5a, X, 06)
(99¢(Ai, Xti—l ) 9)
2¢(Ai7 Xti—l ) 9)2
Itis clear from (1.26) and (1.27) th&by log Q L, (6) } ne is @ martingale with
respect td{ F,, } ,ev underPy. This quasi-score function is a particular case of
the quadratic martingale estimating functions considbyeBibby & Sgrensen
(1995) and Bibby & Sgrensen (1996). Maximum quasi-liketii@stimation
for diffusions was considered by Bollerslev & Wooldridg®@p).

[(Xti - F(Alv Xt1171 ; 9))2 - ¢(Alv Xti—l ; 0)] } :

1.3.3 Godambe-Heyde optimality

In this section we present a general way of approximatingstioee function
by means of martingales of a similar form. Suppose we havdlaction of
real valued functions, (z,y,;6),j =1,..., N, satisfying

| i mte. i)y =0 (1.29)
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forall z € D andd € O. Each of the functiong; could be used separately
to define an estimating function of the form (1.3) with= h;, but a better
approximation to the score function, and hence a more affi@stimator, is
obtained by combining them in an optimal way. Therefore wesater esti-
mating functions of the form

Gn (0) =Y a(Xi-nya, Oh(Xi-1)a, Xia:0), (1.30)
=1
whereh = (hy,...,hy)T, and thep x N weight matrixa(z, #) is a function
of = such that (1.30) iF%-integrable. It follows from (1.29) thaf,, (9) is a
martingale estimating function, i.e., it is a martingalelen?, for all 8 € ©.

The matrixa determines how much weight is given to each of #s in the
estimation procedure. This weight matrix can be chosen iomimal way
using the theory of optimal estimating functions reviewe&ection 1.11. The
optimal weight matrixa*, gives the estimating function of the form (1.30)
that provides the best possible approximation to the saametion (1.25) in

a mean square sense. Moreover, the optimél, y; 0) = a*(x;0)h(x, y; 6)

is obtained fromdy log p(x, y; 8) by projection in a certain space of square
integrable functions, for details see Section 1.11.

The choice of the functior’s;, on the other hand, is an art rather than a science.
The ability to tailor these functions to a given model or tetigallar parameters

of interest is a considerable strength of the estimatingtfans methodology.
Itis, however, also a source of weakness, since itis notyawkear how best to
choose thé;s. In the following and in the Subections 1.3.6 and 1.3.7, vedi
present ways of choosing these functions that usually wak w practice.
Also the theory in Subsection 1.3.4 and Section 1.6 castsdsting light on
this problem.

Example 1.3.4 The martingale estimating function (1.28) is of the typ&Q).
with N = 2 and

ha(z,y;0) y—F(A,2:0),

ha(z,y;0) = (y—F(A2:0))° — ¢(A, 2,0),
whereF" and¢ are given by (1.26) and (1.27). The weight matrix is

d(A,z;0) 7 202(A,x;0)A ) '
which we shall see is an approximation to the optimal weigatrix. O

In the econometrics literature, a popular way of using fiomstliker; (=, y, ; 9),
j =1,..., N, to estimate the parametéiis thegeneralized method of mo-
mentgGMM) of Hansen (1982). In practice, the method is often iempénted
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as follows, see e.g. Campbell, Lo & MacKinlay (1997). Coesid

Fn(e) =

SRS

D h(X(i-1a, Xia;0).
=1

Under weak conditions, cf. Theorem 1.3.3, a consistentestir of the asymp-
totic covariance matrid/ of \/nF, (0) is

n

1 B B
M, = - Z} hX (i-1)a, Xins O) (X i-1)a, Xiai 0a)T,

whered,, is a fy-consistent estimator (for instance obtained by miningjzin
F,(0)T F,,(0)). The GMM-estimator is obtained by minimizing the function

H,(0) = F,(0)" M, F,(0).

The corresponding estimating function is obtained by défféiation with re-
spect tod

aan(H) = Dn(e)Mgan(e),
where by (1.4)

1 — Py,
D, (0) = - Z Doh(X(i-1ya, Xin; 0)" % Qg, (eh(0)T) .
=1

Hence the estimating functiaiy H,,(6) is asymptotically equivalent to an es-
timating function of the form (1.30) with a weight matrix ttdoes not depend
on the data

a(z,d) = Qo, (89h(9)T) Mt
We see that the GMM-estimators described here are covertitthifieory for
martingale estimating functions presented in this section

We now return to the problem of finding the optimal estimafimgctionG:, (6),
i.e. the estimating functions of the form (1.30) with theioyl weight matrix.
We assume that the functiohs satisfy the following condition.

Condition 1.3.5

(1) The functiong — h;(x,y;6), j = 1,... N, are linearly independent for
allz € Dandf € ©.

(2) The functiongy — h;(z,y;6), 7 = 1,... N, are square integrable with
respect tgp(z, y; 0) for all x € D andé € O.

(3) h(z,y; 0) is differentiable with respect t.

(4) The functiong — 0y, h,(x,y; 0) are integrable with respect tp(z, y; 0)
forall x € D andé € ©.
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The class of estimating functions considered here is aqoéati case of the
class treated in detail in Example 1.11.4. By (1.182), thtenwgd choice of the
weight matrixa is given by

a*(;0) = B (x;0) Vi (2;6) 7", (1.32)
where
Bu(z:6) = / Dol (, y; 0)T p(cx, y: 0)dy (1.33)
D
and
Vi (3 6) = / B, y: 0)h(z, ;) pla, y: ) dy. (1.34)
D

The matrixV}, (z; 0) is invertible because the functions, j = 1,... N, are
linearly independent. Comparedto (1.182), we have omét@ihus here. This
can be done because an optimal estimating function matifdyy an invertible
p X p-matrix is also an optimal estimating function and yields game esti-
mator.

The asymptotic variance of an optimal estimator, i.&a-estimator, is sim-
pler than the general expression in (1.20) because in thes tte matricesl’
andV given by (1.7) and (1.19) are identical and given by (1.3%)isTs a
general property of optimal estimating functions as disedsn Section 1.11.
The result can easily be verified under the assumptiorutt{at ¢) is a differ-
entiable function of. By (1.29)

/D (06, a" (2;0)] h(x,y; 0)p(x, y; 0)dy = 0,

so that

w Bgr[a*(:c;Ho)h(x,y;eo)]ng(dx,dy)

D2
= po,(a*(60)Bn(60)") = po, (Br(60)Vi(60) " Bn(60)"),
and by direct calculation
Vo= Qu,(a"(00)h(80)h(8o) a (B)T) (1.35)
= o, (Bu(00)Vi(60) "' Bu(60)") -

Thus we have, as a corollary to Theorem 1.3.2, thgt(if, y, 0) = a*(x; 0)h(z, y; 0)

satisfies the conditions of Theorem 1.3.2, then the sequ&noé consistent
G —estimators has the asymptotic distribution

Vi, —6y) 2 N, (0,V1). (1.36)

Example 1.3.6 Consider the martingale estimating function of form (1.30)
with N = 2 and withh; andhs as in Example 1.3.4, where the diffusion
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is one-dimensional. The optimal weight matrix has columuasrgby
9o (; 0)n(w; 0) — OpF' (x5 0)1) (2 0)

(73 9) (w3 0)0(w: ) — n(; 02
0i(:0) = OpF (; 0)n(; 0) — Dp(; 0) (5 0)
R o (; 0)p(x; 0) — n(x;0)? ’
where
n(x;0) = Eo([Xa — F(2;0)]*| Xo = x)
and

P(50) = Eg([Xa — F(2;0)]*|Xo = x) — ¢(;0)*.
For the square-root diffusion (the a.k.a. the CIR-model)
dX; = —ﬁ(Xt — Oé)dt + 7/ XedWy, Xo >0, (137)
whereq, 3, 7 > 0, the optimal weights can be found explicitly. For this model

F(z:0) = zeP?4+a(l—eP?)
2

d(x;0) = % (Ga—2)e 22 — (a —2)e "2 + 1a)
n(x;0) = 27—;2 (o —3(a—z)e P2 + 3(a — 22)e 22

—(a— 3:6)673[}A)
Y(x;0) = i—gz ((a — 4x)e A — 4(a — 3z)e 3P4

+6(a — 22)e 22 — 4(a — 2)e P2 + @) + 2¢(x;0)*.
We give a method to derive these expression in Subsectiof. 1.3

The expressions fat; anda? can for general diffusions be simplified by the
approximations

n(t,z;0) ~ 0 and ¥(t,z;0) ~ 26(t, x;6)?, (1.38)

which would be exactly true if the transition density were auGsian density
function. If we insert these Gaussian approximations ihtoexpressions for
a} andaj, we obtain the weight functions in (1.28). Whénis not large this
can be justified, because the transition distribution ifawotrom Gaussian. In
Section 1.4 we present a data transformation after whictrémsition distri-
bution is close to a normal distribution. O

In Subsections 1.3.6 and 1.3.7 we present martingale estgrfanctions for
which the matrice®3,, (x; #) andV; (x; ) can be found explicitly, but for most
models these matrices must be found by simulation, a probtamidered in
Subsection 1.3.5. In situations where must be determined by a relatively
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time consuming numerical method, it might be preferablestthe estimating
function

Za* X(i-1)a:0 )h(X(zel)A,Xm;@), (1.39)
=1

whered,, is a f,-consistent estimator, for instance obtained by some simpl
choice of the weight matrix. In this waya* needs to be calculated only once
per observation point, whereas the weight matrix must kedcatated for every
call of G%(6) given by (1.30) witha = a*. Typically, G% (9) will be called
many times in a numerical search procedure in order to find=thestimator.
Under weak regularity conditions, tli¢? -estimator has the same efficiency as
the optimalG;, -estimator; see e.g. Jacod & Sgrensen (2009).

Most martingale estimating functions proposed in theditigre are of the form
(1.30) with

hj(a,y;0) = f(y:0) — wa(f;(0))(x), (1.40)

or more specifically,

Z(I (-1, 0) [f(Xia;6) —WeA(f(e))(X(i—l)A)] . (1.41)

i=1

Heref = (fi,..., f~)" mapsD x © intoIRY, andr?, denotes théransition
operator

/ F@p(s, 2. y:0)dy = Eo(f(X) | Xo =), (1.42)

applied to each coordinate ¢f The polynomial estimating functions given by
fily) =9/, j =1,...,N, are an example. For martingale estimating func-
tions of the special form (1.41), the expression for theroptiweight matrix
simplifies a bit because

B (w;0)i; = wA (9, £(0))(x) — Bp, 74 (f5(0)) (), (1.43)
i=1,...p,5=1,...,N,and
Vi(;0)i; = wa (fi(0) £;(0)) () — 7 (fi(0))(x)mA (f5(6))(x),  (1.44)

i,7 = 1,..., N. If the functionsf; are chosen to be independentthfthen
(1.43) simplifies to

By (30)i5 = =, mA(f;)(@). (1.45)
A useful approximation to the optimal weight matroan be obtained by ap-

plying the expansion of conditional moments given in théofging lemma.
The expansion is expressed in terms ofdgkaeratorof the diffusion, which is
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defined by

d
Agf(x) = bi(w;0)0u, f(z Z Crel2;0)02, ,, f(x),  (1.46)
k=1

k=1

whereC' = oo®. By A} we meani-fold application ofAy, and in particu-
lar, A9 f = f. For an ergodic diffusion with invariant measure with Lejness
density g, let @y be the class of real functionsdefined on the state space
D that are twice continuously differentiable, square intabge with respect to
19, and satisfy that

/ (Ao f (@)’ o(@)da < oo
D

/a (@), (@) Cis (a3 O)pio (@) < oo.

1,j=1

Lemma 1.3.7 Suppose that the diffusion process (1.11) is ergodic witarin
ant measureu, that f is 2(k + 1) times continuously differentiable, and that
Alf € ®p,i=0,...,k. Then

%

~

k
=> - Agf )+ O(th*1). (1.47)

1=0

.

Proof: We sketch the proof of (1.47), and consider odily= 1 to simplify the
exposition. First considér = 1. By Ito’s formula

FX) = f(Xo) /Aef ds+/f o (X,: 0)dW,
Apf(X) = Agf(Xo)+ / AZF(X,)du + / 0y Ag f(X,)o (X: 6)dWY,,

and by inserting the expression fdp f (X ) given by the second equation into
the Lebesgue integral in the first equation, we find that

F(X,) = f(Xo) + tAgf(X0) //A duds (1.48)

//BAgf o (Xa: 0)dW, ds+/ F(X)o (X 6)dW,

Becaused) f € ®y, i = 0,1, the Ito-integrals are propefy-martingales.
Hence by taking the conditional expectation giv€s = =, we obtain

7 (f)(@) = f(2) +tAg f(z) + O(t).

The result fork = 2 is obtained by applying Ito’s formula td2 f(X;), in-
serting the result into the first Lebesgue integral in (1,484 finally taking
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the conditional expectation giveki, = z. The result fork > 3 is obtained
similarly by applying Ito’s formula tod, f(X;), i = 3, ..., k. O

Note that (1.47) is an expansion result, so the correspgmtiwer series does
not necessarily converge. For a fixedthe sum is a good approximation to
the conditional expectation whens small. The remainder term dependskon
andd. The explicit sufficient conditions in Lemma 1.3.7 for (1)4d@ hold for
ergodic diffusions was given in Jacobsen (2001). The exparwlds under
mild regularity conditions for non-ergodic diffusions tda a proof similar to
that of Lemma 1.3.7, such conditions must essentially ensat Ito-integrals
are proper martingales and that the remainder term can limtied.

It is often enough to use the approximatigh(f;)(z) ~ f;(z) + Adaf;(z).
When f does not depend ahthis implies that ford = 1

Bi(x;0) ~ A [0pb(;0) f'(x) + $090° (x5 0) f ()] (1.49)
andford =1andN =1
Vi(z;0) =~ A [A@(fQ)(SC) — 2f(x)A9f(:v)] =Ac%(x;0)f (x)?.  (1.50)

We will refer to estimating functions obtained by approxiing the optimal
weight-matrixa* in this way asapproximately optimal estimating functions
Use of this approximation will save computer time and imgrthe numerical
performance of the estimation procedure. The approximatii not affect
the consistency of the estimators, andhifs not too large, it will just lead to a
relatively minor loss of efficiency. The magnitude of thissaf efficiency can
be calculated by means of (1.47).

Example 1.3.81f we simplify the optimal weight matrix found in Example
1.3.6 by the expansion (1.47) and the Gaussian approximéitig8), we ob-
tain the approximately optimal quadratic martingale eating function

o _ - aeb(X(i—l)A;e) .
G, (0) = ; {m[){m — F(X(—1)a;0)] (1.51)
o0 (X(i—1)a; 0)
204X (i—1)a; 0)A

As in Example 1.3.6 the diffusion is assumed to be one-dieas

[(Xia = F(X(i—1)a30))* — (X (i—1)a; 9)]} -

Consider a diffusion wittinear drift, b(z; 6) = —3(z — «). Diffusion models
with linear drift and a given marginal distribution weredied in Bibby, Skov-
gaard & Sgrensen (2005). fo?(z; 8)po(z)dz < oo, then the Ito-integral
in

t t
X, = Xo —/ B(X, — a)ds+/ o (X4:0)dW,
0 0
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is a proper martingale with mean zero, so the funcfign = Eo(X; | Xo = )
satisfies that

f) =z /0 F(s)ds + Bt

or
f/(t) = =Bf(t) + Ba, f(0) =
Hence
f(t) = ze P 4 a(l — e P
or

F(z;a,8) = ze P2 + a(1 — e P2)
If only estimates of drift parameters are needed, we canhesdirtear mar-
tingale estimating function of the form (1.30) wiff = 1 andh;(x,y;0) =
y— F(A,2;0). If o(x;0) = 7x(z) for 7 > 0 andx a positive function, then
the approximately optimal estimating function of this foign
. 1
[ Xin — X(i_pae PP —a(l —e PR
;HQ(X(FDA) [ (na ( )}
G, B) = ;
- X(i-na -BA —-BA
2 (XA — Xgopae PP —a(l—e P
;HQ(X(ifl)A) [ (i-1)A ( )}
where multiplicative constants have been omitted. To shleestimating equa-
tion G5, («, 3) = 0 we introduce the weights

U)f = KJ(X('LFI)A)72/ZK/(X(jfl)A)727
j=1

and defineX"® = Y| wiX;a and X%, = >0 wfX(;_1)a. These two
guantities are conditional precision weighted sample ayes of X;» and
X(i—1)a, respectively. The equatiofi;, (o, 3) = 0 has a unique explicit so-

lution provided that the weighted sample autocorrelation

w2 W (Xia — X")(X-a — X))

" iz Wi (Xna — X5)?

is positive. By the law of large numbers (1.4) for ergodicqasses, the proba-

bility that ¥ > 0 tends to one as tends to infinity. Specifically, we obtain the
explicit estimators

T

R Xr— i Xr
oy = ——-
1—re
B = —llo (r)
n - A g n/?

see Christensen & Sgrensen (2008). A slightly simpler aythpsotically
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equivalent estimator may be obtained by substitufirigfor X*, everywhere,
in which casex is estimated by the precision weighted sample average
For the square-root process (CIR-model) given by (1.37greh(x) = /z, a
simulation study and an investigation of the asymptoti¢arare of these esti-
mators in Bibby & Sgrensen (1995) show that they are not mesh éfficient
than the estimators from the optimal estimating functioze @lso the simu-
lation study in Overbeck & Rydén (1997), who find that theséneators are
surprisingly efficient, a finding that can be explained byrgults in Section
1.6.

To obtain an explicit approximately optimal quadratic estting function, we
need an expression for the conditional varian¢e; ). As we saw in Exam-
ple 1.3.6,¢(x; 0) is explicitly known for thesquare-root process (CIR-model)
given by (1.37). For this model the approximately optimadjatic martingale
estimating function is

n

1
Y [Xia — Xpae P2 —a(l -2
1:1X<i—1>A[ AT At ot =)

Z [Xm - X(i,l)AefﬁA —al - efﬂA)]
i=1

n

1 AN 2
E - . -BA _ _ e B
- 1) |:(XZA X(Z,l)Ae a(l e ))

2
_% {(0/2 = X(i)a) €772 = (0 = X(i_pya)e ™ + a/2}

This expression is obtained from (1.51) after multiplioatby an invertible
non-random matrix to obtain a simpler expression. This dam#shange the
estimator. From this estimating function explicit estioratcan easily be ob-
tained:

e—BnA

Gy = — ZXlA—i- (1_eﬁn )
essentially the sample mean whers large, and
A ny i 1Xz'A/X(z' na — (- 1Xm)(2? 1 XGia)
(Zz 1X(z 1)A)(Zz 1 X (i— 1)A)
i Xtna (Xm — Xi-naePA — (1 - e’ﬁ"))z
S XA (X-1)as 6, )

(X’n.A - Xo)a

3

where

Blwsa, 8) = ((ba - 2)e 3 — (a— )% + Ja) /B
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It is obviously necessary for this solution to the estimgtaguation to exist
that the expression far ?~2 is strictly positive, an event that happens with a
probability tending to one as — co. Again this follows from the law of large
numbers (1.4) for ergodic processes. O

When the optimal weight matrix is approximated by means g@f{}, there is a
certain loss of efficiency, which as in the previous examptetien quite small;
see Bibby & Sgrensen (1995) and Section 1.6 on high frequasyayptotics
below. Therefore the relatively simple estimating funetid.51) is often a
good choice in practice.

It is tempting to go on to approximaté, (f;(6))(z) in (1.41) by (1.47) in or-
der to obtain an explicit estimating function, but as will demonstrated in
Subsection 1.5.3, this can be a dangerous procedure. Inayé&meconditional
expectation inr% should therefore be approximated by simulations. Fortu-
nately, Kessler & Paredes (2002) have established thatidqadthe simulation

is done with sufficient accuracy, this does not cause any bidg a minor loss

of efficiency that can be made arbitrarily small; see Sulicedt.3.5. More-
over, as we shall see in the Subsections 1.3.6 and &3 (7, (¢))(x) can be
found explicitly for a quite flexible class of diffusions.

1.3.4 SmallA-optimality

The Godambe-Heyde optimal estimating functions discuabede are opti-
mal within a certain class of estimating functions. In thibsection we present
the concept of smalh\-optimality, introduced and studied by Jacobsen (2001)
and Jacobsen (2002). A smalloptimal estimating function is optimal among
all estimating functions satisfying weak regularity cdratis, but only for high
sampling frequencies, i.e. when the time between obsenais small. Thus
the advantage of the concept of smalloptimality is that the optimality is
global, while the advantage of the concept of Godambe-Heydenality is
that the optimality holds for all sampling frequencies.tboately, we do not
have to choose between the two, because it turns out thatnGmtaleyde op-
timal martingale estimating functions of the form (1.30§4f.40) are small
A-optimal.

Small A-optimality was originally introduced for general estimngtfunctions
for multivariate diffusion models, but to simplify the exgition we will con-
centrate on martingale estimating functions and on onesdsional diffusions
of the form

dXt = b(Xt;Oé)dt-i-U(Xt;ﬁ)th, (152)
whered = (o, 3) € © C IR?. This is the simplest model type for which
the essential features of the theory appear. Note that thedd the diffusion
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coefficient depend on different parameters. It is assumatthie diffusion is
ergodic, that its invariant probability measure has dgrisitction u for all
0 € ©, and thatX, ~ ug underP,. Thus the diffusion is stationary.

Throughout this subsection, we shall assume that the dds@mvtimes are
equidistant, i.et; = iA,i = 0,1,...,n, whereA is fixed, and that the mar-
tingale estimating function (1.12) satisfies the condgiohTheorem 1.3.2, so
that we know that (eventually) @,-estimatord,, exists, which is asymptoti-
cally normal with covariance matrik/ (g) = WLVvwT ™ whereW is given
by (1.7) withd = 6y andV = V(6,) with V' (6) given by (1.19).

The main idea of small\-optimality is to expand the asymptotic covariance
matrix in powers ofA

M(g) = 5o (9) + w0 (9) + o). (1.53)

Small A-optimal estimating functions minimize the leading ternfirb3). Ja-
cobsen (2001) obtained (1.53) by Ito-Taylor expansioreskdeeden & Platen
(1999), of the random matrices that appear in the expres$mmi’” andV
under regularity conditions that will be given below. A sianiexpansion was
used in Ait-Sahalia & Mykland (2003) and Ait-Sahalia & Mghkd (2004).

To formulate the conditions, we define the differential @per.4y, 6 € O. Its
domain[I, is the set of continuous real-valued functigese, y) — (s, z,y)
of s > 0 and(z,y) € (¢,r)? that are continuously differentiable with respect
to s and twice continuously differentiable with respecttorhe operatordy
is given by

-’4990(871'73/) = as(p(svxvy) +A9§0(S,$,y), (154)
where Ay is the generator (1.46), which for fixedand z is applied to the
functiony — ¢(s,z,y). The operatotd, acting on functions i that do
not depend on: is the generator of the space-time procgsX;):>o. We also
need the probability measu€g* given by (1.16). Note that in this section the
dependence oA is explicit in the notation.

Condition 1.3.9 The functiony belongs td" and satisfies that
/ZT /ZT ¢ (s,2,9)Q5, (dz, dy) < oo
/; /,ZT(AGOS"(Saxay))QQSO(d%dy) < o0
[ @uetoso? s s, (. ) < o

forall s > 0.

As usualfy = («p, Bp) denotes the true parameter value. We will say that a
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function with values inR* or IR**¢ satisfies Condition 1.3.9 if each compo-
nent of the functions satisfies this condition.

Suppose satisfies Condition 1.3.9. Then by Ito’s formula

t
(,O(t, XOa Xt) = 90(03 XOvXO) + / A90<P(57X05 XS)dS (155)
0

t
+ / ay(p(s, Xo, XS)U(XS§ BO)dWs
0

underPy, . A significant consequence of Condition 1.3.9 is that theritegral
in (1.55) is a truePy,-martingale, and thus has expectation zero urfger
If the function Ay, ¢ satisfies Condition 1.3.9, a similar result holds for this
functions, which we can insert in the Lebesgue integral iBXYL By doing so
and then taking the conditional expectation giv€n = = on both sides of
(1.55), we obtain

ﬂ'f“(tp)(t,:c) = (0, 2,2) + tAg, (0, 2, 2) + O(t?), (1.56)
where

Ff((p)(t, ,T) =By (So(thOa Xt)|X0 = ,T) :

If the functionsAj, ¢, i = 0, ..., k satisfy Condition 1.3.9, wherd;, denotes
i-fold application of the operatod,,, we obtain by similar arguments that

k i
(Pt w) = 3 S A (0. ) + O, (L5T)
i=0

Note thatA} is the identity operatord), = . The previously used expansion
(1.47) is a particular case of (1.57). In the case whed®es not depend an
(ory) the integrals in Condition 1.3.9 are with respect to thaifant measure
o, - If, moreovery does not depend on time the conditions do not depend
ons.

Theorem 1.3.10Suppose that the functigiA, x, y; 6p) in (1.12) is such that
g, 9grg, gg* and Ay, g satisfy Condition 1.3.9. Assume, moreover, that we
have the expansion

g(A, 2, y;600) = g(A, z,y;00) + Adag(0,z,y;60) + 0gy,0,4(A).
If the matrix
S = /T By, (z) o, (x)dx (1.58)
is invertible, where ‘
By(z) = (1.59)
Oab(z; )0yg1(0, z, 3 0) %aﬁaz(x;ﬁ)aggl(o,x,x;ﬁ)

Dab(x; )0y g2(0,z,2;0) 10507 (x; 5)8592(0, x,x;0)
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then (1.53) holds with

(J7 (@ablas00))? /02 oo, (x)dz) 0

v_1(g) > (1.60)
0 0
There is equality in (1.60) if
Byg1(0,2,2;600) = dab(w;0)/0” (5 Bo), (1.61)
0yg2(0,z,2;60p) = O (1.62)

forall x € (¢,r). In this case, the second term in (1.53) satisfies that
-1

wnlo)en =2 ([ (000 (ai ) "o o () )
with equality if

9292(0,x,x;60) = dpo” (x; o) /o™ (5 Bo), (1.63)
forall x € (¢,7).

By 0,9:(0, z, z; 8) we meard,g;(0, y, z; §) evaluated ayy = =, and similarly
for second order partial derivatives. Thus the conditiansmallA-optimality
are (1.61), (1.62) and (1.63). For a proof of Theorem 1.3s&@, Jacobsen
(2001). The condition (1.62) ensures that all entriesaf(g) involving the
diffusion coefficient parametes, are zero. Since_; (g) is theA~!-order term
in the expansion (1.53) of the asymptotic covariance maitnis dramatically
decreases the asymptotic variance of the estimatgrwhenA is small. We
refer to the condition (1.62) alacobsen’s conditian

The reader is reminded of the trivial fact that for any namgsilar2 x 2 ma-
trix, M,,, the estimating functions/,,G,,(6) andG,,(0) give exactly the same
estimator. We call thenaersionsof the same estimating function. The matrix
M, may depend or\,,. Therefore a given version of an estimating function
needs not satisfy (1.61) — (1.63). The point is that a versiost exist which
satisfies these conditions.

Example 1.3.11Consider a quadratic martingale estimating function of the
form
ar(z, A; )y — F(A, 23 6)]
9Dy, 7:0) = ) . (1.64)
ag(l', A; 9) [(y - F(Aa ;5 9)) - ¢(Aa ;5 9)]

whereF and¢ are given by (1.26) and (1.27). By (1.4BH(A,z;0) = = +
O(A) andg(A, z;0) = O(A), so

(1.65)

a1 (z,0;0)(y —x
g(Ovy,I;9)—< i - )>.

az(x,0;0)(y — x)°
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Sinced, g2(0,y, z; 0) = 2a2(x, A; 6)(y — x), the Jacobsen condition (1.62) is
satisfied for all quadratic martingale estimating funcsidosing again (1.47), it
is not difficult to see that the two other conditions (1.619 §éh63) are satisfied
in three particular cases: the optimal estimating functioren in Example
1.3.6 and the approximations (1.28) and (1.51). O

The following theorem gives conditions ensuring, for gifenctionsfi, . ..,
fn, that a smallA-optimal estimating function of the form (1.30) and (1.40)
exists. This not always the case. We assume that the fuscfign; 9),. ..,
fn(-;6) are of full affine rank for alb, i.e., for anyd € ©, the identity

N
Za?fj(x;é') +ab=0, ze(,r),
j=1

for constants?, implies thataf = af = --- = a%, = 0.

Theorem 1.3.12 Suppose thal > 2, that the functiong; are twice continu-
ously differentiable and satisfies that the matrix

< O fr(x;0) 07 f1(x;6) )
D(z) =

O fa(x;0) 03 fa(x;0)
is invertible forug-almost allz. Moreover, assume that the coefficiehtsnd
o are continuously differentiable with respect to the parteanerhen a spec-
ification of the weight matrix:(x; ) exists such that the estimating function
(1.30) satisfies the conditions (1.62), (1.61) and (1.63edN = 2, these
conditions are satisfy for

( Oab(x; ) Jv(z; B) c(x; ) )
a(x;0) = D(z)™' (1.67)
0 I (x; B)/v(a; B)?

For a proof of Theorem 1.3.12, see Jacobsen (2002). In $etify we shall
see that the Godambe-Heyde optimal choice (1.32) of thehiamgtrix in
(1.30) gives an estimating function which has a version $hatisfies the con-
ditions for smallA-optimality, (1.61) — (1.63).

We have focused on one-dimensional diffusions to simphiéydéxposition. The
situation becomes more complicated for multi-dimensiatifiisions, as we
shall now briefly describe. Details can be found in Jacob280%). For ad-
dimensional diffusiony(z; o) is d-dimensional and(x; 3) = o (x; 3)o(z; 3)T

is adxd-matrix. The Jacobsen condition is unchanged (excepdifyat0, x, x; 6y)
is now ad-dimensional vector). The other two conditions for smglbptimality
are

(1.66)

for any functiorc(z; 9).

aygl (Ov €L, T; 90) = 8041)(17; aO)Tv(x; 60)71
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and

Vec(@igg(o, T,T; 90)) = vec(dgv(x; Bo)) (vm(:c; 50))71 .
Inthe latter equation, véa/) denotes, for &@x d matrix M, thed?-dimensional
row vector consisting of the rows @il placed one after the other, add®?
is the d? x d?-matrix with (7', j), (ij)th entry equal toM;;M;;. Thus if
M = dgv(x; 3) and M* = (v¥%(x;8))~!, then the(s, j)th coordinate of
VeC(M) Me*is Zi’j’ Mi/j’M(.i’j’),(i,j)'

For ad-dimensional diffusion process, the conditions analogouthose in
Theorem 1.3.12 ensuring the existence of a sthadiptimal estimating func-
tion of the form (1.30) is thaV > d(d+3)/2, and that theV x (d+d?)-matrix

( Opr f(x;0) 02rf(x:0) )
has full rankd(d + 3)/2.

1.3.5 Simulated martingale estimating functions

The conditional moments that appear in the martingale esitig functions
can for most diffusion models not be calculated explicFlgr a versatile class
of one-dimensional diffusions, optimal martingale estimgafunctions can be
found explicitly; see Subsections 1.3.6 and 1.3.7. Estonaind inference is
dramatically simplified by using a model for which an exglaptimal martin-
gale estimating function is available. However, if for soreason a diffusion
from this class is not a suitable model, the conditional matsenust be deter-
mined by simulation.

The conditional moment5* f(x) = FEy(f(Xa)|Xo = ) can be found

straightforwardly. Simply fixd and simulate numerically/ independent tra-
jectoriesX ), i = 1,...,M of {X, : t € [0,A]} with X, = z. Of course,

a trajectory cannot be simulated continuously fortalt [0, A]. In practice

values of{ X5 : j = 0,..., K} are simulated, wher& is a large integer and
0 = A/K. By the law of large numbers,

1 M )
T f (@) = M;ﬂxx ).

The variance of the error can be estimated in the traditioagi and by the
cental limit theorem, the error is approximately normatriisited. This sim-
ple approach can be improved by applying variance reductiethods, for
instance methods that take advantage of the facttfgtz) can be approxi-
mated by (1.47). Methods for numerical simulation of diffusmodels can be
found in Chapter xxxx and Kloeden & Platen (1999).

The approach just described is sufficient when calculatiegconditional ex-
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pectation appearing in (1.40). Note, however, that whenguaisearch algo-
rithm to find a solution to the estimating equation, it is inpat to use the
same random numbers (the same seed) when calculating imatsg func-
tions for different values of the parameterMore care is needed if the opti-
mal weight functions are calculated numerically. The peabls that the opti-
mal weight matrix typically contains derivatives with regptod of functions
that must be determined numerically, see e.g. Example.lP&dersen (1994)
proposed a procedure for determinifigr?* f(x; 6) by simulations based on
results in Friedman (1975). However, it is often preferdblese an approx-
imation to the optimal weight matrix obtained by using (J),430ssibly sup-
plemented by Gaussian approximations, as explained inegtibe 1.3.3. This
is not only much simpler, but also avoids potentially sesipuoblems of nu-
merical instability, and by results in Section 1.6 the loksféiciency is often
very small. The approach outlined here, where martingaieatng functions
are approximated by simulation, is closely related to theutated method of
moments, see Duffie & Singleton (1993) and Clement (1997).

One might be worried that when approximating a martingatienasing func-
tion by simulation of conditional moments, the resultingraator might have
considerably smaller efficiency or even be inconsisterg.agymptotic proper-
ties of the estimators obtained when the conditional moseat approximated
by simulation were investigated by Kessler & Paredes (2008 found that
if the simulations are done with sufficient care, there is @edito worry. How-
ever, their results also show that care is needed: if theetigation used in the
simulation method is too crude, the estimator behaves biddgsler & Paredes
(2002) considered martingale estimating functions of eegal form

Gn(0) = [f(Xin, X(i-1)a;0) — F(X-1)a30)], (1.68)

I

=1

wheref is ap-dimensional function, and
F(x;0) = Eo(f(Xa,2;0))|Xo = ).

As previously,X is the unique solution of the stochastic differential egprat
(1.12). For simplicityX is assumed to be one-dimensional, but Kessler & Pare-
des (2002) point out that similar results hold for multiedei diffusions. Below
the dependence of on the initial valueX, = x andé is, when needed, em-
phasized in the notation by writing (z, 6).

LetY (4,0, x) be an approximation to the solutiof(d, ) , which is calculated
at discrete time points with a step sizthat is much smaller thafy, and which
satisfies tha¥} (0, 6, ) = x. A simple example is the Euler scheme

Yis = Yii1)s + b(Y(i-1)5:0)0 + 0 (Yi-1)5:0)Zi, Yo =, (1.69)
where theZ;s are independent aril ~ N(0, ).
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If the conditional expectatioft’(x; §) is approximated by the simple method
described above, we obtain the following approximatiomeodstimating func-
tion (1.68)

GY(0) = (1.70)

n M
Z f(Xia, Xi-1a; 0 Z (6,0 s Xi-na) Xa-nas0) |

whereY ) (8,6, z), j = 1,..., M, are independent copies Bf(é, 4, x).

Kessler & Paredes (2002) assume that the approximatiomsz}i€s, 6, x) is
of weak order3 > 0 in the sense that

|Eo(g(Xa(z,0),2:0)) — E(g(Ya(6,0,2),2;0))| < R(x;0)6°  (1.71)

for all & € ©, for all = in the state space of, and foré sufficiently small.
Here R(x; 0) is of polynomial growth inz uniformly for § in compact sets,
i.e., for any compact subsét C 0O, there exist constants;, Co > 0 such that
supgpe i | R(w;0)| < C1(1 + |2|?) for all z in the state space of the diffusion.
The inequality (1.71) is assumed to hold for any functidg, «; #) which is
2(B + 1) times differentiable with respect tg and satisfies thatand its par-
tial derivatives with respect te up to order2(3 + 1) are of polynomial growth

in z uniformly for # in compact sets. This definition of weak order is stronger
than the definition in Kloeden & Platen (1999) in that conofithe polynomial
order with respect to the initial valueis added, but Kessler & Paredes (2002)
point out that theorems in Kloeden & Platen (1999) that ghedrder of ap-
proximation schemes can be modified in a tedious, but stifaigtard, way to
ensure that the schemes satisfy the stronger conditioh)(1r¥particular, the
Euler scheme (1.69) is of weak order one if the coefficienthefstochastic
differential equation (1.11) are sufficiently smooth.

Under a number of further regularity conditions, Kessler &dtles (2002)
showed the following results about!!*-estimator/2-%, with GM-% given
by (1.70). We shall not go into these rather technical comut Not surpris-
ingly, they include conditions that ensure the eventualtexice of a consistent
and asymptotically normaF,,-estimator, cf. Theorem 1.3.2. dfgoes to zero
sufficiently fast that/né”® — 0 asn — oo, then

Vi (039 = 05) 2 N (0, (1 + M7Y)S),

whereY denotes the asymptotic covariance matrix 6f,aestimator, see The-
orem 1.3.2. Thus foé sufficiently small and\/ sufficiently large, it does not
matter much that the conditional momédmitz; 6) has been determined by sim-
ulation in (1.70). Moreover, we can control the loss of effiaiy by our choice
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of M. However, whem < lim,, .o, /76" < oo,
Vit (0359 = 00) 2 N (m(60), (1 + M),
and when,/né® — oo,
57 (ég"é - 90) — m(fo)

in probability. Here the-dimensional vectom(6,) depends orf and is gen-
erally different from zero. Thus it is essential that a sigfitly small value of
0 is used. The discretization problems caused by the choiteari be avoided
by using the exact simulation methods introduced by BeskB®eBerts (2005)
and Beskos, Papaspiliopoulos & Roberts (2006), see Chayptgr

1.3.6 Explicit martingale estimating functions

In this section we consider one-dimensional diffusion meder which esti-
mation is particularly easy because an explicit martingatenating function
exists.

Kessler & Sgrensen (1999) proposed estimating functioieoform (1.41)
where the functionsf;, i = 1,..., N are eigenfunctiondor the generator
(1.46),i.e.

Ag fi(@;0) = —=;(0) f; (@3 0),
where the real numbey;(6) > 0 is called theeigenvaluecorresponding to

fi(z; ). Under weak regularity conditiong; is also an eigenfunction for the
transition operator? defined by (1.42), i.e.

) (f5(0))(z) = e O f(2:6).
for all ¢ > 0. Thus the functiork; given by (1.40) is explicit.

The following result holds for ergodic diffusions. The diynsf the stationary
distribution is, as usual, denoted py.

Theorem 1.3.13Let ¢(x; 0) be an eigenfunction for the generator (1.46) with
eigenvalue\(6), and suppose that

/g [02:0(; 0)0 (3 0)]? g (dx) < oo (1.72)
forall ¢ > 0. Then

m(6(0))(z) = e MO (x30). (1.73)
forall t > 0.
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Proof: DefineY; = e M¢(X;). We suppresg in the notation. By Ito’s formula

Y; —Y0+ft MIAG(X ) + AD(X)]ds + [ ¢! (X )o(Xs)dW,
=Yo+ [y “cb’ s)o(X )dWs,

so by (1.72)Y is a true martingale, which implies (1.73). O

Note that ifo(z; §) and9d,¢(x; 0) are bounded functions af € (¢,r), then
(1.72) holds. If¢ is a polynomial of ordet ando(z) < C(1 + ™), then
(1.72) holds if the2(k + m — 1)'th moment of the invariant distributiony is
finite.

Example 1.3.14For the square-root model (CIR-model) defined by (1.37)
with & > 0, 3 > 0, andr > 0, the eigenfunctions arg; (z) = L") (28z7-2)
with v = 206772 — 1, whereLE”) is theith order Laguerre polynomial

0y = S ey [TV )2

1w = 32 ()=

and the eigenvalues aféd : i = 0,1,---}. Itis easily seen by direct calcula-
tion thatLZ(.”) solves the differential equation

rof'(x) = Bz — a) f'(x) +iBf(x) = 0

By Theorem 1.3.13, (1.73) holds, so we can calculate all itiomél poly-

nomial moments, of which the first four were given in Exampl&.4. Thus
all polynomial martingale estimating functions are exipfior the square-root
model.

Example 1.3.15The diffusion given as the solution of
dX; = —0tan(Xy)dt + dWs, (1.74)

is an ergodic diffusion on the intervél-7/2, 7/2) provided that? > 1/2,
which implies that Condition 1.3.1 is satisfied. This pracess introduced
by Kessler & Sgrensen (1999), who called it an Ornstein-albdek process
on (—m/2,7/2) becauseanx ~ x near zero. The generalization to other
finite intervals is obvious. The invariant measure has aitlepsoportional to
cos(w)?0.

The eigenfunctions are
6i(1:0) = C2(sin(2)), i=1,2,...,

whereC? is the Gegenbauer polynomial of orderand the eigenvalues are
i(0+1i/2),i =1,2,.... This follows because the Gegenbauer polynorffal
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solves the differential equation

, 2%+ 1)y ., (20 + i
f (y)‘i‘(yQi_l)yf(y)—l(ygi_f)

so thate; (x; 0) solves the equation

fly) =0,

S0 (360) — O tan () (:6) = —i(0 + 1/2)1 ().

Henceg; is an eigenfunction for the generator of the model with eigare
1(6 4+ i/2). From equation 8.934-2 in Gradshteyn & Ryzhik (1965) itdals
that

6:(x;6) =mz_:0( - lem ) ( foitiom )COS[(?m—i)(w/2—x)].

Condition (1.72) in Theorem 1.3.13 is obviously satisfiedese the state
space is bounded, so (1.73) holds.

The first non-trivial eigenfunction isin(z) (a constant is omitted) with eigen-
valued + 1/2. From the martingale estimating function

Gn(6) = isin(X(i,l)A)[sin(Xm)) — e~ (0+1/2)A sin(X¢;-1)a))], (1.75)
i=1

we obtain the simple estimator fr

Z?:l Sin(X(i,l)A) sin(Xl- ) 9 1 76
>iz1 sin®(Xi-1)a)

which is defined when the numerator is positive.

0, = —A""1 log <

An asymmetric generalization of (1.74) was proposed in ¢ar& Sgrensen
(2007) as a model of the logarithm of an exchange rate in @taane. The
diffusion solves the equation

sin (3m(Xy —m)/z) — ¢
cos (3m(Xy —m)/z)

wherep > 0, ¢ € (—1,1),0 > 0z > 0, m € IR. The process (1.74) is
obtained is wherp = 0, m = 0, z = /2, ando = 1. The state space is
(m — z,m + z), and the process is ergodicif> 1% and—1 + o2 /(2p) <

© < 1—0?/(2p). The eigenfunctions are

dXt = —p

dt + odW,

¢’L(:C7p7 0, 0,m, Z) — Pi(P(1*W)g’27%-,P(1+‘P)g’27%) (Sln(%ﬂx/z _ m)) ’

with eigenvalues\; (p, p,0) = i (p+ ino?),i = 1,2,.... Here P*" (z)
denotes the Jacobi polynomial of order

O
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For most diffusion models where explicit expressions fgeafunctions can
be found, including the examples above, the eigenfunctoa®f the form

0) =" ai;(0)r(y) (1.77)
Jj=0

wherex is a real function defined on the state space and is indepeafién
For martingale estimating functions based on eigenfunstaf this form, the
optimal weight matrix (1.32) can be found explicitly too.

Theorem 1.3.16 Suppose@N eigenfunctions are of the form (1.77) for=
1,...,2N, where the coefficients ; () are differentiable with respect @ If
a martingale estimating functions is defined by (1.40) usiiregfirst NV eigen-
functions, then

J

By(z,6);; Z (90,5601 (:6) = 09, ] M O205(;0)])  (1.78)

O

and
Vh(I, 9)1'73‘ = (179)
i
Z (azﬁ(e)% s(O)vrgs (25 6) — e PO+ (014 i(z;0)0; (; 9)) )
Whereul( 0) = % (k%) (x), i = 1,...,2N, solve the following triangular

system of Imear equations
e NOR g, (1:0) Zaw Wwi(z;0) i=1,...,2N, (1.80)

with vg(z; 0) = 1.

Proof: The expressions foB;, and V4, follow from (1.43) and (1.44) when
the eigenfunctions are of the form (1.77), and (1.80) fofldwy applying the
transition operator, to both sides of (1.77).

d

Example 1.3.17 Consider again the diffusion (1.74) in Example 1.3.15. We
will find the optimal martingale estimating function based the first non-
trivial eigenfunctionsin(x) (where we have omitted a non-essential multi-
plicative function off) with eigenvalue + 1/2. It follows from (1.45) that

By (z;0) = Ae” 01/ gin ()

becausein(z) does not depend ofr To find V;, we need Theorem 1.3.16.
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The second non-trivial eigenfunction¢f + 1) sin?(x) — 1 with eigenvalue
2(0+1),s0

va(ws6) = XA i () — £(6+1) 7]+ 56+ 1)
Hence the optimal estimating function is
sin X(l na)[sin(Xia) — e~ (0+2)A sin(X(;-1)a)]
3(e20FDA —1)/(0 +1) — (A — 1) sin®(X(i-1)a)

where a constant has been omitted. Wheis small, it is a good idea to mul-
tiply Gz (0) by A because the denominator is then of order

Note that when is sufficiently small, we can expand the exponential func-
tion in the numerator to obtain (after multiplication k) the approximately
optimal estimating function

z”: sin(X (i 1ya)[sin(X;a) — e @22 sin(X (i 1ya)]

5 () =
Gin(0) cos?(X(i—1)a)

=1
which has the explicit solution

> i tan(Xo1)a) Sin(XiA))/COS(X(il)A)> 1
2imy tan®(X(io1)a) 2

The explicit estimatod can, for instance, be used as a starting value when
finding the optimal estimator by solving;,(#) = 0 numerically. Note, how-
ever, that foiG,, the square integrability (1.17) und@p, required in Theorem
1.3.2 (to ensure the central limit theorem) is only satisfibénf, > 1.5. This
problem can be avoided by replacingsz(X(i,l)A) in the numerator by 1,

to which it is close when the process is not near the boursldnehat way

we arrive at the simple estimating function (1.75), whicthiss approximately
optimal too.

6,, = —A tlog <

d

1.3.7 Pearson diffusions

A widely applicable class of diffusion models for which eixjtl polynomial
eigenfunctions are available is the class of Pearson diffisssee Wong (1964)
and Forman & Sgrensen (2008). A Pearson diffusion is a statjosolution to
a stochastic differential equation of the form

dX; = ~B(X, — a)dt +/26(aX? + bX, + )dW,, (1.81)

wheres > 0, anda, b andc are such that the square root is well defined when
X is in the state space. The parameier 0 is a scaling of time that deter-
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mines how fast the diffusion moves. The parameters, b, andc determine
the state space of the diffusion as well as the shape of ttagiamt distribu-
tion. In particularq is the expectation of the invariant distribution. We define
0= (a,B,a,b,c).

In the context of martingale estimating functions, an int@ot property of the
Pearson diffusions is that the generator (1.46) maps paiyaie into polyno-
mials. It is therefore easy to find eigenfunctions among tignomials

n
pa(@) =D pnja’.
=0

Specifically, the polynomial,,(x) is an eigenfunction if an eigenvalug > 0
exist satisfying that

Blax? + bx + o)ph(z) — Bz — a)pl, () = —Aupn(2),

or
n n—1 n—2
Z{/\n — a;}pn;7’ + Z bjt1Pn, 127 + Z Cj+2Pn,j+22’ = 0.
J=0 Jj=0 Jj=0

wherea; = j{1 — (j — 1)a}B, b; = j{a+ (j — 1)b}B, andc; = j(j — 1)c0
for j = 0,1,2,.... Without loss of generality, we assurpg,, = 1. Thus by
equating the coefficients, we find that the eigenvalue isrgixe

An = an =n{l — (n—1)a}p. (1.82)

If we definep,, ,+1 = 0, then the coefficient§p,, ;}j=o,....n—1 SOIve the linear
system of equations

(aj = an)pnj = bj+1Pnj+1 + Cjy2Pnj+2- (1.83)
Equation (1.83) is equivalent to a simple recursive forniiuta, — a; # 0 for
allj =0,1,...,n — 1. Note thata,, — a; = 0 if and only if there exists an

integern — 1 < m < 2n — 1suchthatt = m~' andj = m —n+ 1. In
particular,a,, — a; = 0 cannot occur ifa < (2n — 1)~!. It is important to
notice that\,, is positive if and only ifa < (n —1)~1. We shall see below that
this is exactly the condition ensuring that(z) is integrable with respect to
the invariant distribution. If the stronger conditianc (2n — 1)~ is satisfied,
the firstn eigenfunctions belong to the space of functions that ararsgate-
grable with respect to the invariant distribution, and they orthogonal with
respect to the usual inner product in this space. The spafieofions that
are square integrable with respect to the invariant digtioh (or a subset of
this space) is often taken as the domain of the generatoroQGdly, the eigen-
functionp,, (x) satisfies the condition (1.72)f,(x) is square integrable with
respect to the invariant distribution, i.eadif< (2n —1)~!. By Theorem 1.3.13
this implies that the transition operator satisfies (1.88)thatp,,(x) can be
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used to constru@xplicit optimal martingale estimating functioas explained

in Subsection 1.3.6. For Pearson diffusions witk 0, a < (2n — 1)~! is au-
tomatically satisfied, so there are infinitely many polynahaigenfunctions.

In these cases the eigenfunctions are well-known famili@stbogonal poly-
nomials. Wheru > 0, there are only finitely many square integrable polyno-
mial eigenfunctions. In these cases more complicated figetions defined

in terms of special functions exist too, see Wong (19643. difisome historical
interest that Hildebrandt (1931) derived the polynomials\e from the view-
point of Gram-Charlier expansions associated with thegeeasystem. Some
special cases had previously been derived by Romanovsk¢#j19

From a modeling point of view, it is important that the classtationary dis-

tributions equals the full Pearson system of distributiortsus a very wide

spectrum of marginal distributions is available rangiranfrdistributions with

compact support to very heavy-tailed distributions wiitstaf the Pareto-type.
To see that the invariant distributions belong to the Pemasystem, note that
the scale measure has density

¢ U—
s(z) = exp </ 7du> ,
v QU2+ bu+c

wherex is a point such thaiz3 + bxg + ¢ > 0, cf. (1.14). Since the density
of the invariant probability measure is given by

1
s(z)(azx? + bz +c)’

po(w) o

cf. (1.15), it follows that

2a+1)x—a+b

’ —_ —
po(x) = PPy e fo ().

The Pearson system is defined as the class of probabilitytidsmzbtained by
solving a differential equation of this form, see Pears@9g).

In the following we present a full classification of the ergoBearson diffu-
sions, which shows that all distributions in the Pearsotesysan be obtained
as invariant distributions for a model in the class of Peamdiffusions. We
consider six cases according to whether the squared diffusiefficient is
constant, linear, a convex parabola with either zero, oneaoroots, or a con-
cave parabola with two roots. The classification problembsareduced by first
noting that the Pearson class of diffusions is closed urmtetion and scale-
transformations. To be specific, ¥ is an ergodic Pearson diffusion, then so
is X whereX, = v X, + 6. The parameters of the stochastic differential equa-
tion (1.81) forX area = a, b = by — 2ad, ¢ = ¢y — byd + ad?, B = 83,
anda = va + 6. Hence, up to transformations of location and scale, the er-
godic Pearson diffusions can take the following forms. Nbtg we consider
scale transformations in a general sense where multigithy a negative real
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number is allowed, so to each case of a diffusion with staaee(, co) there
corresponds a diffusion with state spdeex, 0).

Case 1.0%(x) = 23. The solution to (1.81) is an Ornstein-Uhlenbeck process.
The state space iR, and the invariant distribution is theormal distribution
with meana and variancé. The eigenfunctions are the Hermite polynomials.

Case 2:0%(x) = 23z. The solution to (1.81) is the square root process (CIR
process) (1.37) with state spa@eco). Condition 1.3.1 that ensures ergodicity
is satisfied if and only it > 1. If 0 < « < 1, the boundary 0 can with positive
probability be reached at a finite time point, but if the boanyds made instan-
taneously reflecting, we obtain a stationary process. TVaignt distribution

is thegamma distributiorwith scale parameter 1 and shape parametdte
eigenfunctions are the Laguerre polynomials.

Case 3:a > 0 ando?(z) = 2Ba(z* + 1). The state space is the real line,
and the scale density is given byz) = (22 + 1)2« exp(—2 tan~' z). By
Condition 1.3.1, the solution is ergodic for @l > 0 and allaa € R. The
invariant density is given by (z) o« (22 + 1)~ ' exp(2 tan~' z) If & = 0
the invariant distribution is a scaleeblistributionwith » = 1+ a~! degrees of
freedom and scale parameteT%. If @ # 0 the invariant distribution is skew
and has tails decaying at the same rate as-thistribution with1+a~' degrees
of freedom. A fitting name for this distribution is tis&ewt-distribution It is
also known afearson’s type IV distributiarin either case the meandsand
the invariant distribution has moments of orddior k < 1 + a~!. Because of
its skew and heavy tailed marginal distribution, the cldshifusions witha £

0 is potentially very useful in many applications, e.g. finank was studied
and fitted to financial data by Nagahara (1996) using the Iahrization
method of Ozaki (1985). We consider this process in moreldetw.

Case 4:a > 0 ando?(z) = 2Baz?. The state space ¥, o) and the scale
density iss(z) = z« exp(2%). Condition 1.3.1 holds if and only i > 0. The
invariant distribution is given by (z) o =~ 2 exp(—-%), and is thus am-

verse gamma distributiowith shape parametér+ % and scale parameté.
The invariant distribution has moments of ordefor & < 1 + a~'. This pro-
cess is sometimes referred to as the GARCH diffusion modhed.pblynomial

eigenfunctions are known as the Bessel polynomials.

Case 5:a > 0 ando?(x) = 2Baz(x + 1).The state space i€, o) and

the scale density is(z) = (1 + z)“ z~%. The ergodicity Condition 1.3.1
holds if and only if > 1. Hence for alla > 0 and allz > a, a unique
ergodic solution to (1.81) exists. 0f < o < 1, the boundary 0 can be reached
at a finite time point with positive probability, but if the boodary is made
instantaneously reflecting, a stationary process is obtiaifihe density of the

invariant distribution is given by () o (1+z)~* ~1z% -1, Thisis a scaled
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F-distributionwith %‘ and% + 2 degrees of freedom and scale parameter.
The invariant distribution has moments of ordefor k£ < 1 +a~'.

Case 6:a < 0 ando?(z) = QBax(:c — 1). The state space i, o) and
the scale density is(z) = (1 — z)"="z«. Condition 1.3.1 holds if and only
if 2 < —1and=2 < —1. Hence for alla < 0 and alla > 0 such that
min(a, 1—a) > —a, aunique ergodic solution to (1.81) exist & a < —a,
the boundary 0 can be reached at a finite time point with pesftrobability,
but if the boundary is made instantaneously reflecting, @ostary process is
obtained. Similar remarks apply to the boundary 1 whea 1 — a < —a.
The invariant distribution is given by (z) « (1 — )~ !z~&~! and is
thus theBeta distributionwith shape parameters- and —= l—a This class of
diffusions will be discussed in more detail below. It is mvfnteferred to as the
Jacobi diffusiondecause the related eigenfunctions are Jacobi polynamials
Multivariate Jacobi diffusions were considered by Gourier& Jasiak (2006).

Example 1.3.18 The skewt-distribution with mean zeroy degrees of free-
dom, and skewness parametdras (unnormalized) density

f(z) o
(Vo4 o+ 13D 2exp (= 1 tan? (255 + )}

which is the invariant density of the diffusiafi, = /v(X; — p) with v =
1+a~tandp = «, whereX is as in Case 3. An expression for the normalizing
constant wherv is integer valued was derived in Nagahara (1996). By the
transformation result above, the corresponding stoahdsferential equation

is

A7y = —BZ,dt + \/25@ —1)"YZ2 + 2002 Zy + (1 + p2)v}dW,. (1.84)

For p = 0 the invariant distribution is the-distribution with v degrees of
freedom.

The skewt-diffusion (1.84) has the eigenvalugs = n(v —n)(v — 1)~ for
n < v. The four first eigenfunctions are

p(z) = =z,
dpr: (Lt
— 2 _ _
pQ(Z) = Z 1/_3Z R
1 9 5 B 5
p3lz) = 25— 12py222 24p°v + 3(14+p*)v(v 5)2 8p(14p?)v2
V=35 (v =5)(v—4) (v—5)(v—3)’
and

4 24pv Sy 144p%v — 6(1 + p?)v(v — 7) 2
v—T (v—T)(v—-06)

pa(z) = =z
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L 8e(1 + P2 (v —T7) +48p(1 + p2)rv2 (v — 6) — 192p u%z
(v="7)(v—=06)(v —5)
3(1+p*)?v(v —T7) — 72p*(1 + p*)v?
-7 - 6)v—4) !
provided thatr > 4. If v > 2i, the firsti eigenfunctions are square integrable

and thus satisfy (1.72). Hence (1.73) holds, and the eigetiftns can be used
to construct explicit martingale estimating functions. O

Example 1.3.19The model

dXy = —B[X; — (m +72)|dt + o1/22 — (X; — m)2dWy, (1.85)

where > 0 andy € (—1,1), has been proposed as a model for the random
variation of the logarithm of an exchange rate in a targetzmstween realign-
ments by De Jong, Drost & Werker (200L) & 0) and Larsen & Sgrensen
(2007). This is a diffusion on the intervgh — z, m + z) with mean reversion
aroundm + vz. It is a Jacobi diffusionobtained by a location-scale trans-
formation of the diffusion in Case 6 above. The parametguantifies the
asymmetry of the model. Whe#(1 — ) > ¢% and(1 + v) > ¢?, X is an
ergodic diffusion, for which the stationary distributicnd Beta-distribution on
(m — z,m + z) with parameterg; = 5(1 —v)o 2 andks = B(1 + 7)o 2

If the parameter restrictions are not satisfied, one or bioteoboundaries can
be hit in finite time, but if the boundaries are made instaedasly reflecting,
a stationary process is obtained.

The eigenfunctions for the generator of the diffusion (1 &%
b3 B,y 00m, 2) = PR T (@ —m) [2), =12,
WherePi(“’b) () denotes the Jacobi polynomial of ordegiven by
(ab) J<n+a)(a—|—b+n+j> N
P! 2- 1), —-1<z<1.
i Z iy ; (z—1)

The eigenvalue ob; is i(8 + 102(i — 1)). Since (1.72) is obviously satis-
fied, (1.73) holds, so that the eigenfunctions can be usednstaict explicit
martingale estimating functions. |

Explicit formulae for theconditional momentsf a Pearson diffusion can be
obtained from the eigenfunctions by means of (1.73). Syadlii

E(X{' | Xo=2) = Z(an“e “)x, (1.86)

k=0
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whereg, i.n = Dnks Gnne = 0for £ <n —1, and

n—1
An.k,e = — Z Pn,jqj,k,¢
j=kve
fork,¢=0,...,n—1with A, andp, ; given by (1.82) and (1.83). For details
see Forman & Sgrensen (2008).

Also the momentf the Pearson diffusions can, when they exist, be found
explicitly by using the fact that the integral of the eigemétions with respect to
the invariant probability measure is zero.We have seenatiatE (| X, |") <

< ifand only ifa < (k — 1)71. Thus ifa < 0 all moments exist, while for

a > 0 only the moments satisfying that< a~! + 1 exist. In particular, the
expectation always exists. The moments of the invariartilligion can be
found by the recursion

E(X7) =a, {bn E(X]" ")+ E(X))}, n=2,3,..., (1.87)
wherea,, = n{l—(n—1)a}g, b, = n{a+(n—1)b}s,andc, = n(n—1)cps.
The initial conditions are given by(&?) = 1, and EX;) = «. This can be

found from the expressions for the eigenfunctions, but iseneasily seen as
follows. By Ito’s formula

dX7 = —pnX] X, — p)dt + fn(n — )X 2(aX} 4+ bX, + c)dt
+n X[ o (X,)dWy,

and if E(X7?") is finite, i.e. ifa < (2n — 1)1, the last term is a martingale
with expectation zero.

Example 1.3.20Equation (1.87) allows us to find the moments of shewed
t-distribution, in spite of the fact that the normalizing constant of the dgns
is unknown. In particular, for the diffusion (1.84),

E(Z) = 0,
ezy) - L

3 4p(1 + p*)v*
E(Zt) (V—3)(V—2)’

24p2(1 + p?)v? + 3(v — 3)(1 + p?)?1/?

E(Z;l) v—4H¥-3)(v-2)

O

For a diffusionl’(XX') obtained from a solutioX to (1.81) by a twice differen-
tiable and invertible transformatidh, the eigenfunctions of the generator are
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pn{T1(z)}, wherep, is an eigenfunction of the generator &f The eigen-
values are the same as for the original eigenfunctionseSheoriginal eigen-
functions are polynomials, the eigenfunctionsIg4fX) are of the form (1.77)
with k = T—!. Henceexplicit optimal martingale estimating functions are also
available for transformations of Pearson diffusiomghich is a very large and
flexible class of diffusion processes. Their stochastiedéhtial equations can,
of course, be found by Ito’s formula.

Example 1.3.21For the Jacobi-diffusion (case 6) with= —a = % ie.

dX; = —B(X; — 3)dt + /BX: (1 — X;)dW;

the invariant distribution is the uniform distribution @6, 1) for all 5 > 0.
For any strictly increasing and twice differentiable dkafition functionF’, we
therefore have a class of diffusions givenYyy= F~1(X;) or

(F(Yy) — 5)f(¥)* + 5 F(Y){1 - F(Y,)}

i = -F F(v7)?

dt
BEY){1 - F(Y1)}
f)

which has invariant distribution with densiffy= F’. A particular example is
the logistic distribution

AWy,

for which
dY; = — 3 {sinh(z) + 8 cosh*(x/2)} dt + 21/ cosh(z/2)dW.

If the same transformatioA~!(y) = log(y/(1 — y)) is applied to the general
Jacoby diffusion (case 6), then we obtain

Y, = —pB{l1-2u+(1—p)e" —pe ' —8acosh?(Y;/2)} dt
+2+/—af cosh(Y;/2)dWy,

a diffusion for which the invariant distribution is the gealkized logistic dis-
tribution with density

eK/lw
= R
f(x) (1 + 61)K1+K2B(,‘£17/§2)7 x € )
wherex; = —(1 — a)/a, k2 = a/a and B denotes the Beta-function. This

distribution was introduced and studied in Barndorff-Nei, Kent & Sgrensen
(1982).
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Example 1.3.22L et againX be a general Jacobi-diffusion (case 6). If we ap-
ply the transformatiof’(z) = sin~* (22 — 1) to X;, we obtain the diffusion

__sin(y) — ¢
dYy = —p cos(¥)) dt + \/—aB/2dWy,
wherep = (1 + a/4) andp = (2a — 1)/(1 + a/4). The state space is
(—m/2,7/2). Note thatY” has dynamics that are very different from those of
the Jacobi diffusion: the drift is highly non-linear and tifusion coefficient
is constant. This model was considered in Example 1.3.15.

1.3.8 Implementation of martingale estimating functions

An R-package, where a number of methods for calculatingrestirs for dif-
fusion models are implemented, has been developed by Sté&daos and is
described in the book lacus (2008), which outlines the ugither theory too.
The R-package also contains implementations of methodsirfaulating so-
lutions to stochastic differential equations. It is, hoeewseful to notice that
for many martingales estimating functions the estimatorsasymptotically
equivalent estimators, can be calculated by means of staustitistical soft-
ware packages. Specifically, they can be calculated as teeidbast squares
estimators for non-linear regression models.

To see this, consider the weighted least squares estimbatained by mini-
mizing

C(0) = (1.88)

with f(z) = (f1(2),..., fx(z)) and
Vi = Vi(Xi, ,;6n), (1.89)

whereV, is theN x N-matrix given by (1.44), and,, is a consistent estimator
of 6. As usual,7{ denotes the transition operator (1.42). The consisteit est
mator can, for instance, be the non-weighted least squatiesagor obtained
by minimizing (1.88) withV; = I, wherely is the N x N identity matrix.
The weighted least squares estimator obtained from (1.88) Wy given by
(1.89) solves the estimating equation

Z Bh(Xti—l 5 O)Vh (Xti—l ) én)71 [f(th) - ﬂ—eA(f)(Xtiq )] =0 (190)
=1



MARTINGALE ESTIMATING FUNCTIONS 43

with By, given by (1.45). Therefore this estimator has the same amtiop
variance as the optimal;,-estimator withh given by (1.40); see e.g. Jacod &
Sgrensen (2009). The estimating function (1.90) is siniilapirit to (1.39).
The estimators obtained by minimizing (1.88) is the weidghtast squares
estimator for a regression model for the ditX,), i = 1,...,n with X, .,

i = 1,...,n, as explanatory regression variables, the non-lineaessgn
function 7% (f)(Xy, ,), and the weight matri¥;. In some particularly nice
cases, the regression function is linear in the parametedsthe estimator is a
linear regression estimator.

Example 1.3.23Let X be the square root process (1.37), and suppose we have
the observationX;a,i = 0,...,n. Letus think of(X;a, X2\),i=1,...,n,

as data with explanatory regression variablgs 1)a, i = 1,...,n, and with

the non-linear regression function

0 F(X@-1a;0) )
X i— = 5
A2 = (G200 1 pox aior
where F' and ¢ are as in Example 1.3.6. Then we obtain a weighted least

squares estimator f@r, by minimizing (1.88) withf;(z) = z, f2(z) = 22,
and

Vh(x;e) =
(¢(:1:;9) n(x; 0)+2F (x;0)¢(x; 0)? )
n(x; 0)+2F (x;0)p(2;0)*  (x;0)+4F (;60)*p(x; 0)+4F (x5 0)n(x; 0) )7

wheren andy are as in Example 1.3.6.

This estimator has the same efficiency as the estimatonautdiom the opti-
mal martingale estimating function of form (1.30) with = 2 and

hi(z,y;0) = y— F(x;0)

ho(z,y;0) = y* —¢(z;0) — F(x;0)>.
The optimal estimating function of this form is equivalentthe optimal es-
timating function in Example 1.3.6. For the square root pescsome simpli-

fication can be achieved by using the Gaussian approximéti@8) in the
definition of the matrix/;,.

d

Example 1.3.24 Consider the process (1.74), and suppose we have the obser-
vationsX;a,i =0, ...,n. Letusthink ofsin(X;A),7 = 1, ..., n, as data with
explanatory regression variabl&g; 1,7 = 1,...,n and with the non-linear
regression function?, (sin) (X ;_1)a) = e~ @+1/22 sin(X(;_1)a). Again we
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can obtain a weighted least squares estimatof,foy minimizing (1.88) with

f(x) = sin(z) and
Vi(a;0) = 1(2@ DA _1)/(6, + 1) — (2 — 1)sin® (X _1ya),

whered,, is a consistent estimator, for instance the simple estin@atds).
Note that the non-linear regression is, in fact, a lineareggjon in the param-
eteré = e %2, The regression estimator equals the estimator obtairea fr
the estimating function
Z sin(X(;_1)a)[sin(Xia) — e D2 sin(X(;_1)a)]
1(e20a4DA 1) /(0 +1) — (A — 1) sin®(X(i_1)a)

which has the same efficiency as the optimal estimator obdain Exam-
ple 1.3.17. If instead we minimize (1.88) with the approxiioa V;, (z; ) =
cos?(z), then we obtain the estimat8y, from Example 1.3.17, and if we min-
imize (1.88) with the more crude approximatiGi(z; §) = 1, then we obtain
the simple estimator (1.76) from Example 1.3.15.

)

O

More generally, an estimator with the same efficiency as hienal estimator
from (1.30) with optimal weights (1.32) is obtained by miizng the objec-
tive function

Zh(Xti—l7Xti;9)T‘/i71h(Xti—]?Xti,;o) (191)
=1
with V; defined as in (1.89), but here wiih, given by (1.34). This estimator
can be found by applying standard software for minimizingeotive functions
to (1.91).

Example 1.3.25Let againX be the square root process (1.37), and consider
the martingale estimating function of form (1.30) with= 2 andh; andhs as
in Example 1.3.4. In this case an optimal estimator is olkthioy minimizing

(1.91) with
¢(x;0)  n(z;0) )
Vi(z;0) = ,
n(:6) ( n(z;0)  ¢(x;0)
where¢, n andy are as in Example 1.3.6. Here a considerable simplification
can be obtained by the Gaussian approximation (1.38). Withapproxima-

tion
oy ox:0) 0
Vh(I,G) - ( 0 2¢(1’,9)2 ) .
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1.4 The likelihood function

The likelihood function for a discretely observed diffusimodel, (1.24) is a
product of transitions densities. Unfortunately, the $ition density of a diffu-
sion process is only rarely explicitly known, but severainauical approaches
make likelihood inference feasible for diffusion models.

Pedersen (1995) proposed a method for obtaining an appativinto the like-
lihood function by rather extensive simulation. Pedersenéthod was very
considerably improved by Durham & Gallant (2002), whoselhmodtis com-
putationally much more efficient. Poulsen (1999) obtainedpproximation
to the transition density by numerically solving a partidfetential equation,
whereas Ait-Sahalia (2002) and Ait-Sahalia (2008) psegato approximate
the transition density by means of expansions. A Gaussiproajmation to
the likelihood function obtained by local linearization(@11) was proposed
by Ozaki (1985), while Forman & Sgrensen (2008) proposedécam approx-
imation in terms of eigenfunctions of the generator of tiféudion. Bayesian
estimators with the same asymptotic properties as the maritikelihood es-
timator can be obtained by Markov chain Monte Carlo metheds, Elerian,
Chib & Shephard (2001), Eraker (2001), and Roberts & Strai@@d1). Fi-
nally, exact and computationally efficient likelihood-bd®stimation methods
were presented by Beskos et al. (2006). The latter appr@aphesented in
Chapter XXX. In the following we will outline the expansiopgroach of Ait-
Sahalia (2002) for scalar diffusion models. The variousep#pproaches to
calculation of the likelihood function will not be consiger further in this
chapter.

Assume that the diffusion process (1.11) is one-dimensamathat the state
space is eithef—oo, o) or (0, ), i.e.r = oo and/ is either—oo or 0. The
coefficientsh ando are assumed to satisfy the following condition.

Condition 1.4.1
(i) The functiong(z; ) and o (z; 6) are infinitely often differentiable w.r.t:
and three times continuously differentiable wé-for all = € (¢,r) andd € O.

(i-a) If £ = —o0, there exists a constant> 0 such thato(x; 0) > ¢ for all
x € (¢,r)andalld € O.

(ii-b) If £ = 0, theno is non-degenerate ofd, co) in the sense that for each
¢ > 0 there exists a constant > 0 such thato(z; 0) > c¢ for all z > £ and
all ¢ € ©. Moreover, iflim,_,o o(x;0) = 0, then constants, w and p exist
such thatr (z; 0) > wz? forall z € (0, &) and alld € ©.

The idea is to make an expansion of the transition densityeyer, the distri-
bution of X o given X can be so far from a normal distribution that a conver-
gent expansion with the normal density as leading term ippoesible. This
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is possible for a diffusion with constant diffusion coeféint. Therefore the
standard transformation

h(z;0) = /z a(zj; ) du,
wherex* is arbitrary, is applied to obtain the diffusion process
Y: = h(Xy;9).
Sinceos > 0, the transformation is increasing, and by Ito’s formula
dY; = a(Yy; 0)dt + dWy, (1.92)

where b(h=1(4:):0)
o Y;0); 1

W) = 0y 0) 2
with ¢/(z;6) = d,0(x;0). The state space &f, (¢y,ry) could in principle
depend ord, but we assume that this is not the case. If only one of the dboun
aries/y andry is finite, it can always be arranged that the finite boundary
equals zero by choosing suitably. For instance ify = oo and/y is finite,
then we can choosg = ¢ to obtain/y = 0. We will assume thaty is either
—oo or 0, and thaty is either0 or co. It is further assumed thatsatisfies the
following condition (which can be translated into a coralitonb ando).

o' (h(y;0);6)

Condition 1.4.2
(i) For all 8 € ©, the drift coefficient:(y; 6) and its derivatives w.r.ty andé
have at most polynomial growth near the boundaries, and

lim[a(y; 9)2 + 0ya(y;0)] > —oco asy | ¢y and y T ry.

(ii-a) If ¢y = 0, then there exist constanis > 0, x anda such that(y; 6) >
ky > forall y € (0,¢) and all§ € O, where eithery > 1 andx > 0, or
a = 1andk > 1. If /y = —o0, then there exists constanfiy > 0 and K > 0
such thatu(y; 0) > Ky forally < —Eyandalld € ©.

(ii-b) If ry = 0, then there exist constanis > 0, k anda such that(y; ) <
—kly|~*forall y € (—€p,0) and all® € ©, where eithery > 1 andx > 0, or
a =1landk > 1/2.If ry = oo, then there exist constani > 0 and K > 0
such thata(y; 0) < Ky forall y > Ey and all € ©.

A real functionf is said to be of polynomial growth near a boundarg@abr
—oo if there exist constants > 0, K > 0 andp > 0 such thatf(z)| < C|z?
forx > K orz < —K. If the boundary is at zero, polynomial growth means
that there exist constants > 0, ¢ > 0 andp > 0 such thaf f(z)| < C|z|™P

for |z| <e.

Under the assumptions imposed, a solution exists to (1.9R)avtransition
density that is sufficiently regular for likelihood infera® This is the contents
of the following proposition from Ait-Sahalia (2002).
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Proposition 1.4.3 Under the Conditions 1.4.1 and 1.4.2, the stochastic differ
ential equation (1.92) has a unique weak solution for eveitjai distribu-
tion. The boundaries are unattainable. The solufidhas a transition density
py (A, yo0,y; 0) that is continuously differentiable w.rd, infinitely often dif-
ferentiable w.r.ty € (¢y,ry ), and three times continuously differentiable w.r.t.
0 € 0.

This result implies that the original stochastic diffeieh¢quation (1.11) has a
unigue weak solution, and by the transformation theorerdéoisity functions,
it has a similarly regular transition density given by

(A, xo,7;0) = py (A, h(x0;0), h(x;0);0) /0 (;0). (1.93)

Instead of expanding the transition density}ofi.e. the conditional density
function of YA givenYy = g4, we expand the conditional density of the nor-
malized increment

Z = A" (Ya - o)
givenYy = yo. This is becausey gets peaked aroung) as A gets close
to zero, whereas the distribution ¢f is sufficiently close to theV(0,1)-
distribution to make it the appropriate transformation’df to obtain a con-
vergent expansion of the conditional density function wlith standard normal
density function as the leading term. Obviously,

Py (A, yo,y30) = A 2p2 (A, A2 (y — yo) | 103 0), (1.94)
wherepz (A, z | yo; 0) is the conditional density of given thatY = yo.

We can now obtain an approximation to the transition derity, and hence
an approximation to the likelihood function, by expanding tonditional den-
sity, pz, of Z givenY, = g, in terms of Hermite polynomials up to ordér

pé( Z|y07 ZTM A y07 ( )1 (195)

wherep denotes the density function of the standard normal digich, and
Hj is thejth Hermite polynomial, which is defined by

. d’
H;(z) = (=1 ™2 _e2*/2 j=0,1,....

dxd
The Hermite polynomials up to order 4 are
Ho(z) = 1
Hi(z) = =
Hy(z) = 22-1
Hs(z) = z°—3z
Hy(z) = z*—62°+3
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The coefficients); (A, yo; §) can be found by using that the Hermite polyno-
mials are orthogonal in the spaté(y):

/:: Hi(x)Hj(x)p(x)de = { 0 ifi#tj

il ifi=j.

Hence if

o0

Pz(A, 2] y0:0) = () Y ni(A,y0;0)H;(2),
j=0

it follows that
| w0t = Y n@dounid) [ HEH )
= ilni(A, yo;0).

By inserting the expansion (1.95) in (1.94) and (1.93), weainithe following
approximations to the transitions densitigsandp

J
PV (A0, 30) = A7V 2o(AT2 (y—10)) Y i (A, yos 0)H; (A2 (y—10))

= (1.96)
and
p'](A, xo,z;0) = (1.97)
o (PaO b)) e
(\/Zag.e) ) an(Avh(I0§9)§9)Hj <h( 79)\/Zh( 0’0)) :

Jj=0

Ait-Sahalia (2002) gave the following theorem about thevesgence of the
approximatiornp” to the exact transition density

Theorem 1.4.4Under the Conditions 1.4.1 and 1.4.2, there exists- 0 such
that

lim pJ(A,:CO,:E;H) = p(A, x0,x;0)

J—00

forall A € (0,A), 6 € © and(xg,2) € (£, 7).
If rv = o0 anda(y;@) < 0 nearry, and ifa(y;0) > 0 nearly (which is
either 0 or—o0), thenA = oo, see Proposition 2 in Ait-Sahalia (2002).

In order to use the expansions of the transition densitiealtulate likelihood
functions in practice, it is necessary to determine thefmesfitsy; (A, yo; 0).
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Note that by inserting (1.94) in the expression aboverfoA, yo; 6) we find
that

1 o0
n(Ay0i0) = = / Hi(z)AY2py (A, yo, A2 + yo; 0)dz
1 [ _
= AT o)y (B0 0)dy
= B (Hi(Afl/Q(YA — %)) | Yo = yo) :
Thus the coefficients; (A, yo; 0),7 = 0,1, . . ., are conditional moments of the

processy’, and can therefore be found by simulationtdor X. An approxi-
mation ton; (A, yo; 8) can be obtained by applying the expansion (1.57) to the
functions(y — z)%,i = 1,..., J. For instance, we find that

m(A,yo;0) = AY2a(yg; 0) + LAY? (alyo; 0)0yalyo; 0) + %Bf,a(yo; 9))
+ O(A%/?)
n2(A,y0;0) = A (a(yo; 0)* + dya(yo; 9)) +0(A?).

By expanding the coefficienig (A, yo; 6) suitably and collecting terms of the
same order in\, Ait-Sahalia (2002) found the following approximationitp

PE(A, Yo, y;0) =

A2 (y_—\/zyo> exp </y a(w, 9)dw> ZK: i—,k%(yo,y; 9),

Yo k=0
wherecy(yo,y;0) = 1, and
ce(yo,y:0) =

k(y— o) " (w—10)""" [Mw; 0)cr—1 (yo, w; 0)+ 10 cr—1 (yo, w; 0)] duw,
Yo

for k > 1, where
AMw; 0) = =3 (a(w; 0)* + dpa(w;0)) .
1.5 Non-martingale estimating functions
1.5.1 Asymptotics
When the estimating function

Gn(0) =Y 9(X(iorsnas-- > Xias0)
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is not a martingale undd?y, further conditions on the diffusion process must
be imposed to ensure the asymptotic normality in (1.5). Aigeht condi-
tion that (1.5) holds unde®,, with V(6) given by (1.98) is that the diffusion
process is stationary and geometricallynixing, that

V() = Qo (9(0)g(0)") (1.98)

o0

+ Z [Eeo (Q(XAa e 7XTA)9(X(k+1)A7 - 7X(k+r)A)T)
k=1

+ Eoy (9(Xk+1)as - X(errya)9(Xa, .. Xoa)")]

converges and is strictly positive definite, and tat (¢;(0)*1€) < oo, i =
1,...,pforsomee > 0, see e.g. Doukhan (1994). Heygis theith coordinate
of g, andQy is the joint distribution ofX », ..., X;.A underP,. To define the
concept ofa-mixing, let F; denote thes-field generated by X | s < ¢}, and
let 7' denote ther-field generated by X | s > ¢}. A stochastic proces¥ is
said to ben-mixingunderPy,, if
sup [Py, (A) Py, (B) — Pa,(AN B)| < a(u)
AeF;,BeFttu
forallt > 0 andu > 0, wherea(u) — 0 asu — oo. This means thak; and
X:4,, are almost independent, wheris large. If positive constants andcs
exist such that
alu) < ere” ",
for all w > 0, then the procesX is called geometrically-mixing. For one-
dimensional diffusions there are simple conditions forrgetsica-mixing. If
all non-zero eigenvalues of the generator (1.46) are largar some\ > 0,
then the diffusion is geometrically-mixing with ¢ = A. This is for instance
the case if the spectrum of the generator is discrete. Ecghbffusions with a
linear drift—g(z — «), 8 > 0, for instance the Pearson diffusions, are geomet-
rically a-mixing with ¢o = [3; see Hansen, Scheinkman & Touzi (1998).

Genon-Catalot, Jeantheau & Larédo (2000) gave the fatigwgimple suffi-
cient condition for the one-dimensional diffusion thatved (1.11) to be geo-
metrically a-mixing, provided that it is ergodic with invariant probhtyi den-

Sity 9.

Condition 1.5.1

(i) The functiorb is continuously differentiable with respectitpando is twice
continuously differentiable with respecttoo(x;0) > 0 forall x € (¢,r),
and a constanis, > 0 exists such thab(z; 0)| < Ky(1+|z|) ande?(z;0) <
Ko(1+22)forallz € (¢,r).

(i) o(x;0)pg(z) — 0asz | Landx T r.
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(i) 1/~(x; 0) hasafinitelimitas: | ¢andx 1 r, wherey(x; 0) = 0y0(z; 0)—
2b(x;0)/o(x;0).

Other conditions for geometrie-mixing were given by Veretennikov (1987),
Hansen & Scheinkman (1995), and Kusuoka & Yoshida (2000).

For geometricallyx-mixing diffusions processes and estimating functiéhs
satisfying Condition 1.2.1, the existence of-gonsistent and asymptotically
normalG,, -estimator follows from Theorem 1.2.2, which also contaimesult
about eventual uniqueness of the estimator.

1.5.2 Explicit non-martingale estimating functions

Explicit martingale estimating functions are only avaiakor the relatively

small, but versatile, class of diffusions for which expglieigenfunctions of
the generator are available; see the Subsections 1.3.6.37d Explicit non-

martingale estimating functions can be found for all diifuns, but cannot be
expected to approximate the score functions as well as mgatfé estimating
functions, and therefore usually give less efficient estiimga As usual we con-
sider ergodic diffusion processs with invariant proba&pitiensity.g.

First we consider estimating functions of the form
Gn(0) =D h(Xaib), (1.99)
=1

whereh is ap-dimensional function. We assume that the diffusion is getem
rically a-mixing, so that a central limit theorem holds (under angndbility
condition), and that Condition 1.2.1 holds for= 1 andé = 6,. The latter
condition simplifies considerably, because for estimafimgtions of the form
(1.99), it does not involve the transition density, but athly invariant probabil-
ity densityue, which for one-dimensional ergodic diffusions is given koifly
by (1.15). In particular, (1.6) and (1.7) simplifies to

o (1(60)) = [ Gz B o, () =0 (1.100)
and .
W = i, @prh00)) = [ Oprh(as80)uo, (@)

The condition for eventual uniqueness of thg-estimator (1.9) is here thég
is the only root ofug, (h(6)).

Kessler (2000) proposed
h(x;0) = Jglog po(x), (1.101)
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which is the score function (the derivative of the log-likelod function) if we
pretend that the observations are an i.i.d. sample fromt&i®sary distribu-
tion. If A is large, this might be a reasonable approximation. Tha0().is
satisfied for this specification affollows under standard conditions that allow
the interchange of differentiation and integration.

/z (Op log po(z)) po(x)de = /e Oppig(z)dx = Bg/g wo(z)dz = 0.

A modification of the simple estimating function (1.101) veh®wn by Kessler,
Schick & Wefelmeyer (2001) to be efficient in the sense of gamamet-
ric models. The modified version of the estimating functicesvderived by
Kessler & Sgrensen (2005) in a completely different way.

Hansen & Scheinkman (1995) and Kessler (2000) proposedtadded the
generally applicable specification

hj(x;0) = Aafj(x;0), (1.102)

whereAy is the generator (1.46), anfd, j = 1, ..., p, are twice differentiable
functions chosen such that Condition 1.2.1 holds. The egiig function with
h given by (1.102) can easily be applied to multivariate diffuns, because an
explicit expression for the invariant density is not needed. The following
lemma for one-dimensional diffusions shows that only weakditions are
needed to ensure that (1.100) holds/gmiven by (1.102).

Lemma 1.5.2 Supposef € C?((¢,r)), Aaf € L'(ug) and
lim f'(@)o®(2; 0)po(w) = lim f'(x)0™ (23 0)po (). (1.103)
Then i,
| opi@pota)i =o.

Proof: Note that by (1.15), the function(z;0) = o2 (x;60)ue(z) satisfies
that/(x; 0) = b(x; 8)ue(x). In this proof all derivatives are with respectito
It follows that

/;(Aef)(w)ue(:v)dcv
- L " (b3 0) (2) + 207 (23 0) " (2)) o)

T

/ (P @) @:0) + £ ()l 6)) di = / (f (@) 0)) de
/

4
= lim f'(@)o®(2;0)pe(w) — lim f'(z)0™ (2;0) g (x) = 0.

xr—r
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Example 1.5.3 Consider the square-root process (1.37) with 1. For f1(x) =
x andfy(z) = 22, we see that

_ —f(z — )
A@f(x) = ( —2ﬁ(£€—0&)£€+$ 9
which gives the simple estimators
Lo PIE
&n = ﬁ ZXiA7 Bn = = N\
i—1 1 n ) 1 n
(ZX (r2) )

The condition (1.103) is obviously satisfied because thariamt distribution
is a normal distribution.

Conley et al. (1997) proposed a model-based choice of e (1.102):f; =
0y, log pe(x), i.e. the i.i.d. score function used in (1.101). Thus thetaoted
an estimating function of the form (1.99) with

h(x;0) = Agdg log po(x). (1.104)

Sgrensen (2001) independently derived the same estinfatiatjon as an ap-
proximation to the score function for continuous-time akagon of the diffu-
sion process. Jacobsen (2001) showed that this estimatiegjdn is smallA-
optimal. This result was later rediscovered by Ait-Sah&liMykland (2008)
who obtained a similar result for estimating functions gty (1.105).

An estimating function of the simple form (1.99) cannot bpexted to yield
as efficient estimators as an estimating function that dégpen pairs of con-
secutive observations, and therefore can use the infawmatintained in the
transitions. Hansen & Scheinkman (1995) proposed noningate estimating
functions of the form (1.12) witly given by

9 (A, 2,45 0) = hj(y) Ao fi(z) — f;(x)Agh;(y), (1.105)

where the functiong; andh; satisfy weak regularity conditions ensuring that
(1.6) holds ford = 6,. The differential operatad, is the generator of the time
reversal of the observed diffusict. For a multivariate diffusion it is given by

d d
Aof(@) =) bi(@;0)0,, (@) + 5 D Cre(w;0)03, ., f (x),
k=1

k,e=1
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whereC = g1 and

U

bi(x;0) = —bi(x:6)

o (oChr) (3 0).
z:1

For one-dimensional ergodic diffusiondy, = Ay. Thath = b for a one-
dimensional diffusion follows from (1.15). Obviously, tkestimating function
of the form (1.99) withh; (z; 8) = Ay f;(z) is a particular case of (1.105) with
hj(y) = 1.

1.5.3 Approximate martingale estimating functions

For martingale estimating functions of the form (1.30) ahdlQ), we can al-
ways, as discussed in Subsection 1.3.3, obtain an exgigibaimation to the
optimal weight matrix by means of the expansion (1.47). Ffusion models
where there is no explicit expression for the transitionrafie, it is tempting
to go on and approximate the conditional momerigf; (¢))(x) using (1.47),
and thus, quite generally, obta@xplicit approximate martingale estimating
function Such estimators were the first type of estimators for distreb-
served diffusion processes to be studied in the literafthrey have been con-
sidered by Dorogovcev (1976), Prakasa Rao (1988), FlaZemsau (1989),
Yoshida (1992), Chan et al. (1992), Kloeden et al. (1996kskar (1997),
Kelly, Platen & Sgrensen (2004), and many othes.

It is, however, important to note that there is a dangerotialbihen using
these simple approximate martingale estimating functidhey do not satisfy
the condition that)g, (g(6p)) = 0, and hence the estimators are inconsistent.
To illustrate the problem, consider an estimating functibthe form (1.12)
with

9(x,y;0) = a(z,0)[f(y) — f(z) — Adg f(z)], (1.106)
whereAy is the generator (1.46), i.e., we have replac&d () by a first order
expansion. To simplify the exposition, we assume that and f are one-
dimensional. We assume that the diffusion is geometriealfgixing, that the
other conditions mentioned above for the weak convergessdtr(1.5) hold,
and that Condition 1.2.1 is satisfied. Then by Theorem 1R estimator
obtained using (1.106) converges to the solutiymf

Qa,(9(8)) =0, (1.107)

where, as usuab, is the true parameter value. We assume that the solution is
unique. Using the expansion (1.47), we find that

Quy(90)) = 1, (aO)nR f — f = Ao f])
= Apg, (a(0)[Ag,f — Ao f + LAAG f]) + O(A®)
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= (00— 0)Apue, (a(00)dp Ag, f) + A% g, (a(o) A7, f)
+O(A0 — 0o|%) + O(A%|0 — 6o]) + O(A®).
If we neglect allO-terms, we obtain that

0 = 0o + Adpua, (a(00) A, f) /1e, (a(00)Ds Ag, ) ,

which indicates that wheh is small, the asymptotic bias is of ordar How-
ever, the bias can be huge whéanis not sufficiently small as the following
example shows.

Example 1.5.4 Consider again a diffusion with linear drift,
b(z;0) = —f(z — ).

In this case (1.106) witlf (z) = = gives the estimating function

n

Gn(0) = Za(XA(iflﬁ 0)[Xni — Xag-1) + 8 (Xae-1) —a) Al
=1
whereqa is 2-dimensional. For a diffusion with linear drift, we fodim Exam-
ple 1.3.8 that
F(z;a,3) = ze P2 + a(l — e PP).
Using this, we obtain that

Qo (9(0)) = c1(e™™2 =1+ BA) + e28(a0 — ),

where
o1 = [ atwyana, (@) = oy (@)oo, c2 = pay (@A
D
Thus
a = Qg
and

_ 1—eHA ]
b=—R =%

We see that the estimator afis consistent, while the estimator gfwill tend

to be small ifA is large, whatever the true valyg is. We see that what deter-
mines how well3 works is the magnitude of, A, so it is not enough to know
that A is small. Moreover, we cannot u@: to evaluate whether there is a
problem, because this quantity will always tend to be sm#iien one. If5, A
actually is small, then the bias is proportionalicas expected

3= 0o — 3085 + O(A?).

We get an impression of how terribly misled we can be whenmading the
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parameters by means of the dangerous estimating function given by @).10
from a simulation study in Bibby & Sgrensen (1995) for theasguroot pro-
cess (1.37). The result is given in Table 1.1. For the weightfiona, the
approximately optimal weight function was used, cf. Exampi3.8. For dif-
ferent values ofA and the sample size, 500 independent datasets were simu-
lated, and the estimators were calculated for each dafBsetexpectation of

the estimatop was determined as the average of the simulated estimatues. T
true parameter values wesg = 10, 5, = 1 andry = 1, and the initial value
waszy = 10. WhenA is large, the behaviour of the estimator is bizarred

A #obs. mean A #obs. mean

0.5 200 081 15 200 0.52

500 0.80 500 0.52
1000 0.79 1000 0.52
1.0 200 065 20 200 0.43
500 0.64 500 0.43
1000 0.63 1000 0.43

Table 1.1 Empirical mean of 500 estimates of the parameten the CIR model. The
true parameter values arey = 10, o = 1, andry = 1.

The asymptotic bias given by (1.107) is small wharis sufficiently small,
and the results in the following section on high frequengyngstotics show
that in this asymptotic scenario the approximate martmgatimating func-
tions work well. However, how smalk needs to be depends on the parameter
values, and without prior knowledge about the parameteisssafer to use an
exact martingale estimating function, which gives comsisestimators at all
sampling frequencies.

1.6 High-frequency asymptotics

An expression for the asymptotic variance of estimatorsatdained in Theo-
rem 1.3.2 using a low frequency asymptotic scenario, wheseite between
observations is fixed. This expression is rather compléitated is not easy to
use for comparing the efficiency of different estimatorserfore the relative
merits of estimators have often been investigated by sitionlatudies, and the
general picture has been rather confusing. A much simpkknare manage-
able expression for the asymptotic variance of estimatansbe obtained by
considering the high frequency scenario,

n — 0o, A, — 0, nA, — oo. (1.108)
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The assumption thatA,, — oo is needed to ensure that parameters in the drift
coefficient can be consistently estimated.

For this type of asymptotics Sgrensen (2007) obtained sirophditions for
rate optimality and efficiency for ergodic diffusions, whiallow identification

of estimators that work well when the time between obsemuati\,,, is not

too large. How smallA,, needs to be for the high frequency scenario to be
relevant, depends on the speed with which the diffusion madver financial
data the speed of reversion is usually slow enough thatythésdf asymptotics
works for daily, sometimes even weekly observations. A mesult of the the-
ory in this section is that under weak conditions optimaltmgale estimating
functions give rate optimal and efficient estimators.

It is also interesting that the high frequency asymptoticsides a very clear
statement of the important fact that parameters in the sldfucoefficient can
be estimated more exactly than drift parameters when the tietween ob-
servations is small. A final advantage of high frequency gawptrcs is that it
also gives useful results about the approximate martirggimating functions
discussed in Subsection 1.5.3, in situations where thel.wor

To simplify the exposition, we restrict attention to a orimensional diffusion
given by

whered = (a,3) € © C IR?. The results below can be generalized to mul-
tivariate diffusions and parameters of higher dimensioa.ddhsider estimat-
ing functions of the general form (1.3), where the two-disienal function

g = (g1, g2) for somex > 2 and for allf € O satisfies

Eo(9(An, XA, XA, -1):0) | XA, (i-1)) (1.110)
= AL R(An, XA, (i-1); 0)-

Martingale estimating functions obviously satisfy (1.110th R = 0, but
for instance the approximate martingale estimating fumstidiscussed at the
end of the previous section satisfy (1.110) too. Here aret IB{A, y, x; 0)
denotes a function such tha(A, y, z; )| < F(y,x;0), whereF is of poly-
nomial growth iny andz uniformly for # in compact sets. This means that for
any compact subsdt’ C O, there exist constants;, Co, C3 > 0 such that
supgex | F(y, ;0)] < C1(1+ 2|2 + |y|“) for all z andy in the state space
of the diffusion.

The main results in this section are simple conditions offithetiong (A, y, x; 0)
that ensure rate optimality and efficiency of estimatorse @bndition forrate
optimalityis

Condition 1.6.1
0yg2(0,z,2;60) =0 (1.111)
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forall z € (¢,r) and alld € O.

By 0,92(0, z, z; 8) we meand, g (0, y, z; #) evaluated ayy = =. This condi-
tion is calledthe Jacobsen conditiobecause it was first found in the theory of
small A-optimal estimation developed in Jacobsen (2001), cf.2)li6 Sub-
section 1.3.4.

The condition forefficiencyis

Condition 1.6.2
0y91(0, 7, 7;0) = Dpb(z; @) /o*(x; B) (1.112)

and

0292(0,m,x;0) = dpo* (x; 8) /o (w3 B), (1.113)

forallz € (¢,r)and alld € O.

Also (1.112) and (1.113) were found as conditions for smathptimality in
Jacobsen (2002), cf. (1.61) and (1.63). This is not surggisthe following
theorem provides an interpretation of smaHoptimality in terms of the clas-
sical statistical concepts rate optimality and efficiedeyusual fy = (ao, 5o)
denotes the true parameter value.

Theorem 1.6.3 Assume that the diffusion is ergodic, tifigte int ©, and that
the technical regularity Condition 1.6.4 given below holdenote the density
function of the invariant probability measure py. Suppose thaj(A, y, z; 6)
satisfies Condition 1.6.1. Assume, moreover, that theviollp identifiability
condition is satisfied

/T[b(x7a0) - b(xaa)]augl (0,1’,1’;9),&90 (l’)dl’ 7& 0 whena 7& Qo,
14

/ET[O.Q(:C?ﬁO) —0'2(17,6)]8392(07$,x79)u90($)d$ 3& 0 Whenﬁ # 607
and that

ST = /(%b(x;ozo)ﬁygl((),:z:,x;@o)ugo(:c)d:c750,
4

Sy = %/ 6502(95;50)6592(0,x,x;@o),u@o(x)dx;é0.
¢

Then a consisterﬁ?n—estimatorén = (dn,Bn) exists and is unique in any
compact subset @d containingé, with probability approaching one as —
oo. If, moreover,

9a0,92(0, z,2;0) =0, (1.114)



HIGH-FREQUENCY ASYMPTOTICS 59

then for a martingale estimating function, and for more gehestimating
functions ifn A2(+=1) — 0,

( Vi, (Gn — ag) ) - < 0 ) g 0
) — Ny , (1.115)
\/ﬁ(ﬁn - 50) 0 0 S%Z

where
W, = / 02 (23 B0)[0,91 (0, z, @: 00)) g, (z)do
¢

W = %/ ot (3 0)[0292(0, z, ;60 ) g, () da.
14

Note that the estimator of the diffusion coefficient parsanet, converges
faster than the estimator of the drift parameterand that the two estima-
tors are asymptotically independent. Gobet (2002) showeder regularity
conditions, that a discretely sampled diffusion model ealty asymptotically
normal under high frequency asymptotics, and that the @tiate of conver-
gence for a drift parameter is/\/nA,,, while it is 1/,/n for a parameter in
the diffusion coefficient. Thus under the conditions of Titeew 1.6.3 the es-
timatorsé,, and3,, are rate optimal. More precisely, Condition 1.6.1 implies
rate optimality. If this condition is not satisfied, the esditor of the diffusion
coefficient parametefi, does not use the information about the diffusion coef-
ficient contained in the quadratic variation and therefore/erges at the same
relatively slow ratel /\/nA,, as estimators aof, see Sgrensen (2007).

Gobet gave the following expression for the Fisher infoioramatrix

Wi 0
7= ( I ) (1.116)
where
T T o 2
Wy = /Z%ugo(x)dx, (1.117)
r 0.2 T 2
W, = /Z {%] pig, (x)dz. (1.118)

By comparing the covariance matrix in (1.115) to (1.116),see that Con-
dition 1.6.2 implies thatS; = W; and S, = Ws, with W; and W, given
by (1.117) and (1.118), and that hence the asymptotic cavesi matrix of
(Gn,s Bn) under Condition 1.6.2 equals the inverse of the Fisher iéion
matrix (1.116). Thus Condition 1.6.2 ensures efficienciéof, 3, ). Under the
conditions of Theorem 1.6.3 and Condition 1.6.2, we seeftinat martingale
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estimating function, and more generallyif\2(-=1) — 0,

()= ((§) ).

Note that condition (1.114) is automatically satisfied urtte efficiency Con-
dition 1.6.2.

Proof of Theorem 1.6.3:0nly a brief outline the proof is given; for details see
Sgrensen (2007). Consider the normalized estimatingifumct

Gn(e) =

1 n

nAn ;g(An, Xt?, Xt?q ] 6‘)

First the conditions of Theorem 1.10.2 must be checked.dJsemma 9 in
Genon-Catalot & Jacod (1993), it can be shown #a(6,) — 0 in Py, -
probability, and thab,r G, () under Py, converges pointwise to a matrix,
which for 8 = 6, is upper triangular and has diagonal elements equél to
andS,, and thus is invertible. In order to prove that the convecgés uniform
for # in a compact sek’, we show that the sequence

1
ni\,

Cn() = Zg(Aant?vXt?,la')

=1

converges weakly to the limit(-, 6y) in the space(’(K), of continuous func-
tions onK with the supremum norm. Since the limit is non-random, this i
plies uniform convergence in probability fére K. We have proved point-
wise convergence, so the weak convergence result folloeause the family

of distributions of¢,, (+) is tight. The tightness is shown by checking the condi-
tions in Corollary 14.9 in Kallenberg (1997). Thus the cdiudis of Theorem
1.10.2 are satisfied, and we conclude the existence of astensiand even-
tually uniqueG,,-estimator. The uniqueness on compact subsets follows from
Theorem 1.10.3 because the identifiability condition indreen 1.6.3 implies
(1.160).

The asymptotic normality of the estimators follows from ®hem 1.10.4 with

o (5 )

The weak convergence df,,G,,(0y) follows from a central limit theorem for
martingales, e.g. Corollary 3.1 in Hall & Heyde (1980). Thefarm conver-
gence ofA,,0,7G,,(0) A, was proved for three of the entries when the con-
ditions of Theorem 1.10.2 were checked. The result for thedatry is proved

in a similar way using (1.114).
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The reader is reminded of the trivial fact that for any namgsilar2 x 2 ma-
trix, M, the estimating functiond/,,G,,(9) andG,,(9) have exactly the same
roots and hence give the same estimator(s). We call theesionsof the same
estimating function. The matriz/,, may depend om\,,. The point is that a
version must exist which satisfies the conditions (1.111).413), but not all
versions of an estimating function satisfy these condgion

It follows from results in Jacobsen (2002) that to obtain t& @ptimal and

efficient estimator from an estimating function of the fortti(1), we need that

N > 2 and that the matrix

) 2 )
D(x) _ < amfl(x7 9) azfl (,T, 9) )
Oufo(;0) 02 fa(w;0)

is invertible forug-almost allz. Under these conditions, Sgrensen (2007) showed

that Godambe-Heyde optimal martingale estimating fumstigive rate opti-

mal and efficient estimators. Fordadimensional diffusion, Jacobsen (2002)

gave the conditionsV > d(d + 3)/2, and that theN x (d + d?)-matrix

D(z) = (0xf(x;0) 02f(x;0)) has full rankd(d + 3)/2, which are needed

to ensure the existence of a rate optimal and efficient ettinfiiom an esti-

mating function of the form (1.41).

We conclude this section by an example, but first we statenteahconditions
under which the results in this section hold. The assumpttnout polynomial
growth are far too strong, but simplify the proofs. Thesedittons can most
likely be weakened considerably.

Condition 1.6.4 The diffusion is ergodic with invariant probability density,
and the following conditions hold for &l € ©:
(1) f; 2*po(z)de < coforall k € IN.
(2) sup, Eo(|X:|¥) < coforall k € IN.
(3) b,o € Cp7471((£,’l”) X @)
(4) There exists a constay such that for alle, y € (¢,r)
b(z; ) — b(y; )| + |o(x; 8) — o (y; B)| < Cplz —y|

(5) g(A,y,x;0) € Cpae2(IRy x (£,7)% x ©) and has an expansion in powers
of A:

9(Ay, x;0) =
9(0,y,2;0) + AgM (y,z;0) + 1A% (y, 2;0) + A’R(A, y, 25 0),
where
9(0,y,2;0) € Cpe2((l, r)? x @),
gy, z;0) € Cpaa((t,r)’ x ©),
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9D (y,2;0) € Cpaa((l,r)? xO).

We defineCy, k, k.15 (IR+ % (£,7)?xO) as the class of real functiorfst, v, x; 6)
satisfying that

() f(t,y,z;0)is ky times continuously differentiable with respeck, times
continuously differentiable with respegt andks times continuously dif-
ferentiable with respeet and with respect tg

(i) f and all partial derivatives;' 92 02 93 f, i; = 1,...k;, j = 1,2, i3+
14 < ks, are of polynomial growth i andy uniformly for # in a compact
set (for fixedt).

The classe§, i, k, ((£,7) x ©) andCy, x, x, (£, 7)? x ©) are defined similarly
for functionsf (y; 8) and f (y, z; 0), respectively.

Example 1.6.5We can now interpret the findings in Example 1.3.11 as fol-
lows. The general quadratic martingale estimating fumc{iln64) gives rate
optimal estimators in the high frequency asymptotics abarsid in this sec-
tion. Moreover, the estimators are efficient in three paliccases: the opti-
mal estimating function given in Example 1.3.6 and the apipnations (1.28)
and (1.51).

Kessler (1997) considered an approximation to the Gausgiasi-likelihood
presented in Subsection 1.3.2, where the conditional nféand the condi-
tional variance® are approximated as follows. The conditional mean is re-
placed by the expansion

k(A x;0) Z A —x—i-AZ ob(z; a),

wheref(z) = z, cf. (1.47). For fixedr, y andé the function(y — (A, z; 0))?
is a polynomial inA of order2k. Define g/ o), i=0,1,---,kby

(y — ri(A, 2;0)) ZAJQIQ )+ O(AFFY),

For instance, fok = 2
(y — ra(A, 2;0))* =
(y — )2 —2(y — 2)b(x; ) A+ [(y — x)Agb(z; ) +b(x; a)2] A2+0(A3),

from which we can see the expressionsg‘ﬁ),g(y), j =0,1,2. The conditional
variance can be approximated by

k(A 3 0) ZAJZA_T 9910()

=0
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In particular,
Ty(A, z50) = Ao® (3 8) + $A% [Ago® (3 8) — 0% (23 8) Dbl )] .

By inserting these approximations in (1.28), we obtain thgraximate mar-
tingale estimating function

n

(k) _ 0Tk s Nt g B ‘ )
H,(0) ; A X, gy e~ e(80 Koy 0)] (1.120)

i-17

Xn: 0ol 1 (A, Xt, 13 0)

2Fk+l (A Xt 9)2 [(th _Tk(Ai? Xt1171 5 9))2 _Fk+1(Ai7 Xti—l 5 9)]

i=1 v

Kessler (1997) (essentially) showed that for ergodic giffas satisfying Con-

dition 1.6.4 (1) — (4), the estimator obtained frofi"”) (9) satisfies (1.119)
provided that, A2¢+1 — 0.

1.7 High-frequency asymptotics in a fixed time-interval

We will now briefly consider a more extreme type of high-freqaoe asymp-
totics, where the observation times are restricted to a éedimterval, which,
without loss of generality, we can take to loe1]. Suppose that thé-dimen-
sional diffusionX which solves (1.109) has been observed at the time points
t; =1i/n,i=0,...,n. Note that in this sectiofi’ in equation (1.109) is d-
dimensional standard Wiener process, anslad x d-matrix. We assume that
the matrixC(z; 3) = o(z; 8)o(z; 3)T is invertible for allz in the state space,
D, of X. Because the observation times are bounded, the drift pesyn,
cannot be consistently estimatedas- oo, so in the following we consider es-
timation of 3 only, and concentrate on the following Gaussian quaslifiked
function:

Qn(B) = (1.121)
Z [1Og det C(Xti—l ’ 6) + n(Xti _Xti—l)TC(Xti—l ) 6)71(Xti _Xti—l )} .
=1

This is an approximation to a multivariate version of the &an quasi-likeli-
hood in Subsection 1.3.2 with= 0, where the conditional meaFi(x; ) is

approximated byt, and the conditional covariance matrxis approximated
by n~1C. An estimator is obtained by minimizing@,,(3). This estimator can
also be obtained from the approximate martingale estimdtinction which

we get by differentiatingy.,(3) with respect to3. The drift may be known,
but in general we allow it to depend on an unknown paramet&ve assume
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thatd = (o, 8) € A x B = 0, and we denote the true parameter value by
0o = (a0, o).

Genon-Catalot & Jacod (1993) showed the following theoreweun the as-
sumption thaf? € B, whereB is a compact subset @7, which ensures that
aBn € B that minimizexR,,(5) always exists. The results in the theorem hold
for any 3, that minimizesQ,, (3).

Theorem 1.7.1 Assume that Condition 1.7.2 given below holds. Then the esti
mator 3, is consistent, and provided thag € int B,

A D
\/ﬁ(ﬁn - ﬁO) — Z7
where the distribution o is a normal variance mixture with characteristic
function

s+ Eg, (exp (—1s"W(Bo)'s))
with W () given by (1.122). Conditional of#/(3,), the asymptotic distri-

bution of\/ﬁ(én — [Bp) is a centered;-dimensional normal distribution with
covariate matrixiv (3p) ~*.

We will not prove Theorem 1.7.1 here. Note, however, thatd®a we need

the full generality of the Theorems 1.10.2, 1.10.3 and 4, 1@here the ma-

trix W(6) (equal toWy(6) in Theorem 1.10.4) is random. Only if the matrix
B(x; ) defined below does not depend onis W (3) non-random, in which
case the limit distribution is simply the centergdlimensional normal distri-
bution with covariate matriX¥ (3,)~!. A simple example of a non-random

W () is wheng is one-dimensional and@x ¢-matrix F'(x) exists such that
C(z; 8) = BF (x). So for instance for the Ornstein-Uhlenbeck process and the
square-root diffusion (1.37)V (3) is non-random, and the limit distribution is
normal.

Condition 1.7.2 The stochastic differential equation (1.109) has a nonaskipg,
unique strong solution fot € [0, 1], and the following conditions hold for all
0= (a,p3) € 0O:

(1) b(x; ) is a continuous function af, and the partial derivative82c(z; 3),
9.0 (x; 8), D50 (x; B) exist and are continuous functions(ef 3) € D x
B.

(2) With Py-probability one it holds that for all3; # £, the functiong —
C(Xy; 41) andt — C(X,; ) are not equal.

(3) The randomy x ¢- matrix

1
W(B) = /0 B(Xy; B)dt, (1.122)
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where thejjth entry of B(x; 3) is given by

B(z; 8)i; = 2tr (8510(50;B)C’(:c;5)718gj0(x;6)0(:c;6)71) ,
is invertible Py-almost surely.

The Condition 1.7.2 (2) can be difficult to check becausepiethels on the path
of the processX. It is implied by the stronger condition that for @il # £,
C(z; 81) # C(=x; B) for almost allz € D.

Gobet (2001) showed, under regularity conditions, thattierhigh-frequency
asymptotics in a fixed time-interval considered in this iseGtthe diffusion
model is locally asymptotically mixed normal (LAMN) withte,/n and con-
ditional variance given byV (3); see e.g. Le Cam & Yang (2000) for the def-
inition of LAMN. Therefore the estimator discussed aboveffiient in the
sense of Jeganathan (1982) and Jeganathan (1983).

Example 1.7.3 Consider the one-dimensional model given by

dX; = —(X¢ — Q)dt + /B + XZdW,

wherea > 0 andg > 0. In this case:(x; 3) = 8 + 22, S0

_ [t
W = || Gt

which is random.

1.8 Small-diffusion asymptotics

Under the high-frequency asymptotics with bounded obsienvéimes consi-
dered in the previous section, drift parameters could natdmsistently esti-
mated. Here we combine the high-frequency asymptotics switall-diffusion

asymptotics to show that if the diffusion coefficient is sknak can find accu-
rate estimators of drift parameters even when we have ordgrohtions in a
bounded time-interval, which we again take to[bgl ].

We consider observations that the time poits= i/n,i = 1,...,n, of a
d-dimensional diffusion process that solves the stochdgferential equation
dX; = b( X, @)dt + eo(Xy, B)dWy,  Xo = xo, (1.123)

with e > 0 and(«,3) € A x B, whereA C R andB C IR® are
convex, compact subsets. It is assumed thatknown, while the parameter
0 = (a, B) € © = A x B must be estimated. In (1.128) is ad-dimensional
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standard Wiener process, amds ad x d-matrix. We assume that the matrix
C(z;8) = o(z; B)o(x; B)T is invertible for allz in the state spacd), of X.

In this section the asymptotic scenario is that— oo ande — 0 with a
suitable balance between the rate of convergence of theSmall diffusion
asymptotics, where — 0, has been widely studied and has proved fruitful in
applied problems, see e.g. Freidlin & Wentzell (1998). Aggtions to contin-
gent claim pricing and other financial problems can be foun@akahashi &
Yoshida (2004) and Uchida & Yoshida (2004a), and appliceatito filtering
problems in Picard (1986) and Picard (1991). The estimatioblem outlined
above was studied by Genon-Catalot (1990), Sgrensen & H¢BRD3), and
Gloter & Sgrensen (2009). Here we follow Gloter & Sgrensdy0@, which
generalize results in the other papers, and consider tmegstic scenario:

n — 0o €n — 0 liminf e,n” >0 (1.124)

n—oo

forsomep > 0. Whenp is large ¢ can go faster to zero than wheis relatively
small. The value op depends on the quasi-likelihood, as we shall see below.

The solution to (1.123) foe = 0 plays a crucial role in the theory. It is obvi-
ously non-random. More generally, we define the flo(t, ) as the solution
to the equation

& (z, ) = b(&(z, ), @), oz, ) =z, (1.125)

forallz € D. The solution to (1.123) for = 0 is given by&; (xo, ). A related
function of central importance is

(Sn(xva) :gl/n(xva) - . (1126)
Whene is small,é,, (X, ,,a) + X;, , approximates the conditional expecta-
tion of X;, givenX;, ,, and can be used to define a Gaussian quasi-likelihood.
However, equation (1.125) does not generally have en exgltution, so
& (x, a) is usually not explicitly available. Therefore we replatéy an ap-

proximationd(z, «) that satisfies Condition 1.8.2 (5) given below. Using this
approximation, we define a Gaussian quasi-log-likelihopd b

Uen(0) = > {logdet C_1(8) + e *nPi(c)” Cr_1(8) " Pi(a) } ,
k=1

(1.127)
where

Pi(a) = Xin— X-1)/m = 0n(Xk-1)/n, @)
Cr(B) = o(Xin,B)o(Xi/m,B8)".

This is the log-likelihood function that would have beenaibéd if the con-
ditional distribution ofX}, given X;, , were a normal distribution with mean
6n(Xt, ,,a) + Xy, , and covariance matrig¢; — t;—1)e2Cy_1(3).
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When¢ is explicitly available, a natural choiceds (z, a) = on(z, ). Other-
wise, simple useful approximationsdg(x, «) are given by

k _

0w, ) = Z; nj—ﬁ (La) ™ (00, @)(@),

k=1,2...,where the operatdt,, is defined by
d
Lo(f)(@) = bi(w, )0, f(2).
i=1

By (L.)? we denotej-fold application of the operatof,,. The approxima-
tion &% satisfies Conditions 1.8.2 (5)-(6), whén— 1/2 > p. The first two
approximations are
0% (x,0) = n”"b(x, ),

for which the quasi-likelihood studied in Sgrensen & Uch{@@03) is ob-
tained, and

d

62(z,a) =n"'b(z,a) + in~? Z bi(x, @)ds,b(z, a).
i=1

Since the parameter spa@eis compact, aﬁm = (Ge,n, Bm) that minimizes
the Gaussian quasi- log-likelihodd. ,,(¢) always exists. The results in the

following theorem hold for anﬁw that minimizesU, ,,(9). As usual¢, =
(a0, Bo) denotes the true parameter value.

Theorem 1.8.1 Assume that Condition 1.8.2 given below holds, thate
int®, and that the matrix

~( Ii(6o) 0
1(90) = ( 00 12(90) >

is invertible, where thejth entries of they; x ¢; matrix I; and of thegs x ¢
matrix I, are given by

1 (6o) =
1
/03aib(€s(170,ao)vao)chl(ﬁs(Ioaao)vﬂo)aajb(ﬁs(ﬁfoaao)vao)ds

and
1
137 (00) = %/0 tr [(9,C)C™1(95,C)C ™" (& (w0, ), o)] ds.

Then, under the asymptotic scenario (1.124), the estirr@gris consistent,

and 4 )
€ \Qgn — Qo D -1
<ﬁmw—m9 N(0.160)7)
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We do not prove the theorem here, but a similar result for shienating func-
tion obtained by differentiation ob/. ,,(f) with respect tod can be proved
using the asymptotic results in Section 1.10. Note that gtignators of the
drift and diffusion coefficient parameters are asymptdiidgadependent. The
two parameters are not estimated at the same rate. For thexapptions). the
conditions below are satisfieddf ! converges at a rate smaller than or equal
to v/, so in this case the rate of convergencépgf, is slower than or equal to
that ofBE_,n. For the approximation§’, & > 2, the rate of convergence ot .,

can be slower than or faster than thaﬁ@jn, dependent on how fastgoes to
zero.

The matrix/; equals the Fisher information matrix when the data is a nanti
ous sample path if9, 1] ande — 0, cf. Kutoyants (1994), sé. ,, is efficient.
Probablyﬁw is efficient too, but this cannot be seen in this simple way and
has not yet been proved.

We now give the technical conditions that imply Theorem1L.8.
Condition 1.8.2 The following holds for alk > 0:

(1) The stochastic differential equation (1.123) has a usigtrong solution for
te0,1]forall 0 = (o, 3) € O©.

(2) b(z; @) is a smooth (i.eC*) function of(z, ), and a constant exists such
thatforallz,y € D andallay, as € A:
b(z; 1) = bly; a2)| < e|z — y[ + | — azl).
(3) o(=x; B) is continuous, and there exists an open convex s@bsetD such
thaté,(xo, ap) € U forall t € [0,1], ando(x; 5) is smooth o x B.

(4) If @ # ap, then the two functions— b(&; (o, ap); o) andt +— b(&; (g, ag); )
are not equal. If3 # (3, then the two functions— C(&;(xo, ao); ) and
t — C(&(z0, 0); Bo) are not equal.

(5) The functior,, (z; «) is smooth, and for any compact subgetC D, a
constant(K) exists such that

sup |0 (3 00) — O (25 0)| < e(K)en /2,
zeK,acA
Similar bounds hold for the first two derivatives&fw.r.t. a.

(6) For any compact subsét C D x A, there exists a constan{K ), inde-
pendent o, such that

[0 (25 1) — ndp (25 a2)| < e(K)|ar — ag|

forall (z,a1), (z,a2) € K and for alln € IN. The same holds for deriva-
tives of any order w.r.to of nd,,.
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It can be shown that, (z, ) = §,(z, o) satisfies Condition 1.8.2 (6), under
Condition 1.8.2 (2). This choice @, trivially satisfies Condition 1.8.2 (5).

Example 1.8.3 Consider the two dimensional diffusion = (Y, R) given by
dY; = (Ry+ p)dt + e dW}
AR, = —pa(Re — m)dt + eran/Ry (detl +VI- p2dwf) ,

where(Yy, Ro) = (yo,r0) with ro > 0. This model was used in finance by
Longstaff & Schwartz (1995). In their mode, the second congpd represents
the short term interest rate, whitéis the logarithm of the price of some asset.
The second component is the square-root diffusion. Thenpateas ared =
(a, 3), wherea = (u1, uz,m) and3 = (x?, k3, p). The parametep allows
correlation between the innovation terms of the two coatdia. The diffusion
procesgY, R) satisfies Condition 1.8.2 (1) — (3), and (4) is holdsgif£ my.
The equation (1.125) is linear and has the solution

Y+ (p1 +m)t+ pyt(r —m)(1 — e7H2?)
m + (r —m)e M2t .

gt(yaraﬂla,uQam) = <

Therefore we can choogg(z, a) = 4, (z, «), which satisfies Condition 1.8.2
(5) — (6). The matrid (6) is invertible wheny # mg and is given by

IiIQ 0
_ —m(p2tlog(q))+(m—ro)(e"#2-1))  —pi+log(q)
L) =-p)"| O ol
0 —p1+log(q) _ p2log(q)
I{2 m,{2 bl
2 2

whereq = ro/(rg + m(e#* — 1)), and
2} 20%63K3 (1 - p?)Ki
I(0) = p*riK3 2r3 p(1 = p?)K3
p(1=p*)Kt p(l—p*)k3 (1 p?)?

Note that the asymptotic variance of the estimators of tifeghrameter goes
to zero, as the correlation paramegpagoes to one.

a

Several papers have studied other aspects of small diffiesgmptotics for
estimators of parameters in diffusion models. First ediwnaof the parameter
« based on a continuously observed sample path of the diffysiocess was
considered by Kutoyants (1994). Semiparametric estimdtiothe same type
of data was studied later by Kutoyants (1998) and lacus & ¥arts (2001).
Information criteria were investigated by Uchida & Yoshi@®04b). Uchida



70 ESTIMATING FUNCTIONS FOR DIFFUSION-TYPE PROCESSES

(2004) and Uchida (2008) studied approximations to maalmgstimating
functions for discretely sampled diffusions under smdfudion asymptotics.
Martingale estimating functions were studied by Sgren280@b) under an
extreme type of small diffusion asymptotics wheres fixed.

1.9 Non-Markovian models

In this section we consider estimating functions that candesl when the ob-
served process is not a Markov process. In this situatiswigually not easy to
find a tractable martingale estimating function. For instaa simple estimat-
ing function of the form (1.41) is not a martingale. To obtaimartingale, the
conditional expectation givel ;_1) in (1.41) must be replaced by the condi-
tional expectation given all previous observations, wtiah only very rarely
be found explicitly, and which it is rather hopeless to finddipulation. In-
stead we will consider a generalization of the martingafieneding functions,
called the prediction-based estimating functions, whigh be interpreted as
approximations to martingale estimating functions.

To clarify our thoughts, we will consider a concrete modgleyLet theD-
dimensional proces¥ be the stationary solution to the stochastic differential
equation

whereb is D-dimensionalg is a D x D-matrix, andW a D-dimensional
standard Wiener process. As usual the parandetaries in a subséd of IRP.
However, we do not observexi directly. What we observe is

Vi = k(X)) + Zi, i=1,...,n, (1.129)

wherek mapsR” into R¢ (d < D), and{Z;} is a sequence of independent
identically distributed measurement errors with mean 28@assume that the
measurement errors are independent of the prake&3bviously, the discrete
time procesgY;} is not a Markov-process.

1.9.1 Prediction-based estimating functions

In the following we will outline the method of prediction4ed estimating
functions introduced in Sgrensen (2000a). Assume ffhgt=1,..., N, are
functions that mafiR* ™ x © into IR such thaty (f; (Yei1, - .., Y1;6)?) < 00
forallg € ©. LetP! | ; be a closed linear subset of the-spaceL? ,, of all
functions ofY7, ..., Y;_1 with finite variance undeP,. The seﬂDf,l_’j can be
interpreted as a set of predictors{Y;, ..., Y;_s; 0) based ort7,...,Y; 1.
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A prediction-based estimating function has the form

n N
Gu0)= 3 SO [0 Vi) -7V 0)]

i=s+1 j=1

Whereﬂgi’l) (9) is ap-dimensional vector, the coordinates of which belong to
PE andir;i’l) (6) is the minimum mean square error predictoFf , ; of
fiYi, ..., Yi_s;0) underPy. Whens = 0 ande,Lj is the set of all functions

of Y7,...,Y;_1 with finite variance, theﬁry’l)(e) is the conditional expec-

tation underPy of f;(Y;;6) givenYi,...,Y;_1, so in this case we obtain a
martingale estimating function. Thus for a Markov processjartingale es-

timating function of the form (1.41) is a particular case gfradiction-based

estimating function.

The minimum mean square error predictoﬂ?ﬁ,lyj of f;(Vi,...,Yi_s;0) is
the projection inL? ;| of f;(Yi,...,Yi_s; 6) onto the subspack;_, ;. There-
fore %lgi’l) (9) satisfies the normal equation
Eo (' [£0, - Yiw0) -2 V0)] ) =0 (1.130)
for all wlgifl) € Pi"fly]—. This implies that a prediction-based estimating func-
tion satisfies that
Ey (Gn(0)) = 0. (1.131)

We can interpret the minimum mean square error predictonagpproxima-
tion to the conditional expectation ¢f(Y;, ..., Yi_s; 0) givenXy,..., X;_1,
which is the projection of ;(Y;, . .., Yi_s; 6) onto the subspace of all functions
of X1, ..., X;_1 with finite variance.

To obtain estimators that can relatively easily be calealat practice, we will
from now on restrict attention to predictor se®, , ;, that are finite dimen-
sional. Lethji,j = 1,...,N, k = 0,...,q; be functions fromR" into IR
(r > s), and define (foi > r 4 1) random variables by

Zj(;il) = jk(}/i717}/’i727"';}/if’l‘)-

We assume thaEe((Zj(.?l))Q) < oo forall 8 € ©, and letP;_; ; denote the
subspace spanned &, . ..., ZJ(.;;”. We seth o = 1 and make the natural
assumption that the functionso, . . ., h;,, are linearly independent. We write

the elements oP;_ ; in the forma” Z\'"", wherea” = (ao, ..., a,,) and

(i-1) _ [ (1) G-1\T
280 =z 2 )

> Ljg;

are(g; + 1)-dimensional vectors. With this specification of the preafis, the
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estimating function can only include terms with> » + 1:

n N
Ga(0) = > S VO [£i(Vi o Yii0) =7 V()] (1132)

i=r+1 j=1

It is well-known that the minimum mean square error predioféf’l)(e), is
found by solving the normal equations (1.130). Defify¢6) as the covariance

matrix of(Zj(.I), e ZJ(.;),)T under Py, andb;(6) as the vector for which the
ith coordinate is
b;(0); = Covp(Z\7), f;(Yri1, ..., Yr1-:0)), (1.133)
i=1,...,q;. Then we have
70 6) =a;(0)" 2, (1.134)
whered; (0)T = (aj0(0), a;.(6)T) with
45.(0) = C;(0) b, (6) (1.135)
and
q;j
Qj0(0) = Eo(fj(Yerr,--. Yii0)) = D u(0)Ea(Z))).  (1.136)
k=1
That C;(9) is invertible follows from the assumption that the funcgdn,
are linearly independent. If;(Y;, . .., Y;_s; 8) has mean zero undéy for all

f € ©, we need not include a constant in the space of predictersye need
only the space spanned IZﬁ*l), ceey Z§;;1).

Example 1.9.1 An important particular case wheh= 1is f;(y) = v/, j =
1,...,N.Foreach =r+1,...,nandj = 1,...,N, we Iet{Z;z’l)Uc -
0,...,¢q;} beasubsetofY”,|¢ =1,...,rk = O,...,j},whereZ%’” is
always equal to 1. Here we need to assume tha¥£") < oo for all 6 € ©.

To find 7" (9), j = 1,...,N, by means of (1.135) and (1.136), we must
calculate moments of the form

Es(Y'Y!), 0<k<j<N, k=1,...,~ (1.137)

To avoid the matrix inversion in (1.135), the vector of caméfintsa; can be
found by means of thé/-dimensional Durbin-Levinson algorithm applied to
the procesg (Y, Y2, ..., YY) }icw, see Brockwell & Davis (1991). Suppose
the diffusion procesX is exponentiallyp-mixing, see Doukhan (1994) for a
definition. This is for instance the case for a Pearson ddfuésee Subsection
1.3.7) or for a one-dimensional diffusion that satisfies @iton 1.5.1. Then
the observed process inherits this property, which implies that constants
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K > 0andX > 0 exist such thatCovy(Y{,Y;)| < Ke **. Therefore a
small value ofr can usually be used.

In many situations it is reasonable to chodée- 2 with the following simple

predictor sets wherg, = r andg, = 2r. The predictor sets are generated by
ZwV =120 =Yg k=1,..rnj=12andz{; " = v2,
k=r+1,...,2r. In this case the minimum mean square error predictor of
Y; can be found using the Durbin-Levinson algorithm for realg@sses, while
the predictor ofY;? can be found by applying the two-dimensional Durbin-
Levinson algorithm to the proceég;, Y;2). Including predictors in the form of

lagged term&;_Y;__; for a number of lag$'s might also be of relevance.

We illustrate the use of the Durbin-Levinson algorithm ie #implest possible
case, whereV = 1, f(z) =z, 28V = 1,20 = v, . k=1,...,r
We suppress the superfluojisn the notation. Leti,(¢) denote the covari-
ance betweetfr; andY;; underPy, and defineb; 1 (0)) = K1(0)/Ky(0) and
vo(6) = Ko(#). Then the Durbin-Levinson algorithm works as follows

=
Gee(0) = (Ke(e) = ¢e1,k(9)Kék(9)> v (0) 7,
k=1

be,1(0) be-1,1(6) Go-1,0-1(0)
: = E — ¢e,0(0) :
¢e,0-1(0)) be-1,0-1(9)) $e-1,1(0))
and
Ug(e) = Ug,l(e) (1 — ¢g7g(9)2) .
The algorithmis run fof = 2,...,r. Then
d*(o) = (¢r,1(9)7 RER) ¢r,r(9))v

while ay can be found from (1.136), which here simplifies to

ao(0) = Eo(Y1) <1 - XT: ¢r,k(9)> :
k=1

The quantityv, (6) is the prediction error E((Y; — #(~1))2). Note that if we
want to include a further lagged value ¥fin the predictor, we just iterate the
algorithm once more.

O

We will now find the optimal prediction-based estimatingdtion of the form
(1.132) in the sense explained in Section 1.11. First weesgithe estimating
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function in a more compact way. TH#h coordinate of the vectdﬁy’l)(e)
can be written as

q;
w00 =3 a)250, =1,....p.
k=0

With this notation, (1.132) can be written in the form

Gn(0) = A(6) Xn: HY(p), (1.138)
1=r+1
where
0110(9) S alig (9) alNO(G) aquN(Q)
A(f) = : : : : )
apro(0) -+ apig (0) oo o apno(0) o0 apngy (0)
and
HD(g) = 26D (F(Yi oY) — ﬁ“*”(@)) , (1.139)

with F = (f1,..., fn)7, 70°9(0) = (2" V(0),..., 7% P (6))7, and

1—1
Z{D 0 0,
. 1—1
g | o, zZ{Y oo o0, | (1.140)
' . ilfl
Oy Ogy oo ZyD

Here0,, denotes they;-dimensional zero-vector. When we have chosen the
functions f; and the predictor spaces, the quantitie¥) (9) are completely
determined, whereas we are free to choose the matax in an optimal way,

i.e. such that the asymptotic variance of the estimatorsngmzed.

We will find en explicit expression for the optimal weight mat A*(#), under
the following condition, in which we need one further defimit

a(0) = (a10(0), ..., a14,(0), ..., an0(0), ... dngy (0))7, (1.141)
where the quantities;;,s define the minimum mean square error predictors, cf.
(1.134).

Condition 1.9.2
(1) The functionF'(y1, . .., ys+1; 8) and the coordinates af(d) are continu-
ously differentiable functions &f

@Qp<p=N+q+-+qn-.
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(3) Thep x p-matrix 9y ¢(0) has rankp.

(4) The functiondl, f, ..., fy are linearly independent (for fixeg) on the
support of the conditional distribution ¢Y;, . .., Y;_s) given(X;_1, ..., X;—.).

(5) Thep x p-matrix
U@ =E (Z(i’l)BHTF(YZ-, Y 9)) (1.142)
exists.
If we denote the optimal prediction-based estimating fiamdby G, (¢), then
Eo (Gn(0)G(0)") = (n—1)A(0) M, (0)A5,(0)"

where

s

=

=
I

Ey (H(T+1)(9)H(T+1)(6‘)T) (1.143)

" nk;l (n(;i;)k) {Ee (H(r+1)(9)H(r+1+k) (Q)T)
+Es (H(r+1+k) (0)H+D (H)T) } ’
which is the covariance matrix 67" ., H("(6)/y/n = r. The sensitivity
function (1.166) is given by
Sa,(0) = (n —r)A(®) [UB)" — D(0)dsra(6)],

whereD(#) is thep x p-matrix
D(6) = Ey (Z(ifl)(Z(ifl))T) _ (1.144)

It follows from Theorem 1.11.1 that;, (¢) is optimal if & (G, (0)G;,()T) =
S, (6). Under Condition 1.9.2 (4) the matrix,, (¢) is invertible, see Sgrensen
(2000a), so it follows that

A5, (0) = (U(6) — 9pa(6)" D(6)) My (6) ", (1.145)

so that the estimating function

G(0) = 4,(0) > 20V (F(Yi, .., Yii0) = 7070(6)),  (1.146)
1=s+1
is Godambe optimal. When the functiédhdoes not depend ofy the expres-
sion for A} (0) simplifies slightly as in this cadé(#) = 0.

Example 1.9.3 Consider again the type of prediction-based estimating-fun
tion discussed in Example 1.9.1. In order to calculate @) ve need mixed
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moments of the form
Eo [V, Y22 Yo v, (1.147)

fort; <ty <tz <tgandky + ko + ks + kg < 4N, wherek;, i =1,...,4
are non-negative integers.

1.9.2 Asymptotics

A prediction-based estimating function of the form (1.188)es consistent
and asymptotically normal estimators under the followingdition, where),
is the true parameter value.

Condition 1.9.4
(1) The diffusion procesX is stationary and geometrically-mixing.

(2) There exists @ > 0 such that

(r) 2468
E90 ’Z]k fj(XrJrl,...,XTJrl,S;oo)’ < o0

><oo7

(3) The functionF(y1, ..., ys+1;0) and the components of(d) and a(6),
given by (1.141) are continuously differentiable functiafo.

and

(‘Z T‘)Z(T

forj=1,...,N, k,{=0,...q

(4) The matrixW = A(6y)(U(6g) — D(09)0yra(6p)) has full rankp. The
matricesU (9) and D(0) are given by(1.142)and(1.144)

(5)
A(0) (Ego (Z<i*1>F(yi, Y 9)) - D(eo)aeTa(e))) £0
for all 8 # 6,.

Condition 1.9.4 (1) and (2) ensures that the central lingotem (1.5) holds
and thatM,, (0y) — M (6y), where

M(@) =E (H(r+l)(9)H(r+1)(9)T)
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- (r+1) (r414k) (N T
+;{E9(H (o) HTHH ()T

+E (H(r+1+k) (0)H+D (H)T) } _

The asymptotic covariance matrix in (1.5)Wg60) = A(0)M () A(6)T. The
concept of geometria-mixing was explained in Subsection 1.5.1, where also
conditions for geometria-mixing were discussed. It is not difficult to see that
if the basic diffusion proces¥ is geometricallyn-mixing, then the observed
processY” inherits this property. We only need to check Condition 1L \&ith

6 = 6, to obtain asymptotic results for prediction-based estimsatThe con-
dition (1.6) is satisfied because of (1.131). It is easy talsaeCondition 1.9.4
(3) and (4) implies tha® — ¢(y1,...,y-+1) IS continuously differentiable
and thaty as well asdyr g are locally dominated integrable undey, . Finally,

for a prediction-based estimating function, the conditjdr®) is identical to
Condition 1.9.4 (5). Therefore it follows from Theorem 2. Zhat a consistent
G ,—estimato#,, exists and is the unigu&,,—estimator on any bounded subset
of © containingdy with probability approaching one as— oc. The estimator
satisfies that

V(0 — 00) 25 N, (o, W*lA(eo)M(eo)A(eo)TWT*)

asn — oo.

1.9.3 Measurement errors

Suppose a one-dimensional diffusion has been observedneigisurement er-
rors so that the data are

Yi=X, +7Z;, i=1,...,n,

where X solves (1.11), and the measurement ertgrare independent and
identically distributed and independentX®f Since the observed proceds)

is not a Markov process, it is usually not possible to find sifda martingale
estimating function. Instead we can use a prediction-basthating function
of the type considered Example 1.9.1. To find the minimum nsg@are error
predictor, we must find mixed moments of the form (1.137). By binomial
formula,

By (V2 Y4?) = By (X0, + 20) (X, + Z2)"2)
ki k2 i | | | |
= 3 (1) (3)peixiEzt e
i1=01i2=0

Note that the distribution of the measurement etprcan depend on com-
ponents of the unknown parameterWe need to find the mixed moments
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Eg(Xfllej), (t1 < to). If expressions for the moments and conditional mo-
ments of X, are available, these mixed moments can be found expliéily.
an example, consider the Pearson diffusions discusseddise$tion 1.3.7, for
which the conditional moments are given by (1.86). Thus

Eo(X{'X{2) = Eo(X'Eo(X|Xy,)) (1.148)

12 12
> <Z qz‘z,k,w”(t”l)> Eo (X1 ),

k=0 \/=0

where E(X,fj*’“) can be found by (1.87), provided, of course, that it exists.
For stationary, ergodic one-dimensional diffusions, thé/pomial moments
can usually be found because we have an explicit expressidhd marginal
density functions, at least up to a multiplicative constaht(1.15). In order to
find the optimal prediction-based estimating functionshef torm considered

in Example 1.9.1, we must find the mixed moments of the fort41), which
can be calculated in a similar way.

1.9.4 Integrated diffusions and hypoelliptic stochastffedential equations

Sometimes a diffusion process, cannot be observed directly, but data of the
form
1 fia
Y, = — Xeds, 1=1,...,n, (1.149)
A Ji-na
are available for some fixed.. Such observations might be obtained when
the processX is observed after passage through an electronic filter. arot
example is provided by ice-core records. The isotope réti®/'°O in the
ice is a proxy for paleo-temperatures. The average isotafie@ is measured
in pieces of ice, each of which represent a time interval. Vidr&tion of the
paleo-temperature can be modelled by a stochastic ditiafesguation, and
hence the ice-core data can be modelled as an integratadidiffprocess, see
Ditlevsen, Ditlevsen & Andersen (2002). Estimation basedthis type of data
was considered by Gloter (2000), Bollerslev & Wooldridge42), Ditlevsen
& Sgrensen (2004), Gloter (2006), and Baltazar-Larios &e8sen (2009).
Non-parametric inference was studied in Comte, Genonl@aaRozenholc
(2009).

The model for data of the type (1.149) is a particular casd 428) with

X1, b(X1,:0) > ( o(X1,::0) >
d ' = ’ dt ’ aw,
( Xo ) < X1t + 0 b

with X5 o = 0, wherelW and the two components are one-dimensional, and



NON-MARKOVIAN MODELS 79

only the second coordinat&, ., is observed. The second coordinate is not sta-
tionary, but if the first coordinate is a stationary proc#éissn the observed in-
crements; = (X2:a — X5 (i—1)a)/A form a stationary sequence. A stochas-
tic differential equation of the form (1.150) is callbglpoelliptic Hypoelliptic
stochastic differential equations are, for instance, tisedodel molecular dy-
namics, see e.g. Pokern, Stuart & Wiberg (2009). The unsbde@omponent,
X1+, can more generally be multivariate and have coefficierstsdepend on
the observed component;, ; too. The observed smooth component can also
be multivariate. The drift is typically minus the derivaiof a potential. A
simple example is the stochastic harmonic oscillator

dX1: = —(b1 X1+ BoXoy)dt +vdWy
dXQ,t = Xl,t dt,

01, 82,7 > 0. Observations of the form (1.149), or more generally discre
time observations of the smooth components of a hypodaigbtichastic differ-
ential equation, do not form a Markov process, so usuallasifde martingale
estimating function is not available, but prediction-lzhestimating functions
can be used instead. For instance, the stochastic harmseillator above is
a Gaussian process. Therefore all the mixed moments needhd bptimal
prediction-based estimating function of the form consden Example 1.9.1
can be found explicitly.

In the following we will again denote the basic diffusion Ky(rather thanX,),
and assume that the data are given by (1.149). Supposé/itid moment of
X, is finite. The moments (1.137) and (1.147) can be calculaged b

k k k k
E[yPylylyvh] =

[LEXy, - X Xuy o+ Xy, Xoy o X, Xy - Xy dt

AFk1tko+ks+ky

wherel < t; <ty < t3,A = [0, A]kl X [(tl - 1)A, tlA]kQ X [(tg -
1)A s tgA]ka X [(tg—l)A s t3A]k4, anddt = CZT‘]€4 - dry dS}C,g <o dsy dqu s

duy dvy, -- - dvi. The domain of integration can be reduced considerably by
symmetry arguments, but the point is that we need to cakeutéted moments

of the typeE (X" - -- X[*), wheret; < --- < t;. For the Pearson diffusions
discussed in Subsection 1.3.7, these mixed moments canlddated by a
simple iterative formula obtained from (1.86) and (1.88)eaplained in the
previous subsection. Moreover, for the Pearson diffusidi(s;;" - - - X{*)
depends ong, . .., t; through sums and products of exponential functions, cf.
(1.86) and (1.148). Therefore the integral above can bdathplcalculated,
and thus explicit optimal estimating functions of the typasidered in Exam-
ple 1.9.1 are available for observations of integrated $&eadiffusions.

Uk] SkS ’I‘k4

Example 1.9.5 Consider observation of an integrated square root prote3s)(



80 ESTIMATING FUNCTIONS FOR DIFFUSION-TYPE PROCESSES

and a prediction-based estimating function wiitfx) = = and fo(z) = 22

with predictors given by'r1 D =a10+a1,1Yi1 and7r 1) az,0. Then the
minimum mean square error predictors are

A TVViai0) = (1 -a(B) +a(B)Yi,
ﬁ_gifl) (0) _ O[Q + a72673A*2(e*5A — 14+ ﬁA)
with
T e

2(BA — 1+ e PA)’
The optimal prediction-based estimating function is

n 1
Z(n-l)m— (v, +Z( ) y2 —ai o)),

i=1 0

from which we obtain the estimators

o1 B)Y, -Y;
- Z n—l)(l—a(ﬁ))

Zn:yi,lyi = &(1—a(p ZY 1+ a3 )Zn:Y{il
i=2 1=2

6_2 63A2 Zz 2 (Y2 A2) )
(n—1)éa(e B2 — 1+ BA)
The estimators are explicit apart frgfpwhich can easily be found numerically

by solving a non-linear equation in one variable. For dstaée Ditlevsen &
Sgrensen (2004).

O

1.9.5 Sums of diffusions

An autocorrelation function of the form
p(t) = ¢1exp(—pit) + ...+ ¢p exp(—LBpt), (1.150)

WhereZZD:1 ¢; = 1 andg¢;,3; > 0, is found in many observed time series.
Examples are financial time series, see Barndorff-Niels&h&phard (2001),
and turbulence, see Barndorff-Nielsen, Jensen & Sgred$80) and Bibby,
Skovgaard & Sgrensen (2005).

A simple model with autocorrelation function of the form1%0) is the sum
of diffusions
Yi=Xi:+...+Xpy, (1.151)
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where theD diffusions

dXip = —Bi(Xit — ;) + 0:(Xi)dWiy, i=1,...,D,
are independent. In this case
B Var(X; +)
C o Var(Xp4) 4o+ Var(Xpy)'
Sums of diffusions of this type with a pre-specified margidiatribution of
Y were considered by Bibby & Sgrensen (2003) and Bibby, Skany&
Sgrensen (2005), while Forman & Sgrensen (2008) studied sfifRearson
diffusions. The same type of autocorrelation function isaoted for sums
of independent Ornstein-Uhlenbeck processes driven by péocesses. This

class of models was introduced and studied in Barndorffadie Jensen &
Sgrensen (1998).

i

Example 1.9.6 Sum of square root processéfss? (z) = 23;bx anda; = k;b
for someb > 0, then the stationary distribution &f is a gamma-distribution
with shape parameter, + - - - + kp and scale parametérThe weights in the
autocorrelation function arg; = ;/(k1 + -+ + kD).

d

For sums of the Pearson diffusions presented in Subsecfion, ive have ex-
plicit formulae that allow calculation of (1.137) and (174provided these
mixed moments exists. Thus for sums of Pearson diffusionhave explicit
optimal prediction-based estimating functions of the tgpasidered in Exam-
ple 1.9.1. By the multinomial formula,

E(YY:,) =
3 " ) B X)L B(XER XY )
Ki,...-,6p/) \WV1,...,VD Lt Lt D™ Dt

where
( K ) k!
Kiy,...,KD Iill---IiD!

is the multinomial coefficient, and where the first sum is dvet x1,...,kp
suchthat, +. .. kxp = k, and the second sum is analogous for:tjge Higher
order mixed moments of the form (1.147) can be found by a amfdrmula
with four sums and four multinomial coefficients. Such fotamimay appear
daunting, but are easy to program. For a Pearson diffusioredrmoments
of the form E(X" --- X7*) can be calculated by a simple iterative formula
obtained from (1.86) and (1.87), as explained in Subsedtidrs.

Example 1.9.7 Sum of two skewdiffusions If
o (x) = 2Bi(v; — 1) Ha? + 2oz + (1 + p*)v}, i=1,2,



82 ESTIMATING FUNCTIONS FOR DIFFUSION-TYPE PROCESSES

the stationary distribution aX’; ; is a skewt-distribution,

Var(Y)_(1+p2)< moo, >7

1/1—2 V2—2

and in (1.150) the weights are given by = v;(v; — 2)" 1 /{v1(v1 — 2)71 +
va(vy — 2)71}. To simplify the exposition we assume that the correlatian p
rameterss,, fs2, ¢1, andgs, are known or have been estimated in advance, for
instance by fitting (1.150) witth = 2 to the empirical autocorrelation func-
tion. We will find the optimal estimating function in the sifease where pre-
dictions ofY;? are made based on predictors of the farfit!) = ag+a,Y;_;.

The estimating equations take the form

Y VZ —0? = (Vi
Z [ Y Y2 —0%Yi - (Y2, | 0, (1.152)

1=

with

Q
Il

2 2 8! V2
Var(Y;) = (1 ,
R e R

_ COV(YFLY;Q) _ VL -61A V2 —B24
SV L EA 7R A L '

Solving equation (1.152) faj ando? we get
ﬁ Z?:2 }/12—1 - (ﬁ Z?:Q }/1.71)2
LD DR GRS D (I
In order to estimate we restate as
VI + p?) — 102
3(1 + p2) - ¢102

TP 557,
+ 3(1+ p?) — pao? 92¢

pre A

¢ = 32(1+p2)-p-{

and inserts2 for g2. Thus, we get a one-dimensional estimating equation,
¢(B,9,6%,p) = ¢, which can be solved numerically. Finally by inverting

2 . . . 52 .
¢ = L2 45, we find the estimates, — #gﬂﬁ), i=1,2.

O

A more complex model is obtained if the observations araiatis of the pro-
cessY given by (1.151). In this case the data are
1 iA 1 A iA
Z; = — Yids = — ( Xisds+ -+ XD,Sds> , (1.153)
A Ji-na A \Ji-na (i-1)A
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i =1,...,n. Also here the moments of form (1.137) and (1.147), and hence
optimal prediction-based estimating functions, can bafexplicitly for Pear-

son diffusions. This is because each of the observatifyris a sum of pro-
cesses of the type considered in Subsection 1.9.4. To edZ,! Z,> Z Z/*),
first apply the multinomial formula as above to express thiargity in terms

L £ L: £
of moments of the forn& (Y} Y7 Y3 Y; 1), where

Yji=~ X, ds.
Js A (—1)A J

Now proceed as in Subsection 1.9.4.

1.9.6 Stochastic volatility models

A stochastic volatility model is a generalization of the &{eScholes model
for the logarithm of an asset prideX; = (x + 30?)dt + cdW;, that takes into
account the empirical finding that the volatility varies randomly over time:

dX; = (k + Bor)dt + \/u;dW,;. (1.154)

Here the volatilityv, is a stochastic process that cannot be observed directly.
If the data are observations at the time poifAts i = 0,1,2,...,n, then the
returnsy; = X;a — X(;_1)a can be written in the form

Y, = kA + 3S; + /S; A;, (1155)
where
iA
S; = / vdt, (1.156)
(i-1)A
and where thel;’s are independent, standard normal distributed randoim var

ables. Prediction-based estimating functions for staahaslatility models
were considered in detail in Sgrensen (2000a).

Here we consider the case where the volatility proeess a sum of inde-
pendent Pearson diffusions with state-spétex) (the cases 2, 4 and 5).
Barndorff-Nielsen & Shephard (2001) demonstrated that @wocarrelation
function of the type (1.150) fits empirical autocorrelationctions of volatility
well, while an autocorrelation function like that of a siadgtearson diffusion is
too simple to obtain a good fit. Stochastic volatility modelsere the volatil-
ity process is a sum of independent square root processescarsidered by
Bollerslev & Zhou (2002) and Bibby & Sgrensen (2003). We assuhatv
andW are independent, so that the sequercés and{.S;} are independent.
By the multinomial formula we find that

E (Ylk] }/t]jz }/t]ZS }/26124) _
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Z Kku,...,k43 E (Sf]2+k13/255122+k23/255232+k33/255342+k43/2)

E(afe)E(al) E (a2 ) E(af2),
where the sum is over all non-negative integersi = 1,2,3,4,j = 1,2,3
such thatc;; + ki + ki3 = k; (¢t = 1,2, 3,4), and where

) Gt (i ) () 50
RAYE g
<k11,k12,/€13 ka1, kaa, ka3 ) \ k31, k32, k33 k41,/€42,/€43( )8

With k. = ky; + kaj + ksj + ka;. The momentd?(A%#) are the well-known
moments of the standard normal distribution. Whenis odd, these moments
are zero. Thus we only need to calculate the mixed momentheofdrm
B(S7S{2S;2S%), wherely, . ..., £, are integers. When the volatility process is
a sum of independent Pearson diffusiasisof the same form a&’; in (1.153)
(apart from the factot /A), so we can proceed as in the previous subsection to
calculate the necessary mixed moments. Thus also for thhasttic volatility
models defined in terms of Pearson diffusions, we can eXliond optimal
estimating functions based on prediction of powers of retucf. Example
1.9.1.

1.9.7 Compartment models

Diffusion compartment models ai@-dimensional diffusions with linear drift,
dX; = [B(0)X: — b(0)] dt + o(Xy; 0)dWr, (1.157)

where only a subset of the coordinates are observed. B&tgis aD x D-
matrix, b() is a D-dimensional vectory(x;0) is a D x D-matrix, andW

a D-dimensional standard Wiener process. Compartment madelssed to
model the dynamics of the flow of a substance between diffgrarts (com-
partments) of, for instance, an ecosystem or the body of aahuming or an
animal. The procesg, is the concentration in the compartments, and flow
from a given compartment into other compartments is praoguoat to the con-
centration in the given compartment, but modified by the camgerturbation
given by the diffusion term. The vecté(d) represents input to or output from
the system, for instance infusion or degradation of thetsmieg. The compli-
cation is that only a subset of the compartments can be oddeiiar instance
the first compartment, in which case the data¥gre- X; ,,.

Example 1.9.8 The two-compartment model given by

_( b Bo (0 ({0
B_< B —(514-52))’ b_<0)’ 0_<0 7'2)’
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where all parameters are positive, was used by Bibby (1998 ddel how

a radioactive tracer moved between the water and the biosphe certain
ecosystem. Samples could only be taken from the water, gtefimpartment,
soY; = Xi.,. Likelihood inference, which is feasible because the model
is Gaussian, was studied by Bibby (1995). All mixed momeifiitthe form
(2.137) and (1.147) can be calculated explicitly, againaose the model is
Gaussian. Therefore also explicit optimal predictiondshsstimating func-
tions of the type considered in Example 1.9.1 are availablestimate the
parameters and were studied by During (2002).

O

Example 1.9.9 A non-Gaussian diffusion compartment model is obtained by
the specificatiow (x, §) = diag(r1\/Z1, ..., 7py/Tp). This multivariate ver-
sion of the square root process was studied by During (200%) used meth-
ods in Down, Meyn & Tweedie (1995) to show that thedimensional pro-
cess is geometricallg-mixing and established the asymptotic normality of
prediction-based estimators of the type considered in pl@rh.9.1. As in
the previous example, only the first compartment is obseivedhe data are

Y; = X, ,,. Forthe multivariate square root model, the mixed momenis3()
and (1.147) must be calculated numerically.

d

1.10 General asymptotics results for estimating functions

In this section we review some general asymptotic resultg$timators ob-
tained from estimating functions for stochastic procesde® Proofs can be
found in Jacod & Sgrensen (2009).

Suppose as a statistical model for the d&ta Xo, ..., X,, that they are ob-
servations from a stochastic process. The correspondotzppility measures
(Py) are indexed by a-dimensional parametére ©. An estimating function

is a function of the parameter and the observatiehgf; X, Xo, ..., X,),
with values inIRP. Usually we suppress the dependence on the observations
in the notation and writé7,,(6). We get an estimator by solving the equa-
tion (1.1) and call such an estimatoiGg, -estimator It should be noted that
n might indicate more than just the sample size: the distivbubf the data
X1, Xs, ..., X, might depend om. For instance, the data might be obser-
vations of a diffusion process at time point,,, i = 1,...,n, whereA,,
decreases asincreases; see Sections 1.6 and 1.7. Another example ighéhat
diffusion coefficient might depend on see Section 1.8.

We will not necessarily assume that the data are obsergitiom one of the
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probability measureéPy)sco. We will more generally denote thteue prob-
ability measureby P. If the statistical model contains the true model, in the
sense that there exist¥a € © such thatP = Py, then we calb, thetrue
parameter value

A priory, there might be more than one solution or no solu@drall to the
estimating equation (1.1), so conditions are needed torertkat a unique
solution exists whem is sufficiently large. Moreover, we need to be careful
when formally defining our estimator. In the following defian, § denotes a
“special” point, which we take to be outsiéeand®; = © U {¢}.

Definition 1.10.1 a) The domain of7,-estimators (for a givem) is the set
A,, of all observations: = (z1, . .., x,) for whichG,,(8) = 0 for at least one
valued € ©.

b) AGn—estimator,én(x), is any function of the data with values &y, such
that for P—almost all observations we have eitlfigfx) € © andG,,(0,,(z), z) =
Oifz € A,,orf,(x)=0ifx ¢ A,.

We usually suppress the dependence on the observations imothtion and
write 6,,.

The following theorem gives conditions which ensure thatyflarge enough,
the estimating equation (1.1) has a solution that convemasparticular pa-
rameter valu@. When the statistical model contains the true model, the est
mating function should preferably be chosen such that 6,. To facilitate
the following discussion, we will refer to an estimator ticahverges t@ in
probability as @—consistent estimator, meaning that it is a (weakly) coests
estimator ofg. We assume that,, () is differentiable with respect té and
denote bydyr G, (0) thep x p-matrix, where the;jth entry isdp, G, (0);.

Theorem 1.10.2 Suppose the existence of a parameter vdlue int© (the
interior of ©), a connected neighbourhodd of , and a (possibly random)
functionW on M taking its values in the set @f x p matrices, such that the
following holds:

(i) G.(9) 0 (convergence in probability, w.r.t. the true measutg as
n — oQ.

(i) G, (0) is continuously differentiable oi/ for all »n, and

sup || 9pr G (0) — W () || S 0. (1.158)
oM

(iii) The matrixi¥ (6) is non-singular withP—probability one.

Then a sequend An) of G,,-estimators exists which &consistent. Moreover
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this sequence isventually uniquethat is if (/) is any otherd—consistent
sequence off,,—estimators, the®(0,, # 6/,) — 0 asn — cc.

Note that the condition (1.158) implies the existence of lassequencén }
such thatd,r G, (0) converges uniformly tdV (¢) on M with probability
one. HencédV is a continuous function of (up to a null set), and it follows
from elementary calculus that outside somenull set there exists a unique
continuously differentiable functiof satisfyingd,~G(6) = W (6) for all

6 € M andG(f) = 0. WhenM is a bounded set, (1.158) implies that

sup |G (0) — G(0)| £ 0. (1.159)
oM
This observation casts light on the result of Theorem 1.18ir&eG,, (#) can
be made arbitrarily close t6'(#) by choosing: large enough, and sine&(9)
has a root a#, it is intuitively clear thatG,, () must have a root ne@rwhen
n is sufficiently large.

If we impose an identifiability condition, we can give a senresult on any
sequence of7,,—estimators. ByB.(#) we denote the closed ball with radias
centered af.

Theorem 1.10.3Assume (1.159) for some subgétof 6 containingd, and
that

P( inf |G(6)| > o) =1 (1.160)
M\B.(9)

for all e > 0. Then for any sequencﬁén) of G,,—estimators

P(0, € M\B.(0)) — 0 (1.161)
asn — oo for everye > 0
If M = O, we see that any sequer(@) of G,,—estimators i¥—consistent. If
the conditions of Theorem 1.10.3 hold for any compact subseif ©, then a

sequencéén) of G,,—estimators i$—consistent or converges to the boundary
of ©.

Finally, we give a result on the asymptotic distribution (Ifequenceéén) of
f#—consistenty,,—estimators.

Theorem 1.10.4Assume the estimating functiag#, satisfies the conditions
of Theorem 1.10.2 and that there is a sequence of invertibteeges A,, such
that each entry ofl,,! tends to zero,

(aavcion )= (v ) @19
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and there exists a connected neighbourhaoaf § such that
sup || Apyr G ()AL — Wo(0) || £ 0. (1.163)
oM

Here Z is a non-degenerate random variable, afid, is a random function
taking values in the set gf x p-matrices satisfying thalt; () is invertible.
Under these conditions, we have for am-consistent sequenoﬁén) of G,—
estimators that

An(b, —0) 2 —Wo(0) 2. (1.164)
WhenZ is normal distributed with expectation zero and covariangrix V,
and whenZ is independent oy (#), then the limit distribution is the normal
variance-mixture with characteristic function

s E (exp (—%STWO(é)*lvwo(é)T’ls)) . (1.165)

If, moreoverW;(6) is non-random, then the limit distribution is a normal dis-
tribution with expectation zero and covariance mam(é)*lvwo(é)fl.

In the often occurring situation, whgﬁéfo(é) is non-random, joint conver-
gence ofA,,0yr C_Jn(e)Agl andA4,,G,(0) is not necessary — marginal conver-
gence ofA,,G,,(0) is enough.

1.11 Optimal estimating functions: general theory

The modern theory of optimal estimating functions datekhiache papers
by Godambe (1960) and Durbin (1960), however the basic idesinva sense
already used in Fisher (1935). The theory was extendedtbastic processes
by Godambe (1985), Godambe & Heyde (1987), Heyde (1988) saudral
others; see the references in Heyde (1997). Importantcpéatiinstances are
likelihood inference, the quasi-likelihood of Wedderb(t®74) and the gen-
eralized estimating equations developed by Liang & Zege86) to deal with
problems of longitudinal data analysis, see also Prenti@8&) and Li (1997).
A modern review of the theory of optimal estimating funcgaan be found in
Heyde (1997). The theory is very closely related to the thebthe general-
ized method of moments developed independently in paialtbe economet-
rics literature, where the foundation was laid by Hanse®2)9who followed
Sagan (1958) by using selection matrices. Important ekieago the theory
were made by Hansen (1985), Chamberlain (1987), Newey & (I€87),
and Newey (1990); see also the discussion and referencedli{2805). Par-
ticular attention is given to the time series setting in H8BMEL985), Hansen
(1993), West (2001), and Kuersteiner (2002). A discussiolinks between
the econometrics and statistics literature can be foundaimsin (2001). In the
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following we present the theory as it was developed in thessis literature
by Godambe and Heyde.

The general setup is as in the previous section. We will oohs@erunbiased
estimating functions, i.e., estimating functions satisfythatEy(G,,(0)) = 0
for all # € ©. This natural requirement is also called Fisher consisteihc
often implies condition (i) of Theorem 1.10.2 fér= 6,, which is an essential
part of the condition for existence of a consistent estim&oppose we have a
classg,, of unbiased estimating functions. How do we choose the besiter
in G,? And in what sense are some estimating functions betterdtraars?
These are the main problems in the theory of estimating fongt

To simplify the discussion, let us first assume that 1. The quantity
56, (0) = Eg(0yr G (6)) (1.166)

is called thesensitivityfunction for G,,. As in the previous section, it is as-
sumed thatG,, () is differentiable with respect t6. A large absolute value
of the sensitivity implies that the equati@h,(f) = 0 tends to have a solu-
tion near the true parameter value, where the expectatiéh, ) is equal to
zero. Thus a good estimating function is one with a largelabsoalue of the
sensitivity.

Ideally, we would base the statistical inference on thdiliked functionL,, (6),
and hence use the score functibin(d) = 0y log L, (#) as our estimating
function. This usually yields an efficient estimator. HowewhenL,, (0) is
not available or is difficult to calculate, we might preferuse an estimating
function that is easier to obtain and is in some sense clabe tecore function.
Suppose that bothi,, (6) andG,, (#) have finite variance. Then it can be proven
under usual regularity conditions that

S (0) = —Covp (G (6), Un(6)).

Thus we can find an estimating functid#, (¢) that maximizes the absolute
value of the correlation betwee®,, (#) andU,,(6) by finding one that maxi-
mizes the quantity

K, (0) = Sg, (0)?/Varg(G,,(0)) = Sa, (0)*/Eg(G,(0)?),  (1.167)

which is known as th&odambe informationThis makes intuitive sense: the
ratio K¢, (0) is large when the sensitivity is large and when the variarice o
G, (0) is small. The Godambe information is a natural generabratif the
Fisher information. Indeedy;, () is the Fisher information. For a discussion
of information quantities in a stochastic process settieg,Barndorff-Nielsen

& Sgrensen (1991) and Barndorff-Nielsen & Sgrensen (1984)short while,

we shall see that the Godambe information has a large samglgietation
too. An estimating functiod}, € G, is calledGodambe-optimah G, if

K, (0) = K, (9) (1.168)



90 ESTIMATING FUNCTIONS FOR DIFFUSION-TYPE PROCESSES
forall @ € © and for allG,, € G,,.

When the parametét is multivariate f > 1), the sensitivity function is the
p X p-matrix

Sa, (0) = Eg(0gr G (6)). (1.169)
For a multivariate parameter, the Godambe informationésth p-matrix
K¢, (0) = Sa, (0)" Ey (Ga(0)Gn(0)") " S, (0), (1.170)

and an optimal estimating functi@s’, can be defined by (1.168) with the in-
equality referring to the partial ordering of the set of piwsi semi-definite
p x p-matrices. Whether an Godambe-optimal estimating funatidsts and
whether it is unique depends on the cléss In any case, it is only unique
up to multiplication by a regular matrix that might dependéorspecifically,

if G (0) satisfies (1.168), then so dog% G, (0) whereMy is an invertible
deterministicp x p-matrix. Fortunately, the two estimating functions giveeri
to the same estimator(s), and we refer to themeassionsof the same estimat-
ing function. For theoretical purposes a standardizedae s the estimating
functions is useful. Thetandardized versioaf G, () is given by

GE)(0) = —Sa, ()" Eg (Gu(0)Gn(6)7) ™ Gn(6).

The rationale behind this standardization is tG4t (9) satisfies thesecond
Bartlett-identity

By (GD(O)G0)7) = o (05rGL(0), (1171)

an identity usually satisfied by the score function. Theddadized estimating
function Ggf) (9) is therefore more directly comparable to the score function
Note that when the second Bartlett identity is satisfiedGbdambe informa-
tion equals minus the sensitivity matrix.

An Godambe-optimal estimating function is close to the sdanctionU,, in
an Lo-sense. Supposg}, is Godambe-optimal i/,,. Then the standardized

versionG; (0) satisfies the inequality
By ((GS)(0) = Un(0) (G (6) — Un(6)))

> B ((G0) = Ua(0)) (G1)(0) — Un(9)))

forall 8 € © and for allG,, € G, see Heyde (1988). In fact, d, is a closed
subspace of thé,-space of all square integrable functions of the data, then t
optimal estimating function is the orthogonal projectidrite score function
onto G,,. For further discussion of this Hilbert space approach toneding
functions, see McLeish & Small (1988). The interpretatiérao optimal es-
timating function as an approximation to the score functmimportant. By
choosing a sequence of classgsthat, asn — oo, converges to a subspace
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containing the score functiofi,,, a sequence of estimators that is asymptoti-
cally fully efficient can be constructed.

The following result by Heyde (1988) can often be used to fimel dptimal
estimating function.

Theorem 1.11.1If G}, € G, satisfies the equation
S, (0) By (Gu(0)G5(0)7) = Sc, () Eq (G4(0)G5(0)7)  (1.172)

forall # € © and for all G,, € G,, then it is Godambe-optimal i6,,. When
G, is closed under addition, any Godambe-optimal estimatingtion G,
satisfieq1.172).

The condition (1.172) can often be verified by showing thatG.,, (0)G% (6)T) =
—FEg(0yr G, (0)) for all & € © and for allG,, € G,. In such situationsz;,
satisfies thesecond Bartlett-identify(1.171), so that

Ka, (6) = By (G (0)G.(0)") -

Example 1.11.2Suppose we have a number of functiong(z1, . .., z;;6),
j=1,...,N,i=1,...n satisfying that

Eg(hij(Xl, . ,XZ-;G)) = 0.

Such functions define relationships (dependenf)obetween an observation
X, and the previous observatiois, ..., X; ; (or some of them) that are on
average equal to zero. It is natural to use such relatioegbigstimate) by
solving the equationy_;" , h;;(X1,..., X;;0) = 0. In order to estimaté it

is necessary thay > p, butif N > p we have too many equations. The theory
of optimal estimating functions tells us how to combine flfigelations in an
optimal way.

Let h; denote theN-dimensional vectoth;i, ..., h;x)?, and define anV-
dimensional estimating function bi,,(0) = >"1" ; hi(X1,..., X;;0). First
we consider the class pfdimensional estimating functions of the form

whereA,, () is a non-randorp x N-matrix that is differentiable with respect
to 6. By A (6) we denote the optimal choice df, (6). It is not difficult to see
that
56, (0) = An(0)SH, (6)
and
Ey (Gu(0)G,(0)") = An(0)Es (Hn(0)Hn(0)") A;,(0)",
whereSy, (0) = Ey(dgr H,(0)). If we choose

A5(8) = —Sg, (0)"Eq (Ha(0)Ha(9)") ",
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then (1.172) is satisfied for all’,, € G,, so thatG},(0) = A;,(0)H,(0) is
Godambe optimal.

Sometimes there are good reasons to use functigrsatisfying that

Eo(hij(X1,..., Xi;0)hiy (X1, ..., Xe;0)) =0 (1.173)
forall j,5' = 1,..., N when: # 4. For such functions the random variables
hij(X1,...,X;;0),i=1,2,...are uncorrelated, and in this sense the “new”
random variation of;; (X1, . .., X;; 6) depends only on the innovation in the

ith observation. This is for instance the case for martingatemating func-
tions, see (1.180). In this situation it is natural to coesithe larger class of
estimating functions given by

Gn(0) = Xn:ai(o)hi(Xla X3 0),

i=1
wherea;(0),i = 1,...n, arep x N matrices that do not depend on the data
and are differentiable with respectdoHere

Sa, (0) = ai(0)Es(Fprhi(X1,. .., Xi50))
i=1

and
Eo (Gn(0)G;(0)") =

i al(G)Eg (hz(Xh . ,Xi; Q)hl(Xl, e ,Xi; O)T) QT(G)T,

=1
wherea} (9) denotes the optimal choice of(). We see that with
ai(h) =

2

—Ep(Oprhi(X1,. ... X5;0)"(Ep (hs(X1,. .., Xi;0)hi( X1, ..., Xi50)7))
the condition (1.172) is satisfied. O

1.11.1 Martingale estimating functions

More can be said about martingale estimating functionsesmating func-
tionsG,, satisfying that

Eg(Gn(9)|fn,1) = anl(o), n = 1, 2, ey

whereF,, 1 is theo-field generated by the observatioks, ..., X, 1 (Go =

0 andF is the trivialo-field). In other words, the stochastic procges, (6) :

n = 1,2,...} is a martingale under the model given by the parameter value
. Since the score function is usually a martingale (see eaghdrff-Nielsen
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& Sgrensen (1994)), it is natural to approximate it by faeslpof martingale
estimating functions.

The well-developed martingale limit theory allows a sthafgrward discus-
sion of the asymptotic theory, and motivates an optimaliffedon that is
particular to martingale estimating functions. Supposgedstimating function
G, (0) satisfies the conditions of the central limit theorem for tingales and

letd,, be a solution of the equatids,, (6) = 0. Under the regularity conditions
of the previous section, it can be proved that

(G(0))n Gn(0) (B — B0) = N(0, 1,). (1.174)

Here(G(0)),, is thequadratic characteristiof G,,(0) defined by
(GO)n =Y Eo ((Gi(0) = Gia(0)(Gi0) = Gima(9)T|Fin)
=1
anddyr G, (0) has been replaced by its compensator
Gn(0) =D By (057 Gi(0) — 0grGi1(0)|Fi1),
=1
using the extra assumption th@t, (6)~19,+G,,(9) —2 I,. Details can be
found in Heyde (1988). We see that the inverse of the datartgmt matrix
Ig, (0) = G (0)T{G(0)),,' Gn(0) (1.175)

estimates the co-variance matrix of the asymptotic distidim of the estimator
0,,. Thereforel; (6) can be interpreted as an information matrix, called the
Heyde-informationlt generalizes the incremental expected information ef th
likelihood theory for stochastic processes; see Barnddidfsen & Sgrensen
(1994). Since,(9) estimates the sensitivity function, atd(6)),, estimates
the variance of the asymptotic distribution @f,(6), the Heyde-information
has a heuristic interpretation similar to that of the Godasmtformation. In
fact,

Ey (G (0)) = Si, (6) and Ep ((G(6))n) = Eo (Gn(8)Gn(6)7) .

We can thus think of the Heyde-information as an estimatedime of the
Godambe information.

Let G, be a class of martingale estimating functions with finitdasace. We
say that a martingale estimating functiéfj is Heyde-optimain G, if

Ig: (0) > Ig, (0) (1.176)
Py-almost surely for alb € © and for allG,, € G,,.

The following useful result from Heyde (1988) is similar tbdorem 1.11.1. In
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order to formulate it, we need the concept of tuadratic co-characteristiof
two martingales(z andG, both of which are assumed to have finite variance:

n

(GG =3 E ((Gi GGy — Gi,l)TU—]—,l) : (1.177)

i=1

Theorem 1.11.3If G}, € G, satisfies that
Gn(0)"1(G(0),G*(0))n = G (0) (G (0))n (1.178)

forall # € © and all G,, € G,, then it is is Heyde-optimal i,,. When
G, is closed under addition, any Heyde-optimal estimatingfion G, sat-
isfies(1.178) Moreover, ifG (6) =1 (G*(6)),, is non-random, thed:”, is also
Godambe-optimal i,, .

Since in many situations condition (1.178) can be verifiedshbgwing that
(G(0),G*(0))n = —Gn(0) forall G,, € G,, itisin practice often the case that
Heyde-optimality implies Godambe-optimality.

Example 1.11.4Letus discuss a often occurring type of martingale estimgati
functions. To simplify the exposition we assume that theeobed process is
Markovian. For Markov processes it is natural to base mgalm estimating
functions on function,;; (y,z;6), s =1,...,N,i = 1,...,n satisfying that

Eg(hij(Xi,Xi,1;9)|fi,1) = O (1179)

As in Example 1.11.2, such functions define relationshigpémdent ord)
between consecutive observatidiy and X;_; that are, on average, equal to
zero and can be used to estiméteNe consider the class gktdimensional
estimating functions of the form

i=1

whereh; denotes théV-dimensional vectofh;1, . .., h;y)T, anda; (z; 0) is a
function fromIR x © into the set of x N-matrices that are differentiable with
respect tdf. It follows from (1.179) thaiG,, () is a p-dimensional unbiased
martingale estimating function.

We will now find the matrices; that combine theéV functionsh;; in an op-
timal way. LetG,, be the class of martingale estimating functions of the form
(1.180) that have finite variance. Then

Gn(0) = Z ai(Xi-1;0)Eg(9grhi(Xs, Xi-1;0)|Fi-1)
i=1
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and
(G(0),G"(0))n :Xn:az( Xio130) Vi, (Xi130)a; (Xi-1:0) "
=1
where .
GL(0) =) a;(Xi—1;0)hi(X;, X;-130), (1.181)
and -

Vi (Xi-130) = By (hi( X, Xi—150)hi( Xy, Xio1;0)T | Fia)

is the conditional covariance matrix of the random veftoX;, X, 1;6) given
Fi—1. If we assume thalt,, (X;_1; 0) is invertible and define

ai(Xi-1;0) = —Eg(Oprhi(Xi, Xio1;0)|Fi1) " Vi, (Xiz1;0) 71, (1.182)

then the condition (1.178) is satisfied. Hence by Theorerh.3.the estimat-
ing functionG;, (9) with a; given by (1.182) is Heyde-optimal - provided, of
course, that it has finite variance. Sin€& (6)~*(G*(0)),, = —I, is non-
random, the estimating functia®}, (¢) is also Godambe-optimal. {} were
defined without the minugz;, (#) would obviously also be optimal. The rea-
son for the minus will be clear in the following.

We shall now see, in exactly what sense the optimal estimgédimction (1.181)
approximates the score function. The following result was §iven by Kessler
(1996). Letp;(y; 0|x) denote the conditional density &f; given thatX,; ; =
x. Then the likelihood function fof based on the dafa;, ..., X,,) is

Ln(0) = [ [ pi(Xi561Xi1)
=1
(with p; denoting the unconditional density &f). If we assume that ap;s
are differentiable with respect t the score function is

Un(0) = 9plog pi(Xi; 0]X; 1). (1.183)
=1
Let us fix4, z;_1 andd and consider thd.,-spacelC; (x;-1, 6) of functions
[+ R — IR for which [ f(y)?p;(y; 0]z;_1)dy < oo. We equipk;(z;_1,6)
with the usual inner product

/f Y)pi(y; 0|zi—1)dy,

and letH;(z;_1, ) denote theV-dimensional subspace &f (z;_1, #) spanned
by the functions; — h;;(y,z;—1;60), j =1,..., N. That the functions are lin-
early independent ifC;(z;_1, 6) follows from the earlier assumption that the
covariance matri¥y,, (z;—1; 0) is regular.
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Now, assume thaby,log p;(y|zi-1;0) € Ki(x;—1,0) for j = 1,...,p, de-
note byg;; the orthogonal projection with respect g -) of dy,logp; onto

Hi(x;-1,6), and define g-dimensional function by;; = (g;;,...,9;,)".
Then (under weak regularity conditions)
9i (i—1,7;0) = aj(zi-1;0)hi (w1, 2;0), (1.184)

whereq] is the matrix defined by (1.182). To see this, note fiatust have
the form (1.184) withu} satisfying the normal equations

(0p,log pi — g, hix) = 0,

j=1,....,pandk = 1,...,N. These equations can be expressed in the
form B; = a}Vy,, whereB; is thep x p-matrix whose(j, k)th element is
(Op,log p;, hqy). The main regularity condition needed to prove (1.184)d th
we can interchange differentiation and integration so that

/3ej [hik (Y, wi—1; 0)p(y, xi-150)] dy =

e, /hik(y,Iifl;t?)p(arifl,y;t?)dy =0,
from which it follows that
B; = —/@)Thi(yazifl;9)P(Ii71,y§9)dy-

Thusa; is given by (1.182).
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