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CHAPTER 1

Estimating functions for
diffusion-type processes

Michael Sørensen
University of Copenhagen

1.1 Introduction

In this chapter we consider parametric inference based on discrete time obser-
vationsX0, Xt1 , . . . , Xtn

from ad-dimensional stochastic process. In most of
the chapter the statistical model for the data will be a diffusion model given
by a stochastic differential equation. We shall, however, also consider some
examples of non-Markovian models, where we typically assume that the data
are partial observations of a multivariate stochastic differential equation. We
assume that the statistical model is indexed by ap-dimensional parameterθ.

The focus will be on estimating functions. Anestimating functionis ap-dimen-
sional function of the parameterθ and the data:

Gn(θ;X0, Xt1 , . . . , Xtn
).

Usually we suppress the dependence on the observations in the notation and
writeGn(θ). We obtain an estimator by solving the equation

Gn(θ) = 0. (1.1)

Estimating functions provide a general framework for finding estimators and
studying their properties in many different kinds of statistical models. The es-
timating function approach has turned out to be very useful for discretely sam-
pled parametric diffusion-type models, where the likelihood function is usually
not explicitly known. Estimating functions are typically constructed by com-
bining relationships (dependent on the unknown parameter)between an obser-
vation and one or more of the previous observations that are informative about
the parameters.

As an example, suppose the statistical model for the dataX0, X∆, X2∆, . . . ,
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2 ESTIMATING FUNCTIONS FOR DIFFUSION-TYPE PROCESSES

Xn∆ is the one-dimensional stochastic differential equation

dXt = −θ tan(Xt)dt+ dWt,

whereθ > 0 andW is a Wiener process. The state-space is(−π/2, π/2). This
model will be considered in more detail in Subsection 1.3.6.For this process
Kessler & Sørensen (1999) proposed the estimating function

Gn(θ) =

n
∑

i=1

sin(X(i−1)∆)
[

sin(Xi∆) − e−(θ+ 1
2
)∆ sin(X(i−1)∆)

]

,

which can be shown to be a martingale, whenθ is the true parameter. For such
martingale estimating functions, asymptotic properties of the estimators as the
number of observations tends to infinity can be studied by means of martingale
limit theory, see Subsection 1.3.1. An explicit estimatorθ̂n of the parameterθ
is obtained by solving the estimating equation (1.1):

θ̂n = ∆−1 log

(
∑n

i=1 sin(X(i−1)∆) sin(Xi∆)
∑n

i=1 sin(X(i−1)∆)2

)

− 1

2
,

provided that
n
∑

i=1

sin(X(i−1)∆) sin(Xi∆) > 0. (1.2)

If this condition is not satisfied, the estimating equation (1.1) has no solution,
but fortunately it can be shown that the probability that (1.2) holds tends to one
asn tends to infinity. As illustrated by this example, it is quitepossible that the
estimating equation (1.1) has no solution. We shall give general conditions that
ensure the existence of a unique solution as the number of observations tend to
infinity.

The idea of using estimating equations is an old one and goes back at least
to Karl Pearson’s introduction of the method of moments. Theterm estimat-
ing function may have been coined by Kimball (1946). In the econometric
literature, the method was introduced by Hansen (1982) and is known as the
generalized method of moments (GMM).

A general asymptotic theory for estimating functions is presented in Section
1.10, and Section 1.11 reviews the theory of optimal estimating functions.
Given a collection of relations between observations at different time points
that can be used for estimation, this theory clarifies how to combine the rela-
tions in an optimal way, i.e. in such a way that the most efficient estimator is
obtained. In Section 1.2 we present conditions ensuring that estimators from
estimating functions are consistent and asymptotically normal under the so-
called low frequency asymptotics, which is the same as usuallarge sample
asymptotics. In Section 1.3 we present martingale estimating functions for dif-
fusion models including asymptotics and two optimality criteria. One of these
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criteria, small∆-optimality, is particular of diffusion models. Likelihood in-
ference is included as a particular case. It is also discussed how to implement
martingale estimating functions. There are several methods available for cal-
culating approximations to the likelihood function. Thesea briefly reviewed in
Section 1.4, where a particular expansion approach is presented in detail. Non-
martingale estimating functions are considered in Section1.5. In important
aspect of the statistical theory of diffusion processes is that a number of alter-
native asymptotic scenarios particular to diffusions are available to supplement
the traditional large sample asymptotics. High frequency asymptotics, high fre-
quency asymptotics in a fixed time-interval and small-diffusion asymptotics are
presented in the Sections 1.6, 1.7, and 1.8. A number of non-Markovian mod-
els are considered in Section 1.9, including observations with measurement er-
rors, integrated diffusions, sums of diffusions, stochastic volatility models and
compartment models. A general tool for these models are prediction-based es-
timating functions, which generalize the martingale estimating functions and
share some of their convenient features.

1.2 Low frequency asymptotics

In this section, we assume that observations have been made at the equidistant
time pointsi∆, i = 1, . . . , n, and consider the classical large sample asymp-
totic scenario, where the time between observations,∆, is fixed, and the num-
ber of observations,n, goes to infinity. Since∆ is fixed, we will generally
suppress∆ in the notation in this section. We assume that the statistical model
is indexed by ap-dimensional parameterθ ∈ Θ, which we want to estimate.
The corresponding probability measures are denoted byPθ. The distribution
of the data is given by the true probability measure, which wedenote byP .

Under the true probability measure,P , it is assumed that{Xi∆} is a stationary
process with state spaceD ⊆ IRd. We study the asymptotic properties of an
estimator,̂θn, obtained by solving the estimating equation (1.1) whenGn is an
estimating function of the general form

Gn(θ) =
1

n

n
∑

i=r

g(X(i−r+1)∆, . . . , Xi∆; θ), (1.3)

wherer is a fixed integer smaller thann, andg is a suitable function with
values inIRp. All estimators discussed in this chapter can be represented in
this way. We shall present several useful examples of howg can be chosen in
the subsequent sections. A priori there is no guarantee thata unique solution
to (1.1) exists, but conditions ensuring this for large sample sizes are given
below. By aGn–estimator, we mean an estimator,θ̂n, which solves (1.1) when
the data belongs to a subsetAn ⊆ Dn, and is otherwise given a valueδ /∈ Θ.
We give results ensuring that, asn→ ∞, the probability ofAn tends to one.
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LetQ denote the joint distribution of(X∆, . . . , Xr∆), andQ(f) the expecta-
tion of f(X∆, . . . , Xr∆) for a functionf : Dr 7→ IR. To obtain our asymptotic
results aboutGn–estimators, we need to assume that a law of large numbers
(an ergodic theorem) as well as a central limit theorem hold.Specifically, we
assume that asn→ ∞

1

n

n
∑

i=r

f(X(i−r+1)∆, . . . , Xi∆)
P−→ Q(f) (1.4)

for any functionf : Dr 7→ IR such thatQ(|f |) < ∞, and that the estimating
function (1.3) satisfies

1√
n

n
∑

i=r

g(X(i−r+1)∆, . . . , Xi∆; θ)
D−→ N(0, V (θ)) (1.5)

underP for any θ ∈ Θ for which Q(g(θ)) = 0. HereV (θ) is a positive
definitep × p-matrix. Moreover,g(θ) denotes the function(x1, . . . , xr) 7→
g(x1, . . . , xr; θ), convergence in probability underP is indicated by

P−→, and
D−→ denotes convergence in distribution.

The following condition ensures the existence of a consistent Gn–estimator.
We denote transposition of matrices byT , and∂θTGn(θ) denotes thep × p-
matrix, where theijth entry is∂θj

Gn(θ)i.

Condition 1.2.1 A parameter valuēθ ∈ int Θ and a neighbourhoodN of θ̄ in
Θ exist such that:

(1) The functiong(θ) : (x1, . . . , xr) 7→ g(x1, . . . , xr ; θ) is integrable with
respect toQ for all θ ∈ N , and

Q
(

g(θ̄)
)

= 0. (1.6)

(2) The functionθ 7→ g(x1, . . . , xr; θ) is continuously differentiable onN for
all (x1, . . . , xr) ∈ Dr.

(3) The function(x1, . . . , xr) 7→ ‖∂θT g(x1, . . . , xr; θ)‖ is dominated for all
θ ∈ N by a function which is integrable with respect toQ.

(4) Thep× p matrix
W = Q

(

∂θT g(θ̄)
)

(1.7)

is invertible.

Here and laterQ(g(θ)) denotes the vector(Q(gj(θ)))j=1,...,p, wheregj is the

jth coordinate ofg, andQ (∂θT g(θ)) is the matrix{Q
(

∂θj
gi(θ)

)

}i,j=1,...,p.

To formulate the uniqueness result in the following theorem, we need the con-
cept of locally dominated integrability. A functionf : Dr × Θ 7→ IRq is
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called locally dominated integrablewith respect toQ if for each θ′ ∈ Θ
there exists a neighbourhoodUθ′ of θ′ and a non-negativeQ-integrable func-
tion hθ′ : Dr 7→ IR such that| f(x1, . . . , xr; θ) | ≤ hθ′(x1, . . . , xr) for all
(x1, . . . , xr, θ) ∈ Dr × Uθ′.

Theorem 1.2.2Assume Condition 1.2.1 and (1.5). Then aθ̄-consistentGn–
estimator,θ̂n, exists, and

√
n(θ̂n − θ0)

D−→ Np

(

0,W−1VWT −1
)

(1.8)

underP , whereV = V (θ̄). If, moreover, the functiong(x1, . . . , xr; θ) is lo-
cally dominated integrable with respect toQ and

Q(g(θ)) 6= 0 for all θ 6= θ̄, (1.9)

then the estimator̂θn is the uniqueGn–estimator on any bounded subset ofΘ
containingθ̄ with probability approaching one asn→ ∞.

Remark:By a θ̄-consistent estimator is meant thatθ̂n
P−→ θ̄ asn → ∞. If the

true model belongs to the statistical model, i.e. ifP = Pθ0
for someθ0 ∈ Θ,

then the estimator̂θn is most useful if Theorem 1.2.2 holds with̄θ = θ0. Note
that becausēθ ∈ int Θ, a θ̄-consistent estimatorGn–estimator̂θn will satisfy
Gn(θ̂n) = 0 with probability approaching one asn→ ∞.

In order to prove Theorem 1.2.2, we need the following uniform law of large
numbers.

Lemma 1.2.3 Consider a functionf : Dr ×K 7→ IRq, whereK is a compact
subset ofΘ. Supposef is a continuous function ofθ for all (x1, . . . , xr) ∈
Dr, and that there exists aQ-integrable functionh : Dr 7→ IR such that
‖f(x1, . . . , xr ; θ)‖ ≤ h(x1, . . . , xr) for all θ ∈ K. Then the functionθ 7→
Q(f(θ)) is continuous, and

sup
θ∈K

‖ 1

n

n
∑

i=r

f(X(i−r+1)∆, . . . , Xi∆; θ) −Q(f(θ)) ‖ P→ 0. (1.10)

Proof: ThatQ(f(θ)) is continuous follows from the dominated convergence
theorem. To prove (1.10), define forη > 0:

k(η;x1, . . . , xr) = sup
θ,θ′∈M :‖θ′−θ‖≤η

‖f(x1, . . . , xr; θ
′) − f(x1, . . . , xr; θ)‖,

and letk(η) denote the function(x1, . . . , xr) 7→ k(η;x1, . . . , xr). Sincek(η) ≤
2h, it follows from the dominated convergence theorem thatQ(k(η)) → 0 as
η → 0. Moreover,Q(f(θ)) is uniformly continuous on the compact setK.
Hence for any givenǫ > 0, we can findη > 0 such thatQ(k(η)) ≤ ǫ and
such that‖θ − θ′‖ < η implies that‖Q(f(θ)) −Q(f(θ′))‖ ≤ ǫ for θ, θ′ ∈ K.
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Define the ballsBη(θ) = {θ′ : ‖θ−θ′‖ < η}. SinceK is compact, there exists
a finite covering

K ⊆
m
⋃

j=1

Bη(θj),

whereθ1, . . . , θm ∈ K, so for everyθ ∈ K we can findθℓ, ℓ ∈ {1, . . . ,m},
such thatθ ∈ Bη(θℓ). Thus with

Fn(θ) =
1

n

n
∑

i=r

f(X(i−r+1)∆, . . . , Xi∆; θ)

we have

‖Fn(θ) −Q(f(θ))‖

≤ ‖Fn(θ) − Fn(θℓ)‖ + ‖Fn(θℓ) −Q(f(θℓ))‖ + ‖Q(f(θℓ)) −Q(f(θ))‖

≤ 1

n

n
∑

ν=r

k(η;X(ν−r+1)∆, . . . , Xν∆) + ‖Fn(θℓ) −Q(f(θℓ))‖ + ǫ

≤
∣

∣

∣

∣

∣

1

n

n
∑

ν=r

k(η;X(ν−r+1)∆, . . . , Xν∆) −Q(k(η))

∣

∣

∣

∣

∣

+Q(k(η)) + ‖Fn(θℓ) −Q(f(θℓ))‖ + ǫ

≤ Zn + 2ǫ,

where

Zn =

∣

∣

∣

∣

∣

1

n

n
∑

ν=r

k(η;X(ν−r+1)∆, . . . , Xν∆) −Q(k(η))

∣

∣

∣

∣

∣

+ max
1≤ℓ≤m

‖Fn(θℓ) −Q(f(θℓ))‖.

By (1.4),P (Zn > ǫ) → 0 asn→ ∞, so

P

(

sup
θ∈K

‖Fn(θ) −Q(f(θ))‖ > 3ǫ

)

→ 0

for all ǫ > 0. 2

Proof (of Theorem 1.2.2): The existence of āθ-consistentGn–estimatorθ̂n

follows from Theorem 1.10.2. Condition (i) follows from (1.4) and (1.6). De-
fine the functionW (θ) = Q (∂θT g(θ)). Then condition (iii) in Theorem 1.10.2
is equal to Condition 1.2.1 (4). Finally, letM be a compact subset ofN con-
taining θ̄. Then the conditions of Lemma 1.2.3 are satisfied forf = ∂θT g, so
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(1.158) is satisfied. The asymptotic normality, (1.20), follows from Theorem
1.10.4 and (1.5).

In order to prove the last statement, letK be a compact subset ofΘ containing
θ̄. By the finite covering property of a compact set, it follows from the local
dominated integrability ofg that g satisfies the conditions of Lemma 1.2.3.
Hence (1.159) holds withG(θ) = Q(g(θ)) andM = K. From the local domi-
nated integrability ofg and the dominated convergence theorem it follows that
G(θ) is a continuous function, so (1.9) implies that

inf
K\B̄ǫ(θ̄)

|G(θ)| > 0,

for all ǫ > 0, whereB̄ǫ(θ) is the closed ball with radiusǫ centered atθ. By
Theorem 1.10.3 it follows that (1.161) holds withM = K for everyǫ > 0. Let
θ̂′n be aGn–estimator, and define aGn–estimator bŷθ′′n = θ̂′n1{θ̂′n ∈ K} +

θ̂n1{θ̂′n /∈ K}, where1 denotes an indicator function, andθ̂n is the consistent
Gn–estimator we know exists. By (1.161) the estimatorθ̂′′n is consistent, so by
Theorem 1.10.2,P (θ̂n 6= θ̂′′n) → 0 asn → ∞. Henceθ̂n is eventually the
uniqueGn–estimator onK.

2

1.3 Martingale estimating functions

In this section we consider observationsX0, Xt1 , . . . , Xtn
of ad-dimensional

diffusion process given by the stochastic differential equation

dXt = b(Xt; θ)dt+ σ(Xt; θ)dWt, (1.11)

whereσ is ad×d-matrix andW ad-dimensional standard Wiener process. We
denote the state space ofX by D. Whend = 1, the state space is an interval
(ℓ, r), whereℓ could possibly be−∞, andr might be∞. The drift b and the
diffusion matrixσ depend on a parameterθ which varies in a subsetΘ of IRp.
The equation (1.11) is assumed to have a weak solution, and the coefficients
b andσ are assumed to be smooth enough to ensure, for everyθ ∈ Θ, the
uniqueness of the law of the solution, which we denote byPθ. We denote the
true parameter value byθ0.

We suppose that the transition distribution has a densityy 7→ p(∆, x, y; θ)
with respect to the Lebesgue measure onD, and thatp(∆, x, y; θ) > 0 for all
y ∈ D. The transition density is the conditional density underPθ of Xt+∆

given thatXt = x.

We shall, in this section, be concerned with statistical inference based on esti-
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mating functions of the form

Gn(θ) =

n
∑

i=1

g(∆i, Xti−1
, Xti

; θ). (1.12)

whereg is ap-dimensional function which satisfies that
∫

D

g(∆, x, y; θ)p(∆, x, y; θ)dy = 0 (1.13)

for all ∆ > 0, x ∈ D andθ ∈ Θ. Thus, by the Markov property, the stochastic
process{Gn(θ)}n∈IN is a martingale with respect to{Fn}n∈IN underPθ. Here
and laterFn = σ(Xti

: i ≤ n). An estimating function with this property is
called amartingale estimating function.

1.3.1 Asymptotics

In this subsection we give asymptotic results for estimators obtained from mar-
tingale estimating functions as the number of observationsgoes to infinity. To
simplify the exposition the observation time points are assumed to be equidis-
tant, i.e.,ti = i∆, i = 0, 1, . . . , n. Since∆ is fixed, we will in most cases
suppress∆ in the notation and write for examplep(x, y; θ) andg(x, y; θ).

It is assumed that the diffusion given by (1.11) is ergodic, that its invariant
probability measure has density functionµθ for all θ ∈ Θ, and thatX0 ∼ µθ

underPθ. Thus the diffusion is stationary.

When the observed process,X , is a one-dimensional diffusion, the follow-
ing simple conditions ensureergodicity, and an explicit expression exists for
the density of the invariant probability measure. Thescale measureof X has
Lebesgue density

s(x; θ) = exp

(

−2

∫ x

x#

b(y; θ)

σ2(y; θ)
dy

)

, x ∈ (ℓ, r), (1.14)

wherex# ∈ (ℓ, r) is arbitrary.

Condition 1.3.1 The following holds for allθ ∈ Θ:
∫ r

x#

s(x; θ)dx =

∫ x#

ℓ

s(x; θ)dx = ∞

and
∫ r

ℓ

[s(x; θ)σ2(x; θ)]−1dx = A(θ) <∞.

Under Condition 1.3.1 the processX is ergodic with an invariant probability
measure with Lebesgue density

µθ(x) = [A(θ)s(x; θ)σ2(x; θ)]−1, x ∈ (ℓ, r); (1.15)
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for details see e.g. Skorokhod (1989). For general one-dimensional diffusions,
the measure with Lebesgue density proportional to[s(x; θ)σ2(x; θ)]−1 is called
the speed measure.

LetQθ denote the probability measure onD2 given by

Qθ(dx, dy) = µθ(x)p(∆, x, y; θ)dxdy. (1.16)

This is the distribution of two consecutive observations(X∆(i−1), X∆i). Under
the assumption of ergodicity the law of large numbers (1.4) is satisfied for any
functionf : D2 7→ IR such thatQ(|f |) <∞, see e.g. Skorokhod (1989).

We impose the following condition on the functiong in the estimating function
(1.12)

Qθ

(

g(θ)T g(θ)
)

= (1.17)
∫

D2

g(y, x; θ)T g(y, x; θ)µθ(x)p(x, y; θ)dydx <∞,

for all θ ∈ Θ. By (1.4),

1

n

n
∑

i=1

g(X∆i, X∆(i−1); θ
′)

Pθ−→ Qθ(g(θ
′)), (1.18)

for all θ, θ′ ∈ Θ. Since the estimating functionGn(θ) is a square integrable
martingale underPθ, the asymptotic normality in (1.5) follows without further
conditions from the central limit theorem for martingales,see Hall & Heyde
(1980). This result for stationary processes goes back to Billingsley (1961). In
the martingale case the asymptotic covariance matrixV (θ) in (1.5) is given by

V (θ) = Qθ0

(

g(θ)g(θ)T
)

. (1.19)

Thus we have the following particular case of Theorem 1.2.2.

Theorem 1.3.2Assume Condition 1.2.1 is satisfied withr = 2, θ̄ = θ0, and
Q = Qθ0

, whereθ0 is the true parameter value, and that (1.17) holds for
θ = θ0. Then aθ0-consistentGn–estimator̂θn exists, and

√
n(θ̂n − θ0)

D−→ Np

(

0,W−1VWT −1
)

(1.20)

underPθ0
, whereW is given by (1.7) with̄θ = θ0, andV = V (θ0) with

V (θ) given by (1.19). If, moreover, the functiong(x, y; θ) is locally dominated
integrable with respect toQθ0

and

Qθ0
(g(θ)) 6= 0 for all θ 6= θ0, (1.21)

then the estimator̂θn is the uniqueGn–estimator on any bounded subset ofΘ
containingθ0 with probability approaching one asn→ ∞.
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In practice we do not know the value ofθ0, so it is necessary to check that the
conditions of Theorem 1.3.2 hold for any value ofθ0 ∈ int Θ.

The asymptotic covariance matrix of the estimatorθ̂n can be estimated consis-
tently by means of the following theorem.

Theorem 1.3.3Under Condition 1.2.1 (2) – (4) (withr = 2, θ̄ = θ0, and
Q = Qθ0

),

Wn =
1

n

n
∑

i=1

∂θT g(X(i−1)∆, Xi∆; θ̂n)
Pθ0−→W, (1.22)

where θ̂n is a θ0-consistent estimator. The probability thatWn is invertible
approaches one asn → ∞. If, moreover, the function(x, y) 7→ ‖g(x, y; θ)‖
is dominated for allθ ∈ N by a function which is square integrable with
respect toQθ0

, then

Vn =
1

n

n
∑

i=1

g(X(i−1)∆, Xi∆; θ̂n)g(X(i−1)∆, Xi∆; θ̂n)T Pθ0−→ V. (1.23)

Proof: Let C be a compact subset ofN such thatθ0 ∈ intC. By Lemma
1.2.3,1n

∑n
i=1 ∂θT g(X(i−1)∆, Xi∆; θ) converges toQθ0

(∂θT g(θ)) in probabil-

ity uniformly for θ ∈ C. This implies (1.22) becausêθn converges in probabil-
ity to θ0. The result about invertibility follows becauseW is invertible. Also the
uniform convergence in probability forθ ∈ C of 1

n

∑n
i=1 g(X(i−1)∆, Xi∆; θ)

g(X(i−1)∆, Xi∆; θ)T toQθ0
(g(θ)g(θ)T ) follows from Lemma 1.2.3.

2

1.3.2 Likelihood inference

The diffusion processX is a Markov process, so the likelihood function based
on the observationsX0, Xt1 , · · · , Xtn

, conditional onX0, is

Ln(θ) =
n
∏

i=1

p(ti − ti−1, Xti−1
, Xti

; θ), (1.24)

wherey 7→ p(s, x, y; θ) is the transition density andt0 = 0. Under weak
regularity conditions the maximum likelihood estimator isefficient, i.e. it has
the smallest asymptotic variance among all estimators. Thetransition density
is only rarely explicitly known, but several numerical approaches and accurate
approximations make likelihood inference feasible for diffusion models. We
shall return to the problem of calculating the likelihood function in Subsection
1.4.



MARTINGALE ESTIMATING FUNCTIONS 11

The vector of partial derivatives of the log-likelihood function with respect to
the coordinates ofθ,

Un(θ) = ∂θ logLn(θ) =
n
∑

i=1

∂θ log p(∆i, Xti−1
, Xti

; θ), (1.25)

where∆i = ti − ti−1, is called thescore function(or score vector). Here it
is obviously assumed that the transition density is a differentiable function of
θ. The maximum likelihood estimator usually solves the estimating equation
Un(θ) = 0. The score function is a martingale with respect to{Fn}n∈IN under
Pθ, which is easily seen provided that the following interchange of differenti-
ation and integration is allowed:

Eθ (∂θ log p(∆i, Xti−1
, Xti

; θ)|Xt1 , . . . , Xti−1
)

=

∫

D

∂θp(∆i, Xti−1
, y; θ)

p(∆i, Xti−1
, y; θ)

p(∆i, Xti−1
, y, θ)dy

= ∂θ

∫

D

p(∆i, Xti−1
, y; θ)dy = 0.

Since the score function is a martingale estimating function, the asymptotic
results in the previous subsection applies to the maximum likelihood estimator.
Asymptotic results for the maximum likelihood estimator inthe low frequency
(fixed ∆) asymptotic scenario considered in that subsection were established
by Dacunha-Castelle & Florens-Zmirou (1986). Asymptotic results when the
observations are made at random time points were obtained byAı̈t-Sahalia &
Mykland (2003).

In the case of likelihood inference, the functionQθ0
(g(θ)) appearing in the

identifiability condition (1.21) is related to the Kullback-Leibler divergence
between the models. Specifically, if the following interchange of differentiation
and integration is allowed,

Qθ0
(∂θ log p(x, y, θ)) = ∂θQθ0

(log p(x, y, θ)) = −∂θK̄(θ, θ0),

whereK̄(θ, θ0) is the average Kullback-Leibler divergence between the tran-
sition distributions underPθ0

andPθ given by

K̄(θ, θ0) =

∫

D

K(θ, θ0;x)µθ0
(dx),

with

K(θ, θ0;x) =

∫

D

log[p(x, y; θ0)/p(x, y; θ)]p(x, y; θ0) dy.

Thus the identifiability condition can be written in the form∂θK̄(θ, θ0) 6= 0
for all θ 6= θ0. The quantityK̄(θ, θ0) is sometimes referred to as the Kullback-
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Leibler divergence between the two Markov chain models for the observed
process{Xi∆} underPθ0

andPθ.

A simple approximation to the likelihood function is obtained by approximat-
ing the transition density by a Gaussian density with the correct first and second
conditional moments. For a one-dimensional diffusion we get

p(∆, x, y; θ) ≈ q(∆, x, y; θ) =
1

√

2πφ(∆, x; θ)
exp

[

− (y − F (∆, x; θ))2

2φ(∆, x; θ)

]

where

F (∆, x; θ) = Eθ(X∆|X0 = x) =

∫ r

ℓ

yp(∆, x, y; θ)dy. (1.26)

and

φ(∆, x; θ) = (1.27)

Varθ(X∆|X0 = x) =

∫ r

ℓ

[y − F (∆, x; θ)]2p(∆, x, y; θ)dy.

In this way we obtain thequasi-likelihood

Ln(θ) ≈ QLn(θ) =

n
∏

i=1

q(∆i, Xti−1
, Xti

; θ),

and by differentiation with respect to the parameter vector, we obtain the quasi-
score function

∂θ logQLn(θ) =

n
∑

i=1

{

∂θF (∆i, Xti−1
; θ)

φ(∆i, Xti−1
; θ)

[Xti
− F (∆i, Xti−1

; θ)] (1.28)

+
∂θφ(∆i, Xti−1

; θ)

2φ(∆i, Xti−1
; θ)2

[

(Xti
− F (∆i, Xti−1

; θ))2 − φ(∆i, Xti−1
; θ)
]

}

.

It is clear from (1.26) and (1.27) that{∂θ logQLn(θ)}n∈IN is a martingale with
respect to{Fn}n∈IN underPθ. This quasi-score function is a particular case of
the quadratic martingale estimating functions consideredby Bibby & Sørensen
(1995) and Bibby & Sørensen (1996). Maximum quasi-likelihood estimation
for diffusions was considered by Bollerslev & Wooldridge (1992).

1.3.3 Godambe-Heyde optimality

In this section we present a general way of approximating thescore function
by means of martingales of a similar form. Suppose we have a collection of
real valued functionshj(x, y, ; θ), j = 1, . . . , N , satisfying

∫

D

hj(x, y; θ)p(x, y; θ)dy = 0 (1.29)
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for all x ∈ D andθ ∈ Θ. Each of the functionshj could be used separately
to define an estimating function of the form (1.3) withg = hj, but a better
approximation to the score function, and hence a more efficient estimator, is
obtained by combining them in an optimal way. Therefore we consider esti-
mating functions of the form

Gn (θ) =

n
∑

i=1

a(X(i−1)∆, θ)h(X(i−1)∆, Xi∆; θ), (1.30)

whereh = (h1, . . . , hN )T , and thep ×N weight matrixa(x, θ) is a function
of x such that (1.30) isPθ-integrable. It follows from (1.29) thatGn (θ) is a
martingale estimating function, i.e., it is a martingale underPθ for all θ ∈ Θ.

The matrixa determines how much weight is given to each of thehjs in the
estimation procedure. This weight matrix can be chosen in anoptimal way
using the theory of optimal estimating functions reviewed in Section 1.11. The
optimal weight matrix, a∗, gives the estimating function of the form (1.30)
that provides the best possible approximation to the score function (1.25) in
a mean square sense. Moreover, the optimalg∗(x, y; θ) = a∗(x; θ)h(x, y; θ)
is obtained from∂θ log p(x, y; θ) by projection in a certain space of square
integrable functions, for details see Section 1.11.

The choice of the functionshj , on the other hand, is an art rather than a science.
The ability to tailor these functions to a given model or to particular parameters
of interest is a considerable strength of the estimating functions methodology.
It is, however, also a source of weakness, since it is not always clear how best to
choose thehjs. In the following and in the Subections 1.3.6 and 1.3.7, we shall
present ways of choosing these functions that usually work well in practice.
Also the theory in Subsection 1.3.4 and Section 1.6 casts interesting light on
this problem.

Example 1.3.4 The martingale estimating function (1.28) is of the type (1.30)
with N = 2 and

h1(x, y; θ) = y − F (∆, x; θ),

h2(x, y; θ) = (y − F (∆, x; θ))2 − φ(∆, x, θ),

whereF andφ are given by (1.26) and (1.27). The weight matrix is
(

∂θF (∆, x; θ)

φ(∆, x; θ)
,

∂θφ(∆, x; θ)

2φ2(∆, x; θ)∆

)

, (1.31)

which we shall see is an approximation to the optimal weigth matrix. 2

In the econometrics literature, a popular way of using functions likehj(x, y, ; θ),
j = 1, . . . , N , to estimate the parameterθ is thegeneralized method of mo-
ments(GMM) of Hansen (1982). In practice, the method is often implemented
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as follows, see e.g. Campbell, Lo & MacKinlay (1997). Consider

Fn(θ) =
1

n

n
∑

i=1

h(X(i−1)∆, Xi∆; θ).

Under weak conditions, cf. Theorem 1.3.3, a consistent estimator of the asymp-
totic covariance matrixM of

√
nFn(θ0) is

Mn =
1

n

n
∑

i=1

h(X(i−1)∆, Xi∆; θ̃n)h(X(i−1)∆, Xi∆; θ̃n)T ,

where θ̃n is a θ0-consistent estimator (for instance obtained by minimizing
Fn(θ)TFn(θ)). The GMM-estimator is obtained by minimizing the function

Hn(θ) = Fn(θ)TM−1
n Fn(θ).

The corresponding estimating function is obtained by differentiation with re-
spect toθ

∂θHn(θ) = Dn(θ)M−1
n Fn(θ),

where by (1.4)

Dn(θ) =
1

n

n
∑

i=1

∂θh(X(i−1)∆, Xi∆; θ)T Pθ0−→ Qθ0

(

∂θh(θ)
T
)

.

Hence the estimating function∂θHn(θ) is asymptotically equivalent to an es-
timating function of the form (1.30) with a weight matrix that does not depend
on the data

a(x, θ) = Qθ0

(

∂θh(θ)
T
)

M−1.

We see that the GMM-estimators described here are covered bythe theory for
martingale estimating functions presented in this section.

We now return to the problem of finding the optimal estimatingfunctionG∗
n(θ),

i.e. the estimating functions of the form (1.30) with the optimal weight matrix.
We assume that the functionshj satisfy the following condition.

Condition 1.3.5

(1) The functionsy 7→ hj(x, y; θ), j = 1, . . .N , are linearly independent for
all x ∈ D andθ ∈ Θ.

(2) The functionsy 7→ hj(x, y; θ), j = 1, . . .N , are square integrable with
respect top(x, y; θ) for all x ∈ D andθ ∈ Θ.

(3) h(x, y; θ) is differentiable with respect toθ.

(4) The functionsy 7→ ∂θi
hj(x, y; θ) are integrable with respect top(x, y; θ)

for all x ∈ D andθ ∈ Θ.
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The class of estimating functions considered here is a particular case of the
class treated in detail in Example 1.11.4. By (1.182), the optimal choice of the
weight matrixa is given by

a∗(x; θ) = Bh(x; θ)Vh(x; θ)−1, (1.32)

where

Bh(x; θ) =

∫

D

∂θh(x, y; θ)
T p(x, y; θ)dy (1.33)

and

Vh(x; θ) =

∫

D

h(x, y; θ)h(x, y; θ)T p(x, y; θ)dy. (1.34)

The matrixVh(x; θ) is invertible because the functionshj , j = 1, . . .N , are
linearly independent. Compared to (1.182), we have omitteda minus here. This
can be done because an optimal estimating function multiplied by an invertible
p × p-matrix is also an optimal estimating function and yields the same esti-
mator.

The asymptotic variance of an optimal estimator, i.e. aG∗
n–estimator, is sim-

pler than the general expression in (1.20) because in this case the matricesW
andV given by (1.7) and (1.19) are identical and given by (1.35). This is a
general property of optimal estimating functions as discussed in Section 1.11.
The result can easily be verified under the assumption thata∗(x; θ) is a differ-
entiable function ofθ. By (1.29)

∫

D

[∂θi
a∗(x; θ)] h(x, y; θ)p(x, y; θ)dy = 0,

so that

W =

∫

D2

∂θT [a∗(x; θ0)h(x, y; θ0)]Qθ0
(dx, dy)

= µθ0
(a∗(θ0)Bh(θ0)

T ) = µθ0

(

Bh(θ0)Vh(θ0)
−1Bh(θ0)

T
)

,

and by direct calculation

V = Qθ0
(a∗(θ0)h(θ0)h(θ0)

Ta∗(θ0)
T ) (1.35)

= µθ0

(

Bh(θ0)Vh(θ0)
−1Bh(θ0)

T
)

.

Thus we have, as a corollary to Theorem 1.3.2, that ifg∗(x, y, θ) = a∗(x; θ)h(x, y; θ)

satisfies the conditions of Theorem 1.3.2, then the sequenceθ̂n of consistent
G∗

n–estimators has the asymptotic distribution
√
n(θ̂n − θ0)

D−→ Np

(

0, V −1
)

. (1.36)

Example 1.3.6 Consider the martingale estimating function of form (1.30)
with N = 2 and withh1 andh2 as in Example 1.3.4, where the diffusion
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is one-dimensional. The optimal weight matrix has columns given by

a∗1(x; θ) =
∂θφ(x; θ)η(x; θ) − ∂θF (x; θ)ψ(x; θ)

φ(x; θ)ψ(x; θ) − η(x; θ)2

a∗2(x; θ) =
∂θF (x; θ)η(x; θ) − ∂θφ(x; θ)φ(x; θ)

φ(x; θ)ψ(x; θ) − η(x; θ)2
,

where
η(x; θ) = Eθ([X∆ − F (x; θ)]3|X0 = x)

and
ψ(x; θ) = Eθ([X∆ − F (x; θ)]4|X0 = x) − φ(x; θ)2.

For the square-root diffusion (the a.k.a. the CIR-model)

dXt = −β(Xt − α)dt + τ
√

XtdWt, X0 > 0, (1.37)

whereα, β, τ > 0, the optimal weights can be found explicitly. For this model

F (x; θ) = xe−β∆ + α(1 − e−β∆)

φ(x; θ) =
τ2

β

(

( 1

2
α− x)e−2β∆ − (α− x)e−β∆ + 1

2
α
)

η(x; θ) =
τ4

2β2

(

α− 3(α− x)e−β∆ + 3(α− 2x)e−2β∆

− (α− 3x)e−3β∆
)

ψ(x; θ) =
3τ6

4β3

(

(α− 4x)e−4β∆ − 4(α− 3x)e−3β∆

+ 6(α− 2x)e−2β∆ − 4(α− x)e−β∆ + α
)

+ 2φ(x; θ)2.

We give a method to derive these expression in Subsection 1.3.6.

The expressions fora∗1 anda∗2 can for general diffusions be simplified by the
approximations

η(t, x; θ) ≈ 0 and ψ(t, x; θ) ≈ 2φ(t, x; θ)2, (1.38)

which would be exactly true if the transition density were a Gaussian density
function. If we insert these Gaussian approximations into the expressions for
a∗1 anda∗2, we obtain the weight functions in (1.28). When∆ is not large this
can be justified, because the transition distribution is notfar from Gaussian. In
Section 1.4 we present a data transformation after which thetransition distri-
bution is close to a normal distribution. 2

In Subsections 1.3.6 and 1.3.7 we present martingale estimating functions for
which the matricesBh(x; θ) andVh(x; θ) can be found explicitly, but for most
models these matrices must be found by simulation, a problemconsidered in
Subsection 1.3.5. In situations wherea∗ must be determined by a relatively
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time consuming numerical method, it might be preferable to use the estimating
function

G•
n(θ) =

n
∑

i=1

a∗(X(i−1)∆; θ̃n)h(X(i−1)∆, Xi∆; θ), (1.39)

whereθ̃n is a θ0-consistent estimator, for instance obtained by some simple
choice of the weight matrixa. In this waya∗ needs to be calculated only once
per observation point, whereas the weight matrix must be recalculated for every
call of G∗

n(θ) given by (1.30) witha = a∗. Typically,G∗
n(θ) will be called

many times in a numerical search procedure in order to find theG∗
n-estimator.

Under weak regularity conditions, theG•
n-estimator has the same efficiency as

the optimalG∗
n-estimator; see e.g. Jacod & Sørensen (2009).

Most martingale estimating functions proposed in the literature are of the form
(1.30) with

hj(x, y; θ) = fj(y; θ) − πθ
∆(fj(θ))(x), (1.40)

or more specifically,

Gn (θ) =

n
∑

i=1

a(X(i−1)∆, θ)
[

f(Xi∆; θ) − πθ
∆(f(θ))(X(i−1)∆)

]

. (1.41)

Heref = (f1, . . . , fN)T mapsD×Θ into IRN , andπθ
∆ denotes thetransition

operator

πθ
s(f)(x) =

∫

D

f(y)p(s, x, y; θ)dy = Eθ(f(Xs) |X0 = x), (1.42)

applied to each coordinate off . The polynomial estimating functions given by
fj(y) = yj , j = 1, . . . , N , are an example. For martingale estimating func-
tions of the special form (1.41), the expression for the optimal weight matrix
simplifies a bit because

Bh(x; θ)ij = πθ
∆(∂θi

fj(θ))(x) − ∂θi
πθ

∆(fj(θ))(x), (1.43)

i = 1, . . . p, j = 1, . . . , N , and

Vh(x; θ)ij = πθ
∆(fi(θ)fj(θ))(x) − πθ

∆(fi(θ))(x)π
θ
∆(fj(θ))(x), (1.44)

i, j = 1, . . . , N . If the functionsfj are chosen to be independent ofθ, then
(1.43) simplifies to

Bh(x; θ)ij = −∂θi
πθ

∆(fj)(x). (1.45)

A useful approximation to the optimal weight matrixcan be obtained by ap-
plying the expansion of conditional moments given in the following lemma.
The expansion is expressed in terms of thegeneratorof the diffusion, which is
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defined by

Aθf(x) =

d
∑

k=1

bk(x; θ)∂xk
f(x) + 1

2

d
∑

k,ℓ=1

Ckℓ(x; θ)∂
2
xkxℓ

f(x), (1.46)

whereC = σσT . By Ai
θ we meani-fold application ofAθ, and in particu-

lar,A0
θf = f . For an ergodic diffusion with invariant measure with Lebesgue

densityµθ, let Φθ be the class of real functionsf defined on the state space
D that are twice continuously differentiable, square intergrable with respect to
µθ, and satisfy that

∫

D

(Aθf(x))2µθ(x)dx <∞

d
∑

i,j=1

∫

D

∂xi
f(x)∂xj

f(x)Ci,j(x; θ)µθ(x)dx <∞.

Lemma 1.3.7 Suppose that the diffusion process (1.11) is ergodic with invari-
ant measureµθ, thatf is 2(k + 1) times continuously differentiable, and that
Ai

θf ∈ Φθ, i = 0, . . . , k. Then

πθ
t (f)(x) =

k
∑

i=0

ti

i!
Ai

θf(x) +O(tk+1). (1.47)

Proof: We sketch the proof of (1.47), and consider onlyd = 1 to simplify the
exposition. First considerk = 1. By Ito’s formula

f(Xt) = f(X0) +

∫ t

0

Aθf(Xs)ds+

∫ t

0

f ′(Xs)σ(Xs; θ)dWs

Aθf(Xs) = Aθf(X0) +

∫ s

0

A2
θf(Xu)du +

∫ s

0

∂xAθf(Xu)σ(Xu; θ)dWu,

and by inserting the expression forAθf(Xs) given by the second equation into
the Lebesgue integral in the first equation, we find that

f(Xt) = f(X0) + tAθf(X0) +

∫ t

0

∫ s

0

A2
θf(Xu)duds (1.48)

+

∫ t

0

∫ s

0

∂xAθf(Xu)σ(Xu; θ)dWuds+

∫ t

0

f ′(Xs)σ(Xs; θ)dWs.

BecauseAi
θf ∈ Φθ, i = 0, 1, the Ito-integrals are properPθ-martingales.

Hence by taking the conditional expectation givenX0 = x, we obtain

πθ
t (f)(x) = f(x) + tAθf(x) +O(t2).

The result fork = 2 is obtained by applying Ito’s formula toA2
θf(Xt), in-

serting the result into the first Lebesgue integral in (1.48), and finally taking
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the conditional expectation givenX0 = x. The result fork ≥ 3 is obtained
similarly by applying Ito’s formula toAi

θf(Xt), i = 3, . . . , k. 2

Note that (1.47) is an expansion result, so the corresponding power series does
not necessarily converge. For a fixedk, the sum is a good approximation to
the conditional expectation whent is small. The remainder term depends onk
andθ. The explicit sufficient conditions in Lemma 1.3.7 for (1.47) to hold for
ergodic diffusions was given in Jacobsen (2001). The expansion holds under
mild regularity conditions for non-ergodic diffusions too. In a proof similar to
that of Lemma 1.3.7, such conditions must essentially ensure, that Ito-integrals
are proper martingales and that the remainder term can be controlled.

It is often enough to use the approximationπθ
∆(fj)(x) ≈ fj(x) + ∆Aθfj(x).

Whenf does not depend onθ this implies that ford = 1

Bh(x; θ) ≈ ∆
[

∂θb(x; θ)f
′(x) + 1

2
∂θσ

2(x; θ)f ′′(x)
]

(1.49)

and ford = 1 andN = 1

Vh(x; θ) ≈ ∆
[

Aθ(f
2)(x) − 2f(x)Aθf(x)

]

= ∆σ2(x; θ)f ′(x)2. (1.50)

We will refer to estimating functions obtained by approximating the optimal
weight-matrixa∗ in this way asapproximately optimal estimating functions.
Use of this approximation will save computer time and improve the numerical
performance of the estimation procedure. The approximation will not affect
the consistency of the estimators, and if∆ is not too large, it will just lead to a
relatively minor loss of efficiency. The magnitude of this loss of efficiency can
be calculated by means of (1.47).

Example 1.3.8 If we simplify the optimal weight matrix found in Example
1.3.6 by the expansion (1.47) and the Gaussian approximation (1.38), we ob-
tain the approximately optimal quadratic martingale estimating function

G◦
n(θ) =

n
∑

i=1

{

∂θb(X(i−1)∆; θ)

σ2(X(i−1)∆; θ)
[Xi∆ − F (X(i−1)∆; θ)] (1.51)

+
∂θσ

2(X(i−1)∆; θ)

2σ4(X(i−1)∆; θ)∆

[

(Xi∆ − F (X(i−1)∆; θ))2 − φ(X(i−1)∆; θ)
]

}

.

As in Example 1.3.6 the diffusion is assumed to be one-dimensional.

Consider a diffusion withlinear drift, b(x; θ) = −β(x−α). Diffusion models
with linear drift and a given marginal distribution were studied in Bibby, Skov-
gaard & Sørensen (2005). If

∫

σ2(x; θ)µθ(x)dx < ∞, then the Ito-integral
in

Xt = X0 −
∫ t

0

β(Xs − α)ds+

∫ t

0

σ(Xs; θ)dWs
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is a proper martingale with mean zero, so the functionf(t) = Eθ(Xt |X0 = x)
satisfies that

f(t) = x− β

∫ t

0

f(s)ds+ βαt

or
f ′(t) = −βf(t) + βα, f(0) = x.

Hence
f(t) = xe−βt + α(1 − e−βt)

or
F (x;α, β) = xe−β∆ + α(1 − e−β∆)

If only estimates of drift parameters are needed, we can use the linear mar-
tingale estimating function of the form (1.30) withN = 1 andh1(x, y; θ) =
y − F (∆, x; θ). If σ(x; θ) = τκ(x) for τ > 0 andκ a positive function, then
the approximately optimal estimating function of this formis

G◦
n(α, β) =















n
∑

i=1

1

κ2(X(i−1)∆)

[

Xi∆ −X(i−1)∆e
−β∆ − α(1 − e−β∆)

]

n
∑

i=1

X(i−1)∆

κ2(X(i−1)∆)

[

Xi∆ −X(i−1)∆e
−β∆ − α(1 − e−β∆)

]















,

where multiplicative constants have been omitted. To solvethe estimating equa-
tionG◦

n(α, β) = 0 we introduce the weights

wκ
i = κ(X(i−1)∆)−2/

n
∑

j=1

κ(X(j−1)∆)−2,

and defineX̄κ =
∑n

i=1 w
κ
i Xi∆ and X̄κ

−1 =
∑n

i=1 w
κ
i X(i−1)∆. These two

quantities are conditional precision weighted sample averages ofXi∆ and
X(i−1)∆, respectively. The equationG◦

n(α, β) = 0 has a unique explicit so-
lution provided that the weighted sample autocorrelation

rκ
n =

∑n
i=1 w

κ
i (Xi∆ − X̄κ)(X(i−1)∆ − X̄κ

−1)
∑n

i=1 w
κ
i (X(i−1)∆ − X̄κ

−1)
2

is positive. By the law of large numbers (1.4) for ergodic processes, the proba-
bility that rκ

n > 0 tends to one asn tends to infinity. Specifically, we obtain the
explicit estimators

α̂n =
X̄κ − rκ

nX̄
κ
−1

1 − rκ
n

β̂n = − 1

∆
log (rκ

n) ,

see Christensen & Sørensen (2008). A slightly simpler and asymptotically
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equivalent estimator may be obtained by substitutingX̄κ for X̄κ
−1 everywhere,

in which caseα is estimated by the precision weighted sample averageX̄κ.
For the square-root process (CIR-model) given by (1.37), whereκ(x) =

√
x, a

simulation study and an investigation of the asymptotic variance of these esti-
mators in Bibby & Sørensen (1995) show that they are not much less efficient
than the estimators from the optimal estimating function. See also the simu-
lation study in Overbeck & Rydén (1997), who find that these estimators are
surprisingly efficient, a finding that can be explained by theresults in Section
1.6.

To obtain an explicit approximately optimal quadratic estimating function, we
need an expression for the conditional varianceφ(x; θ). As we saw in Exam-
ple 1.3.6,φ(x; θ) is explicitly known for thesquare-root process (CIR-model)
given by (1.37). For this model the approximately optimal quadratic martingale
estimating function is
































n
∑

i=1

1

X(i−1)∆

[

Xi∆ −X(i−1)∆e
−β∆ − α(1 − e−β∆)

]

n
∑

i=1

[

Xi∆ −X(i−1)∆e
−β∆ − α(1 − e−β∆)

]

n
∑

i=1

1

X(i−1)∆

[

(

Xi∆ −X(i−1)∆e
−β∆ − α(1 − e−β∆)

)2

−τ
2

β

{(

α/2 −X(i−1)∆

)

e−2β∆ − (α−X(i−1)∆)e−β∆ + α/2
}

]

































.

This expression is obtained from (1.51) after multiplication by an invertible
non-random matrix to obtain a simpler expression. This doesnot change the
estimator. From this estimating function explicit estimators can easily be ob-
tained:

α̂n =
1

n

n
∑

i=1

Xi∆ +
e−β̂n∆

n
(

1 − e−β̂n∆
) (Xn∆ −X0),

essentially the sample mean whenn is large, and

e−β̂n∆ =
n
∑n

i=1Xi∆/X(i−1)∆ − (
∑n

i=1Xi∆)(
∑n

i=1X
−1
(i−1)∆)

n2 − (
∑n

i=1X(i−1)∆)(
∑n

i=1X
−1
(i−1)∆)

τ̂2
n =

∑n
i=1X

−1
(i−1)∆

(

Xi∆ −X(i−1)∆e
−β̂n∆ − α̂n(1 − e−β̂n)

)2

∑n
i=1X

−1
(i−1)∆ψ(X(i−1)∆; α̂n, β̂n)

,

where

ψ(x;α, β) =
(

( 1

2
α− x)e−2β∆ − (α− x)e−β∆ + 1

2
α
)

/β.
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It is obviously necessary for this solution to the estimating equation to exist
that the expression fore−β̂n∆ is strictly positive, an event that happens with a
probability tending to one asn→ ∞. Again this follows from the law of large
numbers (1.4) for ergodic processes. 2

When the optimal weight matrix is approximated by means of (1.47), there is a
certain loss of efficiency, which as in the previous example is often quite small;
see Bibby & Sørensen (1995) and Section 1.6 on high frequencyasymptotics
below. Therefore the relatively simple estimating function (1.51) is often a
good choice in practice.

It is tempting to go on to approximateπθ
∆(fj(θ))(x) in (1.41) by (1.47) in or-

der to obtain an explicit estimating function, but as will bedemonstrated in
Subsection 1.5.3, this can be a dangerous procedure. In general the conditional
expectation inπθ

∆ should therefore be approximated by simulations. Fortu-
nately, Kessler & Paredes (2002) have established that, provided the simulation
is done with sufficient accuracy, this does not cause any bias, only a minor loss
of efficiency that can be made arbitrarily small; see Subsection 1.3.5. More-
over, as we shall see in the Subsections 1.3.6 and 1.3.7,πθ

∆(fj(θ))(x) can be
found explicitly for a quite flexible class of diffusions.

1.3.4 Small∆-optimality

The Godambe-Heyde optimal estimating functions discussedabove are opti-
mal within a certain class of estimating functions. In this subsection we present
the concept of small∆-optimality, introduced and studied by Jacobsen (2001)
and Jacobsen (2002). A small∆-optimal estimating function is optimal among
all estimating functions satisfying weak regularity conditions, but only for high
sampling frequencies, i.e. when the time between observations is small. Thus
the advantage of the concept of small∆-optimality is that the optimality is
global, while the advantage of the concept of Godambe-Heydeoptimality is
that the optimality holds for all sampling frequencies. Fortunately, we do not
have to choose between the two, because it turns out that Godambe-Heyde op-
timal martingale estimating functions of the form (1.30) and (1.40) are small
∆-optimal.

Small∆-optimality was originally introduced for general estimating functions
for multivariate diffusion models, but to simplify the exposition we will con-
centrate on martingale estimating functions and on one-dimensional diffusions
of the form

dXt = b(Xt;α)dt+ σ(Xt;β)dWt, (1.52)

whereθ = (α, β) ∈ Θ ⊆ IR2. This is the simplest model type for which
the essential features of the theory appear. Note that the drift and the diffusion
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coefficient depend on different parameters. It is assumed that the diffusion is
ergodic, that its invariant probability measure has density functionµθ for all
θ ∈ Θ, and thatX0 ∼ µθ underPθ. Thus the diffusion is stationary.

Throughout this subsection, we shall assume that the observation times are
equidistant, i.e.ti = i∆, i = 0, 1, . . . , n, where∆ is fixed, and that the mar-
tingale estimating function (1.12) satisfies the conditions of Theorem 1.3.2, so
that we know that (eventually) aGn-estimatorθ̂n exists, which is asymptoti-
cally normal with covariance matrixM(g) = W−1VWT −1

, whereW is given
by (1.7) withθ̄ = θ0 andV = V (θ0) with V (θ) given by (1.19).

The main idea of small∆-optimality is to expand the asymptotic covariance
matrix in powers of∆

M(g) =
1

∆
v−1 (g) + v0 (g) + o(1). (1.53)

Small∆-optimal estimating functions minimize the leading term in(1.53). Ja-
cobsen (2001) obtained (1.53) by Ito-Taylor expansions, see Kloeden & Platen
(1999), of the random matrices that appear in the expressions forW andV
under regularity conditions that will be given below. A similar expansion was
used in Aı̈t-Sahalia & Mykland (2003) and Aı̈t-Sahalia & Mykland (2004).

To formulate the conditions, we define the differential operatorAθ, θ ∈ Θ. Its
domain,Γ, is the set of continuous real-valued functions(s, x, y) 7→ ϕ(s, x, y)
of s ≥ 0 and(x, y) ∈ (ℓ, r)2 that are continuously differentiable with respect
to s and twice continuously differentiable with respect toy. The operatorAθ

is given by
Aθϕ(s, x, y) = ∂sϕ(s, x, y) +Aθϕ(s, x, y), (1.54)

whereAθ is the generator (1.46), which for fixeds andx is applied to the
function y 7→ ϕ(s, x, y). The operatorAθ acting on functions inΓ that do
not depend onx is the generator of the space-time process(t,Xt)t≥0. We also
need the probability measureQ∆

θ given by (1.16). Note that in this section the
dependence on∆ is explicit in the notation.

Condition 1.3.9 The functionϕ belongs toΓ and satisfies that
∫ r

ℓ

∫ r

ℓ

ϕ2(s, x, y)Qs
θ0

(dx, dy) <∞
∫ r

ℓ

∫ r

ℓ

(Aθ0
ϕ(s, x, y))2Qs

θ0
(dx, dy) <∞

∫ r

ℓ

∫ r

ℓ

(∂yϕ(s, x, y))2σ2(y;β0)Q
s
θ0

(dx, dy) <∞

for all s ≥ 0.

As usualθ0 = (α0, β0) denotes the true parameter value. We will say that a
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function with values inIRk or IRk×ℓ satisfies Condition 1.3.9 if each compo-
nent of the functions satisfies this condition.

Supposeϕ satisfies Condition 1.3.9. Then by Ito’s formula

ϕ(t,X0, Xt) = ϕ(0, X0, X0) +

∫ t

0

Aθ0
ϕ(s,X0, Xs)ds (1.55)

+

∫ t

0

∂yϕ(s,X0, Xs)σ(Xs;β0)dWs

underPθ0
. A significant consequence of Condition 1.3.9 is that the Ito-integral

in (1.55) is a truePθ0
-martingale, and thus has expectation zero underPθ0

.
If the functionAθ0

ϕ satisfies Condition 1.3.9, a similar result holds for this
functions, which we can insert in the Lebesgue integral in (1.55). By doing so
and then taking the conditional expectation givenX0 = x on both sides of
(1.55), we obtain

πθ0

t (ϕ)(t, x) = ϕ(0, x, x) + tAθ0
ϕ(0, x, x) +O(t2), (1.56)

where
πθ

t (ϕ)(t, x) = Eθ (ϕ(t,X0, Xt)|X0 = x) .

If the functionsAi
θ0
ϕ, i = 0, . . . , k satisfy Condition 1.3.9, whereAi

θ0
denotes

i-fold application of the operatorAθ0
, we obtain by similar arguments that

πθ0

t (ϕ)(t, x) =

k
∑

i=0

si

i!
Ai

θ0
ϕ(0, x, x) +O(tk+1). (1.57)

Note thatA0
θ is the identity operator,A0

θϕ = ϕ. The previously used expansion
(1.47) is a particular case of (1.57). In the case whereϕ does not depend onx
(or y) the integrals in Condition 1.3.9 are with respect to the invariant measure
µθ0

. If, moreover,ϕ does not depend on times, the conditions do not depend
ons.

Theorem 1.3.10Suppose that the functiong(∆, x, y; θ0) in (1.12) is such that
g, ∂θT g, ggT and Aθ0

g satisfy Condition 1.3.9. Assume, moreover, that we
have the expansion

g(∆, x, y; θ0) = g(∆, x, y; θ0) + ∆∂∆g(0, x, y; θ0) + oθ0,x,y(∆).

If the matrix

S =

∫ r

ℓ

Bθ0
(x)µθ0

(x)dx (1.58)

is invertible, where

Bθ(x) = (1.59)




∂αb(x;α)∂yg1(0, x, x; θ) 1

2
∂βσ

2(x;β)∂2
yg1(0, x, x; θ)

∂αb(x;α)∂yg2(0, x, x; θ)
1

2
∂βσ

2(x;β)∂2
yg2(0, x, x; θ)



 ,
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then (1.53) holds with

v−1 (g) ≥







(

∫ r
ℓ (∂αb(x;α0))

2 /σ2(x;β0)µθ0
(x)dx

)−1

0

0 0






. (1.60)

There is equality in (1.60) if

∂yg1(0, x, x; θ0) = ∂αb(x;α0)/σ
2(x;β0), (1.61)

∂yg2(0, x, x; θ0) = 0 (1.62)

for all x ∈ (ℓ, r). In this case, the second term in (1.53) satisfies that

v0(g)22 ≥ 2

(∫ r

ℓ

(

∂βσ
2(x;β0)

)2
/σ4(x;β0)µθ0

(x)dx

)−1

with equality if

∂2
yg2(0, x, x; θ0) = ∂βσ

2(x;β0)/σ
4(x;β0), (1.63)

for all x ∈ (ℓ, r).

By ∂ygi(0, x, x; θ) we mean∂ygi(0, y, x; θ) evaluated aty = x, and similarly
for second order partial derivatives. Thus the conditions for small∆-optimality
are (1.61), (1.62) and (1.63). For a proof of Theorem 1.3.10,see Jacobsen
(2001). The condition (1.62) ensures that all entries ofv−1 (g) involving the
diffusion coefficient parameter,β, are zero. Sincev−1(g) is the∆−1-order term
in the expansion (1.53) of the asymptotic covariance matrix, this dramatically
decreases the asymptotic variance of the estimator ofβ when∆ is small. We
refer to the condition (1.62) asJacobsen’s condition.

The reader is reminded of the trivial fact that for any non-singular2 × 2 ma-
trix, Mn, the estimating functionsMnGn(θ) andGn(θ) give exactly the same
estimator. We call themversionsof the same estimating function. The matrix
Mn may depend on∆n. Therefore a given version of an estimating function
needs not satisfy (1.61) – (1.63). The point is that a versionmust exist which
satisfies these conditions.

Example 1.3.11Consider a quadratic martingale estimating function of the
form

g(∆, y, x; θ) =

(

a1(x,∆; θ)[y − F (∆, x; θ)]

a2(x,∆; θ)
[

(y − F (∆, x; θ))2 − φ(∆, x; θ)
]

)

, (1.64)

whereF andφ are given by (1.26) and (1.27). By (1.47),F (∆, x; θ) = x +
O(∆) andφ(∆, x; θ) = O(∆), so

g(0, y, x; θ) =

(

a1(x, 0; θ)(y − x)

a2(x, 0; θ)(y − x)2

)

. (1.65)
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Since∂yg2(0, y, x; θ) = 2a2(x,∆; θ)(y − x), the Jacobsen condition (1.62) is
satisfied for all quadratic martingale estimating functions. Using again (1.47), it
is not difficult to see that the two other conditions (1.61) and (1.63) are satisfied
in three particular cases: the optimal estimating functiongiven in Example
1.3.6 and the approximations (1.28) and (1.51). 2

The following theorem gives conditions ensuring, for givenfunctionsf1, . . . ,
fN , that a small∆-optimal estimating function of the form (1.30) and (1.40)
exists. This not always the case. We assume that the functions f1(· ; θ), . . . ,
fN(· ; θ) are of full affine rank for allθ, i.e., for anyθ ∈ Θ, the identity

N
∑

j=1

aθ
jfj(x; θ) + aθ

0 = 0, x ∈ (ℓ, r),

for constantsaθ
j , implies thataθ

0 = aθ
1 = · · · = aθ

N = 0.

Theorem 1.3.12Suppose thatN ≥ 2, that the functionsfj are twice continu-
ously differentiable and satisfies that the matrix

D(x) =

(

∂xf1(x; θ) ∂2
xf1(x; θ)

∂xf2(x; θ) ∂2
xf2(x; θ)

)

(1.66)

is invertible forµθ-almost allx. Moreover, assume that the coefficientsb and
σ are continuously differentiable with respect to the parameter. Then a spec-
ification of the weight matrixa(x; θ) exists such that the estimating function
(1.30) satisfies the conditions (1.62), (1.61) and (1.63). WhenN = 2, these
conditions are satisfy for

a(x; θ) =





∂αb(x;α)/v(x;β) c(x; θ)

0 ∂βv(x;β)/v(x;β)2



D(x)−1 (1.67)

for any functionc(x; θ).

For a proof of Theorem 1.3.12, see Jacobsen (2002). In Section 1.6, we shall
see that the Godambe-Heyde optimal choice (1.32) of the weight-matrix in
(1.30) gives an estimating function which has a version thatsatisfies the con-
ditions for small∆-optimality, (1.61) – (1.63).

We have focused on one-dimensional diffusions to simplify the exposition. The
situation becomes more complicated for multi-dimensionaldiffusions, as we
shall now briefly describe. Details can be found in Jacobsen (2002). For ad-
dimensional diffusion,b(x;α) isd-dimensional andv(x;β) = σ(x;β)σ(x;β)T

is ad×d-matrix. The Jacobsen condition is unchanged (except that∂yg2(0, x, x; θ0)
is now ad-dimensional vector). The other two conditions for small∆-optimality
are

∂yg1(0, x, x; θ0) = ∂αb(x;α0)
T v(x;β0)

−1
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and
vec
(

∂2
yg2(0, x, x; θ0)

)

= vec(∂βv(x;β0))
(

v⊗2(x;β0)
)−1

.

In the latter equation, vec(M) denotes, for ad×dmatrixM , thed2-dimensional
row vector consisting of the rows ofM placed one after the other, andM⊗2

is the d2 × d2-matrix with (i′, j′), (ij)th entry equal toMi′iMj′j . Thus if
M = ∂βv(x;β) andM • = (v⊗2(x;β))−1, then the(i, j)th coordinate of
vec(M)M • is

∑

i′j′ Mi′j′M
•
(i′j′),(i,j).

For ad-dimensional diffusion process, the conditions analogousto those in
Theorem 1.3.12 ensuring the existence of a small∆-optimal estimating func-
tion of the form (1.30) is thatN ≥ d(d+3)/2, and that theN×(d+d2)-matrix

(

∂xT f(x; θ) ∂2
xT f(x; θ)

)

has full rankd(d+ 3)/2.

1.3.5 Simulated martingale estimating functions

The conditional moments that appear in the martingale estimating functions
can for most diffusion models not be calculated explicitly.For a versatile class
of one-dimensional diffusions, optimal martingale estimating functions can be
found explicitly; see Subsections 1.3.6 and 1.3.7. Estimation and inference is
dramatically simplified by using a model for which an explicit optimal martin-
gale estimating function is available. However, if for somereason a diffusion
from this class is not a suitable model, the conditional moments must be deter-
mined by simulation.

The conditional momentπ∆
θ f(x) = Eθ(f(X∆) |X0 = x) can be found

straightforwardly. Simply fixθ and simulate numericallyM independent tra-
jectoriesX(i), i = 1, . . . ,M of {Xt : t ∈ [0,∆]} with X0 = x. Of course,
a trajectory cannot be simulated continuously for allt ∈ [0,∆]. In practice
values of{Xjδ : j = 0, . . . ,K} are simulated, whereK is a large integer and
δ = ∆/K. By the law of large numbers,

π∆
θ f(x)

.
=

1

M

M
∑

i=1

f(X
(i)
∆ ).

The variance of the error can be estimated in the traditionalway, and by the
cental limit theorem, the error is approximately normal distributed. This sim-
ple approach can be improved by applying variance reductionmethods, for
instance methods that take advantage of the fact thatπ∆

θ f(x) can be approxi-
mated by (1.47). Methods for numerical simulation of diffusion models can be
found in Chapter xxxx and Kloeden & Platen (1999).

The approach just described is sufficient when calculating the conditional ex-
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pectation appearing in (1.40). Note, however, that when using a search algo-
rithm to find a solution to the estimating equation, it is important to use the
same random numbers (the same seed) when calculating the estimating func-
tions for different values of the parameterθ. More care is needed if the opti-
mal weight functions are calculated numerically. The problem is that the opti-
mal weight matrix typically contains derivatives with respect toθ of functions
that must be determined numerically, see e.g. Example 1.3.6. Pedersen (1994)
proposed a procedure for determining∂θπ

∆
θ f(x; θ) by simulations based on

results in Friedman (1975). However, it is often preferableto use an approx-
imation to the optimal weight matrix obtained by using (1.47), possibly sup-
plemented by Gaussian approximations, as explained in Subsection 1.3.3. This
is not only much simpler, but also avoids potentially serious problems of nu-
merical instability, and by results in Section 1.6 the loss of efficiency is often
very small. The approach outlined here, where martingale estimating functions
are approximated by simulation, is closely related to the simulated method of
moments, see Duffie & Singleton (1993) and Clement (1997).

One might be worried that when approximating a martingale estimating func-
tion by simulation of conditional moments, the resulting estimator might have
considerably smaller efficiency or even be inconsistent. The asymptotic proper-
ties of the estimators obtained when the conditional moments are approximated
by simulation were investigated by Kessler & Paredes (2002), who found that
if the simulations are done with sufficient care, there is no need to worry. How-
ever, their results also show that care is needed: if the discretization used in the
simulation method is too crude, the estimator behaves badly. Kessler & Paredes
(2002) considered martingale estimating functions of the general form

Gn(θ) =

n
∑

i=1

[

f(Xi∆, X(i−1)∆; θ) − F (X(i−1)∆; θ)
]

, (1.68)

wheref is ap-dimensional function, and

F (x; θ) = Eθ(f(X∆, x; θ))|X0 = x).

As previously,X is the unique solution of the stochastic differential equation
(1.11). For simplicityX is assumed to be one-dimensional, but Kessler & Pare-
des (2002) point out that similar results hold for multivariate diffusions. Below
the dependence ofX on the initial valueX0 = x andθ is, when needed, em-
phasized in the notation by writingX(x, θ).

LetY (δ, θ, x) be an approximation to the solutionX(θ, x) , which is calculated
at discrete time points with a step sizeδ that is much smaller than∆, and which
satisfies thatY0(δ, θ, x) = x. A simple example is the Euler scheme

Yiδ = Y(i−1)δ + b(Y(i−1)δ ; θ)δ + σ(Y(i−1)δ ; θ)Zi, Y0 = x, (1.69)

where theZis are independent andZi ∼ N(0, δ).



MARTINGALE ESTIMATING FUNCTIONS 29

If the conditional expectationF (x; θ) is approximated by the simple method
described above, we obtain the following approximation to the estimating func-
tion (1.68)

GM,δ
n (θ) = (1.70)

n
∑

i=1



f(Xi∆, X(i−1)∆; θ) − 1

M

M
∑

j=1

f(Y
(j)
∆ (δ, θ,X(i−1)∆), X(i−1)∆; θ)



 ,

whereY (j)(δ, θ, x), j = 1, . . . ,M , are independent copies ofY (δ, θ, x).

Kessler & Paredes (2002) assume that the approximation schemeY (δ, θ, x) is
of weak orderβ > 0 in the sense that

|Eθ(g(X∆(x, θ), x; θ)) − E(g(Y∆(δ, θ, x), x; θ))| ≤ R(x; θ)δβ (1.71)

for all θ ∈ Θ, for all x in the state space ofX , and forδ sufficiently small.
HereR(x; θ) is of polynomial growth inx uniformly for θ in compact sets,
i.e., for any compact subsetK ⊆ Θ, there exist constantsC1, C2 > 0 such that
supθ∈K |R(x; θ)| ≤ C1(1 + |x|C2) for all x in the state space of the diffusion.
The inequality (1.71) is assumed to hold for any functiong(y, x; θ) which is
2(β + 1) times differentiable with respect tox, and satisfies thatg and its par-
tial derivatives with respect tox up to order2(β+1) are of polynomial growth
in x uniformly for θ in compact sets. This definition of weak order is stronger
than the definition in Kloeden & Platen (1999) in that controlof the polynomial
order with respect to the initial valuex is added, but Kessler & Paredes (2002)
point out that theorems in Kloeden & Platen (1999) that give the order of ap-
proximation schemes can be modified in a tedious, but straightforward, way to
ensure that the schemes satisfy the stronger condition (1.71). In particular, the
Euler scheme (1.69) is of weak order one if the coefficients ofthe stochastic
differential equation (1.11) are sufficiently smooth.

Under a number of further regularity conditions, Kessler & Paredes (2002)
showed the following results about aGM,δ

n -estimator,̂θM,δ
n , with GM,δ

n given
by (1.70). We shall not go into these rather technical conditions. Not surpris-
ingly, they include conditions that ensure the eventual existence of a consistent
and asymptotically normalGn-estimator, cf. Theorem 1.3.2. Ifδ goes to zero
sufficiently fast that

√
nδβ → 0 asn→ ∞, then

√
n
(

θ̂M,δ
n − θ0

)

D−→ N
(

0, (1 +M−1)Σ
)

,

whereΣ denotes the asymptotic covariance matrix of aGn-estimator, see The-
orem 1.3.2. Thus forδ sufficiently small andM sufficiently large, it does not
matter much that the conditional momentF (x; θ) has been determined by sim-
ulation in (1.70). Moreover, we can control the loss of efficiency by our choice
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of M . However, when0 < limn→∞
√
nδβ <∞,

√
n
(

θ̂M,δ
n − θ0

)

D−→ N
(

m(θ0), (1 +M−1)Σ
)

,

and when
√
nδβ → ∞,

δ−β
(

θ̂N,δ
n − θ0

)

→ m(θ0)

in probability. Here thep-dimensional vectorm(θ0) depends onf and is gen-
erally different from zero. Thus it is essential that a sufficiently small value of
δ is used. The discretization problems caused by the choice ofδ can be avoided
by using the exact simulation methods introduced by Beskos &Roberts (2005)
and Beskos, Papaspiliopoulos & Roberts (2006), see Chapterxxxx.

1.3.6 Explicit martingale estimating functions

In this section we consider one-dimensional diffusion models for which esti-
mation is particularly easy because an explicit martingaleestimating function
exists.

Kessler & Sørensen (1999) proposed estimating functions ofthe form (1.41)
where the functionsfj , i = 1, . . . , N are eigenfunctionsfor the generator
(1.46), i.e.

Aθfj(x; θ) = −λj(θ)fj(x; θ),

where the real numberλj(θ) ≥ 0 is called theeigenvaluecorresponding to
fj(x; θ). Under weak regularity conditions,fj is also an eigenfunction for the
transition operatorπθ

t defined by (1.42), i.e.

πθ
t (fj(θ))(x) = e−λj(θ)tfj(x; θ).

for all t > 0. Thus the functionhj given by (1.40) is explicit.

The following result holds for ergodic diffusions. The density of the stationary
distribution is, as usual, denoted byµθ.

Theorem 1.3.13Letφ(x; θ) be an eigenfunction for the generator (1.46) with
eigenvalueλ(θ), and suppose that

∫ r

ℓ

[∂xφ(x; θ)σ(x; θ)]2µθ(dx) <∞ (1.72)

for all t > 0. Then

πθ
t (φ(θ))(x) = e−λ(θ)tφ(x; θ). (1.73)

for all t > 0.
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Proof: DefineYt = eλtφ(Xt). We suppressθ in the notation. By Ito’s formula

Yt = Y0 +
∫ t
0 e

λs[Aφ(Xs) + λφ(Xs)]ds+
∫ t
0 e

λsφ′(Xs)σ(Xs)dWs

= Y0 +
∫ t
0 e

λsφ′(Xs)σ(Xs)dWs,

so by (1.72),Y is a true martingale, which implies (1.73). 2

Note that ifσ(x; θ) and∂xφ(x; θ) are bounded functions ofx ∈ (ℓ, r), then
(1.72) holds. Ifφ is a polynomial of orderk andσ(x) ≤ C(1 + xm), then
(1.72) holds if the2(k +m− 1)’th moment of the invariant distributionµθ is
finite.

Example 1.3.14For the square-root model (CIR-model) defined by (1.37)
with α > 0, β > 0, andτ > 0, the eigenfunctions areφi(x) = L

(ν)
i (2βxτ−2)

with ν = 2αβτ−2 − 1, whereL(ν)
i is theith order Laguerre polynomial

L
(ν)
i (x) =

i
∑

m=0

(−1)m

(

i+ ν
i−m

)

xm

m!
,

and the eigenvalues are{iβ : i = 0, 1, · · ·}. It is easily seen by direct calcula-
tion thatL(ν)

i solves the differential equation

τxf ′′(x) − β(x − α)f ′(x) + iβf(x) = 0.

By Theorem 1.3.13, (1.73) holds, so we can calculate all conditional poly-
nomial moments, of which the first four were given in Example 1.3.6. Thus
all polynomial martingale estimating functions are explicit for the square-root
model.

2

Example 1.3.15The diffusion given as the solution of

dXt = −θ tan(Xt)dt+ dWt, (1.74)

is an ergodic diffusion on the interval(−π/2, π/2) provided thatθ ≥ 1/2,
which implies that Condition 1.3.1 is satisfied. This process was introduced
by Kessler & Sørensen (1999), who called it an Ornstein-Uhlenbeck process
on (−π/2, π/2) becausetanx ∼ x near zero. The generalization to other
finite intervals is obvious. The invariant measure has a density proportional to
cos(x)2θ .

The eigenfunctions are

φi(x; θ) = Cθ
i (sin(x)), i = 1, 2, . . . ,

whereCθ
i is the Gegenbauer polynomial of orderi, and the eigenvalues are

i(θ + i/2), i = 1, 2, . . .. This follows because the Gegenbauer polynomialCθ
i
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solves the differential equation

f ′′(y) +
(2θ + 1)y

y2 − 1
f ′(y) − i(2θ + i)

y2 − 1
f(y) = 0,

so thatφi(x; θ) solves the equation

1

2
φ′′i (x; θ) − θ tan(x)φ′i(x; θ) = −i(θ + i/2)φi(x; θ).

Henceφi is an eigenfunction for the generator of the model with eigenvalue
i(θ + i/2). From equation 8.934-2 in Gradshteyn & Ryzhik (1965) it follows
that

φi(x; θ) =

i
∑

m=0

(

θ − 1 +m
m

)(

θ − 1 + i−m
i−m

)

cos[(2m−i)(π/2−x)].

Condition (1.72) in Theorem 1.3.13 is obviously satisfied because the state
space is bounded, so (1.73) holds.

The first non-trivial eigenfunction issin(x) (a constant is omitted) with eigen-
valueθ + 1/2. From the martingale estimating function

Ǧn(θ) =

n
∑

i=1

sin(X(i−1)∆)[sin(Xi∆)) − e−(θ+1/2)∆ sin(X(i−1)∆))], (1.75)

we obtain the simple estimator forθ

θ̌n = −∆−1 log

(

∑n
i=1 sin(X(i−1)∆) sin(Xi∆)
∑n

i=1 sin2(X(i−1)∆)

)

− 1/2, (1.76)

which is defined when the numerator is positive.

An asymmetric generalization of (1.74) was proposed in Larsen & Sørensen
(2007) as a model of the logarithm of an exchange rate in a target zone. The
diffusion solves the equation

dXt = −ρ sin
(

1
2π(Xt −m)/z

)

− ϕ

cos
(

1
2π(Xt −m)/z

) dt+ σdWt,

whereρ > 0, ϕ ∈ (−1, 1), σ > 0 z > 0, m ∈ IR. The process (1.74) is
obtained is whenϕ = 0, m = 0, z = π/2, andσ = 1. The state space is
(m − z,m+ z), and the process is ergodic ifρ ≥ 1

2
σ2 and−1 + σ2/(2ρ) ≤

ϕ ≤ 1 − σ2/(2ρ). The eigenfunctions are

φi(x; ρ, ϕ, σ,m, z) = P
(ρ(1−ϕ)σ−2− 1

2
, ρ(1+ϕ)σ−2− 1

2
)

i

(

sin( 1

2
πx/z −m)

)

,

with eigenvaluesλi(ρ, ϕ, σ) = i
(

ρ+ 1

2
nσ2

)

, i = 1, 2, . . .. HereP (a,b)
i (x)

denotes the Jacobi polynomial of orderi.

2
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For most diffusion models where explicit expressions for eigenfunctions can
be found, including the examples above, the eigenfunctionsare of the form

φi(y; θ) =
i
∑

j=0

ai,j(θ)κ(y)
j (1.77)

whereκ is a real function defined on the state space and is independent of θ.
For martingale estimating functions based on eigenfunctions of this form, the
optimal weight matrix (1.32) can be found explicitly too.

Theorem 1.3.16Suppose2N eigenfunctions are of the form (1.77) fori =
1, . . . , 2N , where the coefficientsai,j(θ) are differentiable with respect toθ. If
a martingale estimating functions is defined by (1.40) usingthe firstN eigen-
functions, then

Bh(x, θ)ij =

j
∑

k=0

(

∂θi
aj,k(θ)νk(x; θ) − ∂θi

[e−λj(θ)∆φj(x; θ)]
)

(1.78)

and

Vh(x, θ)i,j = (1.79)
i
∑

r=0

j
∑

s=0

(

ai,r(θ)aj,s(θ)νr+s(x; θ) − e−[λi(θ)+λj(θ)]∆ φi(x; θ)φj(x; θ)
)

,

whereνi(x; θ) = πθ
∆(κi)(x), i = 1, . . . , 2N , solve the following triangular

system of linear equations

e−λi(θ)∆φi(x; θ) =
i
∑

j=0

ai,j(θ)νj(x; θ) i = 1, . . . , 2N, (1.80)

with ν0(x; θ) = 1.

Proof: The expressions forBh andVh follow from (1.43) and (1.44) when
the eigenfunctions are of the form (1.77), and (1.80) follows by applying the
transition operatorπθ

∆ to both sides of (1.77).

2

Example 1.3.17Consider again the diffusion (1.74) in Example 1.3.15. We
will find the optimal martingale estimating function based on the first non-
trivial eigenfunction,sin(x) (where we have omitted a non-essential multi-
plicative function ofθ) with eigenvalueθ + 1/2. It follows from (1.45) that

Bh(x; θ) = ∆e−(θ+1/2)∆ sin(x)

becausesin(x) does not depend onθ. To find Vh we need Theorem 1.3.16.
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The second non-trivial eigenfunction is2(θ + 1) sin2(x) − 1 with eigenvalue
2(θ + 1), so

ν2(x; θ) = e−2(θ+1)∆[sin2(x) − 1

2
(θ + 1)−1] +

1

2
(θ + 1)−1.

Hence the optimal estimating function is

G∗
n(θ) =

n
∑

i=1

sin(X(i−1)∆)[sin(Xi∆) − e−(θ+ 1
2
)∆ sin(X(i−1)∆)]

1
2 (e2(θ+1)∆ − 1)/(θ + 1) − (e∆ − 1) sin2(X(i−1)∆)

where a constant has been omitted. When∆ is small, it is a good idea to mul-
tiply G∗

n(θ) by ∆ because the denominator is then of order∆.

Note that when∆ is sufficiently small, we can expand the exponential func-
tion in the numerator to obtain (after multiplication by∆) the approximately
optimal estimating function

G̃n(θ) =

n
∑

i=1

sin(X(i−1)∆)[sin(Xi∆) − e−(θ+ 1
2
)∆ sin(X(i−1)∆)]

cos2(X(i−1)∆)
,

which has the explicit solution

θ̃n = −∆−1 log

(
∑n

i=1 tan(X(i−1)∆) sin(Xi∆))/ cos(X(i−1)∆)
∑n

i=1 tan2(X(i−1)∆)

)

− 1

2
.

The explicit estimator̃θ can, for instance, be used as a starting value when
finding the optimal estimator by solvingG∗

n(θ) = 0 numerically. Note, how-
ever, that forG̃n the square integrability (1.17) underQθ0

required in Theorem
1.3.2 (to ensure the central limit theorem) is only satisfiedwhenθ0 > 1.5. This
problem can be avoided by replacingcos2(X(i−1)∆) in the numerator by 1,
to which it is close when the process is not near the boundaries. In that way
we arrive at the simple estimating function (1.75), which isthus approximately
optimal too.

2

1.3.7 Pearson diffusions

A widely applicable class of diffusion models for which explicit polynomial
eigenfunctions are available is the class of Pearson diffusions, see Wong (1964)
and Forman & Sørensen (2008). A Pearson diffusion is a stationary solution to
a stochastic differential equation of the form

dXt = −β(Xt − α)dt+
√

2β(aX2
t + bXt + c)dWt, (1.81)

whereβ > 0, anda, b andc are such that the square root is well defined when
Xt is in the state space. The parameterβ > 0 is a scaling of time that deter-
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mines how fast the diffusion moves. The parametersα, a, b, andc determine
the state space of the diffusion as well as the shape of the invariant distribu-
tion. In particular,α is the expectation of the invariant distribution. We define
θ = (α, β, a, b, c).

In the context of martingale estimating functions, an important property of the
Pearson diffusions is that the generator (1.46) maps polynomials into polyno-
mials. It is therefore easy to find eigenfunctions among the polynomials

pn(x) =

n
∑

j=0

pn,jx
j .

Specifically, the polynomialpn(x) is an eigenfunction if an eigenvalueλn > 0
exist satisfying that

β(ax2 + bx+ c)p′′n(x) − β(x − α)p′n(x) = −λnpn(x),

or
n
∑

j=0

{λn − aj}pn,jx
j +

n−1
∑

j=0

bj+1pn,j+1x
j +

n−2
∑

j=0

cj+2pn,j+2x
j = 0.

whereaj = j{1 − (j − 1)a}β, bj = j{α+ (j − 1)b}β, andcj = j(j − 1)cβ
for j = 0, 1, 2, . . .. Without loss of generality, we assumepn,n = 1. Thus by
equating the coefficients, we find that the eigenvalue is given by

λn = an = n{1 − (n− 1)a}β. (1.82)

If we definepn,n+1 = 0, then the coefficients{pn,j}j=0,...,n−1 solve the linear
system of equations

(aj − an)pn,j = bj+1pn,j+1 + cj+2pn,j+2. (1.83)

Equation (1.83) is equivalent to a simple recursive formulaif an − aj 6= 0 for
all j = 0, 1, . . . , n − 1. Note thatan − aj = 0 if and only if there exists an
integern − 1 ≤ m < 2n − 1 such thata = m−1 andj = m − n + 1. In
particular,an − aj = 0 cannot occur ifa < (2n − 1)−1. It is important to
notice thatλn is positive if and only ifa < (n− 1)−1. We shall see below that
this is exactly the condition ensuring thatpn(x) is integrable with respect to
the invariant distribution. If the stronger conditiona < (2n− 1)−1 is satisfied,
the firstn eigenfunctions belong to the space of functions that are square inte-
grable with respect to the invariant distribution, and theyare orthogonal with
respect to the usual inner product in this space. The space offunctions that
are square integrable with respect to the invariant distribution (or a subset of
this space) is often taken as the domain of the generator. Obviously, the eigen-
functionpn(x) satisfies the condition (1.72) ifpn(x) is square integrable with
respect to the invariant distribution, i.e. ifa < (2n− 1)−1. By Theorem 1.3.13
this implies that the transition operator satisfies (1.73),so thatpn(x) can be
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used to constructexplicit optimal martingale estimating functionsas explained
in Subsection 1.3.6. For Pearson diffusions witha ≤ 0, a < (2n− 1)−1 is au-
tomatically satisfied, so there are infinitely many polynomial eigenfunctions.
In these cases the eigenfunctions are well-known families of orthogonal poly-
nomials. Whena > 0, there are only finitely many square integrable polyno-
mial eigenfunctions. In these cases more complicated eigenfunctions defined
in terms of special functions exist too, see Wong (1964). It is of some historical
interest that Hildebrandt (1931) derived the polynomials above from the view-
point of Gram-Charlier expansions associated with the Pearson system. Some
special cases had previously been derived by Romanovsky (1924).

From a modeling point of view, it is important that the class of stationary dis-
tributions equals the full Pearson system of distributions. Thus a very wide
spectrum of marginal distributions is available ranging from distributions with
compact support to very heavy-tailed distributions with tails of the Pareto-type.
To see that the invariant distributions belong to the Pearson system, note that
the scale measure has density

s(x) = exp

(∫ x

x0

u− α

au2 + bu+ c
du

)

,

wherex0 is a point such thatax2
0 + bx0 + c > 0, cf. (1.14). Since the density

of the invariant probability measure is given by

µθ(x) ∝
1

s(x)(ax2 + bx+ c)
,

cf. (1.15), it follows that

µ′
θ(x) = − (2a+ 1)x− α+ b

ax2 + bx+ c
µθ(x).

The Pearson system is defined as the class of probability densities obtained by
solving a differential equation of this form, see Pearson (1895).

In the following we present a full classification of the ergodic Pearson diffu-
sions, which shows that all distributions in the Pearson system can be obtained
as invariant distributions for a model in the class of Pearson diffusions. We
consider six cases according to whether the squared diffusion coefficient is
constant, linear, a convex parabola with either zero, one ortwo roots, or a con-
cave parabola with two roots. The classification problem canbe reduced by first
noting that the Pearson class of diffusions is closed under location and scale-
transformations. To be specific, ifX is an ergodic Pearson diffusion, then so
is X̃ whereX̃t = γXt + δ. The parameters of the stochastic differential equa-
tion (1.81) forX̃ are ã = a, b̃ = bγ − 2aδ, c̃ = cγ2 − bγδ + aδ2, β̃ = β,
andα̃ = γα + δ. Hence, up to transformations of location and scale, the er-
godic Pearson diffusions can take the following forms. Notethat we consider
scale transformations in a general sense where multiplication by a negative real
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number is allowed, so to each case of a diffusion with state space(0,∞) there
corresponds a diffusion with state space(−∞, 0).

Case 1:σ2(x) = 2β. The solution to (1.81) is an Ornstein-Uhlenbeck process.
The state space isIR, and the invariant distribution is thenormal distribution
with meanα and variance1. The eigenfunctions are the Hermite polynomials.

Case 2:σ2(x) = 2βx. The solution to (1.81) is the square root process (CIR
process) (1.37) with state space(0,∞). Condition 1.3.1 that ensures ergodicity
is satisfied if and only ifα > 1. If 0 < α ≤ 1, the boundary 0 can with positive
probability be reached at a finite time point, but if the boundary is made instan-
taneously reflecting, we obtain a stationary process. The invariant distribution
is thegamma distributionwith scale parameter 1 and shape parameterα. The
eigenfunctions are the Laguerre polynomials.

Case 3:a > 0 andσ2(x) = 2βa(x2 + 1). The state space is the real line,
and the scale density is given bys(x) = (x2 + 1)

1
2a exp(−α

a tan−1 x). By
Condition 1.3.1, the solution is ergodic for alla > 0 and allα ∈ IR. The
invariant density is given byµθ(x) ∝ (x2 + 1)−

1
2a

−1 exp(α
a tan−1 x) If α = 0

the invariant distribution is a scaledt-distributionwith ν = 1+ a−1 degrees of
freedom and scale parameterν−

1
2 . If α 6= 0 the invariant distribution is skew

and has tails decaying at the same rate as thet-distribution with1+a−1 degrees
of freedom. A fitting name for this distribution is theskewt-distribution. It is
also known asPearson’s type IV distribution. In either case the mean isα and
the invariant distribution has moments of orderk for k < 1 + a−1. Because of
its skew and heavy tailed marginal distribution, the class of diffusions withα 6=
0 is potentially very useful in many applications, e.g. finance. It was studied
and fitted to financial data by Nagahara (1996) using the locallinearization
method of Ozaki (1985). We consider this process in more detail below.

Case 4:a > 0 andσ2(x) = 2βax2. The state space is(0,∞) and the scale
density iss(x) = x

1
a exp( α

ax). Condition 1.3.1 holds if and only ifα > 0. The

invariant distribution is given byµθ(x) ∝ x−
1
a
−2 exp(− α

ax ), and is thus anin-
verse gamma distributionwith shape parameter1 + 1

a and scale parametera
α .

The invariant distribution has moments of orderk for k < 1 + a−1. This pro-
cess is sometimes referred to as the GARCH diffusion model. The polynomial
eigenfunctions are known as the Bessel polynomials.

Case 5:a > 0 andσ2(x) = 2βax(x + 1).The state space is(0,∞) and
the scale density iss(x) = (1 + x)

α+1
a x−

α
a . The ergodicity Condition 1.3.1

holds if and only if α
a ≥ 1. Hence for alla > 0 and allµ ≥ a, a unique

ergodic solution to (1.81) exists. If0 < α < 1, the boundary 0 can be reached
at a finite time point with positive probability, but if the boundary is made
instantaneously reflecting, a stationary process is obtained. The density of the
invariant distribution is given byµθ(x) ∝ (1+x)−

α+1
a

−1x
α
a
−1. This is a scaled
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F-distributionwith 2α
a and 2

a +2 degrees of freedom and scale parameterα
1+a .

The invariant distribution has moments of orderk for k < 1 + a−1.

Case 6:a < 0 andσ2(x) = 2βax(x − 1). The state space is(0,∞) and
the scale density iss(x) = (1 − x)

1−α
a x

α
a . Condition 1.3.1 holds if and only

if α
a ≤ −1 and 1−α

a ≤ −1. Hence for alla < 0 and allα > 0 such that
min(α, 1−α) ≥ −a, a unique ergodic solution to (1.81) exists. If0 < α < −a,
the boundary 0 can be reached at a finite time point with positive probability,
but if the boundary is made instantaneously reflecting, a stationary process is
obtained. Similar remarks apply to the boundary 1 when0 < 1 − α < −a.
The invariant distribution is given byµθ(x) ∝ (1 − x)−

1−α
a

−1x−
α
a
−1 and is

thus theBeta distributionwith shape parametersα−a and 1−α
−a . This class of

diffusions will be discussed in more detail below. It is often referred to as the
Jacobi diffusionsbecause the related eigenfunctions are Jacobi polynomials.
Multivariate Jacobi diffusions were considered by Gourieroux & Jasiak (2006).

Example 1.3.18The skewt-distribution with mean zero,ν degrees of free-
dom, and skewness parameterρ has (unnormalized) density

f(z) ∝
{(z/

√
ν + ρ)2 + 1}−(ν+1)/2 exp

{

ρ(ν − 1) tan−1
(

z/
√
ν + ρ

)}

,

which is the invariant density of the diffusionZt =
√
ν(Xt − ρ) with ν =

1+a−1 andρ = α, whereX is as in Case 3. An expression for the normalizing
constant whenν is integer valued was derived in Nagahara (1996). By the
transformation result above, the corresponding stochastic differential equation
is

dZt = −βZtdt+

√

2β(ν − 1)−1{Z2
t + 2ρν

1
2Zt + (1 + ρ2)ν}dWt. (1.84)

For ρ = 0 the invariant distribution is thet-distribution with ν degrees of
freedom.

The skewt-diffusion (1.84) has the eigenvaluesλn = n(ν −n)(ν − 1)−1β for
n < ν. The four first eigenfunctions are

p1(z) = z,

p2(z) = z2 − 4ρν
1
2

ν − 3
z − (1 + ρ2)ν

ν − 2
,

p3(z) = z3 − 12ρν
1
2

ν − 5
z2 +

24ρ2ν + 3(1+ρ2)ν(ν− 5)

(ν − 5)(ν − 4)
z +

8ρ(1+ρ2)ν
3
2

(ν−5)(ν−3)
,

and

p4(z) = z4 − 24ρν
1
2

ν − 7
z3 +

144ρ2ν − 6(1 + ρ2)ν(ν − 7)

(ν − 7)(ν − 6)
z2
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+
8ρ(1 + ρ2)ν

3
2 (ν − 7) + 48ρ(1 + ρ2)ν

3
2 (ν − 6) − 192ρ3ν

3
2

(ν − 7)(ν − 6)(ν − 5)
z

+
3(1 + ρ2)2ν(ν − 7) − 72ρ2(1 + ρ2)ν2

(ν − 7)(ν − 6)(ν − 4)
,

provided thatν > 4. If ν > 2i, the firsti eigenfunctions are square integrable
and thus satisfy (1.72). Hence (1.73) holds, and the eigenfunctions can be used
to construct explicit martingale estimating functions. 2

Example 1.3.19The model

dXt = −β[Xt − (m+ γz)]dt+ σ
√

z2 − (Xt −m)2dWt, (1.85)

whereβ > 0 andγ ∈ (−1, 1), has been proposed as a model for the random
variation of the logarithm of an exchange rate in a target zone between realign-
ments by De Jong, Drost & Werker (2001) (γ = 0) and Larsen & Sørensen
(2007). This is a diffusion on the interval(m− z,m+ z) with mean reversion
aroundm + γz. It is a Jacobi diffusionobtained by a location-scale trans-
formation of the diffusion in Case 6 above. The parameterγ quantifies the
asymmetry of the model. Whenβ(1 − γ) ≥ σ2 andβ(1 + γ) ≥ σ2, X is an
ergodic diffusion, for which the stationary distribution is a Beta-distribution on
(m − z,m+ z) with parametersκ1 = β(1 − γ)σ−2 andκ2 = β(1 + γ)σ−2.
If the parameter restrictions are not satisfied, one or both of the boundaries can
be hit in finite time, but if the boundaries are made instantaneously reflecting,
a stationary process is obtained.

The eigenfunctions for the generator of the diffusion (1.85) are

φi(x;β, γ, σ,m, z) = P
(κ1−1, κ2−1)
i ((x −m)/z), i = 1, 2, . . .

whereP (a,b)
i (x) denotes the Jacobi polynomial of orderi given by

P
(a,b)
i (x) =

i
∑

j=0

2−j

(

n+ a

n− j

)(

a+ b+ n+ j

j

)

(x− 1)j , −1 < x < 1.

The eigenvalue ofφi is i(β + 1

2
σ2(i − 1)). Since (1.72) is obviously satis-

fied, (1.73) holds, so that the eigenfunctions can be used to construct explicit
martingale estimating functions. 2

Explicit formulae for theconditional momentsof a Pearson diffusion can be
obtained from the eigenfunctions by means of (1.73). Specifically,

E(Xn
t |X0 = x) =

n
∑

k=0

(

n
∑

ℓ=0

qn,k,ℓe
−λℓt

)

xk, (1.86)
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whereqn,k,n = pn,k, qn,n,ℓ = 0 for ℓ ≤ n− 1, and

qn,k,ℓ = −
n−1
∑

j=k∨ℓ

pn,jqj,k,ℓ

for k, ℓ = 0, . . . , n− 1 with λℓ andpn,j given by (1.82) and (1.83). For details
see Forman & Sørensen (2008).

Also themomentsof the Pearson diffusions can, when they exist, be found
explicitly by using the fact that the integral of the eigenfunctions with respect to
the invariant probability measure is zero.We have seen above thatE(|Xt|κ) <
∞ if and only if a < (κ − 1)−1. Thus if a ≤ 0 all moments exist, while for
a > 0 only the moments satisfying thatκ < a−1 + 1 exist. In particular, the
expectation always exists. The moments of the invariant distribution can be
found by the recursion

E(Xn
t ) = a−1

n {bn · E(Xn−1
t ) + cn · E(Xn−2

t )}, n = 2, 3, . . . , (1.87)

wherean = n{1−(n−1)a}β, bn = n{α+(n−1)b}β, andcn = n(n−1)cβ.
The initial conditions are given by E(X0

t ) = 1, and E(Xt) = α. This can be
found from the expressions for the eigenfunctions, but is more easily seen as
follows. By Ito’s formula

dXn
t = −βnXn−1

t (Xt − µ)dt+ βn(n− 1)Xn−2
t (aX2

t + bXt + c)dt

+nXn−1
t σ(Xt)dWt,

and ifE(X2n
t ) is finite, i.e. if a < (2n − 1)−1, the last term is a martingale

with expectation zero.

Example 1.3.20Equation (1.87) allows us to find the moments of theskewed
t-distribution, in spite of the fact that the normalizing constant of the density
is unknown. In particular, for the diffusion (1.84),

E(Zt) = 0,

E(Z2
t ) =

(1 + ρ2)ν

ν − 2
,

E(Z3
t ) =

4ρ(1 + ρ2)ν
3
2

(ν − 3)(ν − 2)
,

E(Z4
t ) =

24ρ2(1 + ρ2)ν2 + 3(ν − 3)(1 + ρ2)2ν2

(ν − 4)(ν − 3)(ν − 2)
.

2

For a diffusionT (X) obtained from a solutionX to (1.81) by a twice differen-
tiable and invertible transformationT , the eigenfunctions of the generator are
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pn{T−1(x)}, wherepn is an eigenfunction of the generator ofX . The eigen-
values are the same as for the original eigenfunctions. Since the original eigen-
functions are polynomials, the eigenfunctions ofT (X) are of the form (1.77)
with κ = T−1. Henceexplicit optimal martingale estimating functions are also
available for transformations of Pearson diffusions, which is a very large and
flexible class of diffusion processes. Their stochastic differential equations can,
of course, be found by Ito’s formula.

Example 1.3.21For the Jacobi-diffusion (case 6) withµ = −a = 1
2 , i.e.

dXt = −β(Xt − 1

2
)dt+

√

βXt(1 −Xt)dWt

the invariant distribution is the uniform distribution on(0, 1) for all β > 0.
For any strictly increasing and twice differentiable distribution functionF , we
therefore have a class of diffusions given byYt = F−1(Xt) or

dYt = −β (F (Yt) − 1
2 )f(Yt)

2 + 1
2F (Yt){1 − F (Yt)}

f(Yt)3
dt

+
βF (Yt){1 − F (Yt)}

f(Yt)
dWt,

which has invariant distribution with densityf = F ′. A particular example is
the logistic distribution

F (x) =
ex

1 + ex
, x ∈ IR,

for which

dYt = −β
{

sinh(x) + 8 cosh4(x/2)
}

dt+ 2
√

β cosh(x/2)dWt.

If the same transformationF−1(y) = log(y/(1 − y)) is applied to the general
Jacoby diffusion (case 6), then we obtain

dYt = −β
{

1 − 2µ+ (1 − µ)eYt − µe−1 − 8a cosh4(Yt/2)
}

dt

+2
√

−aβ cosh(Yt/2)dWt,

a diffusion for which the invariant distribution is the generalized logistic dis-
tribution with density

f(x) =
eκ1x

(1 + ex)κ1+κ2B(κ1, κ2)
, x ∈ IR,

whereκ1 = −(1 − α)/a, κ2 = α/a andB denotes the Beta-function. This
distribution was introduced and studied in Barndorff-Nielsen, Kent & Sørensen
(1982).

2
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Example 1.3.22Let againX be a general Jacobi-diffusion (case 6). If we ap-
ply the transformationT (x) = sin−1(2x− 1) toXt, we obtain the diffusion

dYt = −ρ sin(Yt) − ϕ

cos(Yt)
dt+

√

−aβ/2dWt,

whereρ = β(1 + a/4) andϕ = (2α − 1)/(1 + a/4). The state space is
(−π/2, π/2). Note thatY has dynamics that are very different from those of
the Jacobi diffusion: the drift is highly non-linear and thediffusion coefficient
is constant. This model was considered in Example 1.3.15.

2

1.3.8 Implementation of martingale estimating functions

An R-package, where a number of methods for calculating estimators for dif-
fusion models are implemented, has been developed by Stefano Iacus and is
described in the book Iacus (2008), which outlines the underlying theory too.
The R-package also contains implementations of methods forsimulating so-
lutions to stochastic differential equations. It is, however, useful to notice that
for many martingales estimating functions the estimators,or asymptotically
equivalent estimators, can be calculated by means of standard statistical soft-
ware packages. Specifically, they can be calculated as weighted least squares
estimators for non-linear regression models.

To see this, consider the weighted least squares estimator obtained by mini-
mizing

Cn(θ) = (1.88)
n
∑

i=1

[

f(Xti
) − πθ

∆(f)(Xti−1
)
]T
V −1

i

[

f(Xti
) − πθ

∆(f)(Xti−1
)
]

,

with f(x) = (f1(x), . . . , fN (x)) and

Vi = Vh(Xti−1
; θ̃n), (1.89)

whereVh is theN×N -matrix given by (1.44), and̃θn is a consistent estimator
of θ. As usual,πθ

∆ denotes the transition operator (1.42). The consistent esti-
mator can, for instance, be the non-weighted least squares estimator obtained
by minimizing (1.88) withVi = IN , whereIN is theN × N identity matrix.
The weighted least squares estimator obtained from (1.88) with Vi given by
(1.89) solves the estimating equation

n
∑

i=1

Bh(Xti−1
; θ)Vh(Xti−1

; θ̃n)−1
[

f(Xti
) − πθ

∆(f)(Xti−1
)
]

= 0 (1.90)
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with Bh given by (1.45). Therefore this estimator has the same asymptotic
variance as the optimalG∗

n-estimator withh given by (1.40); see e.g. Jacod &
Sørensen (2009). The estimating function (1.90) is similarin spirit to (1.39).
The estimators obtained by minimizing (1.88) is the weighted least squares
estimator for a regression model for the dataf(Xti

), i = 1, . . . , n with Xti−1
,

i = 1, . . . , n, as explanatory regression variables, the non-linear regression
function πθ

∆(f)(Xti−1
), and the weight matrixVi. In some particularly nice

cases, the regression function is linear in the parameters,and the estimator is a
linear regression estimator.

Example 1.3.23LetX be the square root process (1.37), and suppose we have
the observationsXi∆, i = 0, . . . , n. Let us think of(Xi∆, X

2
i∆), i = 1, . . . , n,

as data with explanatory regression variablesX(i−1)∆, i = 1, . . . , n, and with
the non-linear regression function

πθ
∆(f)(X(i−1)∆) =

(

F (X(i−1)∆; θ)
φ(X(i−1)∆; θ) + F (X(i−1)∆; θ)2

)

,

whereF andφ are as in Example 1.3.6. Then we obtain a weighted least
squares estimator forθ, by minimizing (1.88) withf1(x) = x, f2(x) = x2,
and

Vh(x; θ) =

(

φ(x; θ) η(x; θ)+2F (x; θ)φ(x; θ)2

η(x; θ)+2F (x; θ)φ(x; θ)2 ψ(x; θ)+4F (x; θ)2φ(x; θ)+4F (x; θ)η(x; θ)

)

,

whereη andψ are as in Example 1.3.6.

This estimator has the same efficiency as the estimator obtained from the opti-
mal martingale estimating function of form (1.30) withN = 2 and

h1(x, y; θ) = y − F (x; θ)

h2(x, y; θ) = y2 − φ(x; θ) − F (x; θ)2.

The optimal estimating function of this form is equivalent to the optimal es-
timating function in Example 1.3.6. For the square root process some simpli-
fication can be achieved by using the Gaussian approximation(1.38) in the
definition of the matrixVh.

2

Example 1.3.24Consider the process (1.74), and suppose we have the obser-
vationsXi∆, i = 0, . . . , n. Let us think ofsin(Xi∆), i = 1, . . . , n, as data with
explanatory regression variablesX(i−1)∆, i = 1, . . . , n and with the non-linear
regression functionπθ

∆(sin)(X(i−1)∆) = e−(θ+1/2)∆ sin(X(i−1)∆). Again we
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can obtain a weighted least squares estimator forθ, by minimizing (1.88) with
f(x) = sin(x) and

Vh(x; θ) = 1

2
(e2(θ̃n+1)∆ − 1)/(θ̃n + 1) − (e∆ − 1) sin2(X(i−1)∆),

whereθ̃n is a consistent estimator, for instance the simple estimator (1.76).
Note that the non-linear regression is, in fact, a linear regression in the param-
eterξ = e−θ∆. The regression estimator equals the estimator obtained from
the estimating function

G•
n(θ) =

n
∑

i=1

sin(X(i−1)∆)[sin(Xi∆) − e−(θ+ 1
2
)∆ sin(X(i−1)∆)]

1
2 (e2(θ̃n+1)∆ − 1)/(θ̃n + 1) − (e∆ − 1) sin2(X(i−1)∆)

,

which has the same efficiency as the optimal estimator obtained in Exam-
ple 1.3.17. If instead we minimize (1.88) with the approximation Vh(x; θ) =
cos2(x), then we obtain the estimatorθ̃n from Example 1.3.17, and if we min-
imize (1.88) with the more crude approximationVh(x; θ) = 1, then we obtain
the simple estimator (1.76) from Example 1.3.15.

2

More generally, an estimator with the same efficiency as the optimal estimator
from (1.30) with optimal weights (1.32) is obtained by minimizing the objec-
tive function

n
∑

i=1

h(Xti−1
, Xti

; θ)TV −1
i h(Xti−1

, Xti
; θ) (1.91)

with Vi defined as in (1.89), but here withVh given by (1.34). This estimator
can be found by applying standard software for minimizing objective functions
to (1.91).

Example 1.3.25Let againX be the square root process (1.37), and consider
the martingale estimating function of form (1.30) withN = 2 andh1 andh2 as
in Example 1.3.4. In this case an optimal estimator is obtained by minimizing
(1.91) with

Vh(x; θ) =

(

φ(x; θ) η(x; θ)
η(x; θ) ψ(x; θ)

)

,

whereφ, η andψ are as in Example 1.3.6. Here a considerable simplification
can be obtained by the Gaussian approximation (1.38). With this approxima-
tion

Vh(x; θ) =

(

φ(x; θ) 0
0 2φ(x; θ)2

)

.

2
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1.4 The likelihood function

The likelihood function for a discretely observed diffusion model, (1.24) is a
product of transitions densities. Unfortunately, the transition density of a diffu-
sion process is only rarely explicitly known, but several numerical approaches
make likelihood inference feasible for diffusion models.

Pedersen (1995) proposed a method for obtaining an approximation to the like-
lihood function by rather extensive simulation. Pedersen’s method was very
considerably improved by Durham & Gallant (2002), whose method is com-
putationally much more efficient. Poulsen (1999) obtained an approximation
to the transition density by numerically solving a partial differential equation,
whereas Aı̈t-Sahalia (2002) and Aı̈t-Sahalia (2008) proposed to approximate
the transition density by means of expansions. A Gaussian approximation to
the likelihood function obtained by local linearization of(1.11) was proposed
by Ozaki (1985), while Forman & Sørensen (2008) proposed to use an approx-
imation in terms of eigenfunctions of the generator of the diffusion. Bayesian
estimators with the same asymptotic properties as the maximum likelihood es-
timator can be obtained by Markov chain Monte Carlo methods,see Elerian,
Chib & Shephard (2001), Eraker (2001), and Roberts & Stramer(2001). Fi-
nally, exact and computationally efficient likelihood-based estimation methods
were presented by Beskos et al. (2006). The latter approach is presented in
Chapter XXX. In the following we will outline the expansion approach of Aı̈t-
Sahalia (2002) for scalar diffusion models. The various other approaches to
calculation of the likelihood function will not be considered further in this
chapter.

Assume that the diffusion process (1.11) is one-dimensional and that the state
space is either(−∞,∞) or (0,∞), i.e. r = ∞ andℓ is either−∞ or 0. The
coefficientsb andσ are assumed to satisfy the following condition.

Condition 1.4.1
(i) The functionsb(x; θ) andσ(x; θ) are infinitely often differentiable w.r.t.x
and three times continuously differentiable w.r.t.θ for all x ∈ (ℓ, r) andθ ∈ Θ.

(ii-a) If ℓ = −∞, there exists a constantc > 0 such thatσ(x; θ) > c for all
x ∈ (ℓ, r) and allθ ∈ Θ.

(ii-b) If ℓ = 0, thenσ is non-degenerate on(0,∞) in the sense that for each
ξ > 0 there exists a constantcξ > 0 such thatσ(x; θ) ≥ cξ for all x ≥ ξ and
all θ ∈ Θ. Moreover, iflimx→0 σ(x; θ) = 0, then constantsξ0, ω andρ exist
such thatσ(x; θ) ≥ ωxρ for all x ∈ (0, ξ0) and allθ ∈ Θ.

The idea is to make an expansion of the transition density. However, the distri-
bution ofX∆ givenX0 can be so far from a normal distribution that a conver-
gent expansion with the normal density as leading term is notpossible. This
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is possible for a diffusion with constant diffusion coefficient. Therefore the
standard transformation

h(x; θ) =

∫ x

x∗

1

σ(u; θ)
du,

wherex∗ is arbitrary, is applied to obtain the diffusion process

Yt = h(Xt; θ).

Sinceσ > 0, the transformationh is increasing, and by Ito’s formula

dYt = a(Yt; θ)dt+ dWt, (1.92)

where

a(y; θ) =
b(h−1(y; θ); θ)

σ(h−1(y; θ); θ)
− 1

2
σ′(h−1(y; θ); θ)

with σ′(x; θ) = ∂xσ(x; θ). The state space ofY , (ℓY , rY ) could in principle
depend onθ, but we assume that this is not the case. If only one of the bound-
ariesℓY andrY is finite, it can always be arranged that the finite boundary
equals zero by choosingx∗ suitably. For instance ifrY = ∞ andℓY is finite,
then we can choosex∗ = ℓ to obtainℓY = 0. We will assume thatℓY is either
−∞ or 0, and thatrY is either0 or∞. It is further assumed thata satisfies the
following condition (which can be translated into a condition onb andσ).

Condition 1.4.2
(i) For all θ ∈ Θ, the drift coefficienta(y; θ) and its derivatives w.r.t.y andθ
have at most polynomial growth near the boundaries, and

lim[a(y; θ)2 + ∂ya(y; θ)] > −∞ asy ↓ ℓY and y ↑ rY .

(ii-a) If ℓY = 0, then there exist constantsǫ0 > 0, κ andα such thata(y; θ) ≥
κy−α for all y ∈ (0, ǫ0) and all θ ∈ Θ, where eitherα > 1 andκ > 0, or
α = 1 andκ ≥ 1. If ℓY = −∞, then there exists constantsE0 > 0 andK > 0
such thata(y; θ) ≥ Ky for all y ≤ −E0 and allθ ∈ Θ.

(ii-b) If rY = 0, then there exist constantsǫ0 > 0, κ andα such thata(y; θ) ≤
−κ|y|−α for all y ∈ (−ǫ0, 0) and allθ ∈ Θ, where eitherα > 1 andκ > 0, or
α = 1 andκ ≥ 1/2. If rY = ∞, then there exist constantsE0 > 0 andK > 0
such thata(y; θ) ≤ Ky for all y ≥ E0 and allθ ∈ Θ.

A real functionf is said to be of polynomial growth near a boundary at∞ or
−∞ if there exist constantsC > 0,K > 0 andp > 0 such that|f(x)| ≤ C|x|p
for x > K or x < −K. If the boundary is at zero, polynomial growth means
that there exist constantsC > 0, ǫ > 0 andp > 0 such that|f(x)| ≤ C|x|−p

for |x| ≤ ǫ.

Under the assumptions imposed, a solution exists to (1.92) with a transition
density that is sufficiently regular for likelihood inference. This is the contents
of the following proposition from Aı̈t-Sahalia (2002).
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Proposition 1.4.3 Under the Conditions 1.4.1 and 1.4.2, the stochastic differ-
ential equation (1.92) has a unique weak solution for every initial distribu-
tion. The boundaries are unattainable. The solutionY has a transition density
pY (∆, y0, y; θ) that is continuously differentiable w.r.t.∆, infinitely often dif-
ferentiable w.r.t.y ∈ (ℓY , rY ), and three times continuously differentiable w.r.t.
θ ∈ Θ.

This result implies that the original stochastic differential equation (1.11) has a
unique weak solution, and by the transformation theorem fordensity functions,
it has a similarly regular transition density given by

p(∆, x0, x; θ) = pY (∆, h(x0; θ), h(x; θ); θ)/σ(x; θ). (1.93)

Instead of expanding the transition density ofY , i.e. the conditional density
function ofY∆ givenY0 = y0, we expand the conditional density of the nor-
malized increment

Z = ∆−1(Y∆ − y0)

given Y0 = y0. This is becausepY gets peaked aroundy0 as∆ gets close
to zero, whereas the distribution ofZ is sufficiently close to theN(0, 1)-
distribution to make it the appropriate transformation ofX∆ to obtain a con-
vergent expansion of the conditional density function withthe standard normal
density function as the leading term. Obviously,

pY (∆, y0, y; θ) = ∆−1/2pZ(∆,∆−1/2(y − y0) | y0; θ), (1.94)

wherepZ(∆, z | y0; θ) is the conditional density ofZ given thatY0 = y0.

We can now obtain an approximation to the transition densityofX , and hence
an approximation to the likelihood function, by expanding the conditional den-
sity, pZ , ofZ givenY0 = y0 in terms of Hermite polynomials up to orderJ :

pJ
Z(∆, z | y0; θ) = ϕ(z)

J
∑

j=0

ηj(∆, y0; θ)Hj(z), (1.95)

whereϕ denotes the density function of the standard normal distribution, and
Hj is thejth Hermite polynomial, which is defined by

Hj(x) = (−1)jex2/2 d
j

dxj
e−x2/2, j = 0, 1, . . . .

The Hermite polynomials up to order 4 are

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3.
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The coefficientsηj(∆, y0; θ) can be found by using that the Hermite polyno-
mials are orthogonal in the spaceL2(ϕ):

∫ ∞

−∞
Hi(x)Hj(x)ϕ(x)dx =

{

0 if i 6= j
i! if i = j.

Hence if

pZ(∆, z | y0; θ) = ϕ(z)

∞
∑

j=0

ηj(∆, y0; θ)Hj(z),

it follows that
∫ ∞

−∞
Hi(z)pZ(∆, z | y0; θ)dz =

∞
∑

j=0

ηj(∆, y0; θ)

∫ ∞

−∞
Hi(z)Hj(z)ϕ(z)dz

= i! ηi(∆, y0; θ).

By inserting the expansion (1.95) in (1.94) and (1.93), we obtain the following
approximations to the transitions densitiespY andp

pJ
Y (∆, y0, y; θ) = ∆−1/2ϕ(∆−1/2(y−y0))

J
∑

j=0

ηj(∆, y0; θ)Hj(∆
−1/2(y−y0))

(1.96)
and

pJ(∆, x0, x; θ) = (1.97)

ϕ
(

h(x;θ)−h(x0;θ)√
∆

)

√
∆σ(x; θ)

J
∑

j=0

ηj(∆, h(x0; θ); θ)Hj

(

h(x; θ) − h(x0; θ)√
∆

)

.

Aı̈t-Sahalia (2002) gave the following theorem about the convergence of the
approximationpJ to the exact transition densityp.

Theorem 1.4.4Under the Conditions 1.4.1 and 1.4.2, there exists∆̄ > 0 such
that

lim
J→∞

pJ(∆, x0, x; θ) = p(∆, x0, x; θ)

for all ∆ ∈ (0, ∆̄), θ ∈ Θ and(x0, x) ∈ (ℓ, r)2.

If rY = ∞ anda(y; θ) ≤ 0 nearrY , and if a(y; θ) ≥ 0 nearℓY (which is
either 0 or−∞), then∆̄ = ∞, see Proposition 2 in Aı̈t-Sahalia (2002).

In order to use the expansions of the transition densities tocalculate likelihood
functions in practice, it is necessary to determine the coefficientsηj(∆, y0; θ).
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Note that by inserting (1.94) in the expression above forηi(∆, y0; θ) we find
that

ηi(∆, y0; θ) =
1

i!

∫ ∞

−∞
Hi(z)∆

1/2pY (∆, y0,∆
1/2z + y0; θ)dz

=
1

i!

∫ ∞

−∞
Hi(∆

−1/2(y − y0))pY (∆, y0, y; θ)dy

= Eθ

(

Hi(∆
−1/2(Y∆ − y0)) |Y0 = y0

)

.

Thus the coefficientsηi(∆, y0; θ), i = 0, 1, . . ., are conditional moments of the
processY , and can therefore be found by simulation ofY orX . An approxi-
mation toηi(∆, y0; θ) can be obtained by applying the expansion (1.57) to the
functions(y − x)i, i = 1, . . . , J . For instance, we find that

η1(∆, y0; θ) = ∆1/2a(y0; θ) + 1

2
∆3/2

(

a(y0; θ)∂ya(y0; θ) + 1

2
∂2

ya(y0; θ)
)

+O(∆5/2)

η2(∆, y0; θ) = ∆
(

a(y0; θ)
2 + ∂ya(y0; θ)

)

+O(∆2).

By expanding the coefficientsηi(∆, y0; θ) suitably and collecting terms of the
same order in∆, Aı̈t-Sahalia (2002) found the following approximation topY

p̃K
Y (∆, y0, y; θ) =

∆−1/2ϕ

(

y − y0√
∆

)

exp

(∫ y

y0

a(w, θ)dw

) K
∑

k=0

∆k

k!
ck(y0, y; θ),

wherec0(y0, y; θ) = 1, and

ck(y0, y; θ) =

k(y − y0)
−k

∫ y

y0

(w−y0)k−1
[

λ(w; θ)ck−1(y0, w; θ)+ 1

2
∂2

wck−1(y0, w; θ)
]

dw,

for k ≥ 1, where

λ(w; θ) = − 1

2

(

a(w; θ)2 + ∂wa(w; θ)
)

.

1.5 Non-martingale estimating functions

1.5.1 Asymptotics

When the estimating function

Gn(θ) =

n
∑

i=r

g(X(i−r+1)∆, . . . , Xi∆; θ)
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is not a martingale underPθ, further conditions on the diffusion process must
be imposed to ensure the asymptotic normality in (1.5). A sufficient condi-
tion that (1.5) holds underPθ0

with V (θ) given by (1.98) is that the diffusion
process is stationary and geometricallyα-mixing, that

V (θ) = Qθ0

(

g(θ)g(θ)T
)

(1.98)

+
∞
∑

k=1

[

Eθ0

(

g(X∆, . . . , Xr∆)g(X(k+1)∆, . . . , X(k+r)∆)T
)

+ Eθ0

(

g(X(k+1)∆, . . . , X(k+r)∆)g(X∆, . . . , Xr∆)T
)]

,

converges and is strictly positive definite, and thatQθ0
(gi(θ)

2+ǫ) < ∞, i =
1, . . . , p for someǫ > 0, see e.g. Doukhan (1994). Heregi is theith coordinate
of g, andQθ is the joint distribution ofX∆, . . . , Xr∆ underPθ. To define the
concept ofα-mixing, letFt denote theσ-field generated by{Xs | s ≤ t}, and
let F t denote theσ-field generated by{Xs | s ≥ t}. A stochastic processX is
said to beα-mixingunderPθ0

, if

sup
A∈Ft,B∈Ft+u

|Pθ0
(A)Pθ0

(B) − Pθ0
(A ∩B)| ≤ α(u)

for all t > 0 andu > 0, whereα(u) → 0 asu → ∞. This means thatXt and
Xt+u are almost independent, whenu is large. If positive constantsc1 andc2
exist such that

α(u) ≤ c1e
−c2u,

for all u > 0, then the processX is called geometricallyα-mixing. For one-
dimensional diffusions there are simple conditions for geometricα-mixing. If
all non-zero eigenvalues of the generator (1.46) are largerthan someλ > 0,
then the diffusion is geometricallyα-mixing with c2 = λ. This is for instance
the case if the spectrum of the generator is discrete. Ergodic diffusions with a
linear drift−β(x−α), β > 0, for instance the Pearson diffusions, are geomet-
rically α-mixing with c2 = β; see Hansen, Scheinkman & Touzi (1998).

Genon-Catalot, Jeantheau & Larédo (2000) gave the following simple suffi-
cient condition for the one-dimensional diffusion that solves (1.11) to be geo-
metricallyα-mixing, provided that it is ergodic with invariant probability den-
sity µθ.

Condition 1.5.1
(i) The functionb is continuously differentiable with respect tox, andσ is twice
continuously differentiable with respect tox, σ(x; θ) > 0 for all x ∈ (ℓ, r),
and a constantKθ > 0 exists such that|b(x; θ)| ≤ Kθ(1+ |x|) andσ2(x; θ) ≤
Kθ(1 + x2) for all x ∈ (ℓ, r).

(ii) σ(x; θ)µθ(x) → 0 asx ↓ ℓ andx ↑ r.
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(iii) 1/γ(x; θ) has a finite limit asx ↓ ℓ andx ↑ r, whereγ(x; θ) = ∂xσ(x; θ)−
2b(x; θ)/σ(x; θ).

Other conditions for geometricα-mixing were given by Veretennikov (1987),
Hansen & Scheinkman (1995), and Kusuoka & Yoshida (2000).

For geometricallyα-mixing diffusions processes and estimating functionsGn

satisfying Condition 1.2.1, the existence of aθ̄-consistent and asymptotically
normalGn-estimator follows from Theorem 1.2.2, which also containsa result
about eventual uniqueness of the estimator.

1.5.2 Explicit non-martingale estimating functions

Explicit martingale estimating functions are only available for the relatively
small, but versatile, class of diffusions for which explicit eigenfunctions of
the generator are available; see the Subsections 1.3.6 and 1.3.7. Explicit non-
martingale estimating functions can be found for all diffusions, but cannot be
expected to approximate the score functions as well as martingale estimating
functions, and therefore usually give less efficient estimators. As usual we con-
sider ergodic diffusion processs with invariant probability densityµθ.

First we consider estimating functions of the form

Gn(θ) =

n
∑

i=1

h(X∆i; θ), (1.99)

whereh is ap-dimensional function. We assume that the diffusion is geomet-
rically α-mixing, so that a central limit theorem holds (under an integrability
condition), and that Condition 1.2.1 holds forr = 1 and θ̄ = θ0. The latter
condition simplifies considerably, because for estimatingfunctions of the form
(1.99), it does not involve the transition density, but onlythe invariant probabil-
ity densityµθ, which for one-dimensional ergodic diffusions is given explicitly
by (1.15). In particular, (1.6) and (1.7) simplifies to

µθ0
(h(θ0)) =

∫ r

ℓ

h(x; θ0)µθ0
(x)dx = 0 (1.100)

and

W = µθ0
(∂θT h(θ0)) =

∫ r

ℓ

∂θT h(x; θ0)µθ0
(x)dx.

The condition for eventual uniqueness of theGn-estimator (1.9) is here thatθ0
is the only root ofµθ0

(h(θ)).

Kessler (2000) proposed

h(x; θ) = ∂θ logµθ(x), (1.101)
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which is the score function (the derivative of the log-likelihood function) if we
pretend that the observations are an i.i.d. sample from the stationary distribu-
tion. If ∆ is large, this might be a reasonable approximation. That (1.100) is
satisfied for this specification ofh follows under standard conditions that allow
the interchange of differentiation and integration.
∫ r

ℓ

(∂θ log µθ(x))µθ(x)dx =

∫ r

ℓ

∂θµθ(x)dx = ∂θ

∫ r

ℓ

µθ(x)dx = 0.

A modification of the simple estimating function (1.101) wasshown by Kessler,
Schick & Wefelmeyer (2001) to be efficient in the sense of semiparamet-
ric models. The modified version of the estimating function was derived by
Kessler & Sørensen (2005) in a completely different way.

Hansen & Scheinkman (1995) and Kessler (2000) proposed and studied the
generally applicable specification

hj(x; θ) = Aθfj(x; θ), (1.102)

whereAθ is the generator (1.46), andfj, j = 1, . . . , p, are twice differentiable
functions chosen such that Condition 1.2.1 holds. The estimating function with
h given by (1.102) can easily be applied to multivariate diffusions, because an
explicit expression for the invariant densityµθ is not needed. The following
lemma for one-dimensional diffusions shows that only weak conditions are
needed to ensure that (1.100) holds forhj given by (1.102).

Lemma 1.5.2 Supposef ∈ C2((ℓ, r)), Aθf ∈ L1(µθ) and

lim
x→r

f ′(x)σ2(x; θ)µθ(x) = lim
x→ℓ

f ′(x)σ2(x; θ)µθ(x). (1.103)

Then
∫ r

ℓ

(Aθf)(x)µθ(x)dx = 0.

Proof: Note that by (1.15), the functionν(x; θ) = 1
2σ

2(x; θ)µθ(x) satisfies
thatν ′(x; θ) = b(x; θ)µθ(x). In this proof all derivatives are with respect tox.
It follows that
∫ r

ℓ

(Aθf)(x)µθ(x)dx

=

∫ r

ℓ

(

b(x; θ)f ′(x) + 1

2
σ2(x; θ)f ′′(x)

)

µθ(x)dx

=

∫ r

ℓ

(f ′(x)ν ′(x; θ) + f ′′(x)ν(x; θ)) dx =

∫ r

ℓ

(f ′(x)ν(x; θ))
′
dx

= lim
x→r

f ′(x)σ2(x; θ)µθ(x) − lim
x→ℓ

f ′(x)σ2(x; θ)µθ(x) = 0.

2
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Example 1.5.3 Consider the square-root process (1.37) withσ = 1. Forf1(x) =
x andf2(x) = x2, we see that

Aθf(x) =

(

−β(x− α)
−2β(x− α)x+ x

)

,

which gives the simple estimators

α̂n =
1

n

n
∑

i=1

Xi∆, β̂n =

1

n

n
∑

i=1

Xi∆

2





1

n

n
∑

i=1

X2
i∆ −

(

1

n

n
∑

i=1

Xi∆

)2




.

The condition (1.103) is obviously satisfied because the invariant distribution
is a normal distribution.

2

Conley et al. (1997) proposed a model-based choice of thefjs in (1.102):fj =
∂θj

log µθ(x), i.e. the i.i.d. score function used in (1.101). Thus they obtained
an estimating function of the form (1.99) with

h(x; θ) = Aθ∂θ logµθ(x). (1.104)

Sørensen (2001) independently derived the same estimatingfunction as an ap-
proximation to the score function for continuous-time observation of the diffu-
sion process. Jacobsen (2001) showed that this estimating function is small∆-
optimal. This result was later rediscovered by Aı̈t-Sahalia & Mykland (2008)
who obtained a similar result for estimating functions given by (1.105).

An estimating function of the simple form (1.99) cannot be expected to yield
as efficient estimators as an estimating function that depends on pairs of con-
secutive observations, and therefore can use the information contained in the
transitions. Hansen & Scheinkman (1995) proposed non-martingale estimating
functions of the form (1.12) withg given by

gj(∆, x, y; θ) = hj(y)Aθfj(x) − fj(x)Âθhj(y), (1.105)

where the functionsfj andhj satisfy weak regularity conditions ensuring that
(1.6) holds for̄θ = θ0. The differential operator̂Aθ is the generator of the time
reversal of the observed diffusionX . For a multivariate diffusion it is given by

Âθf(x) =

d
∑

k=1

b̂k(x; θ)∂xk
f(x) + 1

2

d
∑

k,ℓ=1

Ckℓ(x; θ)∂
2
xkxℓ

f(x),
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whereC = σσT and

b̂k(x; θ) = −bk(x; θ) +
1

µθ(x)

d
∑

ℓ=1

∂xℓ
(µθCkl) (x; θ).

For one-dimensional ergodic diffusions,̂Aθ = Aθ. That b̂ = b for a one-
dimensional diffusion follows from (1.15). Obviously, theestimating function
of the form (1.99) withhj(x; θ) = Aθfj(x) is a particular case of (1.105) with
hj(y) = 1.

1.5.3 Approximate martingale estimating functions

For martingale estimating functions of the form (1.30) and (1.40), we can al-
ways, as discussed in Subsection 1.3.3, obtain an explicit approximation to the
optimal weight matrix by means of the expansion (1.47). For diffusion models
where there is no explicit expression for the transition operator, it is tempting
to go on and approximate the conditional momentsπθ

∆(fj(θ))(x) using (1.47),
and thus, quite generally, obtainexplicit approximate martingale estimating
function. Such estimators were the first type of estimators for discretely ob-
served diffusion processes to be studied in the literature.They have been con-
sidered by Dorogovcev (1976), Prakasa Rao (1988), Florens-Zmirou (1989),
Yoshida (1992), Chan et al. (1992), Kloeden et al. (1996), Kessler (1997),
Kelly, Platen & Sørensen (2004), and many othes.

It is, however, important to note that there is a dangerous pitfall when using
these simple approximate martingale estimating functions. They do not satisfy
the condition thatQθ0

(g(θ0)) = 0, and hence the estimators are inconsistent.
To illustrate the problem, consider an estimating functionof the form (1.12)
with

g(x, y; θ) = a(x, θ)[f(y) − f(x) − ∆Aθf(x)], (1.106)

whereAθ is the generator (1.46), i.e., we have replacedπθ
∆f(x) by a first order

expansion. To simplify the exposition, we assume thatθ, a and f are one-
dimensional. We assume that the diffusion is geometricallyα-mixing, that the
other conditions mentioned above for the weak convergence result (1.5) hold,
and that Condition 1.2.1 is satisfied. Then by Theorem 1.2.2,the estimator
obtained using (1.106) converges to the solution,θ̄, of

Qθ0
(g(θ̄)) = 0, (1.107)

where, as usual,θ0 is the true parameter value. We assume that the solution is
unique. Using the expansion (1.47), we find that

Qθ0
(g(θ)) = µθ0

(

a(θ)[πθ0

∆ f − f − ∆Aθf ]
)

= ∆µθ0

(

a(θ)[Aθ0
f −Aθf + 1

2
∆A2

θ0
f ]
)

+O(∆3)
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= (θ0 − θ)∆µθ0
(a(θ0)∂θAθ0

f) + 1

2
∆2µθ0

(

a(θ0)A
2
θ0
f
)

+O(∆|θ − θ0|2) +O(∆2|θ − θ0|) +O(∆3).

If we neglect allO-terms, we obtain that

θ̄
.
= θ0 + ∆ 1

2
µθ0

(

a(θ0)A
2
θ0
f
)

/µθ0
(a(θ0)∂θAθ0

f) ,

which indicates that when∆ is small, the asymptotic bias is of order∆. How-
ever, the bias can be huge when∆ is not sufficiently small as the following
example shows.

Example 1.5.4 Consider again a diffusion with linear drift,

b(x; θ) = −β(x− α).

In this case (1.106) withf(x) = x gives the estimating function

Gn(θ) =

n
∑

i=1

a(X∆(i−1); θ)[X∆i −X∆(i−1) + β
(

X∆(i−1) − α
)

∆],

wherea is 2-dimensional. For a diffusion with linear drift, we found in Exam-
ple 1.3.8 that

F (x;α, β) = xe−β∆ + α(1 − e−β∆).

Using this, we obtain that

Qθ0
(g(θ)) = c1(e

−β0∆ − 1 + β∆) + c2β(α0 − α),

where

c1 =

∫

D

a(x)xµθ0
(dx) − µθ0

(a)α0, c2 = µθ0
(a)∆.

Thus
ᾱ = α0

and

β̄ =
1 − e−β0∆

∆
≤ 1

∆
.

We see that the estimator ofα is consistent, while the estimator ofβ will tend
to be small if∆ is large, whatever the true valueβ0 is. We see that what deter-
mines how wellβ̂ works is the magnitude ofβ0∆, so it is not enough to know
that ∆ is small. Moreover, we cannot usêβ∆ to evaluate whether there is a
problem, because this quantity will always tend to be smaller than one. Ifβ0∆
actually is small, then the bias is proportional to∆ as expected

β̄ = β0 − 1

2
∆β2

0 +O(∆2).

We get an impression of how terribly misled we can be when estimating the
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parameterβ by means of the dangerous estimating function given by (1.106)
from a simulation study in Bibby & Sørensen (1995) for the square root pro-
cess (1.37). The result is given in Table 1.1. For the weight functiona, the
approximately optimal weight function was used, cf. Example 1.3.8. For dif-
ferent values of∆ and the sample size, 500 independent datasets were simu-
lated, and the estimators were calculated for each dataset.The expectation of
the estimator̂β was determined as the average of the simulated estimators. The
true parameter values wereα0 = 10, β0 = 1 andτ0 = 1, and the initial value
wasx0 = 10. When∆ is large, the behaviour of the estimator is bizarre.2

∆ # obs. mean ∆ # obs. mean

0.5 200 0.81 1.5 200 0.52
500 0.80 500 0.52
1000 0.79 1000 0.52

1.0 200 0.65 2.0 200 0.43
500 0.64 500 0.43
1000 0.63 1000 0.43

Table 1.1 Empirical mean of 500 estimates of the parameterβ in the CIR model. The
true parameter values areα0 = 10, β0 = 1, andτ0 = 1.

The asymptotic bias given by (1.107) is small when∆ is sufficiently small,
and the results in the following section on high frequency asymptotics show
that in this asymptotic scenario the approximate martingale estimating func-
tions work well. However, how small∆ needs to be depends on the parameter
values, and without prior knowledge about the parameters, it is safer to use an
exact martingale estimating function, which gives consistent estimators at all
sampling frequencies.

1.6 High-frequency asymptotics

An expression for the asymptotic variance of estimators wasobtained in Theo-
rem 1.3.2 using a low frequency asymptotic scenario, where the time between
observations is fixed. This expression is rather complicated and is not easy to
use for comparing the efficiency of different estimators. Therefore the relative
merits of estimators have often been investigated by simulation studies, and the
general picture has been rather confusing. A much simpler and more manage-
able expression for the asymptotic variance of estimators can be obtained by
considering the high frequency scenario,

n→ ∞, ∆n → 0, n∆n → ∞. (1.108)
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The assumption thatn∆n → ∞ is needed to ensure that parameters in the drift
coefficient can be consistently estimated.

For this type of asymptotics Sørensen (2007) obtained simple conditions for
rate optimality and efficiency for ergodic diffusions, which allow identification
of estimators that work well when the time between observations,∆n, is not
too large. How small∆n needs to be for the high frequency scenario to be
relevant, depends on the speed with which the diffusion moves. For financial
data the speed of reversion is usually slow enough that this type of asymptotics
works for daily, sometimes even weekly observations. A mainresult of the the-
ory in this section is that under weak conditions optimal martingale estimating
functions give rate optimal and efficient estimators.

It is also interesting that the high frequency asymptotics provides a very clear
statement of the important fact that parameters in the diffusion coefficient can
be estimated more exactly than drift parameters when the time between ob-
servations is small. A final advantage of high frequency asymptotics is that it
also gives useful results about the approximate martingaleestimating functions
discussed in Subsection 1.5.3, in situations where they work.

To simplify the exposition, we restrict attention to a one-dimensional diffusion
given by

dXt = b(Xt;α)dt+ σ(Xt;β)dWt, (1.109)

whereθ = (α, β) ∈ Θ ⊆ IR2. The results below can be generalized to mul-
tivariate diffusions and parameters of higher dimension. We consider estimat-
ing functions of the general form (1.3), where the two-dimensional function
g = (g1, g2) for someκ ≥ 2 and for allθ ∈ Θ satisfies

Eθ(g(∆n, X∆ni, X∆n(i−1); θ) |X∆n(i−1)) (1.110)

= ∆κ
nR(∆n, X∆n(i−1); θ).

Martingale estimating functions obviously satisfy (1.110) with R = 0, but
for instance the approximate martingale estimating functions discussed at the
end of the previous section satisfy (1.110) too. Here and later R(∆, y, x; θ)
denotes a function such that|R(∆, y, x; θ)| ≤ F (y, x; θ), whereF is of poly-
nomial growth iny andx uniformly for θ in compact sets. This means that for
any compact subsetK ⊆ Θ, there exist constantsC1, C2, C3 > 0 such that
supθ∈K |F (y, x; θ)| ≤ C1(1 + |x|C2 + |y|C3) for all x andy in the state space
of the diffusion.

The main results in this section are simple conditions on thefunctiong(∆, y, x; θ)
that ensure rate optimality and efficiency of estimators. The condition forrate
optimalityis

Condition 1.6.1
∂yg2(0, x, x; θ) = 0 (1.111)
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for all x ∈ (ℓ, r) and allθ ∈ Θ.

By ∂yg2(0, x, x; θ) we mean∂yg2(0, y, x; θ) evaluated aty = x. This condi-
tion is calledthe Jacobsen condition, because it was first found in the theory of
small∆-optimal estimation developed in Jacobsen (2001), cf. (1.62) in Sub-
section 1.3.4.

The condition forefficiencyis

Condition 1.6.2

∂yg1(0, x, x; θ) = ∂αb(x;α)/σ2(x;β) (1.112)

and
∂2

yg2(0, x, x; θ) = ∂βσ
2(x;β)/σ4(x;β), (1.113)

for all x ∈ (ℓ, r) and allθ ∈ Θ.

Also (1.112) and (1.113) were found as conditions for small∆-optimality in
Jacobsen (2002), cf. (1.61) and (1.63). This is not surprising. The following
theorem provides an interpretation of small∆-optimality in terms of the clas-
sical statistical concepts rate optimality and efficiency.As usual,θ0 = (α0, β0)
denotes the true parameter value.

Theorem 1.6.3Assume that the diffusion is ergodic, thatθ0 ∈ int Θ, and that
the technical regularity Condition 1.6.4 given below holds. Denote the density
function of the invariant probability measure byµθ. Suppose thatg(∆, y, x; θ)
satisfies Condition 1.6.1. Assume, moreover, that the following identifiability
condition is satisfied
∫ r

ℓ

[b(x, α0) − b(x, α)]∂yg1(0, x, x; θ)µθ0
(x)dx 6= 0 whenα 6= α0,

∫ r

ℓ

[σ2(x, β0) − σ2(x, β)]∂2
yg2(0, x, x; θ)µθ0

(x)dx 6= 0 whenβ 6= β0,

and that

S1 =

∫ r

ℓ

∂αb(x;α0)∂yg1(0, x, x; θ0)µθ0
(x)dx 6= 0,

S2 = 1

2

∫ r

ℓ

∂βσ
2(x;β0)∂

2
yg2(0, x, x; θ0)µθ0

(x)dx 6= 0.

Then a consistentGn–estimatorθ̂n = (α̂n, β̂n) exists and is unique in any
compact subset ofΘ containingθ0 with probability approaching one asn →
∞. If, moreover,

∂α∂
2
yg2(0, x, x; θ) = 0, (1.114)
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then for a martingale estimating function, and for more general estimating
functions ifn∆2(κ−1) → 0,

(
√
n∆n(α̂n − α0)

√
n(β̂n − β0)

)

D−→ N2





(

0

0

)

,





W1

S2
11

0

0 W2

S2
22







 (1.115)

where

W1 =

∫ r

ℓ

σ2(x;β0)[∂yg1(0, x, x; θ0)]
2µθ0

(x)dx

W2 = 1

2

∫ r

ℓ

σ4(x;β0)[∂
2
yg2(0, x, x; θ0)]

2µθ0
(x)dx.

Note that the estimator of the diffusion coefficient parameter, β, converges
faster than the estimator of the drift parameter,α, and that the two estima-
tors are asymptotically independent. Gobet (2002) showed,under regularity
conditions, that a discretely sampled diffusion model is locally asymptotically
normal under high frequency asymptotics, and that the optimal rate of conver-
gence for a drift parameter is1/

√
n∆n, while it is 1/

√
n for a parameter in

the diffusion coefficient. Thus under the conditions of Theorem 1.6.3 the es-
timatorsα̂n andβ̂n are rate optimal. More precisely, Condition 1.6.1 implies
rate optimality. If this condition is not satisfied, the estimator of the diffusion
coefficient parameter,β, does not use the information about the diffusion coef-
ficient contained in the quadratic variation and therefore converges at the same
relatively slow rate1/

√
n∆n as estimators ofα, see Sørensen (2007).

Gobet gave the following expression for the Fisher information matrix

I =

(

W1 0

0 W2

)

, (1.116)

where

W1 =

∫ r

ℓ

(∂αb(x;α0))
2

σ2(x;β0)
µθ0

(x)dx, (1.117)

W2 =

∫ r

ℓ

[

∂βσ
2(x;β0)

σ2(x;β0)

]2

µθ0
(x)dx. (1.118)

By comparing the covariance matrix in (1.115) to (1.116), wesee that Con-
dition 1.6.2 implies thatS1 = W1 andS2 = W2, with W1 andW2 given
by (1.117) and (1.118), and that hence the asymptotic covariance matrix of
(α̂n, β̂n) under Condition 1.6.2 equals the inverse of the Fisher information
matrix (1.116). Thus Condition 1.6.2 ensures efficiency of(α̂n, β̂n). Under the
conditions of Theorem 1.6.3 and Condition 1.6.2, we see thatfor a martingale
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estimating function, and more generally ifn∆2(κ−1) → 0,
( √

n∆n(α̂n − α0)
√
n(β̂n − β0)

)

D−→ N2

((

0
0

)

, I−1

)

. (1.119)

Note that condition (1.114) is automatically satisfied under the efficiency Con-
dition 1.6.2.

Proof of Theorem 1.6.3:Only a brief outline the proof is given; for details see
Sørensen (2007). Consider the normalized estimating function

Gn(θ) =
1

n∆n

n
∑

i=1

g(∆n, Xtn
i
, Xtn

i−1
; θ).

First the conditions of Theorem 1.10.2 must be checked. Using Lemma 9 in
Genon-Catalot & Jacod (1993), it can be shown thatGn(θ0) → 0 in Pθ0

-
probability, and that∂θTGn(θ) underPθ0

converges pointwise to a matrix,
which for θ = θ0 is upper triangular and has diagonal elements equal toS1

andS2, and thus is invertible. In order to prove that the convergence is uniform
for θ in a compact setK, we show that the sequence

ζn(·) =
1

n∆n

n
∑

i=1

g(∆n, Xtn
i
, Xtn

i−1
, ·)

converges weakly to the limitγ(·, θ0) in the space,C(K), of continuous func-
tions onK with the supremum norm. Since the limit is non-random, this im-
plies uniform convergence in probability forθ ∈ K. We have proved point-
wise convergence, so the weak convergence result follows because the family
of distributions ofζn(·) is tight. The tightness is shown by checking the condi-
tions in Corollary 14.9 in Kallenberg (1997). Thus the conditions of Theorem
1.10.2 are satisfied, and we conclude the existence of a consistent and even-
tually uniqueGn-estimator. The uniqueness on compact subsets follows from
Theorem 1.10.3 because the identifiability condition in Theorem 1.6.3 implies
(1.160).

The asymptotic normality of the estimators follows from Theorem 1.10.4 with

An =

( √
∆nn 0
0

√
n

)

.

The weak convergence ofAnGn(θ0) follows from a central limit theorem for
martingales, e.g. Corollary 3.1 in Hall & Heyde (1980). The uniform conver-
gence ofAn∂θTGn(θ)A−1

n was proved for three of the entries when the con-
ditions of Theorem 1.10.2 were checked. The result for the last entry is proved
in a similar way using (1.114).

2
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The reader is reminded of the trivial fact that for any non-singular2 × 2 ma-
trix, Mn, the estimating functionsMnGn(θ) andGn(θ) have exactly the same
roots and hence give the same estimator(s). We call themversionsof the same
estimating function. The matrixMn may depend on∆n. The point is that a
version must exist which satisfies the conditions (1.111) – (1.113), but not all
versions of an estimating function satisfy these conditions.

It follows from results in Jacobsen (2002) that to obtain a rate optimal and
efficient estimator from an estimating function of the form (1.41), we need that
N ≥ 2 and that the matrix

D(x) =

(

∂xf1(x; θ) ∂2
xf1(x; θ)

∂xf2(x; θ) ∂2
xf2(x; θ)

)

is invertible forµθ-almost allx. Under these conditions, Sørensen (2007) showed
that Godambe-Heyde optimal martingale estimating functions give rate opti-
mal and efficient estimators. For ad-dimensional diffusion, Jacobsen (2002)
gave the conditionsN ≥ d(d + 3)/2, and that theN × (d + d2)-matrix
D(x) =

(

∂xf(x; θ) ∂2
xf(x; θ)

)

has full rankd(d + 3)/2, which are needed
to ensure the existence of a rate optimal and efficient estimator from an esti-
mating function of the form (1.41).

We conclude this section by an example, but first we state technical conditions
under which the results in this section hold. The assumptions about polynomial
growth are far too strong, but simplify the proofs. These conditions can most
likely be weakened considerably.

Condition 1.6.4 The diffusion is ergodic with invariant probability densityµθ,
and the following conditions hold for allθ ∈ Θ:

(1)
∫ r

ℓ x
kµθ(x)dx <∞ for all k ∈ IN.

(2) suptEθ(|Xt|k) <∞ for all k ∈ IN.

(3) b, σ ∈ Cp,4,1((ℓ, r) × Θ).

(4) There exists a constantCθ such that for allx, y ∈ (ℓ, r)

|b(x;α) − b(y;α)| + |σ(x;β) − σ(y;β)| ≤ Cθ|x− y|
(5) g(∆, y, x; θ) ∈ Cp,2,6,2(IR+× (ℓ, r)2×Θ) and has an expansion in powers

of ∆:

g(∆, y, x; θ) =

g(0, y, x; θ) + ∆g(1)(y, x; θ) + 1

2
∆2g(2)(y, x; θ) + ∆3R(∆, y, x; θ),

where

g(0, y, x; θ) ∈ Cp,6,2((ℓ, r)
2 × Θ),

g(1)(y, x; θ) ∈ Cp,4,2((ℓ, r)
2 × Θ),
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g(2)(y, x; θ) ∈ Cp,2,2((ℓ, r)
2 × Θ).

We defineCp,k1,k2,k3
(IR+×(ℓ, r)2×Θ) as the class of real functionsf(t, y, x; θ)

satisfying that

(i) f(t, y, x; θ) is k1 times continuously differentiable with respectt, k2 times
continuously differentiable with respecty, andk3 times continuously dif-
ferentiable with respectα and with respect toβ

(ii) f and all partial derivatives∂i1
t ∂i2

y ∂i3
α ∂i4

β f , ij = 1, . . . kj , j = 1, 2, i3 +
i4 ≤ k3, are of polynomial growth inx andy uniformly for θ in a compact
set (for fixedt).

The classesCp,k1,k2
((ℓ, r)×Θ) andCp,k1,k2

((ℓ, r)2×Θ) are defined similarly
for functionsf(y; θ) andf(y, x; θ), respectively.

Example 1.6.5 We can now interpret the findings in Example 1.3.11 as fol-
lows. The general quadratic martingale estimating function (1.64) gives rate
optimal estimators in the high frequency asymptotics considered in this sec-
tion. Moreover, the estimators are efficient in three particular cases: the opti-
mal estimating function given in Example 1.3.6 and the approximations (1.28)
and (1.51).

Kessler (1997) considered an approximation to the Gaussianquasi-likelihood
presented in Subsection 1.3.2, where the conditional meanF and the condi-
tional varianceΦ are approximated as follows. The conditional mean is re-
placed by the expansion

rk(∆, x; θ) =

k
∑

i=0

∆i

i!
Ai

θf(x) = x+ ∆

k−1
∑

i=0

∆i

(i+ 1)!
Ai

θb(x;α),

wheref(x) = x, cf. (1.47). For fixedx, y andθ the function(y−rk(∆, x; θ))2

is a polynomial in∆ of order2k. Define gj
x,θ(y), j = 0, 1, · · · , k by

(y − rk(∆, x; θ))2 =

k
∑

j=0

∆jgj
x,θ(y) +O(∆k+1).

For instance, fork = 2

(y − r2(∆, x; θ))
2 =

(y − x)2−2(y − x)b(x;α)∆+
[

(y − x)Aθb(x;α)+b(x;α)2
]

∆2+O(∆3),

from which we can see the expressions forgj
x,θ(y), j = 0, 1, 2. The conditional

variance can be approximated by

Γk(∆, x; θ) =

k
∑

j=0

∆j

k−j
∑

r=0

∆r

r!
Ar

θg
j
x,θ(x).
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In particular,

Γ2(∆, x; θ) = ∆σ2(x;β) + 1

2
∆2
[

Aθσ
2(x;β) − σ2(x;β)∂xb(x;α)

]

.

By inserting these approximations in (1.28), we obtain the approximate mar-
tingale estimating function

H(k)
n (θ) =

n
∑

i=1

∂θrk(∆i, Xti−1
; θ)

Γk+1(∆i, Xti−1
; θ)

[Xti
− rk(∆i, Xti−1

; θ)] (1.120)

+

n
∑

i=1

∂θΓk+1(∆i, Xti−1
; θ)

2Γk+1(∆i, Xti−1
; θ)2

[(Xti
−rk(∆i, Xti−1

; θ))2−Γk+1(∆i, Xti−1
; θ)].

Kessler (1997) (essentially) showed that for ergodic diffusions satisfying Con-
dition 1.6.4 (1) – (4), the estimator obtained fromH(k)

n (θ) satisfies (1.119)
provided thatn∆2k+1 → 0.

2

1.7 High-frequency asymptotics in a fixed time-interval

We will now briefly consider a more extreme type of high-frequence asymp-
totics, where the observation times are restricted to a bounded interval, which,
without loss of generality, we can take to be[0, 1]. Suppose that thed-dimen-
sional diffusionX which solves (1.109) has been observed at the time points
ti = i/n, i = 0, . . . , n. Note that in this sectionW in equation (1.109) is ad-
dimensional standard Wiener process, andσ is ad× d-matrix. We assume that
the matrixC(x;β) = σ(x;β)σ(x;β)T is invertible for allx in the state space,
D, of X . Because the observation times are bounded, the drift parameter,α,
cannot be consistently estimated asn→ ∞, so in the following we consider es-
timation ofβ only, and concentrate on the following Gaussian quasi-likelihood
function:

Qn(β) = (1.121)
n
∑

i=1

[

log detC(Xti−1
;β) + n(Xti

−Xti−1
)TC(Xti−1

;β)−1(Xti
−Xti−1

)
]

.

This is an approximation to a multivariate version of the Gaussian quasi-likeli-
hood in Subsection 1.3.2 withb = 0, where the conditional meanF (x; θ) is
approximated byx, and the conditional covariance matrixΦ is approximated
by n−1C. An estimator is obtained by minimizingQn(β). This estimator can
also be obtained from the approximate martingale estimating function which
we get by differentiatingQn(β) with respect toβ. The drift may be known,
but in general we allow it to depend on an unknown parameterα. We assume
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that θ = (α, β) ∈ A × B = Θ, and we denote the true parameter value by
θ0 = (α0, β0).

Genon-Catalot & Jacod (1993) showed the following theorem under the as-
sumption thatβ ∈ B, whereB is a compact subset ofIRq, which ensures that
a β̂n ∈ B that minimizesQn(β) always exists. The results in the theorem hold
for anyβ̂n that minimizesQn(β).

Theorem 1.7.1Assume that Condition 1.7.2 given below holds. Then the esti-
matorβ̂n is consistent, and provided thatβ0 ∈ intB,

√
n(β̂n − β0)

D−→ Z,

where the distribution ofZ is a normal variance mixture with characteristic
function

s 7→ Eθ0

(

exp
(

− 1

2
sTW (β0)

−1s
))

with W (β) given by (1.122). Conditional onW (β0), the asymptotic distri-
bution of

√
n(β̂n − β0) is a centeredq-dimensional normal distribution with

covariate matrixW (β0)
−1.

We will not prove Theorem 1.7.1 here. Note, however, that to do so we need
the full generality of the Theorems 1.10.2, 1.10.3 and 1.10.4, where the ma-
trix W (θ) (equal toW0(θ) in Theorem 1.10.4) is random. Only if the matrix
B(x;β) defined below does not depend onx, isW (β) non-random, in which
case the limit distribution is simply the centeredq-dimensional normal distri-
bution with covariate matrixW (β0)

−1. A simple example of a non-random
W (β) is whenβ is one-dimensional and aq × q-matrixF (x) exists such that
C(x;β) = βF (x). So for instance for the Ornstein-Uhlenbeck process and the
square-root diffusion (1.37),W (β) is non-random, and the limit distribution is
normal.

Condition 1.7.2 The stochastic differential equation (1.109) has a non-exploding,
unique strong solution fort ∈ [0, 1], and the following conditions hold for all
θ = (α, β) ∈ Θ:

(1) b(x;α) is a continuous function ofx, and the partial derivatives∂2
xσ(x;β),

∂x∂βσ(x;β), ∂2
βσ(x;β) exist and are continuous functions of(x, β) ∈ D×

B.

(2) With Pθ-probability one it holds that for allβ1 6= β, the functionst 7→
C(Xt;β1) andt 7→ C(Xt;β) are not equal.

(3) The randomq × q- matrix

W (β) =

∫ 1

0

B(Xt;β)dt, (1.122)
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where theijth entry ofB(x;β) is given by

B(x;β)ij = 2 tr
(

∂βi
C(x;β)C(x;β)−1∂βj

C(x;β)C(x;β)−1
)

,

is invertiblePθ-almost surely.

The Condition 1.7.2 (2) can be difficult to check because it depends on the path
of the processX . It is implied by the stronger condition that for allβ1 6= β,
C(x;β1) 6= C(x;β) for almost allx ∈ D.

Gobet (2001) showed, under regularity conditions, that forthe high-frequency
asymptotics in a fixed time-interval considered in this section, the diffusion
model is locally asymptotically mixed normal (LAMN) with rate

√
n and con-

ditional variance given byW (β); see e.g. Le Cam & Yang (2000) for the def-
inition of LAMN. Therefore the estimator discussed above isefficient in the
sense of Jeganathan (1982) and Jeganathan (1983).

Example 1.7.3 Consider the one-dimensional model given by

dXt = −(Xt − α)dt+
√

β +X2
t dWt,

whereα > 0 andβ > 0. In this casec(x;β) = β + x2, so

W (β) =

∫ 1

0

2X4
t

(β +X2
t )2

dt,

which is random.

2

1.8 Small-diffusion asymptotics

Under the high-frequency asymptotics with bounded observation times consi-
dered in the previous section, drift parameters could not beconsistently esti-
mated. Here we combine the high-frequency asymptotics withsmall-diffusion
asymptotics to show that if the diffusion coefficient is small, we can find accu-
rate estimators of drift parameters even when we have only observations in a
bounded time-interval, which we again take to be[0, 1].

We consider observations that the time pointsti = i/n, i = 1, . . . , n, of a
d-dimensional diffusion process that solves the stochasticdifferential equation

dXt = b(Xt, α)dt+ εσ(Xt, β)dWt, X0 = x0, (1.123)

with ε > 0 and (α, β) ∈ A × B, whereA ⊆ IRq1 andB ⊆ IRq2 are
convex, compact subsets. It is assumed thatǫ is known, while the parameter
θ = (α, β) ∈ Θ = A×B must be estimated. In (1.123)W is ad-dimensional
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standard Wiener process, andσ is ad × d-matrix. We assume that the matrix
C(x;β) = σ(x;β)σ(x;β)T is invertible for allx in the state space,D, ofX .

In this section the asymptotic scenario is thatn → ∞ and ε → 0 with a
suitable balance between the rate of convergence of the two.Small diffusion
asymptotics, whereε → 0, has been widely studied and has proved fruitful in
applied problems, see e.g. Freidlin & Wentzell (1998). Applications to contin-
gent claim pricing and other financial problems can be found in Takahashi &
Yoshida (2004) and Uchida & Yoshida (2004a), and applications to filtering
problems in Picard (1986) and Picard (1991). The estimationproblem outlined
above was studied by Genon-Catalot (1990), Sørensen & Uchida (2003), and
Gloter & Sørensen (2009). Here we follow Gloter & Sørensen (2009), which
generalize results in the other papers, and consider the asymptotic scenario:

n→ ∞ εn → 0 lim inf
n→∞

εnn
ρ > 0 (1.124)

for someρ > 0. Whenρ is large,ǫ can go faster to zero than whenρ is relatively
small. The value ofρ depends on the quasi-likelihood, as we shall see below.

The solution to (1.123) forǫ = 0 plays a crucial role in the theory. It is obvi-
ously non-random. More generally, we define the flowξt(x, α) as the solution
to the equation

∂tξt(x, α) = b(ξt(x, α), α), ξ0(x, α) = x, (1.125)

for all x ∈ D. The solution to (1.123) forǫ = 0 is given byξt(x0, α). A related
function of central importance is

δ̃n(x, α) = ξ1/n(x, α) − x. (1.126)

Whenε is small,δ̃n(Xti−1
, α) +Xti−1

approximates the conditional expecta-
tion ofXti

givenXti−1
, and can be used to define a Gaussian quasi-likelihood.

However, equation (1.125) does not generally have en explicit solution, so
ξt(x, α) is usually not explicitly available. Therefore we replace it by an ap-
proximationδ(x, α) that satisfies Condition 1.8.2 (5) given below. Using this
approximation, we define a Gaussian quasi-log-likelihood by

Uε,n(θ) =

n
∑

k=1

{

log detCk−1(β) + ε−2nPk(α)TCk−1(β)−1Pk(α)
}

,

(1.127)
where

Pk(α) = Xk/n −X(k−1)/n − δn(X(k−1)/n, α)

Ck(β) = σ(Xk/n, β)σ(Xk/n, β)T .

This is the log-likelihood function that would have been obtained if the con-
ditional distribution ofXti

givenXti−1
were a normal distribution with mean

δn(Xti−1
, α) +Xti−1

and covariance matrix(ti − ti−1)ε
2Ck−1(β).
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Whenξ is explicitly available, a natural choice isδn(x, α) = δ̃n(x, α). Other-
wise, simple useful approximations tõδn(x, α) are given by

δk
n(x, α) =

k
∑

j=1

n−j

j!
(Lα)j−1 (b(·, α))(x),

k = 1, 2 . . . , where the operatorLα is defined by

Lα(f)(x) =

d
∑

i=1

bi(x, α)∂xi
f(x).

By (Lα)j we denotej-fold application of the operatorLα. The approxima-
tion δk

n satisfies Conditions 1.8.2 (5)-(6), whenk − 1/2 ≥ ρ. The first two
approximations are

δ1n(x, α) = n−1b(x, α),

for which the quasi-likelihood studied in Sørensen & Uchida(2003) is ob-
tained, and

δ2n(x, α) = n−1b(x, α) + 1

2
n−2

d
∑

i=1

bi(x, α)∂xi
b(x, α).

Since the parameter spaceΘ is compact, âθε,n = (α̂ε,n, β̂ε,n) that minimizes
the Gaussian quasi- log-likelihoodUε,n(θ) always exists. The results in the
following theorem hold for anŷθε,n that minimizesUε,n(θ). As usual,θ0 =
(α0, β0) denotes the true parameter value.

Theorem 1.8.1Assume that Condition 1.8.2 given below holds, thatθ0 ∈
int Θ, and that the matrix

I(θ0) =

(

I1(θ0) 0
0 I2(θ0)

)

is invertible, where theijth entries of theq1 × q1 matrix I1 and of theq2 × q2
matrixI2 are given by

Ii,j
1 (θ0) =
∫ 1

0

∂αi
b(ξs(x0, α0), α0)

TC−1(ξs(x0, α0), β0)∂αj
b(ξs(x0, α0), α0)ds

and

Ii,j
σ (θ0) = 1

2

∫ 1

0

tr
[

(∂βi
C)C−1(∂βj

C)C−1(ξs(x0, α0), β0)
]

ds.

Then, under the asymptotic scenario (1.124), the estimatorθ̂ε,n is consistent,
and

(

ε−1(α̂ε,n − α0)√
n(β̂ε,n − β0)

)

D−→ N
(

0, I(θ0)
−1
)

.
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We do not prove the theorem here, but a similar result for the estimating func-
tion obtained by differentiation ofUε,n(θ) with respect toθ can be proved
using the asymptotic results in Section 1.10. Note that the estimators of the
drift and diffusion coefficient parameters are asymptotically independent. The
two parameters are not estimated at the same rate. For the approximationδ1n the
conditions below are satisfied ifǫ−1 converges at a rate smaller than or equal
to

√
n, so in this case the rate of convergence ofα̂ε,n is slower than or equal to

that ofβ̂ε,n. For the approximationsδk
n, k ≥ 2, the rate of convergence ofα̂ε,n

can be slower than or faster than that ofβ̂ε,n, dependent on how fastǫ goes to
zero.

The matrixI1 equals the Fisher information matrix when the data is a continu-
ous sample path in[0, 1] andε → 0, cf. Kutoyants (1994), sôαε,n is efficient.
Probablyβ̂ε,n is efficient too, but this cannot be seen in this simple way and
has not yet been proved.

We now give the technical conditions that imply Theorem 1.8.1.

Condition 1.8.2 The following holds for allε > 0:

(1) The stochastic differential equation (1.123) has a unique strong solution for
t ∈ [0, 1] for all θ = (α, β) ∈ Θ.

(2) b(x;α) is a smooth (i.e.C∞) function of(x, α), and a constantc exists such
that for all x, y ∈ D and allα1, α2 ∈ A:

|b(x;α1) − b(y;α2)| ≤ c(|x− y| + |α1 − α2|).
(3) σ(x;β) is continuous, and there exists an open convex subsetU ⊆ D such

thatξt(x0, α0) ∈ U for all t ∈ [0, 1], andσ(x;β) is smooth onU ×B.

(4) Ifα 6= α0, then the two functionst 7→ b(ξt(x0, α0);α) andt 7→ b(ξt(x0, α0);α0)
are not equal. Ifβ 6= β0, then the two functionst 7→ C(ξt(x0, α0);β) and
t 7→ C(ξt(x0, α0);β0) are not equal.

(5) The functionδn(x;α) is smooth, and for any compact subsetK ⊆ D, a
constantc(K) exists such that

sup
x∈K,α∈A

∣

∣

∣
δn(x;α) − δ̃n(x;α)

∣

∣

∣
≤ c(K)εn−3/2.

Similar bounds hold for the first two derivatives ofδn w.r.t.α.

(6) For any compact subsetK ⊆ D × A, there exists a constantc(K), inde-
pendent ofn, such that

|nδn(x;α1) − nδn(x;α2)| ≤ c(K)|α1 − α2|
for all (x, α1), (x, α2) ∈ K and for alln ∈ IN. The same holds for deriva-
tives of any order w.r.t.α of nδn.
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It can be shown thatδn(x, α) = δ̃n(x, α) satisfies Condition 1.8.2 (6), under
Condition 1.8.2 (2). This choice ofδn trivially satisfies Condition 1.8.2 (5).

Example 1.8.3 Consider the two dimensional diffusionX = (Y,R) given by

dYt = (Rt + µ1)dt+ εκ1dW
1
t

dRt = −µ2(Rt −m)dt+ εκ2

√

Rt

(

ρdW 1
t +

√

1 − ρ2dW 2
t

)

,

where(Y0, R0) = (y0, r0) with r0 > 0. This model was used in finance by
Longstaff & Schwartz (1995). In their mode, the second component represents
the short term interest rate, whileY is the logarithm of the price of some asset.
The second component is the square-root diffusion. The parameters areθ =
(α, β), whereα = (µ1, µ2,m) andβ = (κ2

1, κ
2
2, ρ). The parameterρ allows

correlation between the innovation terms of the two coordinates. The diffusion
process(Y,R) satisfies Condition 1.8.2 (1) – (3), and (4) is holds ifr0 6= m0.
The equation (1.125) is linear and has the solution

ξt(y, r, µ1, µ2,m) =

(

y + (µ1 +m)t+ µ−1
2 (r −m)(1 − e−µ2t)

m+ (r −m)e−µ2t

)

.

Therefore we can chooseδn(x, α) = δ̃n(x, α), which satisfies Condition 1.8.2
(5) – (6). The matricI(θ0) is invertible whenr0 6= m0 and is given by

I1(θ) = (1−ρ2)−1









κ−2
1 0

0 −m(µ2+log(q))+(m−r0)(e−µ2−1))
κ2
2
µ2

−µ1+log(q)
κ2
2

0 −µ1+log(q)
κ2
2

−µ2 log(q)
mκ2

2

,









,

whereq = r0/(r0 +m(eµ2 − 1)), and

I2(θ) =









2κ4
1 2ρ2κ2

1κ
2
2 ρ(1 − ρ2)κ2

1

ρ2κ2
1κ

2
2 2κ4

2 ρ(1 − ρ2)κ2
2

ρ(1 − ρ2)κ2
1 ρ(1 − ρ2)κ2

2 (1 − ρ2)2









.

Note that the asymptotic variance of the estimators of the drift parameter goes
to zero, as the correlation parameterρ goes to one.

2

Several papers have studied other aspects of small diffusion asymptotics for
estimators of parameters in diffusion models. First estimation of the parameter
α based on a continuously observed sample path of the diffusion process was
considered by Kutoyants (1994). Semiparametric estimation for the same type
of data was studied later by Kutoyants (1998) and Iacus & Kutoyants (2001).
Information criteria were investigated by Uchida & Yoshida(2004b). Uchida
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(2004) and Uchida (2008) studied approximations to martingale estimating
functions for discretely sampled diffusions under small diffusion asymptotics.
Martingale estimating functions were studied by Sørensen (2000b) under an
extreme type of small diffusion asymptotics wheren is fixed.

1.9 Non-Markovian models

In this section we consider estimating functions that can beused when the ob-
served process is not a Markov process. In this situation, itis usually not easy to
find a tractable martingale estimating function. For instance a simple estimat-
ing function of the form (1.41) is not a martingale. To obtaina martingale, the
conditional expectation givenX(i−1)∆ in (1.41) must be replaced by the condi-
tional expectation given all previous observations, whichcan only very rarely
be found explicitly, and which it is rather hopeless to find bysimulation. In-
stead we will consider a generalization of the martingale estimating functions,
called the prediction-based estimating functions, which can be interpreted as
approximations to martingale estimating functions.

To clarify our thoughts, we will consider a concrete model type. Let theD-
dimensional processX be the stationary solution to the stochastic differential
equation

dXt = b(Xt; θ)dt+ σ(Xt; θ)dWt, (1.128)

whereb is D-dimensional,σ is aD × D-matrix, andW a D-dimensional
standard Wiener process. As usual the parameterθ varies in a subsetΘ of IRp.
However, we do not observedX directly. What we observe is

Yi = k(Xti
) + Zi, i = 1, . . . , n, (1.129)

wherek mapsIRD into IRd (d < D), and{Zi} is a sequence of independent
identically distributed measurement errors with mean zero. We assume that the
measurement errors are independent of the processX . Obviously, the discrete
time process{Yi} is not a Markov-process.

1.9.1 Prediction-based estimating functions

In the following we will outline the method of prediction-based estimating
functions introduced in Sørensen (2000a). Assume thatfj , j = 1, . . . , N , are
functions that mapIRs+1×Θ into IR such thatEθ(fj(Ys+1, . . . , Y1; θ)

2) <∞
for all θ ∈ Θ. LetPθ

i−1,j be a closed linear subset of theL2-space,Lθ
i−1, of all

functions ofY1, . . . , Yi−1 with finite variance underPθ. The setPθ
i−1,j can be

interpreted as a set of predictors offj(Yi, . . . , Yi−s; θ) based onY1, . . . , Yi−1.
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A prediction-based estimating function has the form

Gn(θ) =

n
∑

i=s+1

N
∑

j=1

Π
(i−1)
j (θ)

[

fj(Yi, . . . , Yi−s; θ) − π̆
(i−1)
j (θ)

]

,

whereΠ
(i−1)
j (θ) is ap-dimensional vector, the coordinates of which belong to

Pθ
i−1,j , andπ̆(i−1)

j (θ) is the minimum mean square error predictor inPθ
i−1,j of

fj(Yi, . . . , Yi−s; θ) underPθ. Whens = 0 andPθ
i−1,j is the set of all functions

of Y1, . . . , Yi−1 with finite variance, then̆π(i−1)
j (θ) is the conditional expec-

tation underPθ of fj(Yi; θ) given Y1, . . . , Yi−1, so in this case we obtain a
martingale estimating function. Thus for a Markov process,a martingale es-
timating function of the form (1.41) is a particular case of aprediction-based
estimating function.

The minimum mean square error predictor inPθ
i−1,j of fj(Yi, . . . , Yi−s; θ) is

the projection inLθ
i−1 of fj(Yi, . . . , Yi−s; θ) onto the subspacePi−1,j . There-

fore π̆(i−1)
j (θ) satisfies the normal equation

Eθ

(

π
(i−1)
j

[

fj(Yi, . . . , Yi−s; θ) − π̆
(i−1)
j (θ)

])

= 0 (1.130)

for all π(i−1)
j ∈ Pθ

i−1,j . This implies that a prediction-based estimating func-
tion satisfies that

Eθ (Gn(θ)) = 0. (1.131)

We can interpret the minimum mean square error predictor as an approxima-
tion to the conditional expectation offj(Yi, . . . , Yi−s; θ) givenX1, . . . , Xi−1,
which is the projection offj(Yi, . . . , Yi−s; θ) onto the subspace of all functions
of X1, . . . , Xi−1 with finite variance.

To obtain estimators that can relatively easily be calculated in practice, we will
from now on restrict attention to predictor sets,Pθ

i−1,j , that are finite dimen-
sional. Lethjk, j = 1, . . . , N, k = 0, . . . , qj be functions fromIRr into IR
(r ≥ s), and define (fori ≥ r + 1) random variables by

Z
(i−1)
jk = hjk(Yi−1, Yi−2, . . . , Yi−r).

We assume thatEθ((Z
(i−1)
jk )2) < ∞ for all θ ∈ Θ, and letPi−1,j denote the

subspace spanned byZ(i−1)
j0 , . . . , Z

(i−1)
jqj

. We sethj0 = 1 and make the natural
assumption that the functionshj0, . . . , hjqj

are linearly independent. We write

the elements ofPi−1,j in the formaTZ
(i−1)
j , whereaT = (a0, . . . , aqj

) and

Z
(i−1)
j =

(

Z
(i−1)
j0 , . . . , Z

(i−1)
jqj

)T

are(qj + 1)-dimensional vectors. With this specification of the predictors, the
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estimating function can only include terms withi ≥ r + 1:

Gn(θ) =

n
∑

i=r+1

N
∑

j=1

Π
(i−1)
j (θ)

[

fj(Yi, . . . , Yi−s; θ) − π̆
(i−1)
j (θ)

]

. (1.132)

It is well-known that the minimum mean square error predictor, π̆(i−1)
j (θ), is

found by solving the normal equations (1.130). DefineCj(θ) as the covariance

matrix of (Z(r)
j1 , . . . , Z

(r)
jqj

)T underPθ, andbj(θ) as the vector for which the
ith coordinate is

bj(θ)i = Covθ(Z
(r)
ji , fj(Yr+1, . . . , Yr+1−s; θ)), (1.133)

i = 1, . . . , qj . Then we have

π̆
(i−1)
j (θ) = ăj(θ)

TZ
(i−1)
j , (1.134)

whereăj(θ)
T = (ăj0(θ), ăj∗(θ)T ) with

ăj∗(θ) = Cj(θ)
−1bj(θ) (1.135)

and

ăj0(θ) = Eθ(fj(Ys+1, . . . , Y1; θ)) −
qj
∑

k=1

ăjk(θ)Eθ(Z
(r)
jk ). (1.136)

ThatCj(θ) is invertible follows from the assumption that the functions hjk

are linearly independent. Iffj(Yi, . . . , Yi−s; θ) has mean zero underPθ for all
θ ∈ Θ, we need not include a constant in the space of predictors, i.e. we need
only the space spanned byZ(i−1)

j1 , . . . , Z
(i−1)
jqj

.

Example 1.9.1 An important particular case whend = 1 is fj(y) = yj , j =

1, . . . , N . For eachi = r + 1, . . . , n andj = 1, . . . , N , we let{Z(i−1)
jk | k =

0, . . . , qj} be a subset of{Y κ
i−ℓ | ℓ = 1, . . . , r, κ = 0, . . . , j}, whereZ(i−1)

j0 is
always equal to 1. Here we need to assume that Eθ(Y

2N
i ) < ∞ for all θ ∈ Θ.

To find π̆(i−1)
j (θ), j = 1, . . . , N , by means of (1.135) and (1.136), we must

calculate moments of the form

Eθ(Y
κ
1 Y

j
k ), 0 ≤ κ ≤ j ≤ N, k = 1, . . . , r. (1.137)

To avoid the matrix inversion in (1.135), the vector of coefficientsăj can be
found by means of theN -dimensional Durbin-Levinson algorithm applied to
the process{(Yi, Y

2
i , . . . , Y

N
i )}i∈IN, see Brockwell & Davis (1991). Suppose

the diffusion processX is exponentiallyρ-mixing, see Doukhan (1994) for a
definition. This is for instance the case for a Pearson diffusion (see Subsection
1.3.7) or for a one-dimensional diffusion that satisfies Condition 1.5.1. Then
the observed processY inherits this property, which implies that constants
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K > 0 andλ > 0 exist such that|Covθ(Y
j
1 , Y

j
k )| ≤ Ke−λk. Therefore a

small value ofr can usually be used.

In many situations it is reasonable to chooseN = 2 with the following simple
predictor sets whereq1 = r andq2 = 2r. The predictor sets are generated by
Z

(i−1)
j0 = 1, Z(i−1)

jk = Yi−k, k = 1, . . . , r, j = 1, 2 andZ(i−1)
2k = Y 2

i+r−k,
k = r + 1, . . . , 2r. In this case the minimum mean square error predictor of
Yi can be found using the Durbin-Levinson algorithm for real processes, while
the predictor ofY 2

i can be found by applying the two-dimensional Durbin-
Levinson algorithm to the process(Yi, Y

2
i ). Including predictors in the form of

lagged termsYi−kYi−k−l for a number of lagsl’s might also be of relevance.

We illustrate the use of the Durbin-Levinson algorithm in the simplest possible
case, whereN = 1, f(x) = x, Z(i−1)

0 = 1, Z(i−1)
k = Yi−k, k = 1, . . . , r.

We suppress the superfluousj in the notation. LetKℓ(θ) denote the covari-
ance betweenY1 andYℓ+1 underPθ, and defineφ1,1(θ)) = K1(θ)/K0(θ) and
v0(θ) = K0(θ). Then the Durbin-Levinson algorithm works as follows

φℓ,ℓ(θ) =

(

Kℓ(θ) −
ℓ−1
∑

k=1

φℓ−1,k(θ)Kℓ−k(θ)

)

vℓ−1(θ)
−1,







φℓ,1(θ)
...

φℓ,ℓ−1(θ))






=







φℓ−1,1(θ)
...

φℓ−1,ℓ−1(θ))






− φℓ,ℓ(θ)







φℓ−1,ℓ−1(θ)
...

φℓ−1,1(θ))







and
vℓ(θ) = vℓ−1(θ)

(

1 − φℓ,ℓ(θ)
2
)

.

The algorithm is run forℓ = 2, . . . , r. Then

ă∗(θ) = (φr,1(θ), . . . , φr,r(θ)),

while ă0 can be found from (1.136), which here simplifies to

ă0(θ) = Eθ(Y1)

(

1 −
r
∑

k=1

φr,k(θ)

)

.

The quantityvr(θ) is the prediction error Eθ
(

(Yi − π̆(i−1))2
)

. Note that if we
want to include a further lagged value ofY in the predictor, we just iterate the
algorithm once more.

2

We will now find the optimal prediction-based estimating function of the form
(1.132) in the sense explained in Section 1.11. First we express the estimating
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function in a more compact way. Theℓth coordinate of the vectorΠ(i−1)
j (θ)

can be written as

π
(i−1)
ℓ,j (θ) =

qj
∑

k=0

aℓjk(θ)Z
(i−1)
jk , ℓ = 1, . . . , p.

With this notation, (1.132) can be written in the form

Gn(θ) = A(θ)
n
∑

i=r+1

H(i)(θ), (1.138)

where

A(θ) =







a110(θ) · · · a11q1
(θ) · · · · · · a1N0(θ) · · · a1NqN

(θ)
...

...
...

...
ap10(θ) · · · ap1q1

(θ) · · · · · · apN0(θ) · · · apNqN
(θ)






,

and
H(i)(θ) = Z(i−1)

(

F (Yi, . . . , Yi−s; θ) − π̆(i−1)(θ)
)

, (1.139)

with F = (f1, . . . , fN)T , π̆(i−1)(θ) = (π̆
(i−1)
1 (θ), . . . , π̆

(i−1)
N (θ))T , and

Z(i−1) =

















Z
(i−1)
1 0q1

· · · 0q1

0q2
Z

(i−1)
2 · · · 0q2

...
...

...

0qN
0qN

· · · Z
(i−1)
N

















. (1.140)

Here0qj
denotes theqj-dimensional zero-vector. When we have chosen the

functionsfj and the predictor spaces, the quantitiesH(i)(θ) are completely
determined, whereas we are free to choose the matrixA(θ) in an optimal way,
i.e. such that the asymptotic variance of the estimators is minimized.

We will find en explicit expression for the optimal weight matrix, A∗(θ), under
the following condition, in which we need one further definition:

ă(θ) = (ă10(θ), . . . , ă1q1
(θ), . . . , ăN0(θ), . . . ăNqN

(θ))T , (1.141)

where the quantities̆ajks define the minimum mean square error predictors, cf.
(1.134).

Condition 1.9.2
(1) The functionF (y1, . . . , ys+1; θ) and the coordinates of̆a(θ) are continu-
ously differentiable functions ofθ.

(2) p ≤ p̄ = N + q1 + · · · + qN .



NON-MARKOVIAN MODELS 75

(3) Thep̄× p-matrix∂θT ᾰ(θ) has rankp.

(4) The functions1, f1, . . . , fN are linearly independent (for fixedθ) on the
support of the conditional distribution of(Yi, . . . , Yi−s) given(Xi−1, . . . , Xi−r).

(5) Thep× p-matrix

U(θ)T = Eθ

(

Z(i−1)∂θTF (Yi, . . . , Yi−s; θ)
)

(1.142)

exists.

If we denote the optimal prediction-based estimating function byG∗
n(θ), then

Eθ

(

Gn(θ)G∗
n(θ)T

)

= (n− r)A(θ)M̄n(θ)A∗
n(θ)T ,

where

M̄n(θ) = Eθ

(

H(r+1)(θ)H(r+1)(θ)T
)

(1.143)

+

n−r−1
∑

k=1

(n− r − k)

(n− r)

{

Eθ

(

H(r+1)(θ)H(r+1+k)(θ)T
)

+ Eθ

(

H(r+1+k)(θ)H(r+1)(θ)T
)}

,

which is the covariance matrix of
∑n

i=r+1H
(i)(θ)/

√
n− r. The sensitivity

function (1.166) is given by

SGn
(θ) = (n− r)A(θ)

[

U(θ)T −D(θ)∂θT ă(θ)
]

,

whereD(θ) is thep̄× p̄-matrix

D(θ) = Eθ

(

Z(i−1)(Z(i−1))T
)

. (1.144)

It follows from Theorem 1.11.1 thatA∗
n(θ) is optimal if Eθ

(

Gn(θ)G∗
n(θ)T

)

=
SGn

(θ). Under Condition 1.9.2 (4) the matrix̄Mn(θ) is invertible, see Sørensen
(2000a), so it follows that

A∗
n(θ) = (U(θ) − ∂θă(θ)

TD(θ))M̄n(θ)−1, (1.145)

so that the estimating function

G∗
n(θ) = A∗

n(θ)

n
∑

i=s+1

Z(i−1)
(

F (Yi, . . . , Yi−s; θ) − π̆(i−1)(θ)
)

, (1.146)

is Godambe optimal. When the functionF does not depend onθ, the expres-
sion forA∗

n(θ) simplifies slightly as in this caseU(θ) = 0.

Example 1.9.3 Consider again the type of prediction-based estimating func-
tion discussed in Example 1.9.1. In order to calculate (1.143), we need mixed
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moments of the form

Eθ[Y
k1

t1
Y k2

t2
Y k3

t3
Y k4

t4
], (1.147)

for t1 ≤ t2 ≤ t3 ≤ t4 andk1 + k2 + k3 + k4 ≤ 4N , whereki, i = 1, . . . , 4
are non-negative integers.

2

1.9.2 Asymptotics

A prediction-based estimating function of the form (1.138)gives consistent
and asymptotically normal estimators under the following condition, whereθ0
is the true parameter value.

Condition 1.9.4
(1) The diffusion processX is stationary and geometricallyα-mixing.

(2) There exists aδ > 0 such that

Eθ0

(

∣

∣

∣Z
(r)
jk fj(Xr+1, . . . , Xr+1−s; θ0)

∣

∣

∣

2+δ
)

<∞

and

Eθ0

(

∣

∣

∣Z
(r)
jk Z

(r)
jℓ

∣

∣

∣

2+δ
)

<∞,

for j = 1, . . . , N, k, ℓ = 0, . . . qj .

(3) The functionF (y1, . . . , ys+1; θ) and the components ofA(θ) and ă(θ),
given by (1.141) are continuously differentiable functions ofθ.

(4) The matrixW = A(θ0)(U(θ0) − D(θ0)∂θT ă(θ0)) has full rankp. The
matricesU(θ) andD(θ) are given by(1.142)and(1.144).

(5)

A(θ)
(

Eθ0

(

Z(i−1)F (Yi, . . . , Yi−s; θ)
)

−D(θ0)∂θT ă(θ))
)

6= 0

for all θ 6= θ0.

Condition 1.9.4 (1) and (2) ensures that the central limit theorem (1.5) holds
and thatM̄n(θ0) →M(θ0), where

M(θ) = Eθ

(

H(r+1)(θ)H(r+1)(θ)T
)
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+

∞
∑

k=1

{

Eθ

(

H(r+1)(θ)H(r+1+k)(θ)T
)

+ Eθ

(

H(r+1+k)(θ)H(r+1)(θ)T
)}

.

The asymptotic covariance matrix in (1.5) isV (θ) = A(θ)M(θ)A(θ)T . The
concept of geometricα-mixing was explained in Subsection 1.5.1, where also
conditions for geometricα-mixing were discussed. It is not difficult to see that
if the basic diffusion processX is geometricallyα-mixing, then the observed
processY inherits this property. We only need to check Condition 1.2.1 with
θ̄ = θ0 to obtain asymptotic results for prediction-based estimators. The con-
dition (1.6) is satisfied because of (1.131). It is easy to seethat Condition 1.9.4
(3) and (4) implies thatθ 7→ g(y1, . . . , yr+1) is continuously differentiable
and thatg as well as∂θT g are locally dominated integrable underPθ0

. Finally,
for a prediction-based estimating function, the condition(1.9) is identical to
Condition 1.9.4 (5). Therefore it follows from Theorem 1.2.2 that a consistent
Gn–estimator̂θn exists and is the uniqueGn–estimator on any bounded subset
of Θ containingθ0 with probability approaching one asn→ ∞. The estimator
satisfies that

√
n(θ̂n − θ0)

D−→ Np

(

0,W−1A(θ0)M(θ0)A(θ0)
TWT −1

)

asn→ ∞.

1.9.3 Measurement errors

Suppose a one-dimensional diffusion has been observed withmeasurement er-
rors so that the data are

Yi = Xti
+ Zi, i = 1, . . . , n,

whereX solves (1.11), and the measurement errorsZi are independent and
identically distributed and independent ofX . Since the observed process(Yi)
is not a Markov process, it is usually not possible to find a feasible martingale
estimating function. Instead we can use a prediction-basedestimating function
of the type considered Example 1.9.1. To find the minimum meansquare error
predictor, we must find mixed moments of the form (1.137). By the binomial
formula,

Eθ(Y
k1

1 Y k2

2 ) = Eθ

(

(Xt1 + Z1)
k1(Xt2 + Z2)

k2
)

=

k1
∑

i1=0

k2
∑

i2=0

(

k1

i1

)(

k2

i2

)

Eθ(X
i1
t1
X i2

t2
)Eθ(Z

k1−i1
1 )Eθ(Z

k2−i2
2 ).

Note that the distribution of the measurement errorZi can depend on com-
ponents of the unknown parameterθ. We need to find the mixed moments
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Eθ(X
i1
t1
X i2

t2
), (t1 < t2). If expressions for the moments and conditional mo-

ments ofXt are available, these mixed moments can be found explicitly.As
an example, consider the Pearson diffusions discussed in Subsection 1.3.7, for
which the conditional moments are given by (1.86). Thus

Eθ(X
i1
t1X

i2
t2 ) = Eθ(X

i1
t1 Eθ(X

i2
t2 |Xt1 )) (1.148)

=

i2
∑

k=0

(

i2
∑

ℓ=0

qi2,k,ℓe
−λℓ(t2−t1)

)

Eθ(X
i1+k
t1 ),

where Eθ(X
i1+k
t1 ) can be found by (1.87), provided, of course, that it exists.

For stationary, ergodic one-dimensional diffusions, the polynomial moments
can usually be found because we have an explicit expression for the marginal
density functions, at least up to a multiplicative constant, cf. (1.15). In order to
find the optimal prediction-based estimating functions of the form considered
in Example 1.9.1, we must find the mixed moments of the form (1.147), which
can be calculated in a similar way.

1.9.4 Integrated diffusions and hypoelliptic stochastic differential equations

Sometimes a diffusion process,X , cannot be observed directly, but data of the
form

Yi =
1

∆

∫ i∆

(i−1)∆

Xs ds, i = 1, . . . , n, (1.149)

are available for some fixed∆. Such observations might be obtained when
the processX is observed after passage through an electronic filter. Another
example is provided by ice-core records. The isotope ratio18O/16O in the
ice is a proxy for paleo-temperatures. The average isotope ratio is measured
in pieces of ice, each of which represent a time interval. Thevariation of the
paleo-temperature can be modelled by a stochastic differential equation, and
hence the ice-core data can be modelled as an integrated diffusion process, see
Ditlevsen, Ditlevsen & Andersen (2002). Estimation based on this type of data
was considered by Gloter (2000), Bollerslev & Wooldridge (1992), Ditlevsen
& Sørensen (2004), Gloter (2006), and Baltazar-Larios & Sørensen (2009).
Non-parametric inference was studied in Comte, Genon-Catalot & Rozenholc
(2009).

The model for data of the type (1.149) is a particular case of (1.128) with

d

(

X1,t

X2,t

)

=

(

b(X1,t; θ)
X1,t

)

dt+

(

σ(X1,t; θ)
0

)

dWt,

with X2,0 = 0, whereW and the two components are one-dimensional, and
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only the second coordinate,X2,t, is observed. The second coordinate is not sta-
tionary, but if the first coordinate is a stationary process,then the observed in-
crementsYi = (X2,i∆−X2,(i−1)∆)/∆ form a stationary sequence. A stochas-
tic differential equation of the form (1.150) is calledhypoelliptic. Hypoelliptic
stochastic differential equations are, for instance, usedto model molecular dy-
namics, see e.g. Pokern, Stuart & Wiberg (2009). The unobserved component,
X1,t, can more generally be multivariate and have coefficients that depend on
the observed componentX2,t too. The observed smooth component can also
be multivariate. The drift is typically minus the derivative of a potential. A
simple example is the stochastic harmonic oscillator

dX1,t = −(β1X1,t + β2X2,t) dt+ γdWt

dX2,t = X1,t dt,

β1, β2, γ > 0. Observations of the form (1.149), or more generally discrete
time observations of the smooth components of a hypoelliptic stochastic differ-
ential equation, do not form a Markov process, so usually a feasible martingale
estimating function is not available, but prediction-based estimating functions
can be used instead. For instance, the stochastic harmonic oscillator above is
a Gaussian process. Therefore all the mixed moments needed in the optimal
prediction-based estimating function of the form considered in Example 1.9.1
can be found explicitly.

In the following we will again denote the basic diffusion byX (rather thanX1),
and assume that the data are given by (1.149). Suppose that4N ’th moment of
Xt is finite. The moments (1.137) and (1.147) can be calculated by

E
[

Y k1

1 Y k2

t1 Y
k3

t2 Y
k4

t3

]

=
∫

AE[Xv1
· · ·Xvk1

Xu1
· · ·Xuk2

Xs1
· · ·Xsk3

Xr1
· · ·Xrk4

] dt

∆k1+k2+k3+k4

where1 ≤ t1 ≤ t2 ≤ t3 , A = [0 , ∆]k1 × [(t1 − 1)∆ , t1∆]k2 × [(t2 −
1)∆ , t2∆]k3×[(t3−1)∆ , t3∆]k4 , anddt = drk4

· · ·dr1 dsk3
· · · ds1 duk2

· · ·
du1 dvk1

· · ·dv1. The domain of integration can be reduced considerably by
symmetry arguments, but the point is that we need to calculate mixed moments
of the typeE(Xκ1

t1 · · ·Xκk

tk
), wheret1 < · · · < tk. For the Pearson diffusions

discussed in Subsection 1.3.7, these mixed moments can be calculated by a
simple iterative formula obtained from (1.86) and (1.87), as explained in the
previous subsection. Moreover, for the Pearson diffusions, E(Xκ1

t1 · · ·Xκk

tk
)

depends ont1, . . . , tk through sums and products of exponential functions, cf.
(1.86) and (1.148). Therefore the integral above can be explicitly calculated,
and thus explicit optimal estimating functions of the type considered in Exam-
ple 1.9.1 are available for observations of integrated Pearson diffusions.

Example 1.9.5 Consider observation of an integrated square root process (1.37)
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and a prediction-based estimating function withf1(x) = x andf2(x) = x2

with predictors given byπ(i−1)
1 = a1,0 + a1,1Yi−1 andπ(i−1)

2 = a2,0. Then the
minimum mean square error predictors are

π̆
(i−1)
1 (Yi−1; θ) = µ (1 − ă(β)) + ă(β)Yi−1,

π̆
(i−1)
2 (θ) = α2 + ατ2β−3∆−2(e−β∆ − 1 + β∆)

with

ă(β) =
(1 − e−β∆)2

2(β∆ − 1 + e−β∆)
.

The optimal prediction-based estimating function is

n
∑

i=1





1
Yi−1

0



 [Yi − π̄
(i−1)
1 (Yi−1; θ)] +

n
∑

i=1





0
0
1



 [Y 2
i − π̄

(i−1)
2 (θ)],

from which we obtain the estimators

α̂ =
1

n

n
∑

i=1

Yi +
a(β̂)Yn − Y1

(n− 1)(1 − a(β̂))

n
∑

i=2

Yi−1Yi = α̂(1 − a(β̂))

n
∑

i=2

Yi−1 + a(β̂)

n
∑

i=2

Y 2
i−1

σ̂2 =
β̂3∆2

∑n
i=2

(

Y 2
i − α̂2

)

(n− 1)α̂(e−β̂∆ − 1 + β̂∆)
.

The estimators are explicit apart from̂β, which can easily be found numerically
by solving a non-linear equation in one variable. For details, see Ditlevsen &
Sørensen (2004).

2

1.9.5 Sums of diffusions

An autocorrelation function of the form

ρ(t) = φ1 exp(−β1t) + . . .+ φD exp(−βDt), (1.150)

where
∑D

i=1 φi = 1 andφi, βi > 0, is found in many observed time series.
Examples are financial time series, see Barndorff-Nielsen &Shephard (2001),
and turbulence, see Barndorff-Nielsen, Jensen & Sørensen (1990) and Bibby,
Skovgaard & Sørensen (2005).

A simple model with autocorrelation function of the form (1.150) is the sum
of diffusions

Yt = X1,t + . . .+XD,t, (1.151)
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where theD diffusions

dXi,t = −βi(Xi,t − αi) + σi(Xi,t)dWi,t, i = 1, . . . , D,

are independent. In this case

φi =
Var(Xi,t)

Var(X1,t) + · · · + Var(XD,t)
.

Sums of diffusions of this type with a pre-specified marginaldistribution of
Y were considered by Bibby & Sørensen (2003) and Bibby, Skovgaard &
Sørensen (2005), while Forman & Sørensen (2008) studied sums of Pearson
diffusions. The same type of autocorrelation function is obtained for sums
of independent Ornstein-Uhlenbeck processes driven by Lévy processes. This
class of models was introduced and studied in Barndorff-Nielsen, Jensen &
Sørensen (1998).

Example 1.9.6 Sum of square root processes.If σ2
i (x) = 2βibx andαi = κib

for someb > 0, then the stationary distribution ofYt is a gamma-distribution
with shape parameterκ1 + · · ·+ κD and scale parameterb. The weights in the
autocorrelation function areφi = κi/(κ1 + · · · + κD).

2

For sums of the Pearson diffusions presented in Subsection 1.3.7, we have ex-
plicit formulae that allow calculation of (1.137) and (1.147), provided these
mixed moments exists. Thus for sums of Pearson diffusions wehave explicit
optimal prediction-based estimating functions of the typeconsidered in Exam-
ple 1.9.1. By the multinomial formula,

E(Y κ
t1
Y ν

t2
) =

∑∑

(

κ

κ1, . . . , κD

)(

ν

ν1, . . . , νD

)

E(Xκ1

1,t1
Xν1

1,t2
) . . . E(XκD

D,t1
XνD

D,t2
)

where
(

κ

κ1, . . . , κD

)

=
κ!

κ1! · · ·κD!

is the multinomial coefficient, and where the first sum is over0 ≤ κ1, . . . , κD

such thatκ1 + . . . κD = κ, and the second sum is analogous for theνis. Higher
order mixed moments of the form (1.147) can be found by a similar formula
with four sums and four multinomial coefficients. Such formulae may appear
daunting, but are easy to program. For a Pearson diffusion, mixed moments
of the formE(Xκ1

t1 · · ·Xκk

tk
) can be calculated by a simple iterative formula

obtained from (1.86) and (1.87), as explained in Subsection1.9.3.

Example 1.9.7 Sum of two skewt-diffusions.If

σ2
i (x) = 2βi(νi − 1)−1{x2 + 2ρ

√
νix+ (1 + ρ2)ν}, i = 1, 2,
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the stationary distribution ofXi,t is a skewt-distribution,

Var(Y ) = (1 + ρ2)

(

ν1
ν1 − 2

+
ν2

ν2 − 2

)

,

and in (1.150) the weights are given byφi = νi(νi − 2)−1/{ν1(ν1 − 2)−1 +
ν2(ν2 − 2)−1}. To simplify the exposition we assume that the correlation pa-
rametersβ1, β2, φ1, andφ2 are known or have been estimated in advance, for
instance by fitting (1.150) withD = 2 to the empirical autocorrelation func-
tion. We will find the optimal estimating function in the simple case where pre-
dictions ofY 2

i are made based on predictors of the formπ(i−1) = a0 +a1Yi−1.
The estimating equations take the form

n
∑

i=2

[

Y 2
i − σ2 − ζYi−1

Yi−1Y
2
i − σ2Yi−1 − ζY 2

i−1

]

= 0, (1.152)

with

σ2 = Var(Yi) = (1 + ρ2)

{

ν1
ν1 − 2

+
ν2

ν2 − 2

}

,

ζ =
Cov(Yi−1, Y

2
i )

Var(Yi)
= 4ρ

{ √
ν1

ν1 − 3
φ1e

−β1∆ +

√
ν2

ν2 − 3
φ2e

−β2∆

}

.

Solving equation (1.152) forζ andσ2 we get

ζ̂ =
1

n−1

∑n
i=2 Yi−1Y

2
i − ( 1

n−1

∑n
i=2 Yi−1)(

1
n−1

∑n
i=2 Y

2
i )

1
n−1

∑n
i=2 Y

2
i−1 − ( 1

n−1

∑n
i=2 Yi−1)2

,

σ̂2 = 1

n−1

∑

n

i=2
Y 2

i
+ ζ̂ 1

n−1

∑

n

i=2
Yi−1.

In order to estimateρ we restateζ as

ζ =
√

32(1 + ρ2) · ρ ·
{

√

9(1 + ρ2) − φ1σ2

3(1 + ρ2) − φ1σ2
φ1e

−β1∆

+

√

9(1 + ρ2) − φ2σ2

3(1 + ρ2) − φ2σ2
φ2e

−β2∆

}

and insertσ̂2 for σ2. Thus, we get a one-dimensional estimating equation,
ζ(β, φ, σ̂2, ρ) = ζ̂, which can be solved numerically. Finally by inverting
φi = 1+ρ2

σ2
νi

νi−2 , we find the estimateŝνi = 2φiσ̂
2

φiσ̂2−(1+ρ̂2) , i = 1, 2.

2

A more complex model is obtained if the observations are integrals of the pro-
cessY given by (1.151). In this case the data are

Zi =
1

∆

∫ i∆

(i−1)∆

Ys ds =
1

∆

(∫ i∆

(i−1)∆

X1,sds+ · · · +
∫ i∆

(i−1)∆

XD,sds

)

, (1.153)
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i = 1, . . . , n. Also here the moments of form (1.137) and (1.147), and hence
optimal prediction-based estimating functions, can be found explicitly for Pear-
son diffusions. This is because each of the observationsZi is a sum of pro-
cesses of the type considered in Subsection 1.9.4. To calculateE(Zk1

t1
Zk2

t2
Zk3

t3
Zk4

t4
),

first apply the multinomial formula as above to express this quantity in terms
of moments of the formE(Y ℓ1

j,t1
Y ℓ2

j,t2
Y ℓ3

j,t3
Y ℓ4

j,t4
), where

Yj,i =
1

∆

∫ i∆

(i−1)∆

Xj,s ds.

Now proceed as in Subsection 1.9.4.

1.9.6 Stochastic volatility models

A stochastic volatility model is a generalization of the Black-Scholes model
for the logarithm of an asset pricedXt = (κ+βσ2)dt+σdWt, that takes into
account the empirical finding that the volatilityσ2 varies randomly over time:

dXt = (κ+ βvt)dt+
√
vtdWt. (1.154)

Here the volatilityvt is a stochastic process that cannot be observed directly.
If the data are observations at the time points∆i, i = 0, 1, 2, . . . , n, then the
returnsYi = Xi∆ −X(i−1)∆ can be written in the form

Yi = κ∆ + βSi +
√

SiAi, (1.155)

where

Si =

∫ i∆

(i−1)∆

vtdt, (1.156)

and where theAi’s are independent, standard normal distributed random vari-
ables. Prediction-based estimating functions for stochastic volatility models
were considered in detail in Sørensen (2000a).

Here we consider the case where the volatility processv is a sum of inde-
pendent Pearson diffusions with state-space(0,∞) (the cases 2, 4 and 5).
Barndorff-Nielsen & Shephard (2001) demonstrated that an autocorrelation
function of the type (1.150) fits empirical autocorrelationfunctions of volatility
well, while an autocorrelation function like that of a single Pearson diffusion is
too simple to obtain a good fit. Stochastic volatility modelswhere the volatil-
ity process is a sum of independent square root processes were considered by
Bollerslev & Zhou (2002) and Bibby & Sørensen (2003). We assume thatv
andW are independent, so that the sequences{Ai} and{Si} are independent.
By the multinomial formula we find that

E
(

Y k1

1 Y k2

t1 Y
k3

t2 Y
k4

t3

)

=
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∑

Kk11,...,k43
E
(

S
k12+k13/2
1 S

k22+k23/2
t1 S

k32+k33/2
t2 S

k42+k43/2
t3

)

·E
(

Ak13

1

)

E
(

Ak23

t1

)

E
(

Ak33

t2

)

E
(

Ak43

t3

)

,

where the sum is over all non-negative integerskij , i = 1, 2, 3, 4, j = 1, 2, 3
such thatki1 + ki2 + ki3 = ki (i = 1, 2, 3, 4), and where

Kk11,...,k43
=

(

k1

k11, k12, k13

)(

k2

k21, k22, k23

)(

k3

k31, k32, k33

)(

k4

k41, k42, k43

)

(κ∆)k·1βk·2

with k·j = k1j + k2j + k3j + k4j . The momentsE(Aki3

i ) are the well-known
moments of the standard normal distribution. Whenki3 is odd, these moments
are zero. Thus we only need to calculate the mixed moments of the form
E(Sℓ1

1 S
ℓ2
t1 S

ℓ3
t2 S

ℓ4
t3 ), whereℓ1, . . . , ℓ4 are integers. When the volatility process is

a sum of independent Pearson diffusions,Si of the same form asZi in (1.153)
(apart from the factor1/∆), so we can proceed as in the previous subsection to
calculate the necessary mixed moments. Thus also for the stochastic volatility
models defined in terms of Pearson diffusions, we can explicitly find optimal
estimating functions based on prediction of powers of returns, cf. Example
1.9.1.

1.9.7 Compartment models

Diffusion compartment models areD-dimensional diffusions with linear drift,

dXt = [B(θ)Xt − b(θ)] dt+ σ(Xt; θ)dWt, (1.157)

where only a subset of the coordinates are observed. HereB(θ) is aD × D-
matrix, b(θ) is aD-dimensional vector,σ(x; θ) is aD × D-matrix, andW
aD-dimensional standard Wiener process. Compartment modelsare used to
model the dynamics of the flow of a substance between different parts (com-
partments) of, for instance, an ecosystem or the body of a human being or an
animal. The processXt is the concentration in the compartments, and flow
from a given compartment into other compartments is proportional to the con-
centration in the given compartment, but modified by the random perturbation
given by the diffusion term. The vectorb(θ) represents input to or output from
the system, for instance infusion or degradation of the substance. The compli-
cation is that only a subset of the compartments can be observed, for instance
the first compartment, in which case the data areYi = X1,ti

.

Example 1.9.8 The two-compartment model given by

B =

(

−β1 β2

β1 −(β1 + β2)

)

, b =

(

0
0

)

, σ =

(

τ1 0
0 τ2

)

,
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where all parameters are positive, was used by Bibby (1995) to model how
a radioactive tracer moved between the water and the biosphere in a certain
ecosystem. Samples could only be taken from the water, the first compartment,
so Yi = X1,ti

. Likelihood inference, which is feasible because the model
is Gaussian, was studied by Bibby (1995). All mixed moments of the form
(1.137) and (1.147) can be calculated explicitly, again because the model is
Gaussian. Therefore also explicit optimal prediction-based estimating func-
tions of the type considered in Example 1.9.1 are available to estimate the
parameters and were studied by Düring (2002).

2

Example 1.9.9 A non-Gaussian diffusion compartment model is obtained by
the specificationσ(x, θ) = diag(τ1

√
x1, . . . , τD

√
xD). This multivariate ver-

sion of the square root process was studied by Düring (2002), who used meth-
ods in Down, Meyn & Tweedie (1995) to show that theD-dimensional pro-
cess is geometricallyα-mixing and established the asymptotic normality of
prediction-based estimators of the type considered in Example 1.9.1. As in
the previous example, only the first compartment is observed, i.e. the data are
Yi = X1,ti

. For the multivariate square root model, the mixed moments (1.137)
and (1.147) must be calculated numerically.

2

1.10 General asymptotics results for estimating functions

In this section we review some general asymptotic results for estimators ob-
tained from estimating functions for stochastic process models. Proofs can be
found in Jacod & Sørensen (2009).

Suppose as a statistical model for the dataX1, X2, . . . , Xn that they are ob-
servations from a stochastic process. The corresponding probability measures
(Pθ) are indexed by ap-dimensional parameterθ ∈ Θ. An estimating function
is a function of the parameter and the observations,Gn(θ;X1, X2, . . . , Xn),
with values inIRp. Usually we suppress the dependence on the observations
in the notation and writeGn(θ). We get an estimator by solving the equa-
tion (1.1) and call such an estimator aGn-estimator. It should be noted that
n might indicate more than just the sample size: the distribution of the data
X1, X2, . . . , Xn might depend onn. For instance, the data might be obser-
vations of a diffusion process at time pointsi∆n, i = 1, . . . , n, where∆n

decreases asn increases; see Sections 1.6 and 1.7. Another example is thatthe
diffusion coefficient might depend onn; see Section 1.8.

We will not necessarily assume that the data are observations from one of the
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probability measures(Pθ)θ∈Θ. We will more generally denote thetrue prob-
ability measureby P . If the statistical model contains the true model, in the
sense that there exists aθ0 ∈ Θ such thatP = Pθ0

, then we callθ0 the true
parameter value.

A priory, there might be more than one solution or no solutionat all to the
estimating equation (1.1), so conditions are needed to ensure that a unique
solution exists whenn is sufficiently large. Moreover, we need to be careful
when formally defining our estimator. In the following definition, δ denotes a
“special” point, which we take to be outsideΘ andΘδ = Θ ∪ {δ}.

Definition 1.10.1 a) The domain ofGn-estimators (for a givenn) is the set
An of all observationsx = (x1, . . . , xn) for whichGn(θ) = 0 for at least one
valueθ ∈ Θ.

b) AGn-estimator,θ̂n(x), is any function of the data with values inΘδ, such
that forP–almost all observations we have eitherθ̂n(x) ∈ Θ andGn(θ̂n(x), x) =

0 if x ∈ An, or θ̂n(x) = δ if x /∈ An.

We usually suppress the dependence on the observations in the notation and
write θ̂n.

The following theorem gives conditions which ensure that, forn large enough,
the estimating equation (1.1) has a solution that convergesto a particular pa-
rameter valuēθ. When the statistical model contains the true model, the esti-
mating function should preferably be chosen such thatθ̄ = θ0. To facilitate
the following discussion, we will refer to an estimator thatconverges tōθ in
probability as āθ–consistent estimator, meaning that it is a (weakly) consistent
estimator ofθ̄. We assume thatGn(θ) is differentiable with respect toθ and
denote by∂θTGn(θ) thep× p-matrix, where theijth entry is∂θj

Gn(θ)i.

Theorem 1.10.2Suppose the existence of a parameter valueθ̄ ∈ int Θ (the
interior of Θ), a connected neighbourhoodM of θ̄, and a (possibly random)
functionW onM taking its values in the set ofp × p matrices, such that the
following holds:

(i) Gn(θ̄)
P→ 0 (convergence in probability, w.r.t. the true measureP ) as

n→ ∞.

(ii) Gn(θ) is continuously differentiable onM for all n, and

sup
θ∈M

‖ ∂θTGn(θ) −W (θ) ‖ P→ 0. (1.158)

(iii) The matrixW (θ̄) is non-singular withP–probability one.

Then a sequence(θ̂n) ofGn-estimators exists which is̄θ-consistent. Moreover
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this sequence iseventually unique, that is if (θ̂′n) is any otherθ̄–consistent
sequence ofGn–estimators, thenP (θ̂n 6= θ̂′n) → 0 asn→ ∞.

Note that the condition (1.158) implies the existence of a subsequence{nk}
such that∂θTGnk

(θ) converges uniformly toW (θ) on M with probability
one. HenceW is a continuous function ofθ (up to a null set), and it follows
from elementary calculus that outside someP–null set there exists a unique
continuously differentiable functionG satisfying∂θTG(θ) = W (θ) for all
θ ∈M andG(θ̄) = 0. WhenM is a bounded set, (1.158) implies that

sup
θ∈M

|Gn(θ) −G(θ)| P→ 0. (1.159)

This observation casts light on the result of Theorem 1.10.2. SinceGn(θ) can
be made arbitrarily close toG(θ) by choosingn large enough, and sinceG(θ)
has a root at̄θ, it is intuitively clear thatGn(θ) must have a root near̄θ when
n is sufficiently large.

If we impose an identifiability condition, we can give a stronger result on any
sequence ofGn–estimators. ByB̄ǫ(θ) we denote the closed ball with radiusǫ
centered atθ.

Theorem 1.10.3Assume (1.159) for some subsetM of θ containingθ̄, and
that

P

(

inf
M\B̄ǫ(θ̄)

|G(θ)| > 0

)

= 1 (1.160)

for all ǫ > 0. Then for any sequence(θ̂n) ofGn–estimators

P (θ̂n ∈M\B̄ǫ(θ̄)) → 0 (1.161)

asn→ ∞ for everyǫ > 0

If M = Θ, we see that any sequence(θ̂n) ofGn–estimators is̄θ–consistent. If
the conditions of Theorem 1.10.3 hold for any compact subsetM of Θ, then a
sequence(θ̂n) of Gn–estimators is̄θ–consistent or converges to the boundary
of Θ.

Finally, we give a result on the asymptotic distribution of asequence(θ̂n) of
θ̄–consistentGn–estimators.

Theorem 1.10.4Assume the estimating functionGn satisfies the conditions
of Theorem 1.10.2 and that there is a sequence of invertible matricesAn such
that each entry ofA−1

n tends to zero,
(

AnGn(θ̄)
An∂θTGn(θ̄)A−1

n

)

D−→
(

Z
W0(θ̄)

)

, (1.162)
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and there exists a connected neighbourhoodM of θ̄ such that

sup
θ∈M

‖An∂θTGn(θ)A−1
n −W0(θ) ‖ P→ 0. (1.163)

HereZ is a non-degenerate random variable, andW0 is a random function
taking values in the set ofp × p-matrices satisfying thatW0(θ̄) is invertible.
Under these conditions, we have for anȳθ–consistent sequence(θ̂n) ofGn–
estimators that

An(θ̂n − θ̄)
D−→ −W0(θ̄)

−1Z. (1.164)

WhenZ is normal distributed with expectation zero and covariancematrixV ,
and whenZ is independent ofW0(θ̄), then the limit distribution is the normal
variance-mixture with characteristic function

s 7→ E
(

exp
(

− 1

2
sTW0(θ̄)

−1VW0(θ̄)
T −1

s
))

. (1.165)

If, moreover,W0(θ̄) is non-random, then the limit distribution is a normal dis-
tribution with expectation zero and covariance matrixW0(θ̄)

−1VW0(θ̄)
T −1

.

In the often occurring situation, whereW0(θ̄) is non-random, joint conver-
gence ofAn∂θTGn(θ̄)A−1

n andAnGn(θ̄) is not necessary – marginal conver-
gence ofAnGn(θ̄) is enough.

1.11 Optimal estimating functions: general theory

The modern theory of optimal estimating functions dates back to the papers
by Godambe (1960) and Durbin (1960), however the basic idea was in a sense
already used in Fisher (1935). The theory was extended to stochastic processes
by Godambe (1985), Godambe & Heyde (1987), Heyde (1988), andseveral
others; see the references in Heyde (1997). Important particular instances are
likelihood inference, the quasi-likelihood of Wedderburn(1974) and the gen-
eralized estimating equations developed by Liang & Zeger (1986) to deal with
problems of longitudinal data analysis, see also Prentice (1988) and Li (1997).
A modern review of the theory of optimal estimating functions can be found in
Heyde (1997). The theory is very closely related to the theory of the general-
ized method of moments developed independently in parallelin the economet-
rics literature, where the foundation was laid by Hansen (1982), who followed
Sagan (1958) by using selection matrices. Important extensions to the theory
were made by Hansen (1985), Chamberlain (1987), Newey & West(1987),
and Newey (1990); see also the discussion and references in Hall (2005). Par-
ticular attention is given to the time series setting in Hansen (1985), Hansen
(1993), West (2001), and Kuersteiner (2002). A discussion of links between
the econometrics and statistics literature can be found in Hansen (2001). In the
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following we present the theory as it was developed in the statistics literature
by Godambe and Heyde.

The general setup is as in the previous section. We will only considerunbiased
estimating functions, i.e., estimating functions satisfying thatEθ(Gn(θ)) = 0
for all θ ∈ Θ. This natural requirement is also called Fisher consistency. It
often implies condition (i) of Theorem 1.10.2 forθ̄ = θ0, which is an essential
part of the condition for existence of a consistent estimator. Suppose we have a
classGn of unbiased estimating functions. How do we choose the best member
in Gn? And in what sense are some estimating functions better thanothers?
These are the main problems in the theory of estimating functions.

To simplify the discussion, let us first assume thatp = 1. The quantity

SGn
(θ) = Eθ(∂θTGn(θ)) (1.166)

is called thesensitivityfunction forGn. As in the previous section, it is as-
sumed thatGn(θ) is differentiable with respect toθ. A large absolute value
of the sensitivity implies that the equationGn(θ) = 0 tends to have a solu-
tion near the true parameter value, where the expectation ofGn(θ) is equal to
zero. Thus a good estimating function is one with a large absolute value of the
sensitivity.

Ideally, we would base the statistical inference on the likelihood functionLn(θ),
and hence use the score functionUn(θ) = ∂θ logLn(θ) as our estimating
function. This usually yields an efficient estimator. However, whenLn(θ) is
not available or is difficult to calculate, we might prefer touse an estimating
function that is easier to obtain and is in some sense close tothe score function.
Suppose that bothUn(θ) andGn(θ) have finite variance. Then it can be proven
under usual regularity conditions that

SGn
(θ) = −Covθ(Gn(θ), Un(θ)).

Thus we can find an estimating functionGn(θ) that maximizes the absolute
value of the correlation betweenGn(θ) andUn(θ) by finding one that maxi-
mizes the quantity

KGn
(θ) = SGn

(θ)2/Varθ(Gn(θ)) = SGn
(θ)2/Eθ(Gn(θ)2), (1.167)

which is known as theGodambe information. This makes intuitive sense: the
ratioKGn

(θ) is large when the sensitivity is large and when the variance of
Gn(θ) is small. The Godambe information is a natural generalization of the
Fisher information. Indeed,KUn

(θ) is the Fisher information. For a discussion
of information quantities in a stochastic process setting,see Barndorff-Nielsen
& Sørensen (1991) and Barndorff-Nielsen & Sørensen (1994).In a short while,
we shall see that the Godambe information has a large sample interpretation
too. An estimating functionG∗

n ∈ Gn is calledGodambe-optimalin Gn if

KG∗
n
(θ) ≥ KGn

(θ) (1.168)
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for all θ ∈ Θ and for allGn ∈ Gn.

When the parameterθ is multivariate (p > 1), the sensitivity function is the
p× p-matrix

SGn
(θ) = Eθ(∂θTGn(θ)). (1.169)

For a multivariate parameter, the Godambe information is thep× p-matrix

KGn
(θ) = SGn

(θ)TEθ

(

Gn(θ)Gn(θ)T
)−1

SGn
(θ), (1.170)

and an optimal estimating functionG∗
n can be defined by (1.168) with the in-

equality referring to the partial ordering of the set of positive semi-definite
p × p-matrices. Whether an Godambe-optimal estimating function exists and
whether it is unique depends on the classGn. In any case, it is only unique
up to multiplication by a regular matrix that might depend onθ. Specifically,
if G∗

n(θ) satisfies (1.168), then so doesMθG
∗
n(θ) whereMθ is an invertible

deterministicp× p-matrix. Fortunately, the two estimating functions give rise
to the same estimator(s), and we refer to them asversionsof the same estimat-
ing function. For theoretical purposes a standardized version of the estimating
functions is useful. Thestandardized versionof Gn(θ) is given by

G(s)
n (θ) = −SGn

(θ)TEθ

(

Gn(θ)Gn(θ)T
)−1

Gn(θ).

The rationale behind this standardization is thatG
(s)
n (θ) satisfies thesecond

Bartlett-identity

Eθ

(

G(s)
n (θ)G(s)

n (θ)T
)

= −Eθ(∂θTG(s)
n (θ)), (1.171)

an identity usually satisfied by the score function. The standardized estimating
functionG(s)

n (θ) is therefore more directly comparable to the score function.
Note that when the second Bartlett identity is satisfied, theGodambe informa-
tion equals minus the sensitivity matrix.

An Godambe-optimal estimating function is close to the score functionUn in
anL2-sense. SupposeG∗

n is Godambe-optimal inGn. Then the standardized
versionG∗(s)

n (θ) satisfies the inequality

Eθ

(

(G(s)
n (θ) − Un(θ))T (G(s)

n (θ) − Un(θ))
)

≥ Eθ

(

(G∗(s)
n (θ) − Un(θ))T (G∗(s)

n (θ) − Un(θ))
)

for all θ ∈ Θ and for allGn ∈ Gn, see Heyde (1988). In fact, ifGn is a closed
subspace of theL2-space of all square integrable functions of the data, then the
optimal estimating function is the orthogonal projection of the score function
ontoGn. For further discussion of this Hilbert space approach to estimating
functions, see McLeish & Small (1988). The interpretation of an optimal es-
timating function as an approximation to the score functionis important. By
choosing a sequence of classesGn that, asn → ∞, converges to a subspace
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containing the score functionUn, a sequence of estimators that is asymptoti-
cally fully efficient can be constructed.

The following result by Heyde (1988) can often be used to find the optimal
estimating function.

Theorem 1.11.1If G∗
n ∈ Gn satisfies the equation

SGn
(θ)−1Eθ

(

Gn(θ)G∗
n(θ)T

)

= SG∗
n
(θ)−1Eθ

(

G∗
n(θ)G∗

n(θ)T
)

(1.172)

for all θ ∈ Θ and for allGn ∈ Gn, then it is Godambe-optimal inGn. When
Gn is closed under addition, any Godambe-optimal estimating functionG∗

n

satisfies(1.172).

The condition (1.172) can often be verified by showing thatEθ(Gn(θ)G∗
n(θ)T ) =

−Eθ(∂θTGn(θ)) for all θ ∈ Θ and for allGn ∈ Gn. In such situations,G∗
n

satisfies thesecond Bartlett-identity, (1.171), so that

KG∗
n
(θ) = Eθ

(

G∗
n(θ)G∗

n(θ)T
)

.

Example 1.11.2Suppose we have a number of functionshij(x1, . . . , xi; θ),
j = 1, . . . , N , i = 1, . . . n satisfying that

Eθ(hij(X1, . . . , Xi; θ)) = 0.

Such functions define relationships (dependent onθ) between an observation
Xi and the previous observationsX1, . . . , Xi−1 (or some of them) that are on
average equal to zero. It is natural to use such relationships to estimateθ by
solving the equations

∑n
i=1 hij(X1, . . . , Xi; θ) = 0. In order to estimateθ it

is necessary thatN ≥ p, but ifN > p we have too many equations. The theory
of optimal estimating functions tells us how to combine theN relations in an
optimal way.

Let hi denote theN -dimensional vector(hi1, . . . , hiN )T , and define anN -
dimensional estimating function byHn(θ) =

∑n
i=1 hi(X1, . . . , Xi; θ). First

we consider the class ofp-dimensional estimating functions of the form

Gn(θ) = An(θ)Hn(θ),

whereAn(θ) is a non-randomp×N -matrix that is differentiable with respect
to θ. ByA∗

n(θ) we denote the optimal choice ofAn(θ). It is not difficult to see
that

SGn
(θ) = An(θ)SHn

(θ)

and
Eθ

(

Gn(θ)G∗
n(θ)T

)

= An(θ)Eθ

(

Hn(θ)Hn(θ)T
)

A∗
n(θ)T ,

whereSHn
(θ) = Eθ(∂θTHn(θ)). If we choose

A∗
n(θ) = −SHn

(θ)T Eθ

(

Hn(θ)Hn(θ)T
)−1

,
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then (1.172) is satisfied for allGn ∈ Gn, so thatG∗
n(θ) = A∗

n(θ)Hn(θ) is
Godambe optimal.

Sometimes there are good reasons to use functionshij satisfying that

Eθ(hij(X1, . . . , Xi; θ)hi′j′(X1, . . . , Xi′ ; θ)) = 0 (1.173)

for all j, j′ = 1, . . . , N wheni 6= i′. For such functions the random variables
hij(X1, . . . , Xi; θ), i = 1, 2, . . . are uncorrelated, and in this sense the “new”
random variation ofhij(X1, . . . , Xi; θ) depends only on the innovation in the
ith observation. This is for instance the case for martingaleestimating func-
tions, see (1.180). In this situation it is natural to consider the larger class of
estimating functions given by

Gn(θ) =

n
∑

i=1

ai(θ)hi(X1, . . . , Xi; θ),

whereai(θ), i = 1, . . . n, arep × N matrices that do not depend on the data
and are differentiable with respect toθ. Here

SGn
(θ) =

n
∑

i=1

ai(θ)Eθ(∂θT hi(X1, . . . , Xi; θ))

and

Eθ

(

Gn(θ)G∗
n(θ)T

)

=
n
∑

i=1

ai(θ)Eθ

(

hi(X1, . . . , Xi; θ)hi(X1, . . . , Xi; θ)
T
)

a∗i(θ)
T ,

wherea∗i (θ) denotes the optimal choice ofai(θ). We see that with

a∗i(θ) =

−Eθ(∂θT hi(X1, . . . , Xi; θ))
T
(

Eθ

(

hi(X1, . . . , Xi; θ)hi(X1, . . . , Xi; θ)
T
))−1

the condition (1.172) is satisfied. 2

1.11.1 Martingale estimating functions

More can be said about martingale estimating functions, i.e. estimating func-
tionsGn satisfying that

Eθ(Gn(θ)|Fn−1) = Gn−1(θ), n = 1, 2, . . . ,

whereFn−1 is theσ-field generated by the observationsX1, . . . , Xn−1 (G0 =
0 andF0 is the trivialσ-field). In other words, the stochastic process{Gn(θ) :
n = 1, 2, . . .} is a martingale under the model given by the parameter value
θ. Since the score function is usually a martingale (see e.g. Barndorff-Nielsen
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& Sørensen (1994)), it is natural to approximate it by families of martingale
estimating functions.

The well-developed martingale limit theory allows a straightforward discus-
sion of the asymptotic theory, and motivates an optimality criterion that is
particular to martingale estimating functions. Suppose the estimating function
Gn(θ) satisfies the conditions of the central limit theorem for martingales and
let θ̂n be a solution of the equationGn(θ) = 0. Under the regularity conditions
of the previous section, it can be proved that

〈G(θ)〉−
1
2

n Ḡn(θ)(θ̂n − θ0)
D−→ N(0, Ip). (1.174)

Here〈G(θ)〉n is thequadratic characteristicof Gn(θ) defined by

〈G(θ)〉n =

n
∑

i=1

Eθ

(

(Gi(θ) −Gi−1(θ))(Gi(θ) −Gi−1(θ))
T |Fi−1

)

,

and∂θTGn(θ) has been replaced by its compensator

Ḡn(θ) =

n
∑

i=1

Eθ (∂θTGi(θ) − ∂θTGi−1(θ)|Fi−1) ,

using the extra assumption that̄Gn(θ)−1∂θTGn(θ)
Pθ−→ Ip. Details can be

found in Heyde (1988). We see that the inverse of the data-dependent matrix

IGn
(θ) = Ḡn(θ)T 〈G(θ)〉−1

n Ḡn(θ) (1.175)

estimates the co-variance matrix of the asymptotic distribution of the estimator
θ̂n. ThereforeIGn

(θ) can be interpreted as an information matrix, called the
Heyde-information. It generalizes the incremental expected information of the
likelihood theory for stochastic processes; see Barndorff-Nielsen & Sørensen
(1994). SinceḠn(θ) estimates the sensitivity function, and〈G(θ)〉n estimates
the variance of the asymptotic distribution ofGn(θ), the Heyde-information
has a heuristic interpretation similar to that of the Godambe-information. In
fact,

Eθ

(

Ḡn(θ)
)

= SGn
(θ) and Eθ (〈G(θ)〉n) = Eθ

(

Gn(θ)Gn(θ)T
)

.

We can thus think of the Heyde-information as an estimated version of the
Godambe information.

Let Gn be a class of martingale estimating functions with finite variance. We
say that a martingale estimating functionG∗

n is Heyde-optimalin Gn if

IG∗
n
(θ) ≥ IGn

(θ) (1.176)

Pθ-almost surely for allθ ∈ Θ and for allGn ∈ Gn.

The following useful result from Heyde (1988) is similar to Theorem 1.11.1. In
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order to formulate it, we need the concept of thequadratic co-characteristicof
two martingales,G andG̃, both of which are assumed to have finite variance:

〈G, G̃〉n =

n
∑

i=1

E
(

(Gi −Gi−1)(G̃i − G̃i−1)
T |Fi−1

)

. (1.177)

Theorem 1.11.3If G∗
n ∈ Gn satisfies that

Ḡn(θ)−1〈G(θ), G∗(θ)〉n = Ḡ∗
n(θ)−1〈G∗(θ)〉n (1.178)

for all θ ∈ Θ and all Gn ∈ Gn, then it is is Heyde-optimal inGn. When
Gn is closed under addition, any Heyde-optimal estimating functionG∗

n sat-
isfies(1.178). Moreover, ifḠ∗

n(θ)−1〈G∗(θ)〉n is non-random, thenG∗
n is also

Godambe-optimal inGn.

Since in many situations condition (1.178) can be verified byshowing that
〈G(θ), G∗(θ)〉n = −Ḡn(θ) for allGn ∈ Gn, it is in practice often the case that
Heyde-optimality implies Godambe-optimality.

Example 1.11.4Let us discuss a often occurring type of martingale estimating
functions. To simplify the exposition we assume that the observed process is
Markovian. For Markov processes it is natural to base martingale estimating
functions on functionshij(y, x; θ), j = 1, . . . , N , i = 1, . . . , n satisfying that

Eθ(hij(Xi, Xi−1; θ)|Fi−1) = 0. (1.179)

As in Example 1.11.2, such functions define relationships (dependent onθ)
between consecutive observationXi andXi−1 that are, on average, equal to
zero and can be used to estimateθ. We consider the class ofp-dimensional
estimating functions of the form

Gn(θ) =

n
∑

i=1

ai(Xi−1; θ)hi(Xi, Xi−1; θ), (1.180)

wherehi denotes theN -dimensional vector(hi1, . . . , hiN )T , andai(x; θ) is a
function fromIR×Θ into the set ofp×N -matrices that are differentiable with
respect toθ. It follows from (1.179) thatGn(θ) is a p-dimensional unbiased
martingale estimating function.

We will now find the matricesai that combine theN functionshij in an op-
timal way. LetGn be the class of martingale estimating functions of the form
(1.180) that have finite variance. Then

Ḡn(θ) =

n
∑

i=1

ai(Xi−1; θ)Eθ(∂θT hi(Xi, Xi−1; θ)|Fi−1)
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and

〈G(θ), G∗(θ)〉n =
n
∑

i=1

ai(Xi−1; θ)Vhi
(Xi−1; θ)a

∗
i (Xi−1; θ)

T ,

where

G∗
n(θ) =

n
∑

i=1

a∗i (Xi−1; θ)hi(Xi, Xi−1; θ), (1.181)

and

Vhi
(Xi−1; θ) = Eθ

(

hi(Xi, Xi−1; θ)hi(Xi, Xi−1; θ)
T |Fi−1

)

is the conditional covariance matrix of the random vectorhi(Xi, Xi−1; θ) given
Fi−1. If we assume thatVhi

(Xi−1; θ) is invertible and define

a∗i(Xi−1; θ) = −Eθ(∂θT hi(Xi, Xi−1; θ)|Fi−1)
TVhi

(Xi−1; θ)
−1, (1.182)

then the condition (1.178) is satisfied. Hence by Theorem 1.11.3 the estimat-
ing functionG∗

n(θ) with a∗i given by (1.182) is Heyde-optimal - provided, of
course, that it has finite variance. SincēG∗

n(θ)−1〈G∗(θ)〉n = −Ip is non-
random, the estimating functionG∗

n(θ) is also Godambe-optimal. Ifa∗i were
defined without the minus,G∗

n(θ) would obviously also be optimal. The rea-
son for the minus will be clear in the following.

We shall now see, in exactly what sense the optimal estimating function (1.181)
approximates the score function. The following result was first given by Kessler
(1996). Letpi(y; θ|x) denote the conditional density ofXi given thatXi−1 =
x. Then the likelihood function forθ based on the data(X1, . . . , Xn) is

Ln(θ) =
n
∏

i=1

pi(Xi; θ|Xi−1)

(with p1 denoting the unconditional density ofX1). If we assume that allpis
are differentiable with respect toθ, the score function is

Un(θ) =

n
∑

i=1

∂θ log pi(Xi; θ|Xi−1). (1.183)

Let us fix i, xi−1 andθ and consider theL2-spaceKi(xi−1, θ) of functions
f : IR 7→ IR for which

∫

f(y)2pi(y; θ|xi−1)dy < ∞. We equipKi(xi−1, θ)
with the usual inner product

〈f, g〉 =

∫

f(y)g(y)pi(y; θ|xi−1)dy,

and letHi(xi−1, θ) denote theN -dimensional subspace ofKi(xi−1, θ) spanned
by the functionsy 7→ hij(y, xi−1; θ), j = 1, . . . , N . That the functions are lin-
early independent inKi(xi−1, θ) follows from the earlier assumption that the
covariance matrixVhi

(xi−1; θ) is regular.
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Now, assume that∂θj
log pi(y|xi−1; θ) ∈ Ki(xi−1, θ) for j = 1, . . . , p, de-

note byg∗ij the orthogonal projection with respect to〈·, ·〉 of ∂θj
log pi onto

Hi(xi−1, θ), and define ap-dimensional function byg∗i = (g∗i1, . . . , g
∗
ip)

T .
Then (under weak regularity conditions)

g∗i (xi−1, x; θ) = a∗i (xi−1; θ)hi(xi−1, x; θ), (1.184)

wherea∗i is the matrix defined by (1.182). To see this, note thatg∗ must have
the form (1.184) witha∗i satisfying the normal equations

〈∂θj
log pi − g∗j , hik〉 = 0,

j = 1, . . . , p andk = 1, . . . , N . These equations can be expressed in the
form Bi = a∗iVhi

, whereBi is thep × p-matrix whose(j, k)th element is
〈∂θj

log pi, hik〉. The main regularity condition needed to prove (1.184) is that
we can interchange differentiation and integration so that

∫

∂θj
[hik(y, xi−1; θ)p(y, xi−1; θ)] dy =

∂θj

∫

hik(y, xi−1; θ)p(xi−1, y; θ)dy = 0,

from which it follows that

Bi = −
∫

∂θT hi(y, xi−1; θ)p(xi−1, y; θ)dy.

Thusa∗i is given by (1.182).
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Genon-Catalot, V.; Jeantheau, T. & Larédo, C. (2000). “Stochastic volatility
models as hidden Markov models and statistical applications”. Bernoulli,
6:1051–1079.

Gloter, A. (2000). “Parameter estimation for a discrete sampling of an inte-
grated Ornstein-Uhlenbeck process”.Statistics, 35:225–243.

Gloter, A. (2006). “Parameter estimation for a discretely observed integrated
diffusion process”.Scand. J. Statist., 33:83–104.

Gloter, A. & Sørensen, M. (2009). “Estimation for stochastic differential equa-
tions with a small diffusion coefficient”.Stoch. Proc. Appl., 119:679–699.

Gobet, E. (2001). “Local asymptotic mixed normality property for elliptic
diffusion: a Malliavin calculus approach”.Bernoulli, 7:899–912.

Gobet, E. (2002). “LAN property for ergodic diffusions withdiscrete obser-
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