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Abstract

We consider parametric inference for an ergodic and stationary diffusion process, when
the data are high-frequency observations of the integral of the diffusion process. Such
data are obtained via certain measurement devices, or if positions are recorded and
speed is modelled by a diffusion. In finance, realized volatility or variations thereof can
be used to construct observations of the latent integrated volatility process. Specifi-
cally, we assume that the integrated process is observed at n equidistant, deterministic
time points i∆n for some ∆n > 0 and consider the high-frequency/infinite horizon
asymptotic scenario, where n→∞, ∆n → 0 and n∆n →∞. Subject to mild standard
regularity conditions on (Xt), we prove the asymptotic existence and uniqueness of
a consistent estimator for useful and tractable classes of prediction-based estimating
functions. Asymptotic normality of the estimator is obtained under the additional
rate assumption n∆2

n → 0. The proofs are based on the useful Euler-Itô expansions of
transformations of diffusions and integrated diffusions, which we study in some detail.

Keywords: Euler-Itô expansion, high-frequency data, integrated diffusion, potential
operator, prediction-based estimating functions, ρ-mixing.

1 Introduction

Diffusion processes are used to model dynamical systems in many scientific areas, particularly
in finance. While these processes are defined in terms of continuous-time dynamics, the
available time series are observations of the system, or components of it, at discrete points
in time. To bridge this gap between models and data, statistical methods for discretely
observed continuous-time stochastic processes is a very active area of research, where the
availability of high-frequency data has generated considerable interest in the construction and
study of estimators and test statistics with nice asymptotic properties as the time between
consecutive observations tends to zero.
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This paper deals with parametric inference for integrated diffusion models (It)t≥0 of the
general form

dIt = Xtdt, I0 = 0 (1.1)

dXt = a(Xt; θ)dt+ b(Xt; θ)dBt, (1.2)

where the diffusion process (Xt) takes values in an open interval (l, r) ⊆ R and is ergodic with
invariant distribution µθ. We assume that (Xt) is strictly stationary under the probability
measure Pθ, i.e. that X0 ∼ µθ. The parameter θ takes values in Θ ⊆ Rd for some d ≥ 1.

Let the data be a single time series {Itni }
n
i=0 of observations of the integrated process at

deterministic, equidistant points in time, i.e. tni = i∆n for some ∆n > 0. The process (Xt) is
latent. To enable consistent estimation of both drift and diffusion parameters, we consider
the high-frequency/infinite horizon sampling scenario

n→∞, ∆n → 0, n ·∆n →∞, (1.3)

where the time horizon tends to infinity with the number of observations. An equivalent
observation scheme is given by the transformed variables

Yi = ∆−1
n

(
Itni − Itni−1

)
= ∆−1

n

∫ i∆n

(i−1)∆n

Xsds, i = 1, . . . , n. (1.4)

Note that for fixed ∆n, the sequence {Yi}∞i=1 inherits stationary under Pθ from (Xt).
We construct and study estimators using prediction-based estimating functions, which

were proposed by Sørensen (2000, 2011) as a versatile framework for parametric inference
in non-Markovian diffusion-type models. This approach was applied to integrated diffusions
in Ditlevsen and Sørensen (2004). Their main contribution was to derive explicit Godambe-
Heyde optimal prediction-based estimating functions for diffusions belonging to a tractable
class of models that includes the Ornstein-Uhlenbeck process and the square-root (CIR)
process and prove low-frequency asymptotic results. The main contribution of the present
paper is to establish a high-frequency asymptotic theory for a class of prediction-based
estimators, in particular, existence, uniqueness, consistency and asymptotic normality within
the asymptotic scenario (1.3). Our proofs build on similar results for diffusion models in
Jørgensen and Sørensen (2021).

Parametric estimation for discretely observed diffusion models (Xt) of the form (1.2)
is the topic of numerous papers of which we can only list a few: Dacunha-Castelle and
Florens-Zmirou (1986), Yoshida (1992), Hansen and Scheinkman (1995), Bibby and Sørensen
(1995), Kessler (1997), Shoji and Ozaki (1998), Roberts and Stramer (2001), Aı̈t-Sahalia
(2002), Beskos et al. (2006), Bladt and Sørensen (2014), van der Meulen and Schauer (2017),
Sørensen (2024), Pilipovic et al. (2024) and Garćıa-Portugués and Sørensen (2025), see also
the review paper Sørensen (2012).

Although to a lesser extent, parametric inference for integrated diffusions has also been
the topic of several papers in econometrics and statistics. In the econometric literature, the
problem appears in the guise of continuous-time stochastic volatility models. To illustrate
this, consider the simple stochastic volatility model for an asset price, dSt =

√
vtdWt, where

(Wt) denotes a standard Brownian motion. The availability of high-frequency observations
of (St) enables us to filter out discrete time observations of the latent integrated volatility,∫ t

0
vsds, and view these as our data. Nonparametric filtering of integrated volatility from

high-frequency time series is an emblematic problem in financial econometrics. An extensive
list of references can be found in Aı̈t-Sahalia and Jacod (2014). This procedure has lead
to the construction of estimators for integrated processes in the case where the volatility
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dynamics are modeled by a time-homogeneous, stationary diffusion process similar to (1.2),
e.g., the GARCH(1,1) diffusion model in Nelson (1990), the square-root (CIR) process in
Heston (1993) and the 3/2 diffusion in Drimus (2012). Estimation based on realized power
variations that approximate the integrated volatility has been studied by e.g. Bollerslev
and Zhou (2002), Barndorff-Nielsen and Shephard (2002) and Todorov (2009). Li and Xiu
(2016) developed high-frequency (infill) asymptotics for GMM estimators of parameters in
the diffusion coefficient of the volatility process by preliminary filtering of the spot volatility
instead. Apart from the work by Ditlevsen and Sørensen (2004) that was summarized
above, papers in the statistical literature include Baltazar-Larios and Sørensen (2010), who
proposed a simulated EM-algorithm to obtain maximum likelihood estimators for integrated
diffusions contaminated by noise, e.g. microstructure noise, and Gloter (2000, 2006), who
proposed an approach that has significantly influenced the present paper. In this approach,
which is based on expansion results for small values of ∆n, the construction of contrast
estimators utilizes that, as ∆n → 0, Yi ≈ Xtni−1

, which allows high-frequency limit results for
integrated diffusions to be established. Finally, nonparametric estimation of the drift and
diffusion coefficient in the latent diffusion process from high-frequency observations of (It)
was studied by Comte et al. (2009).

The paper is organized as follows. In Section 2, we present preliminaries: the notation and
concepts used in the paper, our general assumptions on (Xt), and the prediction-based esti-
mating functions considered in the paper. Section 3 contains an expansion of a transforma-
tion of the diffusion process of the form f(Xtni

) = f(Xtni−1
)+∆

1/2
n ∂xf(Xtni−1

)b(Xtni−1
; θ)ε1,i+ε2,i

and the similar result for f(Yi). The expansion for the integrated process, Yi, was essentially
pointed out by Gloter (2000). These expansions serve as essential building blocks for the
asymptotic theory in our paper, and because they are related to the classic Euler approx-
imation, we refer to them as Euler-Itô expansions. Section 4 is devoted to limit theorems
for integrated diffusions, while the asymptotic results on existence, uniqueness, consistency
and asymptotic normality of our estimators are developed in Section 5. Proofs and some
auxiliary results are deferred to Section 6, and Section 7 concludes.

2 Preliminaries

In this section we present the general notation used throughout the paper and some core
concepts, formulate our main assumptions on the underlying diffusion model (Xt), and define
a tractable class of prediction-based estimating functions.

2.1 Notation and concepts

Our general notation is as follows:

1. The true parameter value is denoted by θ0.

2. We denote the state space of (Xt) by (S,B(S)), where S = (l, r) for −∞ ≤ l < r ≤ ∞
is an open interval equipped with its Borel σ-algebra B(S).

3. We write µθ(f) =
∫
S
f(x)µθ(dx) for functions f : S → R, and denote by L p(µθ) the

space of functions f , for which µθ(|f |p) <∞. Moreover, L p
0 (µθ) denotes the subset of

L p(µθ) for which µθ(f) = 0.

4. By
Pθ−→ and

Dθ−→ we denote convergence in probability and in distribution under Pθ.
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5. A function f : S × Θ → R is said to be of polynomial growth in x if there exists a
Cθ > 0 such that |f(x; θ)| ≤ Cθ(1 + |x|Cθ) for all x ∈ S.

6. In this paper, R(∆, x; θ) denotes a generic real function such that

|R(∆, x; θ)| ≤ F (x; θ), (2.1)

where F is of polynomial growth in x.

7. For real functions f and g defined on a measure space (A,A , ν), we write f ≤C g if
there exists a constant C > 0 such that f(a) ≤ Cg(a), for ν-almost all a ∈ A. In
particular, f and g can be random variables.

8. We denote by Cj,kp (S ×Θ), j, k ≥ 0, the class of real-valued functions f(x; θ) satisfying
that

· f is j times continuously differentiable w.r.t. x;

· f is k times continuously differentiable w.r.t. θ1, . . . , θd;

· f and all partial derivatives ∂j1x ∂
k1
θ1
· · · ∂kdθd f , j1 ≤ j, k1 + · · · + kd ≤ k, are of

polynomial growth in x.

We define Cjp(S) analogously as a class of function f : S → R.

9. The infinitesimal generator of a diffusion process (Xt) is denoted by Aθ, and the
corresponding domain by DAθ . If (Xt) satisfies Condition 2.1 below, then C2

p(S) ⊆ DAθ ,
and for all f ∈ C2

p(S), Aθf = Lθf , where

Lθf(x) = a(x; θ)∂xf(x) +
1

2
b2(x; θ)∂2

xf(x); (2.2)

see e.g. Kessler (2000).

10. For any diffusion process (Xt), the potential operator is given by

Uθ(f)(x) =

∫ ∞
0

P θ
t f(x)dt. (2.3)

It is defined for functions f : S → R in the set DUθ = {f :
∫∞

0
|P θ
t f(x)|dt <∞}, where

P θ
t denotes the transition operator P θ

t f(x) = Eθ (f(Xt) |X0 = x).

11. We define
Hθ = {f ∈ C4

p(S) ∩ DUθ : µθ(f) = 0, Uθ(f) ∈ C2
p(S)}. (2.4)

The potential operator plays an important role in our asymptotic theory. General results
ensuring that f ∈ DUθ and regularity of Uθ(f) can be found in Pardoux and Veretennikov
(2001). For an ergodic diffusion with invariant measure µθ, f ∈ DUθ must necessarily satisfy
µθ(f) = 0. The reason why the potential operator is important in our theory is that under
regularity conditions it satisfies the Poisson equation Lθ(Uθ(f)) = −f . If (Xt) satisfies
Condition 2.1 below, this is the case for f ∈ Hθ, see e.g. Proposition 3.3 in Jørgensen and
Sørensen (2021).
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2.2 Model assumption

To establish asymptotic results for integrated diffusions of the general form (1.1)-(1.2), we
impose the following regularity conditions on (Xt).

Condition 2.1. For any θ ∈ Θ, the stochastic differential equation

dXt = a(Xt; θ)dt+ b(Xt; θ)dBt, X0 ∼ µθ

has a weak solution (Ω, (Ft),Pθ, (Bt), (Xt)) for which Ft = σ (X0, (Bs)s≤t), X0 is independent
of (Bt) and

· (Xt) is stationary and ρ-mixing under Pθ.

Moreover, the triplet (a, b, µθ) satisfies the regularity conditions

· a, b ∈ C2,0
p (S ×Θ),

· |a(x; θ)|+ |b(x; θ)| ≤C 1 + |x|,

· b(x; θ) > 0 for x ∈ S,

·
∫
S
|x|kµθ(dx) <∞ for all k ≥ 1.

We define a discretized filtration by Fni := Ftni .
Easily checked conditions for ρ-mixing of one-dimensional diffusion processes are given

in Genon-Catalot et al. (2000). In particular, for an ergodic and time-reversible diffusion
process, the ρ-mixing property is equivalent to the existence of a spectral gap. The latter
means that the largest non-zero eigenvalue of the generator Aθ of the diffusion process is
strictly smaller that zero. From spectral theory it is known that all eigenvalues are non-
positive. The size of the spectral gab, which we denote by λθ, equals minus the largest
non-zero eigenvalue.

Under Condition 2.1, it is well-known that for f ∈ L 2
0 (µθ) it holds that that ‖P θ

t f‖2 ≤
e−λt‖f‖2 for all t ≥ 0, where ‖f‖2 = µθ(f

2)
1
2 , see e.g. Lemma 3.2 in Jørgensen and Sørensen

(2021). Using this we can define
∫∞

0
P θ
t f(x)dt as the ‖ · ‖2-limit of

∫ N
0
P θ
t f(x)dt as N →∞.

This limit exists and belongs to L 2
0 (µθ) because

∫ N
0
P θ
t fdt is a Cauchy sequence in L 2

0 (µθ).
Thus under Condition 2.1, Uθ is a well-defined mapping L 2

0 (µθ) 7→ L 2
0 (µθ), and since

C4
p(S) ⊆ L 2(µθ) we have that Hθ ⊆ L 2

0 (µθ) ⊆ DUθ . In particular, the space Hθ can be
written as

Hθ = {f ∈ C4
p(S) : µθ(f) = 0, Uθ(f) ∈ C2

p(S)}. (2.5)

The following condition on the true parameter value θ0 is essential to the asymptotic
theory for our estimators in Section 5. Here int(Θ) denotes the interior of Θ.

Condition 2.2. The parameter space is Θ ⊆ Rd and θ0 ∈ int(Θ).

The notation µ0 = µθ0 , P0 = Pθ0 , etc., is applied throughout the paper.
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2.3 Prediction-based estimating functions

Prediction-based estimating functions were proposed by Sørensen (2000, 2011) as a versatile
framework for statistical inference for non-Markovian diffusion-type models. In this paper,
we consider the class of estimating functions

Gn(θ) =
n∑

i=q+1

N∑
j=1

πi−1,j [fj(Yi)− π̆i−1,j(θ)] (2.6)

where {fj}Nj=1 is a finite set of real-valued functions in L 2(µθ). For each j ∈ {1, . . . , N},
π̆i−1,j(θ) denotes the orthogonal L 2(µθ)-projection of fj(Yi) onto a finite-dimensional sub-
space

Pi−1,j = span
{

1, fj (Yi−1) , . . . , fj
(
Yi−qj

)}
⊆ L 2(µθ), (2.7)

where qj ≥ 0. The coefficients πi−1,j in (2.6) are d-dimensional column vectors with entries
in Pi−1,j, and q := max1≤j≤N qj.

The subspaces {Pi−1,j}ij are called predictor spaces. What we predict are values of fj(Yi)
for i ≥ q + 1. Since every predictor space Pi−1,j is closed, the L 2(µθ)-projection of fj(Yi)
onto Pi−1,j, π̆i−1,j(θ), is well-defined and uniquely determined by the normal equations

Eθ (π [fj(Yi)− π̆i−1,j(θ)]) = 0 (2.8)

for all π ∈ Pi−1,j. Moreover, by restricting our attention to a stationary process (Xt) and
predictor spaces of the form (2.7), the solution to (2.8) is π̆i−1,j(θ) = ăn(θ)Tj Zi−1,j, where

Zi−1,j =
(
1, fj (Yi−1) , . . . , fj

(
Yi−qj

))T
and ăn(θ)Tj denotes the (qj + 1)-dimensional coefficient vector

ăn(θ)Tj =
(
ăn(θ)j0, ăn(θ)j1 . . . , ăn(θ)jqj

)
determined by the moment conditions

Eθ
[
Zqj ,jfj(Yqj+1)

]
= Eθ

[
Zqj ,jZ

T
qj ,j

]
ăn(θ)j. (2.9)

In the simplest case qj = 0, Pi−1,j = span{1} and, by (2.9), π̆i−1,j(θ) = Eθfj(Y1).

We obtain an estimator θ̂n by solving the estimating equation Gn(θ) = 0, and we call an
estimator θ̂n a Gn-estimator if Pθ0(Gn(θ̂n) = 0)→ 1 as n→∞.

Most prediction-based estimating functions applied in practise are of the form considered
here. In general, there is no explicit expression for the moments in (2.9). However, as noted
by Ditlevsen and Sørensen (2004), polynomial functions fj(y) = yβj , βj ∈ N, often enables
calculation of the necessary moments by integrating over mixed moments of (Xt). This
leads to explicit prediction-based estimating functions for the Pearson diffusions studied in
Forman and Sørensen (2008).

3 Euler-Itô expansions

This section is devoted to expansions of transformations of diffusion processes and integrated
diffusion processes observed over a small time interval of length ∆n. We refer to these ex-
pansions as Euler-Itô expansions. Essentially, the following results provide a bridge between
the asymptotic theory in Jørgensen and Sørensen (2021) and that of the present paper. The
results are formulated with respect to an arbitrary probability measure Pθ.
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3.1 Diffusion processes

The following expansion appears in various guises in the literature on statistical inference
for stochastic differential equations; see e.g. Kessler (1997).

Proposition 3.1. Let f ∈ C4
p(S). Then there exist Fni -measurable random variables ε1,i and

ε2,i such that
f(Xtni

) = f(Xtni−1
) + ∆1/2

n ∂xf(Xtni−1
)b(Xtni−1

; θ)ε1,i + ε2,i, (3.1)

where ε1,i ∼ N (0, 1) and is independent of Fni−1, and ε2,i satisfies the moment expansions

Eθ
(
ε2,i

∣∣ Fni−1

)
= ∆nLθf(Xtni−1

) + ∆2
nR(∆n, Xtni−1

; θ), (3.2)

Eθ
(
|ε2,i|k

∣∣ Fni−1

)
= ∆k

nR(∆n, Xtni−1
; θ), k ≥ 2. (3.3)

3.2 Integrated diffusions

To establish a similar result for functions of the integrated process, we rely on earlier work
by Gloter (2000) as well as k’th order Taylor expansions of functions f ∈ Ck(S) of the form

f(Yi) =
k−1∑
j=0

1

j!
∂jxf(Xtni−1

)(Yi −Xtni−1
)j +

1

k!
∂kxf(Zn

i )(Yi −Xtni−1
)k, (3.4)

where Zn
i is a random variable between Xtni−1

and Yi, i.e. Zn
i = Xtni−1

+ s(Yi−Xtni−1
) for some

s ∈ (0, 1). The following lemma provides an upper bound for the remainder term in (3.4)
for a given k ≥ 1.

Lemma 3.2. Let h : S → R be of polynomial growth. Then, for any k ≥ 1,

Eθ
(
|h(Zn

i )||(Yi −Xtni−1
)|k
∣∣∣ Fni−1

)
≤Ck ∆k/2

n (1 + |Xtni−1
|)Ck . (3.5)

In particular, if f ∈ C1
p(S), f(Yi) = f(Xtni−1

) + ∂xf(Zn
i )(Yi −Xtni−1

), and Lemma 3.2 implies
that

Eθ
(
|f(Yi)− f(Xtni−1

)|k
∣∣∣ Fni−1

)
≤Ck ∆k/2

n (1 + |Xtni−1
|)Ck . (3.6)

Our main result in this section is of independent interest. It is a generalization of Propo-
sition 2.2 in Gloter (2000). Note the resemblance with Proposition 3.1.

Proposition 3.3. Let f ∈ C4
p(S). Then there exist Fni -measurable random variables ξ1,i and

ξ2,i such that
f(Yi) = f(Xtni−1

) + ∆1/2
n ∂xf(Xtni−1

)b(Xtni−1
; θ)ξ1,i + ξ2,i, (3.7)

where ξ1,i ∼ N (0, 1/3) and is independent of Fni−1, and ξ2,i satisfies the moment expansions

Eθ
(
ξ2,i

∣∣ Fni−1

)
= ∆nHθf(Xtni−1

) + ∆3/2
n R(∆n, Xtni−1

; θ), (3.8)

Eθ
(
ξ2

2,i

∣∣ Fni−1

)
= ∆2

nR(∆n, Xtni−1
; θ), (3.9)

with

Hθf(x) =
1

2
Lθf(x)− 1

12
b2(x; θ)∂2

xf(x). (3.10)

Moreover,

Eθ (ε1,i · ξ1,i) =
1

2
, (3.11)

where ε1,i is the random variable that appears in the Euler-Itô expansion (3.1).
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4 Limit theory for integrated diffusions

As an application of the Euler-Itô expansion (3.7) and the corresponding bound (3.6), we
derive in this section a law of large numbers and a central limit theorem for a class of
functionals of integrated diffusions

1

n

n∑
i=1

f(Yi), (4.1)

where f : S → R satisfies appropriate regularity conditions. For the remainder of the paper,
all asymptotic results are obtained under the true probability measure P0 and under the
asymptotic scenario (1.3).

Lemma 4.1. Suppose that f ∈ C1
p(S) and that (Xt) satisfies Condition 2.1. Then,

1

n

n∑
i=1

f(Yi)
P0−→ µ0(f).

The result of Lemma 4.1 appears in a slightly stronger version in Proposition 2 of Gloter
(2006).

The result of the following lemma is that a central limit theorem for functionals (4.1) of
integrated diffusions can be obtained under the same assumption on the rate of convergence
of ∆n and with the same Gaussian limit distribution as for similar functionals of discretely
observed diffusion processes; see Proposition 3.4 in Jørgensen and Sørensen (2021).

Lemma 4.2. Assume that f ∈H0 and that (Xt) satisfies Condition 2.1. If n∆3
n → 0, then

√
n∆n

(
1

n

n∑
i=1

f(Yi)

)
D0−→ N (0,V0(f)) ,

where
V0(f) = µ0

(
[∂xU0(f)b( · ; θ0)]2

)
= 2µ0 (fU0(f)) . (4.2)

The operator U0(f) appearing in the asymptotic variance (4.2) is the potential, which
was defined and discussed in Subsections 2.1 and 2.2.

5 Asymptotic theory

This section contains our main asymptotic results onGn-estimators obtained from prediction-
based estimating functions of the type described in Subsection 2.3. The proofs are based on
general asymptotic theory for estimating functions in Jacod and Sørensen (2018); see also
Sørensen (2012). We confine the discussion to estimating functions of the form (2.6) where
N = 1 and simplify the notation by writing

Gn(θ) =
n∑

i=q+1

πi−1 [f(Yi)− π̆i−1(θ)] , (5.1)

Pi−1 for the corresponding predictor spaces and so on for objects in Subsection 2.3 that
depend on j. The extension to estimating functions with multiple predictor functions {fj}Nj=1

is discussed in Section 4.3 in Jørgensen and Sørensen (2021).
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5.1 Simple predictor spaces

The simplest class of estimating functions of the form (5.1) occurs for q = 0. In this case,
the orthogonal projection is π̆i−1(θ) = Eθf(Y1), and the one-dimensional predictor space
Pi−1 allows us to estimate one real parameter θ ∈ Θ ⊆ R. Therefore, we consider the
one-dimensional estimating function

Gn(θ) =
n∑
i=1

[f(Yi)− Eθf(Y1)] . (5.2)

Similar estimating functions were studied for discretely observed diffusions by Kessler (2000).
Our study of the asymptotic properties of Gn-estimators is based on expansions of Gn

in powers of ∆n. In the simple case considered here, such an expansion follows easily from
(3.7) in Proposition 3.3, which implies that for any f ∈ C4

p(S)

Eθf(Y1) = µθ(f) + Eθ(ξ2,1) = µθ(f) + ∆nR(∆n; θ), (5.3)

where |R(∆n; θ)| ≤ C(θ) <∞.

The following regularity conditions on Gn plus standard identifiability and rate conditions
ensure existence, consistency and asymptotic normality of Gn-estimators.

Condition 5.1. Suppose that

· f ∗(x) := f(x)− µ0(f) ∈H0,

· θ 7→ µθ(f) ∈ C1,

· For any compact subset M⊆ Θ and for ∆n sufficiently small,

sup
θ∈M
|∂θR(∆n; θ)| ≤ C(M). (5.4)

Theorem 5.2. Assume Conditions 2.1, 2.2 and 5.1 and the identifiability condition ∂θµθ(f) 6=
0 for all θ ∈ Θ. Then the following assertions hold.

· There exists a consistent sequence of Gn-estimators (θ̂n) which, as n → ∞, is unique
in any compact subset K ⊆ Θ containing θ0 with P0-probability approaching one.

· If, moreover, n∆3
n → 0, then√

n∆n

(
θ̂n − θ0

)
D0−→ N

(
0, [∂θµ0(f)]−2 V0(f)

)
, (5.5)

where V0(f) = 2µ0(f ∗U0(f ∗)).

Specifically, the statement about uniqueness means that for any Gn-estimator θ̃n for
which P0(θ̃n ∈ K)→ 1, it holds that P0(θ̂n 6= θ̃n)→ 0.

The identifiability condition and the assumption about the rate of convergence of ∆n are
exactly as in the similar result for prediction based estimating functions for discrete time
observations of diffusion processes in Jørgensen and Sørensen (2021). Also the Gaussian
the limit distribution is the same, which enables us to use the Monte Carlo method to
calculate the asymptotic variance developed in Section 5.1 of Jørgensen and Sørensen (2021).
Importantly, this method does not require an expression for the potential.
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5.2 1-lag predictor spaces

The introduction of functions of past observations in the predictor space Pi−1 increases the
mathematical complexity considerably. Our main result establishes existence, uniqueness,
consistency and asymptotically normality for prediction-based Gn-estimators with q = 1
under appropriate regularity conditions. In this case, the predictor space Pi−1 is spanned by
1 and f(Yi−1), and it follows from the normal equations (2.9) that the optimal predictor is

π̆i−1(θ) = ăn(θ)0 + ăn(θ)1f(Yi−1),

where ăn(θ)0 and ăn(θ)1 are uniquely determined by

ăn(θ)0 = Eθf(Y1) (1− ăn(θ)1) , (5.6)

ăn(θ)1 =
Eθ [f(Y1)f(Y2)]− [Eθf(Y1)]2

Varθf(Y1)
. (5.7)

Consistent with the two-dimensional predictor space, we consider d = 2 and investigate the
estimating function

Gn(θ) =
n∑
i=2

(
1

f(Yi−1)

)
[f(Yi)− ăn(θ)0 − ăn(θ)1f(Yi−1)] (5.8)

for which the expansion in powers of ∆n is more difficult than for (5.2).
Using on the Euler-Itô expansions in Section 3, we start by expanding the projection

coefficients ăn(θ)0 and ăn(θ)1. As the proof is a bit long, we formulate the result in a
separate lemma.

Lemma 5.3. For f ∈ C4
p(S), the projection coefficient vector ăn(θ) = (ăn(θ)0, ăn(θ)1)T has

the expansion

ăn(θ) =

(
0
1

)
+ ∆n

(
−Kf (θ)µθ(f)

Kf (θ)

)
+ ∆3/2

n R(∆n; θ) (5.9)

where |R(∆n; θ)| ≤ C(θ) and

Kf (θ) = Varθf(X0)−1

[
µθ(fLθf) +

1

6
µθ
(
[b( · ; θ)∂xf ]2

)]
. (5.10)

The following regularity conditions on Gn are imposed in our asymptotic theory.

Condition 5.4. Suppose that

· f ∗1 (x) = Kf (θ0) [µ0(f)− f(x)] ∈H0,

· f ∗2 (x) = f(x)L0f(x) + 1
6
[b(x; θ0)∂xf(x)]2 −Kf (θ0)f(x) [f(x)− µ0(f)] ∈H0,

· (θ 7→ µθ(f)) ∈ C1, (θ 7→ Kf (θ)) ∈ C1 and the remainder term in (5.9) satisfies that

sup
θ∈M
‖∂θTR(∆n; θ)‖ ≤ C(M), (5.11)

for any compact subset M⊆ Θ and for ∆n sufficiently small.

The matrix norm ‖ · ‖ in (5.11) and (5.13) can be chosen arbitrarily, and for convenience
we suppose that ‖ · ‖ is submultiplicative. The following lemma establishes crucial technical
steps in the proof of the main Theorem 5.6.
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Lemma 5.5. Assume that Conditions 2.1 and 5.4 holds. Then, for any θ ∈ Θ,

(n∆n)−1Gn(θ)
P0−→ γ(θ0; θ)

where

γ(θ0; θ) =

(
Kf (θ)(µθ − µ0)(f)

µ0(fL0f) + 1
6
µ0 ([b( · ; θ0)∂xf ]2)−Kf (θ) [µ0(f 2)− µ0(f)µθ(f)]

)
. (5.12)

Moreover, for any compact subset M⊆ Θ

sup
θ∈M

∥∥(n∆n)−1∂θTGn(θ)−W (θ)
∥∥ P0−→ 0, (5.13)

where

W (θ) =

(
1 µ0(f)

µ0(f) µ0(f 2)

)(
∂θ1 [Kf (θ)µθ(f)] ∂θ2 [Kf (θ)µθ(f)]
−∂θ1Kf (θ) −∂θ2Kf (θ)

)
.

Theorem 5.6. Assume Conditions 2.1, 2.2 and 5.4, that W (θ) is non-singular, and that
the identifiability condition γ(θ0; θ) 6= 0 for all θ 6= θ0 is satisfied.

Then the following assertions hold:

· There exists a consistent sequence of Gn-estimators (θ̂n) which, as n → ∞, is unique
in any compact subset K ⊆ Θ containing θ0 with P0-probability approaching one.

· If, moreover, n∆2
n → 0, then√
n∆n

(
θ̂n − θ0

)
D0−→ N2

(
0,
[
W (θ0)−1V0(f)(W (θ0)−1)T

])
, (5.14)

where

V0(f) =

(
µ0

(
[∂xU0(f ∗1 )b( · ; θ0)]2

)
Cov(f)

Cov(f) µ0

(
[∂xU0(f ∗2 ) + f∂xf ]2 b2( · ; θ0)

) ) ,
with

Cov(f) = µ0

(
∂xU0(f ∗1 ) [∂xU0(f ∗2 ) + f∂xf ] b2( · ; θ0)

)
.

Compared to the results in Jørgensen and Sørensen (2021), the lower order ∆
3/2
n of the

remainder term in the expansion (5.9) necessitates the rate assumption n∆2
n → 0, which is

stronger than what is needed for discretely observed diffusion processes. The same strong
rate assumption appears in Gloter (2006) to ensure asymptotic normality for a class of
minimum contrast estimators with observations of an integrated diffusion.

6 Proofs and auxiliary results

In this section we present the proofs of the results of the paper and some auxiliary results
that are needed in the proofs.
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6.1 Auxiliary results

We use several times that for a diffusion process X satisfying Condition 2.1 and a function
f ∈ C1

p(S), there exists, for every k ≥ 1, a constant Ck,θ > 0 such that

Eθ

(
sup
s∈[0,∆]

|f(Xt+s)− f(Xt)|k
∣∣∣∣∣ Ft

)
≤ Ck,θ∆

k/2 (1 + |Xt|)Ck,θ . (6.1)

This classical result can be proved following the proofs of the similar results in Kessler (1997)
and Gloter (2000).

We also use the well-known result that if a(·; θ) ∈ C2k,0
p (S×Θ), b(·; θ) ∈ C2k,0

p (S×Θ) and

f ∈ C2(k+1)
p (S) for a k ≥ 0. Then

Eθ (f(Xt+∆) | Ft) =
k∑
i=0

∆i

i!
Liθf(Xt) + ∆k+1R(∆, Xt; θ), (6.2)

see e.g. Lemma 1.10 in Sørensen (2012).

Lemma 6.1. Let (Xt)t≥0 be a continuous semimartingale on (Ω,F , (Ft),P), and suppose
that (Ht)t≥0 is (Ft)-adapted and continuous. For any t ≥ t∗ ≥ 0,∫ t

t∗

(∫ s

t∗
HudXu

)
ds =

∫ t

t∗
(t− s)HsdXs.

Proof. Without loss of generality, we can assume that t∗ = 0. Define Zt =
∫ t

0
HsdXs. By

stochastic integration-by-parts (the Itô- formula), d(tZt) = tdZt + Ztdt. Thus∫ t

0

tdZs = tZt =

∫ t

0

Zsds+

∫ t

0

sdZs,

which verifies the result.

6.2 Proofs

Since we study limits as ∆n → 0, we can in all the proofs assume that ∆n is bounded from
above, e.g. ∆n ≤ 1.

Proof of Proposition 3.1. By Itô’s formula,

f(Xtni
) = f(Xtni−1

) +

∫ i∆n

(i−1)∆n

Lθf(Xs)ds+

∫ i∆n

(i−1)∆n

∂xf(Xs)b(Xs; θ)dBs.

With the definitions

ε1,i = ∆−1/2
n

∫ i∆n

(i−1)∆n

dBs, (6.3)

Ai =

∫ i∆n

(i−1)∆n

Lθf(Xs)ds,

Di =

∫ i∆n

(i−1)∆n

[
∂xf(Xs)b(Xs; θ)− ∂xf(Xtni−1

)b(Xtni−1
; θ)
]
dBs,

ε2,i = Ai +Di, (6.4)
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we obtain an expansion of the form

f(Xtni
) = f(Xtni−1

) + ∆1/2
n ∂xf(Xtni−1

)b(Xtni−1
; θ)ε1,i + ε2,i,

where ε1,i and ε2,i are Fni -measurable and ε1,i ∼ N (0, 1) and independent of Fni−1.

To prove the conditional moment expansions (3.2)-(3.3) apply Fubini’s theorem followed
by (6.2) to obtain

Eθ
(
Ai
∣∣ Fni−1

)
=

∫ ∆n

0

Eθ
(
Lθf(Xtni−1+u)

∣∣∣ Fni−1

)
du

=

∫ ∆n

0

[
Lθf(Xtni−1

) + u ·R(u,Xtni−1
; θ)
]

du

= ∆nLθf(Xtni−1
) + ∆2

nR(∆n, Xtni−1
; θ).

Furthermore, since Eθ
(∫ t

0
[∂xf(Xs)b(Xs; θ)]

2 ds
)

= tµθ ([f ′b( · ; θ)]2) < ∞, the stochastic

integral
∫ t

0
∂xf(Xs)b(Xs; θ)dBs is a Pθ-martingale, so Eθ

(
Di

∣∣ Fni−1

)
= 0, which verifies (3.2).

For conditional moments of order k ≥ 2, we write

Ai = ∆nLθf(Xtni−1
) +

∫ i∆n

(i−1)∆n

[
Lθf(Xs)− Lθf(Xtni−1

)
]

ds

and observe that, by Jensen’s inequality,∣∣∣∣∫ i∆n

(i−1)∆n

[
Lθf(Xs)− Lθf(Xtni−1

)
]

ds

∣∣∣∣k ≤ ∆k
n ·∆−1

n

∫ i∆n

(i−1)∆n

|Lθf(Xs)− Lθf(Xtni−1
)|k ds

≤ ∆k
n sup
u∈[0,∆n]

|Lθf(Xtni−1+u)− Lθf(Xtni−1
)|k.

Hence, by (6.1),

Eθ
(
|Ai|k

∣∣ Fni−1

)
≤Ck ∆k

n(1 + |Xtni−1
|)Ck + ∆k

n · Eθ

(
sup

u∈[0,∆n]

|Lθf(Xtni−1+u)− Lθf(Xtni−1
)|k
∣∣∣∣∣ Fni−1

)
≤Ck ∆k

n(1 + |Xtni−1
|)Ck .

Similarly, with h(x; θ) = ∂xf(x)b(x; θ), the Burkholder-Davis-Gundy inequality (see e.g.
Jacod and Protter (2012)), Jensen’s inequality and (6.1) imply that for all k ≥ 2,

Eθ
(
|Di|k

∣∣∣ Fni−1

)
= Eθ

(∣∣∣∣∫ i∆n

(i−1)∆n

[
h(Xs; θ)− h(Xtni−1

; θ)
]
dBs

∣∣∣∣k
∣∣∣∣∣ Fni−1

)

≤Ck Eθ

([∫ i∆n

(i−1)∆n

[
h(Xs; θ)− h(Xtni−1

; θ)
]2

ds

]k/2 ∣∣∣∣∣ Fni−1

)

≤ ∆k/2
n · Eθ

(
∆−1
n

∫ i∆n

(i−1)∆n

|h(Xs; θ)− h(Xtni−1
; θ)|k ds

∣∣∣∣ Fni−1

)
≤ ∆k/2

n · Eθ

(
sup

u∈[0,∆n]

|h(Xtni−1+u; θ)− h(Xtni−1
; θ)|k

∣∣∣∣∣ Fni−1

)
≤Ck ∆k

n(1 + |Xtni−1
|)Ck
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and since |ε2,i|k ≤Ck |Ai|k + |Di|k, we conclude that Eθ
(
|ε2,i|k

∣∣ Fni−1

)
= ∆k

nR(∆n, Xtni−1
; θ).

Proof of Lemma 3.2. Since h is of polynomial growth,

|h(Zn
i )| ≤Ck 1 + |Xtni−1

|Ck + |Yi −Xtni−1
|Ck ,

and by Jensen’s inequality,

|Yi −Xtni−1
|k ≤ ∆−1

n

∫ i∆n

(i−1)∆n

|Xs −Xtni−1
|k ds ≤ sup

u∈[0,∆n]

|Xtni−1+u −Xtni−1
|k.

Hence the lemma follows because (6.1) implies that for any k ≥ 1

Eθ
(
|Yi −Xtni−1

|k
∣∣∣ Fni−1

)
≤Ck ∆k/2

n (1 + |Xtni−1
|)Ck .

Proof of Proposition 3.3. We start by proving the result for the identity mapping f(x) = x.
In this case, f ′ ≡ 1 and f ′′ ≡ 0, so the Euler-Itô expansion (3.7) takes the form

Yi = Xtni−1
+ ∆1/2

n b(Xtni−1
; θ)ξ∗1,i + ξ∗2,i, (6.5)

where asterisks (∗) are used to distinguish the remainder terms here from the general case.
Here equation (3.8) has the form

Eθ
(
ξ∗2,i
∣∣ Fni−1

)
= ∆n

1

2
a(Xtni−1

; θ) + ∆3/2
n R(∆n, Xtni−1

; θ). (6.6)

By applying Lemma 6.1 to the stochastic integral, we find that

Yi −Xtni−1
= ∆−1

n

∫ i∆n

(i−1)∆n

(∫ s

(i−1)∆n

a(Xu; θ)du+

∫ s

(i−1)∆n

b(Xu; θ)dBu

)
ds

= ∆−1
n

∫ i∆n

(i−1)∆n

∫ s

(i−1)∆n

a(Xu; θ)duds+ ∆−1
n

∫ i∆n

(i−1)∆n

(i∆n − s)b(Xs; θ)dBs,

which, in turn, yields an expansion of the form (6.5) by defining

ξ∗1,i = ∆−3/2
n

∫ i∆n

(i−1)∆n

(i∆n − s)dBs,

Ai = ∆−1
n

∫ i∆n

(i−1)∆n

∫ s

(i−1)∆n

a(Xu; θ)duds,

Di = ∆−1
n

∫ i∆n

(i−1)∆n

[
b(Xs; θ)− b(Xtni−1

; θ)
]

(i∆n − s)dBs,

ξ∗2,i = Ai +Di.

To verify the properties of ξ∗1,i and ξ∗2,i, we observe that both are measurable w.r.t. Fni ,
ξ∗1,i is Gaussian and independent of Fni−1 and Eθ(ξ∗1,i) = 0. Moreover, by Itô’s isometry

Eθ((ξ∗1,i)2) = ∆−3
n

∫ i∆n

(i−1)∆n

(i∆n − s)2 ds =
1

3
.
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To prove the conditional moment expansions of ξ∗2,i, we first use the martingale property of∫ t
0
b(Xs; θ)(i∆n − s)dBs to conclude that

Eθ
(
Di

∣∣ Fni−1

)
= ∆−1

n · Eθ
(∫ i∆n

(i−1)∆n

[
b(Xs; θ)− b(Xtni−1

; θ)
]

(i∆n − s)dBs

∣∣∣∣ Fni−1

)
= 0.

Therefore, Eθ(ξ∗2,i |Fni−1) = Eθ(Ai |Fni−1). Application of Fubini’s theorem and (6.2) shows
that

Eθ
(
Ai
∣∣ Fni−1

)
= ∆−1

n

∫ i∆n

(i−1)∆n

∫ s−tni−1

0

Eθ
(
a(Xtni−1+v; θ)

∣∣∣ Fni−1

)
dvds

= ∆−1
n

∫ i∆n

(i−1)∆n

∫ s−tni−1

0

[
a(Xtni−1

; θ) + vR(v,Xtni−1
; θ)
]

dvds

= ∆n
1

2
a(Xtni−1

; θ) + ∆−1
n

∫ i∆n

(i−1)∆n

∫ s−tni−1

0

vR(v,Xtni−1
; θ)dvds

and (6.6) follows because the last term equals ∆2
nR(∆n, x; θ). In fact, we see that the slightly

stronger result Eθ(ξ∗2,i |Fni−1) = ∆n
1
2
a(Xtni−1

; θ) + ∆2
nR(∆n, Xtni−1

; θ) holds for this particular
choice of f .

To show that Eθ((ξ∗2,i)2 |Fni−1) = ∆2
nR(∆n, Xtni−1

; θ), we use that by Jensen’s inequality

|Ai|2 ≤ ∆−1
n

∫ i∆n

(i−1)∆n

∣∣∣∣∫ s

(i−1)∆n

a(Xu; θ)du

∣∣∣∣2 ds ≤ sup
s∈[0,∆n]

∣∣∣∣∣
∫ tni−1+s

tni−1

a(Xu; θ)du

∣∣∣∣∣
2

.

Moreover, for any t ≥ 0 (again by Jensen’s inequality),

Eθ

(
sup

s∈[0,∆n]

∣∣∣∣∫ t+s

t

a(Xu; θ)du

∣∣∣∣2
∣∣∣∣∣ Ft

)
≤ Eθ

(
sup

s∈[0,∆n]

s

∫ t+s

t

|a(Xu; θ)|2 du

∣∣∣∣∣ Ft
)

= ∆nEθ
(∫ t+∆n

t

|a(Xu; θ)|2 du

∣∣∣∣ Ft) .
Now by the linear growth of a( · ; θ) (Condition 2.1), |a(Xu; θ)|2 ≤C 1 + |Xt|2 + |Xu −Xt|2,
so

Eθ

(
sup

s∈[0,∆n]

∣∣∣∣∫ t+s

t

a(Xu; θ)du

∣∣∣∣2
∣∣∣∣∣ Ft

)

≤C ∆2
n(1 + |Xt|2) + ∆n

∫ t+∆n

t

Eθ
(
|Xu −Xt|2

∣∣ Ft) du

≤C ∆2
n(1 + |Xt|)C + ∆2

n · Eθ

(
sup

v∈[0,∆n]

|Xt+v −Xt|2
∣∣∣∣∣ Ft

)
≤C ∆2

n(1 + |Xt|)C ,

where (6.1) implies the final inequality. In conclusion, Eθ
(
|Ai|2

∣∣ Fni−1

)
≤C ∆2

n(1 + |Xtni−1
|)C .

To obtain a similar bound for |Di|2, we apply the Burkholder-Davis-Gundy inequality,
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Jensen’s inequality and (6.1) to obtain that

Eθ
(
|Di|2

∣∣ Fni−1

)
= Eθ

(
∆−2
n

∣∣∣∣∫ i∆n

(i−1)∆n

[
b(Xs; θ)− b(Xtni−1

; θ)
]

(i∆n − s)dBs

∣∣∣∣2
∣∣∣∣∣ Fni−1

)

≤C Eθ
(∫ i∆n

(i−1)∆n

[
b(Xs; θ)− b(Xtni−1

; θ)
]2

ds

∣∣∣∣ Fni−1

)
≤ ∆nEθ

(
sup

s∈[0,∆n]

∣∣∣b(Xtni−1+s; θ)− b(Xtni−1
; θ)
∣∣∣2 ∣∣∣∣∣ Fni−1

)
≤C ∆2

n(1 + |Xtni−1
|)C .

and, as a consequence,

Eθ
(
(ξ∗2,i)

2
∣∣ Fni−1

)
= ∆2

nR(∆n, Xtni−1
; θ), (6.7)

The extension to arbitrary f ∈ C4
p(S) is based on Taylor expansions of the general form

(3.4). First, a Taylor expansion combined with the Euler-Itô expansion (6.5), implies that

f(Yi) =
2∑
j=0

1

j!
∂jxf(Xtni−1

)(Yi −Xtni−1
)j +

1

6
∂3
xf(Zn

i )(Yi −Xtni−1
)3

= f(Xtni−1
) + ∆1/2

n ∂xf(Xtni−1
)b(Xtni−1

; θ)ξ1,i + ξ2,i

where

ξ1,i = ξ∗1,i = ∆−3/2
n

∫ i∆n

(i−1)∆n

(i∆n − s)dBs, (6.8)

and ξ2,i =
∑5

k=1 ξ
(k)
2,i with ξ

(1)
2,i = ∂xf(Xtni−1

)ξ∗2,i, ξ
(2)
2,i = ∆n

1
2
∂2
xf(Xtni−1

)b2(Xtni−1
; θ)(ξ∗1,i)

2, ξ
(3)
2,i =

1
2
∂2
xf(Xtni−1

)(ξ∗2,i)
2, ξ

(4)
2,i = ∆

1/2
n ∂2

xf(Xtni−1
)b(Xtni−1

; θ)ξ∗1,iξ
∗
2,i and ξ

(5)
2,i = 1

6
∂3
xf(Zn

i )(Yi −Xtni−1
)3.

Each ξ
(k)
2,i , k = 1, . . . , 5, is measurable w.r.t. Fni so it only remains to show that ξ2,i satisfies

the moment expansions (3.8) and (3.9). By applying the previously derived conditional
moment expansions Eθ

(
ξ∗1,i
∣∣ Fni−1

)
= 0, Eθ

(
(ξ∗1,i)

2
∣∣ Fni−1

)
= 1

3
, (6.5) and (6.7) it follows

immediately that

Eθ
(
ξ

(1)
2,i

∣∣∣ Fni−1

)
= ∆n

1

2
a(Xtni−1

; θ)∂xf(Xtni−1
) + ∆3/2

n R(∆n, Xtni−1
; θ),

Eθ
(
ξ

(2)
2,i

∣∣∣ Fni−1

)
= ∆n

1

6
∂2
xf(Xtni−1

)b2(Xtni−1
; θ),

Eθ
(
ξ

(3)
2,i

∣∣∣ Fni−1

)
= ∆2

nR(∆n, Xtni−1
; θ).

Furthermore, by Hölder’s inequality,

|Eθ
(
ξ∗1,iξ

∗
2,i

∣∣ Fni−1

)
| ≤ Eθ

(
(ξ∗1,i)

2
∣∣ Fni−1

)1/2 Eθ
(
(ξ∗2,i)

2
∣∣ Fni−1

)1/2
= ∆nR(∆n, Xtni−1

; θ),

implying Eθ
(
ξ

(4)
2,i

∣∣∣ Fni−1

)
= ∆

3/2
n R(∆n, Xtni−1

; θ), and finally, by Lemma 3.2, Eθ
(
ξ

(5)
2,i

∣∣∣ Fni−1

)
=

∆
3/2
n R(∆n, Xtni−1

; θ). Collecting our observations,

Eθ
(
ξ2,i

∣∣ Fni−1

)
=

5∑
k=1

Eθ
(
ξ

(k)
2,i

∣∣∣ Fni−1

)
= ∆n

(
1

2
a(Xtni−1

; θ)∂xf(Xtni−1
) +

1

6
b2(Xtni−1

; θ)∂2
xf(Xtni−1

)

)
+ ∆3/2

n R(∆n, Xtni−1
; θ)

= ∆n

(
1

2
Lθf(Xtni−1

)− 1

12
b2(Xtni−1

; θ)∂2
xf(Xtni−1

)

)
+ ∆3/2

n R(∆n, Xtni−1
; θ).
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To argue that Eθ(ξ2
2,i |Fni−1) = ∆2

nR(∆n, Xtni−1
; θ), we combine a lower order Taylor ex-

pansion with (6.5) to obtain

f(Yi) = f(Xtni−1
) + ∂xf(Xtni−1

)(Yi −Xtni−1
) +

1

2
∂2
xf(Zn

i )(Yi −Xtni−1
)2

= f(Xtni−1
) + ∆1/2

n ∂xf(Xtni−1
)b(Xtni−1

; θ)ξ1,i + ξ2,i,

from which we get an alternative expression for the the remainder term ξ2,i:

ξ2,i = ∂xf(Xtni−1
)ξ∗2,i +

1

2
∂2
xf(Zn

i )(Yi −Xtni−1
)2.

This expression implies that

ξ2
2,i ≤C [∂xf(Xtni−1

)]2(ξ∗2,i)
2 + [∂2

xf(Zn
i )]2(Yi −Xtni−1

)4

and, by applying (6.7) and Lemma 3.2, that Eθ
(
ξ2

2,i

∣∣ Fni−1

)
= ∆2

nR(∆n, Xtni−1
; θ).

Finally, by the definitions (6.3) and (6.8) and the Itô isometry,

Eθ(ε1,iξ1,i) = Eθ
(

∆−1/2
n

∫ i∆n

(i−1)∆n

dBs ·∆−3/2
n

∫ i∆n

(i−1)∆n

(i∆n − s)dBs

)
= ∆−2

n ·
∫ i∆n

(i−1)∆n

(i∆n − s)ds =
1

2
.

Proof of Lemma 4.1. The Lemma follows from Lemma 3.1 in Jørgensen and Sørensen (2021)
if we show that

1

n

n∑
i=1

[
f(Yi)− f(Xtni−1

)
]

= oP0(1). (6.9)

By applying the bound (3.6) for conditional expectations, we obtain

1

n

n∑
i=1

E0

(
|f(Yi)− f(Xtni−1

)|
∣∣∣ Fni−1

)
= ∆1/2

n

1

n

n∑
i=1

R(∆n, Xtni−1
; θ0) = oP0(1),

1

n2

n∑
i=1

E0

(
|f(Yi)− f(Xtni−1

)|2
∣∣∣ Fni−1

)
= ∆n

1

n2

n∑
i=1

R(∆n, Xtni−1
; θ0) = oP0(1),

from which (6.9) follows by Lemma 9 in Genon-Catalot and Jacod (1993).

Proof of Lemma 4.2. This result follows from Proposition 3.4 in Jørgensen and Sørensen
(2021), if the following strengthening of (6.9) holds

√
n∆n ·

1

n

n∑
i=1

[
f(Yi)− f(Xtni−1

)
]

= oP0(1), (6.10)

To prove this, note that by Proposition 3.3,√
n∆n ·

1

n

n∑
i=1

E0

(
f(Yi)− f(Xtni−1

)
∣∣∣ Fni−1

)
=

√
n∆n ·

1

n

n∑
i=1

E0

(
ξ2,i

∣∣ Fni−1

)
=
√
n∆3

n ·
1

n

n∑
i=1

R(∆n, Xtni−1
; θ0) = oP0(1),
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where we use that n∆3
n → 0. Moreover, the higher order bound (3.6) ensures that

∆n

n

n∑
i=1

E0

(
|f(Yi)− f(Xtni−1

)|2
∣∣∣ Fni−1

)
=

∆2
n

n

n∑
i=1

R(∆n, Xtni−1
; θ0) = oP0(1),

and (6.10) follows from Lemma 9 in Genon-Catalot and Jacod (1993).

Proof of Theorem 5.2. By applying the first order expansion (5.3) of Eθf(Y1) together with
Lemma 4.1, we see that

Hn(θ) =
1

n

n∑
i=1

[f(Yi)− Eθf(Y1)] =
1

n

n∑
i=1

[f(Yi)− µθ(f)] + ∆nR(∆n; θ)
P0−→ H(θ),

where H(θ) = (µ0 − µθ)(f). Under Condition 5.1,

∂θHn(θ) = −∂θEθf(Y1) = −∂θµθ(f) + ∆n∂θR(∆n; θ)→ −∂θµθ(f),

and for any compact subset M of Θ

sup
θ∈M
|∂θHn(θ) + ∂θµθ(f)| = ∆n sup

θ∈M
|∂θR(∆n; θ)| ≤ C(M)∆n → 0.

Because H(θ0) = 0, we have now verified the conditions of Theorem 2.5 in Jacod and
Sørensen (2018), from which the existence of a consistent sequence of Gn-estimators (θ̂n)
follows. That the estimator θ̂n is unique in any compact subset K ⊆ Θ that contains θ0

with P0-probability going to one as n→∞ follows from Theorem 2.7 in Jacod and Sørensen
(2018), because the identifiability assumption implies that H(θ) 6= 0 for θ 6= θ0.

To establish asymptotic normality, note that (5.3), the additional rate assumption n∆3
n →

0 and Lemma 4.2 ensure that

√
n∆n ·Hn(θ0) =

√
n∆n ·

(
1

n

n∑
i=1

f ∗(Yi)

)
+
√
n∆3

nR(∆n; θ0)
D0−→ N (0, V0(f)) .

Now (5.5) follows by a standard Taylor expansion argument, see e.g. Theorem 2.11 in Jacod
and Sørensen (2018).

Proof of Lemma 5.3. We break the proof into three steps: Step 1: expand [Eθf(Y1)]2,
Eθf 2(Y1) and Eθ [f(Y1)f(Y2)] in powers of ∆n, Step 2: eliminate Hθ from the expansions,
Step 3: calculate expansions of ăn(θ)0 and ăn(θ)1.

Step 1 Using Proposition 3.3, we find that

[Eθf(Y1)]2 = µθ(f)2 + ∆n2µθ(f)µθ(Hθf) + ∆3/2
n R(∆n; θ),

Eθf 2(Y1) = µθ(f
2) + ∆nµθ(Hθf

2) + ∆3/2
n R(∆n; θ).

To expand Eθ[f(Y1)f(Y2)] we note that by Proposition 3.3 this mixed moment equals

Eθ
[(
f(X0) + ∆1/2

n ∂xf(X0)b(X0; θ)ξ1,1 + ξ2,1

) (
f(X∆n) + ∆1/2

n ∂xf(X∆n)b(X∆n ; θ)ξ1,2 + ξ2,2

)]
,

and then we expand the 9 terms of this expectation individually.

Term 1:
Eθ [f(X0)f(X∆n)] = µθ(f

2) + ∆nµθ(fLθf) + ∆2
nR(∆n; θ)
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because by Proposition 3.1

f(X0)f(X∆n) = f(X0)2 + ∆1/2
n f(X0)∂xf(X0)b(X0; θ)ε1,1 + f(X0)ε2,1.

Term 2:
∆1/2
n Eθ [f(X0)∂xf(X∆n)b(X∆n ; θ)ξ1,2] = 0,

because Eθ (ξ1,2 | F∆n) = 0.

Term 3: By applying the moment expansions (3.8) and (6.2)

Eθ [f(X0)ξ2,2] = Eθ [f(X0)Eθ (ξ2,2 | F∆n)] = ∆nEθ [f(X0)Hθf(X∆n)] + ∆3/2
n R(∆n; θ)

= ∆nEθ [f(X0)Eθ (Hθf(X∆n) | F0)] + ∆3/2
n R(∆n; θ) = ∆nµθ(fHθf) + ∆3/2

n R(∆n; θ).

Term 4: By the Euler-Itô expansion (3.1),

∆1/2
n Eθ [∂xf(X0)b(X0; θ)ξ1,1f(X∆n)]

= ∆nEθ
[
[∂xf(X0)b(X0; θ)]2ξ1,1ε1,1

]
+ ∆1/2

n Eθ [∂xf(X0)b(X0; θ)ξ1,1ε2,1]

= ∆n
1

2
µθ
(
[b( · ; θ)∂xf ]2

)
+ ∆3/2

n R(∆n; θ).

The last equality holds because, by (3.11), Eθ (ξ1,1ε1,1 | F0) = 1/2, and because by Hölder’s
inequality and (3.3), and since ξ1,1 ∼ N (0, 1/3) and is independent of Fn0 , we see that

|Eθ (ξ1,1ε2,1 | F0) | ≤ Eθ
(
ξ2

1,1

∣∣ F0

)1/2 Eθ
(
ε2

2,1

∣∣ F0

)1/2
= ∆nR(∆n, X0; θ).

Term 5: This term equals

∆2
nEθ [∂xf(X0)b(X0; θ)ξ1,1∂xf(X∆n)b(X∆n ; θ)Eθ (ξ1,2 | F∆n)] = 0,

since Eθ (ξ1,2 | F∆n) = 0 by Proposition 3.3.

Term 6: This term equals

∆1/2
n Eθ [∂xf(X0)b(X0; θ)Eθ (ξ1,1ξ2,2 | F0)] = ∆3/2

n R(∆n; θ),

because by Hölder’s inequality, |Eθ (ξ1,1ξ2,2 | F0) | ≤ Eθ
(
ξ2

1,1

∣∣ F0

)1/2 Eθ
(
ξ2

2,2

∣∣ F0

)1/2
, and by

Proposition 3.3, Eθ
(
ξ2

1,1

∣∣ F0

)
= 1/3 and

Eθ
(
ξ2

2,2

∣∣ F0

)
= Eθ

[
Eθ
(
ξ2

2,2

∣∣ F∆n

) ∣∣ F0

]
= Eθ

[
∆2
nR(∆n, X∆n ; θ)

∣∣ F0

]
= ∆2

nR(∆n, X0; θ).

Term 7: By the Euler-Itô expansion (3.1),

Eθ [f(X∆n)ξ2,1]

= Eθ [f(X0)Eθ (ξ2,1 | F0)] + ∆1/2
n Eθ [∂xf(X0)b(X0; θ)Eθ (ε1,1ξ2,1 | F0)] + Eθ(ε2,1ξ2,1)

= ∆nµθ(fHθf) + ∆3/2
n R(∆n; θ)

where the last equality holds because, by Proposition 3.3, Eθ (ξ2,1 | F0) = ∆nHθf(X0) +

∆
3/2
n R(∆n, X0; θ), and by Hölder’s inequality and Propositions 3.1 and 3.3, Eθ (ε1,1ξ2,1 | F0) =

∆nR(∆n, X0; θ) and Eθ(ε2,1ξ2,1) = ∆2
nR(∆n; θ).

Term 8: By Proposition 3.3, this term equals

Eθ [ξ2,1∂xf(X∆n)b(X∆n ; θ)Eθ (ξ1,2 | F∆n)] = 0.
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Term 9: By combining Hölder’s inequality and (3.9), we obtain

|Eθ (ξ2,1ξ2,2) | ≤ Eθ
[
Eθ
(
ξ2

2,1

∣∣ F0

)]1/2 Eθ [Eθ (ξ2
2,2

∣∣ F∆n

)]1/2
= ∆2

nR(∆n; θ).

Finally, we add the expansions of the nine terms and conclude that

Eθf(Y1)f(Y2) =

µθ(f
2) + ∆n

(
µθ(fLθf) + 2µθ(fHθf) +

1

2
µθ
(
[b( · ; θ)∂xf ]2

))
+ ∆3/2

n R(∆n; θ).

Step 2 To eliminate Hθ from the expansions of [Eθf(Y1)]2, Eθf 2(Y1) and Eθ [f(Y1)f(Y2)],
we rewite µθ(Hθf), µθ(fHθf) and µθ(Hθf

2) using the definition of Hθ, (3.10), and that
µθ(Lθf) = 0 for all f ∈ DAθ ; see e.g. Hansen and Scheinkman (1995). It follows immediately
that

µθ(Hθf) = − 1

12
µθ
(
b2( · ; θ)∂2

xf
)

µθ(fHθf) =
1

2
µθ(fLθf)− 1

12
µθ
(
fb2( · ; θ)∂2

xf
)
.

Moreover, since ∂xf
2 = 2f∂xf and ∂2

xf
2 = 2 [f∂2

xf + (∂xf)2],

Hθf
2(x) =

1

2
a(x; θ)∂xf

2(x) +
1

6
b2(x; θ)∂2

xf
2(x)

= f(x)a(x; θ)∂xf(x) +
1

3
f(x)b2(x; θ)∂2

xf(x) +
1

3
[b(x; θ)∂xf(x)]2

= f(x)Lθf(x)− 1

6
f(x)b2(x; θ)∂2

xf(x) +
1

3
[b(x; θ)∂xf(x)]2,

which shows that

µθ(Hθf
2) = µθ(fLθf)− 1

6
µθ
(
fb2( · ; θ)∂2

xf
)

+
1

3
µθ
(
[b( · ; θ)∂xf ]2

)
.

Thus

[Eθf(Y1)]2 = µθ(f)2 + ∆nM0(θ) + ∆3/2
n R(∆n; θ) (6.11)

Eθf 2(Y1) = µθ(f
2) + ∆nM1(θ) + ∆3/2

n R(∆n; θ) (6.12)

Eθf(Y1)f(Y2) = µθ(f
2) + ∆nM2(θ) + ∆3/2

n R(∆n; θ), (6.13)

where

M0(θ) = −1

6
µθ(f)µθ

(
b2( · ; θ)∂2

xf
)

M1(θ) = µθ(fLθf)− 1

6
µθ
(
fb2( · ; θ)∂2

xf
)

+
1

3
µθ
(
[b( · ; θ)∂xf ]2

)
M2(θ) = 2µθ(fLθf)− 1

6
µθ
(
fb2( · ; θ)∂2

xf
)

+
1

2
µθ
(
[b( · ; θ)∂xf ]2

)
.

Step 3 From the moment expansions (6.11)-(6.13), it follows that

ăn(θ)1 =
Eθf(Y1)f(Y2)− [Eθf(Y1)]2

Varθf(Y1)

=
1 + ∆nVarθf(X0)−1(M2(θ)−M0(θ)) + ∆

3/2
n R(∆n; θ)

1 + ∆nVarθf(X0)−1(M1(θ)−M0(θ)) + ∆
3/2
n R(∆n; θ)

,
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and since 1/(1 + x) = 1− x+O(x2), we obtain the expansion

ăn(θ)1 = 1 + ∆nVarθf(X0)−1 [M2(θ)−M1(θ)] + ∆3/2
n R(∆n; θ)

= 1 + ∆nKf (θ) + ∆3/2
n R(∆n; θ), (6.14)

where Kf (θ) is given by (5.10).
Finally, since by (3.7) Eθf(Y1) = µθ(f) + ∆nR(∆n; θ), (6.14) implies that

ăn(θ)0 = Eθf(Y1) (1− ăn(θ)1) = −∆nKf (θ)µθ(f) + ∆3/2
n R(∆n; θ).

Proof of Lemma 5.5. Define

g1(∆n, Yi, Yi−1; θ) = f(Yi)− ăn(θ)0 − ăn(θ)1f(Yi−1), (6.15)

g2(∆n, Yi, Yi−1; θ) = f(Yi−1) [f(Yi)− ăn(θ)0 − ăn(θ)1f(Yi−1)] ,

and Hn(θ) = (n∆n)−1Gn(θ) = (n∆n)−1
∑n

i=2 g(∆n, Yi, Yi−1; θ), where g = (g1, g2)T .
By the expansion (5.9)

g1(∆n, Yi, Yi−1; θ) = f(Yi)−f(Yi−1)+∆nKf (θ) [µθ(f)− f(Yi−1)]+∆3/2
n R(∆n, Yi−1; θ), (6.16)

and, hence, by the law of large numbers for integrated diffusions (Lemma 4.1),

1

n∆n

n∑
i=2

g1(∆n, Yi, Yi−1; θ) =
1

n∆n

[f(Yn)− f(Y1)] +
1

n

n∑
i=2

Kf (θ) [µθ(f)− f(Yi−1)]

+∆1/2
n

1

n

n∑
i=2

R(∆n, Yi−1; θ)
P0−→ Kf (θ)(µθ − µ0)(f).

The second coordinate of Hn(θ) requires a considerably longer proof, because the contri-
bution from the first term is not asymptotically negligible. To shorten the notation, we define
Eni = ∂xf(Xtni−1

)b(Xtni−1
; θ0)ε1,i and Ξn

i = ∂xf(Xtni−1
)b(Xtni−1

; θ0)ξ1,i and write the expansions
(3.1) and (3.7) under the true probability measure P0 as

f(Xtni
) = f(Xtni−1

) + ∆1/2
n Eni + ε2,i, (6.17)

f(Yi) = f(Xtni−1
) + ∆1/2

n Ξn
i + ξ2,i. (6.18)

First note that by (6.18)

g2(∆n, Yi, Yi−1; θ) =
(
f(Xtni−2

) + ∆1/2
n Ξn

i−1 + ξ2,i−1

)
g1(∆n, Yi, Yi−1; θ). (6.19)

By inserting (6.18) into (6.15) and applying the expansion (5.9) of ăn(θ), we find that

g1(∆n, Yi, Yi−1; θ) = f(Xtni−1
)− f(Xtni−2

) (6.20)

+ ∆nKf (θ)
[
µθ(f)− f(Xtni−2

)
]

+ ∆1/2
n

(
Ξn
i − Ξn

i−1

)
+R1(∆n, (Xs)s∈[tni−2,t

n
i ], θ0; θ),

where the remainder term R1 has the form

R1(∆n, (Xs)s∈[tni−2,t
n
i ], θ0; θ) (6.21)

= (ξ2,i − ξ2,i−1)−∆3/2
n Kf (θ)Ξ

n
i−1 −∆nKf (θ)ξ2,i−1 + ∆3/2

n R(∆n, Yi−1; θ).
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Using (6.17) and inserting the definitions of ε2,i and ξ2,i, (6.3) and (6.4), we obtain

f(Xtni−1
)− f(Xtni−2

) = ∆1/2
n Eni−1 + ε2,i−1 = ∆nL0f(Xtni−2

) + Ai−1(θ0) +Mi−1(θ0), (6.22)

where

Ai(θ) =

∫ i∆n

(i−1)∆n

[
Lθf(Xs)− Lθf(Xtni−1

)
]

ds,

Mi(θ) =

∫ i∆n

(i−1)∆n

∂xf(Xs)b(Xs; θ)dBs.

Now, using (6.19),(6.20) and ((6.22)), we obtain the ∆-expansion

g2(∆n, Yi, Yi−1; θ) =
3∑

k=1

g
(k)
2 (∆n, Yi, Yi−1; θ),

where

g
(1)
2 (∆n, Yi, Yi−1; θ) = f(Xtni−2

) · g1(∆n, Yi, Yi−1; θ)

= ∆nf(Xtni−2
)L0f(Xtni−2

) + f(Xtni−2
)Mi−1(θ0)

+ ∆nKf (θ)f(Xtni−2
)
[
µθ(f)− f(Xtni−2

)
]

+ R(1)
2 (∆n, (Xs)s∈[tni−2,t

n
i ], θ0; θ),

g
(2)
2 (∆n, Yi, Yi−1; θ) = ∆1/2

n · Ξn
i−1 · g1(∆n, Yi, Yi−1; θ)

= ∆n

(
Eni−1 − Ξn

i−1

)
Ξn
i−1 +R(2)

2 (∆n, (Xs)s∈[tni−2,t
n
i ], θ0; θ)

and

g
(3)
2 (∆n, Yi, Yi−1; θ) = ξ2,i−1 · g1(∆n, Yi, Yi−1; θ) = R(3)

2 (∆n, (Xs)s∈[tni−2,t
n
i ], θ0; θ)

with

R(1)
2 (∆n, (Xs)s∈[tni−2,t

n
i ], θ0; θ) =

f(Xtni−2
)Ai−1(θ0) + ∆1/2

n f(Xtni−2
)
(
Ξn
i − Ξn

i−1

)
+ f(Xtni−2

) · R1(∆n, (Xs)s∈[tni−2,t
n
i ], θ0; θ)

and

R(2)
2 (∆n, (Xs)s∈[tni−2,t

n
i ], θ0; θ) = ∆1/2

n Ξn
i−1ε2,i−1

+ ∆3/2
n Ξn

i−1Kf (θ)
[
µθ(f)− f(Xtni−2

)
]

+ ∆nΞn
i Ξn

i−1 + ∆1/2
n Ξn

i−1R1(∆n, (Xs)s∈[tni−2,t
n
i ], θ0; θ).

Collecting the terms,

g2(∆n, Yi, Yi−1; θ) =
3∑

k=1

g
(k)
2 (∆n, Yi, Yi−1; θ) (6.23)

= ∆nf(Xtni−2
)L0f(Xtni−2

) + f(Xtni−2
)Mi−1(θ0) + ∆nKf (θ)f(Xtni−2

)
[
µθ(f)− f(Xtni−2

)
]

+ ∆n

(
Eni−1 − Ξn

i−1

)
Ξn
i−1 +R2(∆n, (Xs)s∈[tni−2,t

n
i ], θ0; θ),

where the remainder term is

R2(∆n, (Xs)s∈[tni−2,t
n
i ], θ0; θ) =

3∑
k=1

R(k)
2 (∆n, (Xs)s∈[tni−2,t

n
i ], θ0; θ).

22



Now, tedious reasoning based on Lemma 9 in Genon-Catalot and Jacod (1993) shows
that

1

n∆n

n∑
i=2

R2(∆n, (Xs)s∈[tni−2,t
n
i ], θ0; θ) = oP0(1). (6.24)

Under the additional rate assumption n∆2
n → 0, it can in a similar way be proved that

1√
n∆n

n∑
i=2

R2(∆n, (Xs)s∈[tni−2,t
n
i ], θ0; θ) = oP0(1). (6.25)

The latter result is not needed in this proof, but it is necessary to show asymptotic normality
in the proof of Theorem 5.6, so we state it here for convenience. To see that the strong rate
assumption n∆2

n → 0 is necessary to obtain (6.25), we can, e.g., consider the last term in
(6.21):

1√
n∆n

n∑
i=2

∆3/2
n R(∆n, Yi−1; θ) =

√
n∆2

n ·
1

n

n∑
i=2

R(∆n, Yi−1; θ).

As the proofs of (6.24) and (6.25) are both very long and not particularly enlightening, they
are omitted.

To determine the limit in probability of the second coordinate of Hn(θ), we consider each
term in (6.23) separately. By the ergodic theorem, see e.g. Lemma 3.1 in Jørgensen and
Sørensen (2021),

1

n

n∑
i=2

f(Xtni−2
)L0f(Xtni−2

)
P0−→ µ0(fL0f)

and
1

n

n∑
i=2

Kf (θ)f(Xtni−2
)
[
µθ(f)− f(Xtni−2

)
]

P0−→ Kf (θ)
[
µ0(f)µθ(f)− µ0(f 2)

]
.

Furthermore, by definitions of Eni and Ξn
i ,

1

n

n∑
i=1

E0

(
(Eni − Ξn

i ) Ξn
i

∣∣ Fni−1

)
=

1

n

n∑
i=1

[∂xf(Xtni−1
)b(Xtni−1

; θ0)]2E0

(
(ε1,i − ξ1,i)ξ1,i

∣∣ Fni−1

)
,

and since ξ1,i ∼ N (0, 1/3), (3.11) implies that

E0

(
(ε1,i − ξ1,i)ξ1,i

∣∣ Fni−1

)
= E0 ((ε1,i − ξ1,i)ξ1,i) =

1

6
, (6.26)

so
1

n

n∑
i=1

E0

(
(Eni − Ξn

i ) Ξn
i

∣∣ Fni−1

) P0−→ 1

6
µ0

(
[b( · ; θ0)∂xf ]2

)
.

Finally, since by the definitions of ε1,i in (6.3) and of ξ1,i in (6.8) the difference ε1,i − ξ1,i is
Gaussian, Hölder’s inequality and the ergodic theorem imply that

1

n2

n∑
i=1

E0

(
(Eni − Ξn

i )2(Ξn
i )2
∣∣ Fni−1

)
=

1

n2

n∑
i=1

[∂xf(Xtni−1
)b(Xtni−1

; θ0)]4 · E0

(
(ε1,i − ξ1,i)

2 ξ2
1,i

∣∣ Fni−1

)
= oP0(1).

23



Therefore, by Lemma 9 in Genon-Catalot and Jacod (1993)

1

n

n∑
i=1

(Eni − Ξn
i ) Ξn

i
P0−→ 1

6
µ0

(
[b( · ; θ0)∂xf ]2

)
.

By the similar arguments,

1

n∆n

n∑
i=1

f(Xtni−1
)Mi(θ0) = oP0(1),

where we use that E0

(
Mi(θ0)

∣∣ Fni−1

)
= 0. Moreover, we use that, with h(x) = ∂xf(x)b(x; θ0),

and using the conditional Itô isometry, Tonelli’s theorem and (6.2),

E0

(
M2

i (θ0)
∣∣ Fni−1

)
= E0

(∫ i∆n

(i−1)∆n

h2(Xs)ds

∣∣∣∣ Fni−1

)
=

∫ i∆n

(i−1)∆n

E0

(
h2(Xs)

∣∣ Fni−1

)
ds

=

∫ ∆n

0

[
h2(Xtni−1

) + u ·R(u,Xtni−1
; θ0)

]
du = ∆nh

2(Xtni−1
) + ∆2

nR(∆n, Xtni−1
; θ0)

and, therefore,

1

n2∆2
n

n∑
i=1

E0

(
f 2(Xtni−1

)M2
i (θ0)

∣∣∣ Fni−1

)
=

1

n∆n

1

n

n∑
i=1

f 2(Xtni−1
)h2(Xtni−1

) +
1

n2

n∑
i=1

R(∆n, Xtni−1
; θ0) = oP0(1).

Gathering our observations, we have verified (5.12).

To identify the limit of ∂θTHn(θ), we write

Hn(θ) =
1

n∆n

n∑
i=2

Zi−1

[
f(Yi)− ZT

i−1ăn(θ)
]
,

where Zi−1 = (1, f(Yi−1))T , which implies that

∂θTHn(θ) = − 1

n∆n

n∑
i=2

Zi−1Z
T
i−1∂θT ăn(θ) = Zn(f)An(θ),

with Zn(f) := 1
n

∑n
i=2 Zi−1Z

T
i−1 and An(θ) := −∆−1

n ∂θT ăn(θ). By Lemma 4.1,

Zn(f)
P0−→ Z(f) =:

(
1 µ0(f)

µ0(f) µ0(f 2)

)
,

and applying the expansion (5.9) of ăn(θ), we see that

An(θ) = ∂θT

(
Kf (θ)µθ(f)
−Kf (θ)

)
+ ∆1/2

n ∂θTR(∆n; θ)→
(
∂θT [Kf (θ)µθ(f)]
−∂θTKf (θ)

)
=: A(θ).

Hence, it follows that ∂θTHn(θ)
P0−→ Z(f)A(θ). To argue that under Condition 5.4, the

convergence is uniform over any compact subset M of Θ, note that

sup
θ∈M
‖∂θTHn(θ)− Z(f)A(θ)‖ ≤ sup

θ∈M
‖Zn(f)[An(θ)− A(θ)]‖+ sup

θ∈M
‖[Zn(f)− Z(f)]A(θ)‖

≤ ‖Zn(f)‖ sup
θ∈M
‖An(θ)− A(θ)‖+ ‖Zn(f)− Z(f)‖ sup

θ∈M
‖A(θ)‖ .
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Therefore, (5.13) follows because θ 7→ A(θ) and ‖ · ‖ are continuous, and because

sup
θ∈M
‖An(θ)− A(θ)‖ = ∆1/2

n sup
θ∈M
‖∂θTR(∆n; θ)‖ ≤C(M) ∆1/2

n → 0.

Proof of Theorem 5.6. We use the notation introduced in the proof of Lemma 5.5. Because
γ(θ0, θ0) = 0, the existence of a consistent sequence of Gn-estimators (θ̂n) follows from
Lemma 5.5 and Theorem 2.5 in Jacod and Sørensen (2018). The eventual uniqueness in K
follows from Lemma 5.5 and Theorem 2.7 in the same paper.

Asymptotic normality of θ̂n follows by a standard Taylor expansion argument (see e.g.
Theorem 2.11 in Jacod and Sørensen (2018)) once we have established that√

n∆n ·Hn(θ0)
D0−→ N2(0, V0(f)). (6.27)

From the expansion of g1(∆n, Yi, Yi−1; θ) in (6.16), it follows that

1√
n∆n

n∑
i=2

g1(∆n, Yi, Yi−1; θ0)

=
1√
n∆n

[f(Yn)− f(Y1)] +
√
n∆n

(
1

n

n∑
i=2

f ∗1 (Yi−1)

)
+
√
n∆2

n ·
1

n

n∑
i=2

R(∆n, Yi−1; θ0)

=
√
n∆n

(
1

n

n∑
i=2

f ∗1 (Yi−1)

)
+ oP0(1)

D0−→ N
(
0, µ0

(
[∂xU0(f ∗1 )b( · ; θ0)]2

))
,

where the convergence in law holds by Lemma 4.2 because f ∗1 ∈H0.

Our proof that

1√
n∆n

n∑
i=2

g2(∆n, Yi, Yi−1; θ0)
D0−→ N

(
0, µ0

(
[∂xU0(f ∗2 ) + f∂xf ]2 b2( · ; θ0)

))
(6.28)

is based on the expansion of g2 given by (6.23) and the observation that

1√
n∆n

n∑
i=2

∆n

(
Eni−1 − Ξn

i−1

)
Ξn
i−1 =

1

6

1√
n∆n

n∑
i=2

∆n[∂xf(Xtni−2
)b(Xtni−2

; θ0)]2 +oP0(1), (6.29)

which follows from Lemma 9 in Genon-Catalot and Jacod (1993) using that
(
Eni−1 − Ξn

i−1

)
Ξn
i−1

= [∂xf(Xtni−2
)b(Xtni−2

; θ0)]2 (ε1,i−1 − ξ1,i−1) ξ1,i−1 and that E0

((
Eni−1 − Ξn

i−1

)
Ξn
i−1

∣∣ Fni−2

)
=

1
6
[∂xf(Xtni−2

)b(Xtni−2
; θ0)]2, see (6.26).

Combining (6.29), (6.23) and the result (6.25) that the term involving the remainder
term vanishes, we see that

1√
n∆n

n∑
i=2

g2(∆n, Yi, Yi−1; θ0) (6.30)

=
√
n∆n

(
1

n

n∑
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f ∗2 (Xtni−1
)

)
+

1√
n∆n

n∑
i=1

f(Xtni−1
)Mi(θ0) + oP0(1).
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To gather the non-negligible terms in (6.30), we initially observe that

1√
n∆n

∫ n∆n

0

f ∗2 (Xs)ds =
√
n∆n

(
1

n

n∑
i=1

f ∗2 (Xtni−1
)

)
(6.31)

+
1√
n∆n

n∑
i=1

∫ i∆n

(i−1)∆n

[
f ∗2 (Xs)− f ∗2 (Xtni−1

)
]

ds =
√
n∆n

(
1

n

n∑
i=1

f ∗2 (Xtni−1
)

)
+ oP0(1),

where we only use that f ∗2 ∈ C2
p(S). A proof that the second term in (6.31) is asymptotically

negligible under P0 is contained in the proof of Proposition 3.4 in Jørgensen and Sørensen
(2021). Furthermore, by Proposition 3.3 in the same paper, L0 (U0(f ∗2 )) = −f ∗2 under
Condition 5.4, and, therefore, by Itô’s formula,

U0(f ∗2 )(Xt) = U0(f ∗2 )(X0) +

∫ t

0

L0(U0(f ∗2 ))(Xs)ds+

∫ t

0

∂xU0(f ∗2 )(Xs)b(Xs; θ0)dBs

= U0(f ∗2 )(X0)−
∫ t

0

f ∗2 (Xs)ds+

∫ t

0

∂xU0(f ∗2 )(Xs)b(Xs; θ0)dBs.

As a consequence,

√
n∆n

(
1

n

n∑
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f ∗2 (Xtni−1
)

)
=

1√
n∆n

∫ n∆n

0

f ∗2 (Xs)ds+ oP0(1)

=
1√
n∆n
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(i−1)∆n

∂xU0(f ∗2 )(Xs)b(Xs; θ0)dBs + oP0(1),

and hence

1√
n∆n

n∑
i=2

g2(∆n, Yi, Yi−1; θ0)

=
√
n∆n

(
1

n

n∑
i=1

f ∗2 (Xtni−1
)

)
+

1√
n∆n

n∑
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f(Xtni−1
)Mi(θ0) + oP0(1)

=
1√
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n∑
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∫ i∆n

(i−1)∆n

[
∂xU0(f ∗2 )(Xs) + f(Xtni−1

)∂xf(Xs)
]
b(Xs; θ0)dBs + oP0(1).

At this point, the asymptotic normality in (6.28) can be shown by applying the central limit
theorem for martingale difference arrays, see e.g. Hall and Heyde (1980) or Häusler and
Luschgy (2015); for details see pp. 507-508 in Jørgensen and Sørensen (2021). The joint
normality in (6.27) follows by the Cramér-Wold device.

7 Concluding remarks and extensions

For integrated diffusions observed on [0, 1], Gloter and Gobet (2008) prove that the statistical
model satisfies the LAMN property and that the optimal rate of convergence of estimators
of a parameter in the diffusion coefficient is 1/

√
n. The optimal rates for integrated diffusion

models under the high-frequency/infinite horizon scenario considered in this paper are not
known, but the minimum contrast estimators in Gloter (2006) attain a rate of 1/

√
n∆n for

parameters in the drift and 1/
√
n for diffusion parameters under this scenario (similar to the

rate optimal estimators for discretely observed diffusions in Sørensen (2024)), so presumably
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these rates are optimal. However, as we do not distinguish between drift and diffusion
parameters in this paper, the 1/

√
n∆n rate of our parameters is all we could hope for.

An interesting extension would be to introduce a jump component in the dynamics of
(Xt). Such an extension has the particular feature that jumps in (Xt) lead to changes in
the trend of (It) and not to path discontinuities. As a consequence, threshold estimators
developed for processes with jumps observed at high-frequency (see e.g. Mancini (2009)) are
not directly transferable. A general test for the presence of volatility jumps using change-
point theory was proposed by Bibinger et al. (2017). How and whether the same principle
can be applied for parametric inference is an interesting topic for future research.
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Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Applications . Academic
Press, New York.

Hansen, L. and Scheinkman, J. (1995). Back to the future: Generating moment implications
for continuous-time markov processes. Econometrica, 63(4), 767–804.

Heston, S. (1993). A closed-form solution for options with stochastic volatility with appli-
cations to bond and currency options. Review of Financial Studies , 6(2), 327–343.
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