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Abstract

We consider parametric inference for an ergodic and stationary diffusion process, when
the data are high-frequency observations of the integral of the diffusion process. Such
data are obtained via certain measurement devices, or if positions are recorded and
speed is modelled by a diffusion. In finance, realized volatility or variations thereof can
be used to construct observations of the latent integrated volatility process. Specifi-
cally, we assume that the integrated process is observed at n equidistant, deterministic
time points iA,, for some A, > 0 and consider the high-frequency/infinite horizon
asymptotic scenario, where n — 0o, A,, — 0 and nA,, — co. Subject to mild standard
regularity conditions on (X;), we prove the asymptotic existence and uniqueness of
a consistent estimator for useful and tractable classes of prediction-based estimating
functions. Asymptotic normality of the estimator is obtained under the additional
rate assumption nA2 — 0. The proofs are based on the useful Euler-It6 expansions of
transformations of diffusions and integrated diffusions, which we study in some detail.

Keywords: Euler-1td expansion, high-frequency data, integrated diffusion, potential
operator, prediction-based estimating functions, p-mixing.

1 Introduction

Diffusion processes are used to model dynamical systems in many scientific areas, particularly
in finance. While these processes are defined in terms of continuous-time dynamics, the
available time series are observations of the system, or components of it, at discrete points
in time. To bridge this gap between models and data, statistical methods for discretely
observed continuous-time stochastic processes is a very active area of research, where the
availability of high-frequency data has generated considerable interest in the construction and
study of estimators and test statistics with nice asymptotic properties as the time between
consecutive observations tends to zero.

*ORCID: 0000-0001-7233-5377



This paper deals with parametric inference for integrated diffusion models (1;);>o of the
general form

dIt - Xtdt, ]0 - 0 (11)

where the diffusion process (X;) takes values in an open interval (I,7) C R and is ergodic with
invariant distribution py. We assume that (X;) is strictly stationary under the probability
measure Py, i.e. that Xy ~ py. The parameter 0 takes values in © C R? for some d > 1.

Let the data be a single time series {I;n }7_ of observations of the integrated process at
deterministic, equidistant points in time, i.e. t = iA,, for some A, > 0. The process (X}) is
latent. To enable consistent estimation of both drift and diffusion parameters, we consider
the high-frequency/infinite horizon sampling scenario

n—oo, A,—0, n-A,— o0, (1.3)

where the time horizon tends to infinity with the number of observations. An equivalent
observation scheme is given by the transformed variables

iAy,

Y, = A ([t¢ - ft;u) - A,f/ X,ds, i=1,...,n. (1.4)
(i-1)An,

Note that for fixed A, the sequence {Y;}2, inherits stationary under Py from (X3).

We construct and study estimators using prediction-based estimating functions, which
were proposed by Sgrensen (2000, 2011) as a versatile framework for parametric inference
in non-Markovian diffusion-type models. This approach was applied to integrated diffusions
in Ditlevsen and Sgrensen (2004). Their main contribution was to derive explicit Godambe-
Heyde optimal prediction-based estimating functions for diffusions belonging to a tractable
class of models that includes the Ornstein-Uhlenbeck process and the square-root (CIR)
process and prove low-frequency asymptotic results. The main contribution of the present
paper is to establish a high-frequency asymptotic theory for a class of prediction-based
estimators, in particular, existence, uniqueness, consistency and asymptotic normality within
the asymptotic scenario (1.3). Our proofs build on similar results for diffusion models in
Jorgensen and Sgrensen (2021).

Parametric estimation for discretely observed diffusion models (X;) of the form (1.2)
is the topic of numerous papers of which we can only list a few: Dacunha-Castelle and
Florens-Zmirou (1986), Yoshida (1992), Hansen and Scheinkman (1995), Bibby and Sgrensen
(1995), Kessler (1997), Shoji and Ozaki (1998), Roberts and Stramer (2001), Ait-Sahalia
(2002), Beskos et al. (2006), Bladt and Sgrensen (2014), van der Meulen and Schauer (2017),
Sgrensen (2024), Pilipovic et al. (2024) and Garcia-Portugués and Sgrensen (2025), see also
the review paper Sgrensen (2012).

Although to a lesser extent, parametric inference for integrated diffusions has also been
the topic of several papers in econometrics and statistics. In the econometric literature, the
problem appears in the guise of continuous-time stochastic volatility models. To illustrate
this, consider the simple stochastic volatility model for an asset price, dSy = /v, dW;, where
(W) denotes a standard Brownian motion. The availability of high-frequency observations
of (S;) enables us to filter out discrete time observations of the latent integrated volatility,
fot vsds, and view these as our data. Nonparametric filtering of integrated volatility from
high-frequency time series is an emblematic problem in financial econometrics. An extensive
list of references can be found in Ait-Sahalia and Jacod (2014). This procedure has lead
to the construction of estimators for integrated processes in the case where the volatility



dynamics are modeled by a time-homogeneous, stationary diffusion process similar to (1.2),
e.g., the GARCH(1,1) diffusion model in Nelson (1990), the square-root (CIR) process in
Heston (1993) and the 3/2 diffusion in Drimus (2012). Estimation based on realized power
variations that approximate the integrated volatility has been studied by e.g. Bollerslev
and Zhou (2002), Barndorff-Nielsen and Shephard (2002) and Todorov (2009). Li and Xiu
(2016) developed high-frequency (infill) asymptotics for GMM estimators of parameters in
the diffusion coefficient of the volatility process by preliminary filtering of the spot volatility
instead. Apart from the work by Ditlevsen and Sgrensen (2004) that was summarized
above, papers in the statistical literature include Baltazar-Larios and Sgrensen (2010), who
proposed a simulated EM-algorithm to obtain maximum likelihood estimators for integrated
diffusions contaminated by noise, e.g. microstructure noise, and Gloter (2000, 2006), who
proposed an approach that has significantly influenced the present paper. In this approach,
which is based on expansion results for small values of A,, the construction of contrast
estimators utilizes that, as A, — 0, Y; &~ Xy, which allows high-frequency limit results for
integrated diffusions to be established. Finally, nonparametric estimation of the drift and
diffusion coefficient in the latent diffusion process from high-frequency observations of (I;)
was studied by Comte et al. (2009).

The paper is organized as follows. In Section 2, we present preliminaries: the notation and
concepts used in the paper, our general assumptions on (X;), and the prediction-based esti-
mating functions considered in the paper. Section 3 contains an expansion of a transforma-
tion of the diffusion process of the form f(Xin) = f(Xt;z_l)+Ai/26xf(Xt;z_1)b(Xt?_l; 0)e1i+ea,
and the similar result for f(Y;). The expansion for the integrated process, Y;, was essentially
pointed out by Gloter (2000). These expansions serve as essential building blocks for the
asymptotic theory in our paper, and because they are related to the classic Euler approx-
imation, we refer to them as Fuler-1t6 expansions. Section 4 is devoted to limit theorems
for integrated diffusions, while the asymptotic results on existence, uniqueness, consistency
and asymptotic normality of our estimators are developed in Section 5. Proofs and some
auxiliary results are deferred to Section 6, and Section 7 concludes.

2 Preliminaries

In this section we present the general notation used throughout the paper and some core
concepts, formulate our main assumptions on the underlying diffusion model (X}), and define
a tractable class of prediction-based estimating functions.

2.1 Notation and concepts

Our general notation is as follows:

1. The true parameter value is denoted by 6.

2. We denote the state space of (X;) by (S, %(S5)), where S = (I,r) for —oo <[ <r < 0
is an open interval equipped with its Borel o-algebra Z(S5).

3. We write pg(f) = [ f(x)po(dx) for functions f : S — R, and denote by £ (y9) the
space of functlons f, for which ug(\ fIP) < oo. Moreover, 2 (1p) denotes the subset of
LP(uy) for which pye(f) = 0.

4. By Poo and 2% we denote convergence in probability and in distribution under Py.
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10.
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A function f : S x © — R is said to be of polynomial growth in x if there exists a
Cy > 0 such that |f(z;0)] < Cp(1 + |x|%) for all x € S.

. In this paper, R(A,x;0) denotes a generic real function such that

[R(A, z;0)| < F(x;0), (2.1)
where F'is of polynomial growth in .

For real functions f and g defined on a measure space (A, .o, v), we write f <¢ g if
there exists a constant C' > 0 such that f(a) < Cg(a), for v-almost all @ € A. In
particular, f and ¢ can be random variables.

. We denote by Cg’k(S x 0), 7,k > 0, the class of real-valued functions f(z;6) satisfying

that

- f is 7 times continuously differentiable w.r.t. x;
- f is k times continuously differentiable w.r.t. 61,...,0y4;
- f and all partial derivatives 0719;" - ~~3§jf, 1 < 4, k14 -+ kqs <k, are of

polynomial growth in x.

We define CJ(S) analogously as a class of function f: S — R.

. The infinitesimal generator of a diffusion process (X;) is denoted by Ay, and the

corresponding domain by D 4,. If (X;) satisfies Condition 2.1 below, then C2(S) C Dy,,
and for all f € C2(S), Agf = Ly f, where

1
Lof(x) = a(z;0)0.f(x) + §b2(93; 0)0; f(); (2.2)
see e.g. Kessler (2000).
For any diffusion process (X;), the potential operator is given by

Ui )a) = [ " Pt (2.3)

0

It is defined for functions f : S — R in the set Dy, = {f : [;* |P{ f(z)|dt < oo}, where
PP denotes the transition operator P{ f(x) = Ey (f(X;) | Xo = z).

We define
Ay = { € CH(S)N D, : wof) = 0.Un(f) € CS)). (2.4)

The potential operator plays an important role in our asymptotic theory. General results
ensuring that f € Dy, and regularity of Up(f) can be found in Pardoux and Veretennikov
(2001). For an ergodic diffusion with invariant measure py, f € Dy, must necessarily satisfy
te(f) = 0. The reason why the potential operator is important in our theory is that under
regularity conditions it satisfies the Poisson equation Ly(Uy(f)) = —f. If (X;) satisfies
Condition 2.1 below, this is the case for f € 743, see e.g. Proposition 3.3 in Jgrgensen and
Sgrensen (2021).



2.2 Model assumption

To establish asymptotic results for integrated diffusions of the general form (1.1)-(1.2), we
impose the following regularity conditions on (Xj).

Condition 2.1. For any 6 € ©, the stochastic differential equation
dXt = a(Xt; e)dt + b(Xt, H)dBt, XO ~ g

has a weak solution (92, (F;), Py, (By), (X;)) for which F, = o (Xo, (Bs)s<t), Xo is independent
of (By) and

- (Xy) is stationary and p-mizing under Py.
Moreover, the triplet (a,b, ug) satisfies the regularity conditions
- a,be (S x0),
- a(z; 0)] + [b(2; 0)] <c 1+ 2],
- b(z;0) >0 forx e S,
- Jglz|Fpo(da) < oo for all k> 1.

We define a discretized filtration by F}* := Fin.

Easily checked conditions for p-mixing of one-dimensional diffusion processes are given
in Genon-Catalot et al. (2000). In particular, for an ergodic and time-reversible diffusion
process, the p-mixing property is equivalent to the existence of a spectral gap. The latter
means that the largest non-zero eigenvalue of the generator Ay of the diffusion process is
strictly smaller that zero. From spectral theory it is known that all eigenvalues are non-
positive. The size of the spectral gab, which we denote by )y, equals minus the largest
non-zero eigenvalue.

Under Condition 2.1, it is well-known that for f € £2(u) it holds that that || P/ f|| <
e™||f||2 for all ¢ > 0, where || f|l2 = y10(f2)2, see e.g. Lemma 3.2 in Jorgensen and Sgrensen
(2021). Using this we can define [~ P/ f(x)dt as the || - ||3-limit of fON Pl f(x)dt as N — oo.

This limit exists and belongs to £ (ug) because fON P? fdt is a Cauchy sequence in Z2(ju).
Thus under Condition 2.1, Uy is a well-defined mapping £Z(ug) +— ZZ(1g), and since
Cy(S) € L*(ng) we have that 5 C £ (ug) € Dy,. In particular, the space % can be
written as

Hy ={f € Cy(S)  po(f) = 0,Us(f) € C;(S)}. (2.5)

The following condition on the true parameter value 6, is essential to the asymptotic
theory for our estimators in Section 5. Here int(©) denotes the interior of ©.

Condition 2.2. The parameter space is © C R? and 6, € int(O).

The notation py = pg,, Po = Py,, etc., is applied throughout the paper.



2.3 Prediction-based estimating functions

Prediction-based estimating functions were proposed by Sgrensen (2000, 2011) as a versatile
framework for statistical inference for non-Markovian diffusion-type models. In this paper,
we consider the class of estimating functions

n N
Gu(0) = Y > miia; (V) = 7ima5(0)] (2.6)
i=q+1 j=1
where {f;}}_, is a finite set of real-valued functions in .2?(pg). For each j € {1,...,N},
#i—1,;(0) denotes the orthogonal £ (g)-projection of f;(Y;) onto a finite-dimensional sub-
space
Pi-1,; = span {17 fiYi), - i (Yz‘—qj)} c XQ(N(?); (2.7)
where ¢; > 0. The coefficients m;_; ; in (2.6) are d-dimensional column vectors with entries
in P;_1;, and ¢ := maxi<j<n g;-.

The subspaces {P;_1;}:; are called predictor spaces. What we predict are values of f;(Y;)
for i > ¢+ 1. Since every predictor space P;_1; is closed, the .£?(ug)-projection of f;(Y;)
onto P;_1;, 7i—1,j(0), is well-defined and uniquely determined by the normal equations
Eo (m [f;(Y:) — Tie1,;(0)]) = 0 (2.8)
for all 7 € P;_; ;. Moreover, by restricting our attention to a stationary process (X;) and
predictor spaces of the form (2.7), the solution to (2.8) is #;_1 ;(6) = @n(0)] Z;_1,;, where

Zi1; = (17 fiYia), o f; (Yi—qj))T

and a,(#)] denotes the (g; + 1)-dimensional coefficient vector

dn(G)JT = (dn(e)jm an(0)j1 - - 7dn(e)jqj>

determined by the moment conditions
By [Za,55(Yay11)] = Bo | Z, 520 5] an(0);: (2.9)
In the simplest case ¢; = 0, P;_1; = span{l} and, by (2.9), 7,_1,(0) = Eo f;(Y1).

We obtain an estimator 0, by solving the estimating equation G, (¢) = 0, and we call an
estimator 6, a G, -estimator if Py, (G,(0,) =0) = 1 as n — 0.

Most prediction-based estimating functions applied in practise are of the form considered
here. In general, there is no explicit expression for the moments in (2.9). However, as noted
by Ditlevsen and Sgrensen (2004), polynomial functions f;(y) = y%, 3; € N, often enables
calculation of the necessary moments by integrating over mixed moments of (X;). This
leads to explicit prediction-based estimating functions for the Pearson diffusions studied in
Forman and Sgrensen (2008).

3 Euler-It6 expansions

This section is devoted to expansions of transformations of diffusion processes and integrated
diffusion processes observed over a small time interval of length A,. We refer to these ex-
pansions as Euler-Ito expansions. Essentially, the following results provide a bridge between
the asymptotic theory in Jgrgensen and Sgrensen (2021) and that of the present paper. The
results are formulated with respect to an arbitrary probability measure Py.
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3.1 Diffusion processes

The following expansion appears in various guises in the literature on statistical inference
for stochastic differential equations; see e.g. Kessler (1997).

Proposition 3.1. Let f € C)(S). Then there exist F}'-measurable random variables e1; and
€9,i such that

f(Xm) = f(Xin ) + A;/anf(Xtﬁl)b(thil; O)e1,i + €2, (3.1)

where £1; ~ N (0,1) and is independent of FI* |, and eo; satisfies the moment expansions
Eo (2 | Fi'1) = AnLof(Xm )+ ALR(A,, Xin 30), (3.2)
By (le2ql" | Fiy) = AFR(An, X 56), k> 2. (3.3)

3.2 Integrated diffusions

To establish a similar result for functions of the integrated process, we rely on earlier work
by Gloter (2000) as well as k’th order Taylor expansions of functions f € C¥(S) of the form

k—1
F00) = 3 S0 (Xip )i = Xip )+ OEF(ZDY= X ) (34)

where Z" is a random variable between Xi» = and Vi, i.e. Z' = Xyn  +5(Y; — Xin ) for some
s € (0,1). The following lemma provides an upper bound for the remainder term in (3.4)
for a given k > 1.

Lemma 3.2. Let h : S — R be of polynomial growth. Then, for any k > 1,
By (IM(Z (Y = X DI | Fy) S AR+ X, )% (3.5)

In particular, if f € C}(S), f(Y;) = f(Xem ) + 0o f(Z]")(Y; — Xin ), and Lemma 3.2 implies
that
By (1£(V) = f(Xp )1 | F1) <o AR 41X ) (3.6)

Our main result in this section is of independent interest. It is a generalization of Propo-
sition 2.2 in Gloter (2000). Note the resemblance with Proposition 3.1.

Proposition 3.3. Let f € C;‘,‘(S). Then there exist F;'-measurable random variables & ; and
&2, such that
F0) = F(Xip ) + D320 f (X J0(Xep 3 0)613 + €2 (37)

where & ; ~ N(0,1/3) and is independent of F,, and &, satisfies the moment expansions

Eq (62,1’ ’ JT_‘Zn_l) = An%Gf(Xt?il) + AimR(A?th;Ll;e)a

By (&, | Fy) = AZR(Ath;LI;Q)» (3.9)
with . )
Hof(z) = éﬁof(m) - Eb2(l’; 0)0; f (x). (3.10)
Moreover,
Eg (€1, - &1) = %, (3.11)

where €1, is the random variable that appears in the Euler-1t6 expansion (3.1).
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4 Limit theory for integrated diffusions

As an application of the Euler-It6 expansion (3.7) and the corresponding bound (3.6), we
derive in this section a law of large numbers and a central limit theorem for a class of
functionals of integrated diffusions

1 n

- Y;), 4.1

- ;ﬂ ) (4.1)

where f : S — R satisfies appropriate regularity conditions. For the remainder of the paper,
all asymptotic results are obtained under the true probability measure Py and under the
asymptotic scenario (1.3).

Lemma 4.1. Suppose that f € C,(S) and that (X,) satisfies Condition 2.1. Then,

—Zf =5 pio(f)-

The result of Lemma 4.1 appears in a slightly stronger version in Proposition 2 of Gloter
(2006).

The result of the following lemma is that a central limit theorem for functionals (4.1) of
integrated diffusions can be obtained under the same assumption on the rate of convergence
of A, and with the same Gaussian limit distribution as for similar functionals of discretely
observed diffusion processes; see Proposition 3.4 in Jorgensen and Sgrensen (2021).

Lemma 4.2. Assume that f € 7 and that (X;) satisfies Condition 2.1. If nA3 — 0, then

VA, (% i f(Y;)) 25 N (0, V(1))

where

Vo(f) = o ([0:Uo(f)b( - 5600)]*) = 240 (fUs(f)) - (4.2)

The operator Uy(f) appearing in the asymptotic variance (4.2) is the potential, which
was defined and discussed in Subsections 2.1 and 2.2.

5 Asymptotic theory

This section contains our main asymptotic results on G,-estimators obtained from prediction-
based estimating functions of the type described in Subsection 2.3. The proofs are based on
general asymptotic theory for estimating functions in Jacod and Sgrensen (2018); see also
Sorensen (2012). We confine the discussion to estimating functions of the form (2.6) where
N =1 and simplify the notation by writing

Z T [f(Ye) = #i1(0)] (5.1)

P;_1 for the corresponding predictor spaces and so on for objects in Subsection 2.3 that
depend on j. The extension to estimating functions with multiple predictor functions { f; }évzl
is discussed in Section 4.3 in Jorgensen and Sgrensen (2021).
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5.1 Simple predictor spaces

The simplest class of estimating functions of the form (5.1) occurs for ¢ = 0. In this case,
the orthogonal projection is 7;_1(0) = Eqf(Y7), and the one-dimensional predictor space
P;_1 allows us to estimate one real parameter § € © C R. Therefore, we consider the
one-dimensional estimating function

n

Gu(0) = [f(V:) = Eof (V)] (5.2)

i=1

Similar estimating functions were studied for discretely observed diffusions by Kessler (2000).

Our study of the asymptotic properties of G,-estimators is based on expansions of G,
in powers of A,,. In the simple case considered here, such an expansion follows easily from
(3.7) in Proposition 3.3, which implies that for any f € C;(S )

Eof(Y1) = po(f) + Eo(§2,1) = po(f) + AnR(An; 0), (5.3)
where |R(A,;0)| < C(0) < .

The following regularity conditions on GG,, plus standard identifiability and rate conditions
ensure existence, consistency and asymptotic normality of G,,-estimators.

Condition 5.1. Suppose that
(@) = f(2) — wo(f) € A,
- 0= po(f) € C
- For any compact subset M C © and for A, sufficiently small,

sup |OpR(A,;0)| < C(M). (5.4)
9eM

Theorem 5.2. Assume Conditions 2.1, 2.2 and 5.1 and the identifiability condition Ogug(f) #
0 for all @ € ©. Then the following assertions hold.

~

- There exists a consistent sequence of Gy-estimators (0,,) which, as n — 00, is unique
i any compact subset K C © containing 6y with Py-probability approaching one.

- If, moreover, nA3 — 0, then
VB (6= 0) 25 N (0, [Dopto(£)] > Vo)) (5.5)

where Vo (f) = 2u0(f*Uo(f*))-

Specifically, the statement about uniqueness means that for any G,-estimator 6, for
which Py(6, € K) — 1, it holds that Py(6,, # 0,) — 0.

The identifiability condition and the assumption about the rate of convergence of A,, are
exactly as in the similar result for prediction based estimating functions for discrete time
observations of diffusion processes in Jgrgensen and Sgrensen (2021). Also the Gaussian
the limit distribution is the same, which enables us to use the Monte Carlo method to
calculate the asymptotic variance developed in Section 5.1 of Jgrgensen and Sgrensen (2021).
Importantly, this method does not require an expression for the potential.
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5.2 1-lag predictor spaces

The introduction of functions of past observations in the predictor space P;_; increases the
mathematical complexity considerably. Our main result establishes existence, uniqueness,
consistency and asymptotically normality for prediction-based G,-estimators with ¢ = 1
under appropriate regularity conditions. In this case, the predictor space P;_; is spanned by
1 and f(Y;_1), and it follows from the normal equations (2.9) that the optimal predictor is

Ti1(0) = @n(0)o + @n(0)1f(Yio1),

where a,(0)o and a,(0); are uniquely determined by

an(0)o = Eof(Y1) (1 —an(0)1), (5.6)
i) = 2l (Yl)é(:z?(;l[)&)f L (5.7)

Consistent with the two-dimensional predictor space, we consider d = 2 and investigate the
estimating function

6u0) =3 (ystry ) 0D = (0o = (011 (i) 55)

1=2

for which the expansion in powers of A,, is more difficult than for (5.2).

Using on the Euler-Ito expansions in Section 3, we start by expanding the projection
coefficients a,(0)o and a,(f);. As the proof is a bit long, we formulate the result in a
separate lemma.

Lemma 5.3. For f € C)(S), the projection coefficient vector an(6) = (dn(6)o, in(0)1)" has
the expansion

in(0) = ( ! ) LA, ( _Kgg()g)ﬁm ) + AS2R(A,:6) (5.9)
where |R(A,;0)] < C(6) and
K0 = Varaf (6)” [na72af) + o (b0 -:0)0:11)|. (5.10)

The following regularity conditions on ), are imposed in our asymptotic theory.
Condition 5.4. Suppose that

- fi(@) = Kp(6o) [po(f) — f(2)] € A,

+ fi(@) = f(@)Lof (x) + §lb(w: 00)0: f (2)]? — Ky (60) f(x) [f () — po(f)] € S5,

- (0= pe(f)) €C, (0 — Ky(0)) € Ct and the remainder term in (5.9) satisfies that
sup [|Opr R(A,; 0)]] < C(M), (5.11)
geM

for any compact subset M C © and for A,, sufficiently small.

The matrix norm || - || in (5.11) and (5.13) can be chosen arbitrarily, and for convenience

we suppose that || - || is submultiplicative. The following lemma establishes crucial technical

steps in the proof of the main Theorem 5.6.
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Lemma 5.5. Assume that Conditions 2.1 and 5.4 holds. Then, for any 0 € ©,
(nA,) ' Ga(0) = 7(00:6)

where

gy — K¢ (0) (1o — p10)(f)
20590 = (s s207) + 30 00 00T R0 o) o) )+ 1

Moreover, for any compact subset M C ©

sup [|(nA,) 19 Ga(8) — W(0)|| 2% 0, (5.13)
feM

where

_ L uo(f) O, [Kf(0)po(f)]  Opy [I5(0) o (f)]
W(e)(uo(f) uo<f2>)( COnKH0)  —OnI(0) )

Theorem 5.6. Assume Conditions 2.1, 2.2 and 5.4, that W (0) is non-singular, and that
the identifiability condition v(0y;0) # 0 for all 6 # 0y is satisfied.

Then the following assertions hold:

A~

- There exists a consistent sequence of Gy, -estimators (0,,) which, as n — oo, is unique
i any compact subset I C © containing 6y with Py-probability approaching one.

- If, moreover, nA% — 0, then

Vi, (6= 80) 2 N (0, [ (80) " Vo(H) (W (80) ™)) (5.14)
where
w0 (10.U6(F0)0( - 5 00)]7) Cov(f)
Vlf) = ( Cov(f) o ([0:U0(f3) + f0. 12 02( - 100)) > |
with

Compared to the results in Jorgensen and Sgrensen (2021), the lower order AY? of the
remainder term in the expansion (5.9) necessitates the rate assumption nA? — 0, which is
stronger than what is needed for discretely observed diffusion processes. The same strong
rate assumption appears in Gloter (2006) to ensure asymptotic normality for a class of
minimum contrast estimators with observations of an integrated diffusion.

6 Proofs and auxiliary results

In this section we present the proofs of the results of the paper and some auxiliary results
that are needed in the proofs.
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6.1 Auxiliary results

We use several times that for a diffusion process X satisfying Condition 2.1 and a function
f € Cy(S), there exists, for every k > 1, a constant Cjg > 0 such that

E, ( sup |f(Xpss) — F(XO)|F

$€[0,4]

}"t) < CrpAP? (1 + ]Xt|)c’“*9 . (6.1)

This classical result can be proved following the proofs of the similar results in Kessler (1997)
and Gloter (2000).
We also use the well-known result that if a(-;0) € C2F(S x ©), b(-;0) € C2*°(S x ©) and

fe CIQ)(HU(S) for a k > 0. Then

k
A’
Eo (f(Xira) | Fo) = Z—, F(X0) + AMIR(A, X3 0), (6.2)
il

see e.g. Lemma 1.10 in Sgrensen (2012).

Lemma 6.1. Let (X;)i>0 be a continuous semimartingale on (Q, F, (F:),P), and suppose
that (Hy)i>o is (Fi)-adapted and continuous. For any t > t* >0,

t s t
/ ( Huqu> ds = / (t — s)HsdXs.
e \Jer t*

Proof. Without loss of generality, we can assume that t* = 0. Define Z; = fot H.,dX,. By
stochastic integration-by-parts (the Ito- formula), d(tZ;) = tdZ; + Z;dt. Thus

t t t
/ tdZ, =tZ, = / Zyds + / sdZ,
0 0 0

which verifies the result. ]

6.2 Proofs

Since we study limits as A,, — 0, we can in all the proofs assume that A, is bounded from
above, e.g. A, < 1.

Proof of Proposition 3.1. By Ito’s formula,

1Ay iAp
F(Xu) = F(Xip )+ / Lof (X,)ds + / 0 F(X)b(X,: 0)dD,
(i—1)A, (i-1)An
With the definitions
iAp
€15 = A;W/ dB,, (6.3)
(i—1)An
1Ay
A = / Lof(X,)ds
(i_l)An

D, — /mn [axf(Xs)b(Xs;e)—axf(XtL)b(XtL;g) dB..
(

i—1)Ap,

g9, = Ai+ Dy, (6.4)
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we obtain an expansion of the form
f(X) = f(Xin ) + A}Lﬂazf(Xty_l)b(Xty_l; O)e1; + €2,
where £1; and e,; are F-measurable and £1,; ~ N (0, 1) and independent of F/ ;.

To prove the conditional moment expansions (3.2)-(3.3) apply Fubini’s theorem followed
by (6.2) to obtain

Ap
Eo (Ai | Fy) = /0 Eq <£9f(Xt?71+“)

7

Fr 1) du

An
= / [ﬁgf(Xt?_l) +u- R(u, Xgn ; 8)} du
0
== An»CQf(XtZTLl) + AiR(An, thnil; 9)
Furthermore, since Eq (fot 0, f(X,)b(X,; 0)] ds) = tug ([f'b(-;0)]?) < oo, the stochastic
integral fot 0o f (X5)b(X,; 0)d By is a Py-martingale, so Eq (D; } Fy) = 0, which verifies (3.2).

For conditional moments of order £ > 2, we write
iAn

Ai=AnLof(Xep )+ /

(i—-1)An

Lof (X)) = Lf (X )| ds

and observe that, by Jensen’s inequality,

k iAn
< AbAT / Laf(X) — Lof (X Fds
(

i—1)A,
AR sup [Lof (Xen 1u) — Lof (Xen ).

-
<c Ai(lﬂL’Xt? )

u€[0,An]
Similarly, with h(z;6) = 0, f(x)b(x; ), the Burkholder-Davis-Gundy inequality (see e.g.
Jacod and Protter (2012)), Jensen’s mequahty and (6.1) imply that for all k£ > 2,

Ey (W 7))
(‘ / WX 0) = (X ,;0)] dB, f”)
(i-1
iy

, k2
<e Eg([ / [h(Xs,é’) h(Xt;L_l;@)} ds}
(i-1)An
7

Fz”_l)

‘/ £9f s) = ﬁaf(Xt?_l)] ds
(i-1)An

IN

Hence, by (6.1),
Eq (|Az|k | ]:in—l)

<o, AR+ |Xp N+ ALKy ( S[UP }!ﬁef(Xt” ) — Lof (X )IF
u€[0,A

k

Ay
< AM2.E, (A;l/(' s |h(X;0) — h( X 0)["ds

S AZ/Q : Eg ( sup |h(Xt?71+u; 0) — h<Xt?71; 9)’k
u€[0,An]

<o, AL(L+ Xy N

13



and since |ea;|" <¢, |4i|* + | Dy|¥, we conclude that Eg (|eo,|* | Ffy) = AFR(An, X 3 0).
[

Proof of Lemma 3.2. Since h is of polynomial growth,
M(Z)| <o 1+ [ X, [ + Vi = X |,

and by Jensen’s inequality;,

iAn
Y, — X [P < AT [Xo = Xy [Fds < sup [ Xip o — X [V
(’i—l)An u€[07An}

Hence the lemma follows because (6.1) implies that for any & > 1

By (1Y = X, | 7)) < AFA(L+ X )

O
Proof of Proposition 3.3. We start by proving the result for the identity mapping f(z) =
In this case, f' =1 and f” =0, so the Euler-It6 expansion (3.7) takes the form
Y= Xo, + 00X 5 0)EL: + 655 (6.5)

where asterisks (x) are used to distinguish the remainder terms here from the general case.
Here equation (3.8) has the form

1
Eo (&, | Fiy) = Anéa(Xt?_l; 0) + AYR(A,, X 50). (6.6)

By applying Lemma 6.1 to the stochastic integral, we find that

1A s s
Y- Xy = AL / ( / a(Xo: 0) du + / b(Xu;H)dBu> ds
" (i— 1)An (i—=1)A, (i—1)An

1Ay
A / / a(X,: 0) duds + A1 (i — $)b(X+: 0)dB,,
(i—-1)A (i—1)A (i—1)An

which, in turn, yields an expansion of the form (6.5) by defining

1Ay
&, = A / (i, — 5)dB,,
(

i—1)An

iAp s
A, = A;l/ / a(Xy;0)duds,
(4 (

i—1)A,

Ay

D, = A / [b(X.:0) = b(Xep,;0)] (s, — )aB,
(i_l)An

To verify the properties of {7, and &3 ;, we observe that both are measurable w.r.t. F7,
&1, 1s Gaussian and independent of 7', and Ey(¢7,;) = 0. Moreover, by It6’s isometry

1Ay
Eo((€],)%) = A /( (18— 5P ds = 1.

i—1)A,

14



To prove the conditional moment expansions of &5 ;, we first use the martingale property of
[3b(X,;0)(iA, — s)dB, to conclude that
_1) - 0

Eo (Di | Firy) = A - Ey (/
(i—1)A,

Therefore, Eg (&5, Fi* 1) = Eo(A;i| Fi*1). Application of Fubini’s theorem and (6.2) shows

that

Ay

b(Xs;0) — b(Xyn ;0)| (iA, — s)dB;
| 10

Eo (4; | Fy) = / s / Eg a(Xep 100 (F )dvds
= / / a(Xe ;30) +vR(v,Xt?71;0)} dvds
(i—-1)A,
= An§a(thn_ 0)+ A, / / R(v, Xin ;0)dvds
(i—1)A

and (6.6) follows because the last term equals A2 R(A,,, z;0). In fact, we see that the slightly
stronger result Eo(&5,; | FLy) = Apza(Xen 50) + AZR(A,, Xin 30) holds for this particular
choice of f.

To show that Eg((&5,)% | F* 1) = AZR(A,, Xyn ;6), we use that by Jensen’s inequality

1Ay s ty i +s
‘Ai’2 < A;l/ / a(Xy;0)du / a(Xy;0)du
(i—1)An 1/ (i—1)A, tn

Moreover, for any ¢ > 0 (again by Jensen’s inequality),
ft)

t+s
Eyg [ sup Fil < Ep| sup s / la(X; 0)* du
s€[0,Ay] s€[0,Ay] t

t+An
= AEg (/ la(Xy; 0)* du E) .
t

Now by the linear growth of a( -;6) (Condition 2.1), |a(X,;0)|*> <c 1+ |X;* + | X, — X¢|?,

SO
Eg | sup Fi
s€[0,AR]

t+Ap
<c Ai(1+|Xt|2)+An/ Eo (| Xu — X | Ft) du
t

2 2

ds < sup
s€[0,A4]

t+s 2

a(Xy;0)du

t+s 2

a(Xy;0)du

<c Ai(l + |Xt|)c + Ai g < sup |Xt+v - Xt‘2 ‘ ft) <c Ai(l + |Xt|>ca
veE[0,An]

where (6.1) implies the final inequality. In conclusion, E, (|Ai\2 ‘ Fry) <o AZ(1+]X n
To obtain a similar bound for |D;|?, we apply the Burkholder-Davis-Gundy inequality,

)°.

15



Jensen’s inequality and (6.1) to obtain that
2

/(Zm [b(Xs;H) — b(Xt;-zl;H)] (iA\, — 5)dB,

i—1)A,
F")

)

( 52 K ‘ f”l ) A?’LR(A’VM Xt;Ll ) 9)) (67)

Eo (1Di* | FPy) = Eo (Af

ﬂh)

Ay 2
<c Ey (/ [b(Xs; 0) — b( X ; 9)} ds
(

i—1A,

2

< AE | s [B(Xe,1si0) — B(Xep,30)
s€[0,A] o -

<c AN+ [Xy )C

and, as a consequence,

The extension to arbitrary f € C}(S) is based on Taylor expansions of the general form
(3.4). First, a Taylor expansion combined with the Euler-It6 expansion (6.5), implies that

Fv) = Z SO (X )Y = X )+ SOF(ZY — X, )

= f(Xt;Ll) A}z/zaa:f(Xtﬁl)b(Xtﬁﬁ9)61,72+£2,i

where .
1Ay

Gi=E& = A2 / (iA, — s)dBs, (6.8)
(i— I)A
and &, = S5, 68 with €8 = 0, f (Xen )&, €57 = A2 F(Xep P (X 10)(E5,)%, €5 =
102 F( X )(E50)7, €57 = A%”@if(Xt;,Jb(Xty,l; 0)¢; €5, and €)= L3 F(ZM) (Vi — X )P,

Each fék) k=1,...,5,is measurable w.r.t. 7" so it only remains to show that &, ; satisfies
the moment expansions (3.8) and (3.9). By applying the previously derived conditional
moment expansions Eg (&, | FiLy) = 0, B ((§,)? | Fity) = 4, (6.5) and (6.7) it follows
immediately that

71—

1
By (&) | Fin) = Auga(Xe,:0)0.f(Xe ) + AYR(A0, Xip ,30),

1
Bo (&7 | F20) = Augdf(Xe )W (Xe 36,

)
By (60)| 7)) = A2R(A, X ;0.
Furthermore, by Hélder’s inequality,
Eo (fiszgz ]'7—1) | <E,g ((fikz)z | En—1)1/2 Eq ((551)2 ‘ }—zn—l)
implying B (¢8| 71y ) = AV R(A,, Xy ;0), and finally, by Lemma 3.2, By (&)
AY 2R(An,th ;6). Collecting our observations,

o (60| 1. ZEe (&%

1
= A, (ﬁa(xtyl; 0)0af (Xiz,) + —bz(Xt;»,l; 9)8§f<Xtyl)) + AYPR(An, Xep ,30)

1/2

= AnR<Ana Xt?il; 9)7

]:ﬁl) -

m)

1

= A, (%ng(Xt;; ) — —bQ(th 9)62f(Xt?1)) + AYPR(A,, Xip 30).
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To argue that Ee(&3,; | ")) = AZR(An, X ;6), we combine a lower order Taylor ex-
pansion with (6.5) to obtain

FOR) = F(Xp )+ 0. (X (Y= Xy )+ SORF(ZD(Yi— Xy,
= f(Xp )+ Aqlqmazf(Xty_l)b(Xt?_l; 0)&1 + Eais

from which we get an alternative expression for the the remainder term & ;:

§2i = Onf (Xip | )E5, + a2f(Zin)(Yz' — X )%
This expression implies that
&1 e 100 (X V(&) + (2P (Y = X, )
and, by applying (6.7) and Lemma 3.2, that Eq (3, | F'y) = A2R(A,, Xn 5 6).
Finally, by the definitions (6.3) and (6.8) and the It6 isometry,

Ay 1An
Eo(e1:615) = Eg (A,;l/? / dB, - A;3/? / (@'An—s)st)
( (

i—1)A, i—1)A,

iAg
= A;Q-/ (iAn—s)ds:l.
( 2

i—1)A,
[

Proof of Lemma 4.1. The Lemma follows from Lemma 3.1 in Jorgensen and Sgrensen (2021)
if we show that

1 Z [ F(Xen )} = op, (1). (6.9)

By applying the bound (3.6) for conditional expectations, we obtain

Y (1) = £ ) F) = AV ST R(Aw, X, 00) = 05, (1)
=1 i=1

1 < 1 <
3 ZEO <|f( f(Xen )P ‘ Fit ) = nﬁ Z R(An, Xip 5100) = o, (1),
i=1 i=1
from which (6.9) follows by Lemma 9 in Genon-Catalot and Jacod (1993). O

Proof of Lemma 4.2. This result follows from Proposition 3.4 in Jgrgensen and Sgrensen
(2021), if the following strengthening of (6.9) holds

VA, Z £ = £ )] = om (1), (6.10)

To prove this, note that by Proposition 3.3,
1 n
Vi o 3B (£09) = () | )
— 1 . 1
nAn . E ;EO (6271' ‘ ‘F'i—l) = TLA;’Z . E Z R(An, Xt?_l;eo) = O[pn()(l),
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where we use that nA3 — 0. Moreover, the higher order bound (3.6) ensures that

An n ) A?L n
—2 3 B (IF() = F(Xp P | Fla) = =2 30 R(AL Xy i) = o, (1),
i=1 i=1

and (6.10) follows from Lemma 9 in Genon-Catalot and Jacod (1993). O

Proof of Theorem 5.2. By applying the first order expansion (5.3) of Eyf (Y1) together with
Lemma 4.1, we see that

n n

1 1
Ho(0) = — > [F(Y) = Eof ()] = D [F(Y) = po(f)] + AnR(Ay:6) = H(B),
i=1 =1
where H(0) = (po — p0)(f). Under Condition 5.1,
g Hn(0) = —0pEq f(Y1) = —0Oppio(f) + Dn0gR(An; 0) — —0ppo(f),
and for any compact subset M of ©

sup |OgH,(0) + Ogpig(f)| = Ay sup |0gR(AL;0)] < C(M)A,, — 0.
feM feM

Because H(#) = 0, we have now verified the conditions of Theorem 2.5 in Jacod and
Serensen (2018), from which the existence of a consistent sequence of G,,-estimators (én)
follows. That the estimator 6, is unique in any compact subset X C O that contains 6,
with Py-probability going to one as n — oo follows from Theorem 2.7 in Jacod and Sgrensen
(2018), because the identifiability assumption implies that H(6) # 0 for 6 # 6.

To establish asymptotic normality, note that (5.3), the additional rate assumption nA2 —
0 and Lemma 4.2 ensure that

nA, - H,(0p) = /nA, - (% Zf*(iﬁ)) + /nA3R(A,; 6)) EZN N (0, Vo(f)) .

Now (5.5) follows by a standard Taylor expansion argument, see e.g. Theorem 2.11 in Jacod
and Sgrensen (2018). O

Proof of Lemma 5.3. We break the proof into three steps: Step 1: expand [Eyf(Y;)]?,
Eyf%(Y1) and Eg [f(Y1)f(Y2)] in powers of A,, Step 2: eliminate Hy from the expansions,
Step 3: calculate expansions of a,(#)y and a,(6);.

Step 1 Using Proposition 3.3, we find that

Eof (Y1) = po(f)* + An2uo(fue(Hof) + AY2R(A,;0),
Eof* (Y1) = po(f?) + Anpio(Hof?) + AYPR(A,;0).

To expand Ey[f (Y1) f(Y2)] we note that by Proposition 3.3 this mixed moment equals
Eo [(f(Xo) + A2, f(Xo)b(Xo;0)é11 + &a1) (F(Xa,) + AY20, F(Xa,)b(Xa,; 0)612 + &2)],

and then we expand the 9 terms of this expectation individually.

Term 1I:
Eo [f(X0)f(Xa,)] = po(f?) + Dnpo(fLof) + ALR(A; 0)
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because by Proposition 3.1

f(Xo)f(Xa,) = f(X0)*+ A;/Zf(Xo)axﬂXo)b(Xo; O)er1 + f(Xo)ea

Term 2:

AYPE [£(Xo0)De f (X, )b(Xa,50)610] = 0,
because Eg (§12 | Fa,) = 0.
Term 3: By applying the moment expansions (3.8) and (6.2)

Eo [f(X0)622] = Eg [f(X0)Eo (&22 | Fa,)] = AuEo [f(Xo)Hof (Xa,)] + AY2R(A,; 6)
= AEo [f(Xo)Eg (Hof(Xa,) | Fo)l + A2 R(An; 0) = Appio(fHof) + A2 R(Ay: 6).

Term 4: By the Euler-It6 expansion (3.1),

AYV2Ry [0, f(X0)b(Xo; 0)E11 f(Xa,)]
= DBy [0 f(Xo)b(Xo; 0)*r1811] + AYPEq [0, f(Xo)b(Xo; 0)&1185,1]

_ An%ug (b - 0)0, 1) + AY2R(A,:6).

The last equality holds because, by (3.11), Eg ({11611 | Fo) = 1/2, and because by Hélder’s
inequality and (3.3), and since & 1 ~ N (0,1/3) and is independent of F{, we see that

Eo (E1,162,1 | Fo) | < Eo (&34 ‘ -7:0)1/2 Eo (3, ‘ ]:0)1/2 = A, R(A,, Xo;0).

Term 5: This term equals

AiEe [3xf(X0)b(Xo; ‘9)51,18xf(XAn)b(XAn; 9)E9 (5172 | ]:An)] =0,
since Eg (&12 | Fa, ) = 0 by Proposition 3.3.
Term 6: This term equals

AR [0, f(Xo)b(Xo; 0)Eg (E11622 | Fo)] = AY2R(A,;0),

because by Holder’s inequality, [Eg (€116 | Fo) | < Eo (€2, | Fo)* B (€2, | Fo)"/?, and by
Proposition 3.3, Eg (¢2, | %) = 1/3 and

Eg (5372 ‘ ./—"0) — Eg [Eg (5572 } FAn) ‘ fo] = Eg [AiR(An, XAn; 9) | .F()i| — AiR(An,Xo, 9)
Term 7. By the Euler-1t6 expansion (3.1),
Eo [f(Xa,)é2,1]

= Eo[f(X0)Eg (€21 | Fo)] + AYEg [0 f(X0)b(Xo; 0)Eg (€1,182.1 | Fo)] + Eo(e2,121)
= Aupo(fHof) + AYPR(A,;6)

where the last equality holds because, by Proposition 3.3, Eg ({21 | Fo) = AnHef(Xo) +
Ai’/QR(An, Xo; 0), and by Hélder’s inequality and Propositions 3.1 and 3.3, Eg (e11&21 | Fo) =
AnR(An, X(), 9) and E0(€2’1£2’1) = AiR(An, 49)

Term §: By Proposition 3.3, this term equals
Eg [£210.f(Xa,)b(Xa,;0)Eg (§12 | Fa,)] = 0.
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Term 9: By combining Hélder’s inequality and (3.9), we obtain

|Eg (£2.1622) | < Eq [E(, (53,1 | ]_—0)}1/2

1/2

Eo [Eg (&2 | Fan)]™ = ARR(AG;6).

Finally, we add the expansions of the nine terms and conclude that
Eof(Y1)f(Y2) =

po(f*) + Ay (ue(fﬁef) +2u9(fHof) + %Me (Ib( -5 Q)sz]2)) + APR(A,;0).

Step 2 To eliminate Hy from the expansions of [Eqf(Y1)]?, Eof?(Y1) and By [f(Y1) f(Y2)],
we rewite po(Hof), po(fHof) and pe(Hef?) using the definition of Hy, (3.10), and that
po(Lof) = 0forall f € Dy,; see e.g. Hansen and Scheinkman (1995). It follows immediately
that

pe(Hof) = —1—12/% (B*(-:0)02f)

polFHaf) = SpalfLaf) — g3 (F(:0)221)

Moreover, since 9, f2 = 2f0, f and 92f2 = 2[fO2f + (8, f)?],
Hof2() = ga(e:0)0, () + b (x:0)02(a)

= J@)alw; 00,

= F@)Lof(e) -

~—

2) 5 f@W 002 () + 56w 0)0.f (@)

(3 0)02 (2) + bl )0, ()]

=

which shows that

oMo %) = ol FLaf) = i (F(O02F) + Spto (I(-:0)0. 1)

3
Thus
Bof(YD)I” = po(f)* + AnMo(0) + AY2R(A,; 6) (6.11)
Eof? (Y1) = po(f?) + AnMi(0) + AYPR(A,;0) (6.12)
Eof(V)f(Ya) = po(f?) + AuMa(6) + AY’R(A,:6), (6.13)
where

My(6) = —=pal s (P(-:6)051)

MiO) = polfLof) — gua (S 50)020) + o (1 0)0, ST

My(0) = 2ue(f£9f)—éﬂe (fO°(-;0)92f) +%N9({b<'§0)azf]2)‘

Step 3 From the moment expansions (6.11)-(6.13), it follows that
Eof(Y1)f(Ya) — [Eof (V1))

Vary (Y1)
1+ A, Varg f(Xo) " (Ma(0) — Mo(0)) + AY2R(A,; 0)
L+ A, Varg f(Xo) ™ (M (0) — Mo(9)) + Av*R(A,:0)

dn(e)l -

20



and since 1/(1 + z) =1 — x + O(z?), we obtain the expansion

in(0)1 = 14+ A,Vargf(Xo) ' [My(8) — Mi(0)] + AY2R(A,,; 6)
1+ A K(0) + A2R(A,;6), (6.14)

where K () is given by (5.10).
Finally, since by (3.7) Egf (Y1) = po(f) + AnR(Ay; 0), (6.14) implies that

n(0)o = Eof (Y1) (1 — @n(6)1) = A K (0)po(f) + AV R(A,; 6).

]
Proof of Lemma 5.5. Define
91(An, Y3, Yi150) = f(Yi) — @n(0)o — dn(9)1f(Yz 1), (6.15)
92(A, Y3, Yi1:0) = f(Yi) [f(Y5) — @n(0)o — @n(0)1f (Yiz1)]
and H,(0) = (nA,)'Gn(0) = (nA,) 1 D20, (A, _1;0), where g = (g1, 92)7.

By the expansion (5.9)
91D, Y3, Yii130) = F(Y) = F(Yie))+ A K5 (0) [ue(f) — f(Yie))][+AY2R(An, Yio150), (6.16)

and, hence, by the law of large numbers for integrated diffusions (Lemma 4.1),

(B0 i Yicss0) = — [£) = FOR)]+ = 3 K5 0) ol ) = S(¥io0)
AL SR 0) ™ K 0) o - o))

The second coordinate of H,(#) requires a considerably longer proof, because the contri-
bution from the first term is not asymptotically negligible. To shorten the notation, we define
El = 0o f (X )(Xpn 500)e1,; and ZF = 0, f (Xyn )0(Xin 500)€1; and write the expansions
(3.1) and (3.7) under the true probability measure Py as

f(Xt?) = f(Xt;L1) + A}z/zgzn + 82,i7 (617)
fY) = f(Xe )+ AP+ 6, (6.18)

First note that by (6.18)
g2(A,, Y, Y 130) = (f(Xt?72) +AY2ER 4 52,%1) g1(An, Y5, Y13 0). (6.19)
By inserting (6.18) into (6.15) and applying the expansion (5.9) of a,(6), we find that
91D Vi, Vo130 = F(X ) — F(Xr ) (6.20)
T+ AGKS0) () = F(Xip )|+ AF (E0 = Z) + RalBas (X iy i1, 00:6),
where the remainder term R; has the form

Rl(An,(Xs)se[tl N 11,90,9) (6.21)
= (&i—&a1) — AVPK(0)Z] ) — MK (0)&ai-1 + AYPR(A,, Y1 0).
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Using (6.17) and inserting the definitions of €5, and &, ;, (6.3) and (6.4), we obtain
F(Xe,) = f(Xip ) = AYPEL L + 2401 = BuLof (X ) + Aia (80) + Mica (o), (6.22)

where

iAp

a0 = [ o)~ eofXe )] s
iAp

My(0) — /( 0, f(X,)b(X,: 0)dB,

i—1DA,

Now, using (6.19),(6.20) and ((6.22)), we obtain the A-expansion

3
gZ(Ana 1/;7 }/;—1; 9) = Zgék)(Ana }/;a }/;'—1; 9)7

k=1
where
“(An,y;,y 150) = f(Xer ) - 91(An, Y3, Yi1:0)
= Anf(Xen )Lof (Xin ) + f(Xin ) M;1(60)
+ Dak O)f (Xip ) 10(F) = FX)] + RE Ao (Xt 71,003 6).
0 (A, YY) = AV ZE (ALY Vi)
= A (E —E1) 0 + R (A (X seper i), 00:0)
and
P (A YL Yii50) = &1 91(A, Ya Yic0) = R (A, (Xy)sepen 00, 003 9)
with

R (Ao (X stz i 003 0) =
F(Xar VA1 (00) + AY2F(Xer ) (B = Z10) + F(Xe ) - Ra(QDuy (Xo)seper i) 003 0)
and
R (A, (Xo)sepnyim), 00;0) = AYV2E} 29,4
+OAYEELL K 0) () — F(Xer )|+ AGEIEE 4 AYPEE R Ay (X ey, 003 6).

Collecting the terms,

3
92D, Y3 Yiiy:0) = > gi (A, Y7, Vil 6) (6.23)

k=1

= Buf (X Lof (X)) + F (X ) Mica (B0) + Bk, (0)f (X ) [o(F) = F(Xer,)
+ An (5?_1 - E?_l) E?_1 + R2(An7 (Xs)se[t?ﬂ,t?], 90? 8)7

where the remainder term is

3
Ra(Bny (Xo)seper 1 00:0) = > R (A, (Xo)seler ez, 003 6).
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Now, tedious reasoning based on Lemma 9 in Genon-Catalot and Jacod (1993) shows
that

— D RaBu (Xo)selr 003 0) = op, (1), (6.24)
" i=2

Under the additional rate assumption nA? — 0, it can in a similar way be proved that

1
M Z RQ(A’HA (XS)SG[t;LQ,t?}? 00’ 9) = O]PO(]‘) (625)
=2

The latter result is not needed in this proof, but it is necessary to show asymptotic normality
in the proof of Theorem 5.6, so we state it here for convenience. To see that the strong rate
assumption nA% — 0 is necessary to obtain (6.25), we can, e.g., consider the last term in
(6.21):

1 n
3/2 _ 2.~ _
_nA Z;A R(An,Yi1:0) = v/nAg - ;ZQ:R(AH,Y,_he)

As the proofs of (6.24) and (6.25) are both very long and not particularly enlightening, they
are omitted.

To determine the limit in probability of the second coordinate of H, (6), we consider each
term in (6.23) separately. By the ergodic theorem, see e.g. Lemma 3.1 in Jorgensen and
Sgrensen (2021),

Po

S AKX ) f (X ) 2 o(f o)
=2

and

- Z K (0)F (X ,) [mo(f) = F(X )| 22 K(6) [1to(Fra(F) = po(F2)]

Furthermore, by definitions of £ and =7,

n

1 « 1
E ZEO ((gln - E?) E? | Eﬂ_l) = ﬁ Z[axf(thgl)b(Xt;Ll; 90)]21[‘30 ((61,i - fl,i)fl,i | En_1) )
i=1

i=1

and since & ; ~ N (0,1/3), (3.11) implies that

Eo ((e1, — &10)61 | Fiy) = Eo (61 — &10)&14) = L (6.26)

SO

1

1 . —n\ —n 0
=B (€ = ZNE | F) 2 s (36001
=1

Finally, since by the definitions of £, in (6.3) and of & ; in (6.8) the difference &1 ; — &, is
Gaussian, Holder’s inequality and the ergodic theorem imply that

1 n
s LB (€1 - ZIPE | 7L)

1
= 3 Z [0 f (Xen )b(Xer 300)]* - Eo (61 — &14)7 &8s | Fimy) = om(1).
=1
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Therefore, by Lemma 9 in Genon-Catalot and Jacod (1993)

L Z =)= 5 L (- 0000, 1)

By the similar arguments,

M;(0o) = op,(1),

where we use that Eq (M;(6) | .7-'[‘_1) = 0. Moreover, we use that, with h(z) = 0, f(x)b(z; 6)),
and using the conditional It isometry, Tonelli’s theorem and (6.2),

iAp
ff—l) :/ Eq (hQ(Xs) | Fin—l) ds
(i_l)An

A’n,
- / [hZ(Xt;LI) +u- R(u, Xen; 90)} du = Anh2(thn71) + A2R(A,, Xin :00)
0

Eo (M2(0y) | F7'y) = Eq (/(A h2(X,)ds

i—1)A,

and, therefore,

2A2 ZEO ( Xt” 1'2(90) ’ *Firil)

1
- nA n Z f2 th th ) + ﬁ Z R(ATth;Ll; 90) = O]P’O(l).

Gathering our observations, we have verified (5.12).

To identify the limit of dyr H,,(0), we write

n A ZZZ 1 i - i,ldn(eﬂ,

where Z;_1 = (1, f(Yi_1))T, which implies that

89THn(9) - —

> Zia 2L, 0rn(0) = Za( ) An(9),

with Z,(f) == =30, Zi1Z], and A, (0) :== —A,'9prd, (). By Lemma 4.1,

20 2 200 = iy o) ).

and applying the expansion (5.9) of a,(6), we see that

A, (0) = Oy ( Kf_(f()ﬁi)()f ) ) + AY20,0 R(An: 0) — ( a"T_[geJ;(f%f‘(‘)@<>f ) ) . A(6).

Hence, it follows that Oyr H,,(0) To, Z(f)A(#). To argue that under Condition 5.4, the
convergence is uniform over any compact subset M of ©, note that

Sup [[Gpr Hn(0) = Z(H) AN < sup [|Z0(£)[An(0) = AQ)]]| + sup [[[Z.(f) = Z())]AO)]
< N12n(A)ll sp [14:(0) = AG) + | Z0(f) = Z(£)ll sup [|A@)]
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Therefore, (5.13) follows because 6 — A(f) and || - || are continuous, and because

sup [|4,(0) — A(B)[| = A}/ sup |95 R(A; 0)[| <comy AY? = 0.
feM

oecM

[]

Proof of Theorem 5.6. We use the notation introduced in the proof of Lemma 5.5. Because
v(6o,00) = 0, the existence of a consistent sequence of Gy-estimators (6,) follows from
Lemma 5.5 and Theorem 2.5 in Jacod and Sgrensen (2018). The eventual uniqueness in
follows from Lemma 5.5 and Theorem 2.7 in the same paper.

Asymptotic normality of 6,, follows by a standard Taylor expansion argument (see e.g.
Theorem 2.11 in Jacod and Sgrensen (2018)) once we have established that

nA, - Hy(60) 22 No(0, Vo(f)). (6.27)

From the expansion of g1(A,,Y;, Y;_1;60) in (6.16), it follows that

1 n
M Z gl(ATu }/ia }/i—l; 90)
noi=2

= ) = )]+ VA, (% > ff(n_n) VBT S R )

vnl,
2 *
= ( Zﬁ ) + 0p, (1) = N (0, o ([0:Uo(f7)( - 5 60))%))
where the convergence in law holds by Lemma 4.2 because f; € J4.

Our proof that

/_nlA Zg2<An,Y;‘,Y;,1; 90) & N (O,MQ ([895(]0(]‘2*) + faxf]2b2( . ’90)>) (628)

is based on the expansion of go given by (6.23) and the observation that

@IH

\/ n

which follows from Lemma 9 in Genon-Catalot and Jacod (1993) using that (£, — =) =
= [0uf (Xip )0(Xir :600))% (€11 — &1im1) €11 and that Eo (€, —Z7) Ef, | Fra) =
[0, f (Xin )b(Xyn ;600)]?, see (6.26).

Combining (6.29), (6.23) and the result (6.25) that the term involving the remainder
term vanishes, we see that

1 n
S AL (& B E, = ZA (00 f (Xir )b(Xyr 1 00)]% + 08,y (1), (6.29)
\ nA” =2 =2

1 n
MZQZ(Aruy;ﬁ)/i—l;eO) (630)
noi=2

Vih, (%Zf;<xtgl>)+ e D 1 (X JMB0) + 0, (1),




To gather the non-negligible terms in (6.30), we initially observe that

\/an o) ds = ( Z]g (Xer ) > (6.31)

mlTZ /(A)A 15050 = £ )] ds = ( > e )+OPO<1>,

11—

where we only use that f3 € C2(S). A proof that the second term in (6.31) is asymptotically
negligible under Py is contained in the proof of Proposition 3.4 in Jgrgensen and Sgrensen
(2021). Furthermore, by Proposition 3.3 in the same paper, Lo (Up(f3)) = —f5 under
Condition 5.4, and, therefore, by It6’s formula,

U = U060 + [ Ll NCEIds + [ DU CECK i,

= T(f)(X0) — / f3(X.)ds + / 0,Uo(f3)(X.)b(X.: 00)dB,.

As a consequence,

< Zfz (X ) ) = M X,)ds + op, (1)

1 no piAg
= /( o, QU)X ) dBs - 08, (1),
=1 Y07

and hence

1 n
\/M ZQQ(Ana }/;7 }/;—1; 90)
=2

1, 1
= VvV nA, (; ; f2 (Xt?1>> \/m ; f Xt" 90) + 0P0(1>

n Ay
- \/an Z /( m [al’UO(f;)(XS) + f(thil)axf<Xs) b(Xs; eo)st + O]P’o(l)'
=1 YT An

At this point, the asymptotic normality in (6.28) can be shown by applying the central limit
theorem for martingale difference arrays, see e.g. Hall and Heyde (1980) or Hausler and
Luschgy (2015); for details see pp. 507-508 in Jgrgensen and Sgrensen (2021). The joint
normality in (6.27) follows by the Cramér-Wold device. O

7 Concluding remarks and extensions

For integrated diffusions observed on [0, 1], Gloter and Gobet (2008) prove that the statistical
model satisfies the LAMN property and that the optimal rate of convergence of estimators
of a parameter in the diffusion coefficient is 1/4/n. The optimal rates for integrated diffusion
models under the high-frequency /infinite horizon scenario considered in this paper are not
known, but the minimum contrast estimators in Gloter (2006) attain a rate of 1/v/nA,, for
parameters in the drift and 1/4/n for diffusion parameters under this scenario (similar to the
rate optimal estimators for discretely observed diffusions in Sgrensen (2024)), so presumably
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these rates are optimal. However, as we do not distinguish between drift and diffusion
parameters in this paper, the 1/4/nA, rate of our parameters is all we could hope for.

An interesting extension would be to introduce a jump component in the dynamics of
(X¢). Such an extension has the particular feature that jumps in (X;) lead to changes in
the trend of (1;) and not to path discontinuities. As a consequence, threshold estimators
developed for processes with jumps observed at high-frequency (see e.g. Mancini (2009)) are
not directly transferable. A general test for the presence of volatility jumps using change-
point theory was proposed by Bibinger et al. (2017). How and whether the same principle
can be applied for parametric inference is an interesting topic for future research.
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