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Abstract '

Statistical inference for parametric models of spatial
birth-and-death processes is discussed in detail. In particular,
a flexible and statistically tractable parametric class of such
processes, defined on the real line, is presented. The suggested
methods are illustrated by applying them to two sets of data

given in the form of air photos from the Kalahari Desert.
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1. .Introduction

Spatial birfh—and—death processes have found frequent use in
spatial statistics as a tool for simulating spatial point pro-

cesses, which can be throught of as the equilibrium distribution

towards which a spatial birth-and-death process converges, see

Ripley (1977, 1981), Diggle (1983) and Baddeley and Mgller

(1989). In the present paper it is demonstrated that spatial

birth-and-death processes are also very useful for modelling
dynamical spatial processes. A flexible and statistically tract-

able parametric class of such processes, defined on the real

line, is presented. The discussion is mainly focussed on model-

ling a particular phenomenon, namely linear dune fields, but the
model bresented is obviously applicable in many other contexts,
and most of the methods proposed can be generalized straightfor-

wardly to other birth-and-death process models. For generai re-

sults on spatial birth-and-death processes, see Preston (1977),

for processes on the real 1line in particular, see Holley and

Stroock (1978).

Linear dune fields are described in Section 2. Here we also
present two sets of data given in the form of air photos from the

Kalahari' Desert. Some necessary results on spatial birth-and-

death processes on the real line are given in Section 3, where
also our particular parametric sub-class is defined and some of
its probabilistic properties are discussed. The proofs are given

in Appendix 1. Likelihood functions and partial likelihood func-

tions are derived in Section 4. The partial likelihood functions

are also relevant to a semi-parametric model more general than



the model given in Section 3. It is proved that the maximum like-

lihood estimates exist with probability one, and conditions for

the existence of the maximum partial likelihood estimates are
formulated and discussed. Asymptotic properties of the estimators
and of test statistics are discussed, but not rigorously proved,

in Appendix 2. In Section 5 the air photo data on linear dune

fields are analysed by means of the model presented in Section 3.
In Section 6 methods, mostly graphical, for checking the consist-
ency of our model with the data are proposed and applied to the

dune data. Finally, extensions to higher dimensions are con-

sidered in Section 7.




2. Data on linear dune fields

The data to be modelled and analysed in the present paper
consists of two air photos of different parts of a field of so-
called vegetated linear dunes in the Kalahari Desert. A lipeaq‘
dune field is a large collection of parallel nearly linear sand

dunes. The height of the dunes on the air photos is 2-15 meters,

and their spacing is typically 200-500 meters. They can be

several kilometers long.

The dunes are parallel to the direction of the prevailing
wind. It is believed that dunes start in the lee of relatively
densely vegetated sand patches behind which sand can accumulate.
According to this theory the dune will, provided the sand supply
is sufficient, grow in the downwind direction as a result of a
positive feed-back mechanism between vegetation and sand deposi-

tion (Tsoar and Mgller, 1986). Viewed in the downwind direction

the dune field has a certain dynamics: As new dunes start, some
of the old dunes that started further upwind will tend to end due
to the limited sand supply. Most often they simply end, but on

some occasions two dunes merge and continue downwind as one dune.

The latter event is called a y-junction. It is assumed that in

this way an equilibrium pattern develops in the wind direction.
Presumably the new dunes do not start at completely random loca-
tions: There must be a higher tendency to dune development at
places distant from other dunes where the sand supply is rela-

tively large. It is the dynamics briefly outlined here that will

be modelled by means of spatial birth-and-death processes in the






next section.
The two air.photos analysed in this paper were chosen be-

cause they contained only one or two y-junctions, so that this

complication could be séfely_ignored. This was only done for the

sake of simplicity of presentation. As discussed briefly in the

next section, y-junctions can easily be built into our model. The
birth-and-death process model assumes that the dunes are parallel
line segments. The actual dune fields are, of course, not exactly
like that, so as a preliminary step in the analysis of the data,
parallel straight line segments were fitted to the dunes on each
of the two air photos by usual linear regression. The two photos

were. originally called image l14a and image 15. We shall use these

labels for future references. The estimated line segments for

image 14a are given in Figure 2.1. The field of view in the fig-

ure is about 11 by 10.5 kilometers. The corresponding figure for

image 15 looks similarly and is omitted here. Information, e.g.

on dune spacing, needed in the statistical analysis was calcu-

lated from the position of the line segments.



3. Nearest-neighbour birth-and-death models on the real line

In this section we construct a stochastic model for the
linear dune fields, cf. Section 2. The model is a nearest-neigh-
bour birth-and-death process on the real line. Such processes are

briefly reviewed in Subsection 3.1 and the model is presented in

Subsection 3.2.

3.1. Birth-and-death processes on the real line

We shall consider finite birth-and-death processes on the

real line, i.e. time homogeneous processes {x(t): t>0} where a

state is a finite set of points contained in a bounded interval

and where a transition is either the addition of a new point or

the deletion of an existing point. More formally, let S be a
bounded open interval on the real line and let, for each n =
0,1,2,..., 0 be the set of all point configurations X =

n L] . 3
(xl, ..,xn) € S with x1<...<xn. Especially, 90 consists of

the empty point configuration denoted by 0. The state space of

[e 4]
x(t) is = U Q and a transition from a state in Qn is

n=0

either to Q@ . (a birth) or to 0 _, (a death). Let # be the

Borel o-field on S, %n the corresponding o-field on Qn’ and

¥ the o-field on 0 generated by {%n: n>0}.

We shall henceforth assume that the process {x(t): t20} is

described, in a way indicated below, by two measurable and non-

negative functions b(x,§) and a(x,E), (x,f) € @ x s, where




1

<

b(x,*) is Lebesgue integrable for all x € Q and where d(0,°)
= 0. If x = (xl,...,xn).e Q, write x\x; for (X, eeesXy_qv
xi+1,...,xn). Further, let X, < xn+1 denote the endpoints of

the interval S. When § € S with X, < E < Xi,q0 We write x

For x € 0 and A € 3

U §E for (xl,...,xi, &, xi+l""’xn)'

we define

B(x,A) = J b(x,E)dE ,
A
B(x) = B(x,S) ,
[ n
b d(x\xi,xi) if x = (xl,...,xn) and n > 0 ,
: 1i=1 '
6(x) = 9§
L0 if x =0 ,

a(x) = B(x)+6(x) .

Finally, let t, < t, < ... denote the transition times for the

process and set t0 = 0.

Now we can define the spatial birth-and-death process in the

following way: Given that x(tj_l) = x with x = (xl,...,xn) €

Q and given the history of the process before time tj-l' we
require that

t--t-
J J-1

with mean a(x) ,

is exponentially distributed (3.1)

with probability B (x)/a(x) , (3.2)

x(tj) € Qn+1



given that x(tj) € Qn+1’ i.e. that x(tj) = x(tj;l)Uf, (3.3)

then § € A with probability B(x,A)/B(x) ,

given that x(tj) € Qn—l' i.e. that x(tj) = x(tj_l)\f, (3.4)

then § = Xy with probability d(x\xi,xi)/é(x).

Preston (1977) gives simple conditions for the unique exis-
tence of the above process and for its convergence to a limit
distribution. Mgller (1989) gives conditions ensuring a geometri-
caliy fast convergence. The 1limit distribution is the unique
equilibrium distribution of the process. The density f: 0 -

[0,°] of this equilibrium distribution with respect to the

measure p on % given by

p(F) = 15(0) + b J...J 1F((x1,...,xn))dxl...dxn

= < <o o< <
n=1l X,<x, Xn<¥n+1

can be determined as follows when the process is time reversible.

Assume that d(+,+) > 0 and define

v(x,8) = b(x,§)/d(x,§) -

Furthermore, assume that a density £ with respect to p is

defined inductively by

£(xUE) = 7 (x,§)E(x) (3.5)




and that
J B(x)E(x)p(dx) < = . (3.6)

The solution to (3.5) is well-defined if and only if a balance

condition holds, viz.

v (RUE ,m)7 (%,E) = v (xUn,E)r(x,m) . (3.7)

Under the conditions imposed, the spatial birth-and-death process

is time reversible and £ is the equilibrium density, cf.

Preston (1977, Theorem 8.1).
In this paper we shall concentrate on nearest-neighbour

b(x,§) and

)

birth-and-death processes, i.e. processes where

d(x,§£) depend only on § and its nearest left and right neigh4

bours in x. Hence the equilibrium density (3.5) is seen to be

Markov with respect to the sequential neighbour relation, cf.

Baddeley and Mgller (1989). We write b(xi,f,xi+l) for b(x,E§)

and d(xi,f,x.+l) for d(x,f) 1if X, < £ < Xi4q° Moreover, we

i
define H(xi,xi+l) = B(x,(xi,xi+1)), which depends only on X,

and Xiiqe With this definition (3.3) naturally splits into the

foliowing two steps:

given that x(tj) € Qn+1’ i.e. that x(tj) = (3.8)
x(tj_l) U &, then Xy < £ < Xi1 with probability

H(x;,¥;,4)/B(x), 1=20,...,m,

and



given that x(tj) = X(tj—l) UeEe Qn+1 with (3.9)
Xy < E < X417 then § has a density on (xi’xi+1)

given by h(flxi’xi+l) = b(xi’f'xi+l)/H(xi'xi+l) '

where, in the first step,

B(x) = iio H(xi,xi+1) . . (3.10)

3.2. Nearest-neighbour birth-and-death models for 1linear dune

fields

For ease of presentation we shall only consider in detail a
nearest—neighbour birth—and—aeath model for the linear dune
fields in the case with no y-junctions. At the end of this sec-
tion we briefly discuss the case where y-junctions are present.

Linear dunes are parallel to the direction of the prevail-
ing wind, and they grow in this direction. It is therefore natu-
ral to define a 'time-axis' for a birth-and-death process paral-

lel to the direction of the dunes and with time increasing in the

prevailing wind direction. The state of the process x(t) at

'time' t is the intersection points>between the dunes and a

bounded interval S of a line perpendicular to the wind direc-

tion that goes through the point t on the 'time axis'. The

interval S should, of course, be large enough that the air photo

under consideration is contained in [0,®) x S. A birth and a




death for the process {x(t):Ltzo} corresponds respectively to

the event that a new dune begins and the event that a dune ends.
It is a very reasonable assumption that the birth or death of a

dune is an event that is only affected by the presence of the two
neighbouring dunes, so a nearest-neighbour birth-and-death pro-
cess provides a good approximation to the dynamics of the dune
field. Moreover, since there is only ailimited supply of sand,
the interaction between neighbouring dunes is expected to be a
repulsion.

Let us now decribe the model we propose. First consider the

case where a birth occurs. In (3.8) and (3.9) we choose

n

H(xp,%;,1)/P (%) = (xi+1—xi)7/jio(xj+l-xj)" : (3.11)
h(g| ) i St (3.12)
X.,X. = .
i77i+1 B(a,ﬁ)(xi+l-xi)

where ~ € R, a, B > 0, B(a,B) is the Beta function and

Ei = (f_xi)/(xi_l_l'xi)

is the relative distance of the new dune to its nearest left
neighbour dune. The choice of (3.11) and (3.12) is because these
are simple, yet flexible, éxpressions with an obvious physical

interpretation. In particular, the expected repulsion is obtained

if +>0 and a, B > 1. If a =B =~ =1 there is no inter-

action. The assumption that fj_ is Beta-distributed could be

replaced by the more general parametric models on the unit inter-



val proposed by Barndorff-Nielsen and Jg¢rgensen (1990). That

generalization would not change anything essential in the rest of

the paper. Since we require that b(x,§) depends only on § and
its neighbouring dunes in x, (3.8)-(3.12) give
n at
B(x) =k .E (xj+1—xj) (3.13)
J=0
for some positive parameter k, i.e.
_ k _ -1 La-1,._ B-1
P(x:8:%11) = 8o,y Fir17*i) §; T(1-E5) - (3.14)
Secondly, we choose
A0, 8, %y ,0) = o(xy,,-x;)* (E-x;) ¢ (xy,,-6)° (3.15)
irs77i4l i+1 “i i it+1 :

with ¢ 2 0. The followinQ conditions imply repulsion:

k, c, v>03; a,B>1; e, 8<0; ¢+te+d < 0 . (3.16)

The latter bound is obtained by rewriting (3.15) as

_ _ pte+d e . _ 6
d(xiffrxi+l) = C(Xi+1 Xi) Ei(l El) .

In Appendix 1 weak sufficient conditions are discussed en-
suring the existence and convergence of the process defined by
(3.14)-(3.15). For the unique existence we only need that =~ > 0.

It is intuitively clear that the process explodes with a positive

5
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probability if o+ < 0, because then dunes tend to be born be-

tween neighbouring dunes which are close so that there is a posi-

tive feed-back. In fact, the process exists uniquely for ~ 2 O

no matter how the density h(-|+) and the function d(-,+) are

specified, since the proof of the unique existence is only based
on (3.13). Furthermore, it is proved that the process converges

as t - ® to a limit distribution which is the unique equilib-

rium distribution, if e,6,¢+e+d6 < 0 and either ~ > 0 or

3 1)
_ c p+e+d [ 4]
T =0 and % [s] [_e+6] [——Ha} > 1, (3.17)

hold where |s] is the length of the interval S. In (3.17),

(e/(e+§))e(6/(e+6)5 = 1 if either € or & or both are 0.

Thus, (3.17) holds e.g. in the uniform case ~ = ¢ =€ =6 = 0

if and only if ¢ > k or equivalently pB(x) < 6(x) where B(X)

and 6 (x) are the rates for a birth and a death, respectively,

cf. (3.2). Under the above mentioned conditions for convergence,

the rate of convergence is in fact geometrically fast, cf.

Appendix 1.
Finally, we observe that the balance condition (3.7) holds

if and only if

a-e = B-6 = atBte-7 (3.18)

We shall denote the common value of these three quantities by «.

When (3.18) holds (3.5) defines the density



n
n k=1
i1=Io(xi+l—xi) , X = (xl,...,xn) , (3.19)

where a 1is a normalizing constant and b = k/(cB(a,B)). The
condition (3.6) is satisfied for ~ > 0, cf. (A.2) in Appendix
1. Thus, if the conditions given above for convergence into

equilibrium hold, (3.19) is the 1limit distribution of the pro-

cess. Notice that under (3.19) and conditional on n, the dis-

tribution at one particular time of the relative distances

(xi+l—xi)/(xn+l-xo), i=20,...,n, between neighbouring dunes is

simply a Dirichlet distribution with parameters (K, oo, K) (n
times). Therefore, (3.19) is a density if and only if «k > 0.

A model comprising y-junctions can be built as a straight-

forward generalization of the model above. At a y-junction two

dunes merge, so after this event the number of dunes has gone

to Q

down by one. Thus a y-junction is a transition from Qn n-1

(for some n) 1in the general birth-and-death process setup dis-
cussed in Subsection 3.1. A very simple model is obtained if it
is assumed that one of the merging‘dunes/ends while the other
simply continues. In such a model a y-junction is a special kind
of death, and the death rate d(x,§) of the original model
should simply be decomposed in‘a sum of two terms corresponding
to the two kinds of death. A more realistic model is obtained by
letting the two merging dunes die and then start a new dune at a
random point between them. Models of this more general type are
also covered by Preston's (1977) theory. As long as we retain our

original birth rate (3.13), the birth-and-death process will

exist and be unique no matter how we specify the rate of dune




3.10

merger and the probability distribution of the location of the
resulting joint dune. This follows from the discussion above of
the unique existence of the process without y-junctions. The

convergence towards a limit distribution, however, depends on

these specifications.



4. Likelihood inference

In this section we derive the 1likelihood function and a
partial likelihood functions for the nearest-neighbour birth-and-
death process model described in Subsection 3.2. The partial
likelihood function is also relevant to a semi-parametric model

more general than the one defined in the previous section and is

thus in this sense model robust. It is proved that the maximum

likelihood estimates exist with probability one, and conditions

for the existence of the maximum partial likelihood estimates are
discussed. Consideration of asymptotic properties of estimators

and test statistics is postponed to Appendix 2.

4.1. TLikelihood functions

For a given air photo of a linear dune field and for x(t)

.(Xl""’xn)’ let Xj < v.. < Xj+p be the positions\of the dunes

which can be seen on the air photo at time t and define vy(t) =

z(t) = (xl,...,xj_l, xj+p+1”"’xn) and

(notice that d(t) may consist of two, one or

no points). Thus, at time t, y(t) is the position of the dunes

which together with their neighbouring dunes can be observed on
the air photo. The positions of the most left and most right
neighbouring dunes to these dunes are given by 3d(t). In order

to eliminate any edge effect we shall consider the process
{y(t): t20} conditional on ({d(t): t>0}. This conditional pro-

cess is, for a nearest-neighbour birth-and-death process, inde-

pendent of the process {z(t): t>0}.




We need the following notation. Let t; < ... <t ., be the

transition times for ({(y(t), d(t)): t>0)}), and let tO and tm

be the first and last time, respectively, where - (y,d) is ob-

served on the air photo. Furthermore, let

€ =(1,...,m} ,

at time t=ti} ,

R
]

{i€€: a birth happens for y(t)

9 = {i€€¢: a death happens for y(t) at time t=ti} ;.

and for i € € 1let

i i "i-1
(Yigreeor¥ip ) = ¥(E5_4) and (¥;4.¥;p 41)) = 9(t5_;)
i i
where Yio < yil < +.. < yi(n.+1) ,
i
rij = Yi(j+1)_yij for 3j = O,...,ni ’
= for J = 1,. 'nl .

°i3 T Yi(g+1) Yi(g-1) T Fi(g-1) i3

For i € 3 we define

E(l) = position of the dune starting at time ty,

. (1)
j; such that Yi5, < £ < yi(ji+l) '



= (g (1)_ _
fi (§ yiji)/(yi(ji+1) yiji) I}

and for 1 € 9 we let

ji be such that Y4 is the position of the dune which

dies at time ti'

Finally, let
g =g({y(t): t€{t0,tm]}|{6(t): teft,, t, 13, y(ty))

denote the conditional density of {y(t): te[to,tm]} given
{8(t): te[to,tm]} and y(to) with respect to the probability
measure of the birth-and-death process with b(-,*) = d(-,*) = 1,

i.e. the process which adds and delete points uniformly.

Now, for any nearest-neighbour birth-and-death process, it

follows straightforwardly from (3.1)-(3.4) that

n. n,
= 1 -A, 3t Y -A, 3t Ay, . Yy oa
J i€€ exp( 1 j=o H(yljlyl(3+1)) 1 j=l (yl(j"l) ’Ylj Y1(J+1)))

(1)
X ig% b(yiji'§ rYi(ji+1))

(4.1)
X ig@ d(yi(ji-l)’Yiji’yi(ji+l))

/ ig% exP(_Ai(yini+l_Yio)_Aini) .




Combining this with (3.14)-(3.15) we get the likelihood function

L for our model, i.e.
#%B #D e
L =k c exp(-k = Ai > rya
iee j=0 1J
-1 1
IR (-g"
x r..
jeq i3y B(a,B) e

This factorizes as

where

L

- c 3 Ai
i€ee
P €
s,. T,
g[ 131 if(

= Ll(k"Y\)LZ (C/‘Plela)L3 ('7)1'4 (aIB)LS (‘Pfela)

x exp(-c Z A,

i€

1

n
exp(-k 2 Ai 3
i€ee =
"l [ o]
Si. Y., r,.
i Ti(3-1) Tij)

r6
1) Tij
Yy
hj) ’

4

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)



3 o

¢
Shj rh(j—l) rhj) . (4.8)

n
L, = 1 (s%, r° . /3 A, 3

h
. r. .
5 jeg 133 10371 T13ihee B o1

The profile likelihood function I for the parameters «a,

B, ~, ¢, e and & 1is shown in Subsection 4.2 to be
L = L3(7)L4(aIB)L5(‘P1516) ’ (4.9)

so the maximum likelihood estimates for =~, (e,B) and (¢,e,0d)

can be found from L3, L4 and L5, respectively. We shall now

introduce a partial 1likelihood function in the sense of Cox

(1975) which, as argued below, turns out to be of a form similar

to I in (4.9), namely

Ly = Lp3 (ML, (@,B) L5 (0,e,8) (4.10)

Here Lp4 equals L4 whereas Lp3 and Lp5 can be ;egarded as
alternatives to L and L5 for estimating ~ and (¢,e,08),

3
respectively. Note that (4.9) and (4.10) still hold if L, is

replaced by the likelihood function based on another choice of

parametric model than the family of Beta-distributions given by

(4.7).
The partial likelihood function is obtained by arguing that

the waiting times J = {Ai: i€€®)} and the observations whether

each particular transition is a birth or a death do not contain

much information about the parameters ~, ¢, € and 6, and



obviously no information on «a and pB. The distribﬁtion of this
part of the observationé depends on the parameters =7, ¢, €
and & in quite an intricate way and is mainly determinéd by k
and c¢. In the general set-up we obtaion the partial likelihood
function by multiplying first over all births the conditional
density of the position of the new dune given the past, 1i.e.
given the configuration immediately prior to the birth, and sec-

ondly over all deaths the conditional probability of which dune

is dying given the past. Hence we find the following expression

for the partial likelihood function:

1 1
L = T : T h(E:|y:s /Y, 5 )
€ jeg 171377 (A3;+1)

a(y. , JYis Y g
(Yl(]i'l) Ylji yl(Ji+1))

X
. n.
i€ed 1

jio d(yi(j—l)’yij’ Yi(j+l))

With our particular specifications (3.14) and (3.15), we find

that Lp is given by (4.10) where

n.
L. = T (1. /3 1), (4.11)
P3  jeg i g=0 I

¢ € 6 Ny e € é
r.. / 2 s r..) . (4.12)

L= 1 (s?. r°,. P S
(Sij, Fi(3;-1) Tiiy 52, C13 Fi(-1) Tij

P> jeg

An appealing quality of the partial 1likelihood function

(4.10) is that the same expression would be obtained in the much



larger class of semi-parametric models obtained by allowing k

and c¢ to be functions depending on the time and on the entire
past of the process. Thus also non-Markovian birth-and-death
processes are included. The only restriction on kX and c¢ is

that the process should not explode. For instance, it suffices to

require that k 1is bounded. Dependence on time would, in the
linear dune field context considered particularly in this paper,

correspond to a spatial inhomogeneity in the wind direction.

4.2. Estimation

We recall that the nearest-neighbour birth-and-death model
given by (3.14)-(3.15) exists if and only if =~ 2 O, so the

variation of the parameters in the full model is given by
H.: k,c >0, 20, «a,B >0, ¢,6,e €R

In this subsection we shall discuss maximum likelihood estimation

under H0 and under the following simplifications,

o
<
It
!
o
!
>

B=6 = atP+e-vr =k > 0

I
3]
1
m™
Il



The hypotheses H, and H, specify that the interaction is

symmetric between a dune and its nearest left and right neigh-
bouring dunes, cf. (3.12) and (3.15). The hypothesis H3 states
that the tendency of a dune to die depends -only on the position
of this dune relatively. to its neighboring dunes and not separ-
ately on the distance between the two neighbouring dunes, cf.
(3.15) . The hypothesis H is the balance condition (3.18). Note

4

that under H3 the balance condition H, simplifies to a-e

B-6 = v = k.

For fixed a, B, ~, ¢, € and &6 the likelihood func-

tion L attains, under any of the hypotheses H,-H, , its maxi-
mal value at (k,c) given by
e
k(v) = #3/ 3 A, 3" r..
iee j=0 *J
ny ") e
c(e,e,6) = #9/ 3 A, 37 s r: ._ r
jeg 1 j=0 ij "i(j-1) T1j

cf. (4.3)-(4.5). Thus, given estimates ~, ¢, €, & under any

of the hypotheses we estimate k and c¢ by

- ~ ~

i = k(;), e = c(e,e,6) . (4.13)

Notice that under any of the hypotheses HO—H3 (but not H4) we

~

have that

L('Y,a,ﬁ,(p,&,é,k("() lc(<Plela))



< Ly(7)L,(a,B)Lg(e,e,8) ,

cf. (4.3)-(4.8). In particular, this proves (4.9). The maximum
likelihood estimats of the parameters ~, ¢, € and & and the
14

likelihood ratio statistics for H,, H, and other hypotheses

involving only these parameters do not depend on our particular

choice of L4.

Now, let us discuss the existence of the maximum likelihood
estimates anq the partial likelihood estimates. Since L, is
simply the 1likelihood function for the Beta distributed sample
(Ei: i€%y), cf. (4.7), it suffices under any of the hypotheses‘

HO—H3 t®d consider the likelihood functions L3 and L5 and the

alternative partial likelihood functions Lé3 and Lps' These
functions are all of the form
(9 9 ) iy b 5 “k ]—1 (4.14)
m ce ey = 1+ a, . V.o .
o p ieg jed, ) k=1 1k

where ¥ and the di are finite sets, p < =, aij > 0, Gk € R
and vijk € R for all 1i,j,k, compare with (4.6), (4.8), (4.11)
and (4.12). For instance, (4.6) is of the form (4.14) with % =
B, di = {(h,j): hee, j=1/°--rnh)\((irji))r p = 1, ai(h,j)

Ah/Ai and Vi(h,j)k = rhj/riji' Likelihood functions of the

form (4.14) were studied by Jacobsen (1990). From his results it

follows that the function m: RP - R+ attains its maximal value

at a wunique point 1if and only if there does not exist

(el[...,ep) # (0,...,0) such that



p 9k . .
I wv... >1 for all 3J € di and i €% , (4.15)

and in this case the function 1log(m(-)) 1is strictly concave.

Consider first the case m(v) = L3(7). Here (4.15) is sat-

isfied if and only if r;’lj > r’i’j for all (h,j) € #; and all
i

i € %, in particular for all (h,jh), h € #$\{i}. This is bnly

possible in case riJ is the same for all i € %, which hap-

i

pens with probability 0 provided #% > 1. Thus, if #% > 1,

L3(-) has a unique maximum and is strictly log-concave almost

surely. In particular the maximum likelihood estimate of ¥

exists almost surely and is easily determined by the Newton-Raph-

son algorithm. Note, however, that ~ might be negative which

corresponds to an exploding process. It is analogously seen that

the maximum likelihood estimates of the other parameters exist

almost surely under any of the hypohteses HO—H3 if #% > 1 and

#9 > 1. The estimates can be found easily by maximizing (4.6)-

(4.8), which are almost surely log-concave, and then substituting

in (4.13).

The maximum partial likelihood estimates based on (4.11)-

(4.12) exist with a probability less than one under any of the

hypotheses HO-H3. For instance, it is seen from (4.15) that the
e

maximum partial likelihood estimate of ~ does not exist if and

only if either’ r.. { r,.. forall i€ % and 3Jj = 0,...,n; or

J; ¢ 1]
riji > rij for all i € %3 and Jj = 0,..n,ni. That is, the only

situations in which the maximum partial likelihood estimate of ~



does not exist is either when all births take place between the 1
two dunes with the largest spacing or when all births take place

in the smallest dune interval available. The probability of this (

event tends to zero as #% tends to infinity. It follows ana-

s
logously that the maximum partial likelihood estimates of the

parameters ¢, e and & exist on an event which is, in gen-

eral, more complicated, but easily described in terms of (4.15).

Under H and H3 it is easily seen that the maximum partial

2
likelihood estimate does not exist if and only if either all
N . il _2 .
deaths happen to the dune for which r.,. r.. S. . is
PP l(]j_'l) 134 135

largest, or all deaths happen to the dune with the minimum value

-2 v s .
of r.,. .. S.. . The probability of this event tends to
i(3;-1) Ti3; i3y P Y
zero as #9 tends to infinity.

Under the hypothesis H4, combined with one or more of the

hypotheses HO—H3, the profile likelihood function I in (4.9)

can, for fixed a« and B, be shown to have the form (4.14).

Using (4.15) it turns out that it attains its unique maximum with

probability one if #% > 1 and #9 > 1. Therefore, in order to

find the maximum likelihood estimates under H4, one can simply

investigate

max L3(7)L4(a,B)L5(7+K-a-B,d—K,ﬁ—K)
¥20,k>0

as a function of (x,B). The maximum can, for each value of

(e,B), be determined by the Newton-Raphson algorithm.

It seems likely that the asymptotic normality of the maximum

]

likelihood estimators and the partial maximum likelihood estima-



tors can be proved using the fact that the score functions and
partial score function under the various models are martingales.

This and other asymptotic problems are discussed, but not proved,

in Appendix 2.



5. Analysis of air photo data

In this section we analyse statistically the air photo data

using the nearest-neighbour birth-and-death process model dis-

cussed in the previous sections. It should be noted that proofs

are not given in this paper of asymptotic results justifying our
use of confidence intervals based on the observed information and

of xz-approximations to distributions of test statistics. Asymp-

totic results are discussed in Appendix 2.

Table 5.1 gives the maximum likelihood estimates of the

model parameters for the data in image 14a and image 15 under the
hypotheses HO’ H1+H2 and H1+H2+H3. Also confidence intervals

are given for the most important parameters. These intervals are
based on the observed information evaluated at the maximum like-

lihood estimates. The interval for =~ 1is derived from the pro-

file information, but this is well-known to give the correct

result, see Richards (1961) and Patefield (1977).

The estimates in Table 5.1 satisfy condition (3.16) implying.

that the interaction between neighbouring dunes is a repulsion as

expected. Also the condition which implies geometrically fast

convergence into equilibrium, cf. Section 3.2, is satisfied. A

glance at Table 5.1 is enough to expect the hypotheses I-Il and

H of symmetry to be acceptable, and indeed the loglikelihood

2
ratio test statistic for H1 under HO is -2 log Q = 0.05 for

-2 log = 0.01 for image 15. The corresponding

image 14a and
observed levels of significance, using the xz(l)—distribution,

are 82% and 92%. When testing H2 under H0 ‘'we find -2 log Q =

0.09 for image 14a and -2 log Q = 0.30 for image 15 corre-

sponding to the levels of significance 76% and 59%, respectively.

S B
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It is not obvious from Table 5.1 whether H3 is acceptable or

not, and the 1log-likelihood ratio tests do not give a clear

answer to the question. The test statistics for testing H,

under H2 are, for the two images, -2 log Q = 3.60 and -2 log
Q = 3.65, respectively. Both these values correspond to an ob-

served significance level of about 6%, so we do not have much

faith in H,.
In Table 5.2 the partial 1likelihood estimates are given

together with confidence intervals based on the observed partial

likelihood information. These estimates are rather different from

the maximum likelihood estimates, but they also satisfy the con-
ditions for repulsion between neighbouring dunes and for geo-

metrically fast convergence into equilibrium. It is interesting

that the estimates of the sum &+e+¢ vary only by 0.1 at ﬁést

between the two tables. The confidence intervals in Table 5.2 are
consistently larger than those in Table 5.1 indicating a loss of
information in using the partial likelihood function. We shall

discuss the partial likelihood estimates further in Section 6.

Under the hypothesis H1+H2 the structure of a linear dune

field is described by six parameters k,c,a,v,6 and ¢+256 which

we can use for comparing the two images 14a and 15. The maximum

likelihood estimates of the last parameter are -0.89 (image 14a)

and -0.73 (image 15), so in this respect the two parts of the

A

dune field do not differ. The variation of & is obviously not

significant. On the other hand, the estimates of ~ vary con-

siderably from one image to the other.



Let us finally consider the balance condition H,. Under

this condition the spatial birth-and-death process is time re-

versible, i.e. the dune field looks the same whether you walk

through it in the wind direction or against the wind. Rejection

of this hypothesis would substantiate the theory that linear dune

fields develop in the wind direction. Under Hi and H2 the

hypothesis H4 states that a+¢+e-v = 0. From Table 5.1 we see

that the maximum likelihood estimates of this sum are 0.35 and

1.37 for image 1l4a and image 15, respectively. The log-likelihood

ratio statistics for testing H, under H1+H2 are, for each of

the two images, -2 log Q = 0.15 and -2 log Q = 3.41. If we
‘evaluate these statistics in the xz(l)—distribution, we find that
the observed levels of significance'are 70% and 7% for image 1l4a

and image 15, respectively. We can not believe strongly in the

hypothesis of the reversibility in the part of the dune field on

image 15.




6. Model control

In this section we propose various plots to be used for
checking that the data fit our model reasonably. The developed

graphical techniques are tried out on our dune field data, image

l4a and image 15.
The exponential distribution of the waiting times between

events can be checked by means of a P-P plot of the observed

waiting times conditionally on the boundary events {8(t): t>0}.

These waiting times are not exponentially distributed. For each

i € 3U9 define the number k(i) < i by k(i) € U and k(i) <

J < 1> 3j € %3U9. Thus the time between the birth or death at

time ti and the last birth or death before ti that was not a

boundary event is ti_tk(i)' The integrated hazard of the dis-

tribution of this waiting time evaluated at ti-tk(i) is

1 n. n.
A, = > A EJ H , . + EJ d . Y Y }
T g=k(i)+1 J{m=o Yyn¥5 (1)) * 27 S (me1) Yy Yy (me1)) S 0
(6.1)

conditionally on the state at time tk(i)' Here H and d are

given by (3.11), (3.13) and (3.15). Hence exp(—Ai) is, under

the same condition, uniformly distributed in the interval [0,1].

Since this distribution does not depend on the condition, it
follows that unconditionally the random variables exp(-Ai), i€

BUP, are uniformly distributed in [0,1]. It can also be seen

that these random variables are independent. In Figure 6.1 P-P

plots based on the observed values of exp(—Ai) using the maxi-

mum likelihood estimates of the parameters under the full model
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Fiqure 6.1. Image l4a (left) and Image 15 (right). Graphical
check of the exponential distribution of the waiting times by
means of a P-P plot of the observed values of exp(—Ai).

are given for the two images. There are no systematic departures
from the identity line.

The probability that event number i is a birth given that

i € U7 and conditionally on the state at time t, , is
2
jio H(Yij'yi(j+l))
P; = T —~ . (6.2)
i i
st u Y s + 3 AV s s Yiai Y a
520 (Viy,Yiggen) I (¥ (5-1) Y37 Y3 (3+1))

Consider the normalized birth indicators




1,. -p.
z, = D i€ aug . (6.3)
Vpi(l'pi)

A martingale central limit theorem indicates, see Appendix 2,

that if our model is correct, then

1
u = (#%+#9) 2 3 ) (6.4)
1e%UD

is asymptotically standard normally distributed as #%+#9 tends

to infinity. Thus u can be used as a goodness-of-fit test stat-

istic. For image 14a we find under H0 that u = 0.49, while u

= -0.07 for image 15.

Next we shall investigate whether (3.11) is a reasonable

model for the probability that a new dune starts in the i'th

interdune interval given that a birth does take place. The dis-

tribution function of the length rij (see Section 4) of the
i ,

interval in which the birth labelled i € % takes place is

Ny 4
Fil) = 2 iy Lr <x)

._1 _
s
[ b r.mJ (6.5),
J 1j~ m

=0 1T

conditionally on the state at time ti;l' Appealing to the law

of large numbers for martingales, see Appendix 2, we expect that

H(x) = F(x) as the number of births tends to infinity, where

1 (6.6)

H(x) = (#%) ig% Lir.. <x)



and

F(x) = (#8)77 3 F,(x) . (6.7)
ic®

We can therefore make a generalized P-P plot by - plotting the

)), i € 3. This is done in Figure 6.2

points (H(ri ), F(riji

Ji
using the maximum likelihood estimates under the full model.
A similar generalized P-P plot can be made for the deaths.

By arguments analogous to those given for (6.6) and (6.7) we

expect that, for large values of #J, G(x) = D(x). Here

-1
G(x) = (#9) 3 1 (6.8)
ie@ {Sij-gx}
. i
and
D(x) = (#9) " 3 Di(x) , (6.9)
i€ed
where
n ‘ n -1
i ¢ e 5 i ¢ e 6
D,(x) = 27 si. ¥ ._ r.. 1 3T s, _ri, _ r. (6.10)
i jo1 13 i(j-1) ~ij {sijéx} meo im “i(m-1) Tim

is the distribution function of sij given the state at time
i B

ti-l' Another possibility is to base the generalized P-P-plot on
rij./sij.’ i € 9, instead of Sij.’ i € 9. 1In Figure 6.3 the
i i i

points plotted using the maximum likelihood estimates under the

full model.
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Figure 6.6 . Image l4a (left) and Image 15 (right). Histogram of
relative positions of new-born dunes and the estimated sym-

metrical Beta-density.

The fit in the Figures 6.2 and 6.3 is satisfactory. However,
'a somewhat better fit is obtained by using the maximum partial
likelihood estimates as appears from the Figures 6.4 and 6.5.
This is to be expected as the partial likelihood function is
based on exactly the aspects of the model that are checked by
means of the generalized P—P.plots in Figures 6.2-6.5.

Finally, we check the assumption that the relative position
of a new-born dune is Beta-distributed by a traditional histo-
of

gram. In Figure 6.6 histograms of the relative positions Ei

new dunes, as defined after (3.12), are plotted together with the



N

estimated beta-densities under the hypothesis of s

The fit is satisfactory - most so for image 14a.

ymmetry

a




7. Extensions

In this section we briefly discuss extensions of the model
in Section 3.2 to birth-and-death processes in higher dimensions.
We consider processes where the poiﬁts are elements of a convex

set S C Rk, i.e. where the state of the process is in Sn, for

some n = 0,1,2,... (S0 = @). We use a notation which in an

obvious way generalizes that of Section 3.
One generalization that is computationally manageable is the

following. Assume that any state x = (Xl""’xn) e s” of the

process is with probability one in quadratic general position,

that is no s+2 ©points of x 1lie on the same s-dimensional

affine subspace, 1 < s ¢ k-1, and no k+2 points of x 1lie on

the boundary of the same ball in Rk. This is for example the

case if the process'is absolutely continuous with respect to the

usual Poisson process on S. Further, each state x in general

quadratic position defines a Delaunay tessellation with cells

D., i=1,...,m(x), say. Such a Delaunay cell is the convex

hull of k+1 points in x which satisfy that the closed ball

which contains these k+1 points in its boundary do not contain

any further points from x. Furthermore, m(X) is the number of
all such possible combinations of k+1 points from X.

Now, set the birth intensity equal to

m(x)
B(x) =k 3 lDi
. 1=1

| ~€R, k20, (7.1)

14

where IDiI denotes the volume of D;, and let the probability



, that the birth occurs in the cell Di

be proportional to IDilq.

We also need a probability density on Dy specifying how the

exact location of the new point is chosen. An obvious generaliza-

tion of the Beta-distribution of our one dimensional model would

be the following. A disjoint partitioning of D; in simplexes is

obtained by connecting a point § in D, to the vertices of

D, - A probability distribution for ¢ is specified by assuming

that the volumes of these simplexes divided by IDil follows a

Dirichlet distribution. Instead of the class of Dirichlet distri-
butions the more general class of parametric models on the

simplex proposed by Barndorff-Nielsen and Jegrgensen (1990) could

be used.

In order to specify the death intensity, we let Dij’ 3

1,...,mi, denote the Delaunay cells that have point number i

as a vertice and Di the union of these cells. We define the

death intensity by

| (7.2)

i
|y |? @ |Dij
1 =1

6(x) =c¢ '

I ™M

1

and require that the probability that point number i dies be

m.

proportional to |D; |¥ rt |D..
i. jo1 13

need be, build asymmetry into the model. Many of the results of

|. Of course, one could, if

the present paper could be generalized to the model thus speci-

fied.
In applications we feel that it will often be difficult to

interpret the Delaunay cells in dimensions higher than one.

\




Therefore, models based on Voronoi tessellations, with their

obvious physical interpretation, would presumably have wider

practical application. Here each point X; from a given state x

(xl,...,xn) € s defines a Voronoi cell, which consists of all

those points in S which are closer to X than to Xj' j # i.

An interesting spatial birth-and-death process Voronoi model

appears from (7.1) and (7.2) if we let Di = Dy denote the

i = 1,...,m,, the

Voronoi cell defined by Xy and Dij’ i

neighbouring cells to D; . Although this and similar Voronoi

models do not include the model in Section 3.2 as a special case,

many of the suggested methods in this paper might obviously be

used for these Voronoli models.

Acknowledgements: We are grateful to Nick Lancaster for putting

the air photos at our disposal and to him and Haim Tsoar for

directing our interest towards the dynamics of 1linear dune

fields.



Al.l

Existence and convergence of the model given by

Appendix 1.

(3.14) and (3.15)

The spatial birth-and-death process given by (3.14) and

(3.15) exists uniquely if

(o]

B. > 0 for all n> 0 and > 1/B,. =©® (A1.1)
n -0 n

where

B =sup B(X) .,
n XGQn

cf. Preston (1977). By (3.13),

n
Y
B. = k sup S (X, ,"X:) .
x€Q_ i=0 1+l 3
n

From this we get

k|s|” (n+1) 17" if 0< v <1

B, = (A1.2)
k|S|7 if > 1

so (Al.1) is seen to hold for ~ » 0. Here |s| denotes the

length of the interval S.

The spatial pirth-and-death process converges in distribu-

tion as t - © and the 1imit of the process is the unique equi-




Al.2

librium distribution provided the following conditions hold

(Preston, 1977):

5n >0 for all n'2>2 1 and 2 - 5 < o (Al1.3)

s A 0 _ s _ (Al.4)

where
6n = inf o&6(x) .
x€Qn :
We have,
n 3 o) ")
bp = inf 3 (% 7X5) (Xypq7Xg) Xy 7Xy )
xeﬂn 1=1 .

cf. (3.15). For e, 6, ¢o+e+6 < 0 a lower limit of 6n is ob-

tained by

80
+e+6 e )¢ 3
> elsI®** n[55] [ \

€ 6
taking Eﬁ%ﬂ Ef%} 1 if either € or & or both are 0.



Al.3

[Now, if ~ >0 and e, 6, ¢+e+6 < 0, (Al.2) and (Al.5) give

[ no
> I = for 0 < <1
© BO"'Bn-l n=1 j=1 j
3 o————— <9 - (Al.6)
n=1 1°°°""n - n o
> In = for ~ > 1
(n=1 j=1 ]
and
[ o ~
- 1
> n n;il' for 0< v <1
© 51...6n n=1
2 BB 2 )
n=1 "1""""n o
> m n! for ~+ > 1
n=1
where
y=p=€=0
k|s| >0 .

o) )

Thus (Al.3) and (Al.4) follow if e, 6, ¢+te+d < 0 and either =~
>0 or m< 1 for ~ = 0. 1In fact under these conditions the
convergence is geoemtrically fast. This follows easily by combin-
ing (Al.2), (Al1.5) and (Al.6) with Corollary 3.2 in Mgller

(1989) .
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Appendix 2. Asymptotic results

In this appendix we discuss asymptotic results concerning

the statistical procedures proposed in the paper. We shall not

prove the results, but rather expose the structure of the prob-

lem. We do this by mainly considering statistical inference for

(k,7). Under the hypotheses HO—H3 it makes sense to consider

the parameter vector (k,v) separately because it is L-independ-

ent of the other parameters and thus observed orthogonal to these

(see e.g. Barndorff-Nielsen (1978)).

Score functions are, under very mild regularity conditions,
martingales, see Barndorff-Nielsen and Se¢rensen (1989). So also

for our models. Suppose the birth-and-death process has been

observed in the time interval [to’t]” Then the corresponding

score vectors are martingales as functions of t. To see this

define the sets

%t = {i€¢: tigt}
and
%t = %ﬂ%t .
The notation is as in Section 4. The score vector for (k,~) is
given by
#% n.
gl _ ¢ t _ b R
3k ~ 1k T X 2 Ay ‘E-o Tig : (A2.1)
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log(rij) , (A2.2)
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where ‘1 denotes the log likelihood function, cf. (4.3), (4.4)

and (4.6). Define the counting processes

#€

and

xg = #(i: ied,, J;=p) -

The last process has the predictable intensity

P _ o
AP = kR (M)

where Rj(l) = r(i+1)j if j < niiq and Rj(l) = 0 otherwise.

Hence

t
P _ vP _ p
mg = Xt g AS ds

is a martingale with respect to the filtration generated by the

entire history of the pirth-and-death process. This is provided

we set (k,~) equal to the true value (ko,wo). We have used

that 0 ¢ Rj(i) < |s| so that AE is bounded (we consider only
the non-explosive case 7, > 0). From the considerations above

i and iq are martingales when evaluated at

it follows that k

(Ko,wo) since
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i, =x7 3 mP (A2.3)
p=0
) t p
i = = J log(rR_(N__ ))damP . (A2.4)
¥ p=0 0 p''s s

The sums are finite fér all t and we set 0 log 0 = 0. Similar
considerations can be used to show that the entire score vector
is a vector mértingale as a function of the observation time t
under any of the hypotheses HO-H4.

The logarithm of the partial 1likelihood function for ¥

under H,-H, differentiated with respect to ~ equals

i () = 3 (log(r.. )-E,(log(r:. ):v)} (A2.5)
p ied, 13;7 1 133
where
n,
st 7, log(r..)
j=p 13 ij
E, (log(r,. )iv) = (A2.6)
i ij., n,
i si 7
r;.
j=0 *
(\
is the expectation of log(rij ) conditional on the state at
i
time t, for the parameter value . The process ip(vo),

1-1
indexed by %, 1is a discrete time martingale with respect to the
filtration ?i = o (history of the birth-and-death process in the
time interval [to,ti_l]), i € 3. The partial score derived

from (4.12) is a discrete time martingale indexed by the number

of deaths in a similar way.
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Asymptotic results follow from the martingale properties of
the score functions by standard methods (see e.g- Barndorff-Niel-

sen and Serensen (1989)). In order to prove the asymptotic re-

sults it must be verified that for 7 in an open interval r
containing the true value 7,
-1 Ny o~
t b A, 3T ris 2 gl(q) (A2.7)
iee, j=1 *J
-1 T
t .E A. 'E rij log(rij)-% gz(w) (A2.8)
i€€ Jj=1
t
-1 e 2
t 3 Ai z rij[log(rij)] - g3(7) > 0 (A2.9)

1

in quadratic mean as t » o and that the un-normalized sums tend

to infinity almost surely for ¥ = 74 Moreover, we need that

K tg (1) gy(7)
G(k,7) =
g, (1) Kkgy(m)

is positive definite at (k,¥) = (ko,vo), that

i "o 4
A\ rij[log(rij)] = 9, >0 (A2.10)

-1
t p> Ai '

n
1€%t =

in probability as t = %, and that
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1

t 2 E(sup |1og(r . )[) » 0 (A2.11)
ied, Ji

as t - o, We will not prove these assertions here, but we con-

jecture that they are satisfied provided the birth-and-death

process tends to stabilize as t -» ® and that the observation -

window grows steadily with t. If the whole of S is observed

at all times, it seems likely that (A2.7)-(A2.10) follow from an

ergo-dic theorem provided the spatial birth-and-death process

tends to stabilize as t - . This, however, is not the right

kind of asymptotics to use for our dune field images. In that

situation a growing image size corresponds to observing a larger

part of S as well as a longer time interval. Therefore in the

dune context, we ought to consider a sequence of birth-and-death

processes with |[S| increasing proportionally to the observation

time t. We still expect (A2.7)-(A2.11) to hold.

The quadratic variation of the vector martingale (ik,iq)T
(T denotes transposition) is

[, —2 -1 ]

k. © #3 k 3 log(r,. )
0 O ies, 134 |
Jp = 1 > . (A2.12)

k' os log(r;. ) 3 [log(ry. )1°
ied, I3 ied, Ji ]

This matrix is the incremental observed information about k and

7, see Barndorff-Nielsen and Sgrensen (1989). The expected in-

i, = E(Jt). Note that the compensators of the.

formation is £

entries in Jt are the un-normalized sums in (A2.7)-(A2.9).
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Under (A2.7)-(A2.10) it follows from the law of large numbers for

martingales (Lepingle, 1978) that as t » @

-1
t™h 3. > Gkgi7g) (A2.13)

in probability and

-1

7 i = G(kgTg) - (A2.14)

From. (A2.11), (A2.13) and (A2.14) it follows by a central limit

theorem for vector martingales in Hutton and Nelson (1984) that

1

t 2(i,, iq)T 5 N(0,G (kg 7)) (A2.15)

in distribution as t - «.

-~

The maximum likelihood estimator 7. of is found by

maximizing the profile likelihood L3(7) given by (4.6). In

Section 4 it was proved that 1(v) = log L3(7) is almost surely

¥ can, of course,

strictly concave for all t. The estimator £
also be found by maximizing ‘
-+ 1.3
he(v) =t (I, (v)+#8,_ log(t))} (A2.16)
-1 : -1 -1 e
=t 3 v log(ry; )-t ~ #3; log t 3 Ay 3T orig| -
ied, S ieg, j=1 *J

It follows from (A2.7)-(A2.9) that \
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in probabilitj as t »® for ~ € I'. By Theorem II.1 in Ander-

sen and Gill (1982) we conclude that h(r) is concave and that

the convergence in (A2.17) is uniform for ~ € K, where KCT

-

is compact. By standard arguments it follows that e 2 7 in
probability as t - «.
The maximum likelihood estimator of k satisfies
- #%t
ky = — . (A2.18)
> Ai 3 rys
iee, j=0 *J

To prove that kt is weakly consistent we must verify that the

convergence (A2.7) is uniform, for example for = in a compact

set containing T in its interior. Rewrite (A2.7) in the form

e 4
n' rll
-1 1 1 -
t 3 Ay '21 [—I—S—}] > |s177g, () (A2.19)

AN

and note that the expression to the left in (A2.19) is convex for
all t. Therefore, we can again use Theorem II.1 of Andersen and

Gill (1982) to conclude that the convergence in (A2.19) is uni-

form on all compact subsets of T, and hence so is the conver-

gence in (A2.7). Under (A2.7) the law of large numbers for mar-

tingales (Lepingle, 1978) implies that £71 #%t - k4 gl(wo) in
'probability, so in conclusion kt - ko in probability as t - «.

The asymptotic normality of (kt,wt) follows from the usual

Taylor expansion of the score function around (kt,vt),
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1 . KR 1

T2 s . T
t Ale(kO,wo)(;q(ko,wo)] = -t 1 (kt,qt)(k k0,7 0) ,(A2.20)

where (ktfqt) is a point'bétween. (Ko Te) and (kq,wo),' while

' k"2 #% s A si 27, log(r )-
t ied, i =0 i3 i3
k’T = == >
Ny ox Ny oo~
> A 3T r log(r..) k 2 A > rl.[log(r..)]
Lieﬂt j=0 J ie€, 3=0 J 1)

(A2.21)

is the matrix of second derivatives of the 1og-likelihood func-

tion. The matrix jt = _ikw is the observed jnformation about

(k,v). From (A2.7)-(A2.9) it follows that

-1 . ~ ~Y
£ 3, (R Ty) @ €0Kgro) (A2.22)

in probability. Here we have used that also the convergences

(A2 8) and (A2.9) are uniform on compact subsets of T. This. is

proved the same way as for (a2.7). We see that the asymptotic

covariance matrix of (kt,wt) can be estimated by jt, it or

Jt and, of course, by the incremental expected information It

too. The matrix Ig is the gquadratic characteristic of the score

martingale.

The asymptotic distribuﬁions of the 1likelihood ratio test

statistics also follow Dby standard techniques. As a brief and
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simple remindér of these, note that the likelihood ratio test
statistic of the point hypothesis (k,7v) = (k,7) can be written

in the form

*

~ - - - ~ —A—. ~ o~ ~ —A-T
2[l(kt,1t)—l(k,1)] = (kt-k,vt—w)jt(kt,wt)(kt-k,vt-w) .

Here 1 is the part of the log-likelihood function related to

(k,r), and (it’:t) is a point between (kt,wt) and (k,7).
Finally, we shall consider two results used in Section 6.

First that (6.4) is asymptotically standard normal. Define %t =

9n£t and the filtration @i = o (history of the birth-and-death

process in the time interval [torti-11) i € %uUD. Since
o 2 _ . . .

E(Zilgi) = 0 and E(Zilgi) =1, 1_6 gUg, with 3z, given by

(6.3), we see that

v, = 3 Z5 i e gug ,
Je%t.ugt.
1 1

is a zero-mean square integrable discrete time martingale with

respect to {@i}, and that the quadratic characteristic of Vi
is '

V>, o= #(%t_U®t')
i i

The central limit theorem for martingales, see Hall and Heyde
(1980), implies asymptotic normality of (6.4) provided the fol-

lowing conditional Lindberg condition holds
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w7t 3 E(Z? 1 1leg) >0 (A2.23)
je%, UD N2}
toty {Iz |sen i)
in probability as <V>;, = @ for all e > 0. Since the fourth

conditional moment of Zj is

E(z4l@ ) =B} ' (1-py) "l

it follows by a Liapounov-type argument that (a2.23) is satisfied

if

(A2.24)

in probability as <V>; = ©. one would expect this to be true if

the birth-and-death process tends to stabilize.

The second assertion in Section 6 that needs consideration

is that H(x)-F(x) tend to zero, where H and F are given by

(6.6) and (6.7) . The sum

W, = 3 [1 “F.(X)] k € %
LT S i '
k 1

<{x}

is a zero-mean square integrable discrete time martingale with

(F,: keEB) defined earlier in this

respect to the filtration Kt

appendix. Note that 5k'= %k for k € %. The quadratic charac-

téristic of W |is
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. <W>, = 2 AF.(x)(l—F.(x)) ’
k ie%t i 1
k

so the law of large numbers for mart@ngales, see Lepingle (1978)

or Hall and Heyde (1980, p. 35-36), implies that

almost surely on {<W>kew}. From this H(x) = F(x%) follows

provided

(#3 1 (A2.25)

<W> = 0,(1).

.
"

which seems likeliy to hold if the process stabilizes as t - .

The condition (A2.25) could have been avoided by replacing #%t

k

by <W>. in the definition of H and F.
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