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Abstract

Stochastic differential equations provide a powerful tool for modelling dynamic phe-
nomena affected by random noise. In case of repeated observations of time series for
several experimental units, it is often the case that some of the parameters vary be-
tween the individual experimental units, which has motivated a considerable interest
in stochastic differential equations with mixed effects, where a subset of the parameters
are random. These models enable simultaneous representation of randomness in the
dynamics and variability between experimental units. When the data are observations
at discrete time points, the likelihood function is only rarely explicitly available, so for
likelihood-based inference to be feasible, numerical methods are needed. We present
Gibbs samplers and stochastic EM-algorithms based on augmented data obtained by
the simple method for simulation of diffusion bridges in Bladt and Sørensen (2014).
This method is easy to implement and has no tuning parameters. The method is,
moreover, computationally efficient at low sampling frequencies because the comput-
ing time increases linearly with the time between observations. The algorithms can
be extended to models with measurement errors. The Gibbs sampler as well as the
EM-algorithm are shown to simplify considerably for exponential families of diffusion
processes, including many models used in practice. In a simulation study, the estima-
tion methods are shown to work well for Ornstein-Uhlenbeck processes and t-diffusions
with mixed effects. Finally, the Gibbs sampler is applied to neuronal data.
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1 Introduction

Stochastic differential equations provide a useful and versatile tool for modelling dynamic
phenomena affected by random noise, which has been applied in several sciences. The data
are time series of observations at discrete time points. In case of repeated observations of
time series for several experimental units, for instance observations for different individuals
or at different locations, it is often the case that some of the parameters vary between the
individual experimental units. This is particularly the case for biological data, but is also
common in the social sciences. Various types of mixed models have for a long time been used
widely in biostatistics and in econometrics, where they are called models for panel data.

As a statistical tool for such repeated measurements of dynamical data, there has been
considerable interest in stochastic differential equations with mixed effects, i.e. where a sub-
set of the parameters are random, with independent values drawn for each experimental unit,
while the rest are population parameters that are common to all observations. This approach
has several advantages. The random effects model intersubject/unit variations, which may
be of interest in themselves, but also implies that several time series can be analysed si-
multaneously, because the random effects take care of model uncertainty and environmental
variation. This can substantially increase the statistical power, and therefore, for instance,
provides a way around the well known problem that estimators of parameters in the drift
coefficient are often highly imprecise because the time series is too short. These parameters
can be well determined by observing a sufficient number of repeated time series, which is
often much easier to obtain than longer time series. Stochastic differential equations with
mixed effects have been applied to several areas of the biological sciences. Applications to
neuro science, electroencephalography, pharmacokinetics and growth of animals and tumors
can, for instance, be found in Picchini et al. (2008), Wiqvist et al. (2021), Ruse et al. (2020),
Donnet and Samson (2008), Donnet et al. (2010), Picchini and Forman (2019) and Jamba
et al. (2024).

The price for the advantages of using stochastic differential equations with mixed effects
is the computational effort needed to obtain maximum likelihood or Bayesian estimators.
While the dynamics is formulated in continuous time, the observations are made at discrete
points in time, which implies that there is rarely an explicit expression for the likelihood
function, even in the case of fixed effects. A further complication for random effects models is
that the fixed effects likelihood function must be integrated with respect to the distribution
of the random effects. Even when the fixed effects likelihood function is explicit this can
rarely be done analytically. Therefore numerical methods or analytical approximations must
be used to obtain estimators.

Several approaches have been studied. For high frequency data relatively simple ap-
proximations are available. One approach is to use the fixed effects likelihood function
(conditional on the random effects) obtained from the Girsanov formula in the hypothetical
situation, where the diffusion sample paths have been observed continuously in an interval.
Estimators and theory are then developed for continuous time data, while in practice the
estimators are approximated by replacing the integrals in the Girsanov formula by Riemann
and Ito sums. Some of the papers give bounds on the error made by these approximations
in terms of the sampling frequency. This approach was taken by Delattre et al. (2013, 2015,
2016) and Ruse et al. (2020), who considered exponential families of diffusion processes in
the sense of Küchler and Sørensen (1997), where the distribution of the random effects is
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the conjugate prior or a finite mixture of such distributions. In this case the likelihood func-
tion for continuous time data can be calculated explicitly. A disadvantage of the approach
based on the continuous time likelihood function is that it only works when there are neither
fixed parameters nor random effects in the diffusion coefficient. This limitation is avoided
in another method for high frequency data proposed by Delattre et al. (2018a,b), where
the conditional fixed effects likelihood function is approximated by the pseudo-likelihood
obtained from the Euler approximation to the distribution of the discrete time observations.
Like in the previous papers, these authors considered exponential families of diffusion pro-
cesses with conjugate priors as the distribution of the random effects in order to obtain an
explicit pseudo-likelihood. Nonparametric estimation for high frequency data was investi-
gated by Comte et al. (2013), Dion (2016) and Dion and Genon-Catalot (2016), while high
frequency asymptotics was studied by Maitra and Bhattacharya (2020) and Delattre (2021)
and in papers referenced in these papers. A different approach to asymptotics based on local
asymptotic normality and L2-differentiability was taken in Ruse et al. (2020).

When the sampling frequency is not sufficiently high, better approximations to the likeli-
hood function are needed. Picchini et al. (2010) and Picchini and Ditlevsen (2011) used the
Hermite polynomial expansions of the fixed effect likelihood function by Aı̈t-Sahalia (2008)
combined with Gaussian quadrature or Laplace’s method to approximate the likelihood func-
tion numerically. This can be rather time-consuming, so a number of other methods have
been proposed. Overgaard et al. (2005) obtained an approximation to the likelihood func-
tion via the extended Kalman filter, while Jamba et al. (2022) used the Delta method (i.e.
a second order Taylor expansion) to obtain an approximation to the fixed effect likelihood
function that can be integrated analytically with respect to many distributions of the random
effects.

More precise approximations can be obtained by thinking of the data as a missing data
problem, where the missing data are the random effects for the individual experimental
units, the sample paths between the observation times and possibly measurement errors.
For the full augmented data set the likelihood function is explicitly available. This suggests
application of the EM algorithm or the Gibbs sampler to obtain the maximum likelihood
estimator or to simulate from the posterior. Donnet and Samson (2008, 2014) used the
stochastic approximation EM algorithm (SAEM) combined with the Metropolis-Hastings
algorithm or particle filters with sample paths simulated by the Euler scheme on a fine grid.
Delattre and Lavielle (2013) moreover used the extended Kalman filter to reduce the amount
of simulation needed at the cost of loosing control of the error resulting from the linearization
needed for non-linear diffusion models. The Gibbs sampler was used by Donnet et al. (2010),
Whitaker et al. (2017), Picchini and Forman (2019) and Wiqvist et al. (2021) in combination
with a generalisation of the approximate diffusion bridge proposed by Durham and Gallant
(2002), the pseudo-marginal Metropolis-Hastings algorithm and particle filters or synthetic
likelihoods.

In recent years random-effects models based on stochastic differential equations driven by
fractional Brownian motion and partial stochastic differential equations have been studied,
see El Omari et al. (2019), Dai et al. (2021), Bishwal (2022), Prakasa Rao (2023) and El
Maroufy et al. (2024).

In the present paper, we also augment of the data and apply both a stochastic EM
algorithm and the Gibbs sampler. We propose to combine these algorithms with the simple
method for simulation of diffusion bridges introduced by Bladt and Sørensen (2014); see also
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the corrigendum Bladt et al. (2021). Advantages over other methods is that it is easy to
implement and that there are no tuning parameter that must be set appropriately (except
the discretization of the Euler scheme, but this is the case for all methods and is not difficult
to tune). Another advantage is that our method is efficient for low frequency observations,
as the computing time increase only linearly with the time between observations. To simplify
the presentation we consider only one-dimensional diffusions proceses, but our algorithms
can be directly generalised to multivariate diffusions the applying the methods for simulating
multivariate diffusion bridges in Bladt et al. (2016, 2022).

The paper is organized as follows. The model and the data augmentation are presented in
Section 2, and the Gibbs sampler and the stochastic EM algorithm are introduced for general
models in Section 3. In Section 4 it is outlined how the algorithms can be straightforwardly
extended to include the case of measurement errors, and in Section 5 it is investigated how
the algorithms simplify when the fixed effects model obtained conditionally on the random
effects is an exponential family of diffusion processes, which is the case for many models used
in practice. It is investigated how well the new methods work for the Ornstein-Uhlenbeck
process and for a t-diffusion in simulation studies in Section 6, and in Section 7 the Gibbs
sampler is applied to neuronal data. The simple method for diffusion bridge simulation is
briefly explained in Appendix A.

2 Model and augmented data

Consider N diffusion processes

dX i
t = dααα,aaai(X

i
t)dt+ σβββ,bbbi(X

i
t)dW

i
t , i = 1, . . . , N (2.1)

where W i, i = 1, · · · , N are independent standard Wiener processes. The vectors ααα and βββ
are parameters to be estimated, while the vectors aaai and bbbi are random effects. The random
vectors (aaai, bbbi), i = 1, . . . , N , are independent, identically distributed random vectors with
density pγγγ(aaa, bbb) with respect to some dominating measure, and they are independent of the
Wiener processes W i, i = 1, . . . , N . Thus the parameters to be estimated are θθθ = (ααα,βββ,γγγ).
We assume that σβββ,bbb(x) > 0 for all x in the state interval and for all values of (βββ,bbb), that
dααα,aaa(x) is continuously differentiable w.r.t. x for all values of (ααα,aaa), and that σβββ,bbb(x) is twice
continuously differentiable w.r.t. x for all (βββ,bbb). Moreover, we assume that for any given
value of (aaai, bbbi) the stochastic differential equation (2.1) has a unique weak solution, and that
the speed measure is finite.

We consider discrete time data XXXobs = (XXX1
obs, . . . ,XXX

N
obs), where

XXX i
obs =

(
xi1, . . . x

i
ni

)
,

and xij = X i
tij

, with ti1 < ti2 < ... < tini .

There is usually no explicit expression for the likelihood function for the discrete time
dataXXXobs conditional on the random effects (aaai, bbbi), i = 1, . . . , N , but the dataXXXobs are partial
observations of an augmented data set consisting of the random effects (aaai, bbbi), i = 1, . . . , N
and the complete continuous time observations of the diffusion processes X1, . . . , XN , i.e.
observations of X i in the time interval [ti1, t

i
ni

], i = 1, . . . , N . To augment the data, we
must simulate the missing data. In particular, we need to simulate each of the processes X i
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conditionally on XXX i
obs and on the random effects. This we can do by simulating independent

(tij−1, x
i
j−1, t

i
j, x

i
j)-bridges, j = 1, . . . , ni, for the diffusion (2.1) with fixed values of aaai and

bbbi. The process obtained by conditioning on Xt2 = x2 for a solution of (2.1) in the interval
[t1, t2] with Xt1 = x1 is called a (t1, x1, t2, x2)-bridge. We propose to simulate the diffusion
bridges by the simple method introduced in Bladt and Sørensen (2014) and the corrigendum
Bladt et al. (2021). The algorithm is briefly described in Appendix A. Advantages of this
method are is that it is easy to understand and implement, and that it is efficient at low
sampling frequencies, because the computing time increases linearly with t2 − t1.

If the diffusion coefficient depends on βββ and bbb, then the probability measures correspond-
ing to continuous time observations of the diffusion model given by (2.1) are singular (for
different values of the βββ and bbb), so that the likelihood function for this augmented data set
does not exist. Therefore, we use the Lamperti transformation

hβββ,bbb(x) =
∫ x

x∗

1

σβββ,bbb(y)
dy, (2.2)

where x∗ is a point in the state-interval. In the following we assume that bbbi is fixed (i.e. we
argue conditionally on the random vector bbbi). By Ito’s formula, the process Y i

t = hβββ,bbbi(X
i
t)

solves
dY i

t = µααα,βββ,aaai,bbbi(Y
i
t )dt+ dW i

t , (2.3)

where the drift coefficient is

µααα,βββ,aaa,bbb(y) =
dααα,aaa(h

−1
βββ,bbb(y))

σβββ,bbb(h
−1
βββ,bbb(y))

− 1

2
σ′βββ,bbb

(
h−1
βββ,bbb(y)

)
, (2.4)

with σ′βββ,bbb(x) = ∂xσβββ,bbb(x). In (2.3) the diffusion coefficient does not depend on the parameters
and random effects, which is a necessary condition for the existence of the likelihood function.
The basic dominating measure for the likelihood function is the Wiener measure induced on
C([t1, tni ]) by the standard Wiener process. It is an assumption in the rest of the paper that
the measures induced on C([t1, tni ]) by Y i (for all values of the parameters and the random
effects) are dominated by the Wiener measure, and that the Radon-Nikodym derivatives are
given by Girsanov’s theorem.

The Lamperti transformation (2.2), and hence the transformed data, depends on the
random effect bbbi and the parameter βββ. To reduce the Fisher information in the missing data
and thus make the MCMC and EM algorithms more efficient, we follow Roberts and Stramer
(2001) and augment the discrete time data in the following way that involves an extra path
transformation, see also Beskos et al. (2006). Our augmented “full” data set is (XXXobs,XXXmis),
where XXXmis = (XXX1

mis, . . . ,XXX
N
mis) and

XXX i
mis = {YYY ∗i, aaai, bbbi}.

Here YYY ∗i = {Y ∗ijt , t ∈ [tij−1, t
i
j], j = 2, . . . , ni} with

Y ∗ijt = Zij
t − `ijβββ,bbbi(t), t ∈ [tij−1, t

i
j],

where

`ijβββ,bbbi(t) =
(tij − t)hβββ,bbbi(xij−1) + (t− tij−1)hβββ,bbbi(x

i
j)

tij − tij−1

, t ∈ [tij−1, t
i
j], (2.5)
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j = 2, . . . , ni, interpolates linearly between the Lamperti transformed discrete time obser-
vations, and where, conditionally on XXX i

obs and (aaai, bbbi), the processes Zij
t , j = 2, . . . , ni, i =

1, . . . , N are independent (tij−1, hβββ,bbbi(x
i
j−1), tij, hβββ,bbbi(x

i
j))-bridges for the diffusion Y i given

by (2.3) with parameter values (ααα,βββ), and (aaai, bbbi). The bridge Zij can be obtain from a
(tij−1, x

i
j−1, t

i
j, x

i
j)-bridge, X ij, of the basic diffusion given by (2.1) by the transformation

Zij
t = hβββ,bbbi(X

ij
t ). The process Y ∗ij is not in general a (tij−1, 0, t

i
j, 0)-bridge. Under the

dominating Wiener measure, however, Y i is a Brownian motion, so Y ∗ij is a Brownian
(tij−1, 0, t

i
j, 0)-bridge. This is needed in the derivation of the following expression for the

likelihood function.
The likelihood function for the augmented data set is

L(ααα,βββ,γγγ;XXXobs,XXXmis) =
N∏
i=1

Li(ααα,βββ;XXX i
obs,XXX

i
mis)

N∏
i=1

pγγγ(aaa
i, bbbi),

where

logLi(ααα,βββ;XXX i
obs,XXX

i
mis) = Hααα,βββ,aaai,bbbi(x

i
1, x

i
ni

)

−
ni∑
j=2

[
(hβββ,bbbi(x

i
j)− hβββ,bbbi(xij−1))2

2(tij − tij−1)
+ log(σβββ,bbbi(x

i
j)) +

1

2

∫ tij

tij−1

φααα,βββ,aaai,bbbi(Y
∗ij
s + `ijβββ,bbbi(s))ds

]
.

Here hβββ,bbb is given by (2.2),

φααα,βββ,aaa,bbb(x) = µ′ααα,βββ,aaa,bbb(x) + µααα,βββ,aaa,bbb(x)2

= d′ααα,aaa(h
−1
βββ,bbb(x))− 2dααα,aaa(h

−1
βββ,bbb(x))

σ′βββ,bbb(h
−1
βββ,bbb(x))

σβββ,bbb(h
−1
βββ,bbb(x))

−1
2σ
′′
βββ,bbb(h

−1
βββ,bbb(x))σβββ,bbb(h

−1
βββ,bbb(x)) + 1

4

(
σ′βββ,bbb(h

−1
βββ,bbb(x))

)2
+
d2
ααα,aaa(h

−1
βββ,bbb(x))

σ2
βββ,bbb(h

−1
βββ,bbb(x))

,

and

Hααα,βββ,aaa,bbb(x, y) =
∫ hβββ,bbb(y)

hβββ,bbb(x)
µααα,βββ,aaa,bbb(y)dy =

∫ y

x

dααα,aaa(y)

σ2
βββ,bbb(y)

dy − 1
2 log

(
σβββ,bbb(y)

σβββ,bbb(x)

)
. (2.6)

The expression for Li(ααα,βββ;XXX i
obs,XXX

i
mis) follows from Girsanov’s theorem and Ito’s formula by

arguments in Roberts and Stramer (2001).

3 MCMC and EM algorithms

In order to use the likelihood function for the augmented data to find the maximum likelihood
estimator, or an analogous Bayesian estimator, for the discrete time data, we can apply
the EM-algoritm or the Gibbs sampler. In this section we present a Gibbs sampler and
a stochastic EM-algorithm. To clarify the general structure of the algorithms, they are
presented for the general model defined above. In section 5 we consider a particularly
tractable sub-class of models for which the algorithms simplify considerably.
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3.1 The Gibbs sampler

For MCMC-estimation, we first specify a suitable prior π(ααα,βββ,γγγ). Then we can simulate
from the posterior distribution of θθθ = (ααα,βββ,γγγ) by means of the following Gibbs sampler
with 2N + 1 sites. The sites are θθθ plus (aaai, bbbi) and YYY ∗i for i = 1, . . . , N . As we shall see
later, it can be preferable to have more sites, for instance, ααα, βββ, γγγ, aaai and bbbi, i = 1, . . . , N .
As a bi-product we also obtain a sample of values of the random effects conditional on the
observations.

To start the sampler, draw θθθ from the prior π, and given the value of γγγ, draw (aaai, bbbi) from
the distribution with density function pγγγ, independently for i = 1, . . . , N . Finally, simulate
independent sample paths Y ∗ij conditionally on ααα,βββ,aaai, bbbi and XXX i

obs for j = 2, . . . , ni, i =

1, . . . , N . Then repeat the following algorithm.

1. Draw θθθ conditionally on (XXXmis,XXXobs)

2. For i = 1, . . . , N , draw independent values of (aaai, bbbi) conditionally on (θθθ,XXX i
obs,YYY

∗i)

3. Simulate independent sample paths Y ∗ij conditionally on (ααα,βββ,aaai, bbbi,XXX i
obs) for j =

2, . . . , ni, i = 1, . . . , N

4. GO TO 1

In step 1 and 2 the conditional densities of θθθ and (aaai, bbbi) are proportional to π(θθθ) ·
L(θθθ;XXXobs,XXXmis) and Li(ααα,βββ;XXX i

obs,YYY
∗i, aaai, bbbi)pγγγ(aaa

i, bbbi), respectively. In Section 5 we shall se
that these steps simplify for an important class of diffusion models, but for more complicated
models, it is usually necessary to use Metropolis within Gibbs.

To simulate Y ∗ij in step 3, we must simulate a (tij−1, hβββ,bbbi(x
i
j−1), tij, hβββ,bbbi(x

i
j))-bridge for

the diffusion Y i given by (2.3) (or equivalently a (tij−1, x
i
j−1, t

i
j, x

i
j)-bridge of the diffusion

given by (2.1)). We do this using the method by Bladt and Sørensen (2014), see also Bladt
et al. (2021), which is briefly presented in the appendix. The main reasons for this choice
are easy implementation and the fact that the computing time for this method is linear
in the length of the interval [tij−1, t

i
j] and hence works for all sampling frequencies. The

simplest method is to use the approximate diffusion bridges obtain by a simple rejection
sampler, which usually has a high acceptance rate. In our experience this approximation is
sufficiently accurate to obtain good estimates. Exact diffusion bridges can be obtained by
Metropolis within Gibbs, as explained in the appendix. In the mth iteration we simulate,
as a proposal, an approximate (tij−1, x

i
j−1, t

i
j, x

i
j)-bridge, Xm,ij, of the diffusion (2.1)) sup-

plemented by its associated geometric variable Sm,ij. The proposed bridge is accepted with
probability min{1, Sm,ij/Sm−1,ij}. Otherwise we keep the bridge used in iteration m− 1.

3.2 The EM algorithm

An alternative to MCMC-estimation is the EM-algorithm, which under weak conditions con-
verges to a (possibly local) maximum of the likelihood function for the discrete time data,
see e.g. McLachlan and Krishnan (1997).

The EM-algorithm works as follows.
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0. Choose initial values α̂αα0, β̂ββ0, γ̂γγ0, k := 0

1. (E–step) Calculate the function

Q(ααα,βββ,γγγ) =
N∑
i=1

IEα̂ααk,β̂ββk,γ̂γγk

[
logLi(ααα,βββ;XXX i

obs,XXX
i
mis) + log pγγγ(aaa

i, bbbi)
∣∣∣ XXX i

obs

]
.

2. (M–step) (α̂ααk+1, β̂ββk+1, γ̂γγk+1) = argmaxααα,βββ,γγγQ(ααα,βββ,γγγ).

3. k:=k+1; GO TO 1.

In the E–step it is almost always impossible to calculate the conditional expectations of
the log-likelihood functions explicitly. Therefore we calculate the ith conditional expec-
tation numerically by generating MC-samples XXXm,i

mis = {Y ∗m,i, aaam,i, bbbm,i}, m = 1, . . . ,M
(conditionally on the observed data XXX i

obs) such that we can approximate Q(ααα,βββ,γγγ) by
Q̂(ααα,βββ,γγγ) =

∑N
i=1 Q̂i(ααα,βββ,γγγ), where

Q̂i(ααα,βββ,γγγ) :=
1

M

M∑
m=1

{
logLi(ααα,βββ;XXX i

obs,YYY
∗m,i, aaam,i, bbbm,i) + log pγγγ(aaa

m,i, bbbm,i)
}
.

This can be done by means of the following simplified version of the previous Gibbs sampler.

0. Draw (aaai, bbbi) from pγ̂γγk

1. Simulate independent sample paths Y ∗ij, j = 2, . . . , ni, conditionally on aaai, bbbi,XXX i
obs (with

the parameter values α̂ααk and β̂ββk)

2. Draw (aaai, bbbi) conditionally on XXX i
obs,YYY

∗i (with the parameter values α̂ααk, β̂ββk and γ̂γγk)

3. GO TO 1

In step 1 of the Gibbs sampler, we use again the simple method by Bladt and Sørensen
(2014), see also Bladt et al. (2021), to simulate diffusion bridges, cf. the appendix. Again
there is a choice between using approximate bridges or using Metropolis within Gibbs to
obtain exact diffusion bridges, as explained previously. In step 2, the conditional density
of (aaai, bbbi) is proportional to Li(α̂ααk, β̂ββk;XXX

i
obs,YYY

∗i, aaai, bbbi)pγ̂γγk(aaa
i, bbbi). As for the previous Gibbs

sampler, it is often necessary to use Metropolis within Gibbs for complicated models.
When the conditional expectation of the log-likelihood function for the full data set is

calculated by Monte Carlo methods, as we do, the algorithm is often referred to Monte
Carlo EM (MCEM), see Wei and Tanner (1990). In our experience this works well without
computational problems. If desired, the MCEM algorithm can be replaced by a stochastic
EM algorithm, see e.g. Diebolt and Ip (1996), or a stochastic approximation EM (SAEM),
see Delyon et al. (1999), both of which are easily implemented using the simple method for
diffusion bridge simulation.
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4 Measurement errors

In several applications, e.g. pharmacokinetics, measurement errors are expected. In this sec-
tion we will outline how it is straightforward to extend our methods to include measurement
errors.

Assume that the observations are UUU obs = (UUU1
obs, . . . ,UUU

N
obs), where UUU i

obs =
(
ui1, . . . u

i
ni

)
, and

uij = X i
tij

+ εij,

with ti1 < ti2 < ... < tini . Here the process X i
t is defined as in Section 2, and the random

variables εij ∼ N(0, τ 2) are mutually independent and independent of X i, aaai, bbbi, i = 1, . . . , N .
We consider the case of additive Gaussian measurement errors, but the general case where
uij = k(X i

tij
, εij) for some function k with the variables εij non-Gaussian, can be treated in

exactly the same way – apart from a more complicated notation.
Here the unobserved data include the measurement errors, i.e. the augmented data set

is (UUU obs,UUUmis) with UUUmis = (UUU1
mis, . . . ,UUU

N
mis) and XXX i

mis = {YYY ∗i, aaai, bbbi, εεεi}. Here εεεi = (εi1, . . . , ε
i
ni

),

Y ∗ijt = Z̃ij
t − ˜̀ij

βββ,bbbi,εεεi(t), t ∈ [tij−1, t
i
j] and

˜̀ij
βββ,bbbi,εεεi(t) =

(tij − t)hβββ,bbbi(uij−1 − εij−1) + (t− tij−1)hβββ,bbbi(u
i
j − εij)

tij − tij−1

, t ∈ [tij−1, t
i
j],

j = 2, . . . , ni. Moreover, Z̃ij
t = hβββ,bbbi(X

ij
t ), where X ij, j = 2, . . . , ni, i = 1, . . . , N are indepen-

dent (tij−1, u
i
j−1 − εij−1, t

i
j, u

i
j − εij)-bridges of the basic diffusion given by (2.1) conditionally

on UUU i
obs, (aaai, bbbi) and εεεi. The likelihood function for the augmented data set is

L(ααα,βββ,γγγ, τ 2;UUU obs,UUUmis) =
N∏
i=1

L̃i(ααα,βββ;UUU i
obs − εεεi,XXX i

mis)pγγγ(aaa
i, bbbi)

ni∏
j=1

ϕτ2(ε
i
j)

 ,
where ϕτ2 is the Gaussian density function with mean zero and variance τ 2 and L̃i is defined
as Li in Section 2 except that `ijβββ,bbbi is replaced by ˜̀ij

βββ,bbbi,εεεi .
Apart from the modified likelihood function and obvious minor changes, the only two

changes to the Gibbs sampler are that in step 1 also τ 2 must be drawn, and that in each
iteration an extra step must be added prior to step 3. In the extra step, εεεi is simulated
conditionally on (ααα,βββ,γγγ, τ 2,XXX i

obs,YYY
∗i, aaai, bbbi) for i = 1, . . . , N . For the EM-algorithm similar

modifications are needed. In particular, εεεi must be added as an extra site to the Gibbs
sampler used to create the MC-samples.

The algorithms could also have been formulated in terms of simulation of generalized
diffusion bridges, i.e. diffusion bridges where the two endpoints are random, in this case
uij−1 − εij−1 and uij − εij.

5 Exponential family models

Considerable simplifications of the Gibb’s sampler and the EM-algorithm can be obtained,
when the drift is linear in the parameter ααα ∈ IRp1 and in the random effect aaa ∈ IRp2 , and the
random effects aaa and bbb are independent with densities pγγγ1 and pγγγ2 , respectively. Specifically,
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we will in this section investigate stochastic differential equations with mixed effects, where
the drift has the form

dααα,aaa(x) =
p1∑
k=1

αkfk(x) +
p2∑
k=1

akgk(x) = αααfff(x)> + aaaggg(x)>, (5.1)

where fff = (f1, . . . , fp1) and ggg = (g1, . . . , gp2). In this paper vectors are row vectors, and >
denotes transposition. A large part of the diffusion models used in practice have this form.

When the drift is of the form (5.1), the continuous time full model is an exponential
family of processes (in the sense of Küchler and Sørensen (1997)) in the parameters and
random effects in the drift (conditionally on these random effects). More specifically, we find
that

Hααα,βββ,aaa,bbb(x, y) = ααα
∫ y

x

fff(y)>

σ2
βββ,bbb(y)

dy + aaa
∫ y

x

ggg(y)>

σ2
βββ,bbb(y)

dy − 1
2 log

σβββ,bbb(y)

σβββ,bbb(x)
, (5.2)

cf. (2.6), and

φααα,βββ,aaa,bbb(x) = αααf̄ffβββ,bbb(h
−1
βββ,bbb(x))> + aaaḡggβββ,bbb(h

−1
βββ,bbb(x))> + 2αααf̃ffβββ,bbb(h

−1
βββ,bbb(x))>g̃ggβββ,bbb(h

−1
βββ,bbb(x))aaa>

+αααf̃ffβββ,bbb(h
−1
βββ,bbb(x))>f̃ffβββ,bbb(h

−1
βββ,bbb(x))ααα> + aaag̃ggβββ,bbb(h

−1
βββ,bbb(x))>g̃ggβββ,bbb(h

−1
βββ,bbb(x))aaa>

+1
4

(
σ′βββ,bbb(h

−1
βββ,bbb(x))

)2
− 1

2σ
′′
βββ,bbb(h

−1
βββ,bbb(x))σβββ,bbb(h

−1
βββ,bbb(x)),

where hβββ,bbb is given by (2.2), and the kth coordinate of the functions f̄ff , ḡgg, f̃ff and g̃gg are given
by

(f̄ffβββ,bbb)k(x) = f ′k(x)− 2fk(x)(log(σβββ,bbb(x))′

(ḡggβββ,bbb)k(x) = g′k(x)− 2gk(x)(log(σβββ,bbb(x))′

(f̃ffβββ,bbb)k(x) = fk(x)/σβββ,bbb(x)

(g̃ggβββ,bbb)k(x) = gk(x)/σβββ,bbb(x).

If we assume that the distribution of the random effects in the drift is Gaussian

aaai ∼ Np2(ξξξ,Γ
−1), (5.3)

then the likelihood function for the augmented data has the form

L(θθθ;XXXobs,XXXmis) = exp
(
αααvvv>βββ,aaa,bbb − 1

2αααDβββ,bbbααα
> + q(βββ,aaa, bbb)

) N∏
i=1

[
pγγγ1(aaa

i)pγγγ2(bbb
i)
]

(5.4)

= C(θθθ, bbb)
N∏
i=1

exp
(
aaai
[
(tttiααα,βββ,bbbi)

>+ Γξξξ>
]
− 1

2aaa
i
(
Bi
βββ,bbbi + Γ

)
(aaai)>

)
. (5.5)

Here we have used the notation aaa = (aaa1, . . . , aaaN) and bbb = (bbb1, . . . , bbbN). The likelihood
function is Gaussian as a function of ααα as well as of aaai. The vectors and matrices in (5.4)
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and (5.5) are defined as follows:

tttiααα,βββ,bbbi =
∫ xini

xi1

ggg(y)

σ2
βββ,bbbi(y)

dy −
ni∑
j=2

∫ tij

tij−1

kkk1i(Y
∗ij
s + `ijβββ,bbbi(s))ds (5.6)

vvvβββ,aaa,bbb =
N∑
i=1


∫ xini

xi1

fff(y)

σ2
βββ,bbbi(y)

dy −
ni∑
j=2

∫ tij

tij−1

kkk2i(Y
∗ij
s + `ijβββ,bbbi(s))ds

 (5.7)

Bi
βββ,bbbi =

ni∑
j=2

∫ tij

tij−1

KKK3i(Y
∗ij
s + `ijβββ,bbbi(s))ds (5.8)

Dβββ,bbb =
N∑
i=1

ni∑
j=2

∫ tij

tij−1

KKK4i(Y
∗ij
s + `ijβββ,bbbi(s))ds (5.9)

where

kkk1i(y) = 1
2ḡggβββ,bbbi(h

−1
βββ,bbbi(y)) +αααf̃ffβββ,bbbi(h

−1
βββ,bbbi(y))>g̃ggβββ,bbbi(h

−1
βββ,bbbi(y))

kkk2i(y) = 1
2f̄ffβββ,bbbi(h

−1
βββ,bbbi(y)) + aaaig̃ggβββ,bbbi(h

−1
βββ,bbbi(y))>f̃ffβββ,bbbi(h

−1
βββ,bbbi(y))

KKK3i(y) = g̃ggβββ,bbbi(h
−1
βββ,bbbi(y))>g̃ggβββ,bbbi(h

−1
βββ,bbbi(y))

KKK4i(y) = f̃ffβββ,bbbi(h
−1
βββ,bbbi(y))>f̃ffβββ,bbbi(h

−1
βββ,bbbi(y))

The real functions q(βββ,aaa, bbb) and C(θθθ, bbb) can be determined from the expressions above (and
the multivariate normal density function).

5.1 The Gibbs sampler

For the Gibbs sampler the simplification is obtained if a conjugate prior is used for ααα and
for γγγ1. Specifically, we use the priors

ααα ∼ Np1(ᾱαα,Σ)

γγγ1 = (ξξξ,Γ) ∼ NWp2(ξξξ0, λ,V , ν)

βββ ∼ π1 γγγ2 ∼ π2

where ααα, βββ, γγγ1 and γγγ2 are independent. By NWp2(ξξξ0, λ,V , ν) we denote the p2-dimensional
normal-Wishart distribution with parameters ξξξ0 ∈ IRp2 , λ > 0,V , ν > p2 − 1, where V is
a positive definite p2 × p2−matrix. The parameter γγγ1 = (ξξξ,Γ) can be simulated by first
simulating Γ from a Wishard distribution with parameters (V , ν), and then (conditionally
on Γ) simulating ξξξ from a multivariate normal distribution with mean ξξξ0 and covariance
matrix (λΓ)−1.

If some of the parameters or random effects must necessarily be positive (for instance to
ensure ergodicity), then these coordinates of the multivariate normal distributions must be
restricted to the positive half-line. The same is then the case of the corresponding normal
distributions in the following algorithm.

With these priors, it follows easily from (5.4) and (5.5) (and well-known results for the
normal-Wishart prior) that the Gibbs sampler goes as follows.
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0. To start the sampler, draw θθθ = (ααα,βββ,γγγ1, γγγ2) from the prior distribution, and given the
value of (γγγ1, γγγ2), draw (aaai, bbbi) from the distribution with parameter (γγγ1, γγγ2), indepen-
dently for i = 1, . . . , N . Complete the initialization by simulating independent sample
paths Y ∗ij conditionally on θθθ,aaai, bbbi and XXX i

obs for j = 2, . . . , ni, i = 1, . . . , N .

1. Draw ααα from the Np1((vvvβββ,aaa,bbb + ᾱααΣ−1)(Dβββ,bbb + Σ−1)−1, (Dβββ,bbb + Σ−1)−1) distribution (con-
ditionally on βββ,aaa, bbb,XXXobs and YYY ∗i, i = 1, . . . , N)

2. Draw βββ from the distribution with density function proportional to

π1(βββ)
N∏
i=1

Li(ααα,βββ;XXX i
obs,YYY

∗i, aaai, bbbi)

(all quantities other than βββ are fixed)

3. Draw γγγ1 = (ξξξ,ΓΓΓ) (conditionally on aaa1, . . . , aaaN) from the

NWp2(λξξξ0+Nāaa)/(λ+N), λ+N, (V −1+N Γ̂
−1

+(āaa−ξξξ0)(āaa−ξξξ0)>λN/(λ+N))−1, ν+N)

distribution, where āaa and Γ̂ΓΓ
−1

are the mean and the sample covariance matrix of
aaa1, . . . , aaaN

4. Draw γγγ2 from the distribution with density function proportional to π2(γγγ2)
∏N
i=1 pγγγ2(bbb

i)
(with bbb1, . . . , bbbN fixed)

5. Draw independent values of aaai from the Np2((ttt
i
ααα,βββ,bbbi + ξξξΓ)(Bi

βββ,bbbi + Γ)−1, (Bi
βββ,bbbi + Γ)−1)

distribution, i = 1, . . . , N (conditionally on θθθ, bbbi,XXX i
obs and YYY ∗i)

6. Draw bbbi from the distribution with density function proportional to

Li(ααα,βββ;XXX i
obs,YYY

∗i, aaai, bbbi)pγγγ2(bbb
i)

(where all quantities other than bbbi are fixed), independently for i = 1, . . . , N

7. Simulate independent sample paths Y ∗ij conditionally on θθθ,aaai, bbbi and XXX i
obs for j =

2, . . . , ni, i = 1, . . . , N

8. GO TO 1

In (5.3) we allowed all kinds of dependencies between the random effects in the drift. It
might in some cases be reasonable to assume some structure in the matrix Γ, for instance
that it is a diagonal matrix. This changes the posterior of γγγ1 in step 3. If we assume
that the coordinates of aaai are independent, then the posterior is independent normal-gamma
distributions.

If some of the parameters or random effects must necessarily be positive, the normal
distributions, restricted to the positive half-line, can be replaced by exponential distributions
independent of the other coordinates. For instance, if ai is one-dimensional (p2 = 1) and
must be positive, then we can assume that ai is exponential distributed with mean γ−1

1 , and
that the prior of γ1 is the Γ(ν, λ)-distribution (with density proportional to ην−1e−λη). Then
step 5 is replaced by
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5*. For i = 1, . . . , N , draw independent values of ai from the normal distribution with
mean (tiααα,βββ,bbbi−γ1)/Bi

βββ,bbbi and variance (Bi
βββ,bbbi)

−1 restricted to the positive half-axis (con-

ditionally on θθθ, bbbi,XXX i
obs and YYY ∗i),

while step 3 is replaced by

3*. Draw γ1 from the Γ(ν+N, λ+a1 + . . .+aN)-distribution (conditionally on a1, . . . , aN).

A considerable simplification of step 2 can be obtained when

σβ,bbb(x) = βcbbb(x), (5.10)

where β > 0 and cbbb(x) > 0. Then

Hααα,β,aaa,bbb(x, y) = β−2
∫ y

x

αααfff(z)> + aaaggg(z)>

c2
bbb(z)

dz − 1
2 log

cbbb(y)

cbbb(x)
,

where the β in the last term in (5.2) has been omitted as it cancels in the likelihood function.
Further,

φααα,β,aaa,bbb(x) = m
(1)
ααα,1,aaa,bbb(βx) + β2m

(2)
1,bbb(βx) + β−2m

(3)
ααα,1,aaa,bbb(βx)

where

m
(1)
ααα,β,aaa,bbb(x) = αααf̄ffβ,bbb(h

−1
β,bbb(x))> + aaaḡggβ,bbb(h

−1
β,bbb(x))>

m
(2)
β,bbb(x) = 1

4(σ′β,bbb(h
−1
β,bbb(x)))2 − 1

2σ
′′
β,bbb(h

−1
β,bbb(x))σβ,bbb(h

−1
β,bbb(x)) (5.11)

m
(3)
ααα,β,aaa,bbb(x) = 2αααf̃ffβ,bbb(h

−1
β,bbb(x))>g̃ggβ,bbb(h

−1
β,bbb(x))aaa> +αααf̃ffβ,bbb(h

−1
β,bbb(x))>f̃ffβ,bbb(h

−1
β,bbb(x))ααα>

+ aaag̃ggβ,bbb(h
−1
β,bbb(x))>g̃ggβ,bbb(h

−1
β,bbb(x))aaa>

Thus, in step 2 of the Gibbs sampler, β must be drawn from a distribution with density
proportional to

π1(β)β−(n·−N) exp
(
−β−2(G1 +G2) + F (β)

)
,

where n· = n1 + · · ·+ nN and

G1 =
N∑
i=1

ni∑
j=2

(h1,bbbi(x
i
j)− h1,bbbi(x

i
j−1))2

2(tij − tij−1)
G2 = −

N∑
i=1

∫ xini

xi1

αααfff(z)> + aaaiggg(z)>

c2
bbbi(z)

dz

and

F (β) = −1

2

N∑
i=1

ni∑
j=2

∫ tij

tij−1

φααα,β,aiaiai,bbbi(Y
∗ij
s + β−1`ij1,bbbi(s))ds,

where the function F in general depends on β in a complicated way.
If we introduce the parameter η = β−2 and as the prior of η choose the Γ(κ, δ)-distribution,

then in step 2, η should be drawn from the weighted gamma-distribution with density func-
tion proportional to

η(n·−N)/2+κ−1 exp
(
−η(δ +G1 +G2) + F (η−1/2)

)
. (5.12)

This can be done in several ways.
a) We can replace step 2 by one iteration of a Metropolis-Hastings algorithm.
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2*. If δ+G1 +G2 > 0, then draw η∗ from the Γ((n·−N)/2 + κ, δ+G1 +G2) distribution,
and with probability

min
(
1, exp(F (η∗−1/2)− F (η−1/2))

)
accept the proposed value and set η := η∗.

If δ +G1 +G2 ≤ 0, then draw η∗ from the Γ((n·−N)/2 + κ, δ +G1) distribution, and
with probability

min
(
1, exp(F (η∗−1/2)− F (η−1/2) + (η − η∗)G2)

)
accept the proposed value and set η := η∗.

If the proposed value is not accepted, η is unchanged.

b) If the function F is bounded, step 2 can be replaced by a rejection sampler. Suppose,
for instance, that the prior of η is truncated to the interval [E1, E2], 0 < E1 < E2, and

that F is a continuous function of β ∈ [E
−1/2
2 , E

−1/2
1 ]. Then there exists M > 0 such that

supE1≤η≤E2
exp(F (η−1/2)) ≤ M . If δ + G1 + G2 > 0, we can replace step 2 by the following

algorithm.

2**.

(1) Draw η∗ from the Γ((n· − N)/2 + κ, δ + G1 + G2)-distribution truncated to the
interval [E1, E2].

(2) With probability exp(F (η∗−1/2))/M , accept the proposed value and set η := η∗.
Otherwise go to (1).

If δ + G1 + G2 ≤ 0, a similar step can be used, where the scale parameter of the gamma
distribution is modified as above, and the acceptance probability is exp(F (η∗−1/2)−η∗G2)/M2

where exp(F (η−1/2)− ηG2) ≤M2.
c) Finally, we can use approximate direct sampling. Again we consider the case δ+G1 +

G2 > 0. For numerical reasons we choose M such that (G1 + G2)/M has a reasonable
magnitude. Draw Z1, . . . , ZK independently from the Γ((n· −N)/2 + κ, (δ +G1 +G2)/M)-
distribution, and define

pi :=
exp(F ((Zi/M)−1/2))∑K
j=1 exp(F ((Zj/M)−1/2))

.

Let I be a random variable with P (I = i) = pi. Then the distribution of η = ZI/M is
approximately equal to the weighted gamma-distribution (5.12), where the approximation
improves as K increases. Again there is a modification in case δ +G1 +G2 ≤ 0

For concrete models, it may be more efficient to take advantage of the particular structure
of the function F , when drawing values of β in step 2 of the Gibbs sampler, see examples
below.

Step 6 can be simplified in a similar way when

σβββ,b(x) = bcβββ(x), (5.13)

where b > 0 and cβββ(x) > 0. For more details see the next subsection.
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5.2 The EM algorithm

For the EM algorithm we obtain a further simplification, if we assume that the diffusion
coefficient has the form (5.13) and that the random variable E = b−2 is Γ(κ, δ) distributed.
Thus γγγ = (ξξξ,Γ, κ, δ), and the function q(βββ), implicitly given by (5.4) (here we suppress the
arguments aaa and bbb), has the form

q(βββ) =
N∑
i=1

[
aaai

(bi)2

∫ xini

xi1

ggg(z)>

c2
βββ(z)

dz − (ni − 1) log(bi) − 1

2
log(cβββ(xini)/cβββ(xi1))−

ni∑
j=2

log cβββ(xij)

− 1

(bi)2

ni∑
j=2

(hβββ,1(xij)− hβββ,1(xij−1))2

2(tij − tij−1)
− 1

2

ni∑
j=2

∫ tij

tij−1

rβββ,aaai,bi(b
iY ∗ijs + `ijβββ,1(s))ds

, (5.14)

where

rβββ,aaai,bi(x) = aaaiḡggβββ,1(h−1
βββ,1(x))> + (bi)−2aaaig̃ggβββ,1(h−1

βββ,1(x))>g̃ggβββ,1(h−1
βββ,1(x))(aaai)> + (bi)2m

(2)
βββ,1(x)

with m(2) given by (5.11).
It follows from (5.4) and standard results on maximum likelihood estimation for the

multivariate normal and the gamma distribution that the EM-algorithm works as follows.
We use the vector and the matrix defined by (5.7) and (5.9), but we suppress the dependence
on aaa and bbb in the notation and write vvvβββ and Dβββ.

0. Choose initial values α̂αα0, β̂ββ0, γ̂γγ0, k := 0

1. For i = 1, . . . , N , generate MC-samples XXXm,i
mis = {YYY ∗m,i, aaam,i, bm,i}, m = 1, . . . ,M ,

conditionally onXXX i
obs under the parameter values α̂ααk, β̂ββk, γ̂γγk. Then for each m, calculate

the averages

āaa = 1
NM

∑
i,m aaa

m,i, S = 1
NM

∑
i,m(aaam,i − āaa)>(aaam,i − āaa)

ē = 1
NM

∑
i,m(bm,i)−2, l̄ = − 2

NM

∑
i,m log(bm,i).

Finally, for each m let vvvmβββ , Dm
βββ and qm(βββ) denote the quantities given by (5.7), (5.9)

and (5.14)

2. Set

β̂ββk+1 := argmaxβββ

(
1
2v̂vvβββD̂

−1

βββ v̂vv
>
βββ + q̂(βββ)

)
α̂ααk+1 := v̂vvβ̂ββk+1

D̂
−1

β̂ββk+1

ξ̂k+1 := āaa, Γ̂k+1 := S−1 δ̂k+1 := κ̂k+1/ē,

where

v̂vvβββ =
1

M

M∑
m=1

vvvmβββ , D̂βββ =
1

M

M∑
m=1

Dm
βββ , q̂(βββ) =

1

M

M∑
m=1

qm(βββ),

and where κ̂k+1 is the unique solution to log(κ̂k+1)− ψ(κ̂k+1) = log(ē)− l̄ (ψ denotes
the digamma function)
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3. k:=k+1; GO TO 1.

The MC-samples in step 1 can be generated for each value of i by means of a simplified
version of the previous Gibbs sampler in which the following definitions are used:

Gi1 =
ni∑
j=2

(hβ̂ββk,1(xij)− hβ̂ββk,1(xij−1))2

2(tij − tij−1)
Gi2 = −

∫ xini

xi1

α̂ααkfff(y)> + aaaiggg(y)>

c2
β̂ββk

(y)
dy

and

Fi(b) = −1

2

ni∑
j=2

∫ tij

tij−1

φα̂ααk,β̂ββk,aaai,b(Y
∗ij
s + b−1`ij

β̂ββk,1
(s))ds,

where
φα̂ααk,β̂ββk,aaai,b(y) = m

(1)

α̂ααk,β̂ββk,aaa
i,1

(by) + b2m
(2)

β̂ββk,1
(by) + b−2m

(3)

α̂ααk,β̂ββk,aaa
i,1

(by)

with m(1),m(2) and m(3) given by (5.11).
The Gibbs sampler goes as follows, cf. (5.5).

0. Draw independent values of aaai and E from theNp2(ξ̂ξξk, Γ̂
−1

k )-distribution and the Γ(κ̂k, δ̂k)-
distribution, respectively, and set bi := E−2

1. Simulate independent sample paths Y ∗ij, j = 2, . . . , ni, conditionally on aaai, bi,XXX i
obs (with

the parameter values α̂ααk and β̂ββk), and use these to calculate ttti
α̂ααk,β̂ββk,b

i and Bi
β̂ββk,b

i given

by (5.6) and (5.8).

2. Draw aaai from the Np2((ttt
i
α̂ααk,β̂ββk,b

i + ξ̂ξξkΓ̂k)(B
i
β̂ββk,b

i + Γ̂k)
−1, (Bi

β̂ββk,b
i + Γ̂k)

−1)-distribution

(conditionally on bi,XXX i
obs and YYY ∗i)

3. Draw E from the weighted gamma distribution with density proportional to

x(ni−1)/2+κ̂k−1 exp
(
−x(δ̂k +Gi1 +Gi2) + Fi(x

−1/2)
)
, x > 0 (5.15)

(conditionally on ai,XXX i
obs and YYY ∗i), and set bi := E−2

4. GO TO 1

Draws from the weighted gamma distribution (5.15) can be done in various ways, as
indicated in the previous subsection. Here we just mention that if δ̂k +Gi1 +Gi2 > 0, then
step 3 in the Gibbs sampler can be replaced by

3*. Draw E from the Γ((ni − 1)/2 + κ̂k, δ̂k +Gi1 +Gi2)-distribution. With probability

min
(
1, exp(Fi(E

−1/2)− Fi(bi))
)

the proposed value is accepted and bi := E−2. Otherwise bi is unchanged.
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If δ̂k + Gi1 + Gi2 ≤ 0, the scale parameter of the gamma distribution must be changed to
(δ̂k +Gi1)−1, and Fi must be replaced by the function F̃i(b) = b−2Gi2 + Fi(b).

If some of the random effects in the drift must necessarily be positive, these coordinates
of the multivariate normal distribution can restricted to the positive half-line. Perhaps a
more satisfactory solution is to assume that these coordinates are exponential distributed
and independent of the other coordinates. For instance, if ai is one-dimensional (p2 = 1)
and must be positive, then we can assume that ai is exponential distributed with mean λ−1.
Then in step 2 of the EM-algorithm ξ̂k+1 and Γ̂k+1 are replaced by

λ̂k+1 := 1/ā

(and S is not needed in step 1). In step 2 of the Gibbs sampler, ai is drawn from the normal
distribution with mean (ti

α̂ααk,β̂ββk,b
i − λ̂k)/Bi

βββ,bi and variance (Bi
βββ,bi)

−1 restricted to the positive

half-axis (conditionally on bi,XXX i
obs and YYY ∗i).

6 Simulation studies

6.1 The Ornstein-Uhlenbeck process

Consider the Ornstein-Uhlenbeck process

dX i
t = −aiX i

tdt+ βdW i
t ,

with random speed parameter ai, where β > 0 and ai is exponential distributed with mean
γ−1.

First we apply the Gibbs sampler. As the prior, we choose the Γ(ν, λ) distribution for γ
and the Γ(κ, δ) distribution for η = β−2, and we assume independence of γ and β.

Since f(x) = 0, g(x) = −x, hβ(x) = x/β and φa(x) = −a + a2x2, the quantities needed
in the algorithm are

tiβ = − 1

2β2

(
(xini)

2 − (xi1)2
)

+
1

2
(tini − t

i
1)

Bi
β =

ni∑
j=2

∫ tij

tij−1

(
Y ∗ijs + β−1`ij1 (s)

)2
ds

G1 =
N∑
i=1

ni∑
j=2

(xij − xij−1)2

2(tij − tij−1)

G2 =
1

2

N∑
i=1

ai
(
(xini)

2 − (xi1)2
)

E1 =
1

2

N∑
i=1

(ai)2
ni∑
j=2

∫ tij

tij−1

`ij1 (s)2ds

E2 = −
N∑
i=1

(ai)2
ni∑
j=2

∫ tij

tij−1

Y ∗ijs `ij1 (s)ds,

where

`ij1 (t) =
(tij − t)xij−1 + (t− tij−1)xij

tij − tii−j
, t ∈ [tij−1, t

i
j]. (6.1)
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In this example F (β) = −β−2E1 + β−1E2 (apart from an additive term independent of β),
but here we can make E1 a part of the scale parameter of the weighted gamma distribution,
because it is positive.

The Gibbs sampler goes as follows, with N+ denoting the normal distribution restricted
to the positive half-line.

0. First draw β and γ independently from the prior distribution, and given γ, draw ai from
the exponential distribution with mean γ−1, independently for i = 1, . . . , N .

1. Simulate independent sample paths Y ∗ij conditionally on ai, β andX i
obs for j = 2, . . . , ni, i =

1, . . . , N

2. Draw ai with distribution N+((tiβ − γ)/Bi
β, (B

i
β)−1), independently for i = 1, . . . , N

3. Draw η from the distribution with density function proportional to

η(n·−N)/2+κ−1 exp (−η(δ +G1 +G2 + E1) +
√
ηE2) ,

and set β := η−1/2

4. Draw γ from the Γ(ν + n, λ+ a1 + · · ·+ aN)-distribution

5. GO TO 1

If δ+G1 +G2 +E1 > 0, the distribution in step 3 is a weighted gamma distribution with scale
parameter (δ +G1 +G2 + E1)−1 and weight function exp(

√
ηE2). If δ +G1 +G2 + E1 ≤ 0,

the scale parameter is (δ +G1 +E1)−1 (which is always positive) and the weight function is
exp(
√
ηE2 − ηG2).

As data we simulated 100 diffusions with β = 1 and γ = 1 at the time points tij = j, j =
1, . . . , 100. Then we ran 1000 iterations of the Gibbs sampler using prior distributions with
κ = 1, δ = 0.5, ν = 1, λ = 2. In step 1 we simulated the approximate diffusion bridges
proposed by Bladt and Sørensen (2014), and in step 3 we used the approximate direct
sampling method described in Subsection 5.1. In all cases δ +G1 +G2 + E1 was positive.

Because the burn-in was almost immediate, we based the estimation on the last 900
draws of the parameters. The mean posterior estimators are β̂ = 0.9800 and γ̂ = 1.017, and
the 95% credibility intervals are [0.9368, 1.0200] for β and [0.8264, 1.2291] for γ. The last
900 draws and histograms of the parameter values are plotted in Figure 6.1.

Next we apply the EM algorithm. In this example

q(β) = −β−2(G1 + E1) + β−1E2 − (n· −N) log(β)

(apart from additive terms that do not depend on β). The EM-algorithm goes as follows:

0. Choose initial values β̂0 and γ̂0, k := 0

1. For i = 1, . . . , N , generate MC-samples XXXm,i
mis = {YYY ∗m,i, am,i}, m = 1, . . . ,M, condition-

ally on XXX i
obs under the parameter values β̂k and γ̂k, and for each m calculate Gm

2 , E
m
1

and Em
2 . Finally, calculate the averages

Ĝ2 =
1

M

M∑
m=1

Gm
2 , Ê1 =

1

M

M∑
m=1

Em
1 , Ê2 =

1

M

M∑
m=1

Em
2 , ā =

1

NM

∑
i,m

am,i
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Figure 6.1: The Gibbs sampler for the Ornstein-Uhlenbeck process with random drift pa-
rameter: scatter plots of the draws of the parameters β and γ (after a burn-in of 100 draws)
and histograms of the draws. The true parameter values are β = 1 and γ = 1.

2.

β̂k+1 := argmaxβββ
(
−β−2(G1 + Ĝ2 + Ê1) + β−1Ê2 − (n· −N) log(β)

)
, γ̂k+1 := 1/ā

3. k:=k+1; GO TO 1.

The maximization in step 2 is elementary. If G1 + Ĝ2 + Ê1 > 0 (which is usually the case),
then

β̂k+1 =
4(G1 + Ĝ2 + Ê1)

−Ê2 +
√
Ê2

2 + 8(G1 + Ĝ2 + Ê1)(n· −N)
.

Moreover, β̂k+1 = −4(G1 + Ĝ2 + Ê1)/(Ê2 +
√
Ê2

2 + 8(G1 + Ĝ2 + Ê1)(n· −N) when 0 >

G1 + Ĝ2 + Ê1 ≥ −1
8
Ê2

2/(n· − N) and Ê2 > 0, and if G1 + Ĝ2 + Ê1 = 0 and Ê2 < 0, then

β̂k+1 = −Ê2/(n· −N). In other cases, a positive maximum does not exist.
The MC-samples in step 1 can be generated for each value of i by means of the following

simplified version of the previous Gibbs sampler.

0. Draw ai from the exponential distribution with mean γ̂−1
k

1. Simulate independent sample paths Y ∗ij, j = 2, . . . , ni, conditionally on ai and XXX i
obs

(with the parameter value β̂k), and use these to calculate ti
β̂k

and Bi
β̂k

2. Draw ai from the N+((ti
β̂k
− γ̂k)/Bi

β̂k
, (Bi

β̂k
)−1)-distribution

3. GO TO 1

We simulated 100 diffusions with β = 1 and γ = 1 at the time points tij = j, j = 1, . . . , 100

as our data. Then we ran 50 iterations of the EM algorithm with initial values β̂0 = 3 and
γ̂0 = 5. The parameter values in the iterations are plotted in Figure 6.2. The convergence
was fast. As estimators we use the final parameter values. The EM maximum likelihood
estimators estimators are β̂ = 1.017 and γ̂ = 1.003.
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Figure 6.2: The EM algorithm for the Ornstein-Uhlenbeck process with random drift pa-
rameter: parameter values in 50 iterations. The true parameter values are β = 1 and γ = 1.

6.2 A t-diffusion

Consider the t-diffusion

dX i
t = −aiX i

tdt+ β
√

1 + (X i
t)2dW i

t ,

with random speed parameter ai, where β > 0 and ai is exponential distributed with mean
γ−1. The t-diffusion is one of the Pearson diffusions; see Forman and Sørensen (2008). For
fixed ai it is an ergodic process on IR provided that ai > 0. The invariant probability measure
is a re-scaled t-distribution with ν = 2ai/β2 + 1 degrees of freedom (and scale-parameter

ν−
1
2 ).
For this model

hβ(x) = β−1 log(x+
√
x2 + 1)

h−1
β (y) = sinh(βy)

µai,β(y) = −(ai/β + β/2) tanh(βy)

φai,β(y) = (ai/β + β/2)2 tanh2(βy)−
ai + 1

2
β2

cosh2(βy)

sai,β(x) = − ai

2β2
log(1 + x2).

Note that ai/β + β/2 = 1
2
βν.

First we consider the Gibbs sampler. As the prior, we choose again the Γ(ν, λ) distribution
for γ and the Γ(κ, δ) distribution for η = β−2, and we assume independence of γ and β. In
the algorithm we use following quantities

tiβ = − 1

2β2
log

(
1 + (xini)

2

1 + (xi1)2

)
+

1

2
(tini − t

i
1)−

ni∑
j=2

∫ tij

tij−1

tanh2(βY ∗ijs + `ij1 (s))ds
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Figure 6.3: The Gibbs sampler for the t-diffusion with random drift parameter: scatter plots
of the draws of the parameters β and γ (after a burn-in of 100 draws) and histograms of the
draws. The true parameter values are β = 0.1 and γ = 1.

Bi
β =

1

β2

ni∑
j=2

∫ tij

tij−1

tanh2(βY ∗ijs + `ij1 (s))ds

G1 =
N∑
i=1

ni∑
j=2

(
log

(
xij+
√

(xij)
2+1

xij−1+
√

(xij−1)2+1

))2

2(tij−1 − tij)

G2 =
1

2

N∑
i=1

ai log

(
1 + (xini)

2

1 + (xi1)2

)

F (β) = −1

2

N∑
i=1

((ai)2

β2
+

3

4
β2 + ai(β + 1)

)
ni∑
j=2

∫ tij

tij−1

tanh2(βY ∗ijs + `ij1 (s))ds

−
(
ai +

1

2
β2
)

(tini − t
i
1)
]

where

`ij1 (t) =
(tij − t) log

(
xij−1 +

√
(xij−1)2 + 1

)
+ (t− tij−1) log

(
xij +

√
(xij)

2 + 1
)

tij − tii−j
, t ∈ [tij−1, t

i
j].

With these definitions the Gibbs sampler is as in the previous example except that step 3 is
replaced by step 2* in Subsection 5.1.

As data we simulated 100 diffusions with β = 0.1 and γ = 1 at the time points tij =
j, j = 0, . . . , 100. We then ran 1000 iterations of the Gibbs sampler using prior distributions
with κ = 1, δ = 5, ν = 1, λ = 0.75. We used the approximate diffusion bridges of Bladt and
Sørensen (2014). In all cases it turned out that δ +G1 +G2 > 0.

The estimation is based on the last 900 draws of the parameters, after a burn-in of 100
iterations. The mean posterior estimators are β̂ = 0.0998 and γ̂ = 1.0248, and the 95%
credibility intervals are [0.0989, 0.1008] for β and [0.8944, 1.1648] for γ. The last 900 draws
and histograms of the parameter values are plotted in Figure 6.3.

Next we turn to the EM algorithm. For the t-diffusion

q(β) = −β−2(G1 +G2) + 1
4β

2
N∑
i=1

(tini − t
i
1)− (n· −N) log(β)
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−1
2

N∑
i=1

(
2ai + a2

iβ
−2 + 3

4β
2
) ni∑
j=2

∫ tij

tij−1

tanh2(βY ∗ijs + `ij1 (s))ds

(apart from additive terms that do not depend on β). The EM-algorithm goes as follows:

0. Choose initial values β̂0 and γ̂0, k := 0

1. For i = 1, . . . , N , generate MC-samplesXXXm,i
mis = {YYY ∗m,i, am,i}, m = 1, . . . ,M conditionally

on XXX i
obs under the parameter values β̂k and γ̂k, and for each m calculate Gm

2 . Finally,
calculate

Ĝ2 =
1

M

M∑
m=1

Gm
2 , ā =

1

MN

∑
i,m

am,i

2.
γ̂k+1 := 1/āaa

β̂k+1 := argmaxβββ

(
−β−2(G1 + Ĝ2) + 1

4β
2
N∑
i=1

(tini − t
i
1)− (n· −N) log(β)− q̃(β)

)
,

where

q̃(β) = 1
2

1

M

∑
i,m

(
2ami + (ami )2β−2 + 3

4β
2
) ni∑
j=2

∫ tij

tij−1

tanh2(βY ∗m,ijs + `ij1 (s))ds

3. k:=k+1; GO TO 1.

As in the previous example, the MC-samples in step 1 can be generated for each value
of i by means of a simplified version of the previous Gibbs sampler, which is identical to the
previous sampler (except that ti

β̂k
and Bi

β̂k
are defined as in this subsection).

We simulated 100 diffusions with β = 0.1 and γ = 1 at the time points tij = j, j =

1, . . . , 100. We ran 50 iterations of the EM algorithm with initial values β̂0 = 0.2 and γ̂0 = 2.
The parameter values in the iterations are plotted in Figure 6.4. The convergence was fast.
As estimators we use the final parameter values. The EM maximum likelihood estimators
estimates are β̂ = 0.1011 and γ̂ = 1.0098.

7 Application to neuronal data

In this section we estimate the parameters of a leaky integrate-and-fire neuronal model
(Ornstein-Uhlenbeck process) with random level on the basis of measurement of the mem-
brane potential between firings.

The data consists of measurements every 0.15 ms of the membrane potential of a single
auditory neuron of a guinea pig (for details on the experiment, see Yu et al. (2004)). When
the potential crosses a certain threshold, the neuron fires (produces an electric signal), resets
to an initial resting value and starts increasing towards a certain level around which it
fluctuates in a stationary way until the neuron fires again. The data recorded between firings
(in so-called inter-spike intervals) can be considered realisations of independent random
processes with identical parameters except that the stationary level varies randomly from one
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Figure 6.4: The EM algorithm for the t-diffusion with random drift parameter: parameter
values in 50 iterations. The true parameter values are β = 0.1 and γ = 1.

interval to another. There are 312 inter-spike intervals, for which the number of observations
per interval, ni, varies from hundreds to several thousands. The data was previously analysed
by Lansky et al. (2006), who fitted a fixed effect Ornstein-Uhlenbeck process individually to
each inter-spike interval. Picchini et al. (2008), Picchini et al. (2010) and Wiqvist et al. (2021)
fitted an Ornstein-Uhlenbeck process with a random level to the data using methods different
from ours, see the introduction, while Dion (2016) obtained a non-parametric estimate of
the density of the random level.

The model is the Ornstein-Uhlenbeck process

dX i
t = (ai − αX i

t)dt+ βdW i
t ,

with random level ai, where α > 0, β > 0 and ai ∼ N(ξ, σ2). We apply the Gibbs sampler,
and as the prior distribution we take α, η = β−2, ξ and γ = σ−2 to be independent and
exponential distributed with mean λ−1

i , i = 1, 2, 3, 4, respectively.
Since f(x) = −x, g(x) = 1, hβ(x) = x/β and φα,β,a(x) = −α − 2αax/β + α2x2 + a2/β2,

the quantities needed in the algorithm are

tiα,β = β−2
(
xini − x

i
1

)
+
α

β

ni∑
j=2

∫ tij

tij−1

(
Y ∗ijs + β−1`ij1 (s)

)2
ds

Bi
β = β−2(tini − t

i
1)

vβ,aaa =
N∑
i=1

1

2
β−2

(
(xi1)2 − (xini)

2
)

+
1

2
(tini − t

i
1) + β−1ai

ni∑
j=2

∫ tij

tij−1

(
Y ∗ijs + β−1`ij1 (s)

)
ds


Dβ =

N∑
i=1

ni∑
j=2

∫ tij

tij−1

(
Y ∗ijs + β−1`ij1 (s)

)2
ds

G1 =
1

2

N∑
i=1

ni∑
j=2

(xij − xij−1)2

(tij − tij−1)
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G2 =
N∑
i=1

[
α

2

(
(xini)

2 − (xi1)2
)

+ ai
(
xini − x

i
1

)]

E1 =
1

2

N∑
i=1

(ai)2(tini − t
i
1) + α2

ni∑
j=2

∫ tij

tij−1

`ij1 (s)2ds


E2 =

N∑
i=1

αai ni∑
j=2

∫ tij

tij−1

Y ∗ijs ds− α2
ni∑
j=2

∫ tij

tij−1

Y ∗ijs `ij1 (s)ds


E3 = −α

N∑
i=1

ai
ni∑
j=2

∫ tij

tij−1

`ij1 (s)ds

where `ij1 (s) is given by (6.1). For this model F (β) = −β−2(E1 +E3)+β−1E2 (apart from an
additive term independent of β), but here we can make E1 a part of the scale parameter of
the weighted gamma distribution in step 4 of the Gibbs sampler below, because E1 is always
positive. The Gibbs sampler goes as follows.

0. First draw α, β, ξ and γ independently from the prior distribution, and draw ai from the
normal distribution with mean ξ and variance γ−1, independently for i = 1, . . . , N .

1. Simulate independent sample paths Y ∗ij conditionally on ai, α, β and X i
obs for j =

2, . . . , ni, i = 1, . . . , N

2. Draw ai with distribution N((tiα,β + ξγ)/(Bi
β + γ), (Bi

β + γ)−1), independently for i =
1, . . . , N

3. Draw α from the distribution N+((vβ,aaa − λ1)/Dβ, D
−1
β )

4. Draw η from the distribution with density function proportional to

η(n·−N)/2 exp (−η(λ2 +G1 + E1 +G2 + E3) +
√
ηE2) ,

and set β := η−1/2

5. Draw ξ from the N(ā− λ3/(γN), (γN)−1)-distribution, where ā = (a1 + · · ·+ aN)/N

6. Draw γ from the Γ(N/2 + 1, λ4 + 1
2

∑N
i=1(ai − ξ)2)-distribution.

7. GO TO 1

If λ2 +G1 + E1 +G2 + E3 > 0, the distribution in step 4 is a weighted gamma distribution
with scale parameter (λ2 + G1 + E1 + G2 + E3)−1 and weight function exp(

√
ηE2). If λ2 +

G1 + E1 +G2 + E3 ≤ 0, the scale parameter is (λ2 +G1 + E1)−1 (which is always positive)
and the weight function is exp(

√
ηE2−η(G2 +E3)). In step 1 we simulated the approximate

diffusion bridges of Bladt and Sørensen (2014), and in step 4 we used approximate direct
sampling, see Subsection 5.1.

The Gibbs sampler was run with 1000 iterations using prior distributions with parameters
λ1 = 5, λ2 = 0.02, λ3 = 400, λ4 = 0.35, which are expected to be essentially non-informative.
After a burn-in of 100 iterations, the estimates are based on the last 900 draws of the
parameters. Histograms of the last 900 parameter draws are plotted in Figure 7.1. The
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Parameter mean 0.025-quantile 0.975-quantile
α 21.580 21.574 21.586
β 0.013438 0.013431 0.013446
ξ 0.2500 0.2498 0.2502
σ 0.0576 0.0536 0.0624

Table 7.1: Estimates obtained by 900 iterations of the Gibbs sampler after a burn-in of 100
iterations.
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Figure 7.1: Histograms of the Gibbs sampler draws of the parameters α, β, ξ and γ of the
neuron model (after a burn-in of 100 draws).

results, see Table 7.1, are in reasonable accordance with the estimates obtained in Lansky
et al. (2006), Picchini et al. (2010), Wiqvist et al. (2021) and Dion (2016). The estimates
of β are essentially the same, while the estimate of σ is close to the mean of the estimates
in the other papers (which vary quite a bit between the papers). Picchini et al. (2010) are
unhappy with their own estimate of α and prefer a value from the literature, namely 25.6,
which is close to our estimate.

A Appendix: Simple diffusion bridge simulation

In this appendix we briefly present the simple method of simulating diffusion bridges intro-
duced in Bladt and Sørensen (2014) and the corrigendum Bladt et al. (2021), which is key
to the algorithms proposed in this paper.

The aim is to simulate a (t1, x1, t2, x2)-bridge for the diffusion process given by (2.1),
which is assumed to be ergodic with invariant probability density function ν w.r.t. Lebesgue
measure on the state space. The method is based on the following simple construction
of a process that starts from x1 at time zero and at time t1 ends at x2, which is a good
approximation to a (t1, x1, t2, x2)-bridge. One diffusion process, Xt, that solves (2.1), is
started from the point x1, while another independent solution to (2.1), X̄t, is started from the
point x2. The time of the second diffusion is then reversed to obtain the process X ′t = X̄t2−t
Suppose there is a time point τ ∈ [t1, t2] at which Xτ = X ′τ . Then the process that is equal
to Xt for t ∈ [t1, τ ] and for t ∈ [τ, t2] equals X ′t is a process that starts at x1 and ends at
x2. Because the probability that X and X ′ meet in [t1, t2] is considerable, provided t2 − t1
is not very small, such a process can be obtained by rejection sampling and can be shown
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to be an approximation to a (t1, x1, t2, x2)-bridge in a sense explained in Bladt et al. (2021).
In practice, the approximate diffusion bridge is simulated as follows. Let Yδi, i =

0, 1, . . . , N and Ȳδi, i = 0, 1, . . . , N be (independent) simulations, for instance using the
Eule scheme, of X and X̄ in [t1, t2] with step size δ = (t2 − t1)/N . Then a simulation of
an approximation to a (t1, x1, t2, x2)-bridge is obtained by the following rejection sampling
algorithm. Keep simulating Y and Ȳ until there is an i such that either Yδi ≥ Ȳδ(N−i) and
Yδ(i+1) ≤ Ȳδ(N−(i+1)) or Yδi ≤ Ȳδ(N−i) and Yδ(i+1) ≥ Ȳδ(N−(i+1)). Once this has been achieved,
define

Bδi =


Yδi for i = 0, 1, . . . , µ− 1

Ȳδ(N−i) for i = µ, . . . N,

where µ = min{i ∈ {1, . . . N}|Yδi ≤ Ȳδ(N−i)} if Y0 ≥ Ȳ∆, and µ = min{i ∈ {1, . . . N}|Yδi ≥
Ȳδ(N−i)} if Y0 ≤ Ȳ∆. Then B approximates a (t1, x1, t2, x2)-bridge. Apart from the usual
discretization error, the step size δ also controls the probability that a trajectory crossing is
not detected. Therefore, it is advisable to choose δ smaller than usual.

In several cases the approximate diffusion bridge is a sufficiently good approximation
to be used as it is, as we do in the simulation studies and data applications in this paper.
However, an exact diffusion bridge (appart from the discretization error) can be obtained via
a pseudo-marginal Metropolis-Hastings algorithm with target distribution equal to that of an
exact diffusion bridge, see Andrieu and Roberts (2009). In the kth step of the algorithm, we
simulate as proposal an approximate diffusion bridge X(k) as explained above supplemented
by a geometric random variable S(k), which is obtained as follows. Simulate a sequence of
independent solutions Z(i) to (2.1) in [t1, t2] with Z

(i)
t1 ∼ ν until a sample path is obtained

that intersects X(k) in [t1, t2]. Then

S(k) = min{i : Z(i) intersects X(k)}.

The proposed diffusion bridge X(k) is accepted with probability min{1, S(k)/S(k−1)}. We call
S(k) the geometric variable associated with X(k). In order to reduce the variance, we could
alternatively replace S(k) by the average T (k) of a number of independent geometric random
variables associated with X(k), but if the probability that Z(i) intersects X(k) is small, this
might be time consuming.

Suppose the distribution of the diffusion process depends on a parameter vector θθθ with
prior distribution π(θθθ), and that we want to use the simple bridge simulation method in a
Gibbs sampler that alternates between drawing θθθ conditional on a (t1, x1, t2, x2)-bridge X
and drawing X conditional on θθθ. If we use the approximate bridge, this is simple to do. If
we want to simulate exact bridges, we can use a Metropolis within Gibbs algorithm. In the
ith iteration we draw θθθi and Xi. Conditional on θθθi, we draw an approximate bridge Xa,i

and its associated geometric variable Si. With probability min{1, Si/Si−1} we accept the
proposed value, i.e. Xi := Xa,i. Otherwise, Xi := Xi−1.

Everything described above can be generalized to multivariate diffusion processes, see
Bladt et al. (2016, 2022). The construction of the approximate diffusion bridge and simu-
lation of the associated geometric variables are more complicated in the multivariate case
because coupling methods for diffusions must be applied to ensure that sample paths inter-
sect with positive probability. The methods for multivariate diffusions can also be used to
improve the computational efficiency of the simulation of one-dimensional diffusion bridges.
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