Small dispersion asymptotics for diffusion
martingale estimating functions.

Michael Sgrensen
Department of Theoretical Statistics
University of Copenhagen
Denmark

Abstract

Martingale estimating functions provide a flexible and powerful
framework for statistical inference about diffusion models based on
discrete time observations. We supplement the standard results on
large sample asymptotics by results on small dispersion asymptotics,
which can be applied in situations where the noise term is sufficiently
small, compared to the drift term, that a Gaussian approximation to
the diffusion can be used. The theory, which is based on the stochastic
Taylor expansion, covers proper likelihood inference too. It is remark-
able that the martingale property of an estimating function also for
small dispersion asymptotics ensures that estimators are consistent.
A model from mathematical finance is considered in detail. For this
example the range of applicability of the small dispersion asymptotics
is investigated in a simulation study of the distribution of estimators.
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1 Introduction

We consider statistical inference for a class of d-dimensional diffusion pro-
cesses defined as the solutions of the following family of stochastic differential
equations

dXt = b(Xt, t, G)dt + GO'(Xt, t, H)th, XO = Xy, (].].)

where W is an m-dimensional standard Wiener process. We assume that the
drift b (d-dimensional) and the diffusion coefficient o (a d x m-matrix) are
known apart from the parameters # and ¢, of which € varies in a subset © of
IR?, while € > 0.

We shall only be concerned with inference about #. The type of asymp-
totics considered in this paper is when € goes to zero, which can be applied
in situations where the noise term eodW is sufficiently small, compared to
the drift term, that a Gaussian approximation to the diffusion can be used.
It does not matter whether € is known or not: The parameter ¢ can always
be estimated by means of a quadratic estimating function; see Bibby and
Sgrensen (1996).

The type of data to be considered are observations of X at discrete time
points: Xy, Xy, -+, Xy, o =0 <t <--- <t, Data of this form is what
is typically met in statistical practice. For such data inference based on mar-
tingale estimating functions has been considered by Bibby (1994), Pedersen
(1994), Bibby and Sgrensen (1995, 1996, 1998), Kessler (1995), Kessler and
Sgrensen (1999), Sgrensen (1997), and Jacobsen (1998). An application to
financial data was given in Bibby and Sgrensen (1987), while Pedersen (1999)
used the method to estimate the nitrous oxide emission rate from the soil
surface. In these papers, large sample asymptotics, where the number of
observations tends to infinity, was studied for ergodic diffusions. It is, how-
ever, useful to develop alternative types of asymptotics that can be applied
when the number of observations is small, or when the diffusion process is
not ergodic. The present paper is a contribution in this direction. Note that
the small dispersion asymptotics investigated in this paper is immediately
applicable to multidimensional diffusions, whereas large sample asymptotics
is harder for multivariate diffusions than in the one-dimensional case. Very
little work has been done in this direction. The problem is that the number
of ways a diffusion process can behave asymptotically as the sample size goes
to infinity is much larger in higher dimensions than in the one-dimensional
case. A final virtue of the small dispersion asymptotics is that there is scope
for higher order asymptotics. Under weak conditions there is an expansion
of the process X to any order, of which only the first two terms are used
in this paper. The necessary results on stochastic Taylor expansions can be
found in Azencott (1982). For an approach based on Malliavin calculus, see
Yoshida (1992, 1997).



Let y — pc(s,t,z,y;0), where t > s, denote the transition density of the
Markov process X, i.e. the density of X; given X; = x when 6 and ¢ are the
true parameter values. We shall, in line with the papers mentioned, consider
martingale estimating function of the form

Gf(e) = de(tiflati’Xti_laXti;0), (12)

=1

where the function g.(s,t,z,y; ) satisfies the equation

/gc(s, t, 2, y; 0)pe(s, t,z,y;0)dy =0 (1.3)

for all z,6, s, and t with s < ¢. Define the o-algebras F; = o(Xy,, -+, X4,),
i =1,---,n. Then (1.3) implies that {3%_, gc(tj_1,t;, Xy, Xy;50) 0y is
a martingale with respect to {F;}?_; when 6 and ¢ are the true parameter
values. The score function, i.e. the derivative with respect to 6 of the log-
likelihood function,

Un(ﬁ) = 289 logpe(ti—lgti;Xti_lthi;9); (14)

i=1

where 0y log p. denotes the vector of partial derivatives of log p. with respect
to 6, is of the form (1.2). Under weak regularity conditions, g. = 0y log p.
satisfies (1.3), see e.g. Barndorff-Nielsen and Sgrensen (1994). Therefore the
results derived in the present paper also apply to likelihood inference. Likeli-
hood inference for discretely observed diffusions was considered by Dacunha-
Castelle and Florens-Zmirou (1986), Lo (1988), Pedersen (1995a,b), Santa-
Clara (1997), Ait-Sahalia (1998, 1999) and Poulsen (1999); see also Billings-
ley (1961). Bayesian inference and related MCMC techniques were studied by
Eraker (1997) and Elerian, Chib and Shephard (1998). Genon-Catalot (1990)
used the stochastic Taylor expansion to construct a contrast function for dis-
cretely observed diffusions. She also studied small dispersion asymptotics for
her estimators. Kutoyants (1984) considered small dispersion asymptotics
for continuously observed diffusions.

In Section 2, we review results on the stochastic Taylor expansion and
give a couple of results needed later. In Section 3, we prove asymptotic
normality (as € — 0) of martingale estimating functions and a result on
existence, consistency and asymptotic normality of an estimator obtained
from a martingale estimating function. It is remarkable that the martingale
property (1.3) of an estimating function ensures consistency of estimators
under small dispersion asymptotics as it does for large sample asymptotics.
In Section 4, an example from mathematical finance is considered, and in a
simulation study of the distribution of estimators for this model, the range
of applicability of the small dispersion asymptotics is investigated.
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2 Stochastic Taylor expansions

In this section we discuss a stochastic Taylor expansion of the solution X*¢
of the stochastic differential equation (1.1). When we want to emphasize
the dependence of the solution on ¢, we write X¢. The functions b and o
appearing in (1.1) are assumed to be sufficiently smooth that a unique weak
solution exists for all @ € © and all ¢ > 0. For ¢ = 0 it is assumed that
the deterministic equation has a unique solution for all # € ©. Further, it
is supposed that b(z,t;6) and o(z,t;0) are twice continuously differentiable
with respect to x for every ¢ and 6, and that the partial derivatives up to
order two with respect to x are continuous functions of ¢. It is assumed that
the solution of (1.1) does not explode at a finite time for any # € © or any
¢ > 0. Finally, we assume that the state space is an open subset U of IR

Under these conditions, we have the following first order stochastic Taylor
expansion of X¢

Xi =€ + ¥ + @R (2.1)
see Azencott (1982). In (2.1) the d-dimensional deterministic function &% =
(&0, €9T where T denotes transposition, is the unique solution of the

equation (1.1) with e =0, i.e.

gl g
T b€, t;0), (2.2)

with £ = 2. The d-dimensional process Y? is, when 6 is the true parameter
value, the Gaussian diffusion which solves

dY) = 0,rb(€0,4;0)Ydt + o (€0, ;0)dW;,, Y =0, (2.3)

where 9,7b denotes the d x d matrix {0;;b;} of partial derivatives of the
coordinates of b with respect to the coordinates of z. The remainder term
satisfies sup,, |[eR%¢| — 0 in probability as ¢ — 0 for all ¢+ > 0 when @ is
the true parameter value. More precisely, there exist for every given § > 0
constants 7y > 0 and ¢y > 0 such that Py (sup,., |R>¢| > r) < § when
r > ry and € < ¢. Under additional conditions on the growths rate of b
and o and their derivatives as functions of x, we have that for every 6 € ©
and k € IN there exists a constant Kpy such that Ey (sup,, |R%€¥) < Ky
for all € < 1; see Azencott (1982). We will assume this to be the case. A
sufficient condition is the usual local Lipschitz and linear growth conditions
on b and o.

Let the d x d matrix function Hy(t) be the solution of the matrix differ-
ential equation

dHy

i (1) = 0urb(&, 50)Ho(t),  Hy(0) = I, (24)



where I, is the d x d identity matrix. Then the Gaussian process Y is given
by

Y? = Hy(t) /Ot Hols) 1o (£2, 5: 0)dW,. (2.5)

Therefore, the distribution of the nd-dimensional stochastic vector Y =
(Y;Ta Ty Y;Z)T is

Y ~ N(0,T%), (2.6)
where I'? is the nd x nd matrix consisting of n? d x d matrices Ffj of the form

t;

Iy = He(tz‘)/o Y Ho(s) " 0 (€2, 5,0)0 (€7, 5:0)" (Ho(s) ™M) ds Ho(t;)",
fores,7=1,---,n.

In the time homogeneous case, where the function b does not depend on
t, it is sometimes possible to find a relatively simple expression for Hy(t).
In the one-dimensional case (d = 1), it is well known that quite generally
Hy(t) = exp [ g 0,b(&9; G)ds]. For a d-dimensional process, consider the spe-
cial case where, for all 7, the i’th coordinate of b depends on = only through
the i’th coordinate of x. This implies that 0,76 = diag(0y,b1,- -, 0y ba)-
Here diag(ay,---,aq) denotes the diagonal matrix with diagonal elements
ai,---,aq. Suppose that b;( f’t; 0) #0forallt >0andi=1,---,d. Then

Hy(t) = diag{b1 (&7 ;;0)/b1(€76;0), - -, (€745 0) /ba(Ed0; 0)}

obviously satisfies the differential equation (2.4). Note that under the con-
ditions imposed b;(£],;0)/b;(&)¢;0) > 0. In the one-dimensional case, we
always have that Hy(t) = b(£7;0)/b(£5;0) provided only that b(£9;0) # 0 for
all t > 0. The condition that b;(&/;;6) # 0 for all ¢ > 0 is not a strong
restriction. In fact, if a time point 7 exists such that b;(€? ;) = 0, then it is
easy to see that §zt =0forallt>r7.

In the next section, the following lemma will play a crucial role. By &/(2)
we denote the solution of (2.2) with the initial condition & = z, and by Y, (2)
we denote the solution of (2.3) with £/ replaced by £2(z).

Lemma 2.1 Suppose that for every ¢ € [0,1] the function F, : U — R
is twice differentiable and that there exist constants C,k > 0 such that
|00, 0p; Fe(2)| < Clz|* for all e €[0,1] and fori,j=1,---,d. Then

Ep(FU(XR)IX5 = 2) = F(6A(2)) + O(€?) (2.7)
for e €[0,1] and A > 0.



Proof: The result follows from the expansion

F(X3) = F.(€A(2)) + €0,m F(EA(2)) YA (2) + €A} o,

where

A} = Our F(E4(2)) RS

e (€M) + afeVB(2) + ERED(VA(:) + R

+5(YR(2) + €RX)

for some o € [0,1]. Under the conditions imposed, sup <, Fy (|44 || X§ =
z) < oo. The covariance structure of Y?(z) depends on z through £%(z), but
its expectation is zero whatever the value of z is.

O

3 Martingale estimating functions

In this section we prove asymptotic normality of martingale estimating func-
tions as € — 0, and show that in this limit a consistent and asymptotically
normal estimator exists with a probability tending to one. Asymptotic nor-
mality of G is proved under the following condition.

Condition 3.1 The function (z,y) — ge(s,t,z,y;0) is twice continuously
differentiable for alle > 0,t > s > 0, and 0 € O, and all first and second
order derivatives are continuous functions of (e,z,y) € [0,1] x U x U. For
every (s,t,x,0), there exist positive constants C(s,t,z,0) and k(s, t, x,0) such
that |0y,0y,9(s,t,%,y;0)1| < C(s,t,z,0)|y|*b=0 for all € € [0,1], fori,j =
1,---,d, and forl=1,---,p.

Define the p x d matrix ¢;(0) by

¢i(0) = Opr go(ti, tit1, §Z.,§f,.+1; 0) + 5yT90(ti—1,ti,§fi_1,§Z§ 0)

fori=1,---,n—1, and

¢n(9) = ayTgo(tn—la tn, é-ten,l ) gfna 0)

The estimating function K () = M.G.(#), where M, is an invertible matrix
dependent on ¢, give the same estimators as G(f), so there is a problem of
choosing the right version of the estimating function. If the wrong normal-
ization is chosen, it could, for instance, happen that d,7go = 9yrgo = 0, in
which case the following theorem is not terribly interesting. This problem
is, of course, not really of importance in practice, but is only relevant to the
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arguments in this section. We choose a version of G() such that as many
entries as possible of the p x nd matrix ¢(0) = (¢1(0), - - -, #n(#)) are not zero.
This together with the continuity conditions at € = 0 imposed in Condition
3.1 usually determine a unique version of G¢(6).

Theorem 3.2 Under Condition 3.1,

e'G(0) = > ()Y, (3.1)
i=1
in probability as € — 0 when 0 is the true parameter value. In particular,

€ 1G.(0) — N(0,Vjp) (3.2)
in distribution as € — 0, where Vy = ¢(0)"T?¢(0).

Proof: By expanding g. and inserting (2.1) we obtain

ge(ti1, ts, X, X7 3 0)

= ge(tifla lis ftai,l ’ {:Za 0) + eazTge(tifla Lis ftai,l: fza O)Y;:?,l

+ eayTge(ti—la t’ia gtai_l 3 ftgza 0)}/;? + €2R;,z’a

where the jth coordinate of R ; is

0y ge(tiz1, ti, 52_1 ; fZQ e)ij{fl + Oyr ge(tiz1, ti, 52_1 ; 52; O)ijf
+ %ZlT,iﬁwange(ti_l,ti,Sfi_l + eaZl,i,ani; IVAR
+ %Z;‘F,iay@yTge(ti_l, t;, 52._1, 52. +€825,;;0); 25,
+ %Z{iaxayTge(t,-_l, ti,éfi_l + 67Z1,i,§fi; 0); 25,
for some v, 3,7 € [0,1]. Here Z; ; = Y;?_I—FGRZ,’EI and Zy; = }/,5?+6Rfi’€. From
the similar property of Rf “, it follows that RS ; — 0 in probability as ¢ — 0
when 6 is the true parameter value. Moreover, Ey (g.(s,t, 2z, X;0)|XE =

z) = 0, so by Lemma 2.1, we see that g.(s,t,2,£ ,(2,5);0) = O(¢?), where
£Y(z, s) denotes the solution of the equation

6
% = b(E(z, ), 1 + 53 6)

with the initial condition &§(z,s) = 2. Since & ,(£%(zp),s) = &(zo), it
follows that

€_lg€(ti71a Lis Xtei_l ) Xtia 0) -
a:cho(tifla lis gtei,l ’ 52, H)Y;f,l + ayTQO(tifla lis gtei,l ’ gga H)Y;f
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in probability as € — 0, which implies (3.1) and (3.2). O

Note that a crucial step in the proof was the application of Lemma 2.1
to prove that ge(ti_l,ti,gfi_l,fg; 0) = O(e?). As is the case for large sam-
ple asymptotics, see e.g. Sgrensen (1997), the martingale property of the
estimating function G.(f) ensures that the asymptotic distribution of G(6),
properly normalized, has mean value zero when @ is the true parameter value.

Suppose 0pg exists and is continuous for (¢,z,y) € [0,1] x U x U. Then
if 6y is the true value of 0,

Byr G (0) — A(6,6,) (3.3)

in probability as € — 0, where

(Oa é) = ZGQTQO(ti—latiagg_lagz; 9) (34)
i=1

In order to obtain results about estimators, we need the following stronger
condition.

Condition 3.3 The derivatives 9yg, 039, 0:0p9, 0,039, 0,059, 0,039, 0c0pg
and 0.0}g exist and are continuous for (¢,r,y,0) € [0,1] x U x U x ©. The
matriz A(0) = A(6,0), with A(0,0) given by (3.4), is invertible for all § € ©.

Theorem 3.4 Suppose the Conditions 3.1 and 3.3 hold. Then for every e <
1, there exists an estimator 0, that solves the estimating equation G, (9 )=0
wzth a probability tending to one as ¢ — 0. Moreover, if 6y denotes the true
value of 0, and if Oy € int ©, then

b — 0, (3.5)
wn probability as e — 0, and
(0 — 60) = N(0, A(B) Vo (A(B) 1)) (36)
in distribution as e — 0.

Proof: First note that the proofs of Theorem 2.3, Corollary 2.7 and The-
orem 2.8 in Sgrensen (1998) do not use the fact that the particular type of
asymptotics considered in that paper is large sample asymptotics. The result
also holds for other types of asymptotics such as the small dispersion asymp-
totics considered here. Therefore, Theorem 3.4 follows if we verify Condition
2.6 in Sgrensen (1998) or rather a form of these conditions adapted in an
obvious way to the small dispersion asymptotics.



Let the estimating function G(f) be normalized as discussed earlier. That
{e7'G.(6y) : € € (0,1]} is stochastically bounded has already been established
in Theorem 3.2, so it remains to prove that

sup |G.(0);| — 0, (3.7)
0EM, o
sup |89 (0)i — A(6y)4] — 0, (3.8)
0€M, e
and
sup |80 89 ( )k — B(k)(eo)zﬂ — 0 (39)
GEMCE

in probability as € — 0 for 7,7,k = 1,...,p and for all ¢ > 0, when 6, is the
true parameter value. Here

M,.={0€0O:]0—06 <ce}

and

( ZaﬂaﬂTgﬂ( v— latuagt,, 17500 90)

v=1

The three convergence results can be proved in the same way, so we prove
only (3.8). Since

sup |0p;Ge(0);i — A(0o)ij| <

0€Me,e
sup 9y, Ge(0)i — A(0,00)is| + sup [A(6,60)i; — A(o)ijl,
06 c,1 EMCE

and since 0 — A(6,0,) is continuous under the conditions imposed, (3.8)
follows if we can prove that for every compact subset K C ©

9eK

in probability as € — 0, when 6, is the true value of #. An expansion gives
us

Dllj,6 = Sup|89jg€(tuflathteu—NXtey;0) 89 gf( v— 1’tV’§tu 17 5ty ’9) |
< GSUp(Ir? O, ge(tu—1,t,, E° | + ceRS, &8 + €RS 5 0),||R;, |
+ |a 80 ge( v— 17tU7§tU 1:50,? +/6€R§U’0)||R;,|)

for certain o and 3 in [0, 1]. Here R,f =Y + ¢RY* Fix § > 0. Then there
exist 7 > 0 and ¢g > 0 such that

P(sup\f%ﬁ\ﬁr) >1-9§

s<tn



for e < €p. Define A, = {sup;,, |R¢| < r}and Ly, . = rsup |0:0p; gc(ty—1, tu,
e 4, &0 4y 0);|v 10,09, 9e(t, 1,10, gl €00 +y;0);], where the supremum

ty_1
is over (¢, z,y,0) € [0,77 Aeg] x [-1,1] x [-1,1] x K. Then Dy < €L , on
the set A, provided that e < ey A r~*. Moreover,

slele |89jg€(tlj—17 tu; 6::9,?_1 ) §9‘?; 0)1 - 69j 90 (tu—la tu; 52?_17 66,?; 0)z| S GKU
for € € [0, 1], where

Kl/ = sup |80j aege(tu—la tua gf,?_l ) gtg,?a 0)z|
(0,6)e K x[0,1]

Therefore,
sup |80JG€(0)Z — A(@, 00)ij| S € Z(LU + KU)
v=1

€0,T
0eK ’

on A, when € < ey A7~ A1, This proves (3.10).

4 An example from mathematical finance

In this section we consider the Cox, Ingersoll and Ross (1985) model that is
used in mathematical finance to model interest rates. The model is given by
the stochastic differential equation

dXt = _ﬂ(Xt - O[)dt + €4/ Xttha (41)
where 0 = (a, 8) € (0,00)? and € > 0. It is easily found that

& = zge P+ a(l — e ),

t
Y = / B(=s), [ebaw,,
t 0 € gs

and
Ffj — e_ﬂ(ti‘i‘tj)ﬂ_l[xo(eﬂti/\j _ 1) + a(%GQﬂti/\j _ eﬂti/\j + %)]

Note that when ¢ is large £/ is close to «, so for the Gaussian approximation
Zy = £ 4+ €Y to the Cox, Ingersoll and Ross model we have dZ;, = —3(Z; —
a)dt + ey/adWy, i.e. Z; behaves like an Ornstein-Uhlenbeck process when ¢
is large. In mathematical finance the latter model is known as the Vasicek
model for interest rates.

A martingale estimating function that yields explicit estimators for o and

G is
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o X (X — 64 (X))
Ge(a,p) = ) (4.2)
?:l[Xti - é.gl (Xti—l)]
where £/(2) = ze™#* + a(1 — e7#*); see Bibby and Sgrensen (1995). For this
estimating function, we find that

(&, ) — et /g

1 — e BAin1

fori=1,---,n—1,

&, )"
¢n(9) = )
1

and

(P —1)/el | Ae Pl — /el )
A@0,0) ="

i=1 (e7PAi — 1) Ajemhh (52_1 —a)

The range of applicability of the small dispersion asymptotics for this
example is investigated for two values of the parameters o and . In both
cases 500 independent sample paths of 300 observations each were simulated
with A; = 0.1 (equidistant observation times) for four values of € and two
values of the initial value zy. The simulations were done using the Milstein
scheme, see Kloeden and Platen (1992). For each sample path the estimators
& and B were calculated, and the resulting 500 values of the estimators were
used to calculate the mean and the standard deviation of the estimators. The
means should be compared to the true parameter values, while the standard
deviations can be compared to the theoretical values given by the small
dispersion asymptotics, i.e. by (3.6).

First the parameter values « = 5 and § = 2 were considered (Table
4.1 and Table 4.2). The small dispersion asymptotics gives a very good ap-
proximation to the standard deviation of & in all cases, while this type of
asymptotics can clearly not be used to calculate the standard deviation of B
when € > 0.05. The bias of & is small in all cases, whereas B has a consider-
able bias when ¢ is not sufficiently small. The normality of the estimators is
studied in Figure 4.1 and Figure 4.2, which show normal quantile plots of the
500 simulated estimator values for o = 5.2 with € = 0.01 and € = 0.005, re-
spectively. The lines represent the limiting normal distributions obtained by
small dispersion asymptotics. The normal approximations are rather satis-
factory apart from the small inaccuracies of the mean and standard deviation
already seen in Table 4.1 and Table 4.2.
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Normal Q-Q plot of alpha

Sample Quantiles
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Figure 4.1: Normal quantile plots of the 500 simulated values of the estimator
& for a =5, B =2 and g = 5.2. In the upper plot € = 0.01 and in the lower
€ = 0.005. The lines represent the limiting normal distributions obtained by
small dispersion asymptotics.
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Normal Q-Q plot of beta
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Normal Q-Q plot of beta
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Figure 4.2: Normal quantile plots of the 500 simulated values of the estimator
B for a =5, B =2 and xg = 5.2. In the upper plot ¢ = 0.01 and in the lower
€ = 0.005. The lines represent the limiting normal distributions obtained by
small dispersion asymptotics.
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T € sim. mean sim. s.d. theoretical s.d.

5.2 | 0.1 4.9991 0.0208 0.0208
0.05 4.9994 0.0104 0.0104
0.01 5.0000 0.0021 0.0021
0.005 5.0000 0.0010 0.0010

54| 0.1 5.0008 0.0202 0.0208
0.05 5.0004 0.0105 0.0104
0.01 5.0000 0.0020 0.0021
0.005 5.0000 0.0010 0.0010

Table 4.1: The mean and standard deviation of the estimator & (determined
from 500 independent simulated trajectories) and the value of the standard
deviation given by (3.6) when aw =5, 3 =2, n =300, and A =0.1.

T € sim. mean sim. s.d. theoretical s.d.

5.2 ] 0.1 2.1355 0.4354 2.3190
0.05 2.0999 0.3989 1.1595
0.01 2.0368 0.1972 0.2319
0.005 2.0117 0.1161 0.1159

54| 0.1 2.1453 0.4103 1.1739
0.05 2.0962 0.3436 0.5869
0.01 2.0183 0.1152 0.1174
0.005 2.0037 0.0560 0.0587

Table 4.2: The mean and standard deviation of the estimator 3 (determined
from 500 independent simulated trajectories) and the value of the standard
deviation given by (3.6) when oo =5, 3 =2, n =300, and A =0.1.

Next we choose oo = 0.08 and = 0.23 (Table 4.3 and Table 4.4). These
parameter values were taken from Chan, Karolyi, Longstaff and Sanders
(1992), who fitted the Cox-Ingersoll-Ross model to the annualized one-month
U.S. Treasury bill yield. Here A = 0.1 corresponds to ten observations per
year.

The small dispersion asymptotics gives a reasonable to good approxima-
tion to the standard deviation of & in all cases, while again it gives reasonable
values of the standard deviation of B only when ¢ < 0.05. The bias of the
estimators decreases with e as one would expect. The estimator 3 is seriously
biased in most cases. When modelling short term interest rates, a reasonable
value of € is probably between 0.05 and 0.1. The normality of the estimators
is studied in Figures 4.3 and 4.4, which are normal quantile plots of the 500
estimator values for o = 0.1 with € = 0.01 and € = 0.005, respectively. The
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Figure 4.3: Normal quantile plots of the 500 simulated values of the estimator
& for a = 0.08, B = 0.23 and ¢y = 5.2. In the upper plot ¢ = 0.01 and in
the lower € = 0.005. The lines represent the limiting normal distributions
obtained by small dispersion asymptotics.
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Normal Q-Q plot of beta
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Figure 4.4: Normal quantile plots of the 500 simulated values of the estimator
B for « = 0.08, # = 0.23 and zy = 5.2. In the upper plot ¢ = 0.01 and in
the lower € = 0.005. The lines represent the limiting normal distributions
obtained by small dispersion asymptotics.
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T € sim. mean sim. s.d. theoretical s.d.

0.10| 0.1 0.0817 0.0247 0.0268
0.05 0.0809 0.0106 0.0134
0.01 0.0803 0.0024 0.0027
0.005 0.0802 0.0013 0.0013

0.12 | 0.1 0.0816 0.0208 0.0270
0.05 0.0813 0.0117 0.0135
0.01 0.0802 0.0027 0.0027
0.005 0.0801 0.0014 0.0014

Table 4.3: The mean and standard deviation of the estimator & (determined
from 500 independent simulated trajectories) and the value of the standard
deviation given by (3.6) when o = 0.08, 8 = 0.23, n = 300, and A = 0.1.

To € sim. mean sim. s.d. theoretical s.d.

0.10 | 0.1 0.3992 0.2000 1.2170
0.05 0.3927 0.2003 0.6085
0.01 0.3008 0.1121 0.1217
0.005 0.2605 0.0626 0.0608

0.12 | 0.1 0.3774 0.1782 0.6442
0.05 0.3508 0.1613 0.3221
0.01 0.2597 0.0687 0.0644
0.005 0.2386 0.0313 0.0322

Table 4.4: The mean and standard deviation of the estimator 3 (determined
from 500 independent simulated trajectories) and the value of the standard
deviation given by (3.6) when o = 0.08, 8 = 0.23, n = 300, and A = 0.1.

lines represent the limiting normal distributions obtained by small dispersion
asymptotics. The normal approximation is not quite satisfactory for ﬁ when
€ = 0.01, and the inaccuracies of the mean and standard deviation already
seen in Table 4.2 are clearly visible.
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