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Abstract

This thesis is concerned with asymptotic properties of the eigenvalues of high-dimensional
sample covariance and correlation matrices under an infinite fourth moment of the entries.

In the first part, we study the joint distributional convergence of the largest eigen-
values of the sample covariance matrix of a p-dimensional heavy-tailed time series when
p converges to infinity together with the sample size n. We generalize the growth rates
of p existing in the literature. Assuming a regular variation condition with tail index
α < 4, we employ a large deviations approach to show that the extreme eigenvalues
are essentially determined by the extreme order statistics from an array of iid random
variables. The asymptotic behavior of the extreme eigenvalues is then derived routinely
from classical extreme value theory. The resulting approximations are strikingly simple
considering the high dimension of the problem at hand.

We develop a theory for the point process of the normalized eigenvalues of the sample
covariance matrix in the case where rows and columns of the data are linearly dependent.
Based on the weak convergence of this point process we derive the limit laws of various
functionals of the eigenvalues.

In the second part, we show that the largest and smallest eigenvalues of a high-
dimensional sample correlation matrix possess almost sure non-random limits if the
truncated variance of the entry distribution is “almost slowly varying”, a condition we
describe via moment properties of self-normalized sums. We compare the behavior of
the eigenvalues of the sample covariance and sample correlation matrices and argue that
the latter seems more robust, in particular in the case of infinite fourth moment.

Resumé

Denne afhandling beskæftiger sig med de asymptotiske egenskaber af egenværdierne for
højdimensionale empiriske korrelations- og kovariansmatricer, under antagelse af at ma-
trixindgangene har uendeligt fjerde moment.

I første del undersøger vi konvergens i fordeling af de største egenværdier for den
observerede kovarians af en p-dimensional tunghalet tidsrække, når p sammen med
stikprøvestørrelsen går mod uendelig. Vi generaliserer de eksisterende vækstrater af
p fra litteraturen. Under antagelse af regulær variation med haleindeks α < 4, bruger vi
en large deviations-tilgang for at vise at de ekstremale egenværdier er essentielt bestemt
ud fra de største værdier i et array af iid. stokastiske variable. Herefter udleder vi ru-
tinemæssigt de ekstremale egenværdiers asymptotiske egenskaber ved brug af klassisk
ekstremværditeori.

Vi fremfører en teori for punktprocesser af de normalisererde egenværdier af den
empiriske kovariansmatrix i tilfældet, hvor dens rækker og søjler er afhængige. Med
udgangspunkt i, at denne punktproces konverger svagt, udleder vi grænsemomenter af
forskellige funktionaler af egenværdierne.

I den anden del af afhandlingen viser vi at de største og mindste egenværdier fra en
højdimensional korrelationsmatrix har næsten sikre grænser, hvis den trunkerede varians
af indgangsfordelingen er „næsten langsom varierende“, en betingelse som kan inden-
tificeres ud fra momentegenskaber af selv-normaliserende summer. Vi sammenligner,
hvordan egenværdierne for henholdsvis den empiriske korrelations- og den empiriske ko-
variansmatrix opfører sig, og argumenterer for at sidstnævnte tilfælde er mere robust,
hvilket særligt gælder i tilfældet med uendeligt fjerde moment.
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Summary

This PhD thesis provides asymptotic theory for the eigenvalues of the sample covariance
matrix of a high-dimensional time series with infinite fourth moment. Its main part
consists of the first three of the following research papers. They were written from
March 2014 until December 2016.

[P1] Heiny, J., and Mikosch, T. Eigenvalues and eigenvectors of heavy-tailed sample
covariance matrices with general growth rates: the iid case. Stochastic Process.
Appl. (2016), 29. [pdf]

[P2] Davis, R. A., Heiny, J., Mikosch, T., and Xie, X. Extreme value analysis
for the sample autocovariance matrices of heavy-tailed multivariate time series.
Extremes 19, 3 (2016), 517–547. [pdf]

[P3] Heiny, J., and Mikosch, T. Almost sure convergence of the largest and smallest
eigenvalues of high-dimensional sample correlation matrices under infinite fourth
moment. Submitted for publication.

[P4] Heiny, J., and Mikosch, T. Limit theory for the singular values of the sample
autocovariance matrix function of multivariate time series. In preparation.

[P5] Heiny, J., and Mikosch, T. Asymptotic theory for high-dimensional stochastic
volatility matrices. In preparation.

The aforementioned infinite fourth moment is ensured by a regular variation condi-
tion. We say that a random variable X and its distribution are regularly varying with
index α > 0 if

P(X > x) ∼ p+
L(x)
xα

and P(X < −x) ∼ p−
L(x)
xα

, x→∞ , (RVα)

where p± are non-negative constants such that p+ + p− = 1 and L is a slowly varying
function. In particular, if α < 4 we have E[X4] =∞. The regular variation condition is
needed for proving asymptotic theory for the eigenvalues of the sample covariance matrix.
Moreover, we will often use the concept of heavy tails. A distribution is called heavy-
tailed if certain moments are infinite. By construction, any regularly varying distribution
is heavy-tailed.

Now we explain the structure of this thesis. In Chapter 1 we provide an introduction
to Random Matrix Theory and present the classical results in the light-tailed case. We
give examples of high-dimensional statistical inference problems and indicate how the
asymptotic theory applies. The empirical distribution of the eigenvalues of the widely
used sample covariance matrix is studied. Furthermore the a.s. limits of its largest and
smallest eigenvalues are identified under finite fourth moment. Then we explain the
typical behavior of its eigenvectors. Section 1.5 constitutes the main part of Chapter 1.
There we present the contribution of this thesis and the novelties of [P1, P2, P3].

Chapters 2-4 consist of these 3 papers, respectively. Each chapter is self-contained
with its own introduction and references. Chapter 1 can be used as a joint introduction
to Chapters 2-4.
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In Chapter 2 we study the joint distributional convergence of the largest eigenvalues
of the sample covariance matrix of a p-dimensional time series with iid entries when p
converges to infinity together with the sample size n. We generalize the growth rates of
p in the literature. Assuming the regular variation condition with α < 4, we employ a
large deviations approach to show that only the diagonal of the sample covariance matrix
is relevant for the asymptotic behavior of the largest eigenvalues and the corresponding
eigenvectors. The resulting approximations are strikingly simple considering the high
dimension of the problem at hand.

In Chapter 3 we generalize the results from the iid case that were presented in the
previous chapter. We develop a theory for the point process of the normalized eigenvalues
of the sample covariance matrix in the case when rows and columns of the data are linearly
dependent. We provide limit results for the weak convergence of these point processes to
Poisson or cluster Poisson processes. Based on this convergence we can also derive the
limit laws of various functionals of the ordered eigenvalues such as the joint convergence of
a finite number of the largest order statistics, the joint limit law of the largest eigenvalue
and the trace, limit laws for successive ratios of ordered eigenvalues, etc. We also develop
some limit theory for the singular values of the sample autocovariance matrices and their
sums of squares. The theory is illustrated for simulated data and for the components of
the S&P 500 stock index. Further generalizations of the results of this chapter are made
in [P4] and [P5], but are not part of this thesis.

In Chapter 4, we show that the largest and smallest eigenvalues of a sample correlation
matrix stemming from n independent observations of a p-dimensional time series with iid
components converge almost surely to (1 +√γ)2 and (1−√γ)2, respectively, as n→∞,
if p/n→ γ ∈ (0, 1] and the truncated variance of the entry distribution is “almost slowly
varying”, a condition we describe via moment properties of self-normalized sums. We
compare the behavior of the eigenvalues of the sample covariance and sample correlation
matrices and argue that the latter seems more robust, in particular in the case of infinite
fourth moment. We briefly address some practical issues for the estimation of extreme
eigenvalues in a simulation study.

Chapter 4 is the most technical one of this thesis. In our proofs we use the method of
moments combined with a Path-Shortening Algorithm, which efficiently uses the struc-
ture of sample correlation matrices, to calculate precise bounds for matrix norms. We
believe that this new approach could be of further use in Random Matrix Theory.

Johannes Heiny Copenhagen, January 2017.
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Chapter 1

Introduction

In this thesis we study the largest and smallest eigenvalues of high-dimensional sample
covariance and correlation matrices of heavy-tailed time series.

1.1 Random Matrix Theory

The field of Random Matrix Theory (RMT) is concerned with the spectral properties
of high-dimensional random matrices. Its development was motivated by applications.
In quantum mechanics, for example, the energy levels of particles in a large system can
be characterized by the eigenvalues of a random infinite-dimensional Hermitean operator
W on a Hilbert space. It is common to work with discretizations in a finite-dimensional
space. In this case W turns into a high-dimensional Hermitean random matrix. Such
matrices are called Wigner matrices named after Eugene Paul Wigner. He proved in the
1950s that if W has independent standard normal entries on and above the diagonal,
then the expected empirical distribution of the eigenvalues of W tends to the so-called
semi-circle law defined in (1.18), as the dimension of W goes to infinity; see for example
[72, 73]. Since then a great variety of asymptotic results has been proved for various
classes of random matrices under different assumptions on the distribution of the entries
and their dependence structure. The discovery of many results was triggered by the
enormous improvement of computation power which led to numerous conjectures. In the
second half of the 20th century, the research on asymptotic spectral properties of large-
dimensional random matrices attracted considerable interest among physicists, computer
scientists and mathematicians. A breakthrough in the theory of spectral distributions of
sample covariance matrices was achieved by Marčenko and Pastur in 1967.

For many years the main focus of research in RMT has been on limiting spectral
distributions. More recently, the focus turned to linear spectral statistics, eigenvectors,
limiting distributions of extreme eigenvalues and their spacings. This thesis addresses
these four topics in the special setting of random matrices with heavy-tailed entries.

RMT is a versatile and useful tool in many fields of modern sciences that are faced
with high-dimensional data sets. It employs techniques from probability theory, multi-
variate statistics, number theory and combinatorics. Moreover, RMT finds applications
in quantum physics, signal processing, wireless communications and finance; see Bai et
al. [5] for more detailed examples.

1.1.1 Limiting spectral distributions
For any random p × p matrix A with real eigenvalues λ1(A), . . . , λp(A) the empirical
spectral distribution is defined by

FA(x) = 1
p

p∑
i=1

1{λi(A)≤x}, x ∈ R .

1



2 1. Introduction

A major problem in random matrix theory is to find the weak limit of (FAn
), the

so-called limiting spectral distribution, for suitable sequences of Hermitean p×p matrices
(An). By weak convergence of a sequence of probability distributions (FAn

) to a prob-
ability distribution F , we mean limn→∞ FAn(x) = F (x) a.s. for all continuity points of
F . Although the eigenvalues of An are continuous functions of the entries of An there
are no closed-form expressions if the dimension is larger than 4. Therefore methods to
identify and characterize the limiting spectral distribution are needed. We will briefly
discuss the two most common ones: the method of moments and Stieltjes transforms.

By Lemma B.3 in [6], a distribution function F is uniquely characterized by its
sequence of moments

βk =
∫ ∞

0
xk dF (x) , k = 1, 2, . . .

if Carleman’s condition
∑∞
k=1 β

−1/(2k)
2k = ∞ is satisfied. In this case, weak convergence

of (FAn
) to F is equivalent to the convergence of moments, that is

βk(An) =
∫ ∞

0
xk dFAn(x) = 1

p
tr(Ak

n)→ βk , n→∞, k = 1, 2, . . . (1.1)

In many cases the calculation of tr(Ak
n) is very demanding. Often its mean and variance

are estimated by combinatorial techniques. On the positive side, if F has finite support,
Carleman’s condition holds automatically.

Another useful tool is the Stieltjes transform of the empirical spectral distribution
FA:

sFA(z) =
∫
R

1
x− z

dFA(x) = 1
p

tr
(
(A− zI)−1) , z ∈ C+ ,

where C+ denotes the complex numbers with positive imaginary part. Weak convergence
of (FAn

) to a distribution function F is equivalent to sFAn
(z) → sF (z) a.s. for all

z ∈ C+. Notice that the Stieltjes transform sF determines a distribution function F at
all continuity points a, b of F via

F (b)− F (a) = lim
v→0+

1
π

∫ b

a

=sF (x+ iv) dx .

1.2 Sample covariance matrices

For a sample of n column vectors x1, . . . ,xn of a p-dimensional time series the (non-
normalized) sample covariance matrix is usually defined as

S =
n∑
i=1

(xi − x)(xi − x)′ =
n∑
i=1

xix′i − nx x′ = XX′ − nx x′ ,

where x = n−1∑
i xi is the sample mean and

X = (x1, . . . ,xn) = (Xit)i=1,...,p; t=1,...,n

is the data matrix. The sample covariance matrix is of crucial importance in multivari-
ate statistics, for instance in principal component analysis, canonical correlation analysis,
multivariate regression, factor analysis, hypothesis testing and discriminant analysis. The
case of multivariate normal observations has played a particular role in the development
of statistical theory. Already in 1928, Wishart [74] studied sample covariance matrices



1.2. Sample covariance matrices 3

with normal entries. Through the 20th century non-asymptotic procedures for Gaus-
sian observations such as Fisher’s test, Student’s test, and the analysis of variance were
developed. In practice, however, observations are often not normally distributed and
asymptotic methods based on limit theorems for certain model parameters are employed
instead of exact results which are difficult to obtain.

Most of the classical limit theorems are derived under the assumption that the di-
mension p is fixed and the sample size n goes to infinity. If the assumptions of the law
of large of large numbers are satisfied, then n−1S converges a.s. to the covariance matrix
Σ of x1.

If p is moderately large, it is known that n−1S ceases to be a good estimate for Σ.
This means that classical methods based on fixed dimension and large sample limits may
lead to wrong conclusions when applied to high-dimensional data. One would need ap-
propriate adjustments. RMT provides limit theory in the case of large p. New statistical
methods can be built on these results.

In RMT one assumes that p = pn grows with n. The most common condition in the
literature is

lim
n→∞

pn
n
→ γ ∈ (0,∞) . (1.2)

The asymptotic spectral behaviors of two large matrices are the same if their difference
is of finite rank. Therefore we will refer to XX′ as the sample covariance matrix from
now on. Indeed, by the rank inequality (see Bai and Silverstein [6, Theorem A.44]) we
have for the supremum norm

‖Fn−1S − Fn−1XX′‖ ≤ p−1rank((x, . . . ,x)) ,

which means that the respective limiting spectral distributions coincide under (1.2). For
the same reason we can assume without loss of generality that the entries (Xit) are
centered whenever the expectations exist.

The limiting spectral distribution of normalized sample covariance matrices was found
by Marčenko and Pastur.

Theorem 1.1 (Debashis and Aue [57]). Suppose that X has iid entries with common
mean and variance 1. If (1.2) holds, then, with probability one, (Fn−1XX′) converges
weakly to a non-random distribution, the so-called Marčenko–Pastur law Fγ . If γ ∈ (0, 1],
Fγ has density,

fγ(x) =
{ 1

2πxγ
√

(b− x)(x− a) , if a ≤ x ≤ b,
0 , otherwise,

(1.3)

where a = (1 − √γ)2 and b = (1 + √γ)2. If γ > 1, the Marčenko–Pastur law is a
mixture of a point mass at 0 and the density function f1/γ with weights 1− 1/γ and 1/γ,
respectively.

The Marčenko–Pastur law describes the global behavior of the eigenvalues of XX′.
Theorem 1.1 quantifies the spread of the eigenvalues around their mean 1. Note that the
range of the deviation increases when γ increases from 0 to ∞.

If p/n→ 0, the limiting spectral distribution in Theorem 1.1 is the Dirac measure at
1. After an appropriate transformation of the sample covariance matrix one can obtain
the semi-circle law defined in (1.18) as a non-degenerate limiting spectral distribution in
this case.

The crucial assumptions in Theorem 1.1 are the finiteness of the variance and that p
and n tend to infinity at the same rate. By Theorem 2.8 in Bai [8], the conclusion still



4 1. Introduction

holds if the entries are independent, have common mean and satisfy the Lindeberg-type
condition

lim
n→∞

1
δ2np

∑
i,t

E[X2
it1{|Xit|>δ√n}] = 0 , δ > 0 .

Many important test statistics in multivariate analysis are functions of the eigenvalues
λ(1) ≥ · · · ≥ λ(p) of the sample covariance matrix and can be expressed by means of the
empirical spectral distribution of n−1XX′.

Example 1.2. Let (Xit) be iid standard normal and consider

Tn := log(det(n−1XX′)) = log
p∏
i=1

λ(i)

n
= p

∫ ∞
0

log x dFn−1XX′(x) .

On the one hand, if p is fixed we know from Example 1.1 in Yao et a. [78] that√
n

p
Tn

d→ Y ∼ N(0, 2) , n→∞ . (1.4)

On the other hand, if p/n → γ ∈ (0, 1), one can use Theorem 1.1 to obtain asymptotic
values for Tn. On gets a.s.

Tn
p
→
∫ ∞

0
log x dFγ(x) = γ − 1

γ
log(1− γ)− 1 < 0 ,

which implies
√
n/p Tn → −∞ a.s. In view of (1.4) the asymptotic behavior of the test

statistic Tn crucially depends on the dimension p.

A characterization of the limiting spectral distribution of sample covariance matrices
with general population covariance has been derived for many settings. As an example
we state Theorem 1.1 in Bai and Zhou [7].

Theorem 1.3. Assume (1.2) and the following conditions.

• For all k, E[XjkXlk] = Tlj, and for any non-random p× p matrix B with bounded
norm, E[(x′kBxk − tr(BT))2] = o(n−2), where T = Tn = (Tjl) and xk are the
columns of X.

• The norm of Tn is uniformly bounded and FTn tends to a non-random probability
distribution H.

Then, with probability 1, Fn−1XX′ tends to a probability distribution, whose Stieltjes
transform m(z) satisfies

m(z) =
∫
R

1
t(1− γ − γzm(z))− z dH(t) . (1.5)

If m(z) = −(1− γ)/z + γm(z), then (1.5) becomes

z = − 1
m(z) + γ

∫
R

1
1 +m(z) t dH(t) . (1.6)
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For historical reasons, (1.5) is often called Marčenko–Pastur equation. In practice, the
inversion of such integral equations can be very difficult. Therefore, a characterization
of the limiting spectral distribution via (1.5) is of limited use. For numerical procedures,
the Silverstein equation (1.6) is sometimes preferred. Roughly speaking, the only known
explicit examples of non-degenerate limiting spectral distributions are the Marčenko–
Pastur law, the circular law, the semi-circle law and the multivariate F -matrix. In
contrast, the number of existence results is huge. We refer to the discussion in Yao et
al. [78] for further details.

In Theorem 1.1 we have seen that the sequence (Fn−1XX′) converges to the Marčenko–
Pastur law if the iid entries possess a finite second moment. Now we will discuss the
situation when the entries are still iid, but have an infinite variance. Here we assume
the entries to be regularly varying with index α ∈ (0, 2); see (RVα) on page v for the
definition of regular variation. Assuming (1.2) with γ ∈ (0, 1] in this infinite variance
case, Belinschi et al. [15, Theorem 1.10] showed that the sequence (Fa−2

n+pXX′) converges
with probability one to a non-random probability measure with density ργα satisfying

ργα(x)x1+α/2 → αγ

2(1 + γ) , x→∞ ; (1.7)

see also Ben Arous and Guionnet [17, Theorem 1.6]. Here the normalization (ak) is
defined such that

P(|X| > ak) ∼ k−1 , k →∞ . (1.8)

An application of the Potter bounds (see Bingham et al. [20, p. 25]) shows that a2
n+p/n→

∞. To the best of our knowledge, explicit expressions or computational methods for the
limiting spectral distribution in the infinite variance case are not available at this moment.

1.3 Limits of extreme eigenvalues under finite fourth moment

After the limiting spectral distribution for sample covariance matrices had been found,
the focus shifted to the asymptotic behavior of the largest and smallest eigenvalues
λ(1) and λ(p), respectively, of XX′. In this section, we assume that the entries of the
data matrix X are iid with generic element X. Furthermore, suppose p ≤ n; otherwise
λ(p) = 0 since XX′ has at most min(n, p) non-zero eigenvalues. We will discuss the
setting E[X4] <∞, while the case E[X4] =∞ is treated in Section 1.5.

Under condition (1.2) with γ ≤ 1, one can infer from Theorem 1.1 that

lim inf
n→∞

λ(1)

n
≥ (1 +√γ)2 and lim sup

n→∞

λ(p)

n
≤ (1−√γ)2 a.s. (1.9)

We follow Bai and Silverstein [6] and derive necessary conditions for the a.s. conver-
gence of n−1λ(1). Since the largest diagonal entry of a matrix is bounded by its largest
eigenvalue, we have

λ(1)

n
≥ max
i=1,...,p

1
n

n∑
t=1

X2
ii . (1.10)

If E[X4] =∞, then by Lemma B.25 in [6]

lim sup
n→∞

max
i=1,...,p

1
n

n∑
t=1

X2
ii =∞ a.s. (1.11)
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If E[X4] <∞ and E[X] = c 6= 0, then
1√
n
‖X‖2 ≥

1√
n
‖E[X]‖2 −

1√
n
‖X− E[X]‖2 ≥

|c|p√
n
− 1√

n
‖X− E[X]‖2 →∞ a.s.,

where for any matrix A, ‖A‖2 denotes its spectral norm, i.e., its largest singular value.
This and (1.11) show that E[X] = 0 and E[X4] < ∞ are necessary conditions for the
a.s. convergence of n−1λ(1).

In what follows, we assume E[X] = 0 and E[X2] = 1, whenever the respective mo-
ments exist.

1.3.1 Sample covariance matrices
Extending work by Geman [38], Bai et al. [79] showed under (1.2) that

λ(1)

n

a.s.→
(
1 +√γ

)2
, n→∞ , (1.12)

which is the optimal result in view of (1.11). Later Bai and Yin [10] proved the following
result under the additional assumption γ ∈ (0, 1):

lim sup
n→∞

‖n−1XX′ − (1 + γ)I‖2 ≤ 2√γ a.s. (1.13)

Because of

‖R − (1 + γ)I‖2 = max{λ(1)/n− (1 + γ),−λ(p)/n+ (1 + γ)} ,

equations (1.13) and (1.9) imply

lim
n→∞

λ(1)

n
= (1 +√γ)2 and lim

n→∞

λ(p)

n
= (1−√γ)2 a.s. (1.14)

The approach based on (1.13) provides a lower bound on the smallest eigenvalue, which
is difficult to obtain in general. Unfortunately, one cannot gain any information about
the minimal conditions for the existence of a limit of λ(p)/n since the method treats λ(1)
and λ(p) simultaneously and therefore it can (at best) only be applied in the most general
setting for λ(1), losing sharpness for λ(p). It was finally discovered by Tikhomirov [70]
that the a.s. limit of n−1λ(p) is given by (1.14) if E[X2] = 1, whereas higher moments
can be infinite.

Under suitable moment assumptions, λ(1) and λ(p) possess Tracy–Widom fluctuations
around their almost sure limits. For instance, Johnstone [48] complemented (1.14) by the
corresponding central limit theorem in the special case of iid standard normal entries:

n2/3 (√γ)1/3(
1 +√γ

)4/3(λ(1)

n
−
(
1 +

√
p
n

)2) d→ ξ ,

where the limiting random variable has a Tracy–Widom distribution of order 1. Its
distribution function F1 is given by

F1(s) = exp
{
− 1

2

∫ ∞
s

[q(x) + (x− s)q2(x)] dx
}
,

where q(x) is the unique solution to the Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x) ,

where q(x) ∼ Ai(x) as x → ∞ and Ai(·) is the Airy kernel; see Tracy and Widom [71]
for details.
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1.3.2 Sample correlation matrices
In comparison with the eigenvalues of XX′, much less is known about the ordered eigen-
values

µ(1) ≥ · · · ≥ µ(p)

of the sample correlation matrix R = YY′ with entries

Rij =
n∑
t=1

XitXjt√
Di

√
Dj

=
n∑
t=1

YitYjt , i, j = 1, . . . , p . (1.15)

In this thesis we will often make use of the notation Y = (Yit) = (Xit/
√
Di) and

Di = D
(n)
i =

n∑
t=1

X2
it , i = 1, . . . , p; n ≥ 1 . (1.16)

With F = diag(1/D1, . . . , 1/Dp), we have R = F1/2XX′F1/2 which has the same
eigenvalues as XX′F. Weyl’s inequality (see [19]) yields

max
i=1,...,p

|µ(i) − n−1λ(i)| ≤ ‖XX′F− n−1XX′‖2

≤ n−1‖XX′‖2‖nF− I‖2

= n−1λ(1) max
i=1,...,p

∣∣∣ n
Di
− 1
∣∣∣ , (1.17)

which converges a.s. to 0 if E[X4] < ∞; see Chapter 4 for details. This approach was
used by Jiang [46], and Xiao and Zhou [77] to derive

µ(1) → (1 +√γ)2 and µ(p) → (1−√γ)2 a.s.

1.4 Eigenvectors

Eigenvectors of large random matrices and graphs play an essential role in statistical
analysis, physics and computer science. Many properties of a matrix or a graph can
be deduced from its eigenvectors. Popular algorithms for data analysis such as spectral
clustering, principal component analysis, PageRank and community detection are based
on the eigenvector-eigenvalue decomposition of a matrix.

If the data matrix X has iid standard normal entries, then XX′ is a Wishart matrix,
whose eigenvectors are well studied; see for example Bai and Silverstein [6, Ch. 10]. Due
to the invariance of XX′ under orthogonal transformations, its matrix of properly nor-
malized eigenvectors is Haar distributed, i.e., the distribution is uniform on the space of
orthogonal p× p matrices. This result has been extended to different classes of matrices
X by direct comparison with Wishart matrices. Such statements are called universality
results and they often require that the new entry distribution is in some sense similar
to the standard normal distribution. This is often achieved by moment conditions. Sil-
verstin [64] showed that the matrix of eigenvectors is asymptotically Haar distributed as
p/n → γ ∈ (0,∞) if the first four moments of the iid entries coincide with those of the
standard normal distribution. On the one hand, this means that eigenvectors of XX′
are completely unstructured for light-tailed entry distributions. On the other hand, the
extreme eigenvalues converge to constants a.s.

Although eigenvectors play a minor role in this thesis, we summarize some results from
the literature on the light-tailed case. Consequently, our approximations of eigenvectors



8 1. Introduction

in the heavy-tailed case are put into context. The majority of studies on eigenvectors of
large random matrices is conducted on Wigner matrices W = (Wij). They are symmet-
ric, real-valued, n × n matrices with entries Wij , 1 ≤ i ≤ j ≤ n, that are iid, mean zero
and unit variance random variables.

Roughly speaking, the spectral properties of the square of a Wigner matrix and a
sample covariance matrix with p = n are quite similar if they share the same sufficiently
light-tailed entry distribution. For the purpose of exposition, we look at W2 = WW′

instead of XX′. Indeed, apart from the additional symmetry restriction for W they have
the same structure.

By Theorem 2.1 in [5], the limiting spectral distribution of (W/
√
n) is the semi-circle

law G with density
g(x) = 1

2π
√

4− x2 1{|x|≤2} . (1.18)

The semi-circle law and the Marčenko–Pastur law F1 are linked in the following way: if
Y ∼ G then Y 2 ∼ F1.

Since W2 and W have the same eigenvectors it will be sufficient to study the latter.
In the remainder of this section we list some properties of v1, . . . ,vn, where vi is an
eigenvector associated to the ith largest eigenvalue of W. In addition, we assume vi are
unit vectors, i.e. ‖vi‖`2 = 1, and that the first non-zero component of vi is positive.

Often the entries are assumed to be sub-exponential. We call a random variable W
sub-exponential with exponent α > 0 if there exists a constant β > 0 such that

P(|W | > x) ≤ β exp(−xα/β) , x > 0 .

Theorem 1.4 in O’Rourke et al. [56] focuses on Wigner matrices with sub-exponential
entries with exponent α. There exists a constant Cα > 0 such that the probability that
the spectrum of W is simple and that every coordinate of every vi is non-zero is at least
1 − Cαn−α. By our sign convention, the eigenvectors are unique with high probability.
In particular, if W11 is standard normal, vi is uniformly distributed on

Sn−1
+ := {x = (x1, . . . , xn)′ : ‖x‖`2 = 1 and x1 > 0} .

An eigenvector of a Wigner matrix with light-tailed entry distribution (for instance sub-
exponential) behaves like a random vector uniformly distributed on Sn−1

+ . More precise
quantitative statements are difficult to obtain. For details we refer to [56].

If v = (v1, . . . , vn)′ is a random vector uniformly distributed on Sn−1
+ , probabilistic

bounds on its coordinates are available. By Theorem 2.1 in [56], we have

vmax := max
i=1,...,n

|vi| ≤ C
√

logn
n

and vmin := min
i=1,...,n

|vi| ≥
c

n3/2 (1.19)

with probability 1− o(1) for any C > 1 and c ∈ [0, 1).
In RMT it is common to study the so-called bulk and edge spectra separately. For

ε ∈ (0, 1) one distinguishes between the bulk eigenvectors vi, i ∈ {1 ≤ t ≤ n : εn ≤
t ≤ (1 − ε)n} := Bε and the edge eigenvectors vi, i ∈ {1, . . . , n}\Bε. The associated
eigenvalues are usually referred to as bulk and edge spectrum, respectively. Roughly
speaking, the limiting spectral distribution of a sequence of random matrices depends on
the bulk spectrum, while the edge spectrum influences the behavior of functionals of the
eigenvalues.

The behavior of the largest coordinates of v1, . . . ,vn was studied in the case of certain
sub-exponential entries with exponent α = 2 whose first four moments match those of
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the standard normal distribution. By Theorems 4.1 and 4.3 in [56], one has for any bulk
eigenvector vi and appropriate constants c1, c2 > 0,

c1

√
logn
n
≤ vi,max ≤ c2

√
logn
n

with probability 1−o(1). This result is astonishingly precise. Note that up to logarithmic
corrections vi,max is of the smallest possible magnitude n−1/2. This property is called
complete delocalization; see [62]. For edge eigenvectors, however, it is proved that for a
constant c3 > 0,

vi,max ≤ c3
logn√
n

with probability 1−o(1). The optimal bound in the edge case remains an open problem.
Additionally, by Corollary 5.4 in [56] the `p-norms, 1 ≤ p ≤ 2, of the (vi) are of the same
order of magnitude:

c0n
1/p−1/2 ≤ min

i=1,...,n
‖vi‖`p ≤ max

i=1,...,n
‖vi‖`p ≤ C0n

1/p−1/2 (1.20)

with probability 1− o(1) for positive constants c0, C0.
If the entry distribution of W has heavy tails, the behavior of its eigenvectors is

completely different. In [18], Benaych-Georges and Péché assumed W11 to be regularly
varying with index α ∈ (0, 4); see (RVα) on page v, and provided an approximation of vk
for any fixed k. From their asymptotic result one can deduce that vk,max converges to
1/
√

2 a.s. Moreover, asymptotically there are only two coordinates of vk with non-zero
mass. Both are of magnitude 1/

√
2. This is the opposite of complete delocalization:

complete localization. The number of non-zero coordinates is bounded.
Note that in the presence of heavy tails the eigenvectors of W and XX′ are very

different; see (1.37) in Section 1.5.

1.5 Contribution of this thesis

In this section we summarize our contribution to the spectral theory of high-dimensional
sample covariance and correlation matrices. We focus on the case where the entries of
the (p× n)-dimensional data matrix X have an infinite fourth moment.

1.5.1 Sample covariance matrices: the iid case
While the finite second moment is the central assumption to obtain the Marčenko–Pastur
law as the limiting spectral distribution, the finite fourth moment plays a crucial role
when studying the eigenvalues

λ(1) ≥ · · · ≥ λ(p) (1.21)

of the sample covariance matrix XX′. Unless stated otherwise, the entries (Xit) are iid
regularly varying random variables with index α ∈ (0, 4) (see (RVα)) and X is a generic
random variable with the same distribution. This implies E[X4] =∞. Here and in what
follows, we will refer to this setting as the heavy-tailed case, in contrast to the light-tailed
case in which E[X4] is finite. Moreover, we assume E[X] = 0 and E[X2] = 1, whenever
E[X2] <∞.



10 1. Introduction

We normalize the eigenvalues (λ(i)) by (a2
np) where the sequence (ak) is chosen such

that

P(|X| > ak) ∼ k−1 , k →∞.

Standard theory for regularly varying functions (e.g. Bingham et al. [20], Feller [37])
yields that an = n1/α`(n) where ` is a slowly varying function. Assuming the usual
growth condition (1.2) for p, the Potter bounds (see [20, p. 25]) yield for α ∈ (0, 4) that

a2
np

n
∼ n4/αγ2/α `2(n2γ)

n
→∞, n→∞ , (1.22)

i.e., the normalization a2
np is stronger than n.

By (1.10), we have λ(1) ≥ X2
(1),np, where X2

(1),np ≥ · · · ≥ X2
(np),np denote the order

statistics of (X2
it)i=1,...,p;t=1,...,n. Classical extreme value theory yields that a−2

npX
2
(1),np

converges weakly to a Fréchet distribution with parameter α/2:

Φα/2(x) = e−x
−α/2

, x > 0 . (1.23)

The theory for the largest eigenvalues of sample covariance matrices with heavy tails
is less developed than in the light-tailed case. Pioneering work for λ(1) under the growth
condition (1.2) and α ∈ (0, 2) is due to Soshnikov [65, 66]. For k ≥ 1 fixed, he showed
that

λ(m)

X2
(m),np

P→ 1 , n→∞ , 1 ≤ m ≤ k , (1.24)

which reveals that the limiting distribution of a−2
npX

2
(1),np is the Fréchet distribution

(1.23). Furthermore he proved the point process convergence

Nn =
p∑
i=1

εa−2
npλi

d→ NΓ =
∞∑
i=1

εΓ−2/α
i

, n→∞ . (1.25)

Here εy is the Dirac measure at y,

Γi = E1 + · · ·+ Ei , i ≥ 1 , (1.26)

and (Ei) is a sequence of iid standard exponential random variables. In other words,
NΓ is a Poisson point process on (0,∞) with mean measure µ(x,∞) = x−α/2, x > 0.
Convergence in distribution of point processes is understood in the sense of weak con-
vergence in the space of point measures equipped with the vague topology; see Resnick
[60, 61].

Later Auffinger et al. [4] established (1.25) also for α ∈ [2, 4). In their proofs they
used truncation techniques and a combinatorial approach.

General growth rates for pn
In many applications it is not realistic to assume that the dimension p of the data and the
sample size n grow at the same rate. In the light-tailed case little is known when p and n
grow at different rates, i.e., lim p/n ∈ {0,∞}. Notable exceptions are El Karoui [30] who
proved that Johnstone’s result in [48] (assuming iid standard normal entries) remains
valid when p/n→ 0 or n/p→∞, and Péché [58] who showed universality results for the
largest eigenvalues of some sample covariance matrices with non-Gaussian entries.
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The aforementioned results of Soshnikov [65, 66] and Auffinger et al. [4] already indi-
cate that the value γ in the usual growth rate (1.2) does not appear in the distributional
limits. In the heavy-tailed case, more general growth of p than prescribed by (1.2) has
been used in Davis et al. [24, 25]. In Chapters 2 and 3 we will consider power-law growth
rates on the dimension (pn). To be precise, we assume an integer sequence

p = pn = nβl(n), n ≥ 1 , (1.27)

where l is a slowly varying function and β ≥ 0. If β = 0, we also assume l(n)→∞.
Our condition (1.27) is more general than the growth conditions in the literature; see
[4, 24, 25].

Note that the matrices XX′ and X′X have the same non-zero eigenvalues. Therefore
it is sufficient to consider β ∈ [0, 1]. For details we refer to Chapters 2 and 3.

Our contribution

In the heavy-tailed case and under the growth condition (1.27) with β ∈ [0, 1] we prove
with considerable technical effort that

a−2
np ‖XX′ − diag(XX′)‖2

P→ 0 , n→∞ , (1.28)

where diag(XX′) denotes the diagonal of XX′; see Theorem 2.5.
The employed techniques originate from extreme value analysis and large deviation

theory. The (i, j) entry of XX′ is

(XX′)ij =
n∑
t=1

XitXjt , i, j = 1 . . . , p .

From Embrechts and Veraverbeke [36] we know thatX2 andX11X12 are regularly varying
with indices α/2 and α, respectively. By large deviation theory (see (3.12)), the diagonal
and off-diagonal entries of XX′ inherit the tails of X2

it and XitXjt, i 6= j, respectively,
above some high threshold. Therefore the random variables in the diagonal of XX′ have
the heaviest tail. They dominate the spectral behavior of XX′ and thus (1.28) is not
unexpected.

Equation (1.28) has some immediate consequences for the approximation of the eigen-
values of XX′ by those of diag(XX′). Indeed, let C be a symmetric p × p matrix with
eigenvalues

λ(1)(C) ≥ · · · ≥ λ(p)(C) . (1.29)

Then for any symmetric p× p matrices A,B, by Weyl’s inequality (see Bhatia [19]),

max
i=1,...,p

∣∣λ(i)(A + B)− λ(i)(A)
∣∣ ≤ ‖B‖2 .

If we now choose A + B = XX′ and A = diag(XX′) we obtain

a−2
np max

i=1,...,p

∣∣λ(i) − λ(i)(diag(XX′))
∣∣ P→ 0 , n→∞ . (1.30)

Thus the problem of deriving limit theory for the order statistics of XX′ has been
reduced to limit theory for the order statistics of the iid row-sums

Di = (XX′)ii =
n∑
t=1

X2
it , i = 1, . . . , p ,
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which are the eigenvalues of diag(XX′). This theory is completely described by the
point processes constructed from the points Di/a

2
np i = 1, . . . , p. Necessary and sufficient

conditions for the weak convergence of these point processes are provided by Lemma 3.22.
In combination with the Nagaev-type large deviation results of Theorem 3.21 they yield
the following result under (1.27):

p∑
i=1

εa−2
np (Di−cn)

d→ NΓ , n→∞ , (1.31)

where NΓ was defined in (1.25) and cn = 0 if E[D] = ∞ and cn = E[D] = nE[Z2]
otherwise. Note that the centering cn in the finite variance case can be avoided if n/a2

np →
0. The latter condition is satisfied if

β > α/2− 1 . (1.32)

Combining (1.28), (1.30) and (1.31), we conclude that (1.25) holds under the general
growth rate (1.27) with β ∈ [0, 1], where for α ∈ [2, 4) one needs to require (1.32).

The limiting point process (1.25) yields a plethora of ancillary results. For example,
one can easily derive the limiting distribution of a−2

npλ(k) for fixed k ≥ 1:

lim
n→∞

P(a−2
npλ(k) ≤ x) = lim

n→∞
P(Nn(x,∞) < k) = P(N(x,∞) < k)

= P(Γ−2/α
k ≤ x) =

k−1∑
s=0

(
x−α/2

)s
s! e−x

−α/2
, x > 0 .

Another immediate consequence of (1.25) is

a−2
np

(
λ(1), . . . , λ(k)

) d→
(
Γ−2/α

1 , . . . ,Γ−2/α
k

)
(1.33)

for any fixed k ≥ 1 and α ∈ (0, 2]. In Chapter 3 we show for α ∈ (2, 4)

a−2
np

(
λ(1) − nE[Z2], . . . , λ(k) − nE[Z2]

) d→
(
Γ−2/α

1 , . . . ,Γ−2/α
k

)
. (1.34)

Equations (1.33) and (1.34) yield that for α ∈ (0, 4) and any fixed k ≥ 1,

a−2
np

(
λ(1)−λ(2), . . . , λ(k)−λ(k+1)

) d→
(
Γ−2/α

1 −Γ−2/α
2 , . . . ,Γ−2/α

k −Γ−2/α
k+1

)
. (1.35)

Related results were also derived for linear spectral statistics such as the trace a−2
np (λ1 +

· · ·+ λp). We refer to Chapter 3 and Davis et al. [24] for details on the proofs and more
examples.

In the case of fixed p, Janssen et al. [45] related the limiting distribution of the
eigenvalues (λ(i)) to stable distributions. They also used (1.28) and (1.30). In this case
it is clear that for example

λ(2)

X2
(2),np

P→ 1 , n→∞ ,

cannot hold. If X2
(1),np and X2

(2),np lie in the same row of X, then they appear on the
same spot on the diagonal of XX′. Then X2

(2),np cannot be used for the approxiamtion
of λ(2) in view of (1.30). Indeed, the probability that this happens is approximately 1/p
which does not tend to 0 if p is fixed. This is in contrast to (1.24).
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Recall that if p is fixed, one has to use the approximation of the eigenvalues provided
by (1.30), while if p/n→ γ one can use either (1.30) or (1.24). There is a phase change
of the behavior of (λ(i)) when going from finite p to p proportional to n. In our condition
(1.27) the growth of p is essentially described by the parameter β.

Under (1.27) our Theorem 2.1 asserts that

a−2
np max

i=1,...,p

∣∣λ(i) −X2
(i),np

∣∣ P→ 0 , (1.36)

provided (1.32) holds. Due to its simplicity, (1.36) is an elegant result. It reveals, for
example, that the largest eigenvalue of a high-dimensional heavy-tailed matrix behaves
like the maximum of its iid entries.

In view of Lemma 2.22, condition (1.32) describes the precise β-region, up to the
slowly varying function in the tail of X, where maxi a−2

np |DLi − X2
(i),np| is sufficiently

small. Here Li encodes the location of the ith largest diagonal element of XX′; see
(2.12) for the formal definition of Li. Therefore the critical value of β at which the
aforementioned phase change occurs is max(0, α/2− 1).

The study of eigenvectors of heavy-tailed sample covariance matrices is a fresh topic
which has not been explored in the literature listed here. Our approximation of XX′ in
(1.28) and the limiting distributions of the spacings (1.35) can be applied to approximate
the unit eigenvectors (vj) of XX′, where vj is associated to λ(j). As for the eigenvectors
of Wigner matrices we use the convention that their first non-zero coordinate is positive.
From (1.28) we know that XX′ is approximated in spectral norm by diag(XX′). The
unit eigenvectors of diag(XX′) are the canonical basis vectors ej ∈ Rp, j = 1, . . . , p.

By Theorem 2.11, (ej) approximate the eigenvectors (vj). For β ∈ [0, 1] and any
fixed k ≥ 1, we have

‖vk − eLk‖`2
P→ 0 , n→∞ . (1.37)

1.5.2 Sample covariance matrices: the non-iid case
Davis et al. [25] extended the results of Soshnikov [65, 66] and Auffinger et al. [4] to the
case where the rows of X are iid linear processes with iid regularly varying noise. After a
multiplication of the mean measure µ by a constant the Poisson point process convergence
result of (1.25) remains valid. Pfaffel and Schlemm [59] described the Stieltjes transform
of the limiting spectral distribution in this model. Different limit processes can only be
expected if there is dependence in both directions: in Chapter 3 we use a model for (Xit)
which allows for linear dependence across the rows and through time (see also [24]):

Xit =
∑
l∈Z

∑
k∈Z

hklZi−k,t−l , i, t ∈ Z , (1.38)

where (Zit)i,t∈Z is a field of iid regularly varying random variables with index α ∈ (0, 4)
and (hkl)k,l∈Z is an array of real numbers. Moreover, we require the summability condi-
tion ∑

l∈Z

∑
k∈Z
|hkl|δ <∞ (1.39)

for some δ ∈ (0,min(α/2, 1)) which ensures the a.s. absolute convergence of the series in
(1.38). Under the condition (1.39), the marginal and finite-dimensional distributions of
the field (Xit) are regularly varying with index α; see Embrechts et al. [35], Appendix
A3.3.



14 1. Introduction

From the field (Xit) we construct the p× n matrices

Xn(s) = (Xi,t+s)i=1,...,p;t=1,...,n , s = 0, 1, 2, . . . ,

As before, we will write X = Xn(0). Now we can introduce the (non-normalized) sample
autocovariance matrices

Xn(0)Xn(s)′ , s = 0, 1, 2, . . . .

We will refer to s as the lag. For s = 0, we obtain the sample covariance matrix. In [P4]
(see page v) and Chapter 3, we study the asymptotic behavior of the eigen- and singular
values of the sample covariance and autocovariance matrices under the growth condition
(1.27).

Theorem 3.7 provides a general approximation result for the ordered singular values
of Xn(0)Xn(s)′. Their behavior is determined by the sums (

∑n
t=1 Z

2
it) and the singular

values of the matrix M given by

(M(s))ij =
∑
l∈Z

hi,lhj,l+s, i, j ∈ Z .

In Section 3.3.5 the limiting point process of the singular values of Xn(0)Xn(s)′ is derived.
Finally, we mention that our paper [P4] deals with the eigenvectors of Xn(0)Xn(s)′; see
also (1.37). One obtains more interesting structures than in the latter result. In fact,
by choosing (hkl) accordingly one can obtain arbitrary eigenvectors. This constitutes a
valuable property in principal component analysis.

1.5.3 Sample correlation matrices
In Chapter 4 we study the spectrum of the sample correlation matrix R defined in
(1.15). We assume that the underlying data matrix X has iid centered entries and the
usual growth condition (1.2) holds. Recall the notation Yit = Xit/

√
Di from p. 7. We

will sometimes write (Y1, . . . , Yn) = (Y11, . . . , Y1n) and Y = Y1.
Consider the following domain of attraction type-condition for the Gaussian law:

E
[
Y1Y2

]
= o(n−2) and E

[
Y 4] = o(n−1) , n→∞ . (1.40)

By Giné et al. [39], condition (1.40) holds if the distribution of X is in the domain of
attraction of the normal law. We use Theorem 1.3 to show that under (1.40) the sequence
(FR) converges weakly to the Marčenko–Pastur law Fγ defined in (1.3); see Theorem 4.3.
We prove that the condition (1.40) is necessary. When (1.40) is not valid, the limiting
spectral distribution of (FR) (if it exists) must have mean 1, by virtue of the method of
moments (see (1.1)). This follows from the fact that the diagonal elements of R are 1.
This together with our approximation of E[βk(R)] provides some information about this
distribution; compare also with (1.7) for the sample covariance case.

Our analysis of the almost sure convergence of the extreme eigenvalues µ(1) and µ(p)
of R is carried out for symmetric X. Then condition (1.40) turns into

nE
[
Y 4]→ 0 , n→∞ . (1.41)

Theorem 4.5 asserts

µ(1) → (1 +√γ)2 and µ(p) → (1−√γ)2 a.s. (1.42)
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under some condition (Cq) on p. 79 which is slightly more restrictive than (1.41). Condi-
tion (Cq) essentially means that the convergence rate of nE

[
Y 4] is at least logarithmic.

A detailed discussion is given in Section 4.2.
Our proof requires an adequate bound on E[µkn(1)], where kn → ∞. To this end, we

use the inequality

E[µkn(1)] ≤ E[tr Rkn ] =
p∑

i1,...,ikn=1

n∑
t1,...,tkn=1

E[Yi1tknYi1t1 · · ·Yikn tkn−1Yikn tkn ]

and determine those summands on the right-hand side which are largest when weighted by
their multiplicities. Employing our Path-Shortening Algorithm, which is a novel technique
that efficiently uses the inherent structure of sample correlation matrices, their contribu-
tion is calculated explicitly. The other summands can –with considerable technical effort–
be controlled by (Cq). Note that because of the identity E[tr Rkn ] = pE

[ ∫
xknFR(dx)

]
the behavior of the moments of the empirical spectral distribution is closely linked to the
above upper bound.

Equation (1.42) indicates that the a.s. convergence of the extreme eigenvalues of R
does not depend on the finiteness of the fourth or even second moments. This is in stark
contrast to the a.s. behavior of n−1λ(1), the largest eigenvalue of the sample covariance
matrix n−1XX′. Note that there is a phase transition of the a.s. asymptotic behavior
of the extreme eigenvalues at the border between finite and infinite fourth moment of
X, while such a transition occurs for the empirical spectral distribution at the border
between finite and infinite variance.

The eigenvalues of sample correlation matrices exhibit a “more robust” behavior than
their sample covariance analogs. This is perhaps not surprising in view of the self-
normalizing property of sample correlations. Self-normalization also has the advantage
that one does not have to worry about the correct normalization. This is a crucial
problem in the study of sample covariance matrices in the case of an infinite fourth
moment where one needs a normalization stronger than the classical one; see (1.22). A
simulation study in Section 4.3 shows that the asymptotic results for µ(1), µ(p), λ(1) and
λ(p) work nicely. They can be used to design new statistical tests; see for example (4.13).

1.6 Outlook

The main objective of our work was to find explicit limiting distributions of the eigenval-
ues of large random matrices and functionals thereof. Thus our theory can be applied in
a straightforward way. Sections 1.1-1.5 listed fields where our results can be used. An-
other example is the analysis of high-frequency data which receives significant interest;
see for example Podolskij and Heinrich [40], and Xia and Zheng [75, 76].

For practical purposes it is important to work with arbitrary population covariance
matrices. Numerous generalizations and estimation techniques have been developed.
For many models the limiting spectral distribution can only be characterized in terms of
an integral equation (=Marčenko–Pastur equation) for its Stieltjes transform. Explicit
solutions are more involved; see the discussion after Theorem 1.3. In Dobriban [28], an
algorithm for calculating the spectral distribution based on certain approximate integral
equations for its Stieltjes transform was presented. Contributions like this one breathe
life into abstract theoretical results. Research in this direction will attract major interest
from the industry.

From a more theoretical point of view, it is interesting to study models with heavy tails
in which the asymptotic behavior of the sample covariance matrix XX′ is not dominated
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by the squares of the entries of X. Moreover, different tail indices of the rows of X could
make the model more appealing to practitioners. In Chapter 3, we will see that a simple
transformation, such as the rank transform, does not entirely overcome this issue.

As regards the sample correlation matrix our methods can be applied to more gen-
eral models such as spiked covariance/correlation structures. Our technical results in
Section 4.4 are of independent interest. They provide a Path-Shortening Algorithm for
the calculation of bounds for the very high moments of µ(1). This technique is novel and
will be of further use for proving results in Random Matrix Theory. We also conjecture
that (1.42) may be proved under (1.40) only.

Finally, in our working papers [P4] and [P5] (see page v), we analyze sample auto-
covariance matrices and provide limit theory for high-dimensional stochastic volatility
matrices. Again, we utilize the large deviations approach propagated in Chapters 2 and
3, now for dependent heavy-tailed time series. The corresponding large deviations theory
is available in Mikosch and Wintenberger [53].



Chapter 2

Eigenvalues and eigenvectors of heavy-tailed
sample covariance matrices with general
growth rates: the iid case

Johannes Heiny & Thomas Mikosch
Stochastic Process. Appl. (2016), 29.

Abstract

In this paper we study the joint distributional convergence of the largest eigen-
values of the sample covariance matrix of a p-dimensional time series with iid en-
tries when p converges to infinity together with the sample size n. We consider
only heavy-tailed time series in the sense that the entries satisfy some regular vari-
ation condition which ensures that their fourth moment is infinite. In this case,
Soshnikov [65, 66] and Auffinger et al. [4] proved the weak convergence of the point
processes of the normalized eigenvalues of the sample covariance matrix towards an
inhomogeneous Poisson process which implies in turn that the largest eigenvalue
converges in distribution to a Fréchet distributed random variable. They proved
these results under the assumption that p and n are proportional to each other. In
this paper we show that the aforementioned results remain valid if p grows at any
polynomial rate. The proofs are different from those in [4, 65, 66]; we employ large
deviation techniques to achieve them. The proofs reveal that only the diagonal of
the sample covariance matrix is relevant for the asymptotic behavior of the largest
eigenvalues and the corresponding eigenvectors which are close to the canonical
basis vectors. We also discuss extensions of the results to sample autocovariance
matrices.

Keywords: Regular variation, sample covariance matrix, independent entries,
largest eigenvalues, eigenvectors, point process convergence, compound Poisson
limit, Fréchet distribution.
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2.1 Introduction

In recent years we have seen a vast increase in the number and sizes of data sets. Science
(meteorology, telecommunications, genomics, . . . ), society (social networks, finance, mil-
itary and civil intelligence, . . . ) and industry need to extract valuable information from
high-dimensional data sets which are often too large or complex to be processed by tradi-
tional means. In order to explore the structure of data one often studies the dependence
via (sample) covariances and correlations. Often dimension reduction techniques facili-
tate further analyzes of large data matrices. For example, principal component analysis
(PCA) transforms the data linearly such that only a few of the resulting vectors contain
most of the variation in the data. These principal component vectors are the eigenvectors
associated with the largest eigenvalues of the sample covariance matrix.

The aim of this paper is to investigate the asymptotic properties of the largest
eigenvalues and their corresponding eigenvectors for sample covariance matrices of high-
dimensional heavy-tailed time series with iid entries. Special emphasis is given to the
case when the dimension p and the sample size n tend to infinity simultaneously, not
necessarily at the same rate.

Throughout we consider the p× n data matrix

Z = Zn =
(
Zit
)
i=1,...,p;t=1,...,n

A column of Z represents an observation of a p-dimensional time series. We assume that
the entries Zit are real-valued, independent and identically distributed (iid), unless stated
otherwise. We write Z for a generic element and assume E[Z] = 0 and E[Z2] = 1 if the
first and second moments of Z are finite, respectively. We are interested in limit theory
for the eigenvalues λ1, . . . , λp of the sample covariance matrix ZZ′ and their ordered
values

λ(1) ≥ · · · ≥ λ(p) . (2.1)

In this notation we suppress the dependence of (λi) on n. We will only discuss the case
when p→∞; for the finite p case we refer to [3, 54].

2.1.1 The light-tailed case
In random matrix theory a lot of attention has been given to the empirical spectral
distribution function of the sequence (n−1ZZ′):

Fn−1ZZ′(x) = 1
p

#{1 ≤ j ≤ p : n−1λj ≤ x}, x ≥ 0 , n ≥ 1.

In the literature convergence results for (Fn−1ZZ′) are established under the assumption
that p and n grow at the same rate:

p

n
→ γ for some γ ∈ (0,∞). (2.2)

Suppose that the iid entries Zit have mean 0 and variance 1. If (2.2) holds then, with
probability one, (Fn−1ZZ′) converges weakly to the Marčenko–Pastur law Fγ . If γ ∈ (0, 1],
Fγ has density,

fγ(x) =
{ 1

2πxγ
√

(b− x)(x− a) , if a ≤ x ≤ b,
0 , otherwise,

(2.3)
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where a = (1 − √γ)2 and b = (1 + √γ)2. If γ > 1, the Marčenko–Pastur law is a
mixture of a point mass at 0 and the density function f1/γ with weights 1 − 1/γ and
1/γ, respectively. This mass is intuitively explained by the fact that, with probability
1, min(p, n) eigenvalues λi are non-zero. When n = (1/γ) p and γ > 1 the fraction of
non-zero eigenvalues is 1/γ while the fraction of zero eigenvalues is 1− 1/γ.

The moment condition E[Z2] <∞ is crucial for deriving the Marčenko–Pastur limit
law. When studying the largest eigenvalues of the sample covariance matrix ZZ′ the
moment condition E[Z4] < ∞ plays a similarly important role; we assume it in the
remainder of this subsection. If (2.2) holds and the iid entries Zit have zero mean and
unit variance, Geman [38] showed that

λ(1)

n

a.s.→
(
1 +√γ

)2
, n→∞ . (2.4)

This means that λ(1)/n converges to the right endpoint of the Marčenko–Pastur law in
(2.3). Johnstone [48] complemented this strong law of large numbers by the corresponding
central limit theorem in the special case of iid standard normal entries:

λ(1) − µn,p
σn,p

d→ ξ, (2.5)

where the limiting random variable has a Tracy–Widom distribution of order 1 and the
centering and scaling constants are

µn,p = (
√
n− 1 +√p)2, σn,p = (

√
n− 1 +√p)

( 1√
n− 1

+ 1
√
p

)1/3
;

see Tracy and Widom [71] for details. Ma [50] showed Berry–Esseen-type bounds for
(2.5).

Asymptotic theory for the largest eigenvalues of sample covariance matrices with
non-Gaussian entries is more complicated; pioneering work is due to Johansson [47].
Johnstone’s result was extended to matrices Z with iid non-Gaussian entries by Tao and
Vu [68, Theorem 1.16], assuming that the first four moments of Z match those of the
normal distribution. Tao and Vu’s result is a consequence of the so-called Four Moment
Theorem which describes the insensitivity of the eigenvalues with respect to changes in
the distribution of the entries. To some extent (modulo the strong moment matching
conditions) it shows the universality of Johnstone’s limit result (2.5).

In the light-tailed case little is known when p and n grow at different rates, i.e.,
lim p/n ∈ {0,∞}. Notable exceptions are El Karoui [30] who proved that Johnstone’s
result (assuming iid standard normal entries) remains valid when p/n→ 0 or n/p→∞,
and Péché [58] who showed universality results for the largest eigenvalues of some sample
covariance matrices with non-Gaussian entries.

2.1.2 The heavy-tailed case
Distributions of which certain moments cease to exist are often called heavy-tailed. So
far we reviewed theoretical results where the data matrix Z was “light-tailed” in the
following sense: for the distributional convergence of the empirical spectral distribution
and the largest eigenvalue of the sample covariance matrix towards the Marčenko–Pastur
and Tracy-Widom distributions, respectively, we required finite second/fourth moments
of the entries.
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The behavior of the largest eigenvalue λ(1) changes dramatically when E[Z4] = ∞.
Bai and Silverstein [9] proved for an n× n matrix Z with iid centered entries that

lim sup
n→∞

λ(1)

n
=∞ a.s. (2.6)

This is in stark contrast to Geman’s result (2.4).
Following classical limit theory for partial sum processes and maxima, we require

more than an infinite fourth moment. We assume a regular variation condition on the
tail of Z:

P(Z > x) ∼ p+
L(x)
xα

and P(Z < −x) ∼ p−
L(x)
xα

, x→∞ , (2.7)

for some α ∈ (0, 4), where p± are non-negative constants such that p+ + p− = 1 and
L is a slowly varying function. We will also refer to Z as a regularly varying random
variable, Z as a regularly varying matrix, etc. Here and in what follows, we normalize
the eigenvalues (λi) by (a2

np) where the sequence (ak) is chosen such that

P(|Z| > ak) ∼ k−1 , k →∞.

Standard theory for regularly varying functions (e.g. Bingham et al. [20], Feller [37])
yields that an = n1/α`(n) where ` is a slowly varying function. Assuming (2.2) for p, the
Potter bounds (see [20, p. 25]) yield for α ∈ (0, 4) that

a2
np

n
∼ n4/αγ2/α `2(n2γ)

n
→∞, n→∞ , (2.8)

i.e., the normalization a2
np is stronger than n.

The eigenvalues (λi) of a heavy-tailed matrix ZZ′ were studied first by Soshnikov [65,
66]. He showed under (2.2) and (2.7) for α ∈ (0, 2) that

λ(1)

a2
np

d→ ζ, n→∞, (2.9)

where ζ follows a Fréchet distribution with parameter α/2:

Φα/2(x) = e−x
−α/2

, x > 0 .

Later Auffinger et al. [4] established (2.9) also for α ∈ [2, 4) under the additional as-
sumption that the entries are centered. Both Soshnikov [65, 66] and Auffinger et al. [4]
proved convergence of the point processes of normalized eigenvalues, from which one can
easily infer the joint limiting distribution of the k largest eigenvalues. Davis et al. [24, 25]
extended these results allowing for more general growth of p than dictated by (2.2) and a
linear dependence structure between the rows and columns of Z; see also Chakrabarty et
al. [21] and the overview paper Davis et al. [23]. The study of eigenvectors of heavy-tailed
sample covariance matrices is a fresh topic, which has not been explored in the literature
listed here.

For the sake of completeness we mention that, under (2.2) with γ ∈ (0, 1], (2.7) with
α ∈ (0, 2) and E[Z] = 0 if the latter expectation is defined, the empirical spectral dis-
tribution Fa−2

n+pZZ′ converges weakly with probability one to a deterministic probability
measure whose density ργα satisfies

ργα(x)x1+α/2 → αγ

2(1 + γ) , x→∞ ,

see Belinschi et al. [15, Theorem 1.10] and Ben Arous and Guionnet [17, Theorem 1.6].
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2.1.3 Structure of the paper
The primary objective of this paper is to study the joint distribution of the largest
eigenvalues of the sample covariance matrix ZZ′ in the case of iid regularly varying
entries with infinite fourth moment. We make a connection between extreme value
theory, point process convergence and the behavior of the largest eigenvalues. We study
these eigenvalues under polynomial growth rates of the dimension p relative to the sample
size n. It turns out that they are essentially determined by the extreme diagonal elements
of ZZ′ or, alternatively, by the extreme order statistics of the squared entries of Z.

In Section 2.2 we consider power-law growth rates of (pn), thereby generalizing pro-
portional growth as prescribed by (2.2). Our main results are presented in Section 2.3.
Theorem 2.1 provides approximations of the ordered eigenvalues of the sample covariance
matrix either by the ordered diagonal elements of ZZ′ or Z′Z, or by the order statistics of
the squared entries of Z. These approximations provide a clear picture where the largest
eigenvalues of the sample covariance matrix originate from. Our results generalize those
in Soshnikov [65, 66] and Auffinger et al. [4] who assume proportionality of p and n. The
employed techniques originate from extreme value analysis and large deviation theory;
the proofs differ from those in the aforementioned literature. The same techniques can
be applied when the entries of Z are heavy-tailed and allow for dependence through the
rows and across the columns; see Davis et al. [24, 25] for some recent attempts when
the entries satisfy some linear dependence conditions. In the iid case, these results are
covered by the present paper and we also show that they remain valid under much more
general growth conditions than in [24, 25]. In particular, we make clear that center-
ing of the sample covariance matrix (as assumed in [24, 25] when Z has a finite second
moment) is not needed. Thus, our techniques are applicable under rather general depen-
dence structures. We refer to the recent work by Janssen et al. [45] on eigenvalues of
stochastic volatility matrix models, where non-linear dependence was allowed.

The convergence of the point processes of the properly normalized eigenvalues in
Section 2.3.2 yields a multitude of useful findings connected to the joint distribution of
the eigenvalues. As an application, the structure of the eigenvectors of ZZ′ is explored in
Section 2.3.3. Technical proofs are collected in Section 2.4. Section 2.5 is devoted to an
extension of the results to the singular values of the sample autocovariance matrices which
are a generalization of the traditional autocovariance function for time series to high-
dimensional matrices. In applications, the analysis of sample autocovariance matrices
for different lags might help to detect dependencies in the data; see Lam and Yao [49] for
related work. We conclude with Appendix 2.6 which contains useful facts about regular
variation and point processes.

2.2 Preliminaries

In this section we will discuss growth rates for p = pn →∞ and introduce some notation.

2.2.1 Growth rates for p
In many applications it is not realistic to assume that the dimension p of the data and the
sample size n grow at the same rate, i.e., condition (2.2) is unlikely to be satisfied. The
aforementioned results of Soshnikov [65, 66] and Auffinger et al. [4] already show that
the value γ in the growth rate (2.2) does not appear in the distributional limits. This
observation is in contrast to the light-tailed case; see (2.3) and (2.4). Davis et al. [24, 25]
allowed for more general rates for pn →∞ than linear growth in n. However, they could
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not completely solve the technical difficulties arising with general growth rates of p. In
what follows, we specify the growth rate of (pn):

p = pn = nβ`(n), n ≥ 1, (Cp(β))

where ` is a slowly varying function and β ≥ 0. If β = 0, we also assume `(n) →
∞. Condition Cp(β) is more general than the growth conditions in the literature; see
[4, 24, 25].

2.2.2 Notation
Recall that Z = Zn = (Zit)i=1,...,p;t=1,...,n is a p×n matrix with iid entries satisfying the
regular variation condition (2.7) for some α ∈ (0, 4). The sample covariance matrix ZZ′
has eigenvalues λ1, . . . , λp whose order statistics were defined in (2.1).

Important roles are played by the quantities (Z2
it)i=1,...,p;t=1,...,n and their order statis-

tics
Z2

(1),np ≥ Z
2
(2),np ≥ . . . ≥ Z

2
(np),np, n, p ≥ 1 . (2.10)

As important are the row-sums

D→i = D
(n),→
i =

n∑
t=1

Z2
it , i = 1, . . . , p ; n = 1, 2, . . . , (2.11)

with generic element D→ and their ordered values

D→(1) = D→L1
≥ · · · ≥ D→(p) = D→Lp , (2.12)

where we assume without loss of generality that (L1, . . . , Lp) is a permutation of (1, . . . , p)
for fixed n.

Finally, we introduce the column-sums

D↓t = D
(n),↓
t =

p∑
i=1

Z2
it , t = 1, . . . , n ; p = 1, 2, . . . , (2.13)

with generic element D↓ and we also adapt the notation from (2.12) to these quantities.

Norms

For any p-dimensional vector v, ‖v‖`2 denotes its Euclidean norm. For any p× p matrix
C, we write λi(C) for its p singular values and we denote their order statistics by

λ(1)(C) ≥ · · · ≥ λ(p)(C) .

For any p× n matrix A = (aij), we will use the spectral norm ‖A‖2 =
√
λ(1)(AA′), the

Frobenius norm ‖A‖F =
(∑p

i=1
∑n
j=1 |aij |2

)1/2
and the max-row sum norm ‖A‖∞ =

maxi=1,...,p
∑n
j=1 |aij | .

2.3 Main results

2.3.1 Basic approximations
We commence with some basic approximation results for the eigenvalues and eigenvectors
of ZZ′. The approximating quantities have a simple structure and their asymptotic
behavior is inherited by the eigenvalues and has influence on the eigenvectors.
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Theorem 2.1. Consider a p×n-dimensional matrix Z with iid entries. We assume the
following conditions:

• The regular variation condition (2.7) for some α ∈ (0, 4).

• E[Z] = 0 for α ≥ 2.

• The integer sequence (pn) has growth rate Cp(β) for some β ≥ 0.

Then the following statements hold:

1. If β ∈ [0, 1], then

a−2
np max

i=1,...,p

∣∣λ(i) −D→(i)
∣∣ P→ 0 . (2.14)

2. If β > 1, then

a−2
np max

i=1,...,n

∣∣λ(i) −D↓(i)
∣∣ P→ 0 . (2.15)

3. If min(β, β−1) ∈ ((α/2− 1)+, 1], then

a−2
np max

i=1,...,p

∣∣λ(i) − Z2
(i),np

∣∣ P→ 0 . (2.16)

Remark 2.2. In (2.15) we have chosen to take maxima over the index set {1, . . . , n}.
We notice that λ(i) = 0 for i = p∧n+ 1, . . . , p∨n. This is due to the fact that the p× p
matrix ZZ′ and the n× n matrix Z′Z have the same positive eigenvalues. Moreover, for
n sufficiently large, p∧ n = p for β ∈ (0, 1) and p∧ n = n for β > 1, i.e., only in the case
β = 1 both cases n ≤ p or p ≤ n are possible.

Remark 2.3. The condition min(β, β−1) ∈ ((α/2−1)+, 1] in part (3) is only a restriction
when α ∈ (2, 4). We notice that this condition implies (n ∨ p)/a2

np → 0. In turn, this
means that centering of the quantities a−2

npD
→
i and a−2

npD
↓
i in the limit theorems can be

avoided. This argument is relevant in various parts of the proofs.

Remark 2.4. In Figure 2.1 we illustrate the different approximations of the eigenvalues
(λ(i)) by (D→(i)) as suggested by (2.14) and (Z2

(i),np) as suggested by (2.16). For Z we
choose the density

fZ(x) =
{ α

(4|x|)α+1 , if |x| > 1/4
1 , otherwise. (2.17)

In the left graph, we focus on the largest eigenvalue λ(1). We show smoothed histograms
of the approximation errors a−2

np (λ(1)−D→(1)), a−2
np (λ(1)−Z2

(1),np). By Cauchy’s interlacing
theorem (see [69, Lemma 22]), the considered differences are non-negative.

In the right graph, we take the maxima as in (2.14) and (2.16) and show smoothed
histograms of the approximation errors a−2

np maxi≤p |λ(i)−D→(i)|, a−2
np maxi≤p |λ(i)−Z2

(i),np|.
We take absolute values to deal with negative differences. Figure 2.1 indicates that (D→(i))
yield a much better approximation to (λ(i)) than (Z2

(i),np). Notice the different scaling
on the x- and y-axes.
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Figure 2.1: Smoothed histograms of the approximation errors for the normalized eigen-
values (a−2

npλ(i)) for entries Zit with density (2.17), α = 1.6, β = 1, n = 1, 000 and
p = 200.

The proof of Theorem 2.1 will be given in Section 2.4. A main step in the proof is
provided by the following result whose proof will also be given in Section 2.4; a version
of this theorem was proved in Davis et al. [24] under more restrictive conditions on the
growth rate of (pn).

Theorem 2.5. Assume the conditions of Theorem 2.1 on Z and (pn).

1. If β ∈ [0, 1] we have

a−2
np ‖ZZ′ − diag(ZZ′)‖2

P→ 0 , n→∞ .

2. If β ≥ 1 we have

a−2
np ‖Z′Z− diag(Z′Z)‖2

P→ 0 , n→∞ .

The second part of this theorem follows from the first one by an interchange of n and
p. Indeed, if β ≥ 1, we can write n = p1/β`(p) for some slowly varying function ` and
then part (2) follows from part (1).

Remark 2.6. Theorem 2.5 shows that the largest eigenvalues of ZZ′ are determined by
the largest diagonal entries. In the case of heavy-tailed Wigner matrices, however, the
diagonal elements do not play any particular role.

From this theorem one immediately obtains a result about the approximation of the
eigenvalues of ZZ′ and Z′Z by those of diag(ZZ′) and diag(Z′Z), respectively. Indeed,
for any symmetric p× p matrices A,B, by Weyl’s inequality (see Bhatia [19]),

max
i=1,...,p

∣∣λ(i)(A + B)− λ(i)(A)
∣∣ ≤ ‖B‖2 . (2.18)

If we now choose A+B = ZZ′ and A = diag(ZZ′) (or A+B = Z′Z and A = diag(Z′Z))
we obtain the following result.
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Corollary 2.7. Assume the conditions of Theorem 2.1 on Z and (pn).

1. If β ∈ [0, 1] we have

a−2
np max

i=1,...,p

∣∣λ(i) − λ(i)(diag(ZZ′))
∣∣ P→ 0 , n→∞ .

2. If β > 1 we have

a−2
np max

i=1,...,n

∣∣λ(i) − λ(i)(diag(Z′Z))
∣∣ P→ 0 , n→∞ .

Now (2.14) and (2.15) are immediate consequences of this corollary. Indeed, we have
λ(i)(diag(ZZ′)) = D→(i) and λ(i)(Z′Z) = D↓(i), i = 1, . . . , p ∧ n.

2.3.2 Point process convergence
In this section we want to illustrate how the approximations from Theorem 2.1 can
be used to derive asymptotic theory for the largest eigenvalues of ZZ′ via the weak
convergence of suitable point processes. The limiting point process involves the points
of the Poisson process

NΓ =
∞∑
i=1

εΓ−2/α
i

, n→∞ , (2.19)

where εy is the Dirac measure at y,

Γi = E1 + · · ·+ Ei , i ≥ 1 ,

and (Ei) is a sequence of iid standard exponential random variables. In other words, NΓ
is a Poisson point process on (0,∞) with mean measure µ(x,∞) = x−α/2, x > 0.

Lemma 2.8. Assume the conditions of Theorem 2.5 hold.

1. If β ≥ 0, then
p∑
i=1

εa−2
np (D→

i
−cn)

d→ NΓ , n→∞ , (2.20)

where cn = 0 if E[D→] =∞ and cn = E[D→] = nE[Z2] otherwise.

2. If β ≥ 0, then
p∑
i=1

εa−2
npZ

2
(i),np

d→ NΓ , n→∞ , (2.21)

The weak convergence of the point processes holds in the space of point measures with
state space (0,∞) equipped with the vague topology; see Resnick [60].

Remark 2.9. Similar results were used in the proofs of Davis et al. [23, 24]. We also
mention that the centering cn in the finite variance case can be avoided if n/a2

np → 0.
The latter condition is satisfied if β > α/2− 1.
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Proof. Part (1) follows from Lemma 2.19. As regards part (2), we observe that

p∑
i=1

n∑
t=1

εa−2
npZ

2
it

d→ NΓ ; (2.22)

see e.g. Resnick [61], Proposition 3.21. On the other hand, a−2
npZ

2
(p),np

P→ 0 which
together with (2.22) yields part (2).

Theorem 2.1 and arguments similar to the proofs in Davis et al. [23, 24] enable one
to derive the weak convergence of the point processes of the normalized eigenvalues.

Theorem 2.10. Assume the conditions of Theorem 2.1. If min(β, β−1) ∈ ((α/2−1)+, 1]
then

p∑
i=1

εa−2
npλi

d→ NΓ , (2.23)

in the space of point measures with state space (0,∞) equipped with the vague topology.

Proof. The limit relation (2.23) follows from (2.21) in combination with (2.16). Alter-
natively, one can exploit (2.20) both for (D→i ) and (D↓t ) (notice that the point process
convergence for the latter sequence follows by interchanging the roles of n and p), the fact
that (n∨p)/a2

np → 0 if min(β, β−1) ∈ ((α/2−1)+, 1] (hence centering of the points (D→i )
and (D↓t ) in (2.20) can be avoided for E[Z2] <∞) and finally using the approximations
(2.14) or (2.15).

The weak convergence of the point processes of the normalized eigenvalues of ZZ′ in
Theorem 2.10 allows one to use the conventional tools in this field; see Resnick [60, 61].
An immediate consequence is

a−2
np

(
λ(1), . . . , λ(k)

) d→
(
Γ−2/α

1 , . . . ,Γ−2/α
k

)
(2.24)

for any fixed k ≥ 1. Using the methods of Davis et al. [23] shows for α ∈ (2, 4)

a−2
np

(
λ(1) − (p ∨ n)E[Z2], . . . , λ(k) − (p ∨ n)E[Z2]

) d→
(
Γ−2/α

1 , . . . ,Γ−2/α
k

)
. (2.25)

Equations (2.24) and (2.25) yield that for α ∈ (0, 4) and any fixed k ≥ 1,

a−2
np

(
λ(1) − λ(2), . . . , λ(k) − λ(k+1)

) d→
(
Γ−2/α

1 − Γ−2/α
2 , . . . ,Γ−2/α

k − Γ−2/α
k+1

)
. (2.26)

Related results can also be derived for an increasing number of order statistics, e.g. the
joint convergence of the largest eigenvalue a−2

npλ(1) and the trace a−2
np (λ1 + · · ·+ λp). In

particular, one obtains for α ∈ (0, 2) under the conditions of Theorem 2.10 that

λ(1)

λ1 + · · ·+ λp

d→ Γ−2/α
1

Γ−2/α
1 + Γ−2/α

2 + · · ·
.

We refer to Davis et al. [24] for details on the proofs and more examples.
In the next subsection we will show how the above results on the joint convergence

of eigenvalues can be applied to approximate the eigenvectors of ZZ′.
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2.3.3 Eigenvectors
In this section we assume the conditions of Theorem 2.5 and β ∈ [0, 1]. From The-
orem 2.5(1) we know that ZZ′ is approximated in spectral norm by diag(ZZ′). The
unit eigenvectors of a p × p diagonal matrix are the canonical basis vectors ej ∈ Rp,
j = 1, . . . , p. This raises the question as to whether (ej) are good approximations of the
eigenvectors (vj) of ZZ′. By vj we denote the unit eigenvector associated with the jth
largest eigenvalue λ(j). The unit eigenvector associated with the jth largest eigenvalue
of diag(ZZ′) is eLj , where Lj is defined in (2.12). Our guess that vj is approximated by
eLj is confirmed by the following result.

Theorem 2.11. Assume the conditions of Theorem 2.1 and let β ∈ [0, 1]. Then for any
fixed k ≥ 1,

‖vk − eLk‖`2
P→ 0 , n→∞ .

Indeed, vj and eLj share another property: they are localized which means that they
are concentrated only in a few components. Vectors which are not localized are called
delocalized. Figure 2.2 shows the outcome of a simulation example in which we visualize
the components of the unit eigenvector associated with the largest eigenvalue of ZZ′ for
a simulated data matrix Z with iid Pareto(0.8) entries. In the right graph we see that
only one of the p = 200 components is significant. Hence we can find a canonical basis
vector ek such that ‖ek−v1‖`2 is small. Therefore the eigenvector is localized. This is in
stark contrast to the case of iid standard normal entries; see the left graph. Then many
components are of similar magnitude, hence the eigenvector is delocalized. Typically,
the eigenvectors tend to be localized when the entry distribution has an infinite fourth
moment, while they tend to be delocalized otherwise; see Benaych-Georges and Péché
[18] for the case of Wigner matrices.
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Figure 2.2: The components of the eigenvector v1. Right: The case of iid Pareto(0.8)
entries. Left: The case of iid standard normal entries. We choose p = 200 and n = 1, 000.

Proof of Theorem 2.11. Fix k ≥ 1. Since p → ∞ we can assume k ≤ p for sufficiently
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large n. We observe that for j = 1, . . . , p,

ZZ′ ej −D→j ej =
( n∑
t=1

Z1tZjt, . . . ,

n∑
t=1

Zj−1,tZjt, 0,
n∑
t=1

Zj+1,tZjt, . . . ,

n∑
t=1

ZptZjt

)′
,

are the columns of ZZ′ − diag(ZZ′). By Theorem 2.5(1),

a−2
np max

j=1,...,p
‖ZZ′ej −D→j ej‖`2 ≤ a−2

np ‖ZZ′ − diag(ZZ′)‖2
P→ 0 , n→∞. (2.27)

If we set H(n) = a−2
npZZ′, v(n) = eLk ∈ Rp and λ(n) = a−2

npD
→
Lk

, we see that

a−2
npZZ′eLk = a−2

npD
→
Lk

eLk + ε(n)w(n),

where w(n) = ‖ZZ′eLk − D→LkeLk‖−1
`2

(ZZ′eLk − D→LkeLk) is a unit vector and ε(n) =
a−2
np ‖ZZ′eLk −D→LkeLk‖`2

P→ 0 by (2.27).
Before we can apply Proposition 2.23 we need to show that with probability converg-

ing to 1, there are no other eigenvalues in a suitably small interval around λ(k). Let
s > 1. We define the set

Ωn = Ωn(k, s) = {a−2
np |λ(k) − λ(i)| > s ε(n) : i 6= k = 1, . . . , p} .

From (2.27) we get s ε(n) → 0. Then using this and (2.26), we obtain

lim
n→∞

P(Ωcn) = lim
n→∞

P(a−2
np min{λ(k−1) − λ(k), λ(k) − λ(k+1)} ≤ s ε(n)) = 0

By Proposition 2.23 the unit eigenvector vk associated with λ(k) and the projected
vector PeLk (vk) = (vk)LkeLk satisfy for fixed δ > 0:

lim sup
n→∞

P(‖vk − (vk)LkeLk‖`2 > δ)

≤ lim sup
n→∞

P({‖vk − (vk)LkeLk‖`2 > δ} ∩ Ωn) + lim sup
n→∞

P(Ωcn)

≤ lim sup
n→∞

P({2ε(n)/(s ε(n) − ε(n)) > δ} ∩ Ωn)

≤ lim sup
n→∞

P({2/(s− 1) > δ}) = 1{2/(s−1)>δ}.

The right-hand side is zero for sufficiently large s. Since both vk and eLk are unit vectors
this means that

‖vk − eLk‖`2
P→ 0 , n→∞ .

This proves our result on eigenvectors.

2.4 Proof of Theorem 2.1

In what follows, c stands for any constant whose value is not of interest. We write (Zt)
for an iid sequence with the same distribution as Z.

The plan of the proof is as follows:

1. We prove Theorem 2.5 which implies (2.14) and (2.15); see Corollary 2.7. In view
of the arguments after Theorem 2.1 it suffices to consider only the case β ∈ [0, 1].

2. We prove (2.16).
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2.4.1 Proof of Theorem 2.5
We proceed in several steps.

The case α ∈ (0, 8/3). If α ∈ [1, 2) and E[|Z|] <∞, we have

a−1
np ‖Z− (Z− E[Z])‖2 = |E[Z]|

√
np

anp
→ 0 , n→∞.

Therefore, without loss of generality E[Z] can be assumed 0 in this case.
From now on we assume E[Z] = 0 whenever E[|Z|] exists. Since the Frobenius norm

‖ · ‖F is an upper bound of the spectral norm we have

‖ZZ′ − diag(ZZ′)‖22 ≤ ‖ZZ′ − diag(ZZ′)‖2F

=
p∑

i,j=1;i 6=j

n∑
t=1

Z2
itZ

2
jt +

p∑
i,j=1;i6=j

n∑
t1,t2=1;t1 6=t2

Zi,t1Zj,t1Zi,t2Zj,t2

=
p∑

i,j=1;i 6=j

n∑
t=1

Z2
itZ

2
jt

[
1{Z2

it
Z2
jt
>a4

np} + 1{Z2
it
Z2
jt
≤a4

np}
]

+ I
(n)
2

= I
(n)
11 + I

(n)
12 + I

(n)
2 .

Thus it suffices to show that each of the expressions on the right-hand side when nor-
malized with a4

np converges to zero in probability. We have for any ε > 0,

P
(
I

(n)
11 > εa4

np

)
≤ p2 nP(Z2

1Z
2
2 > a4

np)→ 0 .

Here we also used the fact that Z1Z2 is regularly varying with index α; see Embrechts and
Goldie [34]. An application of Markov’s inequality and Lyapunov’s moment inequality
with γ ∈ (α/2, 4/3) if α ∈ [2, 8/3) and γ = 1 otherwise shows that

P
(
I

(n)
12 > εa4

np

)
≤ c p

2n

a4
np

(
E[|Z1Z2|2γ1{|Z1Z2|≤a2

np}]
) 1
γ ≤ c p2− 2

γ n1− 2
γ+δ → 0,

where we used Karamata’s theorem (see Bingham et al. [20]), and the constant δ > 0
can be chosen arbitrarily small due to the Potter bounds.

In the case α ∈ (0, 2) the probability P (n)
2 = P(I(n)

2 > εa4
np) can be handled analo-

gously. Next, we turn to P (n)
2 in the case α ∈ (2, 8/3). In particular, E[Z2] < ∞. With

Čebychev’s inequality, also using the fact that E[Z] = 0, we find that

P
(n)
2 ≤ c 1

a8
np

E
[( p∑

i,j=1;i 6=j

n∑
t1,t2=1;t1 6=t2

Zi,t1Zj,t1Zi,t2Zj,t2

)2]
≤ c (p n)2

a8
np

→ 0. (2.28)

The case α = 2 is most difficult because the second moment of Z can be infinite. Without
loss of generality we assume that Z is continuous. Otherwise, we add independent cen-
tered normal random variables to each of the entries Zit; due the normalization a2

np the
asymptotic properties of the eigenvalues remain the same, i.e., the added normal compo-
nents are asymptotically negligible. In view of Hult and Samorodnitsky [44, Lemma 4.2]
there exist constants C,K > 0 and a function h : [K,∞)→ (0,∞) such that

E[Z1{−h(x)≤Z≤x}] = 0 and C−1 ≤ h(x)
x
≤ C (2.29)
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for all x ≥ K.1 We have

I
(n)
2 =

p∑
i,j=1;i 6=j

n∑
t1,t2=1;t1 6=t2

Zi,t1Zj,t1Zi,t2Zj,t2
[
1Ac

i,j,t1,t2
+ 1Ai,j,t1,t2

]
= I

(n)
21 + I

(n)
22 ,

where Ai,j,t1,t2 = {−h(a4
np) ≤ Zi,t1 , Zj,t1 , Zi,t2 , Zj,t2 ≤ a4

np}. We see that

P(I(n)
21 > εa4

np) ≤ (p n)2 P(Aci,j,t1,t2) ≤ c (p n)2 P(|Z| > min(h(a4
np), a4

np))
≤ c (pn)2 P(|Z| > min(C,C−1) a4

np) ≤ c (np)−2+δ → 0,

where we used the second formula in (2.29). The small constant δ > 0 comes from a
Potter bound argument. Finally, using the first condition in (2.29), we may conclude
similarly to (2.28) that

P
(n)
22 = P(I(n)

22 > εa4
np) ≤ c

(pn)2

a8
np

(
E[Z21{−h(a4

np)≤Z≤a4
np}]

)4
.

Since
E[Z21{|Z|≤max(C,C−1)x}] ≥ E[Z21{−h(x)≤Z≤x}] ,

and the left-hand side is slowly varying (see [37]), we have P (n)
22 → 0. The proof is

complete for α ∈ (0, 8/3).

The case α ∈ [8/3, 4)

Before we can proceed with the case α ∈ [8/3, 4) we provide an auxiliary result. Consider
the following decomposition

[ZZ′ − diag(ZZ′)]2 = D + F + R ,

where

D = (Dij)i,j=1,...,p = diag([ZZ′ − diag(ZZ′)]2) ,

The p× p matrix F has a zero-diagonal and

Fij =
p∑

u=1;u6=i,j

n∑
t=1

Zit Zjt Z
2
ut, 1 ≤ i 6= j ≤ p ,

The p× p matrix R has a zero-diagonal and

Rij =
p∑

u=1;u6=i,j

n∑
t1=1

n∑
t2=1;t2 6=t1

Zi,t1 Zj,t2 Zu,t1 Zu,t2 , 1 ≤ i 6= j ≤ p .

Lemma 2.12. Assume the conditions of Theorem 2.5 and α ∈ (2, 4). Then a−4
np

(
‖D‖2 +

‖F‖2 + ‖R‖2
) P→ 0.

1Here we assume that p+ p− > 0. If either p+ = 0 or p− = 0 one can proceed in a similar way by
modifying h slightly; we omit details.
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In view of this lemma we have

a−4
np ‖ZZ′ − diag(ZZ′)‖22 = a−4

np ‖[ZZ′ − diag(ZZ′)]2‖2 = a−4
np ‖D + F + R‖22

P→ 0 .

This finishes the proof of Theorem 2.5. It is left to prove Lemma 2.12.

Proof of the D-part. We have for i = 1, . . . , p,

Dii =
p∑

u=1

n∑
t=1

Z2
itZ

2
ut1{i6=u} +

p∑
u=1

n∑
t1=1

n∑
t2=1

Zi,t1Zu,t1Zu,t2Zi,t21{i6=u}1{t1 6=t2}

= Mii +Nii .

We write M and N for diagonal matrices constructed from (Mii) and (Nii) such that
D = M + N. First bounding ‖N‖2 by the Frobenius norm and then applying Markov’s
inequality, one can prove that a−4

np ‖N‖2
P→ 0. We have

E[Mii]
a4
np

≤ c np
a4
np

→ 0, n→∞.

Therefore centering of Mii will not influence the limit of the spectral norm a−4
np ‖M‖2.

Writing Ai,u = {|
∑n
t=1(Z2

itZ
2
ut − E[Z2

1Z
2
2 ])1{i6=u}| > a2

np}, we have for i = 1, . . . , p,

Mii − E[Mii] =
p∑

u=1

n∑
t=1

(
Z2
itZ

2
ut − E[Z2

1Z
2
2 ]
)

1{i 6=u}
[
1Ai,u + 1Ac

i,u

]
= M

(1)
ii +M

(2)
ii .

On the one hand, ‖M (2)‖2 ≤ p a2
np. Hence a−4

np ‖M (2)‖2
P→ 0. On the other hand, we

obtain with Markov’s inequality, Proposition 2.18 and the Potter bounds for ε > 0 and
small δ > 0,

P(‖M (1)‖2 > εa4
np) = P( max

i=1,...,p
|M (1)

ii | > εa4
np)

≤ P
(

max
i=1,...,p

p∑
u=1

∣∣∣ n∑
t=1

(Z2
itZ

2
ut − E[Z2

1Z
2
2 ])1{i 6=u} 1Ai,u

∣∣∣ > εa4
np

)
≤ c

p2

a4
np

E
[∣∣∣ n∑
t=1

(Z2
1tZ

2
2t − E[Z2

1Z
2
2 ])
∣∣∣1A1,2

]
∼ c

p2

a4
np

na2
np P(Z2

1Z
2
2 > a2

np) ≤
p (np)δ

a2
np

→ 0,

since Z1Z2 is regularly varying with index α. This finishes the proof of the D-part.

Proof of the F-part. Let δ > 0. We will use the following decomposition for i 6= j:

Fij =
p∑

u=1;u6=i,j

n∑
t=1

ZitZjt(Z2
ut − E[Z21{Z2≤a4−2δ

np }])+

+ E[Z21{Z2≤a4−2δ
np }] (p− 2)

n∑
t=1

ZitZjt = F̃ij + Tij .



32 2. Heavy-tailed sample covariance matrices

We observe that T = E[Z21{Z2≤a4−2δ
np }] (p− 2) (ZnZ′n − diag(ZnZ′n)). We have for some

constant c > 0,

‖T‖22 = ‖T2‖2 ≤ c p2 ‖(ZnZ′n − diag(ZnZ′n))2‖2
≤ c p2 ‖D + F̃ + R‖2 + c p2 ‖T‖2 .

Therefore

‖T‖2
a4
np

≤ c p

a2
np

(‖D + F̃ + R‖2
a4
np

)1/2
+ c

p

a2
np

(‖T‖2
a4
np

)1/2
. (2.30)

In the course of the proof of this lemma we show that

‖D + F̃ + R‖2
a4
np

P→ 0 .

Moreover, there is a small ε > 0 such that

δn = p

a2
np

≤ n1−4/α+ε, 1− 4/α+ ε < 0 .

Therefore iteration of (2.30) yields for k ≥ 1

‖T‖2
a4
np

≤ oP(1) + c δn

(
δn

(‖D + F̃ + R‖2
a4
np

)1/2)1/2
+ c δn

(
δn

(‖T‖2
a4
np

)1/2)1/2

= oP(1) + c
(
δ4+2
n

‖T‖2
a4
np

)1/4

≤ oP(1) + c
(
δ2k+···+2
n

‖T‖2
a4
np

)1/2k
. (2.31)

Using some elementary moment bounds for ‖T‖2 (e.g. a bound by the Frobenius norm),
it is not difficult to show that n−l‖T‖2

P→ 0 for some sufficiently large l. Thus we achieve
that the right-hand side in (2.31) converges to zero in probability.

It remains to show that a−4
np ‖F̃‖2

P→ 0. With the notation Bu,t = {Z2
ut ≤ a4−2δ

np } for
some small δ > 0, we decompose ZitZjt(Z2

ut − E[Z21{Z2≤a4−2δ
np }]) as follows:

ZitZjt(Z2
ut1Bu,t − E[Z21{Z2≤a4−2δ

np }]) + ZitZjtZ
2
ut1Bcu,t .

We decompose the matrix F̃ accordingly:

F̃ = F̃(1) + F̃(2) ,

such that, for example,

F̃
(1)
ij =

p∑
u=1;u 6=i,j

n∑
t=1

ZitZjt(Z2
ut1Bu,t − E[Z21{Z2≤a4−2δ

np }]) , i 6= j.

F̃(1): Bounding the spectral norm by the Frobenius norm, applying Markov’s inequality
and using Karamata’s theorem together with the Potter bounds one can check that for
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ε > 0 and small δ > 0,

P(‖F̃(1)‖2 > εa4
np) ≤ c a−8

np E
[ p∑
i,j=1

(F̃ (1)
ij )2

]
≤ c p

3 n

a8
np

E[(Z1Z2)2]E[(Z21{Z2≤a4−2δ
np } − E[Z21{Z2≤a4−2δ

np }])
2]

≤ c p
3 n

a8
np

E[Z41{Z2≤a4−2δ
np }]

≤ cp
3n

a4δ
np

P(|Z| > a2−δ
np )→ 0 , n→∞,

F̃(2): We have for small δ > 0,

P(‖F̃(2)‖2 > εa4
np) ≤ P

( ⋃
1≤u≤p ,1≤t≤n

Bcu,t

)
≤ p nP(|Z| > a2−δ

np )→ 0 , n→∞ .

The proof of the F-part is complete.

Proof of the R-part. We have

E[‖R‖22] ≤ E[‖R‖2F ] ≤
p∑

i,j=1

p∑
u=1

n∑
t1=1

n∑
t2=1

(E[Z2])4 ≤ c p3 n2 .

Therefore and by Markov’s inequality for ε > 0,

P(‖R‖2 > εa4
np) ≤ c

p3 n2

a8
np

→ 0, n→∞ , (2.32)

as long as α ∈ (2, 16/5). For α ∈ [16/5, 4) we use a similar idea for the truncated entries.
Write R = R + R̃, where for i 6= j

Rij =
p∑

u=1;u6=i,j

n∑
t1=1

n∑
t1=1;t1 6=t2

Zi,t1Zj,t2Zu,t1Zu,t2 1Ai,j,t1,t2 ,

R̃ij =
p∑

u=1;u6=i,j

n∑
t1=1

n∑
t1=1;t1 6=t2

Zi,t1Zj,t2Zu,t1Zu,t2 1Ac
i,j,t1,t2

,

with Aci,j,t1,t2 = {−h(anp) ≤ Zi,t1 , Zj,t2 , Zu,t1 , Zu,t2 ≤ anp} and h as in (2.29). Analo-
gously to (2.32), using the fact that Zi,t1Zj,t2Zu,t1Zu,t2 1Ai,j,t1,t2 are uncorrelated for the
considered index set, one obtains for ε > 0,

P(‖R‖2 > εa4
np) ≤ c

p3 n2

a8
np

E[Z21{|Z|>min(C,C−1) anp}]

≤ c
p3 n2

a6
np

P(|Z| > min(C,C−1) anp)→ 0 , n→∞ ,

where we used Karamata’s theorem and P(Ai,j,t1,t2) ≤ cP(|Z| > min(C,C−1) anp).
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We introduce the truncated random variables Z̃it = Zit1{−h(anp)≤Zit≤anp} with the
generic element Z̃. We will repeatedly use the following inequality which is valid for a
real symmetric matrix M:

‖M‖22 ≤ ‖M‖2F = tr(M2).

Then we have for k ≥ 1, ‖R̃2k−1‖22 = ‖R̃2k‖2 and

‖R̃‖2
k

2 ≤ tr(R̃2k) =
p∑

i,j=1
(R̃2k−1

)2
ij .

This together with the Markov inequality of order 2k yields

P(‖R̃‖2 > ca4
np) ≤ ca−4·2k

np E
[ p∑
i,j=1

(R̃2k−1
)2
ij

]
. (2.33)

Next we study the structure of R̃2k−1 . The (i, j)-entry of this matrix is

(R̃2k−1
)ij =

p∑
i1=1
· · ·

p∑
i2k−1−1=1

R̃i,i1R̃i1,i2 · · · R̃i2k−1−2,i2k−1−1
R̃i2k−1−1,j

. (2.34)

In view of (2.34) and by definition of R̃, (R̃2k−1)ij contains exactly 2k − 1 sums running
from 1 to p, and 2k sums running from 1 to n. Now we consider the expectation on the
right-hand side of (2.33). The highest and lowest powers of Z̃it in this expectation are
2k and 1. Let (I, T ) = ((i1, t1), . . . , (i2k , t2k)). We have

E
[ p∑
i,j=1

(R̃2k−1
)2
ij

]
=

∑
(I,T )∈S

E[Z̃i1,t1Z̃i2,t2 · · · Z̃i2k ,t2k ],

where S ⊂ {1, . . . , p}2k × {1, . . . , n}2k is the index set that covers all combinations of
indices that arise on the left-hand side. Since E[Z̃] = 0, each Z̃ in Z̃i1,t1Z̃i2,t2 · · · Z̃i2k ,t2k
must appear at least twice for the expectation of this product to be non-zero. Let
S1 ⊂ S be the set of all those indices that make a non-zero contribution to the sum.
From the specific structure of R̃, (2.34) and the considerations above it now follows that
the cardinality of S1 has the following bound

|S1| ≤ c(k) p2 p2k−1 n2k = c p2k+1 n2k .

For l = 2, 3 we can use E[|Z̃l|] ≤ c. If l ≥ 4, we infer with Karamata’s theorem

E[|Z̃l|] ≤ c alnp P(|Z| > anp). (2.35)

The subset of S1 (say Sl) which generates a Z̃l for l ≥ 4 is much smaller than S1. Also its
cardinality is divided by at least n if we go from l to l+1, i.e. |Sl| ≥ n|Sl+1|. Observe that
na−1

np converges to infinity. This combined with (2.35) tells us that only the case of every
Z̃ appearing exactly twice is of interest since it has most influence on the expectation in
(2.33). We conclude that

1
a4·2k
np

E
[ p∑
i,j=1

(R̃2k−1
)2
ij

]
≤ c |S1|

a4·2k
np

≤ c p
( np
a4
np

)2k
≤ c (np)

( np
a4
np

)2k
.
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The expression on the right-hand side converges to 0 if 1+2k−2k+2/α < 0 or equivalently

k > log
( α

4− α

)
(log 2)−1.

Since k was arbitrary the proof of the R-part is finished.

2.4.2 Proof of (2.16)
We define the p× p matrix Y→n as the diagonal matrix with elements

(Y→n )ii = max
t=1,...,n

Z2
it , i = 1, . . . , p .

Correspondingly, we define the n× n matrix Y↓n as the diagonal matrix with elements

(Y↓n)tt = max
i=1,...,p

Z2
it , t = 1, . . . , n .

Lemma 2.13. Assume the conditions of Theorem 2.1.

1. If β ∈ ((α/2− 1)+, 1] we have

a−2
np max

i=1,...,p

∣∣λ(i) − λ(i)(Y→n )
∣∣ P→ 0 , n→∞ .

2. If β−1 ∈ ((α/2− 1)+, 1) we have

a−2
np max

i=1,...,n

∣∣λ(i) − λ(i)(Y↓n)
∣∣ P→ 0 , n→∞ .

Proof. We restrict ourselves to the proof in the case β ∈ (0, 1]; the case β > 1 can
again be handled by switching from ZZ′ to Z′Z. An application of Weyl’s inequality (see
(2.18)) and the triangle inequality yield

a−2
np max

i=1,...,p

∣∣λ(i)−λ(i)(Y→n )
∣∣ ≤ a−2

np ‖ZZ′ − diag(ZZ′)‖2 + a−2
np ‖ diag(ZZ′)− diag(Y→n )‖2.

The first term on the right-hand side converges to 0 in probability by Theorem 2.5(1).
As regards the second term we have

a−2
np ‖ diag(ZZ′)− diag(Y→n )‖2 = a−2

np max
i=1,...,p

∣∣∣D→i − max
t=1,...,n

Z2
it

∣∣∣ .
The right-hand side converges to zero in probability in view of Lemma 2.22 applied to
(Z2

it).

Now (2.16) follows from the next result.

Lemma 2.14. Assume the conditions of Theorem 2.1.

1. If β ∈ ((α/2− 1)+, 1] we have

a−2
np max

i=1,...,p

∣∣λ(i)(Y→n )− Z2
(i),np

∣∣ P→ 0 , n→∞ .
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2. If β−1 ∈ ((α/2− 1)+, 1) we have

a−2
np max

i=1,...,n

∣∣λ(i)(Y↓n)− Z2
(i),np

∣∣ P→ 0 , n→∞ .

Proof. We focus on part (1). We write V(1) ≥ · · · ≥ V(p) for the order statistics of
(maxt=1,...,n Z

2
it). By definition of the order statistics we have Z2

(i),np ≥ V(i) for i =
1, . . . , p. We choose δ such that 1 > δ > 2+β

2(1+β) and define the event

B2δ
np = {There is a row of (Z2

it) with at least two entries larger than a2δ
np.} .

By Lemma 2.21, P(B2δ
np)→ 0.

Next, we choose 0 < ε < 1 − δ. Then Lemma 2.20 guarantees the existence of a
sequence k = kn →∞ such that the event

Ωn = {Z2
(k),np > a2(1−ε)

np }

satisfies P(Ωcn)→ 0. On the event (B2δ
np)c ∩ Ωn we have

V(i) − Z2
(i),np = 0 , i = 1, . . . , k.

This shows for γ > 0,

lim sup
n→∞

P
(
a−2
np max

i=1,...,p
|V(i) − Z2

(i),np| > γ
)

≤ lim sup
n→∞

P
(
{a−2
np max

i=1,...,p
|V(i) − Z2

(i),np| > γ} ∩ (B2δ
np)c ∩ Ωn

)
+ lim sup

n→∞
P(B2δ

np) + lim sup
n→∞

P(Ωcn)

= lim sup
n→∞

P
(
{a−2
np max

i=k+1,...,p
|V(i) − Z2

(i),np| > γ} ∩ (B2δ
np)c ∩ Ωn

)
≤ lim sup

n→∞
P
(
2 a−2

np Z
2
(k+1),np > γ

)
= 0.

2.5 Generalization to autocovariance matrices

An important topic in multivariate time series analysis is the study of the covariance
structure. From the field (Zit) we construct the p× n matrices

Z(s, k) = Zn(s, k) = (Zi−s,t−k)i=1,...,p;t=1,...,n , s, k ∈ Z .

We introduce the (non-normalized) generalized sample autocovariance matrices

(Z(0, 0)Z(s, k)′) , s, k ∈ Z ,

with entries

(Z(0, 0)Z(s, k)′)ij =
n∑
t=1

Zi,t Zj−s,t−k , i, j = 1, . . . , p .

If min(|s|, |k|) 6= 0, the generalized sample autocovariance matrix Z(0, 0)Z(s, k)′ is not
symmetric and might thus have complex eigenvalues. In what follows, we will be inter-
ested in the singular values λ1(s, k), . . . , λp(s, k) of Z(0, 0)Z(s, k)′. The singular values
of a matrix A are the square roots of the eigenvalues of AA′. We reuse the notation
(λi(s, k)) for the singular values and again write λ(1)(s, k) ≥ · · · ≥ λ(p)(s, k) for their
order statistics.
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Theorem 2.15. Assume s, k ∈ Z. Consider the p× n-dimensional matrices Z(0, 0) and
Z(s, k) with iid entries. We assume the following conditions:

• The regular variation condition (2.7) for some α ∈ (0, 4).

• E[Z] = 0 for α ≥ 2.

• The integer sequence (pn) has growth rate Cp(β) for some β ≥ 0.

(1) If k 6= 0, then

a−2
np λ(1)(s, k) P→ 0 .

Now assume k = 0 and recall the notation D→(i) and D↓(i) from Section 2.2.2. Then the
following statements hold:

(2) If β ∈ [0, 1], then

a−2
np max

i=1,...,p−|s|

∣∣λ(i)(s, 0)−D→(i)
∣∣ P→ 0 . (2.36)

(3) If β > 1, then

a−2
np max

i=1,...,n−|s|

∣∣λ(i)(s, 0)−D↓(i)
∣∣ P→ 0 . (2.37)

(4) If min(β, β−1) ∈ ((α/2− 1)+, 1], then

a−2
np max

i=1,...,p−|s|

∣∣λ(i)(s, 0)− Z2
(i),np

∣∣ P→ 0 . (2.38)

Proof. We focus on the case β ∈ [0, 1]. The proof is analogous to the proof of Theorem 2.1
which was given in Section 2.4. This proof relied on the reduction of ZZ′ to its diagonal.
If k = 0, we will reduce Z(0, 0)Z(s, k)′ to a p × p matrix M(s,k), which only takes
values on its sth sub-diagonal. The entries of the sth sub-diagonal of M(s,k) are M(s,k)

i,i+s,
i = 1 + s−, . . . , p − s+. Here s+, s− ≥ 0 are the positive and negative parts of s,
respectively.

We sketch the steps of this reduction. Let k ∈ Z. For simplicity of notation assume
s ≥ 0. Define the p× p matrix M(s,k),

M(s,k)
i,i+s = 1{k=0}(Z(0, 0)Z(s, 0)′)i,i+s = 1{k=0}

n∑
t=1

Z2
it , i = 1, . . . , p− s ,

and M(s,k)
ij = 0 for all other i, j. We have(
(Z(0, 0)Z(s, k)′−M(s,k))(Z(0, 0)Z(s, k)′ −M(s,k))′

)
ij

=
p∑

u=1

n∑
t1=1

n∑
t2=1

Zi,t1Zj,t2Zu−s,t1−kZu−s,t2−k1{i 6=u−s,j 6=u−s}

× (1{i=j} + 1{i 6=j,t1=t2} + 1{i6=j,t1 6=t2})
= Dij + Fij + Rij .
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Repeating the steps in the proof of Lemma 2.12, one obtains

a−4
np ‖D + F + R‖22

P→ 0 .

Therefore we also have
a−4
np ‖Z(0, 0)Z(s, k)′ −M(s,k)‖22

= a−4
np ‖(Z(0, 0)Z(s, k)′ −M(s,k))(Z(0, 0)Z(s, k)′ −M(s,k))′‖2

P→ 0 .

This proves part (1). Since, with probability tending to 1, the matrix M(s,k) has the
required singular values, part (2) follows by Weyl’s inequality.

Finally, part (4) is a consequence of Lemma 2.14.

We obtain the following result for the weak convergence of the point processes of the
points λi(s, 0), s = 0, . . . , l; the proof is similar to the one of Theorem 2.15.

Corollary 2.16. Assume the conditions of Theorem 2.15. Then, with the notation of
Theorem 2.10, the following point process convergence holds for l ≥ 0 and (β, β−1) ∈
((α/2− 1)+, 1],

p∑
i=1

ε
a−2
np

(
λ(i)(0,0),...,λ(i)(l,0)

) d→
∞∑
i=1

ε
Γ−2/α
i

(
1,...,1

) .
The joint convergence of a finite number of the random variables λ(i)(s, 0), i ≥ 1,

s ≥ 0, is an immediate consequence of this result.

2.6 Appendix

Let (Zi) be iid copies of Z whose distribution satisfies

P(Z > x) ∼ p+
L(x)
xα

and P(Z ≤ −x) ∼ p−
L(x)
xα

, x→∞ ,

for some tail index α > 0, where p+, p− ≥ 0 with p+ + p− = 1 and L is a slowly varying
function. We say that Z is regularly varying with index α. The monograph [20] contains
many properties and useful tools for regularly varying functions. Theorem 1.5.6 therein,
which is known as Potter bounds, asserts that a regularly varying function essentially
lies between two power laws. In particular, for any δ > 0 and C > 1 we have for x
sufficiently large,

C−1x−δ ≤ L(x) ≤ Cxδ .
Theorem 1.6.1 in [20], widely known as Karamata’s theorem, describes the behavior

of truncated moments of the regularly varying random variable Z. For x→∞,

E[|Z|β1{|Z|≤x}] ∼
α

β − α
xβP(|Z| > x), β > α,

E[|Z|β1{|Z|>x}] ∼
α

α− β
xβP(|Z| > x), β < α.

If E[|Z|] < ∞ also assume E[Z] = 0. The product Z1Z2 is regular varying with
the same index α and P(|Z1Z2| > x) = x−αL1(x), where L1 is slowly varying function
different from L; see Embrechts and Goldie [34]. Write

Sn = Z1 + · · ·+ Zn , n ≥ 1,

and consider a sequence (an) such that P(|Z| > an) ∼ n−1.
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2.6.1 Large deviation results
The following theorem can be found in Nagaev [55] and Cline and Hsing [22] for α > 2
and α ≤ 2, respectively; see also Denisov et al. [27].

Theorem 2.17. Under the assumptions on the iid sequence (Zt) given above the follow-
ing relation holds

sup
x≥cn

∣∣∣∣ P(Sn > x)
nP(|Z| > x) − p+

∣∣∣∣→ 0 ,

where (cn) is any sequence satisfying cn/an → ∞ for α ≤ 2 and cn ≥
√

(α− 2)n logn
for α > 2.

2.6.2 Karamata theory for sums
Proposition 2.18. Let (cn) be the threshold sequence in Theorem 2.17 for a given α > 0,
and let (dn) be such that dn/cn → ∞ for α > 2 and dn = cn for α ≤ 2. Assume
0 < γ < α. Then we have for a sequence xn ≥ dn

E[|x−1
n Sn|γ1{|Sn|>xn}] ∼

α

α− γ
nP(|Z| > xn), n→∞. (2.39)

Proof. We use the notation Yn := |x−1
n Sn|. Since Y γn 1{Yn>1} is a positive random variable

one can write
E[Y γn 1{Yn>1}] =

∫ ∞
0

P(Y γn 1{Yn>1} > y) dy.

The probability inside the integral is

P(Y γn 1{Yn>1} > y) = P(Y γn 1{Yn>1} > y, Yn > 1) + P(Y γn 1{Yn>1} > y, Yn < 1)
= P(Y γn > y, Yn > 1) = P(Yn > max{y1/γ , 1})

=
{
P(Yn > 1) if y ≤ 1,
P(Yn > y1/γ) if y ≥ 1.

Therefore, using the uniform convergence result in Theorem 2.17, we conclude that∫ ∞
0

P(Y γn 1{Yn>1} > y) dy = P(Yn > 1) +
∫ ∞

1
P(Yn > y1/γ) dy

∼ nP(|Z| > xn) +
∫ ∞

1
y−

α
γ nP(|Z| > xn) dy

= α

α− γ
nP(|Z| > xn), n→∞.

2.6.3 A point process convergence result
Assume that the conditions at the beginning of Appendix 2.6 hold. Consider a sequence
of iid copies (S(t)

n )t=1,2,... of Sn and the sequence of point processes

Nn =
p∑
t=1

ε
a−1
npS

(t)
n
, n = 1, 2, . . . ,

for an integer sequence p = pn → ∞. We assume that the state space of the point
processes Nn is R0 = [R ∪ {±∞}]\{0}.
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Lemma 2.19. Assume α ∈ (0, 2) and the conditions of Appendix 2.6 on the iid se-
quence (Zt) and the normalizing sequence (an). Then the limit relation Nn

d→ N holds
in the space of point measures on R0 equipped with the vague topology (see [61, 60])
for a Poisson random measure N with state space R0 and intensity measure µα(dx) =
α|x|−α−1(p+1{x>0} + p−1{x<0})dx.

Proof. According to Resnick [61], Proposition 3.21, we need to show that pP(a−1
npSn ∈

·) v→ µα, where
v→ denotes vague convergence of Radon measures on R0. Observe that we

have anp/an →∞ as n→∞. This fact and α ∈ (0, 2) allow one to apply Theorem 2.17:

P(Sn > xanp)
nP(|Z| > anp)

→ p+x
−α and P(Sn ≤ −xanp)

nP(|Z| > anp)
→ p− x

−α , x > 0 .

On the other hand, nP(|Z| > anp) ∼ p−1 as n→∞. This proves the lemma.

2.6.4 Auxiliary results
Assume that the non-negative random variable Z is regularly varying with index α ∈
(0, 2) and (an) is such that nP(Z > an) ∼ 1. We also write

Z(1) ≥ · · · ≥ Z(n) ,

for the order statistics of the iid copies Z1, . . . , Zn of Z.

Lemma 2.20. For every ε ∈ (0, 0.5) there exists a sequence k = kn → ∞, k < n such
that

lim
n→∞

P(Z(k) > a1−ε
n ) = 1.

Proof of Lemma 2.20. From the theory of order statistics we know that

P(Z(k) ≤ a1−ε
n ) =

k−1∑
r=0

(
n

r

)
P(Z > a1−ε

n )r P(Z ≤ a1−ε
n )n−r

≤
(
P(Z ≤ a1−ε

n )
)n k−1∑

r=0

1
r!

(nP(Z > a1−ε
n )

P(Z ≤ a1−ε
n )

)r
.

We observe that(
P(Z ≤ a1−ε

n )
)n ∼ e−n

[
P(Z>a1−ε

n )−0.5(P(Z>a1−ε
n ))2(1+o(1))

]
Writing Γ(k) and Γ(k, y) for the gamma and incompete gamma functions, we have

e−y
k−1∑
r=0

yr

r! = Γ(k, y)
Γ(k) = P(Γk > y), y ≥ 0 ,

where Γk = E1+· · ·+Ek, k ≥ 1, for an iid standard exponential sequence (Ei). Therefore

P(Z(k) ≤ a1−ε
n )

≤ c e−n
[
P(Z>a1−ε

n )−0.5(P(Z>a1−ε
n ))2(1+o(1))

]
+
[
n P(Z>a1−ε

n )/P(Z≤a1−ε
n )
]

P
(
Γk > nP(Z > a1−ε

n )/P(Z ≤ a1−ε
n )

)
= c eO

(
n (P(Z>a1−ε

n ))2
)
P
(
k−1Γk > k−1nP(Z > a1−ε

n )/P(Z ≤ a1−ε
n )

)
.

The right-hand side converges to zero if 2ε < 1 and k ≤ nε′ for some ε′ < ε.
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Now consider a p× n random matrix Z with iid non-negative entries Zit and generic
element Z as specified above. The number of rows p satisfies the growth condition Cp(β).

We write for δ > 0,

Bδnp = {There is a row of Z with at least two entries larger than aδnp.} . (2.40)

Lemma 2.21. Assume that p = pn satisfies the growth condition Cp(β) with β ∈ [0, 1].
Then we have

lim
n→∞

P(Bδnp) = 0 for all δ >
2 + β

2(1 + β) .

Proof of Lemma 2.21. Assume δ > 2+β
2(1+β) and consider the counting variables

Ni =
n∑
t=1

1{Zit>aδnp}, i = 1, . . . , p.

Clearly, Ni are iid Bin(n, q) with q = qn = P(Z > aδnp)→ 0 as n→∞ and

P(Bδnp) = P( max
i=1,...,p

Ni ≥ 2)

= 1−
(
P(N1 ≤ 1)

)p
= 1−

(
(1− q)n−1(1 + (n− 1)q)

)p
.

Thus it remains to show that the right-hand side converges to 0. Taking logarithms, we
get

p log
(
(1− q)n−1 (1 + (n− 1)q)

)
= p [(n− 1) log(1− q) + log(1 + (n− 1)q)].

A second order Taylor expansion of the logarithm yields

p (n− 1) log(1− q) + p log(1 + (n− 1)q) = p q + p
(nq)2

2 +O(p (nq2 + (nq)3) ) . (2.41)

By the Potter bounds we conclude that (2.41) converges to zero if δ > 2+β
2(1+β) . The proof

is complete.

For ε ∈ (0, 1) define the events

A
(n)
i (ε) =

{ n∑
t=1

Zit − max
t=1,...,n

Zit > a1−ε
np

}
, i = 1, . . . , p .

The following result generalizes Lemma 5 in Auffinger et al. [4] (which in turn is a
modified version of a result in Soshnikov [65]) to the case of regularly varying growth
rates (pn). The method of proof is different from the aforementioned literature.

Lemma 2.22. Assume that p = pn = nβ`(n) where ` is a slowly varying function.
Assume β ∈ (0,∞) for α ∈ (0, 1] and β ∈ (α − 1,∞) for α ∈ [1, 2). There exists a
constant ε ∈ (0, 1) such that

lim
n→∞

P
( p⋃
i=1

A
(n)
i (ε)

)
= 0 .
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Proof. Write Mt = maxi=1,...,t Zi. We observe that

P
( p⋃
i=1

A
(n)
i (ε)

)
≤ pP(Sn −Mn > a1−ε

np )

= n pP(Sn−1 > a1−ε
np , Zn > Mn−1)

= n p

∫ ∞
0

P(Sn−1 > a1−ε
np , z > Mn−1) dP(Z ≤ z) .

We split the integration area into disjoint sets:

[0,∞) = [0, an/hn] ∪ (an/hn, aγnp] ∪ (aγnp,∞) =
3⋃
i=1

Bi .

We choose hn →∞ such that nP(Z > an/hn) ∼ 2 log(np). Then

log(np)− nP(Z > an/hn)→ −∞ , n
(
P(Z > an/hn)

)2 → 0 . (2.42)

Moreover, choose γ and ε > 0 fixed such that ε < 1− (1 ∨ α)/(1 + β) and

• 1
1+β + ε < γ < 1− ε

1−α if α ∈ (0, 1) and

• 1
1+β + ε < γ < 1− 2ε

2−α if α ∈ [1, 2).

By virtue of (2.42) we have

n p

∫
B1

P(Sn−1 > a1−ε
np , z > Mn−1) dP(Z ≤ z) ≤ n pP(Mn−1 ≤ an/hn)

= e log(np)−n P(Z>an/hn)+o(1) → 0 .

By definition of ε, we have (an +n)/a1−ε
np → 0 for α ∈ (0, 2). Therefore an application of

Theorem 2.17 yields

n p

∫
B3

P(Sn−1 > a1−ε
np , z > Mn−1) dP(Z ≤ z) ≤ n pP(Sn−1 > a1−ε

np )P(Z > aγnp)

∼
(
n pP(Z > a1−ε

np )
) (
nP(Z > aγnp)

)
.

The right-hand side converges to zero due to the property γ > 1/(1 + β) + ε.
Now assume α ∈ (0, 1). Then we have by Markov’s inequality and Karamata’s theo-

rem,

n p

∫
B2

P(Sn−1 > a1−ε
np , z > Mn−1) dP(Z ≤ z)

≤ n2 p

a1−ε
np

∫
B2

E[Z1{Z≤z}] dP(Z ≤ z)

≤ n2 p

a1−ε
np

E[Z1{Z≤aγnp}]P(Z > an/hn)

∼ c
n p

a1−ε
np

[
aγnp P(Z > aγnp)

]
log(np) .

An application of the Potter bounds and using the fact that γ < 1 − ε/(1 − α) shows
that the right-hand side converges to zero for the chosen ε.
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Now assume α ∈ [1, 2) and β > α−1. Due to the latter condition we have n/a1−ε
np → 0.

We obtain by Čebyshev’s inequality and Karamata’s theorem,

n p

∫
B2

P(Sn−1 > a1−ε
np , z > Mn−1) dP(Z ≤ z)

≤ n p

∫
B2

P
( n∑
t=1

Zt 1{Zt≤aγnp}− nE
[
Z1{Z≤aγnp}

]
> a1−ε

np − nE
[
Z1{Z≤aγnp}

]
) dP(Z ≤ z)

≤ n p

∫
B2

P
( n∑
t=1

Zt 1{Zt≤aγnp}− nE
[
Z 1{Z≤aγnp}

]
> ca1−ε

np

)
dP(Z ≤ z)

≤ n p
E[Z2 1{Z≤aγnp}]

a
2(1−ε)
np

[
nP(Z > an/hn)

]
∼ c n p

a2 γ
npP(Z > aγnp)
a

2(1−ε)
np

log(np) .

The right-hand side converges to zero since γ < 1−2ε/(2−α). This finishes the proof.

2.6.5 Perturbation theory for eigenvectors
We state Proposition A.1 in Benaych-Georges and Péché [18].

Proposition 2.23. Let H be a Hermitean matrix and v a unit vector such that for some
λ ∈ R, ε > 0,

H v = λv + εw ,

where w is a unit vector such that w ⊥ v.

1. Then H has an eigenvalue λε such that |λ− λε| ≤ ε.

2. If H has only one eigenvalue λε (counted with multiplicity) such that |λ− λε| ≤ ε
and all other eigenvalues are at distance at least d > ε from λ. Then for a unit
eigenvector vε associated with λε we have

‖vε −Pv(vε)‖`2 ≤
2 ε
d− ε

,

where Pv denotes the orthogonal projection onto Span(v).





Chapter 3

Extreme value analysis for the sample
autocovariance matrices of heavy-tailed
multivariate time series

Richard Davis, Johannes Heiny,
Thomas Mikosch & Xiaolei Xie
Extremes 19, 3 (2016), 517–547.

Abstract

We provide some asymptotic theory for the largest eigenvalues of a sample co-
variance matrix of a p-dimensional time series where the dimension p = pn converges
to infinity when the sample size n increases. We give a short overview of the litera-
ture on the topic both in the light- and heavy-tailed cases when the data have finite
(infinite) fourth moment, respectively. Our main focus is on the heavy-tailed case.
In this case, one has a theory for the point process of the normalized eigenvalues
of the sample covariance matrix in the iid case but also when rows and columns
of the data are linearly dependent. We provide limit results for the weak conver-
gence of these point processes to Poisson or cluster Poisson processes. Based on this
convergence we can also derive the limit laws of various functionals of the ordered
eigenvalues such as the joint convergence of a finite number of the largest order
statistics, the joint limit law of the largest eigenvalue and the trace, limit laws for
successive ratios of ordered eigenvalues, etc. We also develop some limit theory for
the singular values of the sample autocovariance matrices and their sums of squares.
The theory is illustrated for simulated data and for the components of the S&P 500
stock index.

Keywords: Regular variation, sample covariance matrix, dependent entries, largest
eigenvalues, trace, point process convergence, cluster Poisson limit, infinite variance
stable limit, Fréchet distribution.
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3.1 Estimation of the largest eigenvalues: an overview in the
iid case

3.1.1 The light-tailed case
One of the exciting new areas of statistics is concerned with analyses of large data
sets. For such data one often studies the dependence structure via covariances and
correlations. In this paper we focus on one aspect: the estimation of the eigenvalues of
the covariance matrix of a multivariate time series when the dimension p of the series
increases with the sample size n. In particular, we are interested in limit theory for the
largest eigenvalues of the sample covariance matrix. This theory is closely related to
topics from classical extreme value theory such as maximum domains of attraction with
the corresponding normalizing and centering constants for maxima; cf. Embrechts et
al. [35], Resnick [60, 61]. Moreover, point process convergence with limiting Poisson and
cluster Poisson processes enters in a natural way when one describes the joint convergence
of the largest eigenvalues of the sample covariance matrix. Large deviation techniques find
applications, linking extreme value theory with random walk theory and point process
convergence. The objective of this paper is to illustrate some of the main developments
in random matrix theory for the particular case of the sample covariance matrix of
multivariate time series with independent or dependent entries. We give special emphasis
to the heavy-tailed case when extreme value theory enters in a rather straightforward
way.

Classical multivariate time series analysis deals with observations which assume values
in a p-dimensional space where p is “relatively small” compared to the sample size n.
With the availability of large data sets p can be “large” relative to n. One of the possible
consequences is that standard asymptotics (such as the central limit theorem) break
down and may even cause misleading results.

The dependence structure in multivariate data is often summarized by the covari-
ance matrix which is typically estimated by its sample analog. For example, principal
component analysis (PCA) extracts principal component vectors corresponding to the
largest eigenvalues of the sample covariance matrix. The magnitudes of these eigenvalues
provide an empirical measure of the importance of these components.

If p, n are fixed, a column of the p× n data matrix

X = Xn =
(
Xit

)
i=1,...,p;t=1,...,n

represents an observation of a p-dimensional time series model with unknown parameters.
In this section we assume that the real-valued entries Xit are iid, unless mentioned
otherwise, and we write X for a generic element. One challenge is to infer information
about the parameters from the eigenvalues λ1, . . . , λp of the sample covariance matrix
XX′. In the notation we suppress the dependence of (λi) on n and p. If p and n are
finite and the columns of X are iid and multivariate normal, Muirhead [54] derived a
(rather complicated) formula for the joint distribution of the eigenvalues (λi).

For p fixed and n → ∞, assuming X has centered normal entries and a diagonal
covariance matrix Σ, Anderson [3] derived the joint asymptotic density of (λ1, . . . , λp).
We quote from Johnstone [48]: “The classic paper by Anderson [3] gives the limiting
joint distribution of the roots, but the marginal distribution of the largest eigenvalue is
hard to extract even in the null case” (i.e., when the covariance matrix Σ is proportional
to the identity matrix).

It turns out that limit theory for the largest eigenvalues becomes “easier” when the
dimension p increases with n. Over the last 15 years there has been increasing interest
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in the case when p = pn → ∞ as n → ∞. In most of the literature (exceptions are El
Karoui [30], Davis et al. [24, 25] and Heiny and Mikosch [41]) one assumes that p and n
grow at the same rate:

p

n
→ γ for some γ ∈ (0,∞). (3.1)

In random matrix theory, the convergence of the empirical spectral distributions
(Fn−1XX′) of a sequence (n−1XX′) of non-negative definite matrices is the principle
object of study. The empirical spectral distribution Fn−1XX′ is constructed from the
eigenvalues via

Fn−1XX′(x) = 1
p

#{1 ≤ j ≤ p : n−1λj ≤ x}, x ∈ R, n ≥ 1.

In the literature convergence results for the sequence of empirical spectral distributions
are established under the assumption that p and n grow at the same rate. Suppose that
the iid entries Zit have mean 0 and variance 1. If (3.1) holds, then, with probability one,
(Fn−1XX′) converges weakly to the celebrated Marčenko–Pastur law Fγ . If γ ∈ (0, 1], Fγ
has density,

fγ(x) =
{ 1

2πxγ
√

(b− x)(x− a) , if a ≤ x ≤ b,
0 , otherwise,

(3.2)

where a = (1 − √γ)2 and b = (1 + √γ)2. If γ > 1, the Marčenko–Pastur law is a
mixture of a point mass at 0 and the density function f1/γ with weights 1 − 1/γ and
1/γ, respectively. The point mass at 0 is intuitively explained by the fact that, with
probability 1, min(p, n) eigenvalues λi are non-zero. When n = (1/γ) p and γ > 1 one
sees that the proportion of non-zero eigenvalues of the sample covariance matrix is 1/γ
while the proportion of zero eigenvalues is 1− 1/γ.

While the finite second moment is the central assumption to obtain the Marčenko–
Pastur law as the limiting spectral distribution, the finite fourth moment plays a crucial
role when studying the largest eigenvalues

λ(1) ≥ · · · ≥ λ(p) (3.3)

of XX′, where we suppress the dependence on n in the notation.
Assuming (3.1) and iid entries Xit with zero mean, unit variance and finite fourth

moment, Geman [38] showed that

λ(1)

n

a.s.→
(
1 +√γ

)2
, n→∞ . (3.4)

Johnstone [48] complemented this strong law of large numbers by the corresponding
central limit theorem in the special case of iid standard normal entries:

n2/3 (√γ)1/3(
1 +√γ

)4/3(λ(1)

n
−
(
1 +

√
p
n

)2) d→ TW , (3.5)

where the limiting random variable has a Tracy–Widom distribution of order 1. Notice
that the centering

(
1 +

√
p
n

)2 can in general not be replaced by (1 + √γ)2. This dis-
tribution is ubiquitous in random matrix theory. Its distribution function F1 is given
by

F1(s) = exp
{
− 1

2

∫ ∞
s

[q(x) + (x− s)q2(x)] dx
}
,
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(a) Standard normal entries
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(b) Entry distribution: P(X =
√

3) = P(X =
−
√

3) = 1/6, P(X = 0) = 2/3. Note EX = 0,
E[X2] = 1, E[X3] = 0 and E[X4] = 3, i.e., the
first 4 moments ofX match those of the standard
normal distribution.

Figure 3.1: Sample density function of the largest eigenvalue compared with the Tracy–
Widom density function. The data matrix X has dimension 200× 1000. An ensemble of
2000 matrices is simulated.

where q(x) is the unique solution to the Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x) ,

where q(x) ∼ Ai(x) as x→∞ and Ai(·) is the Airy kernel; see Tracy and Widom [71] for
details. We notice that the rate n2/3 compares favorably to the

√
n-rate in the classical

central limit theorem for sums of iid finite variance random variables. The calculation
of the spectrum is facilitated by the fact that the distribution of the classical Gaus-
sian matrix ensembles is invariant under orthogonal transformations. The corresponding
computation for non-invariant matrices with non-Gaussian entries is more complicated
and was a major challenge for several years; a first step was made by Johansson [47].
Johnstone’s result was extended to matrices X with iid non-Gaussian entries by Tao and
Vu [68, Theorem 1.16]. Assuming that the first four moments of the entry distribution
match those of the standard normal distribution, they showed (3.5) by employing Lin-
deberg’s replacement method, i.e., the iid non-Gaussian entries are replaced step-by-step
by iid Gaussian ones. This approach is well-known from summation theory for sequences
of iid random variables. Tao and Vu’s result is a consequence of the so-called Four
Moment Theorem, which describes the insensitivity of the eigenvalues with respect to
changes in the distribution of the entries. To some extent (modulo the strong moment
matching conditions) it shows the universality of Johnstone’s limit result (3.5). Later we
will deal with entries with infinite fourth moment. In this case, the weak limit for the
normalized largest eigenvalue λ(1) is distinct from the Tracy–Widom distribution: the
classical Fréchet extreme value distribution appears. In Figure 3.1 we illustrate how the
Tracy–Widom approximation works for Gaussian and non-Gaussian entries of X and in
Figure 3.2 we also illustrate that this approach fails when E[X4] =∞.
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Figure 3.1 compares the sample density function of the properly normalized largest
eigenvalue estimated from 2000 simulated sample covariance matrices XX′ (n = 1000, p =
200) with the Tracy–Widom density. If X has infinite fourth moment and further regu-
larity conditions on the tail hold then the Tracy–Widom limiting law needs to be replaced
by the Fréchet distribution; see Section 3.1.2 for details. Figure 3.2 illustrates this fact
with a simulated ensemble whose entries are distributed according to the heavy-tailed
distribution from (3.33) below with α = 1.6.

●●●●●●●●●●●●●
●●
●●●

●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●●
●
●●
●●
●
●●
●●
●●
●●●

●●
●●●

●●●
●●
●●●

●●●
●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−2 0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Distribution Function and Frechet

log(x)

P
(λ

(1
)<

x)

sample
Frechet

Figure 3.2: Sample distribution function of the largest eigenvalue λ(1) compared to the
Fréchet distribution (solid line) with α = 1.6. The data matrices have dimension 200×
1000 and iid entries with infinite fourth moment. The results are based on 2000 replicates.

3.1.2 The heavy-tailed case
So far we focused on “light-tailed” X in the sense that its entries have finite fourth mo-
ment. However, there is statistical evidence that the assumption of finite fourth moment
may be violated when dealing with data from insurance, finance or telecommunications.
We illustrate this fact in Figure 3.3 where we show the pairs (αL, αU ) of lower and upper
tail indices of p = 478 log-return series composing the S&P 500 index estimated from
n = 1, 345 daily observations from 01/04/2010 to 02/28/2015. This means we assume
for every row (Xit)t=1,...,n of X that the tails behave like

P(Xit > x) ∼ cU x−αU and P(Xit < −x) ∼ cL x−αL , x→∞ ,

for non-negative constants cL, cU . We apply the Hill estimator (see Embrechts et al. [35],
p. 330, de Haan and Ferreira [26], p. 69) to the time series of the gains and losses in
a naive way, neglecting the dependence and non-stationarity in the data; we also omit
confidence bands. From the figure it is evident that the majority of the return series
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have tail indices below four, corresponding to an infinite fourth moment. The behavior
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Figure 3.3: Tail indices of log-returns of 478 time series from the S&P 500 index. The
values (α̂L, α̂U ) of the lower and upper tail indices are provided by Hill’s estimator. We
also draw the line α̂U = α̂L.

of the largest eigenvalue λ(1) changes dramatically when X has infinite fourth moment.
Bai and Silverstein [9] proved for an n× n matrix X with iid centered entries that

lim sup
n→∞

λ(1)

n
=∞ a.s. (3.6)

This is in stark contrast to Geman’s result (3.4).
In the heavy-tailed case it is common to assume a regular variation condition:

P(X > x) ∼ p+
L(x)
xα

and P(X < −x) ∼ p−
L(x)
xα

, x→∞ , (3.7)

where p± are non-negative constants such that p+ + p− = 1 and L is a slowly varying
function. In particular, if α < 4 we have E[X4] =∞. The regular variation condition on
X (we will also refer to X as a regularly varying random variable) is needed for proving
asymptotic theory for the eigenvalues of XX′. This is similar to proving limit theory
for sums of iid random variables with infinite variance stable limits; see for example
Feller [37].

In (3.2) we have seen that the sequence (Fn−1XX′) of empirical spectral distributions
converges to the Marčenko–Pastur law if the centered iid entries possess a finite second
moment. Now we will discuss the situation when the entries are still iid and centered,
but have an infinite variance. Here we assume the entries to be regularly varying with
index α ∈ (0, 2). Assuming (3.1) with γ ∈ (0, 1] in this infinite variance case, Belinschi et
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al. [15, Theorem 1.10] showed that the sequence (Fa−2
n+pXX′) converges with probability

one to a non-random probability measure with density ργα satisfying

ργα(x)x1+α/2 → αγ

2(1 + γ) , x→∞,

see also Ben Arous and Guionnet [17, Theorem 1.6]. The normalization (ak) is chosen
such that P(|X| > ak) ∼ k−1 as k → ∞. An application of the Potter bounds (see
Bingham et al. [20, p. 25]) shows that a2

n+p/n→∞.
It is interesting to note that there is a phase change in the extreme eigenvalues in going

from finite to infinite fourth moment, while the phase change occurs for the empirical
spectral distribution going from finite to infinite variance.

The theory for the largest eigenvalues of sample covariance matrices with heavy tails
is less developed than in the light-tailed case. Pioneering work for λ(1) in the case of
iid regularly varying entries Xit with index α ∈ (0, 2) is due to Soshnikov [65, 66]. He
showed the point process convergence

Nn =
p∑
i=1

εa−2
npλi

d→ N =
∞∑
i=1

εΓ−2/α
i

, n→∞ , (3.8)

under the growth condition (3.1) on (pn). Here

Γi = E1 + · · ·+ Ei , i ≥ 1 , (3.9)

and (Ei) is an iid standard exponential sequence. In other words, N is a Poisson point
process on (0,∞) with mean measure µ(x,∞) = x−α/2, x > 0. Convergence in distri-
bution of point processes is understood in the sense of weak convergence in the space of
point measures equipped with the vague topology; see Resnick [60, 61]. We can easily
derive the limiting distribution of a−2

npλ(k) for fixed k ≥ 1 from (3.8):

lim
n→∞

P(a−2
npλ(k) ≤ x) = lim

n→∞
P(Nn(x,∞) < k) = P(N(x,∞) < k) = P(Γ−2/α

k ≤ x)

=
k−1∑
s=0

(
µ(x,∞)

)s
s! e−µ(x,∞), x > 0.

In particular,

λ(1)

a2
np

d→ Γ−α/21 , n→∞ ,

where the limit has Fréchet distribution with parameter α/2 and distribution function

Φα/2(x) = e−x
−α/2

, x > 0 .

We mention that the tail balance condition (3.7) may be replaced in this case by the
weaker assumption P(|X| > x) = L(x)x−α for a slowly varying function L. Indeed, it
follows from the proof that only the squares X2

it contribute to the point process limits of
the eigenvalues (λi). A consequence of the continuous mapping theorem and (3.8) is the
joint convergence of the upper order statistics: for any k ≥ 1,

a−2
np

(
λ(1), . . . , λ(k)

) d→
(
Γ−2/α

1 , . . . ,Γ−2/α
k

)
, n→∞ .
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It follows from standard theory for point processes with iid points (e.g. Resnick [60,
61]) that (3.8) remains valid if we replace Nn by the point process

∑p
i=1
∑n
t=1 εX2

it
/a2
np
.

Then we also have for any k ≥ 1,

a−2
np

(
X2

(1),np, . . . , X
2
(k),np

) d→
(
Γ−2/α

1 , . . . ,Γ−2/α
k

)
, n→∞ , (3.10)

where

X2
(1),np ≥ · · · ≥ X

2
(np),np

denote the order statistics of (X2
it)i=1,...,p;t=1,...,n.

Auffinger et al. [4] showed that (3.8) remains valid under the regular variation condi-
tion (3.7) for α ∈ (2, 4), the growth condition (3.1) on (pn) and the additional assumption
E[X] = 0. Of course, (3.10) remains valid as well. Davis et al. [25] extended these results
to the case when the rows of X are iid linear processes with iid regularly varying noise.
The Poisson point process convergence result of (3.8) remains valid in this case. Different
limit processes can only be expected if there is dependence across rows and columns.

In what follows, we refer to the heavy-tailed case when we assume the regular variation
condition (3.7) for some α ∈ (0, 4).

3.1.3 Overview
The primary objective of this overview is to make a connection between extreme value
theory and the behavior of the largest eigenvalues of sample covariance matrices from
heavy-tailed multivariate time series. For time series that are linearly dependent through
time and across rows, it turns out that the extreme eigenvalues are essentially determined
by the extreme order statistics from an array of iid random variables. The asymptotic
behavior of the extreme eigenvalues is then derived routinely from classical extreme value
theory. As such, explicit joint distributions of the extreme order statistics can be given
which yield a plethora of ancillary results. Convergence of the point process of extreme
eigenvalues, properly normalized, plays a central role in establishing the main results.

In Section 3.2 we continue the study of the case when the data matrix X consists
of iid heavy-tailed entries. We will consider power-law growth rates on the dimension
(pn) that is more general than prescribed by (3.1). In Section 3.3 we introduce a model
for Xit which allows for linear dependence across the rows and through time. The point
process convergence of normalized eigenvalues is presented in Section 3.3.4. This result
lays the foundation for new insight into the spectral behavior of the sample covariance
matrix, which is the content of Section 3.4.1.

Sections 3.4.1 and 3.4.3 are devoted to sample autocovariance matrices. Motivated by
[49], we study the eigenvalues of sums of transformed matrices and illustrate the results
in two examples. These results are applied to the time series of S&P 500 in Section 3.4.2.
Appendix 3.5 contains useful facts about regular variation and point processes.

3.2 General growth rates for pn in the iid heavy-tailed case

This section is based on ideas in Heiny and Mikosch [41] where one can also find detailed
proofs.
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Growth conditions on (pn)
In many applications it is not realistic to assume that the dimension p of the data and
the sample size n grow at the same rate. The aforementioned results of Soshnikov [65, 66]
and Auffinger et al. [4] already indicate that the value γ in the growth rate (3.1) does
not appear in the distributional limits. This obervation is in contrast to the light-tailed
case; see (3.4) and (3.5). Davis et al. [24, 25] and Heiny and Mikosch [41] allowed for
more general rates for pn → ∞ than linear growth in n. Recall that p = pn → ∞ is
the number of rows in the matrix Xn. We need to specify the growth rate of (pn) to
ensure a non-degenerate limit distribution of the normalized singular values of the sample
autocovariance matrices. To be precise, we assume

p = pn = nβ`(n), n ≥ 1, (Cp(β))

where ` is a slowly varying function and β ≥ 0. If β = 0, we also assume `(n) →
∞. Condition Cp(β) is more general than the growth conditions in the literature; see
[4, 24, 25].

Theorem 3.1. Assume that X = Xn has iid entries satisfying the regular variation
condition (3.7) for some α ∈ (0, 4). If E[|X|] < ∞ we also suppose that E[X] = 0. Let
(pn) be an integer sequence satisfying Cp(β) with β ≥ 0. In addition, we require

min(β, β−1) ∈ (α/2− 1, 1] for α ∈ [2, 4), (C̃β(α))

Then
p∑
i=1

εa−2
npλi

d→
∞∑
i=1

εΓ−2/α
i

, n→∞ , (3.11)

where the convergence holds in the space of point measures with state space (0,∞)
equipped with the vague toplogy; see Resnick [60].

A discussion of the case β ∈ [0, 1]

We mentioned earlier that in the heavy-tailed case, limit theory for the largest eigenvalues
of the sample covariance matrix is rather insensitive to the growth rate of (pn) and that
the limits are essentially determined by the diagonal of this matrix. This is confirmed
by the following result.

Proposition 3.2. Assume that X = Xn has iid entries satisfying the regular variation
condition (3.7) for some α ∈ (0, 4). If E[|X|] <∞ we also suppose that E[X] = 0. Then
for any sequence (pn) satisfying Cp(β) with β ∈ [0, 1] we have

a−2
np ‖XX′ − diag(XX′)‖2

P→ 0 , n→∞ ,

where ‖ · ‖2 denotes the spectral norm; see (3.23) for its definition.

Proposition 3.2 is not unexpected for two reasons:

• It is well-known from classical theory (see Embrechts and Veraverbeke [36]) that for
any iid regularly varying non-negative random variables Y, Y ′ with index α′ > 0,
Y Y ′ is regularly varying with index α′ while Y 2 is regularly varying with index
α′/2. Therefore X2 and X11X12 are regularly varying with indices α/2 and α,
respectively.
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• The aforementioned tail behavior is inherited by the entries of XX′ in the following
sense. By virtue of Nagaev-type large deviation results for an iid regularly varying
sequence (Yi) with index α′ ∈ (0, 2) where we also assume that E[Y0] = 0 if E[|Y0|] <
∞ (see Theorem 3.21) we have that P(Y1+· · ·+Yn > bn)/(nP(|Y0| > bn)) converges
to a non-negative constant provided bn/a

′
n → ∞, where P(|Y0| > a′n) ∼ n−1 as

n → ∞. As a consequence of the tail behaviors of X2
it and XitXjt for i 6= j and

Nagaev’s results we have for (bn) such that bn/a2
n →∞,

P
(
(XX′)ij > bn

)
P
(
(XX′)ii − cn > bn

) ∼ nP(X11X12 > bn)
nP(X2 > bn) → 0 , n→∞ , (3.12)

where cn = 0 or nE[X2] according as α ∈ (0, 2) or α ∈ (2, 4). This means that the
diagonal and off-diagonal entries of XX′ inherit the tails of X2

it and XitXjt, i 6= j,
respectively, above the high threshold bn.

Proposition 3.2 has some immediate consequences for the approximation of the eigen-
values of XX′ by those of diag(XX′). Indeed, let C be a symmetric p × p matrix with
eigenvalues λ1(C), . . . , λp(C) and ordered eigenvalues

λ(1)(C) ≥ · · · ≥ λ(p)(C) . (3.13)

Then for any symmetric p× p matrices A,B, by Weyl’s inequality (see Bhatia [19]),

max
i=1,...,p

∣∣λ(i)(A+B)− λ(i)(A)
∣∣ ≤ ‖B‖2 .

If we now choose A+B = XX′ and A = diag(XX′) we obtain the following result.

Corollary 3.3. Under the conditions of Proposition 3.2,

a−2
np max

i=1,...,p

∣∣λ(i) − λ(i)(diag(XX′))
∣∣ P→ 0 , n→∞ .

Thus the problem of deriving limit theory for the order statistics of XX′ has been
reduced to limit theory for the order statistics of the iid row-sums

D→i = (XX′)ii =
n∑
t=1

X2
it , i = 1, . . . , p ,

which are the eigenvalues of diag(XX′). This theory is completely described by the point
processes constructed from the points D→i /a2

np i = 1, . . . , p. Necessary and sufficient
conditions for the weak convergence of these point processes are provided by Lemma 3.22
which in combination with the Nagaev-type large deviation results of Theorem 3.21 yield
the following result; see also Davis et al. [24].

Lemma 3.4. Assume the conditions of Proposition 3.2 hold. Then
p∑
i=1

εa−2
np (D→

i
−cn)

d→
∞∑
i=1

εΓ−2/α
i

, n→∞ ,

where (Γi) is defined in (3.9) and cn = 0 if E[D→] =∞ and cn = E[D→] otherwise.

In this result, centering is only needed for α ∈ [2, 4) when n/a2
np 6→ 0. Under the

additional condition C̃β(α), n/a2
np → 0 in view of the Potter bounds; see Bingham et

al. [20, p. 25]. Combining Lemma 3.4 and Corollary 3.3, we conclude that Theorem 3.1
holds for β ∈ [0, 1].
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Extension to general β

Next we explain that it suffices to consider only the case β ∈ [0, 1] and how to proceed
when β > 1. The main reason is that the p × p sample covariance matrix XX′ and the
n×n matrix X′X have the same rank and their non-zero eigenvalues coincide; see Bhatia
[19, p. 64]. When proving limit theory for the eigenvalues of the sample covariance matrix
one may switch to X′X and vice versa, hereby interchanging the roles of p and n. By
switching to X′X, one basically replaces β by β−1. Since min(β, β−1) ∈ [0, 1] for any
β ≥ 0, one can assume without loss of generality that β ∈ [0, 1]. This trick allows one
to extend results for (pn) satisfying Cp(β) with β ∈ [0, 1] to β > 1. We illustrate this
approach by providing the direct analogs of Proposition 3.2 and Corollary 3.3.

Proposition 3.5. Assume that X = Xn has iid entries satisfying the regular variation
condition (3.7) for some α ∈ (0, 4). If E[|X|] <∞ we also suppose that E[X] = 0. Then
for any sequence (pn) satisfying Cp(β) with β > 1 we have

a−2
np ‖X′X− diag(X′X)‖2

P→ 0 , n→∞ ,

where ‖ · ‖2 denotes the spectral norm.

Note that for β > 1 we have limn→∞ p/n =∞. This means that X′X has asymptot-
ically a much smaller dimension than XX′ and therefore it is more convenient to work
with X′X when bounding the spectral norm.

Corollary 3.6. Under the conditions of Proposition 3.5,

a−2
np max

i=1,...,n

∣∣λ(i) − λ(i)(diag(X′X))
∣∣ P→ 0 , n→∞ .

Now, Theorem 3.1 for β > 1 is a consequence of Corollary 3.6.

3.3 Introducing dependence between the rows and columns

For details on the results of this section, we refer to Davis et al. [24], Heiny and Mikosch
[41] and Heiny et al. [42].

3.3.1 The model
When dealing with covariance matrices of a multivariate time series (Xn) it is rather
natural to assume dependence between the entries Xit. In this section we introduce a
model which allows for linear dependence between the rows and columns of X:

Xit =
∑
l∈Z

∑
k∈Z

hklZi−k,t−l , i, t ∈ Z , (3.14)

where (Zit)i,t∈Z is a field of iid random variables and (hkl)k,l∈Z is an array of real num-
bers. Of course, linear dependence is restrictive in some sense. However, the particular
dependence structure allows one to determine those ingredients in the sample covariance
matrix which contribute to its largest eigenvalues. If the series in (3.14) converges a.s.
(Xit) constitutes a strictly stationary random field. We denote generic elements of the
Z- and X-fields by Z and X, respectively. We assume that Z is regularly varying in the
sense that

P(Z > x) ∼ p+
L(x)
xα

and P(Z ≤ −x) ∼ p−
L(x)
xα

, x→∞ , (3.15)
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for some tail index α > 0, constants p+, p− ≥ 0 with p+ +p− = 1 and a slowly varying L.
We will assume E[Z] = 0 whenever E[Z2] < ∞. Moreover, we require the summability
condition ∑

l∈Z

∑
k∈Z
|hkl|δ <∞ (3.16)

for some δ ∈ (0,min(α/2, 1)) which ensures the a.s. absolute convergence of the series
in (3.14). Under the conditions (3.15) and (3.16), the marginal and finite-dimensional
distributions of the field (Xit) are regularly varying with index α; see Embrechts et al.
[35], Appendix A3.3. Therefore we also refer to (Xit) and (Zit) as regularly varying
fields.

The model (3.14) was introduced by Davis et al. [25], assuming the rows iid, and in
the present form by Davis et al. [24].

3.3.2 Sample covariance and autocovariance matrices
From the field (Xit) we construct the p× n matrices

Xn(s) = (Xi,t+s)i=1,...,p;t=1,...,n , s = 0, 1, 2, . . . , (3.17)

As before, we will write X = Xn(0). Now we can introduce the (non-normalized) sample
autocovariance matrices

Xn(0)Xn(s)′ , s = 0, 1, 2, . . . . (3.18)

We will refer to s as the lag. For s = 0, we obtain the sample covariance matrix. In what
follows, we will be interested in the asymptotic behavior (of functions) of the eigen- and
singular values of the sample covariance and autocovariance matrices in the heavy-tailed
case. Recall that the singular values of a matrix A are the square roots of the eigenvalues
of the non-negative definite matrix AA′ and its spectral norm ‖A‖2 is its largest singular
value. We notice that Xn(0)Xn(s)′ is not symmetric and therefore its eigenvalues can
be complex. To avoid this situation, we use the squares

Xn(0)Xn(s)′Xn(s)Xn(0)′ (3.19)

whose eigenvalues are the squares of the singular values of Xn(0)Xn(s)′. The idea of
using the sample autocovariance matrices and functions of their squares (3.19) originates
from a paper by Lam and Yao [49] who used a model different from (3.14). This idea is
quite natural in the context of time series analysis.

In Theorem 3.7 below, we provide a general approximation result for the ordered
singular values of the sample autocovariance matrices in the heavy-tailed case. This
result is rather technical. To formulate it we introduce further notation. As before,
p = pn is any integer sequence converging to infinity.

3.3.3 More notation
Important roles are played by the quantities (Z2

it)i=1,...,p;t=1,...,n and their order statistics

Z2
(1),np ≥ Z

2
(2),np ≥ . . . ≥ Z

2
(np),np, n, p ≥ 1 . (3.20)

As important are the row-sums

D→i = D
(n),→
i =

n∑
t=1

Z2
it , i = 1, . . . , p; n = 1, 2, . . . , (3.21)
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with generic element D→ and their ordered values

D→(1) = D→L1
≥ · · · ≥ D→(p) = D→Lp , (3.22)

where we assume without loss of generality that (L1, . . . , Lp) is a permutation of (1, . . . , p)
for fixed n.

Finally, we introduce the column-sums

D↓t = D
(n),↓
t =

p∑
i=1

Z2
it , t = 1, . . . , n; p = 1, 2, . . . ,

with generic element D↓ and we also adapt the notation from (3.22) to these quantities.

Matrix norms

For any p× n matrix A = (aij), we will use the following norms:

• Spectral norm:

‖A‖2 =
√
λ(1)(AA′) , (3.23)

• Frobenius norm:

‖A‖F =
( p∑
i=1

n∑
j=1
|aij |2

)1/2
.

We will frequently make use of the bound ‖A‖2 ≤ ‖A‖F . Standard references for matrix
norms are [16, 19, 43, 63].

Singular values of the sample autocovariance matrices

Fix integers n ≥ 1 and s ≥ 0. We recycle the λ-notation for the singular values
λ1(s), . . . , λp(s) of the sample autocovariance matrix Xn(0)Xn(s)′, suppressing the de-
pendence on n. Correspondingly, the order statistics are denoted by

λ(1)(s) ≥ · · · ≥ λ(p)(s) . (3.24)

When s = 0 we typically write λi instead of λi(0).

The matrix M(s)

We introduce some auxiliary matrices derived from the coefficient matrix H = (hkl)k,l∈Z:

H(s) = (hk,l+s)k,l∈Z, M(s) = H(0)H(s)′ s ≥ 0 .

Notice that
(M(s))ij =

∑
l∈Z

hi,lhj,l+s, i, j ∈ Z. (3.25)

We denote the ordered singular values of M(s) by

v1(s) ≥ v2(s) ≥ · · · . (3.26)
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Let r(s) be the rank of M(s) so that vr(s)(s) > 0 while vr(s)+1(s) = 0 if r(s) is finite,
otherwise vi(s) > 0 for all i. We also write r = r(0).

Under the summability condition (3.16) on (hkl) for fixed s ≥ 0,

∞∑
i=1

(vi(s))2 = ‖M(s)‖2F =
∑
i,j∈Z

∑
l1,l2∈Z

hi,l1hj,l1+shi,l2hj,l2+s

≤ c
( ∑
l1,l2∈Z

∑
i∈Z
|hi,l1hi,l2 |

)2
≤ c

∑
l1∈Z

∑
i∈Z
|hi,l1 | <∞ . (3.27)

Therefore all singular values vi(s) are finite and the ordering (3.26) is justified.
Here and in what follows, we write c for any constant whose value is not of interest.

Normalizing sequence

We define (ak) by

P(|Z| > ak) ∼ k−1 , k →∞ ,

and choose the normalizing sequence for the singular values as (a2
np) for suitable sequences

p = pn →∞.

Approximations to singular values

We will give approximations to the singular values λi(s) in terms of the p largest ordered
values for s ≥ 0,

δ(1)(s) ≥ · · · ≥ δ(p)(s) ,
γ→(1)(s) ≥ · · · ≥ γ→(p)(s) ,

γ↓(1)(s) ≥ · · · ≥ γ
↓
(n)(s) ,

from the sets {
Z2

(i),npvj(s) , i = 1, . . . , p ; j = 1, 2, . . .
}
,{

D→i vj(s), i = 1, . . . , p ; j = 1, 2, . . .
}
,{

D↓t vj(s), t = 1, . . . , n ; j = 1, 2, . . .
}
,

respectively.

3.3.4 Approximation of the singular values
In the following result we povide some useful approximations to the singular values of
the sample autocovariance matrices of the linear model (3.14).

Theorem 3.7. Consider the linear process (3.14) under

• the regular variation condition (3.15) for some α ∈ (0, 4),

• the centering condition E[Z] = 0 if E[|Z|] <∞,

• the summability condition (3.16) on the coefficient matrix (hkl),
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• the growth condition Cp(β) on (pn) for some β ≥ 0.

Then the following statements hold for s ≥ 0:

1. We consider two disjoint cases: α ∈ (0, 2) and β ∈ (0,∞), or α ∈ [2, 4) and β

satisfying C̃β(α). Then

a−2
np max

i=1,...,p
|λ(i)(s)− δ(i)(s)|

P→ 0, n→∞. (3.28)

2. Assume β ∈ [0, 1]. If α ∈ (0, 2], E[Z2] = ∞ or α ∈ [2, 4), E[Z2] < ∞ and
β ∈ (α/2− 1, 1] then

a−2
np max

i=1,...,p
|λ(i)(s)− γ→(i)(s)|

P→ 0, n→∞.

Assume β > 1. If α ∈ (0, 2], E[Z2] = ∞ or α ∈ [2, 4), E[Z2] < ∞ and β−1 ∈
(α/2− 1, 1]. Then

a−2
np max

i=1,...,p
|λ(i)(s)− γ↓(i)(s)|

P→ 0, n→∞.

Remark 3.8. The proof of Theorem 3.7 is given in Heiny et al. [42]. Part (2) of this
result with more restrictive conditions on the growth rate of (pn) is contained in Davis
et al. [24]. These proofs are very technical and lengthy.

Remark 3.9. If we consider a random array (hkl) independent of (Xit) and assume that
the summability condition (3.16) holds a.s. then Theorem 3.7 remains valid conditionally
on (hkl), hence unconditionally in P-probability; see also [24].

3.3.5 Point process convergence
Theorem 3.7 and arguments similar to the proofs in Davis et al. [24] enable one to derive
the weak convergence of the point processes of the normalized singular values. Recall the
representation of the points (Γi) of a unit rate homogeneous Poisson process on (0,∞)
given in (3.9). For s ≥ 0, we define the point processes of the normalized singular values:

Nλ,s
n =

p∑
i=1

εa−2
np (λ(i)(0),...,λ(i)(s)) . (3.29)

Theorem 3.10. Assume the conditions of Theorem 3.7. Then (Nλ,s
n ) converge weakly in

the space of point measures with state space (0,∞)s+1 equipped with the vague topology.
If either α ∈ (0, 2], E[Z2] =∞ and β ≥ 0, or α ∈ [2, 4), E[Z2] <∞ and C̃β(α) hold then

Nλ,s
n

d→ N =
∞∑
i=1

∞∑
j=1

εΓ−2/α
i

(vj(0),...,vj(s))
, n→∞. (3.30)

Proof. Regular variation of Z2 is equivalent to

n pP(a−2
npZ

2 ∈ ·) v→ µ(·), (3.31)
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where v→ denotes vague convergence of Radon measures on (0,∞) and the measure µ is
given by µ(x,∞) = x−α/2, x > 0. In view of Resnick [61], Proposition 3.21, (3.31) is
equivalent to the weak convergence of the following point processes:

p∑
i=1

n∑
t=1

εa−2
npZ

2
it

=
np∑
i=1

εa−2
npZ

2
(i),np

d→
∞∑
i=1

εΓ−2/α
i

= Ñ , n→∞ ,

where the limit Ñ is a Poisson random measure (PRM) with state space (0,∞) and mean
measure µ.

Since a−2
npZ

2
(p),np

P→ 0 as n→∞, the point processes
∑p
i=1 εa−2

npZ
2
(i),np

converge weakly
to the same PRM:

p∑
i=1

εa−2
npZ

2
(i),np

d→
∞∑
i=1

εΓ−2/α
i

, n→∞ . (3.32)

A continuous mapping argument together with the fact that
∑∞
i=1(vi(s))2 < ∞ (see

(3.27)) shows that

∞∑
j=1

p∑
i=1

εa−2
npZ

2
(i),np(vj(0),...,vj(s))

d→
∞∑
j=1

∞∑
i=1

εΓ−2/α
i

(vj(0),...,vj(s))
.

If the assumptions of part (1) of Theorem 3.7 are satisfied an application of (3.28)
(also recalling the definition of (δ(i)(s))) shows that (3.32) remains valid with the points
(a−2
npZ

2
(i),np(vj(0), . . . , vj(s))) replaced by (a−2

np (λ(i)(0), . . . , λ(i)(s)).
The only cases which are not covered by Theorem 3.7(1) are α ∈ (0, 2), β = 0 and

α = 2, E[Z2] =∞, β ≥ 0. In these cases we get from Theorem 3.21 that

pP(a−2
npD

→ > x) ∼ p nP(Z2 > a2
npx)→ µ(x,∞) , x > 0 ,

i.e., pP(a−2
npD

→ ∈ ·) v→ µ(·). It follows from Lemma 3.22 that
∑p
i=1 εa−2

npD
→
i

d→ Ñ . As
before, a continuous mapping argument in combination with the approximation obtained
in Theorem 3.7(2) justifies the replacement of the points (a−2

npD
→
(i)(vj(0), . . . , vj(s))) by

(a−2
np (λ(i)(0), . . . , λ(i)(s))) in the case β ∈ [0, 1]. If β > 1 one has to work with the

quantities (D↓i )i=1,...,n instead of (D→i )i=1,...,p and one may follow the same argument as
above. This finishes the proof.

3.4 Some applications

3.4.1 Sample covariance matrices
The sample covariance matrix Xn(0)Xn(0)′ = XX′ is a non-negative definite matrix.
Therefore its eigenvalues and singular values coincide. Moreover, vj = vj(0), j ≥ 1, are
the eigenvalues of M = M(0).

Theorem 3.7(1) yields an approximation of the ordered eigenvalues (λ(i)) of XX′ by
the quantities (δ(i)) which are derived from the order statistics of (Z2

it). Part (2) of this
result provides an approximation of (λ(i)) by the quantities (γ→/↓(i) ) which are derived
from the order statistics of the partial sums (D→/↓i ).

In the following example we illustrate the quality of the two approximations.
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Example 3.11. We choose a Pareto-type distribution for Z with density

fZ(x) =
{ α

(4|x|)α+1 , if |x| > 1/4
1 , otherwise. (3.33)

We simulated 20, 000 matrices Xn for n = 1, 000 and p = 200 whose iid entries have
this density. We assume β = 1. Note that M = M(0) has rank one and v1 = 1. The
estimated densities of the deviations a−2

np (λ(1) −D→(1)) and a−2
np (λ(1) − Z2

(1),np) based on
the simulations are shown in Figure 3.4. The approximation error is very small indeed.
According to the theory,
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Figure 3.4: Density of the approximation errors for the eigenvalues of a−2
npXX′. The

entries of X are iid with density (3.33) and α = 1.6.

a−2
np sup

i
|D→(i) − λ(i)|+ a−2

np sup
i
|Z2

(i),np − λ(i)|
P→ 0 ,

but for finite n the (D→(i)) sequence yields a better approximation to (λ(i)). By construc-
tion, the considered differences have a tendency to be positive but Figure 3.4 also shows
that the median of the approximation error for a−2

np (λ(1) −D→(1)) is almost zero.

Theorem 3.10 and the continuous mapping theorem immediately yield results about
the joint convergence of the largest eigenvalues of the matrices a−2

npXnX′n for α ∈ (0, 2)
and α ∈ (2, 4) when β satisfies C̃β(α). For fixed k ≥ 1 one gets

a−2
np

(
λ(1), . . . , λ(k)

) d→
(
d(1), . . . , d(k)

)
,

where d(1) ≥ · · · ≥ d(k) are the k largest ordered values of the set {Γ−2/α
i vj , i =

1, 2, . . . , j = 1, . . . , r}. The continuous mapping theorem yields for k ≥ 1,

λ(1)

λ(1) + · · ·+ λ(k)

d→
d(1)

d(1) + · · ·+ d(k)
, n→∞ . (3.34)
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An application of the continuous mapping theorem to the distributional convergence
of the point processes in Theorem 3.10 in the spirit of Resnick [60], Theorem 7.1, also
yields the following result; see Davis et al. [24] for a proof and a similar result in the
case α ∈ (2, 4).

Corollary 3.12. Assume the conditions of Theorem 3.7. If α ∈ (0, 2] and E[Z2] = ∞,
then

a−2
np

(
λ(1),

p∑
i=1

λi

)
d→
(
v1 Γ−2/α

1 ,

r∑
j=1

vj

∞∑
i=1

Γ−2/α
i

)
,

where Γ−2/α
1 is Fréchet Φα/2-distributed. and

∑∞
i=1 Γ−2/α

i has the distribution of a posi-
tive α/2-stable random variable. In particular,

λ(1)

λ1 + · · ·+ λp

d→ v1∑r
j=1 vj

Γ−2/α
1∑∞

i=1 Γ−2/α
i

, n→∞ . (3.35)

Remark 3.13. The ratio

λ(1) + · · ·+ λ(k)

λ1 + · · ·+ λp
, k ≥ 1 ,

plays an important role in PCA. It reflects the proportion of the total variance in the data
that we can explain by the first k principal components. It follows from Corollary 3.12
that for fixed k ≥ 1,

λ(1) + · · ·λ(k)

λ1 + · · ·+ λp

d→
d(1) + · · ·+ d(k)

d(1) + d(2) + · · · .

Unfortunately, the limiting variable does in general not have a clean form. An exception
is the case when r = 1; see Example 3.16. Also notice that the trace of XX′ coincides
with λ1 + · · ·+ λp.

To illustrate the theory we consider a simple moving average example taken from
Davis et al. [24].

Example 3.14. Assume that α ∈ (0, 2) and

Xit = Zit + Zi,t−1 − 2(Zi−1,t − Zi−1,t−1) , i, t ∈ Z . (3.36)

In this case, the non-zero entries of H are

h00 = 1, h01 = 1, h10 = −2 and h11 = 2.

Hence M = HH′ has the positive eigenvalues v1 = 8 and v2 = 2. The limit point process
in (3.30) is

N =
∞∑
i=1

ε8Γ−2/α
i

+
∞∑
i=1

ε2Γ−2/α
i

,

so that
a−2
np

(
λ(1), λ(2)

) d→
(
8Γ−2/α

1 , 2Γ−2/α
1 ∨ 8Γ−2/α

2
)
.

Using the fact that U = Γ1/Γ2 has a uniform distribution on (0, 1) we calculate

P(2Γ−2/α
1 > 8Γ−2/α

2 ) = P(Γ1/Γ2 < 2−α) = 2−α ∈ (1/4, 1).
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Figure 3.5: Distribution function of (λ(1)−λ(2))/λ(1) for iid data (left) and data generated
from the model (3.36) (right). In each graph we compare the empirical distribution func-
tion (dotted line, based on 1000 simulations of 200× 1000 matrices with Z-distribution
(3.33)) with the theoretical curve (solid line).

In particular, we have for the normalized spectral gap

a−2
np

(
λ(1) − λ(2)

) d→ 6 Γ−2/α
1 1{Γ14α/2<Γ2} + 8

(
Γ−2/α

1 − Γ−2/α
2

)
1{Γ14α/2>Γ2}

and for the self-normalized spectral gap (see also Example 3.15 for a detailed analysis)

λ(1) − λ(2)

λ(1)

d→ 6
8 1{Γ12α<Γ2} +

(
1− (Γ1/Γ2)2/α)1{Γ12α>Γ2}

= 3
4 1{U2α<1} +

(
1− U2/α)1{U2α>1} = Y .

The limit distribution of the spectral gap has an atom at 3/4 with probability 2−α,
i.e., P(Y = 3/4) = 2−α, and

P(Y ≤ x) = 1− (1− x)α/2, x ∈ (0, 3/4).

In the iid case the limit distribution of the self-normalized spectral gap has distribution
function F (x) = 1− (1−x)α/2 for x ∈ [0, 1]. This means that the atom disappears if the
entries are iid. Figure 3.5 compares the distribution function of Y with F for α = 0.6;
the atom at 3/4 is clearly visible.

Along the same lines, we also have

(a−2
npλ(1), λ(2)/λ(1))

d→ (8 Γ−2/α
1 ,

1
4 1{U<2−α} + U2/α 1{U≥2−α})

and hence the limit distribution of λ(2)/λ(1) is supported on [1/4, 1) with mass of 2−α at
1/4. The histogram of the ratio

(
λ(2)/λ(1)

)2/α based on 1000 replications from the model
(3.36) with noise given by a t-distribution with α = 1.5 degrees of freedom, n = 1000
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Figure 3.6: Histogram based on 1000 replications of
(
λ(2)/λ(1)

)2/α from model (3.36).

and p = 200 is displayed in Figure 3.6. Observing that 2−α = 0.3536 . . ., the histogram
is remarkably close to what one would expect from a sample from the truncated uniform
distribution, 2−α 1{U<2−α} + U 1{U≥2−α}. The mass of the limiting discrete component
of the ratio can be much larger if one conditions on a−2

npλ(1) being large. Specifically, for
any ε ∈ (0, 1/4) and x > 0,

lim
n→∞

P(ε < λ(2)/λ(1) ≤ 1/4|λ(1) > a2
npx) = P(Γ1/Γ2 ≤ 2−α|Γ1 < (x/8)−α/2) = G(x) .

The function G approaches 1 as x → ∞ indicating the speed at which the two largest
eigenvalues get linearly related; see Figure 3.7 for a graph of G in the case α = 1.5. In
addition, from Remark 3.13, we also have

λ(1)

λ1 + · · ·+ λp

d→ 4
5

Γ−2/α
1∑∞

i=1 Γ−2/α
i

.

Clearly, the limit random variable is stochastically smaller than what one would get in
the iid case; see (3.35).

Example 3.15. The previous example also illustrates the behavior of the two largest
eigenvalues in the general case when the rank r of the matrix M is larger than one. We
have in general

λ(2)

λ(1)

d→ v2

v1
1{U<(v2/v1)α/2} + U2/α 1{U≥(v2/v1)α/2} .

In particular, the limiting self-normalized spectral gap has representation

λ(1) − λ(2)

λ(1)

d→ v1 − v2

v1
1{U<(v2/v1)α/2} + (1− U2/α) 1{U≥(v2/v1)α/2} .
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Figure 3.7: Graph of G(x) = P(Γ1/Γ2 ≤ 2−α|Γ1 < (x/8)−α/2) when α = 1.5.

The limiting variable assumes values in (0, 1− v2/v1] and has an atom at the right end-
point. This is in contrast to the iid case and to the case when r = 1 (hence v2 = 0)
including the case of iid rows and the separable case; see Example 3.16.

Example 3.16. We consider the separable case when hkl = θkcl, k, l ∈ Z, where (cl),
(θk) are real sequences such that the conditions on (hkl) in Theorem 3.7 hold. In this
case,

M =
∑
l∈Z

c2l (θiθj)i,j∈Z .

Note that r = 1 with the only non-negative eigenvalue

v1 =
∑
l∈Z

c2l
∑
k∈Z

θ2
k .

In this case, the limiting point process in Theorem 3.10 is a PRM on (0,∞) with mean
measure of (y,∞) given by (v1/y)α/2, y > 0. The normalized eigenvalues have similar
asymptotic behavior as in the case of iid entries. For example, the log-spacings have the
same limit as in the iid case for fixed k,(

log λ(1) − log λ(2), . . . , log λ(k+1) − log λ(k)
) d→ − 2

α

(
log(Γ1/Γ2), . . . , log(Γk/Γk+1)

)
.

The same observation applies to the ratio of the largest eigenvalue and the trace in the
case α ∈ (0, 2):

λ(1)

tr(XX′) =
λ(1)

λ1 + · · ·+ λp

d→ Γ−2/α
1∑∞

i=1 Γ−2/α
i

.

We also mentioned in Example 3.15 that the distributional limit of the self-normalized
spectral gap has no atom as in the iid case.
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3.4.2 S&P 500 data
We conduct a short analysis of the largest eigenvalues of the univariate log-return time
series which compose the S&P 500 stock index; see Section 3.1.2 for a description of
the data. Although there is strong empirical evidence that these univariate series have
power-law tails (see Figure 3.3) we do not expect that they have the same tail index.
One way to proceed would be to ignore this fact because the tail indices are in a close
range and the differences are due to large sampling errors for estimating such quantities.
One could also collect time series with similar tail indices in the same group. In this
case, the dimension p decreases. This grouping would be a rather arbitrary classification
method. We have chosen a third way: to use rank transforms. This approach has its
merits because it aims at standardizing the tails but it also has a major disadvantage:
one destroys the covariance structure underlying the data.

Given a p × n matrix (Rit)i=1,··· ,p;t=1,··· ,n, we construct a matrix X via the rank
transforms

Xit = −
[

log
( 1
n+ 1

n∑
τ=1

1{Riτ≤Rit}
)]−1

, i = 1, . . . , p; t = 1, . . . , n .
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Figure 3.8: The logarithms of the ratios λ(i+1)/λ(i) for the S&P 500 series after rank
transform. We also show the 1, 50 and 99% quantiles (bottom, middle, top lines, respec-
tively) of the variables log((Γi/Γi+1)2).

If the rows Ri1, . . . , Rin were iid (or, more generally, stationary ergodic) with a contin-
uous distribution then the averages under the logarithm would be asymptotically uniform
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Figure 3.9: The logarithms of the ratios λ(i+1)/λ(i) for the original (non-rank trans-
formed) S&P 500 log-return data. We also show the 1, 50 and 99% quantiles (bottom,
middle, top lines, respectively) of the variables log((Γi/Γi+1)2/2.3); see also Figure 3.8
for comparison.

on (0, 1) as n→∞. Hence Xit would be asymptotically standard Fréchet Φ1-distributed.
In what follows, we assume that the aforementioned univariate time series of the S&P
500 index have undergone the rank transform and that their marginal distributions are
close to Φ1; we always use the symbol X for the resulting multivariate series.

In Figure 3.8 we show the ratios of the consecutive ordered eigenvalues (λ(i+1)/λ(i))
of the matrix XX′. This graph shows the rather surprising fact that the ratios are close
to one even for small values i. We also show the 1, 50 and 99 % quantiles of the variables
((Γi/Γi+1)2/α) calculated from the formula

P
(
(Γi/Γi+1)2/α ≤ x

)
= xi·α/2, x ∈ (0, 1) . (3.37)

For increasing i, the distribution is concentrated closely to 1, in agreement with the strong
law of large numbers which yields Γi/Γi+1

a.s.→ 1 as i→∞. The asymptotic distributions
(3.37) correspond to the case when the matrix M has rank r = 1. It includes the iid and
separable cases; see Example 3.16. The shown asymptotic quantiles are in agreement
with the rank r = 1 hypothesis.

For comparison, in Figure 3.9 we also show the ratios (λ(i+1)/λ(i)) for the non-
rank transformed S&P 500 data and the 1, 50 and 99% quantiles of the variables
log((Γi/Γi+1)2/α), where we choose α = 2.3 motivated by the estimated tail indices
in Figure 3.3. The two graphs in Figure 3.8 and Figure 3.9 are quite similar but the
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smallest ratios for the original data are slightly larger than for the rank-transformed
data.

3.4.3 Sums of squares of sample autocovariance matrices
In this section we consider some additive functions of the squares of An(s) = Xn(0)Xn(s)′
given by An(s)An(s)′ for s = 0, 1, . . .. By definition of the singular values of a matrix
(see (3.24)), the non-negative definite matrix An(s)An(s)′ has eigenvalues (λ2

i (s))i=1,...,p.
The following result is a corollary of Theorem 3.7.

Proposition 3.17. Consider the linear process (3.14) under the conditions of Theo-
rem 3.7. Then the following statements hold for s ≥ 0:

(1) We consider two disjoint cases: α ∈ (0, 2) and β ∈ (0,∞), or α ∈ [2, 4) and β

satisfying C̃β(α). Then

a−4
np max

i=1,...,p
|λ2

(i)(s)− δ2
(i)(s)|

P→ 0, n→∞.

(2) Assume β ∈ [0, 1]. If α ∈ (0, 2], E[Z2] = ∞ or α ∈ [2, 4), E[Z2] < ∞ and
β ∈ (α/2− 1, 1], then

a−4
np max

i=1,...,p
|λ2

(i)(s)− (γ→(i)(s))2| P→ 0, n→∞.

Assume β > 1. If α ∈ (0, 2], E[Z2] = ∞ or α ∈ [2, 4), E[Z2] < ∞ and β−1 ∈
(α/2− 1, 1]. Then

a−4
np max

i=1,...,p
|λ2

(i)(s)− (γ↓(i)(s))
2| P→ 0, n→∞.

To the best of our knowledge, sums of squares of sample autocovariance matrices were
used first in the paper by Lam and Yao [49]; their time series model is quite different
from ours.

Proof. Part (1). The proof follows from Theorem 3.7 if we can show that

a−2
np max

i=1,...,p

(
λ(i)(s) + δ(i)(s)

)
= OP(1) n→∞ .

We have by Theorem 3.10,

a−2
np max

i=1...,p
λ(i)(s) = a−2

npλ(1)(s)
d→ c ξα/2 , (3.38)

where ξα/2 has a Φα/2 distribution. In view of Theorem 3.7(1) we also have

a−2
np max

i=1...,p
δ(i)(s)

d→ c ξα/2 .

Therefore, again using Theorem 3.7(1), we have

a−4
np max

i=1,...,p
|λ2

(i)(s)− δ2
(i)(s)|

≤
[
a−2
np max

i=1,...,p
|λ(i)(s)− δ(i)(s)|

] [
a−2
np max

i=1,...,p

(
|λ(i)(s)|+ |δ(i)(s)|

)] P→ 0, n→∞.
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This proves part (1).
Part (2). Now assume β ∈ [0, 1] and α ∈ (0, 2], E[Z2] = ∞ or α ∈ [2, 4), E[Z2] < ∞
and β ∈ (α/2 − 1, 1]. Then (3.38) is still true and we have by Theorem 3.7(2) and
Theorem 3.10

a−2
np max

i=1...,p
γ→(i)(s)

d→ c ξα/2 .

We then have

a−4
np max

i=1,...,p
|λ2

(i)(s)− (γ→(i)(s))2|

≤
[
a−2
np max

i=1,...,p
|λ(i)(s)− γ→(i)(s)|

] [
a−2
np max

i=1,...,p

(
λ(i)(s) + γ→(i)(s)

)] P→ 0 , n→∞.

The proof of the remaining part is similar and therefore omitted.

Now, using Proposition 3.17 and a continuous mapping argument, we can show limit
theory for the eigenvalues

w(1)(s0, s1) ≥ · · · ≥ w(p)(s0, s1) , 0 ≤ s0 ≤ s1 ,

of the non-negative definite random matrices
s1∑
s=s0

An(s)An(s)′ . (3.39)

Proposition 3.18. Assume 0 ≤ s0 ≤ s1 and the conditions of Theorem 3.7 hold. If
α ∈ (0, 4) and β ∈ (0, 1] ∩ (α/2− 1, 1] then

a−4
np max

i=1,...,p
|w(i)(s0, s1)− ω(i)(s0, s1)| P→ 0, n→∞,

where ω(i)(s0, s1) are the ordered values of the set {Z4
(i),npvj(s0, s1), i = 1, . . . , p; j =

1, 2, . . .} and (vj(s0, s1)) are the ordered eigenvalues of
∑s1
s=s0

M(s)M(s)′.

Example 3.19. Recall the separable case from Example 3.16, i.e., hkl = θkcl, k, l ≥ 0,
where (cl), (θk) are real sequences such that the conditions on (hkl) in Theorem 3.7 hold.
Write Θij = θiθj . It is symmetric and has rank one; the only non-zero eigenvalue is
γθ(0) =

∑∞
k=0 θ

2
k. Hence Θ is non-negative definite. We get from (3.25) that

M(s) = γc(s) Θ, s ≥ 0 ,

where

γc(s) =
∞∑
l=0

clcl+s , s ≥ 0 .

The matrix M(s) has the only non-zero eigenvalue γc(s)γθ(0). The factors (γc(s)) can
be positive or negative; they constitute the autocovariance function of a stationary linear
process with coefficients (cl). Accordingly, M(s) is either non-negative or non-positive
definite. Now we consider the non-negative definite matrix

s1∑
s=s0

M(s) M(s)′ =
s1∑
s=s0

γ2
c (s) ΘΘ′ .
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Figure 3.10: The largest eigenvalues of the sums of the squared autocovariance matrices
compared with the sums of the largest eigenvalues of these matrices for the S&P 500
data for different values s1. The two values are surprisingly close to each other; mind
the scale of the y-axis. We also show their ratios.

This matrix has rank 1 and its largest eigenvalue is given by

Cc,θ(s0, s1) =
s1∑
s=s0

γ2
c (s) γ2

θ (0) .

An application of Proposition 3.18 yields that the ordered eigenvalues of the matrix
a−4
np

∑s1
s=s0

An(s)An(s)′ are uniformly approximated by the quantities

a−4
npZ

4
(i),npCc,θ(s0, s1) , i = 1, . . . , p . (3.40)

Since

Cc,θ(s0, s1) =
s1∑
i=s0

Cc,θ(i, i)

one gets the remarkable property that

a−4
np max

i=1,...,p

∣∣∣λ(i)

( s1∑
s=s0

An(s)An(s)′
)
− Z4

(i),npCc,θ(s0, s1)
∣∣∣

= a−4
np max

i=1,...,p

∣∣∣ s1∑
s=s0

λ(i)(An(s)An(s)′)− Z4
(i),npCc,θ(s0, s1)

∣∣∣+ oP (1) .

In particular, for s1 ≥ s0 we get the weak convergence of the point processes towards a
PRM:

p∑
i=1

ε
a−4
np

(
λi

(∑s0
s=s0

An(s)An(s)′
)
,...,λi

(∑s1
s=s0

An(s)An(s)′
))

d→
∞∑
i=1

ε
Γ−4/α
i

(
Cc,θ(s0,s0),...,Cc,θ(s0,s1)

) , n→∞ .
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Example 3.20. In Figure 3.10 we calculate the largest eigenvalues
λ(1)

(∑s1
s=0 An(s)An(s)′

)
for s1 = 0, . . . , 5 as well as the sums of the largest eigenval-

ues
∑s1
s=0 λ(1)

(
An(s)An(s)′

)
the log-return series from the S&P 500 index described in

Section 3.1.2. The data are not rank-transformed. We notice that the two values are
surprisingly close across the values s0 = 0, . . . , 5. This phenomenon could be explained
by the structure of the eigenvalues in Example 3.19. Also note that the largest eigenvalue
An(0)An(0)′ makes a major contribution to the values in Figure 3.10; the contribution
of the squares An(s)An(s)′, s = 1, . . . , 5, to the largest eigenvalue of the sum of squares
is less substantial.

3.5 Auxiliary results

Let (Zi) be iid copies of Z whose distribution satisfies

P(Z > x) ∼ p+
L(x)
xα

and P(Z ≤ −x) ∼ p−
L(x)
xα

, x→∞ ,

for some tail index α > 0, where p+, p− ≥ 0 with p+ + p− = 1 and L is a slowly varying
function. If E[|Z|] <∞ also assume E[Z] = 0. The product Z1Z2 is regular varying with
the same index α and P(|Z1Z2| > x) = x−αL1(x), where L1 is slowly varying function
different from L; see Embrechts and Goldie [34]. Write

Sn = Z1 + · · ·+ Zn , n ≥ 1,

and consider a sequence (an) such that P(|Z| > an) ∼ n−1.

3.5.1 Large deviation results
The following theorem can be found in Nagaev [55] and Cline and Hsing [22] for α > 2
and α ≤ 2, respectively; see also Denisov et al. [27].

Theorem 3.21. Under the assumptions on the iid sequence (Zt) given above the follow-
ing relation holds

sup
x≥cn

∣∣∣∣ P(Sn > x)
nP(|Z| > x) − p+

∣∣∣∣→ 0 ,

where (cn) is any sequence satisfying cn/an → ∞ for α ≤ 2 and cn ≥
√

(α− 2)n logn
for α > 2.

3.5.2 A point process convergence result
Assume that the conditions at the beginning of Appendix 3.5 hold. Consider a sequence
of iid copies (S(t)

n )t=1,2,... of Sn and the sequence of point processes

Nn =
p∑
t=1

ε
a−1
npS

(t)
n
, n = 1, 2, . . . ,

for an integer sequence p = pn → ∞. We assume that the state space of the point
processes Nn is R0 = [R ∪ {±∞}]\{0}.
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Lemma 3.22. Assume α ∈ (0, 2) and the conditions of Appendix 3.5 on the iid se-
quence (Zt) and the normalizing sequence (an). Then the limit relation Nn

d→ N holds
in the space of point measures on R0 equipped with the vague topology (see [61, 60])
for a Poisson random measure N with state space R0 and intensity measure µα(dx) =
α|x|−α−1(p+1{x>0} + p−1{x<0})dx.

Proof. According to Resnick [61], Proposition 3.21, we need to show that pP(a−1
npSn ∈

·) v→ µα, where
v→ denotes vague convergence of Radon measures on R0. Observe that we

have anp/an →∞ as n→∞. This fact and α ∈ (0, 2) allow one to apply Theorem 3.21:

P(Sn > xanp)
nP(|Z| > anp)

→ p+x
−α and P(Sn ≤ −xanp)

nP(|Z| > anp)
→ p− x

−α , x > 0 .

On the other hand, nP(|Z| > anp) ∼ p−1 as n→∞. This proves the lemma.



Chapter 4

Almost sure convergence of the largest and
smallest eigenvalues of high-dimensional
sample correlation matrices under infinite
fourth moment

Johannes Heiny & Thomas Mikosch (2016)

Abstract

In this paper, we show that the largest and smallest eigenvalues of a sample
correlation matrix stemming from n independent observations of a p-dimensional
time series with iid components converge almost surely to (1 +√γ)2 and (1−√γ)2,
respectively, as n → ∞, if p/n → γ ∈ (0, 1] and the truncated variance of the
entry distribution is “almost slowly varying”, a condition we describe via moment
properties of self-normalized sums. Moreover, the empirical spectral distributions
of these sample correlation matrices converge weakly, with probability 1, to the
Marčenko–Pastur law, which extends a result in [7]. We compare the behavior
of the eigenvalues of the sample covariance and sample correlation matrices and
argue that the latter seems more robust, in particular in the case of infinite fourth
moment. We briefly address some practical issues for the estimation of extreme
eigenvalues in a simulation study.

In our proofs we use the method of moments combined with a Path-Shortening
Algorithm, which efficiently uses the structure of sample correlation matrices, to
calculate precise bounds for matrix norms. We believe that this new approach could
be of further use in random matrix theory.

Keywords: Sample correlation matrix, infinite fourth moment, largest eigen-
value, smallest eigenvalue, spectral distribution, sample covariance matrix, self-
normalization, regular variation, combinatorics.
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4.1 Introduction and notation

In modern statistical analyses one is often faced with large data sets where both the
dimension of the observations and the sample size are large. The dramatic increase
and improvement of computing power and data collection devices have triggered the
necessity to study and interpret the sometimes overwhelming amounts of data in an
efficient and tractable way. Huge data sets arise naturally in wireless communication,
finance, natural sciences and genetic engineering. For such data one commonly studies
the dependence structure via covariances and correlations which can be estimated by
their sample analogs. Principal component analysis, for example, uses an orthogonal
transformation of the data such that only a few of the resulting vectors explain most of
the variation in the data. The empirical variances of these so-called principal component
vectors are the largest eigenvalues of the sample covariance or correlation matrix.

Throughout this paper we consider the p× n data matrix

X = Xn = (Xit)i=1,...,p;t=1,...,n

of identically distributed entries (Xit) with generic elementX, where we assume E[X] = 0
and E[X2] = 1 if the first and second moments of X are finite, respectively. A column
of X represents an observation of a p-dimensional time series.

Random matrix theory provides a great variety of results on the ordered eigenvalues

λ(1) ≥ · · · ≥ λ(p) , (4.1)

of the (non-normalized) sample covariance matrix XX′. Here we will only discuss the
case p = pn →∞ and, unless stated otherwise, we assume the growth condition

lim
n→∞

pn
n
→ γ ∈ (0, 1] . (Gγ)

For the finite p case, we refer to [3, 54, 45]. When studying the asymptotic properties of
estimators under (Gγ) one often obtains results that dramatically differ from the standard
p fixed, n → ∞ case, in which the spectrum of (n−1XX′) converges to its population
covariance spectrum. In 1967, Marčenko and Pastur [51] observed that even in the case
of iid entries (Xit) with E[X2] = 1 the eigenvalues (λ(i)/n) do not concentrate around 1.
For more examples, see [6, Chapter 1] and [32]. Typical applications where (Gγ) seems
reasonable are discussed in [48, 29].

In comparison with (λ(i)), much less is known about the ordered eigenvalues

µ(1) ≥ · · · ≥ µ(p)

of the sample correlation matrix R = YY′ with entries

Rij =
n∑
t=1

XitXjt√
Di

√
Dj

=
n∑
t=1

YitYjt , i, j = 1, . . . , p . (4.2)

In this paper we will often make use of the notation Y = (Yit) = (Xit/
√
Di) and

Di = D
(n)
i =

n∑
t=1

X2
it , i = 1, . . . , p; n ≥ 1 . (4.3)

Note that the dependence of (λ(i)) and (µ(i)) on n is suppressed in the notation.
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4.1.1 The case (Xit) iid, E[X4] <∞ and E[X2] = 1
In this case the behavior of the eigenvalues of the sample covariance matrix XX′ and
the sample correlation matrix R are closely intertwined.

For any random p× p matrix A with real eigenvalues λ1(A), . . . , λp(A) the empirical
spectral distribution is defined by

FA(x) = 1
p

p∑
i=1

1{λi(A)≤x}, x ∈ R .

Many functionals of the eigenvalues λ1(A), . . . , λp(A) can be expressed in terms of FA
[5], for instance

det A =
p∏
i=1

λi(A) = exp
(
p

∫ ∞
0

log x dFA(x)
)
.

A major problem in random matrix theory is to find the weak limit of (FAn
) for suitable

sequences (An); see for example [6, 78] for more details. By weak convergence of a
sequence of probability distributions (FAn) to a probability distribution F , we mean
limn→∞ FAn

(x) = F (x) a.s. for all continuity points of F . In this context a useful tool
is the Stieltjes transform of the empirical spectral distribution FA:

sA(z) =
∫
R

1
x− z

dFA(x) = 1
p

tr(A− zI)−1 , z ∈ C+ ,

where C+ denotes the complex numbers with positive imaginary part. Weak convergence
of (FAn

) to F is equivalent to sFAn
(z)→ sF (z) a.s. for all z ∈ C+.

Under the growth condition (Gγ), the sequence of empirical spectral distributions of
the normalized sample covariance matrix n−1XX′ converges weakly to the Marčenko–
Pastur law with density

fγ(x) =
{ 1

2πxγ
√

(b− x)(x− a) , if a ≤ x ≤ b,
0 , otherwise,

(4.4)

where γ ∈ (0, 1], a = (1 − √γ)2 and b = (1 + √γ)2. This classical result is sometimes
referred to as Marčenko–Pastur theorem [51]. Informally, the histogram of (λ(i)/n) is
asymptotically non-random and the limiting shape depends only on the fraction p/n.
For an illustration, see Figure 4.1.

The Marčenko–Pastur law has k-th moment

βk = βk(γ) =
∫ b

a

xkfγ(x) dx =
k∑
r=1

1
r

(
k

r − 1

)(
k − 1
r − 1

)
γr−1 , k ≥ 1 , (4.5)

and Stieltjes transform

s(z) =
∫
R

1
x− z

fγ(x) dx =
1− γ − z +

√
(1 + γ − z)2 − 4γ
2γz ; (4.6)

see [6, Chapter 3] or [5, 78].
The a.s. behavior of the extreme eigenvalues is more involved and therefore it has

received significant attention in the literature. From the Marčenko–Pastur theorem one
can infer

lim sup
n→∞

n−1λ(p) ≤ (1−√γ)2 ≤ (1 +√γ)2 ≤ lim inf
n→∞

n−1λ(1) a.s. (4.7)
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The finiteness of the fourth moment of X is necessary for the almost sure convergence
of λ(1)/n; see [9]. If E[X4] <∞, one has (see [6])

n−1λ(1) → (1 +√γ)2 and n−1λ(p) → (1−√γ)2 a.s. (4.8)

The minimal moment requirement for the convergence of the normalized smallest
eigenvalue, however, was an open question for a long time. Recently, it was proved in
[70] that n−1λ(p) → (1−√γ)2 a.s. only requires a finite second moment. Under suitable
moment assumptions λ(1) and λ(p) possess Tracy–Widom fluctuations around their almost
sure limits. For instance, the paper [48] complemented (4.8) by the corresponding central
limit theorem in the special case of iid standard normal entries:

n2/3 (√γ)1/3(
1 +√γ

)4/3(λ(1)

n
−
(
1 +

√
p
n

)2) d→ ξ , (4.9)

where the limiting random variable has a Tracy–Widom distribution of order 1. Notice
that the centering

(
1 +

√
p
n

)2 can in general not be replaced by (1 + √γ)2. This dis-
tribution is ubiquitous in random matrix theory. Its distribution function F1 is given
by

F1(s) = exp
{
− 1

2

∫ ∞
s

[q(x) + (x− s)q2(x)] dx
}
,

where q(x) is the unique solution to the Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x) ,

where q(x) ∼ Ai(x) as x → ∞ and Ai(·) is the Airy kernel; see Tracy and Widom [71]
for details.

Sometimes practitioners would like to know “to which extent the random matrix
results would hold if one were concerned with sample correlation matrices and not sample
covariance matrices [32]”. A partial answer is that the aforementioned results also hold
for the sample correlation matrix R and its eigenvalues µ(1) ≥ · · · ≥ µ(p). With F =
diag(1/D1, . . . , 1/Dp), we have R = F1/2XX′F1/2 which has the same eigenvalues as
XX′F. Weyl’s inequality (see [19]) yields

max
i=1,...,p

|µ(i) − n−1λ(i)| ≤ ‖XX′F− n−1XX′‖2

≤ n−1‖XX′‖2‖nF− I‖2

= n−1λ(1) max
i=1,...,p

∣∣∣ n
Di
− 1
∣∣∣ , (4.10)

where for any matrix A, ‖A‖2 denotes its spectral norm, i.e., its largest singular value.
Lemma 2 in [10] implies that E[X4] <∞ is equivalent to

max
i=1,...,p

∣∣∣ n
Di
− 1
∣∣∣ a.s.→ 0 ,

while n−1λ(1) → (1+√γ)2 a.s. Hence, maxi=1,...,p |µ(i)−n−1λ(i)| → 0 a.s. This approach
was used in [46, 77] to derive

µ(1) → (1 +√γ)2 and µ(p) → (1−√γ)2 a.s. (4.11)
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If the assumption E[X4] < ∞ is weakened to limn→∞ nP(X4 > n) = 0, the paper [10]
proves that n−1λ(1)

P→ (1 +√γ)2 and maxi=1,...,p
∣∣n/Di− 1

∣∣ P→ 0. As a consequence, the
limit results for µ(1) and µ(p) hold in probability instead of a.s.

Distributional limit results have been derived for the appropriately centered and nor-
malized eigenvalues of sample correlation matrices. The authors of [14] assumed iid,
symmetric entries Xit and that there exist positive constants C,C ′ such that P(|X| ≥
tC) ≤ e−t, t ≥ C ′. They showed (4.9) with λ(1)/n replaced by µ(1). A similar limit result
holds for µ(p).

4.1.2 The case (Xit) iid and E[X4] =∞
Asymptotic theory for the eigenvalues of XX′ in the case of an entry distribution with
infinite fourth moment was studied in [65, 66, 4] in the cases when p/n → γ ∈ (0,∞),
while the authors of [23, 41] allowed nearly arbitrary growth of the dimension p. In their
model, the entries of X are regularly varying with index α > 0, implying that

P(|X| > x) = x−αL(x) , (4.12)

for a slowly varying function L. For α ∈ (0, 4), which implies an infinite fourth moment,
they showed that (a−2

npλ(1)) converges to a Fréchet distributed random variable ηα/2 with
parameter α/2 while a−2

npλ(p)
P→ 0. Here the normalizing sequence (an) is defined via

P(|X| > an) ∼ n−1, hence n/a2
np → 0.

To illustrate the stark contrast between the cases α > 4 and α < 4, assume (Gγ) and
E[X] = 0 if E[|X|] <∞. Then it follows from (4.8) that

λ(p)

λ(1)

a.s.→
(1−√γ)2

(1 +√γ)2 if α > 4 ,

a2
np

n

λ(p)

λ(1)

d→
(1−√γ)2

ηα/2
if α ∈ (2, 4) ,

a2
np

n

λ(p)

λ(1)

a.s.→ 0 if α ∈ (0, 2) ,

(4.13)

where the rate a2
np/n → ∞ in the last line can even be increased. To the best of our

knowledge, a suitable normalization (bn) such that (bnλ(p)) has a nontrivial limit is not
available when α ∈ (0, 2).

Under (Gγ) the asymptotic behavior of the eigenvalues of sample correlation matrices
can be very different from that of sample covariance matrices, especially for an entry
distribution with infinite fourth moment. If α ∈ (2, 4), the Marčenko–Pastur theorem
and Theorem 2.3 in [7] assert that (Fn−1XX′) and (FR) converge weakly to the Marčenko–
Pastur law. From [9] it is known that lim supn λ(1)/n =∞ a.s.

For E[X4] = ∞, the approach to sample correlation matrices from (4.10) fails. No
limit results for µ(1) or µ(p) seem to be available in the literature at this point, although
Theorem 2.3 in [7] ensures the weak convergence of the empirical spectral distribution FR
to the Marčenko–Pastur law ifX is in the domain of attraction of the normal distribution.
Analogously to (4.7), the weak limit of (FR) provides a first idea what the limits of the
extreme eigenvalues might be.
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4.1.3 (Xit) identically distributed, but dependent
For practical purposes it is important to work with arbitrary population covariance ma-
trices and not just n−1E[XX′] = I. Based on well understood results in the iid case,
numerous generalizations and estimation techniques have been developed. For many
models the limiting spectral distribution can only be characterized in terms of an inte-
gral equation (=Marčenko–Pastur equation) for its Stieltjes transform. Explicit solutions
are more involved; see the monographs [6, 5, 78]. Over the last couple of years siginificant
progress on limiting spectral distributions for dependent time series was achieved; see
for example [13, 12, 11]. Since the sample covariance matrix is a poor estimator for the
population covariance matrix in high dimension, a different approach to the fundamental
problem of estimating population eigenvalues is needed. In [33] the authors find that the
bootstrap works for the top eigenvalues if they are sufficiently separated from the bulk.
Among others, El Karoui [31] proposed to use the Marčenko–Pastur equation, which
basically requires more insight into the empirical spectral distribution and its support.
This was achieved in [28], where an algorithm for calculating the spectral distribution
based on certain approximate integral equations for its Stieltjes transform was presented.

In view of [25, 24, 23] the behavior of the top eigenvalues is reasonably well under-
stood in the case of linear dependence among the Xit and E[X4] = ∞. If E[X4] < ∞,
similar arguments to (4.10) can be developed to show that methods for sample covariance
matrices can be applied to sample correlation matrices; see for example [32]. Theorem 1
in [32] proves that if the spectral norm of the population correlation matrix is uniformly
bounded and E[X4(logX)2+ε] <∞, then the spectral properties of R and n−1XX′ are
asymptotically the same. In particular, if λ(1)/n

a.s.→ c, then µ(1)
a.s.→ c.

For the sake of completeness we mention that the study of non-asymptotic high-
dimensional sample covariance matrices was subject to an intense line of research in the
last years. Good references are [67, 1, 2, 78].

4.1.4 About this paper
In Section 4.2 we introduce the basic assumptions of this paper and discuss their meaning.
The main results are given in Section 4.3. We show that the limiting spectral distribution
of the sample correlation matrices is the Marčenko–Pastur law (Theorem 4.3) and that
the extreme eigenvalues converge a.s. to the endpoints of the limiting support (Theo-
rem 4.5) provided X has iid entries such that their truncated variance is “almost slowly
varying”. In this sense, the limiting spectral distribution of sample correlation matrices
is universal. A similar kind of universality holds for the limiting spectral distribution
of sample covariance matrices given a finite variance, while the asymptotic behavior of
their extreme eigenvalues is totally different if the fourth moment is infinite. Thus the
eigenvalues of sample correlation matrices exhibit a “more robust” behavior than their
sample covariance analogs. This is perhaps not surprising in view of the self-normalizing
property of sample correlations. Self-normalization also has the advantage that one does
not have to worry about the correct normalization. This is a crucial problem in the study
of sample covariance matrices in the case of an infinite fourth moment where one needs
a normalization stronger than the classical one. We conclude Section 4.3 with a small
simulation study which shows that the asymptotic results work nicely.

We continue with some technical results in Section 4.4. These are of independent
interest because they provide a Path-Shortening Algorithm for the calculation of bounds
for the very high moments of µ(1). We believe that this technique is novel and will be of
further use for proving results in random matrix theory. The proofs of our main results
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Theorems 4.5 and 4.3 are given in Sections 4.5 and 4.6, respectively. Both proofs heavily
depend on the techniques developed in Section 4.4. We conclude with an Appendix which
contains some auxiliary analytical results.

Condition (Cq) is crucial for the proof of Theorem 4.3. In Section 4.2 we discuss this
condition and find out that it is very close to condition (4.15) which in turn is very close
(but not equivalent) to membership of the distribution of X in the domain of attraction
of the Gaussian law. We conjecture that the statement of Theorem 4.3 may be proved
only under (4.15).

4.2 Assumptions

In this section we will present some distributional assumptions and discuss their meaning.
We assume that (Xit) is an iid field with generic element X. Recall the notation

Yit = Xit√
Di

, i = 1, . . . , p; t = 1, . . . , n . (4.14)

For ease of notation we will sometimes write (Y1, . . . , Yn) = (Y11, . . . , Y1n), Y = Y1 and
D = D1.

4.2.1 Domain of attraction type-condition for the Gaussian law
One of the basic assumptions in this paper is

E
[
Y1Y2

]
= o(n−2) and E

[
Y 4

1
]

= o(n−1) , n→∞ . (4.15)

In [39] it was proved that condition (4.15) holds if the distribution ofX is in the domain of
attraction of the normal law, which is equivalent to E[X21{|X|≤x}] being slowly varying.

The converse implication is not valid. Indeed, let h(·) be a positive function such
that 0 < c1 = lim infx→∞ h(x) < lim supx→∞ h(x) = c2 < ∞ and consider a symmetric
random variable X with tail P(X > x) = P(X < −x) = x−2h(|x|)/2 for x sufficiently
large. Then we have

c1 = lim inf
x→∞

P(|X| > x)
x2 < lim sup

x→∞

P(|X| > x)
x2 = c2 ,

and therefore E[X21{|X|≤x}] is not slowly varying, or, equivalently, the distribution of X
is not in the domain of attraction of the normal law, but (4.15) is valid as a domination
argument shows.

4.2.2 Condition (Cq)
This condition will be crucial for the proofs in this paper:
There exists a sequence q = qn → ∞ such that for some integer sequence k = kn with
k/ logn→∞ we have (k3q)/n→ 0, and the moment inequality

E[Y 2m1
1 · · ·Y 2mr

r ] ≤ qn
n

E[Y 2m1
1 · · ·Y 2mr−1

r−1 Y 2mr−2
r ] (Cq)

holds for 1 ≤ r ≤ `−1 and any positive integers m1, . . . ,mr satisfying m1 + · · ·+mr = `,
where ` ≤ k.
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Next we shed some light on this condition. It turns out to be closely related to (4.15).
Indeed, assume (Cq). Iteration of (Cq) for any fixed ` yields

E[Y 2m1
1 · · ·Y 2mr

r ] ≤
(qn
n

)`−rE[Y 2
1 · · ·Y 2

r ] ∼ q`−rn

n`
, n→∞ .

In particular, nE[Y 4
1 ] ≤ qn/n ≤ (logn)−3. Thus, (Cq) provides some precise rate at

which nE[Y 4
1 ] converges to zero.

Moreover, (Cq) does not hold if ε = lim infn→∞ nE[Y 4
1 ] > 0. If (Cq) were valid we

would have for large n,

ε/2 ≤ nE[Y 4
1 ] ≤ qn

n− 1 n(n− 1)E[Y 2
1 Y

2
2 ] ≤ qn

n− 1 → 0 .

For example, Proposition 1 in [52] asserts that the distribution of X2 is in the domain
of attraction of an α/2-stable distribution with 0 < α < 2 if and only if

lim
n→∞

nE[Y 4
1 ] = 1− α

2 , (4.16)

hence (Cq) does not hold if |X| has a regularly varying tail with index 0 < α < 2.
The expectations in (Cq) can be calculated by using the following formula due to [39]:

E[Y 2m1
1 · · ·Y 2mr

r ] = 1
(k − 1)!

∫ ∞
0

λk−1(E[e−λX
2
])n−r

r∏
j=1

E[X2mj e−λX
2
] dλ , (4.17)

where 1 ≤ r ≤ k, m1 + · · ·+mr = k and mi ≥ 1.
We present some examples of distributions of X which satisfy (Cq).

Example 4.1 (Standard normal distribution). Assume Xi ∼ N(0, 1). We calculate
E[Y 2m1

1 · · ·Y 2mr
r ] for the standard normal distibution via (4.17). Since X2

1 has χ2-
distribution we know for λ ≥ 0 that E[e−λX2 ] = (1 + 2λ)−1/2. We have

dm

dλm e−λX
2

= (−X2)m e−λX
2
.

Calculation yields

(−1)mE[X2m e−λX
2
] = (−1)n(2m− 1)!!(1 + 2λ)−1/2−m . (4.18)

By (4.17) and (4.18), we have for ` ≤ k

E[Y 2m1
1 · · ·Y 2mr

r ] = 1
(`− 1)!

∫ ∞
0

λ`−1(E[e−λX
2
])n−r

r∏
j=1

E[X2mj e−λX
2
] dλ

= 1
(`− 1)!

∫ ∞
0

λ`−1(1 + 2λ)−(n+2`)/2 dλ
r∏
j=1

(2mj − 1)!! .

Since ∫ ∞
0

λ`−1(1 + 2λ)−(n+2`)/2 dλ = Γ(n/2)Γ(`)
2`Γ(n/2 + `) ,

one obtains

E[Y 2m1
1 · · ·Y 2mr

r ] = Γ(n/2)
2`Γ(n/2 + `)

r∏
j=1

(2mj − 1)!! , (4.19)
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which allows one to conclude that

E[Y 2m1
1 · · ·Y 2mr

r ]
E[Y 2m1

1 · · ·Y 2mr−2
r ]

= 2mr − 1
n+ 2`− 2 ≤

2k
n
,

where we used mr ≤ ` ≤ k. Hence (Cq) holds with qn = 2kn.

Example 4.2 (Gamma distribution). Assume X2 ∼ Gamma(α, β), α, β > 0. In this
case

dm

dλmE[e−λX
2
] = dm

dλm
(

1 + λ

β

)−α
= Γ(1− α)

Γ(1− α−m)β
−n
(

1 + λ

β

)−α−n
.

For ` ≤ k one can calculate

E[Y 2m1
1 · · ·Y 2mr

r ] = 1
(`− 1)!

∫ ∞
0

λ`−1(E[e−λX
2
])n−r

r∏
j=1

(−1)mj dmj
dλmj E[e−λX

2
] dλ

= Γ(αn)(−1)`

Γ(αn+ `)

r∏
j=1

Γ(1− α)
Γ(1− α−mj)

.

Similarly to the previous example, (Cq) holds with qn = (kn + α)/α.

4.3 Main results

Our first result identifies the limit of the empirical spectral distribution FR of the sample
correlation matrix R for iid random fields (Xit) with generic element X.

Theorem 4.3 (Limiting spectral distribution). Assume the condition (Gγ).

(1) If X is centered and (4.15) holds then the sequence (FR) converges weakly to the
Marčenko–Pastur law given in (4.4).

(2) If X is symmetric and (4.15) does not hold, i.e., lim infn→∞ nE[Y 4] > 0, then

lim inf
n→∞

E
[ ∫

xkFR(dx)
]
> βk(γ) , k ≥ 1 ,

where βk(γ) is the k-th moment of the Marčenko–Pastur law given in (4.5).

The proof of parts (1) and (2) will be given in Sections 4.6.1 and 4.6.2, repectively.

Remark 4.4. Part (1) with condition (4.15) replaced by E[X2] < ∞ was proved in
[46]. Later, in [7] the finite variance assumption was replaced by the weaker con-
dition that the distribution of X belongs to the domain of attraction of the normal
law. We discussed in the previous section that (4.15) holds under the latter condi-
tion. Part (2) shows that (4.15) is the minimal condition for part (1). By Lemma
B.1 in [6], limn→∞ E

[ ∫
xkFR(dx)

]
= βk(γ) , k ≥ 1 , implies weak convergence of FR to

the Marčenko–Pastur distribution as the latter is uniquely determined by its moments
(βk(γ))k≥1.

If X is symmetric, nE[Y 4] = o(1) and p/n → 0, a slight modification of the proof
of part (2) combined with the method of moments yields FR → 1[1,∞) weakly. Conse-
quently, for any ε ∈ (0, 1) the number of eigenvalues outside (1− ε, 1 + ε) is o(p) a.s. In
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particular, if p is fixed, then µ(1) and µ(p) converge to 1 a.s. In view of part (2), one con-
cludes that nE[Y 4] = o(1) is a necessary and sufficient condition for the a.s. convergence
of the eigenvalues (µ(i)) if X is symmetric and p fixed.

When p→∞ one has to deal with the potentially o(p) eigenvalues outside the support
of the limiting spectral distribution. We develop a method to overcome this problem at
the expense of strengthening the assumption nE[Y 4] = o(1) to (Cq).

A Borel–Cantelli argument to obtain an upper bound for lim supn µ(1) requires an
adequate bound on E[µkn(1)], where kn →∞. To this end, we use the inequality

E[µkn(1)] ≤ E[tr Rkn ] =
p∑

i1,...,ikn=1

n∑
t1,...,tkn=1

E[Yi1tknYi1t1Yi2t1Yi2t2 · · ·Yikn tkn−1Yikn tkn ]

and determine those summands on the right-hand side which are largest when weighted by
their multiplicities. Using our Path-Shortening Algorithm, which is a novel technique that
efficiently uses the inherent structure of sample correlation matrices, their contribution
is calculated explicitly. The other summands can –with considerable technical effort– be
controlled by (Cq). Note that because of the identity E[tr Rkn ] = pE

[ ∫
xknFR(dx)

]
the

behavior of moments of the empirical spectral distribution is closely linked to the above
upper bound.

The following result provides general conditions for the a.s. convergence of the largest
and smallest eigenvalues µ(1) and µ(p) of R to the endpoints of the Marčenko–Pastur law.
The proof of this result is given in Section 4.5.

Theorem 4.5 (Limit of extreme eigenvalues). Assume (Gγ).

(1) If E[X4] <∞ and E[X] = 0

(2) or X is symmetric and satisfies condition (Cq),

then
µ(1) → (1 +√γ)2 a.s. , (4.20)

µ(p) → (1−√γ)2 a.s. (4.21)

Remark 4.6. Part (1) was proved in [46, 77]; see the discussion in Section 4.1. The-
orem 4.5 indicates that the a.s. convergence of the extreme eigenvalues of R does not
depend on the finiteness of the fourth or even second moment. This is in stark contrast
to the a.s. behavior of n−1λ(1), the largest eigenvalue of the sample covariance matrix
n−1XX′. Note that there is a phase transition of the a.s. asymptotic behavior of the
extreme eigenvalues at the border between finite and infinite fourth moment of X, while
such a transition occurs for the empirical spectral distribution at the border between
finite and infinite variance.

4.3.1 Simulation study
In this subsection we simulate a large data matrix X of iid entries. We compare the spec-
tra of XX′/n and R to the limiting Marčenko–Pastur spectral density with appropriate
parameter γ; see Theorem 4.3. We simulate from different distributions of X and choose
various values for p and n to cover Marčenko–Pastur distributions of several shapes. In
what follows, we assume E[X2] = 1, whenever the second moment is finite.

In Figure 4.1 we simulated a 1000×2000 data matrix X with iid entries drawn from a
t6-distribution which we renormalized to meet the requirement E[X2] = 1. To illustrate
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(a) Sample correlation: µ(p) =
0.086, µ(1) = 2.898.
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(b) Sample covariance: λ(p)/(nE[X2]) =
0.085, λ(1)/(nE[X2]) = 2.908.

Figure 4.1: Histogram and Marčenko–Pastur density for X ∼ t6, n = 2000, p = 1000.
γ = 0.5, (1−√γ)2 = 0.085, (1 +√γ)2 = 2.914.
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(a) Sample correlation: µ(p) =
0.088, µ(1) = 2.880.
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(b) Sample covariance: λ(p)/(nE[X2]) =
0.083, λ(1)/(nE[X2]) = 8.870.

Figure 4.2: Histogram and Marčenko–Pastur density for X ∼ t3, n = 2000, p = 1000.
Here γ = p/n = 0.5, (1−√γ)2 = 0.085, (1 +√γ)2 = 2.914.

the weak convergence of (FR) and (FXX′/n) we plot the histograms of the eigenvalues
(µ(i)) and (λ(i)/n) and compare them to the Marčenko–Pastur distribution with γ = 1/2.
As expected in the case E[X4] < ∞, the values n−1λ(1) = 2.9086 and n−1λ(p) = 0.0855
are very close to their theoretical almost sure limits 2.9142 and 0.0858, respectively. The
same is valid for µ(1) and µ(p).

In Figure 4.2 we simulate X from a renormalized t3-distribution with unit variance.
The histograms of (µ(i)) and (λ(i)/n) resemble the corresponding Marčenko–Pastur den-
sity f1/2. Note that λ(1)/n can be larger than the right endpoint (1 +√γ)2 since it has
a different limit behavior than in the case E[X4] < ∞, while µ(p) and µ(1) are close to
the endpoints (1−√γ)2 and (1 +√γ)2, respectively, for which Theorem 4.5 provides a
formal justification.

In Figures 4.3 and 4.4 we simulated from distributions with infinite fourth moment.
We drew from a symmetrized Pareto distribution with parameter 3.99 to create the
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(a) Sample correlation: µ(p) =
0.086, µ(1) = 2.902.
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(b) Sample covariance: λ(p)/(nE[X2]) =
0.083, λ(1)/(nE[X2]) = 3.176.

Figure 4.3: Histogram and Marčenko–Pastur density: X d= Z1−Z2 for Zi ∼ Pareto(3.99),
n = 2000, p = 1000. Here γ = p/n = 0.5, (1−√γ)2 = 0.085, (1 +√γ)2 = 2.914.
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(a) Sample correlation: µ(p) =
0.469, µ(1) = 1.731.
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(b) Sample covariance: λ(p)/(nE[X2]) =
0.159, λ(1)/(nE[X2]) = 35.319.

Figure 4.4: Histogram and Marčenko–Pastur density for X ∼ t2.1, n = 10000, p = 1000.
Here γ = p/n = 0.1, (1−√γ)2 = 0.467, (1 +√γ)2 = 1.732.

plots in Figure 4.3. Note that in this case E[X3.99] = ∞, while E[X3.99−ε] < ∞ for
any ε > 0, i.e., we are at the “border” between finite and infinite fourth moment. The
extreme eigenvalues in the sample correlation case are very close to their theoretical
limits stated in Theorem 4.5, whereas the largest eigenvalues of the sample covariance
matrix cease to lie within the support of the Marčenko–Pastur distribution. Note that
the assumption E[X2] = 1 is superfluous for the sample correlation plots due to self-
normalization. For the histogram of (λ(i)/n) the knowledge of the correct value E[X2]
is crucial since, for instance, λ(1)/n→ (1 +√γ)2E[X2] a.s. In applications, E[X2] needs
to be estimated first and estimation errors might significantly alter the conclusion. One
can easily imagine that Figure 4.1(b) with a misspecified variance of the data could have
resembled Figure 4.3(b). In this respect sample correlations are more robust.

In Figure 4.4, we choose X from the standardized t2.1-distribution, moving closer to
the infinite variance case. The histogram of (µ(i)) fits the Marčenko–Pastur density very
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(a) X d= Z2 − EZ2 for Z ∼ t1.5, n =
2000, p = 1000, γ = 0.5.
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(b) X ∼ t1.8, n = 10000, p = 1000, γ = 0.1

Figure 4.5: Histogram of (µ(i)) and Marčenko–Pastur density

well and the extreme eigenvalues are located in a close proximity of the endpoints of the
Marčenko–Pastur support. The sample covariance case in (b) does not look particularly
appealing due to the fact that there are a few relatively large eigenvalues. For example,
λ(1)/n = 35.3196 while (1 +√γ)2 is only 1.7325. By [4, 41, 23], the properly normalized
λ(1) converges to a Fréchet distributed random variable. The correct normalization is
roughly n4/2.1 and hence it is expected that λ(1)/n is separated from the bulk, whose
behavior ultimately determines the limiting spectral distribution, which is the Marčenko–
Pastur law with parameter γ = 0.1. However, due to the separation between the top
eigenvalues and the bulk, it is not obvious from a histogram with only 50 classes that
the Marčenko–Pastur law provides a good fit to the spectral distribution in (b). This
different behavior of sample correlations and covariances is an additional argument for
the higher stability of results obtained from an analysis of the sample correlation matrix.

Finally, we present two histograms of (µ(i)) with E[X2] = ∞ in Figure 4.5. In (a),
we choose the non-symmetric X d= Z2 − EZ2 for Z ∼ t1.5. In (b), the simulated X is
standardized t1.8. The plots look surprisingly stable, given that the empirical spectral
distribution does not weakly converge to the Marčenko–Pastur law; see Theorem 4.3(2).
The extreme eigenvalues µ(1) and µ(p) are much further away from (1 −

√
p/n)2 and

(1 +
√
p/n)2, respectively, than in all the other sample correlation histograms we have

seen so far.

4.3.2 A remark on the centered sample correlation matrix
We presented results for the matrices R and XX′, assuming that E[X] = 0 when E[|X|] <
∞. In practice, the expectation of X typically has to be estimated. We discuss what has
to be changed in the aforementioned theory in this case. We consider the matrix X̃X̃′,
where

X̃it = Xit −Xi and Xi = 1
n

n∑
t=1

Xit .
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and the corresponding correlation matrix R̃ = F̃1/2X̃X̃′F̃1/2, where F̃ is the p × p
diagonal matrix with entries

F̃ii = 1
(X̃X̃′)ii

, i = 1, . . . , p.

In contrast to (4.10) an application of Weyl’s inequality [6] yields

n−1|λ(1)(XX′)− λ(1)(X̃X̃′)| ≤ n−1‖XX′ − X̃X̃′‖2 , (4.22)

where, in general, the right-hand side does not converge to zero. However, since X−X̃ is
a rank 1 matrix, it is known from [6] that n−1XX′ and n−1X̃X̃′ share the same limiting
spectral distribution (if it exists) with right endpoint b say. Therefore we have

lim inf
n→∞

λ(1)(X̃X̃′)
n

≥ b .

Following [32], we let H = In − n−111′, where 1 = (1, . . . , 1)′. Then one can write
X̃ = XH and since H is a symmetric matrix with (n− 1) eigenvalues equal to 1 and one
eigenvalue equal to 0 we see that

λ(1)(X̃X̃′) ≤ λ(1)(XX′) .

We conclude

lim
n→∞

λ(1)(X̃X̃′)
n

= b a.s.

whenever λ(1)(XX′)/n→ b a.s. Therefore the a.s. behavior of the largest eigenvalues of
XX′ and X̃X̃′ are closely related.

Due to the shift and scale invariance of sample correlations, the aforementioned ar-
guments remain valid for the ordered eigenvalues

µ̃(1) ≥ · · · ≥ µ̃(p)

of R̃ if E[X4] < ∞ and E[X] = c (not necessarily zero), as shown in [46]. Then we
have µ̃(1) → (1 +√γ)2 a.s. and µ̃(p) → (1 − √γ)2 a.s. In Theorem 2 of [46] it was
proven that if E[X2] < ∞ and p/n → γ ∈ (0,∞), the empirical spectral distribution of
R̃ converges weakly to the Marčenko–Pastur law.

4.4 Technical results

In this section we provide most technical results required for the proofs of the main
theorems. We develop a new approach which efficiently uses the structure of sample
correlation matrices. The goal of this section is to prove Proposition 4.11.

Throughout (Xit) are iid symmetric. We will study the moments
n∑

t1,...,tk=1
E[Yi1tkYi1t1Yi2t1Yi2t2Yi3t2Yi3t3 · · ·Yiktk−1Yiktk ].

for k ≥ 1 and various choices of paths I = (i1, i2, . . . , ik) ∈ {1, . . . , p}k. In this case,
length(I) = k is the length of the path. We say that a path (i1, i2, . . . , ik) is an r-
path if it contains exactly r distinct components. A path is canonical if i1 = 1 and il ≤
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max{i1, . . . , il−1}+1, l ≥ 2. A canonical r-path satisfies {i1, i2, . . . , ik} = {1, . . . , r}. Two
paths are isomorphic if one becomes the other by a suitable permutation on (1, . . . , p).
Each isomorphism class contains exactly one canonical path. For k ≥ 1, define

f(I, T ) = E[Yi1tkYi1t1Yi2t1Yi2t2Yi3t2Yi3t3 · · ·Yiktk−1Yiktk ] , I, T ∈ {1, . . . , k}k .

Finally, define F (∅) = n and

F (i1, . . . , ik) = Fn(i1, . . . , ik) =
n∑

t1,...,tk=1
f((i1, . . . , ik), (t1, . . . , tk)) .

Note that F (I1) = F (I2) if I1, I2 lie in the same isomorphism class. Therefore, whenever
we are interested in F (I) we can assume without loss of generality that I is canonical.

In what follows, we will consider transformations of the path I leading to a new path
S(I). For ease of notation, we will also assume S(I) canonical. If it is not canonical,
we can always work with its canonical representative, the unique canonical path in its
isomorphism class.

When calculating values of F , the path-shortening function PS will be useful. Let
I = (i1, . . . , ik) ∈ {1, . . . , k}k. PS(I) is the output of the following algorithm.

Path-Shortening Algorithm PS(I).
Input: Path I = (i1, . . . , ik). Set J = I and R = 0, runs = 0.

Step 0: Set l = length(I). Go to Step 1.

Step 1: Erase runs.

– If ij = ij+1 for some 1 ≤ j ≤ l, where we interpret il+1 as i1, erase element ij
from the path. Set I = (i1, . . . , ij−1, ij+1, . . . , il), runs = runs +1 and return
to Step 0.

– Otherwise proceed with Step 2.

Step 2: Let R1 be the number of elements of the path I which appear exactly once. Set
R := R + R1. Then define I to be the resulting (possibly shorter) path which is
obtained by deleting those R1 elements from the path I. Go to Step 3.

Step 3: – If J = I, then return (I,R, runs) as output.
– If J 6= I, set J := I and return to Step 0.

Definition 4.7. The path-shortening function PS is the output (S(I), R(I), runs(I)) of
the Path-Shortening Algorithm (PSA) where S(I) is the resulting shortened path and
R(I) is the total number of elements that were removed in Step 2 of the PSA. We write
PS(I) = (S(I), R(I), runs(I)).

Properties of PS(I).
Clearly, length(S(I)) ≤ length(I). If I = (1, . . . , r) then S(I) = ∅, which shows that
S(I) can have length zero. Furthermore, all elements in S(I) appear at least twice. If I
is an r-path then R(I) ≤ r.

Lemma 4.8. For any I ∈ {1, . . . , k}k, we have F (I) = F (S(I))n−R(I).
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Proof. We shall look at the changes made to I in Steps 1 and 2 of the PSA separately.
Assume we are in Step 1.

• If ij = ij+1 for some 1 ≤ j ≤ l, where we interpret il+1 as i1, erase element ij from
the path. Set S1(I) = (i1, . . . , ij−1, ij+1, . . . , il).

• Otherwise, S1(I) = I.

Since Step 1 does not influence the value of R it suffices to show F (I) = F (S1(I)). If
S1(I) = I there is nothing to show. Therefore assume ij = ij+1 for some j. In this case,
we have

F (I) =
n∑

t1,...,tj−1,tj+1,...,tk=1
E[Yi1tkYi1t1 · · ·Yij−1tj−2Yij−1tj−1Yijtj−1

n∑
tj=1

Y 2
ijtj

Yijtj+1Yij+2tj+1Yij+2tj+2 · · ·Yiktk−1Yiktk ]

=
n∑

t1,...,tj−1,tj+1,...,tk=1
E[Yi1tkYi1t1 · · ·Yij−1tj−2Yij−1tj−1Yijtj−1Yijtj+1

Yij+2tj+1Yij+2tj+2 · · ·Yiktk−1Yiktk ] = F (S1(I)) , (4.23)

where we used
∑n
t=1 Y

2
it = 1. This proves that Step 1 poses no problem.

Next we turn to Step 2. Without loss of generality we can assume that I does not contain
any runs. If all elements of I appear at least twice there is nothing to prove. Therefore
assume the jth element ij appears only once and R1 = 1. Let S2(I) denote the path I
with the jth element removed. Thus we have to show F (I) = F (S2(I))n−1. In this case,
we have

F (I) =
n∑

t1,...,tj−1,tj+1,...,tk=1

n∑
tj=1

E[Yijtj−1Yijtj ]

×E[Yi1tkYi1t1 · · ·Yij−1tj−2Yij−1tj−1Yij+1tjYij+1tj+1 · · ·Yiktk−1Yiktk ]

=
n∑

t1,...,tj−1,tj+1,...,tk=1
n−1E[Yi1tkYi1t1 · · ·Yij−1tj−2Yij−1tj−1Yij+1tj−1

×Yij+1tj+1 · · ·Yiktk−1Yiktk ]
= F (S2(I))n−1 . (4.24)

Here we used that tj−1 = tj is necessary for E[Yijtj−1Yijtj ] to be non-zero. If R1 > 1 we
can apply the above argument iteratively to obtain F (I) = F (S2 ◦ · · · ◦S2(I))n−R1 . The
proof is complete.

Define for k ≥ 1, a function g by g(∅) = 1 and

g(I) = max
T∈{1,...,k}k

{|T | : f(I, T ) > 0} , I ∈ {1, . . . , k}k . (4.25)

From now, on we assume the I-paths to be canonical.

Lemma 4.9. Let I be a canonical r-path of length k. For any T ∈ {1, . . . , k}k such that
f(I, T ) > 0 we have |T | ≤ k − r + 1.
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Proof. Without loss of generality we may assume that T is canonical. We shall sometimes
refer to the ti’s as t-indices. In the beginning one should think of the t-indices as pairwise
distinct whenever possible. Their actual values are not relevant for the value f(I, T ). In
all cases, except r = 1, there are certain t-indices that have to coincide such that f(I, T )
can be positive: ti = tj for some i, j, i 6= j. This is due to the symmetry of X. We
will see that in some cases these i, j are not unique. More precisely, it may happen that
there is a set {ti1 , ti2 , . . . , ti2a} with i1, . . . , i2a distinct such that |{ti1 , ti2 , . . . , ti2a}| ≤ a
is necessary for f(I, T ) > 0. In these cases, the cardinality of T is less than k provided
f(I, T ) > 0.

We start with the two simplest cases. If r = 1, we have f(I, T ) > 0 for any T , and
hence |T | ≤ k = k − r + 1. Moreover, if r = k, we have f(I, T ) > 0 if and only if
t1 = · · · = tk, and hence |T | = 1 = k − r + 1.

Now we assume 1 < r < k. Our arguments will rely on the proof of Lemma 4.8.
Clearly, 1 ≤ g(I) ≤ k. From the definition of runs in the PSA we have runs(I) ≤ k − r.
From (4.23) and (4.24) one infers

runs(I) + 1 ≤ g(I) ≤ k −R(I) . (4.26)

First, we analyze paths I with S(I) = ∅, or equivalently length(S(I)) = 0. This implies
runs(I) = k − r; otherwise the path-shortening function stops earlier and S(I) 6= ∅.
Therefore, we get from the identity

g(I) = g(S(I)) + runs(I) (4.27)

that g(I) = k − r + 1, which finishes the proof in the case S(I) = ∅. Note that (4.27)
holds for all I. This follows from the proof of Lemma 4.8.

Next, assume S(I) 6= ∅. In this case, we immediately see

length(S(I)) = k −R(I)− runs(I) . (4.28)

Since each element in S(I) has to appear at least twice and r ≥ 2 we have length(S(I)) ≥
4. Moreover, S(I) has r−R(I) ≥ 2 distinct components. As a consequence, it must hold

runs(I) ≤ k − r − (r −R(I)) = k − 2r +R(I) . (4.29)

In view of (4.27), we have to bound g(S(I)). Without loss of generality S(I) may be
assumed canonical: there is exactly one canonical path in the isomorphism class of S(I)
and every path in an isomorphism class has the same g-value. If, for example, S(I)
happens to be (3, 4, 3, 4), then we will work with the canonical representative (1, 2, 1, 2).
Write S(I) = (s1, . . . , slength(S(I))). Since S(I) is canonical, we have

{s1, . . . , slength(S(I))} = {1, . . . , r −R(I)} .

For i = 1, . . . , r − R(I) define Ni := |{1 ≤ j ≤ length(S(I)) : sj = i}|. If we now let Li
be the set of all u such that (i, tu) appears as an index in f(S(I), T ), then |Li| = 2Ni.
Finally, define

Ti := {tj : j ∈ Li} and T̃i := (tj : j ∈ Li) , i = 1, . . . , r −R(I) .

For example, if I = (1, 2, 1, 2, 3, 3), then k = 6, r = 3, N1 = N2 = 2 and we have
(S(I), R(I), runs(I)) = ((1, 2, 1, 2), 1, 1) and L1 = L2 = {1, 2, 3, 4}.

By construction, f(S(I), T ) can only be positive if |Ti| ≤ Ni. More precisely every
t-index in the vector T̃i needs to coincide with at least 1 other t-index of this vector.
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Otherwise, E
[∏

u∈Li Yi,tu
]

= 0 which would imply f(S(I), T ) = 0. The quantity g(S(I))
is the maximum number of distinct t-indices such that f(S(I), T ) > 0. Hence, there can
be at most length(T̃i)/2 distinct t-indices in T̃i. Since each tj appears exactly twice in
(T̃1, . . . , T̃r−R(I)),

g(S(I)) ≤ 0.5 length(S(I)) . (4.30)

Now we are ready to finish the proof of the lemma. By (4.27), (4.30), (4.28), (4.29),
in this order, one obtains

g(I) = g(S(I)) + runs(I) ≤ length(S(I)
2 + runs(I)

= k −R(I)− runs(I)
2 + runs(I)

≤ k −R(I) + k − 2r +R(I)
2 = k − r .

Remark 4.10. The above proof reveals that g(I) = k − r + 1 if and only if S(I) = ∅.
For r-paths I of length k with S(I) 6= ∅, the bound g(I) ≤ k − r is sharp. Consider for
instance I = (1, 2, 1, 2), where

f(I, T ) = (E[Yt1Yt2Yt3Yt4 ])2 .

From this relation it is easily deduced that the only canonical representatives T =
(t1, t2, t3, t4) leading to f(I, T ) > 0 are (1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1) and (1, 1, 1, 1).
The first three of them have the highest number of distinct values. We conclude g(I) = 2.
In general, the canonical paths T for which the maximum in (4.25) is attained are not
unique, whenever g(I) ≤ k−r. On the other hand, if g(I) = k−r+1 there exists exactly
one canonical (k− r+ 1)-path T of length k for which the maximum is obtained. This is
an immediate consequence of the above proofs. In [6], Bai and Silverstein present a way
to describe this T .

For a canonical r-path I of length k let

d(I) = k − r + 1− g(I) . (4.31)

The function d satisfies 0 ≤ d(I) ≤ k − r and d(S(I)) = d(I). The set of canonical
r-paths of length k, denoted by Ir,k, can be written as a disjoint union

Ir,k =
k−r⋃
u=0
Ir,k(u) ,

where Ir,k(u) contains those I with d(I) = u.
Lemma 3.4 in [6] determines the cardinality of Ir,k(0): for k ∈ N and r ≤ k,

|Ir,k(0)| = 1
r

(
k

r − 1

)(
k − 1
r − 1

)
. (4.32)

Proposition 4.11. Assume condition (Cq). Then the following statements hold for any
r-path I of length k ≥ 1 and 1 ≤ r ≤ k:

(1) If S(I) = ∅, then F (I) = n1−r.
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(2) In general, we have
F (I) ≤ 2n1−r−d(I)(2k)d(I)qd(I) . (4.33)

Proof. S(I) = ∅ is equivalent to R(I) = r. By Lemma 4.8,

F (I) = F (S(I))n−R(I) = F (∅)n−r = n1−r .

Therefore, we only have to prove (4.33) for paths I with d(I) ≥ 1. Without loss of
generality we assume S(I) is a canonical (r−R(I))-path. We use the notation for paths
with S(I) 6= ∅ developed in the proof of Lemma 4.9. We know that

S(I) = (π1, . . . , πlength(S(I))) ,

where π1, . . . , πlength(S(I)) is a permutation of the path

I0 = (1, . . . , 1︸ ︷︷ ︸
N1

, 2, . . . , 2︸ ︷︷ ︸
N2

, . . . , r −R(I), . . . , r −R(I)︸ ︷︷ ︸
Nr−R(I)

) .

Clearly, I0 ∈ Ir−R(I),length(S(I))(0) = Ir−R(I),k−R(I)−runs(I)(0). By Lemma 4.9,

g(I0) = (k −R(I)− runs(I))− (r −R(I)) + 1 = k − r − runs(I) + 1

and by definition of the function d(·),

g(S(I)) = k − r − runs(I) + 1− d(S(I) = k − r − runs(I) + 1− d(I) .

The main idea will be to compare F (S(I)) to F (I0). Both of them are sums of
expressions of the type

r−R(I)∏
i=1

E
[
Y

2mi,1
i1 · · ·Y 2mi,si

isi

]
=
r−R(I)∏
i=1

E
[
Y

2mi,1
1 · · ·Y 2mi,si

si

]
, (4.34)

where for all i = 1, . . . , r−R(I), 1 ≤ si ≤ Ni,mi,j ≥ 1 for all j ≥ 1 andmi,1+· · ·+mi,si =
Ni. We write

s = (s1, . . . , sr−R(I)) and mi = (mi,1, . . . ,mi,si) , i = 1, . . . , r −R(I) . (4.35)

Observe that in

F (I0) =
n∑

t1,...,tN1+···+Nr−R(I) =1
E
[
YtN1+···+Nr−R(I)

Y 2
t1 · · ·Y

2
tN1−1

YtN1

]
· · ·

E
[
YtN1+···+Nr−R(I)−1

Y 2
tN1+···+Nr−R(I)−1 +1 · · ·Y 2

tN1+···+Nr−R(I)−1Y,tN1+···+Nr−R(I)

]
the non-zero summands have to satisfy tN1 = tN2 = · · · = tN1+···+Nr−R(I) . Hence, the
above sum is effectively a sum only over g(I0) t-indices. The point we want to stress
is that there is never a choice, in the sense that even though there are g(I0) distinct
t-indices, something like tN1 = t1 6= t2 = tN1+N2 is never possible. The reason is that
the associated canonical g(I0)-path for the t-indices is unique.

For S(I) 6= ∅, however, the associated canonical g(S(I))-path for the t-indices is
not unique, as mentioned in Remark 4.10. Depending on the sets Li there are several
possibilities. For instance, for S(I) = (1, 2, 1, 2) we have L1 = L2 = {1, 2, 3, 4}, d(I) = 1
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and length(S(I)) = 4. To produce a positive summand one needs |{t1, t2, t3, t4}| ≤ 2
with every t-index appearing at least twice. In this case, t1 has to take the same value as
one of the other three t-indices. Then there are two t-indices left which all have to appear
at least twice. In this specific example, there are three canonical paths of t-indices which
are listed in Remark 4.10 above.

We are interested in the general case. How many distinct canonical g(S(I))-paths T
of length length(S(I)) with f(S(I), T ) > 0 can exist? With the reasoning which lead to
(4.30) one can show that this number is at most (2d(I) + 1)!!. This bound is attained if
N1 = N2 = length(S(I))/2 which implies L1 = L2 = {1, . . . , length(S(I)}.

For our purpose we will use a much larger bound, namely

(2d(I) + 1)!! = (2d(I) + 1)(2d(I)− 1) · · · 3 ≤ (2d(I) + 1)d(I) ≤ (2k)d(I) . (4.36)

Now let us compare F (S(I)) and F (I0), which look very similar at first sight. The
main difference is the dimension of the index sets in the summation. While the sum for
F (I0) contains ng(I0) positive elements, the sum for F (S(I)) has at most (2k)d(I)ng(I0)−d(I)

positive elements. Let QS(I) denote the set of all canonical T for which the maximum
in (4.25) is attained. By the above considerations, |QS(I)| ≤ (2k)d(I). Each element
in QS(I) corresponds to a different configuration of t-indices in F (S(I)), i.e., it tells us
which t-indices have to be equal. Therefore, we have

F (S(I)) ≤
∑

Q∈QS(I)

FQ(S(I)) , (4.37)

where FQ(S(I)) is defined as follows. Write Q = (q1, . . . , qlength(S(I))). By construction,
{q1, . . . , qlength(S(I))} = {1, . . . , g(S(I))}. Set Kj = {1 ≤ i ≤ length(S(I)) : qi = j}.
Then

FQ(S(I)) =
n∑

t1,...,tlength(S(I))=1
tl=tm ∀l,m∈Kj ,1≤j≤g(S(I))

f(S(I), (t1, . . . , tlength(S(I)))) . (4.38)

We will show later that

FQ(S(I)) ≤ 2 qd(I)n−d(I)F (I0) , Q ∈ QS(I) . (4.39)

Then it follows from (4.37) and (4.39) that

F (S(I)) ≤
∑

Q∈QS(I)

FQ(S(I))

≤ (2k)d(I)2 qd(I)n−d(I)F (I0) = 2 (2k)d(I)qd(I)n−d(I)n1−r+R(I) .

Finally, an application of Lemma 4.8 gives

F (I) = n−R(I)F (S(I)) ≤ 2 (2k)d(I)qd(I)n−d(I)n1−r ,

which completes the proof.
Next, we show (4.39) by matching each of the ng(I0)−d(I) positive summands in (4.38)

with nd(I) of the ng(I0) positive summands in F (I0), where we recall that

F (I0) =
n∑

t1,...,tlength(S(I))=1
tN1 =tN2 =···=tN1+···+Nr−R(I)

f(I0, (t1, . . . , tlength(S(I)))) . (4.40)
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By matching we mean the following. Assume we want to prove
n∑
i=1

Ai ≤
m∑
j=1

Bj (4.41)

for nonnegative Ai, Bi and m ≥ n. If for every i = 1, . . . , n there exists a ji ∈ {1, . . . ,m}
such that Ai ≤ Bji and the ji’s are distinct, then (4.41) holds. In this case, we say that
each Ai is matched by some Bji .

We say that f(S(I), (t1, . . . , tlength(S(I)))) and f(I0, (t1, . . . , tlength(S(I)))) are in class
y =

∑r−R(I)
i=1 si if they can be written in the form

r−R(I)∏
i=1

E
[
Y

2mi,1
1 · · ·Y 2mi,si

si

]
. (4.42)

By construction, y takes values in the set {r − R(I), . . . , length(S(I))}. A summand in
class y is fully determined by the vector (s,m1, . . . ,mr−R(I)) =: (s,m); see (4.35) for
this notation. Hence, we call this summand of type (s,m) and denote it fs,m. Note that
the class y is comprised of all elements of type (s,m) such that

∑r−R(I)
i=1 si = y and m

satisfies the restriction stated below equation (4.34).
Let T0(y) and TQ(y) be index sets which contain the exact type of all summands

(counted with multiplicity) of class y in (4.40) and (4.38), respectively. As mentioned
before, we must have

length(S(I))∑
y=r−R(I)

|T0(y)| = ng(I0) and
length(S(I))∑
y=r−R(I)

|TQ(y)| = ng(I0)−d(I) .

With this notation we can write

2F (I0) = 2
length(S(I))∑
y=r−R(I)

∑
(s,m)∈T0(y)

fs,m , (4.43)

nd(I) FQ(S(I)) = nd(I)
length(S(I))∑
y=r−R(I)

∑
(s,m)∈TQ(y)

fs,m . (4.44)

We show (4.39) by a matching argument. We start by matching summands in class
length(S(I)). From (4.42) we see that elements of class length(S(I)) are necessarily of
the form

r−R(I)∏
i=1

E
[
Y 2

1 · · ·Y 2
Ni

]
,

in other words they are all equal. Note that

|T0(length(S(I)))| = n(n− 1) · · · (n− g(I0) + 1) ,
|TQ(length(S(I)))| = n(n− 1) · · · (n− g(I0) + d(I) + 1) .

Therefore, we have

nd(I)
∑

(s,m)∈TQ(length(S(I)))

fs,m ≤ 2
∑

(s,m)∈T0(length(S(I)))

fs,m .
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This shows that for each summand in class length(S(I)) on the left-hand side of (4.39)
we can find at least one summand of the same type on the right-hand side of (4.39).

Since a large number of summands of the class length(S(I)) have not been used
for matching of summands from the same class, we can use (Cq) to match them with
summands of classes length(S(I))−1, length(S(I))−2, . . . ,max(length(S(I))−d(I), r−
R(I)).

Applying (Cq) to a summand of class length(S(I))− 1 we obtain that it is bounded
by q times a summand in class length(S(I)). Hence, we can perform the matching in
(4.39) also between different classes. Clearly, for y ∈ {r−R(I)+1, . . . , length(S(I))} the
index set T0(y) is much larger than T0(y − 1). In fact, we have |T0(y)| = n c |T0(y − 1)|
for some constant c > 1. Note that y 7→ |TQ(y)| is not a strictly increasing function since
some TQ(y) can be empty.

The matching is performed as follows: first match the class length(S(I)) summands
on the left-hand side of (4.39). Then match the class length(S(I)) − 1 summands on
the left-hand side of (4.39) with the remaining class length(S(I)) summands on the
right-hand side which have not been used for the matching yet.

Let r−R(I) ≤ u ≤ length(S(I)). The general strategy is to match class u summands
on the left-hand side with class u, . . . ,min(u + d(I), length(S(I))) summands on the
right-hand side. During the matching one tries to use the (still available) class min(u+
d(I), length(S(I))) summands on the right-hand side first, then turns to class min(u+
d(I), length(S(I))) − 1, and so forth. Whenever a matching between different classes
is performed an application of (Cq) is necessary to ensure that the expression on the
left-hand side is bounded by whatever we have matched it with on the right-hand side.
This leads to powers of q and since qd(I) is the highest possible power we have explained
the factor qd(I) in (4.39).

Note that the factor 2 in (4.39) is there to guarantee

|TQ(length(S(I)))| < 2n−d(I) |T0(length(S(I)))|

for sufficiently large n, but it is of no central importance.
The last step in the procedure is the matching of the summands with the highest

possible powers on the left-hand side of (4.39), which appear when all t-indices are
equal. They are elements of the class r −R(I). We have

|T0(r −R(I))| = |TQ(r −R(I))| = n ,

which is a simple explanation why matching of (4.43) and (4.44) with summands in
the same class cannot work in general. Using (Cq) d(I) times, we can bound class
r − R(I) summands by class r − R(I) + d(I) summands of which we originally have
|T0(r − R(I))| ≈ nd(I)|T0(r − R(I))|, which explains the factor nd(I) in (4.39). The
general matching strategy applies and the proof of (4.39) is complete.

4.5 Proof of Theorem 4.5

The following proposition contains our main technical novelty. Its proof is given after
the proof of Theorem 4.5.

Proposition 4.12. Assume (Gγ) and that the iid symmetric field (Xit) satisfies (Cq).
Then the following limit results hold for the largest and smallest eigenvalues µ(1) and
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µ(p) of R:

lim sup
n→∞

µ(1) ≤ (1 +√γ)2 a.s. (4.45)

lim inf
n→∞

µ(p) ≥ (1−√γ)2 a.s. (4.46)

Proof of Theorem 4.5. (1) If E[X4] < ∞, (4.20) and (4.21) hold for any mean zero dis-
tribution as seen in (4.11).
(2) Now assume (Cq). The convergence of FR to a deterministic distribution supported
on a compact interval implies that the number of the eigenvalues outside this interval is
o(p). Since the right and left endpoints of the Marčenko–Pastur law are (1 +√γ)2 and
(1−√γ)2, respectively, we conclude from Theorem 4.3(1) that

lim inf
n→∞

µ(1) ≥ (1 +√γ)2 a.s. and lim sup
n→∞

µ(p) ≤ (1−√γ)2 a.s. ;

see [6] for details. Together with Proposition 4.12 this completes the proof.

Proof of equation (4.45) in Proposition 4.12
Following [38], we prove (4.45) by showing

∞∑
n=1

E
[(µ(1)

z

)k]
<∞ , (4.47)

where z > (1 +√γ)2 and k = kn satisfies k/ logn → ∞ and (k3q)/n → 0, which exists
by condition (Cq). We use that E[µk(1)] ≤ E[tr(R)k] and

E[tr(R)k] =
p∑

i1,...,ik=1

n∑
t1,...,tk=1

E[Yi1tkYi1t1Yi2t1Yi2t2Yi3t2Yi3t3 · · ·Yiktk−1Yiktk ]

=
p∑

i1,...,ik=1
F (i1, . . . , ik) .

We rewrite E[tr(R)k] by sorting according to the number of distinct components in the
path (i1, . . . , ik). Any r-path of length k is an element in the disjoint union Jr,k(0) ∪
· · · ∪ Jr,k(k − r), where Jr,k(u) is the set of all r-paths I of length k with d(I) = u; see
(4.31) for the definition of d(I). Hence we have

{1, . . . , p}k =
k⋃
r=1

k−r⋃
u=0
Jr,k(u) . (4.48)

Given a path I ∈ Jr,k(u) we can look at the positions where the r distinct components
appear for the first time. There are r such positions. The first such position is always 1,
in general i1 can take p different values. For the second such position there are (p − 1)
possibilities; the original p minus the one from the first position. In total there are
p(p− 1) · · · (p− r + 1) ways to assign values to these r positions. For this reason

|Jr,k(u)| = p(p− 1) · · · (p− r + 1)|Ir,k(u)| , (4.49)

where Ir,k(u) is the set of all canonical r-paths I of length k with d(I) = u. The only
difference between the definitions of Jr,k(u) and Ir,k(u) is that the elements of the latter
are canonical. Note that Ik,k(u) = ∅ for all u ≥ 1.
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In view of (4.48) and (4.49) we obtain

E[tr(R)k] =
k∑
r=1

k−r∑
u=0

∑
I∈Jr,k(u)

F (I)

=
k∑
r=1

p(p− 1) · · · (p− r + 1)
k−r∑
u=0

∑
I∈Ir,k(u)

F (I) (4.50)

≤
k∑
r=1

pr
∑

I∈Ir,k(0)

F (I) +
k−1∑
r=1

pr
k−r∑
u=1
|Ir,k(u)| max

I∈Ir,k(u)
F (I) =: S1 + S2 .

By Proposition 4.11, (4.32) and since |Ir,k(0)| ≤
(
k−1
r−1
)2, we have

S1 ≤
k∑
r=1

pr
(
k − 1
r − 1

)2
n1−r = p

k∑
r=1

(
k − 1
r − 1

)2( p
n

)r−1
. (4.51)

Next we bound S2. Consider 1 ≤ u ≤ k−r. We will see how elements of Ir,k(u) can be
constructed by modifying elements of Ir,k(0). Let I ∈ Ir,k(u)(N1, . . . , Nr) be the subset
of Ir,k(u) for whose elements the integer i appears exactly Ni times as a component.
Here Ni, i = 1, . . . , r are positive integers satisfying N1 + · · · + Nr = k. Obviously it
is possible to obtain I by permuting the components of any I0 ∈ Ir,k(0)(N1, . . . , Nr).
Consider the following permutation of I0: two components of I0 exchange places, all
other remain untouched. We denote such a switching permutation by SP . The number
of such permutations is bounded by k2/2. Indeed, the first component can switch places
with the remaining k − 1 components, the second with k − 2 components, etc. In total
there are

(k − 1) + (k − 2) + · · ·+ 1 =
k−1∑
j=1

j = (k − 1)k
2 ≤ k2

2

ways how two components can switch positions.
Let u = 1. For any I ∈ Ir,k(u)(N1, . . . , Nr) there exists at least one path I0 ∈

Ir,k(0)(N1, . . . , Nr) and a switching permutation SP such that I = SP (I0). Here SP
and I0 are in general not unique. This is a consequence of the proof of Lemma 4.9. This
implies

|Ir,k(u)| ≤ |Ir,k(0)|k
2

2 .

Similarly, for 1 ≤ u ≤ k−r and I ∈ Ir,k(u)(N1, . . . , Nr) there exist I0 ∈ Ir,k(0)(N1, . . . , Nr)
and switching permutations SP1, . . . , SPu such that I = SP1◦· · ·◦SPu(I0) , which shows

|Ir,k(u)| ≤ |Ir,k(0)|
(k2

2

)u
. (4.52)

Now we are ready to bound S2. From Proposition 4.11 we get

max
I∈Ir,k(u)

F (I) ≤ 2n1−r−u(2k)uqu
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and therefore,

S2 ≤
k−1∑
r=1

pr
k−r∑
u=1

(
k − 1
r − 1

)2(k2

2

)u
2n1−r−u(2k)uqu

= p

k−1∑
r=1

(
k − 1
r − 1

)2( p
n

)r−1
2
k−r∑
u=1

(k3q

n

)u
≤ p

k−1∑
r=1

(
k − 1
r − 1

)2( p
n

)r−1
2
[(

1− k3q

n

)−1
− 1
]
.

Finally, we have the bound

E[tr(R)k] ≤ S1 + S2 ≤ p
k∑
r=1

(
k − 1
r − 1

)2( p
n

)r−1(
1 + 2

[(
1− k3q

n

)−1
− 1
]
1{r<k}

)
≤ p

k∑
r=1

(
2k − 2
2r − 2

)( p
n

)r−1(
1 + 2

[(
1− k3q

n

)−1
− 1
]
1{r<k}

)
≤ p

2k−2∑
r=0

(
2k − 2
r

)(√ p

n

)r(
2
(

1− k3q

n

)−1
− 1
)2k−2−r

=
[
p1/(k−1)

(
2
(

1− k3q

n

)−1
− 1 +

√
p

n

)2]k−1
≤ ηk ,

where η is a constant satisfying (1 + √γ)2 < η < z. The last inequality follows from
p1/(k−1) → 1 and

lim
n→∞

(
2
(

1− k3q

n

)−1
− 1 +

√
p

n

)2
= (1 +√γ)2 .

This shows (4.47) which concludes the proof.

4.5.1 Proof of equation (4.46) in Proposition 4.12
We start with the following result.

Proposition 4.13. Assume (Gγ). If the iid entries (Xit) are symmetric and satisfy
condition (Cq) then

lim sup
n→∞

‖R − (1 + γ)I‖2 ≤ 2√γ a.s. (4.53)

Proof. The general idea is the same as in the proof of equation (4.45) in Proposition 4.12:
we will bound the spectral norm of R − (1 + γ)I by the trace of high powers of this
matrix and then take an appropriate root. To this end we choose an integer sequence
k = kn → ∞ such that k/ logn → ∞ and (k3q)/n → 0, which exists by condition (Cq).
Since the matrices R and (1 + γ)I commute we have

(R − (1 + γ)I)2k =
2k∑
i=0

(
2k
i

)
Ri(−1)i(1 + γ)2k−iI .
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By linearity of the trace,

E[tr(R − (1 + γ)I)2k] = p (1 + γ)2k
[
1 + p−1

2k∑
i=1

(
2k
i

)( −1
1 + γ

)i
E[tr Ri]

]
. (4.54)

From (4.50) combined with (4.32) we know that for n sufficiently large

E[tr Ri] ≥ p
i∑

r=1

(p− 1)(p− 2) · · · (p− r + 1)
nr−1

1
r

(
i

r − 1

)(
i− 1
r − 1

)
= p βi(γ) (1− δn) ,

(4.55)
where δn = O(1/n). Additionally, we established

E[tr Ri] ≤ p βi(γ)
(

1 + 2k3q

n

)
(1 + δn) . (4.56)

Hence, by (4.54), Lemma 4.17, and noting that fk is continuous on R, and p/n → γ ∈
(0, 1], we have for n sufficiently large,

E[tr(R − (1 + γ)I)2k] = p(1 + γ)2k
[
1 +

2k∑
i=1

(
2k
i

)( −1
1 + γ

)i
βi(γ)

](
1 +O(2k3qn/n)

)
= p(1 + γ)2kfk(γ)

(
1 +O(2k3qn/n)

)
≤ p (1 + γ)(4γ)k

(
1 +O(2k3qn/n)

)
< z2k ,

for any z > 2√γ. The last inequality follows from

lim
n→∞

p1/(2k)(1 + 2k3qn/n
)1/(2k)(1 + γ)1/(2k) = 1 .

Using the same Borel-Cantelli argument as in the proof of (4.45), one obtains the desired
relation

lim sup
n→∞

‖R − (1 + γ)I‖2 ≤ 2√γ a.s.

With Proposition 4.13 we can finish the proof of (4.46). We have

‖R − (1 + γ)I‖2 = max{µ(1) − (1 + γ),−µ(p) + (1 + γ)} .

From (4.53) we conclude

lim sup
n→∞

µ(1) ≤ 2√γ + 1 + γ = (1 +√γ)2 a.s. ,

lim inf
n→∞

µ(p) ≥ −2√γ + 1 + γ = (1−√γ)2 a.s.

4.6 Proof of Theorem 4.3

4.6.1 Proof of Theorem 4.3(1)
We appeal to the proof of Theorem 2.3 in [7]. The following lemma is a version of
Corollary 1.1 in [7].
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Lemma 4.14. Let B = Bn = (Bjk) be a non-random n× n matrix with bounded norm
and

S = {(i1, j1, i2, j2) : 1 ≤ i1, j1, i2, j2 ≤ n}
\{(i1, j1, i2, j2) : i1 = i2, j1 = j2 or i1 = j2 6= i2 = j1} .

If E[Y 4] = o(n−1),

n var(Y1Y2) → 0 , (4.57)
Vn = n2

∑
S

(
cov(Yi1Yj1 , Yi2Yj2)

)2 → 0 , (4.58)

then Condition 1 of Theorem 1.1 in [7] holds, i.e.,

E[|Y0BY′0 − tr(BE[Y0Y′0])|2] = o(1),

where Y0 = (Y1, . . . , Yn).

Proof. We have for some constant c > 0,

E[|Y0BY′0 − tr(BE[Y0Y′0])|2]

= E
[∣∣∣ n∑
i1,j1=1

Bi1j1(Yi1Yj1 − E[Yi1Yj1 ])
∣∣∣2]

=
n∑

i1,j1=1

n∑
i2,j2=1

Bi1j1Bi2j2cov(Yi1Yj1 , Yi2Yj2)

≤ c
[
n var(Y 2

1 ) + n var(Y11Y12)
]

+
∑
S
Bi1j1Bi2j2cov(Yi1Yj1 , Yi2Yj2) .

By assumption, n var(Y 2) = n (E[Y 4] − n−2) → 0. The second summand converges to
zero by (4.57). It is shown in [7] that the last summand is bounded by

c n
(∑
S

(
cov(Yi1Yj1 , Y1i2Y1j2)

)2)1/2

which converges to zero by (4.58).

Remark 4.15. Lemma 4.14 corrects the proof of Theorem 2.3 and Corollary 1.1 in [7].
In the latter paper it is claimed that

V ′n = n2
∑
S′

(
cov(Yi1Yj1 , Yi2Yj2

)2 → 0 ,

where
S ′ = {(i1, j1, i2, j2) : 1 ≤ i1, j1, i2, j2 ≤ n}

\{(i1, j1, i2, j2) : i1 = i2 6= j1 = j2 or i1 = j2 6= i2 = j1} .

However, S ′ contains the quadruples (i, i, i, i). Hence

V ′n ≥ np2(var(Y 2)
)2 = n−1 p2 (nE[Y 4])2 − 2 p

2

n2 (nE[Y 4]) + p2

n3 ,

which does not necessarily converge to zero since nE[Y 4] may converge to zero arbitrarily
slowly.
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Now we are ready for the proof of Theorem 4.3(1). If the distribution of X is in the
domain of attraction of the normal law the claim follows from Theorem 2.3 in [7], using
our Lemma 4.14.

Now assume the alternative condition (4.15). We will apply Theorem 2.2 in [7] and
our Lemma 4.14. Our goal is to find the limiting spectral distribution of R = YY′ via
the limit of the Stieltjes transform of Y′Y, using the fact that YY′ and Y′Y have the
same non-zero eigenvalues. Since λ(i) = 0 for any of these matrices whenever i > n ∨ p
we obtain a connection between the two spectral distributions:

FY′Y =
(

1− p

n

)
1[0,∞) + p

n
FYY′ .

Hence

sR(z) =
∫ 1
x− z

dFR(x)

=
∫ 1
x− z

d
(n
p
FY′Y −

(n
p
− 1
)

1[0,∞)

)
(x)

= n

p
sY′Y(z)−

(n
p
− 1
) 1
−z

, z ∈ C+ , (4.59)

where we used that for a constant c 6= 0 we have scA(z) = c−1sA(cz).
We introduce the n× n matrix T = (Tij) = (pE[YiYj ]) which is a a circulant matrix

whose eigenvalues can be determined as T11 + (n− 1)T12 and T11 − T12 where the latter
appears with multiplicity n − 1. By assumption (4.15), we have Tij = o(n−1) for i 6= j
and hence ‖T‖2 is bounded. The empirical spectral distribution

FT(x) = 1
n

n∑
j=1

1{λj(T)≤x} =
1{T11+(n−1)T12≤x}

n
+ n− 1

n
1{T11−T12≤x}

converges to the degenerate distribution Hγ with all mass at limn→∞(T11 − T12) =
limn→∞ p/n = γ.

Next we verify the assumptions of Lemma 4.14. We have

nE[var(Y1Y2)] = n
(
E[(Y1Y2)2]− (E[Y1Y2])2)

≤ n
( 1
n(n− 1) − o(n

−2)
)
→ 0 , n→∞ .

This implies (4.57).
Now we turn to Vn in (4.58). If we distinguish between the types of indices in S we find

that either possible structure for the summands (Yi1Yj1 − E[Yi1Yj1 ])(Yi2Yj2 − E[Yi2Yj2 ])
in Vn is of the type Y 3

1 Y2, Y
2
1 Y2Y3 or Y1Y2Y3Y4. Keeping this in mind, we conclude that

for some constant c > 0,

Vn ≤ c
(
n4 (cov(Y 2

1 , Y1Y2)
)2 + n5 (cov(Y 2

1 , Y2Y3)
)2 + n5 (cov(Y1Y2, Y2Y3)

)2
+n6 (cov(Y1Y2, Y3Y4)

)2)
≤ c

(
n4 (E[Y 3

1 Y2]− (1/n)E[Y1Y2]
)2 + n5 (E[Y 2

1 Y2Y3]− (1/n)E[Y1Y2]
)2

+n5 (E[Y1Y
2
2 Y3]− (E[Y1Y2])2)2 + n6 (E[Y1Y2Y3Y4]− (E[Y1Y2])2)2) .
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The right-hand side converges to zero in view of assumption (4.15) and because (see [39])

E[Y 3
1 Y2] = O(n−2), E[Y 2

1 Y2Y3] = O(n−3) and E[Y1Y2Y3Y4] = O(n−4) .

Applications of Theorem 2.2 in [7] and our Lemma 4.14 yield for s = limn→∞ sY′Y,

s(z) =
∫ 1
ω(1− γ−1 − γ−1zs(z))− z dHγ(ω)

= 1
γ(1− γ−1 − γ−1zs(z))− z ,

Thus s = s(z) is the solution of the quadratic equation

s2z + s(1 + z − γ) + 1 = 0.

By convention of [6], the square root of a complex number is the one with a positive
imaginary part. Hence

s(z) =
−(γ−1z + γ−1 − 1) +

√
(γ−1z − γ−1 − 1)2 − 4γ−1

2γ−1z
.

Writing m for the limiting Stieltjes transform of FYY′ , we conclude from (4.59) and since
n/p→ γ−1 that

m(z) = γ−1s(z) + γ−1 − 1
z

=
1− γ − z +

√
(1 + γ − z)2 − 4γ
2γz ,

which we recognize as the Stieltjes transform of the Marčenko–Pastur law in (4.4); see
(4.6). The proof is complete.

4.6.2 Proof of Theorem 4.3(2)
Assume lim infn→∞ nE[Y 4] = δ > 0. For k ≥ 1, the expected moments of the empirical
spectral distribution FR are

β̃k = E
[ ∫

xk dFR(x)
]

= p−1E[tr Rk] = p−1
p∑

i1,...,ik=1
F (i1, . . . , ik) . (4.60)

From (4.50) we know that

p−1E[tr(R)k] ≥
k∑
r=1

(p− 1)(p− 2) · · · (p− r + 1)
( ∑
I∈Ir,k(0)

+
∑

I∈Ir,k(1)

)
F (I) =: S3 + S4 .

By Proposition 4.11 and (4.32), we have

lim
n→∞

S3 =
k∑
r=1

1
r

(
k

r − 1

)(
k − 1
r − 1

)
γr−1 = βk(γ) , (4.61)

which we recognize from (4.5) as the k-th moment of the Marčenko–Pastur law.
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Next, observe that for k ≥ 4 and 2 ≤ r ≤ k − 2, Ir,k(1) contains the element

Ir = (1, 2, 1, 2, 2, . . . , 2︸ ︷︷ ︸
k−r−2

, 3, . . . , r) .

One checks that R(Ir) = r−2 and S(Ir) = (1, 2, 1, 2); consult the PSA and Definition 4.7
for the definitions of R(·) and S(·). Moreover, by symmetry of Yit we have

F (1, 2, 1, 2) =
n∑

t1,...,t4=1
E[Y1t1Y1t2Y1t3Y1t4Y2t1Y2t2Y2t3Y2t4 ]

=
n∑

t1,...,t4=1
(E[Yt1Yt2Yt3Yt4 ])2

=
n∑

t1=1
(E[Y 4

t1 ])2 + 3
n∑

t1 6=t2=1
(E[Y 2

t1Y
2
t2 ])2 ≥ 1

n
(nE[Y 4])2 .

By Lemma 4.8 we have

F (Ir) = n2−rF (1, 2, 1, 2) ≥ n1−r(nE[Y 4])2

and consequently

lim inf
n→∞

S4 ≥ lim inf
n→∞

k−2∑
r=2

(p− 1)(p− 2) · · · (p− r + 1)F (Ir)

≥ lim inf
n→∞

k−2∑
r=2

(p− 1)(p− 2) · · · (p− r + 1)n1−r(nE[Y 4])2 = δ2
k−2∑
r=2

γr−1 .

This together with (4.61) proves lim infn→∞ β̃k > βk(γ), as desired.

4.7 Appendix

In this section we provide some auxiliary tools for the proofs of the main results.

Lemma 4.16. Let k ∈ N and 1 ≤ j ≤ k. Then

−
2k∑

i=2j−1
(−1)i

(
2k
i

)(
i− 1

2j − 2

)
= 1 (4.62)

Proof. For 1 ≤ j ≤ k we rewrite (4.62) as

−
2k∑

i=2j−1
(−1)i

(
2k
i

)
(i− 1)!

(i+ 1− 2j)! = (2j − 2)! . (4.63)

We define the functions

u(x) = (x− 1)2k − 1 , v(x) =
2k∑
i=1

(
2k
i

)
(−1)ixi−1 , and w(x) = 1

x
.
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Then v(x) = u(x)w(x) and since

(i− 1)!
(i+ 1− 2j)! = (i− 1)(i− 2) · · · (i− 2j + 2) ,

equation (4.63) is equivalent to an equation for the (2j − 2)-th derivative of v evaluated
at 1,

v(2j−2)(1) = −(2j − 2)! .

By Leibniz’s rule for differentiation, one gets

v(2j−2)(x) = (uw)(2j−2)(x) =
2j−2∑
`=0

(
2j − 2
`

)
u(`)(x)w(2j−2−`)(x) .

Observe that u(0)(1) = −1 and u(`)(1) = 0 for 1 ≤ ` ≤ 2j − 2. Furthermore we have
w(2j−2−`)(1) = (2j − 2− `)!. Hence, we conclude

v(2j−2)(1) =
2j−2∑
`=0

(
2j − 2
`

)
u(`)(1)w(2j−2−`)(1) = −(2j − 2)! ,

completing the proof.

For k ∈ N and x ∈ [0, 1], define the function

fk(x) = 1 +
2k∑
i=1

(
2k
i

)( −1
1 + x

)i i∑
r=1

1
r

(
i

r − 1

)(
i− 1
r − 1

)
xr−1 . (4.64)

The following is our key lemma.

Lemma 4.17. We have for k ∈ N and x ∈ [0, 1]

fk(x) = 1−
k∑
j=1

xj−1

(1 + x)2j−1
(2j − 2)!
j!(j − 1)! ≤

(4x)k

(1 + x)2k−1 .

Proof. From [6, page 41] we know that

i∑
r=1

1
r

(
i

r − 1

)(
i− 1
r − 1

)
xr−1 =

b(i−1)/2c∑
r=0

xr(1 + x)i−1−2r (i− 1)!
(i− 1− 2r)!r!(r + 1)! .

Changing the order of summation one obtains

fk(x)− 1 =
k−1∑
r=0

2k∑
i=2r+1

(
2k
i

)
(−1)ixr(1 + x)−1−2r (i− 1)!

(i− 1− 2r)!r!(r + 1)!

=
k∑
j=1

xj−1

(1 + x)2j−1
1

j!(j − 1)!

2k∑
i=2j−1

(
2k
i

)
(−1)i (i− 1)!

(i+ 1− 2j)!

= −
k∑
j=1

xj−1

(1 + x)2j−1
(2j − 2)!
j!(j − 1)! ,
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where the last equality followed from Lemma 4.16 and its equivalent formulation (4.63).
For j ∈ N define

gj(x) = (1 + x)2j−1

xj
fj(x) . (4.65)

We have g1(x) = 1 and g2(x) = 2 + x. A straightforward induction proves the recursion

gj(x) = (1 + x)2gj−1(x)− gj−1(0)
x

, j ≥ 2 . (4.66)

From this recursive construction one deduces that gj(x) is a polynomial of degree j − 1
with positive coefficients.

Next we show gk(x) ≤ 4k. Clearly we have g1(x) ≤ 4 and g2(x) ≤ 42. Therefore
assume

‖gk−1‖[0,1] := sup
y∈[0,1]

|gk−1(y)| ≤ 4k−1 .

Then for x ∈ [0, 1],

gk(x) = x(2 + x)gk−1(x) + gk−1(x)− gk−1(0)
x

≤ (2 + x)gk−1(x) + gk−1(1) ≤ (2 + x+ 1)‖gk−1‖[0,1]

≤ (3 + x)4k−1 ≤ 4k .

In view of (4.65), this finishes the proof.
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