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Motivation: characterization of the limit of partial sums

Let (X;)t>1 be a process with dependent extreme values.

Motivation
Characterization of the limit of S, = "7 _; X; under tractable hypothesis?

Example (Errors of empirical statistics)

@ Empirical mean X, = 237 | X; when E[X| < 0o but EX? = oo, limit

distribution of the error (X, — E(X)) correctly normalized?

@ Empirical autocovariances: for any lag h > 1 we have
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Strictly stable r.v.

Definition

A r.v. Y is strictly a-stable distributed iff 9 a > 0, Y; and Y5> independent,
distributed as Y such that Y; + Y, = aY in distribution.

Then Y is strictly a-stable with 0 < & < 2 and c.f. exp(—|x|*Xa(X, by, b_)),

el o o) = %((m 4 b_) cos(mar/2) — i £y (by — b_) sin(r a/2)).




Strictly stable central limit theorem

Theorem (Feller, 1977)
If3(an), a, > 0 and Y strict. stable such that

als, —»vY (SSL)

then X; are iid RV(«a) centered r.v. if a > 1.
For a < 2 and a, = L(n)n** s.t. lim,nP(|X| > a,) =1 then by + b_ =1.

Remark that if 0 < o < 1 then E|X| = oo.




Regularly varying sequences

Stationary RV(«) processes, Basrak & Segers (2009)

(Xt) is RV(«) iff 3 its spectral tail process (©;) defined for k > 0, u > 1 when
X — 00

P(Xo > ux, [Xo| (X0, -, Xk) € - [ [Xo| > x) = u“P((©o, - - -, Ok) € -).

Example
If (X:)isiid, © =0 for t > 1 and by = E[O¢]] for a € (1, 2).

Remark that b, + b_ = E[©0] + E[©%] = E[©|* = 1 because [©g| = 1.



A necessary condition

Theorem (Jakubowski, 1993)

If (SSL) with a, = L(n)n*/® then it exists a sequence k,, n/k, — oo such that

|E(eixan_15n) _ E(eixan_lsn/kn)kn| — 0. (MX)

Example
(MX) is satisfied for
0 (X,) iid,
Q@ X; = Y strictly stable for all ¢ > 1!l




Toward coupling conditions

Remark that X; = Y € RV/(a) is a stationary sequence satisfying
Q@ RV(«w),
Q@ (MX).

However, (SSL) holds iff Y is strictly a-stable.

Mixing type conditions sufficient for (MX) excluding the case X; = Y.




Coupling conditions

Assume that X; = f(®;) where ($,) is a Markov chain:
& = F(Pr_1,&), where (&) is iid.

Definition (Coupling scheme, Thorisson (2000))
Consider X; = f(®F) with 7 = F(P7_1, &) for t > 1 and (Pf, Do) iid:
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Coupling conditions

Proposition
If >, E[X: — X{| < oo then (MX) is satisfied

Example (AR(1): X; = p'Xo + Y20, pt &)

AR(L) model with uniform innovations

I vles

so




When small jumps matter.

The point process approach deals with Z:Zl 0x,/a, ON some set vanishing
around 0.
Example (Coupled regularly varying Markov chain)

For (T;) iid positive RV(a/), (B;) iid Rademacher, (&;) iid centered RV(«) with
a>a’' > 1 consider X; = By, (¢) + &, N7(t) =inf{k > 1, Ty +--- 4+ Ty > t}.
Then > te10X/an ™~ Dot Ot /an = oz—stablellimit,

Sy~ ZJ/.V:TI(") +T;, Nr(n)E(T) ~n = L(n)n=* S, o/-stable limit.

Remark

’

o E|X, — X7 | = E|By, () — B, o)) < 2P(Ty > t) = 2L(t)t ™",

@ Does not work for 0 < o/ < 1.




Vanishing small values condition

Additional hypothesis
Davis and Hsing (1995)

lim lim SUpP(‘ ZXfl{|Xt|<63n} = ]E(th{|Xt|Sea,,})‘ > xa,,) =0, x>0.

€~V n—ooo —1
(VSV)

Example
lid (X;) satisfies (VSV).

Condition (VSV) has to be verified for dependent (X;).



Identification of the clusters

SRE: X; = A Xi—1 + B:, t > 1 with (A, By) iid, Ay > 0, EA§ =1 and
E|By|*t¢ < oo, € > 0. The unique stationary solution (X;) is RV(«).

..........................

Solion of SRE
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How to identify the clusters?



Approximation by local dependance (Rootzen, 1978)
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When is it a good approximation when m — oo?
Davis & Hsing (1995), Basrak & Segers (2009)

lim Iimsup]P’( max | Xi| > xa, | [Xo| > xan) =0, x>0.

m—00 oo \m<|i|<n/ky

Under (ALD) 6 > 0, i.e. average size of clusters are finite.

(ALD)




Drift condition (DCp)

Two issues
@ Condition (MX) or sufficient coupling is not sufficient for (VSV),
@ Condition (ALD) is not very tractable.

One solution

Let X; = f(®;) where ®; is a nice Markov chain. It satisfies Condition (DCp)
for p > 0 if there exist 8 € (0,1), b > 0 such that for any y,

E([f(®1)? | ®o = y) < BIF(y)IP + b. (DCp)

’

Remark that (DCp) implies (DCp’) for p > p’ (Jensen's inequality).



Examples for (DCp)

Examples
Q (X:) iid RV(«) then E(|X1|P | Xo = y) = E|Xy|P =: b, O<p<a,
Q@ AR(1): Xi = pXer1 + & with (&) iid RV(a) then
E(loy + &P | Xo = y) < (loly + (El&1]P)/P)? < ByP + b

for [plP<fB<landalll<p<a,
@ X: =Y then E(|X1|P | Xo = y) = |y|P does not satisfied (DCp).




Examples for (DCp)

Example
SRE: X, = A:X;_1 + B, with EAY = 1 and EB§"*® < oo then

E(|Awy + Bil? | Xo = y) < (EAD)YPy + (EIELP)M/P)P < ByP + b

for EAP < B < 1as (EAD)YP < (EAg)Y*=1for 1< p<a,

Conjecture
If the Markov chain (®;) € RV(«) then it satisfies (DCp).




Regeneration of Markov chains with an accessible atom
(Doeblin, 1939)

Definition

(®,) is a Markov chain of kernel P on R¢ and A € B(RY).
o Ais an atom if 3 a measure v on B(R?) st P(x, B) = v(B) for all x € A.
o Ais accessible, i.e. Y, P¥(x,A) > 0 for all x € R¢.

Let (7a(j))j>1 visiting times to the set A, i.e.
Ta(1l) = 74 = min{k > 0: Xy € A} and 7a(j + 1) = min{k > 7a(j) : Xk € A}.
Regeneration cycles

Q Na(t)=#{ > 1:7a(j) < t}, t >0, is a renewal process,

@ The cycles (P, (5)41,- - - s Pry(e41)) are iid.




Irreducible Markov chain and Nummelin scheme

Definition (Minorization condition, Meyn and Tweedie, 1993)

36 >0, asmall set C € B(RY) and a distribution v on C such that
PX(x,B) > év(B), xe€C, BeBRY). (MCk)

(MC1) is called the strongly aperiodic case.

Any irreducible aperiodic Markov chain (®;) satisfies (MCk) for some k > 1.

Nummelin splitting scheme for pseudo-regenerative Markov chain

Under (MC1) an enlargement of (¢;) on RY x {0,1} C R¥*! possesses an
accessible atom A = C x {1} = the enlarged Markov chain regenerates.




Inference on real data, Bertail and Clemencon (2009)

Squared of log-ratios X; = log(P;/P;_1)* where (P;) are CAC 40 prices.

ts(garch@h.f)
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Small sets C = {X? < a,} for any a, > 0 (T-chains).



Coupling under (DCp)

ts(garch@h.t)
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Under (DCp) then Eec™(1) < oo, P(74(1) > t) < Eec™(Ne=<t and

E[X; — X;| < 2E|X|P(ra(1) > t) < 2E| X|Ce~.



(SSL) for sums of m-dependent r.v.

Assume (X:, t < 0) is independent of (X, t = m) then ©, = 0 for |t| > m.
Theorem

If (X;) is centered RV(a) with o > 1 then it satisfies (SSL) a; 1S, — Y where
Y has c.f. exp(—|x|*xa(x, by, b_)) with cluster indices

m—1

o=z 0] - (Se)l)

t=0




Large deviations for function of Markov chains

Assume (X; = f(®P;)) where ($;) (possibly enlarged) possesses an accessible
atom A and an invariant measure 7 s.t. g ~ 7.

Theorem

If (X¢) is centered RV(a) with a > 1 and satisfies (DCp) for p < « then it
satisfies (SSL) with cluster indices

e =5[(S0): - (300):).

= t=1




Sketch of the proof

Under (DCp) we have E|©|P < Cp* for some C >0,0< p < 1.
In particular (©;) is a convergent series in LY71.
By the mean value theorem we have there exists C > 0

m—1 m—1

(L) - (Se)l] < L.

t=|

a—1

By the dominated convergence theorem the cluster index exists.



Approximation by local dependence

SRE: X; = A:X;_1 + By, then ©; = [];_, Aj©y satisfies

E[Q,]* =1 = E(i |et|a) = .

t=1

........................

Solionof SRE
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Under (DCp), good approximation in P, p < @ when m — oo.



Application to autocorrelograms of squared log-ratios

Assume that X; = log(P;/P;_1)? is RV(«) satisfying (DCp).

Threshold

11.90 813 6.59 543 4.54 3.84 3.38 3.01 2.65 233 211

15 27 39 51 63 75 87 99 112 127 142 157 172 187

Order Statistics

Hill's estimator: & = 2.



Autocorrelogram in presence of extremes

An(h) = v(h) + Yi(h) asymptotically o ~ 1-stable asymmetric
distributed.

i
i

Analysis on basis of autocorrelogram are not adapted to heavy tailed cases.



Regular variation of cycles

Denoting the independent cycles Sa(t) = Z,.Ti(ltﬂ) F(Prae)+i):

A Na(n)—1
Sn :ZX/-‘r Z SA(t)+ Z X;.
1 t=1

Theorem
If (X¢) RV(,) with a > 0, a ¢ N and (DCp) with p < « and b+ # 0 then

P, (SA(l) > x) ~xroo b Ea(Ta) P(IX| > x).

Remarks
@ The full cycles Sa(t) = Z,-Z(ltﬂ) f(Pr,(e)+i) are regularly varying with the
same index a > 0 than X;,
@ If 74 is independent of (X;) then Pa(Sa(1) > x) ~x—0o Ea(7a) P(X > x),
@ Under (DCp) and E|X|P then E4|Sa(1)P < occ.




Precise large deviations for sums

Corollary (Under the hypothesis of the Theorem)
P(£S, > x)
nP(IX] > x)
b, = n'/*N\Y2+e efse if P(14 > n) = o(nP(|X| > c,)),

If0 < a <1 then lim, o0 SUp,~p, — by | =0, where

P(£S, > x)

= 2 p
nP(X[>x)

lim  sup =0.

n—o0 b,<x<cp

Determination of the constant in LD of Davis and Hsing (1995) valid for o < 2.

Sketch of the proof:
Under P(74 > n) = o(nP(|X]| > c,)),

NA(H)fl

Sam > Sa(t).

t=1

Use Nagaev's precise LD result on the iid regularly varying cycles Sa(t).



Link between extremal and cluster index, ©g = 1

Under RV(«a) and (DCp), extremal index 6 = E[(sup;>¢ ©:)F — (sup;>1 ©¢)%].

Example (Asymptotic independence)
©; =0 for all t >0 then by =0, =1.

Example (AR(1): X; = pXi_1 + &, Vt € Z with p > 0)
©; =ptforallt >0then 6, =1— p* and by =0, /(1 — p)*.

Example (GARCH(1,1)* X2 = 0272, 02 = af + ;X2 | + Bi02 )
©: = (Z:/20)? T1;_(a; Z? | + ;) for all t > 0 then b, and 6, are explicit.




Peaks over thresholds

Process of exceedances of the squared log-ratios

Exceedances

500
Time



Description of the clusters

Renormalization by the first exceedance in the cluster

)
1imis

Spectral tail processes



Representation of the average clusters

Average clusters

Clusters

As. ind., observations, AR(1)

1o
Areas

GARCH(1,1)?



Conclusions and perspectives on the extremes

@ Conclusions
@ Cluster indices by determine the asymptotic distribution of the sums of

dependent and regularly varying variables,
@ The extremal and cluster indices describe the clusters of extreme values.

@ Perspectives
@ We use Markovian processes and their regenerative structures
= use also regenerative structures to identify the clusters.
© Model the extremal dependence in view of the observed clusters
—> introduce new models with extremal behaviors similar than the observed

ones.



