Large deviations for (pseudo-)regenerative Markov chains

In collaboration with T. Mikosch

Olivier Wintenberger wintenberger@ceremade.dauphine.fr

CEREMADE, University Paris Dauphine & LFA-CREST.

CPH, May 30, 2013

Motivation: characterization of the limit of partial sums

Let $(X_t)_{t\geqslant 1}$ be a process with dependent extreme values.

Motivation

Characterization of the limit of $S_n = \sum_{t=1}^n X_t$ under tractable hypothesis?

Example (Errors of empirical statistics)

- **●** Empirical mean $\overline{X}_n = \frac{1}{n} \sum_{t=1}^n X_t$ when $\mathbb{E}|X| < \infty$ but $\mathbb{E}X^2 = \infty$, limit distribution of the error $(\overline{X}_n \mathbb{E}(X))$ correctly normalized?
- ② Empirical autocovariances: for any lag $h \geqslant 1$ we have

$$\hat{\gamma}_n(h) = \frac{1}{n-h} \sum_{j=1}^{n-h} (X_j - \overline{X}_n) (X_{j+h} - \overline{X}_n).$$

Strictly stable r.v.

Definition

A r.v. Y is strictly α -stable distributed iff $\exists \ a > 0$, Y_1 and Y_2 independent, distributed as Y such that $Y_1 + Y_2 = aY$ in distribution.

Then Y is strictly α -stable with $0 < \alpha \leqslant 2$ and c.f. $\exp(-|x|^{\alpha}\chi_{\alpha}(x,b_{+},b_{-}))$,

$$\chi_{\alpha}(x, b_{+}, b_{-}) = \frac{\Gamma(2 - \alpha)}{1 - \alpha}((b_{+} + b_{-})\cos(\pi\alpha/2) - i \pm_{x} (b_{+} - b_{-})\sin(\pi\alpha/2)).$$

Strictly stable central limit theorem

Theorem (Feller, 1977)

If $\exists (a_n)$, $a_n > 0$ and Y strict. stable such that

$$a_n^{-1}S_n \to Y$$
 (SSL)

then X_t are iid $RV(\alpha)$ centered r.v. if $\alpha > 1$.

For
$$\alpha < 2$$
 and $a_n = L(n)n^{1/\alpha}$ s.t. $\lim_n n \mathbb{P}(|X| > a_n) = 1$ then $b_+ + b_- = 1$.

Remark that if $0 < \alpha < 1$ then $\mathbb{E}|X| = \infty$.

Regularly varying sequences

Stationary RV(α) processes, Basrak & Segers (2009)

 (X_t) is RV(α) iff \exists its spectral tail process (Θ_t) defined for $k \geqslant 0$, $u \geqslant 1$ when $x \to \infty$

$$\mathbb{P}(X_0 > ux, |X_0|^{-1}(X_0, \dots, X_k) \in \cdot \mid |X_0| > x) \xrightarrow{w} u^{-\alpha} \mathbb{P}((\Theta_0, \dots, \Theta_k) \in \cdot).$$

Example

If
$$(X_t)$$
 is iid, $\Theta_t = 0$ for $t \geqslant 1$ and $b_{\pm} = \mathbb{E}[\Theta_{0\pm}^{\alpha}]$ for $\alpha \in (1,2)$.

Remark that $b_+ + b_- = \mathbb{E}[\Theta_0^{\alpha}] + \mathbb{E}[\Theta_0^{\alpha}] = \mathbb{E}|\Theta_0|^{\alpha} = 1$ because $|\Theta_0| = 1$.

A necessary condition

Theorem (Jakubowski, 1993)

If (SSL) with $a_n=L(n)n^{1/\alpha}$ then it exists a sequence $k_n,n/k_n\to\infty$ such that

$$|\mathbb{E}(e^{i\mathsf{x}\mathsf{a}_n^{-1}\mathsf{S}_n}) - \mathbb{E}(e^{i\mathsf{x}\mathsf{a}_n^{-1}\mathsf{S}_{n/k_n}})^{k_n}| \to 0. \tag{MX}$$

Example

(MX) is satisfied for

- \bullet (X_t) iid,
- 2 $X_t = Y$ strictly stable for all $t \ge 1!!!$

Toward coupling conditions

Remark that $X_t = Y \in RV(\alpha)$ is a stationary sequence satisfying

- \bullet RV(α),
- (MX).

However, (SSL) holds iff Y is strictly α -stable.

Mixing type conditions sufficient for (MX) excluding the case $X_t = Y$.

Coupling conditions

Assume that $X_t = f(\Phi_t)$ where (Φ_t) is a Markov chain: $\Phi_t = F(\Phi_{t-1}, \xi_t)$, where (ξ_t) is iid.

Definition (Coupling scheme, Thorisson (2000))

Consider $X_t^* = f(\Phi_t^*)$ with $\Phi_t^* = F(\Phi_{t-1}^*, \xi_t)$ for $t \geqslant 1$ and (Φ_0^*, Φ_0) iid:

Coupling conditions

Proposition

If $\sum_t \mathbb{E} |X_t - X_t^*| < \infty$ then (MX) is satisfied

Example (AR(1):
$$X_t = \rho^t X_0 + \sum_{j=1}^t \rho^{t-j} \xi_j$$
)

When small jumps matter.

The point process approach deals with $\sum_{t=1}^{n} \delta_{X_t/a_n}$ on some set vanishing around 0.

Example (Coupled regularly varying Markov chain)

For
$$(T_t)$$
 iid positive RV (α') , (B_t) iid Rademacher, (ξ_t) iid centered RV (α) with $\alpha > \alpha' > 1$ consider $X_t = B_{N_T(t)} + \xi_t$, $N_T(t) = \inf\{k \geqslant 1, \ T_1 + \dots + T_k \geqslant t\}$. Then
$$\begin{cases} \sum_{t=1}^n \delta_{X_t/a_n} \sim \sum_{t=1}^n \delta_{\xi_t/a_n} & \Rightarrow \ \alpha\text{-stable limit,} \\ S_n \sim \sum_{i=1}^{N_T(n)} \pm T_j, \ N_T(n) \mathbb{E}(T) \sim n & \Rightarrow \ L(n) n^{-\alpha'} S_n \ \alpha'\text{-stable limit.} \end{cases}$$

Remark

- $\mathbb{E}|X_t X_t^*| = \mathbb{E}|B_{N_T(t)} B_{N_{T*}(t)}^*| \leq 2\mathbb{P}(T_1 \geq t) = 2L(t)t^{-\alpha'}$.
- Does not work for $0 < \alpha' < 1$.

Vanishing small values condition

Additional hypothesis

Davis and Hsing (1995)

$$\lim_{\epsilon \to 0} \limsup_{n \to \infty} \mathbb{P}\left(\left|\sum_{t=1}^{n} X_{t} I_{\{|X_{t}| \leqslant \epsilon a_{n}\}} - \mathbb{E}(X_{t} I_{\{|X_{t}| \leqslant \epsilon a_{n}\}})\right| > x a_{n}\right) = 0, \quad x > 0.$$
(VSV)

Example

lid (X_t) satisfies (VSV).

Condition (VSV) has to be verified for dependent (X_t) .

Identification of the clusters

SRE: $X_t = A_t X_{t-1} + B_t$, $t \geqslant 1$ with (A_t, B_t) iid, $A_t > 0$, $\mathbb{E} A_0^{\alpha} = 1$ and $\mathbb{E} |B_0|^{\alpha + \varepsilon} < \infty$, $\varepsilon > 0$. The unique stationary solution (X_t) is RV (α) .

How to identify the clusters?

Approximation by local dependance (Rootzen, 1978)

When is it a good approximation when $m \to \infty$?

Davis & Hsing (1995), Basrak & Segers (2009)

$$\lim_{m\to\infty} \limsup_{n\to\infty} \mathbb{P}\Big(\max_{m\leqslant |i|\leqslant n/k_n} |X_i| > x \, a_n \mid |X_0| > x \, a_n\Big) = 0 \,, \quad x>0. \tag{ALD}$$

Under (ALD) $\theta > 0$, i.e. average size of clusters are finite.

Drift condition (DCp)

Two issues

- Condition (MX) or sufficient coupling is not sufficient for (VSV),
- Condition (ALD) is not very tractable.

One solution

Let $X_t = f(\Phi_t)$ where Φ_t is a nice Markov chain. It satisfies Condition (DCp) for p > 0 if there exist $\beta \in (0,1)$, b > 0 such that for any y,

$$\mathbb{E}(|f(\Phi_1)|^p \mid \Phi_0 = y) \leqslant \beta |f(y)|^p + b. \tag{DCp}$$

Remark that (DCp) implies (DCp') for p > p' (Jensen's inequality).

Examples for (DCp)

Examples

- **1** (X_t) iid $RV(\alpha)$ then $\mathbb{E}(|X_1|^p \mid X_0 = y) = \mathbb{E}|X_1|^p =: b, \quad 0$
- **2** AR(1): $X_t = \rho X_{t+1} + \xi_t$ with (ξ_t) iid RV (α) then

$$\mathbb{E}(|\rho y + \xi_1|^p \mid X_0 = y) \leqslant (|\rho|y + (\mathbb{E}|\xi_1|^p)^{1/p})^p \leqslant \beta y^p + b$$

for $|\rho|^p < \beta < 1$ and all $1 \leqslant p < \alpha$,

Examples for (DCp)

Example

SRE:
$$X_t=A_tX_{t-1}+B_t$$
 with $\mathbb{E} A_0^{lpha}=1$ and $\mathbb{E} B_0^{lpha+arepsilon}<\infty$ then

$$\mathbb{E}(|A_1y + B_1|^p \mid X_0 = y) \leqslant ((\mathbb{E}A_0^p)^{1/p}y + (\mathbb{E}|\xi_1|^p)^{1/p})^p \leqslant \beta y^p + b$$

for
$$\mathbb{E} A_0^p < \beta < 1$$
 as $(\mathbb{E} A_0^p)^{1/p} < (\mathbb{E} A_0^\alpha)^{1/\alpha} = 1$ for $1 \leqslant p < \alpha$,

Conjecture

If the Markov chain $(\Phi_t) \in RV(\alpha)$ then it satisfies (DCp).

Regeneration of Markov chains with an accessible atom (Doeblin, 1939)

Definition

 (Φ_t) is a Markov chain of kernel P on \mathbb{R}^d and $A \in \mathcal{B}(\mathbb{R}^d)$.

- A is an atom if \exists a measure ν on $\mathcal{B}(\mathbb{R}^d)$ st $P(x,B) = \nu(B)$ for all $x \in A$.
- A is accessible, i.e. $\sum_k P^k(x,A) > 0$ for all $x \in \mathbb{R}^d$.

Let $(\tau_A(j))_{j\geqslant 1}$ visiting times to the set A, i.e. $\tau_A(1) = \tau_A = \min\{k > 0 : X_k \in A\}$ and $\tau_A(j+1) = \min\{k > \tau_A(j) : X_k \in A\}$.

Regeneration cycles

- **1** $N_A(t) = \#\{j \ge 1 : \tau_A(j) \le t\}, t \ge 0$, is a renewal process,
- ② The cycles $(\Phi_{\tau_A(t)+1}, \ldots, \Phi_{\tau_A(t+1)})$ are iid.

Irreducible Markov chain and Nummelin scheme

Definition (Minorization condition, Meyn and Tweedie, 1993)

 $\exists \ \delta > 0$, a small set $C \in \mathcal{B}(\mathbb{R}^d)$ and a distribution ν on C such that

$$P^{k}(x,B) \geqslant \delta \nu(B), \qquad x \in C, \quad B \in \mathcal{B}(\mathbb{R}^{d}).$$
 (MCk)

(MC1) is called the strongly aperiodic case.

Any irreducible aperiodic Markov chain (Φ_t) satisfies (MCk) for some $k \ge 1$.

Nummelin splitting scheme for pseudo-regenerative Markov chain

Under (MC1) an enlargement of (Φ_t) on $\mathbb{R}^d \times \{0,1\} \subset \mathbb{R}^{d+1}$ possesses an accessible atom $A = C \times \{1\} \Longrightarrow$ the enlarged Markov chain regenerates.

Inference on real data, Bertail and Clemencon (2009)

Squared of log-ratios $X_t = \log(P_t/P_{t-1})^2$ where (P_t) are CAC 40 prices.

Small sets $C = \{X_t^2 \leqslant a_n\}$ for any $a_n > 0$ (T-chains).

Coupling under (DCp)

Under (DCp) then $\mathbb{E}e^{c au_A(1)}<\infty$, $\mathbb{P}(au_A(1)\geqslant t)\leqslant \mathbb{E}e^{c au_A(1)}e^{-ct}$ and $\mathbb{E}|X_t-X_t^*|\leqslant 2\mathbb{E}|X_t|\mathbb{P}(au_A(1)\geqslant t)\leqslant 2\mathbb{E}|X_t|Ce^{-ct}.$

(SSL) for sums of m-dependent r.v.

Assume $(X_t, t \leq 0)$ is independent of $(X_t, t \geq m)$ then $\Theta_t = 0$ for $|t| \geq m$.

Theorem

If (X_t) is centered $RV(\alpha)$ with $\alpha > 1$ then it satisfies (SSL) $a_n^{-1}S_n \to Y$ where Y has c.f. $\exp(-|x|^{\alpha}\chi_{\alpha}(x,b_+,b_-))$ with cluster indices

$$b_{\pm} = \mathbb{E}\Big[\Big(\sum_{t=0}^{m-1}\Theta_t\Big)_{\pm}^{\alpha} - \Big(\sum_{t=1}^{m-1}\Theta_t\Big)_{\pm}^{\alpha}\Big].$$

Large deviations for function of Markov chains

Assume $(X_t = f(\Phi_t))$ where (Φ_t) (possibly enlarged) possesses an accessible atom A and an invariant measure π s.t. $\Phi_0 \sim \pi$.

Theorem

If (X_t) is centered $RV(\alpha)$ with $\alpha>1$ and satisfies (DCp) for $p<\alpha$ then it satisfies (SSL) with cluster indices

$$b_{\pm} = \mathbb{E}\Big[\Big(\sum_{t=0}^{\infty} \Theta_t\Big)_{\pm}^{\alpha} - \Big(\sum_{t=1}^{\infty} \Theta_t\Big)_{\pm}^{\alpha}\Big].$$

Sketch of the proof

Under (DCp) we have $\mathbb{E}|\Theta_k|^p\leqslant C\rho^k$ for some $C>0,\ 0<\rho<1.$ In particular (Θ_t) is a convergent series in $\mathbb{L}^{\alpha-1}$. By the mean value theorem we have there exists C>0

$$\mathbb{E}\left[\left(\sum_{t=0}^{m-1}\Theta_t\right)_{\pm}^{\alpha}-\left(\sum_{t=1}^{m-1}\Theta_t\right)_{\pm}^{\alpha}\right]\leqslant C\mathbb{E}\left|\sum_{t=0}^{m-1}\Theta_t\right|^{\alpha-1}.$$

By the dominated convergence theorem the cluster index exists.

Approximation by local dependence

SRE:
$$X_t = A_t X_{t-1} + B_t$$
, then $\Theta_t = \prod_{j=1}^t A_j \Theta_0$ satisfies

$$\mathbb{E}|\Theta_t|^\alpha = 1 \Longrightarrow \mathbb{E}\Big(\sum_{t=1}^\infty |\Theta_t|^\alpha\Big) = \infty.$$

Under (DCp), good approximation in \mathbb{L}^p , $p < \alpha$ when $m \to \infty$.

Application to autocorrelograms of squared log-ratios

Assume that $X_t = \log(P_t/P_{t-1})^2$ is RV(α) satisfying (DCp).

Hill's estimator: $\hat{\alpha} \approx 2$.

Autocorrelogram in presence of extremes

 $\hat{\gamma}_n(h) \approx \gamma(h) + Y_1(h)$ asymptotically $\alpha \approx 1$ -stable asymmetric distributed.

Analysis on basis of autocorrelogram are not adapted to heavy tailed cases.

Regular variation of cycles

Denoting the independent cycles $S_A(t) = \sum_{i=1}^{\tau_A(t+1)} f(\Phi_{\tau_A(t)+i})$,

$$S_n = \sum_{1}^{\tau_A} X_i + \sum_{t=1}^{N_A(n)-1} S_A(t) + \sum_{\tau_A(N_A(n))+1}^n X_i.$$

Theorem

If (X_t) $RV(_{\alpha})$ with $\alpha>0$, $\alpha\notin\mathbb{N}$ and (DCp) with $p<\alpha$ and $b\pm\neq 0$ then

$$\mathbb{P}_A\Big(S_A(1) > x\Big) \sim_{x \to \infty} b_{\pm} \mathbb{E}_A(\tau_A) \mathbb{P}(|X| > x).$$

Remarks

- **1** The full cycles $S_A(t) = \sum_{i=1}^{\tau_A(t+1)} f(\Phi_{\tau_A(t)+i})$ are regularly varying with the same index $\alpha > 0$ than X_t ,
- ② If τ_A is independent of (X_t) then $\mathbb{P}_A(S_A(1) > x) \sim_{x \to \infty} \mathbb{E}_A(\tau_A) \mathbb{P}(X > x)$,
- **③** Under (DCp) and $\mathbb{E}|X|^p$ then $\mathbb{E}_A|S_A(1)|^p < \infty$.

Precise large deviations for sums

Corollary (Under the hypothesis of the Theorem)

If
$$0 < \alpha < 1$$
 then $\lim_{n \to \infty} \sup_{x \geqslant b_n} \left| \frac{\mathbb{P}(\pm S_n > x)}{n \, \mathbb{P}(|X| > x)} - b_{\pm} \right| = 0$, where $b_n = n^{1/\alpha \wedge 1/2 + \varepsilon}$ else, if $\mathbb{P}(\tau_A > n) = o(n \mathbb{P}(|X| > c_n))$,

$$\lim_{n\to\infty} \sup_{b_n\leqslant x\leqslant c_n} \left| \frac{\mathbb{P}(\pm S_n > x)}{n\,\mathbb{P}(|X| > x)} - b_{\pm} \right| = 0.$$

Determination of the constant in LD of Davis and Hsing (1995) valid for $\alpha < 2$.

Sketch of the proof:

$$\overline{\text{Under }\mathbb{P}(\tau_A>n)}=o(n\mathbb{P}(|X|>c_n)),$$

$$S_n pprox \sum_{t=1}^{N_A(n)-1} S_A(t).$$

Use Nagaev's precise LD result on the iid regularly varying cycles $S_A(t)$.

Link between extremal and cluster index, $\Theta_0=1$

Under RV(α) and (DCp), extremal index $\theta_+ = \mathbb{E}[(\sup_{t\geqslant 0}\Theta_t)_+^{\alpha} - (\sup_{t\geqslant 1}\Theta_t)_+^{\alpha}].$

Example (Asymptotic independence)

 $\Theta_t = 0$ for all t > 0 then $b_+ = \theta_+ = 1$.

Example (AR(1): $X_t = \rho X_{t-1} + \xi_t$, $\forall t \in \mathbb{Z}$ with $\rho > 0$)

 $\Theta_t = \rho^t$ for all $t \geqslant 0$ then $\theta_+ = 1 - \rho^{\alpha}$ and $b_+ = \theta_+/(1-\rho)^{\alpha}$.

Example (GARCH(1,1)²: $X_t^2 = \sigma_t^2 Z_t^2$, $\sigma_t^2 = \alpha_0^* + \alpha_1^* X_{t-1}^2 + \beta_1^* \sigma_{t-1}^2$)

 $\Theta_t = (Z_t/Z_0)^2 \prod_{i=1}^t (\alpha_1^* Z_{i-1}^2 + \beta_1^*)$ for all $t \ge 0$ then b_+ and θ_+ are explicit.

Peaks over thresholds

Process of exceedances of the squared log-ratios

Description of the clusters

Renormalization by the first exceedance in the cluster

Representation of the average clusters

Conclusions and perspectives on the extremes

Conclusions

- Cluster indices b_± determine the asymptotic distribution of the sums of dependent and regularly varying variables,
- 2 The extremal and cluster indices describe the clusters of extreme values.

Perspectives

- We use Markovian processes and their regenerative structures ⇒ use also regenerative structures to identify the clusters.
- Model the extremal dependence in view of the observed clusters introduce new models with extremal behaviors similar than the observed ones.