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Extremal Dependence in Space and Time
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Building blocks:  Let ܼሺݏ, ሻݐ be a stationary Gaussian process on Թଶ ൈ Թା

with mean 0 and variance 1. 

• Transform the ܼሺݏ, ሻݐ processes via

ܻሺݏ, ሻݐ 	ൌ 1/െlog	ሺΦሺܼሺݏ, ,ሻሻݐ

where  is the standard normal cdf.   Then ܻሺݏ, ሻݐ has unit Frechet

marginals, i.e., ܲሺܻ
	
ሺݏ, ሻݐ  ሻݔ 	ൌ 	exp	ሼെ1/ݔሽ.

Note:  For any (nondegenerate) Gaussian process ܼሺݏ, we have	ሻ,ݐ

lim ݔ ∞	ܲ ܼ ,ݏ ݐ  	ݔ ܼ 0,0  ሻݔ 	ൌ 	0.

and hence lim ݔ ∞	ܲ ܻ ,ݏ ݐ  	ݔ ܻ 0,0  ሻݔ 	ൌ 	0.

In other words,

• observations at distinct locations are asymptotically independent.

• not good news for modeling spatial extremes!

Building a Max-Stable Model in Space-Time
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Now assume ܼሺݏ, ሻݐ is isotropic with covariance function 

Cov ܼ ݄, ݑ , ܼ 0,0 ൌ ݎ	 ݄ , ݑ ൌ exp െߠଵ ݄ ఈభ െ ଶߠ ݑ ఈమ ,

where ߠଵ, ଶߠ  are the range parameters and ,ଵߙ ଶߙ  are the 

shape parameters.  Note that

1 െ ݎ ݄, ݑ ଵߠ~ ݄ ఈభ  ଶߠ ݑ ఈమ ൌ: ,ሺ݄ߜ ,݄	ݏܽ		ሻݑ ݑ → 0,

(the semi-variogram
ଵ

ଶ
(vܽݎሺܼ ݄, ݑ െ ܼ 0,0 )) and hence

log ݊ሺ 1 െ ݎ ,݄ݏ ሻݑݐ → ߜ ݄, ݑ ,

where ݏ ൌ log݊
ି భ
ഀభ and ݐ ൌ log݊

ି భ
ഀమ.

It follows that 

Cov ܼ ,݄ݏ ݑݐ , ܼ 0,0 ൌ ݎ ,݄ݏ ݑݐ ~1 െ ,ሺ݄ߜ /ሻݑ log ݊.

Building a Max-Stable Model in Space-Time
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Then (see Kabluchko et al. (2011)),

ܻ ,ݏ ݐ ≔
1
݊
ሧ

1

െlog Φ ܼ ,ݏݏ ݐݐ



ୀଵ

→ ,ݏሺߟ ሻݐ

on ܥ Թଶ ൈ ሾ0,∞ሻ .	 Here the ܼ are IID replicates of the GP ܼ,	and ߟ is a 

Brown-Resnick max-stable process.

Specifically,

ߟ ,ݏ ݐ ൌሧߦ exp ܹ ,ݏ ݐ െ ߜ ,ݏ ݐ

ஶ

ୀଵ

where ሼߦሽ pts of PPP ߦଶ݀ିߦ , and ܹ ܦܫܫ~ Gaussian processes with 

mean zero, ܹ 0,0 ൌ 0,	 and

i. stationary increments

ii. ݒܥ ܹ ,ଵݏ ଵݐ ,ܹ ,ଶݏ ଶݐ ൌ ߜ ,ଵݏ ଵݐ  ߜ ,ଶݏ ଶݐ െ ଵݏሺߜ െ ,ଶݏ ଵݐ െ ଶሻݐ
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ߟ ,ݏ ݐ ≔
1
݊
ሧെ



ୀଵ

1

log Φ ܼ ,ݏݏ ݐݐ

→ ,ݏሺߟ ሻݐ

Bivariate distribution function:

ܲ ߟ ݄, ݑ  ,ݔ ߟ 0,0  ݕ ൌ 	expሼെܸ ,ݔ ;ݕ ߜ ሽ

where

ܸ ,ݔ ;ݕ ߜ ൌ ଵΦିݔ
log ݔ/ݕ

ߜ√2
 ߜ√  ଵΦିݕ

log ݕ/ݔ

ߜ√2
 ߜ√ ,

and	ߜ ൌ ߜ ݄, ݑ .

Building a Max-Stable Model in Space-Time
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Scaled and transformed Gaussian random fields (fixed time point)

8

െ1
log	ሺΦሺܼ ,ݏ ݐ ሻ

െ1
log	ሺΦሺܼ ,ݏݏ ݐݐ ሻ
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Scaled and transformed Gaussian random fields (fixed time point)
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ߟ ,ݏ ݐ ≔
1
݊
ሧെ



ୀଵ

1

log Φ ܼ ,ݏݏ ݐݐ
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For dependent data, it is often infeasible to compute the exact likelihood 

based on some model.  An alternative is to combine likelihoods based on 

subsets of the data.

To fix ideas, consider the following data/model setup:

(Here we have already assumed that the data has been transformed to a 

stationary process with unit Frechet marginals.)

Data: Y(s1), …, Y(sN) (field sampled at locations s1, …, sN )

Model: max-stable model defined via the limit process

maxj=1,…,nYn
(j)(s)  →d X(s),

• Yn(s) = Y(s /(log n)1/)) = 1/log((Z(s/(log n)1/))

• Z(s) is a GP with correlation function (|s-t|) = exp{-|s-t|/

Estimation—composite likelihood approach
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Bivariate likelihood: For two locations si and sj, denote the pairwise

likelihood by

f(y(si), y(sj); i,j ) = ∂2/(∂x∂y) F(Y(si) ≤ x, Y (sj) ≤ x)

where F is the CDF

F(Y(si) ≤ x, Y (sj) ≤ x) 

= exp{-(x-1(log(y/x)/(2) + ) + y-1(log(x/y)/(2) + ))},

and i,j |si – sj|/ is a function of the parameters and 

Pairwise log-likelihood:

Estimation—composite likelihood approach
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Potential drawbacks in using all pairs:

• Still may be computationally intense with N2 terms in sum.

• Lack of consistency (especially if the process has long memory)

• Can experience huge loss in efficiency.

Estimation—composite likelihood approach

்,ெܮܲ ߰ ൌ     ,ݓ
ெݓ,

் log ట݂

்

ୀାଵ

்ିଵ

ୀଵ

ெ

ୀାଵ

ெିଵ

ୀଵ

ሺߟ ,ݏ ݐ , ߟ ,ݏ ݐ ሻ

Suppose we have observations: ߟ ,ݏ ݐ , ݅ ൌ 1… ;ܯ, ݆ ൌ 1,… , ܶ.		Then 

the weighted composite likelihood is given by

where ߰ ൌ ,ଵߠ ,ଵߙ ,ଶߠ ଶߙ and the weights are band limited,

,ݓ
ெ ൌ 1 ௦ି௦ೕ ஸ

, ,ݓ									
ெൌ 1 ௧ೖି௧| ஸ.

Estimate ߰ by maximizing ܲܮ ெ,் ߰ .
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Asymptotic properties:  Under ergodic, mixing, and identifiability

conditions on the max-stable process (see Davis, Klüppelberg, and 

Steinkohl (2013), then

Estimation—composite likelihood approach

		ܶܯ ߰ െ ߰ →ௗ 		ܰ ்ିܨଵΣିܨ0 .
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Simulation setup:

• Simulate 1600 points of a spatial (max-stable) process Y(s) on a grid 

of 40x40 in the plane.

• Choose a distance ݎ ൌ 9, 15, 25 (number of neighbors used)

• Maximize

with respect to  and ߙ

• Calculate summary dependence statistics: 

(|s-t|) = limn→∞ P(Yn(s) > n(1- | Yn(t)  > n).

Simulation Examples
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Process:  Limit process = |s-t|/nearest neighbors
(|s-t|) = limn→∞ P(Yn(s) > n(1- | Yn(t)  > n) 

Simulation Examples
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Process:  Limit process = |s-t|/neighbors
(|s-t|) = limn→∞ P(Yn(s) > n(1- | Yn(t)  > n) 

Simulation Examples
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Schlather Process r(h) =exp(-h/20)neighbors
(|s-t|) = limn→∞ P(Yn(s) > n(1- | Yn(t)  > n) 

Simulation Examples
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Data from Naveau et al. (2009).  Precipitation in Bourgogne of France; 51 year 

maxima of daily precipitation.  Data has been adjusted for seasonality and 

orographic effects.

Illustration with French Precipitation Data
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Estimated spatial correlation function before transformation to unit Frechet.

Correlation function  

Illustration with French Precipitation Data
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After transforming the data to unit Frechet marginals, we estimated  and 

using pairwise likelihood (nearest neighbors with r = 12).  

(if  constrained to 1, then 

Correlation function  

Illustration with French Precipitation Data
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(Matern)

(MLE based on GP likelihood)
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Plot of   (|s-t|) = limn→∞ P(Yn(s) > n(1- | Yn(t)  > n)

Illustration with French Precipitation Data
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Illustration with French Precipitation Data

Results from random permutations of data—just for fun.  Since random 

permutations have no spatial dependence,  should be 0 for |s-t| >0.
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Inference for Brown-Resnick Process

24

Recall the spatial extremogram given by.

,,ሺ݄ߩ ሻݑ 	ൌ lim	ݔܲሺߟሺݏ  ݄, ݐ  ,ݏሺߟ	|	ܤݔ	߳	ሻݑ ሻܣݔ	߳	ሻݐ

For the special case, ܣ ൌ ܤ ൌ ሺ1,∞ሻ, 

߯ ݄, ݑ ൌ lim ݔ ܲ ߟ ݏ  ݄, ݐ  ݑ  	ݔ ߟ	 ,ݏ ݐ  ሻݔ

For the Brown-Resnick process described earlier

߯ ݄, ݑ ൌ 2ሺ1 െ Φ ଵ݄ఈభߠ  ఈమݑଶߠ ሻ,

we find that

																							2 logሺΦିଵሺ1 െ
ଵ

ଶ
߯ ݄, 0 ሻ ൌ log ଵߠ  ଵߙ log ݄		and

2 logሺΦିଵሺ1 െ
ଵ

ଶ
߯ 0, ݑ ሻ	ൌ log ଶߠ  ଶߙ log ݑ

Copenhagen May 27-30, 2013

Inference for Brown-Resnick Process

25

Semi-parametric: Use nonparametric estimates of the extremogram

and then regress function of extremogram on the lag.  

Regress:					2 logሺΦିଵሺ1 െ
ଵ

ଶ
߯̂ ݄, 0 ሻሻ on	 1 		and		 log ݄	

																									2logሺΦିଵሺ1 െ
ଵ

ଶ
߯̂ 0, ݑ ሻሻ on	 1 		and	 log ,ݑ

The intercepts and slopes become the respective estimates of log ߠ
and ߙ. Asymptotic properties of spatial extremogram derived by Cho 

et al. (2013).
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Bias-correction

26

Recall: Generally, we need to center the empirical extremogram by 

the pre-asymptotic extremogram.  How do we get consistent 

estimates for the semi-parametric estimates?

Temporal: For the BR process, it turns out that one can center with the 

actual extremogram—have asymptotic equivalence of the centering b/ 

pre-asymptotic extremogram and extremogram).

Spatial: The PA-extremogram ߯ ,ݎ 0 , in the spatial direction can be 

written as

߯ ,ݎ 0 ~߯ ,ݎ 0 
1

4݊
ሺ߯ ,ݎ 0 ଶ െ ߯ ,ݎ 0 ሻ

Bias corrected estimate becomes

߯ ,ݎ 0 ൌ ߯̂ ,ݎ 0 െ
1

4݊
ሺ߯̂ ,ݎ 0 ଶ െ ߯̂ ,ݎ 0 ሻ

Copenhagen May 27-30, 2013

Bias-correction

27

Remark: In Davis, Klüppelberg, Steinkohl (2013), work out 

asymptotics for ߯ ,ݎ 0 .

Simulation: Empirical extremogram (left); bias corrected (right) for 

100 simulated max-stable processes w/ ߜ ݄, 0 ൌ .06 ݄ (black is 

theoretical)
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Semi-parametric estimates

28

Asymptotics for spatial parameter: Let ߰ ൌ ሺlog ,ଵߠ  be the	1ሻ_ߙ

parameter vector and ߰ its constrained weighted least squares 

estimate. Then

where  ܼଵ~ܰሺ0, Σଵሻ and ܼଶ has a constrained distribution (Andrews 

(1999).. 

మ



భ
మ ߰ െ ߰ →ௗ ൜

ܼଵ, ଵߙ ൏ 2,
ܼଶ, ଵߙ ൌ 2,

Bootstrapping: Bootstrapping also works here, but one needs to take 

care of the constraint properly (Andrews (2000)).

Copenhagen May 27-30, 2013

Semi-parametric estimates

29

Estimates of ߠଵ(top) and ߙଵ (bottom) for 100 simulated max-stable 

processes with 95% CIs via BS (middle line true, dotted is average)
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Data Example:  extreme rainfall in Florida
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Data Example:  extreme rainfall in Florida
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Radar data:

Rainfall in inches measured in 15-minutes intervals at points of a 

spatial 2x2km grid.

Region:

120x120km, results in 60x60=3600 measurement points in space. 

Take only wet season (June-September).

Block maxima in space: Subdivide in 10x10km squares, take maxima 

of rainfall over 25 locations in each square. This results in 12x12=144 

spatial maxima.

Temporal domain: Analyze daily maxima and hourly accumulated 

rainfall observations.

Fit extremal space-time model to daily/hourly maxima.
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Data Example:  extreme rainfall in Florida
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Hourly accumulated rainfall time series in the wet season 2002 at 2 

locations.

Copenhagen May 27-30, 2013

Data Example:  extreme rainfall in Florida

33

Hourly accumulated rainfall fields for four time points.
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Data Example:  extreme rainfall in Florida
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Empirical extremogram in space (left) and time (right)

Copenhagen May 27-30, 2013

Data Example:  extreme rainfall in Florida

35

Empirical extremogram in space (left) and time (right): 

spatial indep for lags > 4; temporal indep for lags > 6.



18

Copenhagen May 27-30, 2013

Data Example:  extreme rainfall in Florida
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Empirical extremogram in space (left) and time (right)
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Data Example:  extreme rainfall in Florida
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Computing conditional return maps.

Estimate ݖ ,ݏ ݐ such that

ܲ ܼ ,ݏ ݐ  ݖ ,ݏ ݐ 	 	ܼ ,∗ݏ ∗ݐ  ∗ݖ ൌ ,

where ∗ݖ satisfies ܲ ܼ ,∗ݏ ∗ݐ  ∗ݖ ൌ ∗ is pre-assigned.

A straightforward calculation shows that ݖ ,ݏ ݐ must solve,

 ൌ 1 െ
1
∗
exp െ

1
ݖ ,ݏ ݐ


1
∗
ܨ ோ ሺݖ ,ݏ ݐ , 1 െ ሻ∗ ,
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100-hour return maps ( ൌ ∗ݏ :(01. ൌ 5,6 , time lags = 0,2,4,6 hours 

(left to right on top and then right to left on bottom), quantiles in inches.


