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What is the Pineapple Express?

PE storms: caused by atmospheric rivers hitting the west
coast in winter

• Often bring heavy rain and warm temperatures

• Great impact on water resources of western US

This work aims to answer several questions related to this
phenomenon:
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Previous Work

• Dettinger (2004): List of PE events for 52 years.

• Leung and Qian (2009): Used an “index” approach to
compare PE events in observations and model output.

• Other recent work looking at PE.

Overarching Question

What can be learned about the Pineapple Express by using
extremes?
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Previous Work

• Dettinger (2004): List of PE events for 52 years.

• Leung and Qian (2009): Used an “index” approach to
compare PE events in observations and model output.

• Other recent work looking at PE.

Questions of Interest

1. Are regional climate models able to capture extreme PE
precipitation events as seen in observational data?

2. Can we draw a connection between PE extreme precipita-
tion events and short-lived synoptic-scale processes?

3. Given a future-scenario climate model run, what might
extreme precipitation events look like in observations, and
what is the uncertainty in these estimates?

Method: take an extreme-value approach for all questions.
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Outline

1. Climate Models and Extremes Studies

2. Comparing RCM output extremes to observations

• Study region and precipitation quantity
• Modeling dependence in extremes

3. “Pineapple Express index”

• North Pacific SLP fields
• Toward a daily index of extremes

4. Examining future Pacific region precipitation extremes

• Conditional simulation from dependence model
• Future PE events & uncertainty

5. Summary and Future Work
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Climate Models

Tools for simulating weather under different climate condi-
tions. Discretized series of differential equations.

General Circulation Models or AOGCMs

• model large-scale processes over entire globe

• grid boxes on scale of 100’s of km’s

Regional Climate Models

• resolve smaller-scale processes over a region

• grid boxes on scale of 10’s of km’s

• driven by GCM’s (or reanalysis)

• people would like to use them to assess local impacts–but
should they be used?
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Climate Models

−130 −125 −120 −115 −110 −105

30
35

40
45

50
55

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

−130 −125 −120 −115 −110 −105

30
35

40
45

50
55

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

7



Nature of Climate Model Predictions

The skeptics say:
“If models can’t predict the weather more than 10 days in
advance, how can models predict the climate 100 years from
now?”
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Nature of Climate Model Predictions

The skeptics say:
“If models can’t predict the weather more than 10 days in
advance, how can models predict the climate 100 years from
now?”

The simulated weather generated by climate model runs is
(usually) not supposed to correspond to the observed weather
for a particular day.

Summary measures should be similar, although there is a
downscaling issue.

Exception: reanalysis-driven RCM’s should exhibit correspon-
dence, as the reanalysis and the true state of the atmosphere
should have similar synoptic-scale states.
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Our Studied RCMs: NARCCAP Project

Multi-model project to investigate uncertainties in regional
climate model simulations.

GCM
RCM CCSM CGCM3 GFDL NCEP

WRFG X X X
ECP2 X X
CRCM X X X
MM5I X X
RCM3 X X X

• GCM-driven runs for current and future

• Reanalysis for current only

• Future runs (2041-2070): A2 emissions scenario.

10



Our Studied RCMs: NARCCAP Project

NARCCAP domain

Note that origin of PE moisture is outside the domain
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Data and Model Output

We utilize several sources of climate model output and an
observational product:

• Daily RCM precipitation output from NARCCAP - focus
on WRF model

• NCEP/NCAR global reanalysis

• Daily gridded observational precipitation from University
of Washington (Maurer et al.)

• Future run: WRF forced by CCSM global model

We study NDJF days from 1981-1999 (‘current’) and
2041-2070 (‘future’).
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Question 1

Original question:
“Are regional climate models able to capture extreme PE
precipitation events as seen in observational data?”

Reformulated:
“When large-scale conditions are such that PE events
occur, does the RCM generate similar events?”

Aim: To assess the correspondence between extreme
precipitation observed in the observational record and as
produced by the reanalysis-driven climate model. Is there
tail dependence? This is a “weather” study.

This differs from most previous extremes studies of climate
model output which have been climatological.

13



Climatological Studies: Return Levels Estimates

Control Future % Change
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Comparing WRF model output to observations

We define a study region and quantity with the purpose of
capturing PE events identified by Dettinger et al. (2011).
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Precipitation from WRF-reanalysis output (left) and observational data product (right) on January 1, 1997.
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Estimation of marginal tails

GPDs are fit to the largest 5% of data in each margin:

Margin u· ψ̂· (se) ξ̂· (se)
XNC
t (WRF) 1054 288.95(39.27) 0.0255(0.104)

Y C
t (obs) 14240 3895.87(512.03) 0.0213(0.099)

Each margin is transformed to unit Fréchet:
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Examining tail dependence

We find tail dependence and fit a parametric model to the
angular density of points with large ‘radial’ components.
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+ WRF reproduces extreme events relatively well

− Not all ‘extreme’ events associated with Pineapple
Express: aim to connect to synoptic-scale processes
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Question 2

Original question: Can we draw a connection between PE
extreme precipitation events and short-lived synoptic-scale
processes?

Reformulated:

• Can we better understand the conditions which lead to a
PE event? Can we capture those conditions in a number
(index)?

• Can PE event conditions be seen on the GCM scale?

• If Dettinger hadn’t made his list, could we identify PE
events from GCM conditions?

• Will our index exhibit tail dependence?

• Asking process questions about extremes rather than
descriptive ones.

The idea of tying extreme events to large scale processes is
not new...
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Regression approaches for extremes

An approach often used to understand the connection
between extreme events and driving conditions is to allow
the parameters of an extremes distribution to depend on
covariates.

GEV(µ(x), σ(x), ξ(x))
GPD(ψ(x), ξ(x))

Atmospheric scientists love this approach.

• Sillmann et al. (2011)

• Maraun et al. (2011)

They are in danger of loving it to death.

Because the large scale index is on a daily time scale, such
an approach would be inappropriate for our study.
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PE seen through pressure fields

Mean sea-level pressure fields are extracted from the NCEP
reanalysis product
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Pineapple Express Index

Define the index for day t as the projection of that day’s
SLP anomaly field onto the ‘PE anomaly’ field:

UPE
t =: Mt · µPE
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• Exhibits positive correlation and tail dependence with
observed precipitation
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Future PE Extremes

Question 3: Given a future-scenario climate model run,
what might extreme precipitation events look like in
observations, and what is the uncertainty in these
estimates?

Reminder: Predicting the future is hard!

We analyze precipitation output from WRF driven by
CCSM global model (2041-2070).

• Previous studies suggest increases in frequency and
intensity of PE under A2.
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Future PE Extremes

Aim: use fitted dependence model and PE index to simulate
future observed precipitation extremes, given climate model
output

Data Product Current Future
Observations X ?
Reanalysis-Driven RCM X ?
GCM-Driven RCM X X
PE Index X X

Challenge: we need to estimate

1. Marginal distribution of future reanalysis-driven precipita-
tion

2. Marginal distribution of future observations
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Extremes from the NARCCAP ensemble

Use other NARCCAP model combinations to infer the upper
tail of future reanalysis-driven WRF precipitation:

GCM
RCM CCSM CGCM3 GFDL NCEP

WRFG X X X
ECP2 X X
CRCM X X X
MM5I X X
RCM3 X X X

For each RCM-GCM-time combination, obtain ML estimates
and standard errors of GPD parameters.
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Estimating future reanalysis-driven WRF

An ‘ANOVA-like’ model on the parameters of the GPD:(
ψijr
ξijr

)
=

(
µψ
µξ

)
+

(
αiψ
αiξ

)
+

(
βjψ
βjξ

)
+

(
γψ
γξ

)
1{r=2}(r) + εijr

• αi = effect of RCM i, i = 1, ...,5

• βj = effect of GCM j, j = 1, ...,4 (4 = reanalysis)

• γ = difference between current and future

• εijr incorporates numerically estimated covariances

Estimates:

• β̂4ξ = 0.150 ⇒ NCEP-driven RCM runs produce heavier
tail of precipitation than GCM-driven runs

• γ̂ξ = 0.057: evidence for heavier-tailed precipitation in A2
scenario (WRF 100-year event becomes 36.3-year event)
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What about future observations?

Exploit the relationship between reanalysis-driven WRF and
observations:

NOT a scatterplot, but a qq plot
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Conditional Simulation of Extremes

Limiting Poisson process has density

ν(dr × dw) = r−2h(w)dw

• Assumed to hold for large r

• Dirichlet model for h(w) estimated by ML

In Cartesian coordinates:

ν(dz) = ‖z‖−3h(z‖z‖−1)dz

for ‖z‖ large.

Want to find the conditional density of Z2 (observed precipi-
tation), given Z1 (climate model output).
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Conditional Simulation of Extremes
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Two cases
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Two cases

Case 1: The full conditional density fZ2|Z1=z1
(z2) can be ap-

proximated if z1 is ‘extreme’.

Case 2: The upper tail of the conditional density can be
approximated even if z1 is not ‘extreme’: for z2 > r∗

fZ2|Z1=z1
(z2) ≈ P(Z2 ∈ (z2, z2 + dz)|Z1 = z1)

= P(Z2 ∈ (z2, z2 + dz)|Z1 = z1, Z2 > r∗)

· P(Z2 > r∗|Z1 = z1)

Bayes’ rule:

P(Z2 > r∗|Z1 = z1) =
P(Z1 = z1|Z2 > r∗) · P(Z2 > r∗)

P(Z1 = z1)

Works because marginal distributions are Fréchet (known).
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Individual event studies

Conditional densities of future events given WRF-CCSM
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We can then draw from these conditional densities.
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Procedure review

1. observe the CCSM-driven RCM output.

2. transform this to look like NCEP-driven RCM output.

3. use the tail dependence model to obtain the conditional
density of the observations when the RCM output is large
or the tail of the conditional density of the observations
when RCM output is small.

4. could also draw from this density to ”simulate” observa-
tions under the future climate.

5. Separately analyze the PE index produced by the CCSM
model.
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Simulation of observations

Repeated simulation gives uncertainty estimates based on
how RCM represents extreme events.
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x-axis: WRF-CCSM output. y-axis: simulated observations
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PE Index in future scenario

Index is derived from Pacific SLP anomaly fields from driving
GCM (CCSM)

• 8.9% of future period index values exceed 0.95 quantile of
current period values - ↗ frequency of PE events

• Tail dependence of PE index with RCM output precipita-
tion increases - ↗ intensity of PE precipitation(?)

Tail dependence with observed precipitation - studied through
conditional simulation

34



Uncertainty through repeated simulation

We examine two quantities of interest through simulation:

• q1: Proportion of ‘extreme’ observations that correspond
to ‘extreme’ PE index values

• q2: Proportion of ‘extreme’ observations occurring in years
2055-2070 (measure of nonstationarity)

Quantity Estimate1 95% Interval1

q1 0.203∗ (0.144,0.257)
q2 0.571 (0.477,0.656)

1 Based on 500 conditional simulations

∗Value from current period: 0.143

Evidence for increased correspondence of PE events and ex-
treme precipitation - more intense PE events
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Summary

This work is a novel application of bivariate EVT in a climate
study.

• Tail dependence between RCM output and observations -
modeled this parametrically

• PE Index - derived from SLP fields; tail dependent to
observed precipitation

• Conditional simulation from parametric model given future
RCM output - uncertainty estimates
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Future work

Important to remember that we have studied one RCM,
driven by one GCM, and compared it to one observational
product.

• Improvement of the PE index - storms evolve over several
days

• Applying methodology to other climate models

• Examining other regions/phenomena?
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