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Traffic accidents 
 

• 1.3 miljon deaths/year worldwide, 20-50 million severely 
injured 

• Large economic losses 

• Less than 1 death/day in Sweden now. Down from 3 
deaths/day a few decades ago – at a time with much less 
traffic 

• First simple measures: seatbelts, helmets, follow traffic 
rules, drunk driving laws, …, then more sophisticated 
ones: rebuild roads, better tires, improve driver 
education, airbags, …, then next level of sophistication: 
more driver training and retraining,  ABS, ESP, …, and ?? 



New and exciting area for statistics 
 
Part A of talk:      Selection bias 
Part B of talk:      Visual behavior/censoring 
Future:                  Risk estimation 

 

Active safety systems for next generation cars. 
Important for competition with other car makers 
and for safety (?)  

Driver training, traffic laws, car design regulation 
… 
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100-car study 
 
• 100 cars, appr 250 

drivers,  appr 1 year 
 

• Five video cameras, 
radar  sensors; front, 
rear (for all 100 cars) 
and each side (for 20 
cars), vision-based lane 
tracker, glare detectors,  
GPS, accelerometer 
 

• Still not enough crashes 
(82) –> try to use near-
crashes (761) to learn 
about crash behavior 



Crash 
Any contact with an object, either moving or fixed, at any speed in which kinetic 
energy is measurably transferred or dissipated, and includes other vehicles, 
roadside barriers, objects on or off of the roadway, pedestrians, cyclists, animals. 

Near-crash 
Any circumstance requiring a rapid, evasive maneuver by the subject vehicle, or 
any other vehicle, pedestrian, cyclist, or animal to avoid a crash. A rapid, evasive 
maneuver is defined as a steering, braking, accelerating, or any combination of 
control inputs that approaches the limits of the vehicle capabilities. As a guide: 
Subject vehicle braking >0.5 g or steering input that results in a lateral acceleration 
>0.4 g to avoid a crash constitutes a rapid maneuver. 
 

Selection: “trigger” as above – and then manual selection and annotation  



Part A: How can information from near-
crashes be used to prevent real crashes? 

( selection bias) 

1 
Do near-crashes resemble real crashes? Are more 
extreme near-crashes more like real crashes? 

2 
Is it possible to find driver behavior or traffic 
situations which is different in near-crashes than in 
normal driving? Are these differences even more 
extreme in real crashes? 



Statistical methods used so far: 
 
Odds ratios and logistic regression: Completly dominant – but 
can’t easily extrapolate from less severe events to more severe 
ones, can’t easily judge extent of selection bias. 
 
Regression: Is relative risk the same for crashes and for  near-
crashes? 
 
Extreme Value Statistics (almost new): Can near-crashes predict 
the frequency of real crashes? Do covariates behave in same way 
for crashes and near-crashes? Requires a continuous crash 
proximity or crash severity measure.  

Underlying philosophy:  a traffic accident is a rare and 
extreme event.  

 



Crash proximity measure 

• Measure of how close the near-crash is to a real crash 

• Examples: TTEC = Time To edge Crossing, Gap = time 
between first car leaves conflict area and second car 
enters conflict area, Time-to-collision (TTC), … 

• Here, TTC, the time it takes for the cars to collide when 
continuing with the same speeds – useful for rear-ending 
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Examples of TTC computed from radar 

signals 

Possible to extract min TTC  Not possible to extract min TTC  



100-car data, risk of rear-ending, TTC 
 

384  near-crashes, 29 with good enough radar signals, 14 crashes. 

Crash  TTC < 0 
 
Block maxima 95% 
confidence interval for 
expected number of crashes 
is (0.07, 0,09)  (Fitted GEV 
conditional on –TTC > 0, 
delta method conf. intervals) 
 
Observed number of crashes 
= 14 
 
Doesn’t match! 

qq-plot of  -TTC 



Details 
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Selection bias! 

All but two of the real rear-ending crashes were in start-stop 
traffic while all the near-crashes with usable TTC were in higher 
speed situations  

So maybe still:   yes to question 1 (?) 
 

crashes, max speed (km/h) near-crashes, max speed (km/h) 

fitted density 

near-crashes 



Continuous variables that could influence  crash risk: 

 

• Speed 

• absolute value of yaw angle 

• distance to  right and left lane markings 

• time the driver looks off-road during last 2 s or 3 s, total length 
of glances off-road longer than 1.5 s during last 15 s … 

• variance of  lateral acceleration  

• variance of longitudinal acceleration 

….. 
• Length of overlapping glance off road 

Do any of these become more and more extreme as TTC gets  

smaller and smaller? 

2 



• Fitted logistic bivariate extreme value distribution to min/max 
of each of these variables and TTC for near-crashes,                      
dependence  parameter, 1 is independence and 0  is complete 
dependence  

  (0, 1]

2 

 
 max(eye off road in 3 s window) α=1.00 
 max (speed)                                 α=1.00 
 max (variance longitudinal acc)           α=1.00 
 min (dist left markings)                     α=1.00 
             max (dist right markings)                     α=0.93 
 
Fitting was not possible for the other variables, however no 
indication of dependence, except for the last one (length 
overlapping glance off road) 



max speed  →  𝛼 = 1 
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length overlapping glance 
 
(12 with overlapping glance, 13 without 
overlapping glance, 4 vithout video) 



Details 

Marginal distributions: 
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Part B: Visual behavior/censoring 

How much do you look off road while driving? 

 5% of the time 

 10% of the time 

 15% of the time 

 20% of the time 

What is the .999 quantile of the lengths of off road glances? 

 1 second 

 2 seconds 

 3 seconds 

 4 seconds 

 5 seconds 

 10 seconds 

Is glance behavior different in different circumstances? 

Not well understood 

x 

x 



Example 
Eyes Off Road Over Time (100ms bins) 

Precipitating Event  

e.g. braking lead vehicle 

0 1 -1 -2 -3 -4 -5 

Victor & Dozza (2012) 

(Crashes & Near Crashes) 
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Inattention & Risk example 

The overlapping glance gives the highest OR-s 

Victor and Dozza, 2012 

Risk 

Inattention 
SHRP2 
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Glances shorter than 3 seconds Glances longer than 3 seconds 

Glance behavior in the 100-car study 
Raw data:    19,616 annotated 6-second intervals from 100-car 
                       study: 4582 with 1 or more off road glances 



censoring 

nc 
𝑛𝑛𝑐 ⁡uncensored glances off road 

rc 
𝑛𝑟𝑐 ⁡right⁡censored glances off road 

likelihood:
Qnrc

k=1(1¡F0(`rc;k; µ))

likelihood:
Qnnc

k=1 f0(`nc;k; µ)

Model: think of alternating ”zero-one” renewal process, but valid 
more generally for stationary ergodic processes 
 
 
Only use first glance in observation interval 

F0 distribution function of lengths of o®-road glances f0 density function

0 s 6 s 

on road:1 

off road: 0 `
time 

0 s 6 s 

on road:1 

off road: 0 time 
`



lc 
𝑛𝑙𝑐 ⁡left⁡censored glances off road 

dc 
𝑛𝑑𝑐 doubly censored glances off road 

likelihood:
Qnlc

k=1 f
o
0 (`lc;k; µ)

likelihood: ndc(1¡Fo
0 (w))

Sizebiased sampling: 

xf0(x;µ) density of zero-interval overlapping left endpoint

fo0 (x; µ) = (1¡F0(x; µ))=¹(µ) density of overshoot (¹(µ) =
R1
0

xf0(x; µ)dx)

6 s 

on road:1 

off road: 0 
time 

0 s 

0 s 6 s 

on road:1 

off road: 0 

time 
`

time 
`



But:  𝑛𝑛𝑐 , 𝑛𝑟𝑐 , 𝑛𝑙𝑐 , 𝑛𝑑𝑐  also contains information about   𝜃   

L(nlc; ndc; nnc; nrcjn) = C£ (p0F
o
0 (w;µ))

nlc(p0(1¡Fo
0 (w;µ))

ndc

(p1pnc(w;µ)
nnc(p1prc(w;µ))

nrc=(p1(1¡Fo
1 (w)))

n

pnc(w; µ) =
Rw
0
F0(w¡ s)fo1 (s)ds

prc(w;µ) =
Rw
0
(1¡F0(w¡ s))fo1 (s)ds

𝑝0 = 𝑃𝑟(start in zero-interval),   𝑝1= 𝑃𝑟(start in one-interval) 
𝐹0

𝑜  overshoot distribution function of one-intervals 
𝑓1

o overshoot density of one-intervals 

Replace  𝐹0 by estimate, disregard  𝑝0, 𝑝1 and then estimate  𝜃  by maximizing 
the product of the remaining likelihood, and the 4 likelihoods on previous  slide 
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Most important case:  ⁡⁡𝐹0(𝑥) = 1 − 𝑒−𝜆0𝑥 ,⁡⁡ 𝐹1 𝑥 = 1 − 𝑒−𝜆1𝑥 
( overshoot distribution = ordinary distribution) 

   𝜆 0  = ⁡⁡0.92    (𝜆1 estimated “externally”) 



Model fit 

Glance lengths (tenths of seconds) Starting times (seconds) 



Alt. 1: use gamma distribution or phase type distribution 

Alt. 2: … but more complicated, and one is only really interested in 
tails  use tail estimation, i.e. only use observations which are 
longer than  a threshold  u  and assume excesses  𝑙𝑢 = 𝑙 − 𝑢  have 
a Generalized Pareto distribution   with d.f.   
and density                                                   . Then   
 
 
and we get the overshoot density for 𝑙 − 𝑢 as 
 
 
Now replace               and                    by their empirical counterparts 
       and        to get a ”likelihood” as the product of the 4 factors on 
the next slide: 
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nc 
𝒏 𝑛𝑐 uncensored excess lengths   likelihood:

Q¹nnc
k=1 g(`

u
nc;k;¾; °)

rc 
 𝒏 𝑟𝑐 right⁡censored excess lengths likelihood:

Q¹nnc
k=1

¹G(`urc;k;¾; °)

lc 
𝒏 𝑙𝑐 left⁡censored excess lengths likelihood:

Q¹nlc
k=1 f

o
0(`

u

lc;k
;¾; °)

dc 
𝒏 𝑑𝑐 ⁡doubly censored excess lengths 

𝒏 𝑛𝑐 ,  … , 𝒏 𝑑𝑐 ⁡ doesn’t contain further information about  𝜎, 𝛾  

likelihood: ¹ndc ¹F
o
0(`

u

dc;k
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Next: divide into different situations, estimate tail separately 
for each group (or covariate model) 



UMTRI (Gordon et al (2010)) “do near-crashes give 
similar risk estimates as crashes?” 
 
Seemingly Unrelated Regression   yes to question 1 (?) 
 
EVS: TTEC  road departure  road way departure crash 
 
2.3 mile segment of US-23 with117 traversals by 43 different 
drivers in instrumented cars.  
 
EV distribution fit to minimum  TTEC values for the 117 
traversals  predicts 12 road departures/year 
 
On the average there were  1.8 road way departure 
crashes/year 
 
 yes to question 1 (?) 
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Notes: 

(1) Model-based crash frequency estimate of site 97903 is 

excluded from this plot. The value of the estimate is 387.

(2) Error bars represent 95% Poisson confidence intervals 

based on the observed counts.

    four year actual counts of daytime right angle collisions 

● EVS estimate of crash frequency from gap measurements 

-- 8-hour observations of crossing gaps. Signalized intersections in 
the Lafayette area. Summer 2003  

-- Error bars show 95% Poisson confidence intervals  based on                
observed counts 

Slide from presentation by P. Tarko,  Purdue university: 
”Risk evaluation for intersections”  

 yes to question 1 (??) 
 



One conclusion 
 
different kinds of nearcrashes and crashes; 
naturalistics studies; vehicles; drivers,  all lead to 
different kinds of 
 
• Selection bias 

• Crash proximity measures 

• Driver behavior – and ”covariates” 

All require separate careful analysis 

No omnibus answer to ”is there selection bias in 
choice of near-crashes”  

 
 
 



The future 
• Use near-crashes to investigate how (and if) attention 
   measures and other driving and traffic characteristics influence 
   crash risk  highdimensional variable seclection  new  
   research questions 
 

• Develop statistical predictors of crash risk   optimal choice of 
predictors    new  research questions 
 

• Investigate the relation of risk estimates obtained in different  
   naturalistic driving studies (Semifot, 100-car, SHRP 2, …) 
 
• Study the normal driving – near-crash/crash relation in  
  naturalistic driving experiments 
 

More and better data crucial 



SHRP 2 

• 2000 cars 
• 3 years 
• Much better instrumentation (?) 
• Started a year ago 
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