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Traffic accidents

1.3 miljon deaths/year worldwide, 20-50 million severely
injured

Large economic losses

Less than 1 death/day in Sweden now. Down from 3
deaths/day a few decades ago — at a time with much less
traffic

First simple measures: seatbelts, helmets, follow traffic
rules, drunk driving laws, ..., then more sophisticated
ones: rebuild roads, better tires, improve driver
education, airbags, ..., then next level of sophistication:
more driver training and retraining, ABS, ESP, ..., and ??



New and exciting area for statistics

Part Aoftalk: Selection bias

Part Boftalk: Visual behavior/censoring
Future: Risk estimation

Active safety systems for next generation cars.

Important for competition with other car makers
and for safety (?)

Driver training, traffic laws, car design regulation



Naturalistic Driving Research

 [n Situ investigation of driver
performance

— Use an instrumented vehicle
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— No experimenter or instructions

— Data continuously collected for
extended period

VTTI | Driving Transportation with Technology



100-car study

* 100 cars, appr 250
drivers, appr 1 year

* Five video cameras,
radar sensors; front,
rear (for all 100 cars)
and each side (for 20
cars), vision-based lane
tracker, glare detectors,
GPS, accelerometer

* Still not enough crashes
(82) —> try to use near-
crashes (761) to learn
about crash behavior

TRANSPORTATION

INSTITUTE

ORIVING TRANSEPORTATION WITH TRGHNOLOSY

Fact Sheet

Setting up the Study

Study Spoasors
« National Highway Traffic Safety

Administration (NHTSA)

« Virginia Department of
Transportation (VDOT)

« Virginia Transportation Research
Coancil (VTRC)

« Virginia Tech (VT)

Study Parametars

« 109 primary drivers, 241 total drivers

« Northern Virginia/Metropolitan
Washington, DC area

» 12 - 13 months of data collection

« Drivers’ ages ranging from 18 to 73;
60% male; 40% female

100-Car Study Features

« Drivers were given no special
instructions and no experimenter.
« Instrumentation was unobtrusive.

Data (ollection Instrumentation Induded

« Five channels of digital video

« Front and rear radar sensors

« Accelerometers

« Machine vision-based lane tracker

« GPS

« Vehicle speed sensor

The Database

« Contains many extreme driving
cases, incduding severe drowsiness,
impairment, judgment error, risk
taking, secondary task engagement,
aggressive driving and traffic violations

« Each safety-related conflict was
classified as one of the following:

« First large-scale instrumented-vehicle » Crash - any physical contact
study undertaken with the primary between the subject vehide and
purpose of collecting pre-crash and another vehicle, fixed object,
near-crash naturalistic driving data. pedestrian, pedalcyclist or animal.

» Captured a range of crash severities: » Near-Crash - situations requiring
airbag deployments to minor, low- a rapid, severe evasive maneuver
force, no-property-damage crashes. to avoid a crash.

« First study to collect detailed + Incident - situations requiring an
information on a large number of evasive maneuver occurring at less
near-crash events. magnitude than a near-crash.

Sherri Bax, PR & Marketing Manager

SAV231.1549, shoxvitivt edu

3500 Transportation Research Plaza, Blacksbarg, Virginia 24061

wwwttivt.eds

100-Car Naturalistic Driving Study

The real-world data collected from the
100-Car Study lends itself to multiple
additional analyses.

Top Level Database Statistics

« Appraximately 2,000,000 vehide miles

« 42,300 hours of driving data

» 15 police-reported and 67 non-police-
reported crashes

» 761 near-crashes

« 8,295 incidents

Types of Driving Behavior Recorded

« Drowsiness

» Driver inattention

« Traffic violations

« Aggressive driving and “road rage”

« Seat belt usage

Discoveries

Driver inattention

« Nearly 80% of all crashes and 65%
of all near-crashes involved driver
inattention just prior to (ie., within 3
seconds) the onset of the conflict.

Rear-End-Striking Crashes

« Visual inattention was a contributing
factor for 93% of rear-end-striking
crashes.

« In 86% of rear-end-striking crashes,
the headway at the onset of the event
was greater than 2.0 5.

» Most near-crashes involving conflict
with a lead vehide occurred while




Crash

Any contact with an object, either moving or fixed, at any speed in which kinetic
energy is measurably transferred or dissipated, and includes other vehicles,
roadside barriers, objects on or off of the roadway, pedestrians, cyclists, animals.

Near-crash

Any circumstance requiring a rapid, evasive maneuver by the subject vehicle, or
any other vehicle, pedestrian, cyclist, or animal to avoid a crash. A rapid, evasive
maneuver is defined as a steering, braking, accelerating, or any combination of
control inputs that approaches the limits of the vehicle capabilities. As a guide:
Subject vehicle braking >0.5 g or steering input that results in a lateral acceleration
>0.4 g to avoid a crash constitutes a rapid maneuver.

Selection: “trigger” as above — and then manual selection and annotation



Part A: How can information from near-
crashes be used to prevent real crashes?
(= selection bias)

1

Do near-crashes resemble real crashes? Are more
extreme near-crashes more like real crashes?

2
Is it possible to find driver behavior or traffic
situations which is different in near-crashes than in
normal driving? Are these differences even more
extreme in real crashes?




Statistical methods used so far:

Odds ratios and logistic regression: Completly dominant — but
can’t easily extrapolate from less severe events to more severe
ones, can’t easily judge extent of selection bias.

Regression: Is relative risk the same for crashes and for near-
crashes?

Extreme Value Statistics (almost new): Can near-crashes predict
the frequency of real crashes? Do covariates behave in same way
for crashes and near-crashes? Requires a continuous crash
proximity or crash severity measure.

Underlying philosophy: a traffic accident is a rare and
extreme event.



Crash proximity measure

e Measure of how close the near-crash is to a real crash

e Examples: TTEC = Time To edge Crossing, Gap = time
between first car leaves conflict area and second car
enters conflict area, Time-to-collision (TTC), ...

e Here, TTC, the time it takes for the cars to collide when
continuing with the same speeds — useful for rear-ending

TTC =
v, —V,

—>

S
instrumented car lead car



TTC (s)

Examples of TTC computed from radar

signals

Possible to extract min TTC

Not possible to extract min TTC
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100-car data, risk of rear-ending, TTC

384 near-crashes, 29 with good enough radar signals, 14 crashes.

qqg-plot of -TTC
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Crash & TTC< 0

Block maxima 95%
confidence interval for
expected number of crashes
is (0.07, 0,09) (Fitted GEV
conditional on —TTC > 0,
delta method conf. intervals)

Observed number of crashes
=14

Doesn’t match!




Details

recall GEV/(2) = exp{—(1+ 2(z — )1/}
21, - .. 229 observed values of —max(—TTC) (=max(TTC))

29
1
Lphy 0y Y3 215 ooy 2n) = —2910g0—(;—kl)Zlog{l—kg(zi—u)}
i=1

29 —1/y —1/y
—Z(lJrz(zi—,u)) + 29 (1—1u) :
— o o

for z1,...2, - O.

Maximum likelihood estimates = —1.21, 6 =0.21, ¥ = —0.096

Confidence interval for expected number of crashes (= Pr(—min(—TTC) <
0) x #{near-crashes and crashes } ) via observed information matrix and
delta method



Selection bias!
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All but two of the real rear-ending crashes were in start-stop
traffic while all the near-crashes with usable TTC were in higher
speed situations

So maybe still: = yes to question 1 (?)
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Continuous variables that could influence crash risk:

e Speed
e absolute value of yaw angle
e distance to right and left lane markings

e time the driver looks off-road during last 2 s or 3 s, total length
of glances off-road longer than 1.5 s during last 15 s ...

e variance of lateral acceleration
e variance of longitudinal acceleration

e Length of overlapping glance off road

Do any of these become more and more extreme as TTC gets
smaller and smaller?
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 Fitted logistic bivariate extreme value distribution to min/max
of each of these variables and TTC for near-crashes, a e (0, 1]
dependence parameter, 1 is independence and O is complete
dependence

max(eye off road in 3 s window) a=1.00
max (speed) a=1.00
max (variance longitudinal acc) a=1.00
min (dist left markings) a=1.00
max (dist right markings) a=0.93

Fitting was not possible for the other variables, however no
indication of dependence, except for the last one (length
overlapping glance off road)
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Details

Marginal distributions:
G (x) = exp{—(1+ Z(z — )"}
Ga(w) = exp{—(1+ Z(z — 2) ;" ™*}

Joint distributions
G(z1,22) = exp{(Gy (1) ™ + G5 (m2) ")}
for a € (0,1)

Parameters i, u2,01,01,71,%,@ estimated by maximum
likelihoood



Part B: Visual behavior/censoring

How much do you look off road while driving?

3 5% of the time

L 10% of the time
15% of the time
20% of the time

What is the .999 quantile of the lengths of off road glances?

1 second
[ 2 seconds
d 3 seconds
1 4 seconds
X 5 seconds
1 10 seconds

Is glance behavior different in different circumstances?
Not well understood



Eyes Off the Road [%]

Exam p I e Victor & Dozza (2012)

Eyes Off Road Over Time (100ms bins)

0.3¢
Events (Crashes & Near Crashes)
H Baselines
0.2
0.1
-2 -4 -3 -2 -1 0 1
Time [S] Precipitating Event

e.g. braking lead vehicle

SAFER




Eyes Off the Road [%]

A

Inattention & Risk example ™

Victor and Dozza, 2012 ——Irattendion
SHRP2
4
35 P

’ —e— Total Glance Time case
Events
/ control (Klauer 2006)

I Basclines 3
—a— Total Glance Time case
crossower (Liang et al 2011)

2,5
= Total Glance Time case
.............. & 5 x control (present paper)
é Last Single Glance (present
] paper)

1,5 : .
—x— Glance History (previous
1 X glances) (present paper)

.M T~ —e— LG5s glances at t=5s

(present paper)

0,5

. Less than 0.5-1.0s 1.0-1.5s 1.5-20s More than
Time [s] 0.5s 2.0

The overlapping glance gives the highest OR-s



Eyes Off the Road [%)]

0.3

EX am D I e Victor & Dozza (2011)
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Eyes Off the Road [%)]
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EX am D I e Victor & Dozza (2011)
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Glance behavior in the 100-car study

Raw data:

o

19,616 annotated 6-second intervals from 100-car
study: 4582 with 1 or more off road glances
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censoring

Model: think of alternating “zero-one” renewal process, but valid
more generally for stationary ergodic processes

Fy distribution function of lengths of off-road glances f, density function

Only use first glance in observation interval

nc
onroad:1 — — — o e
N, uncensored glances off road z ’
o " off road: 0 sl >
likelihood: [, fo(Ynck;0) - %1 time
0s 6s
rc onroad:1 - — - """—\
n,. right censored glances off road € road: L () g s s )
likelihood: [P (1 — Fo(bres;0)) 0 L 4 lime
Os 6s



Sizebiased sampling:

x fo(x; 0) density of zero-interval overlapping left endpoint

f8(x;0) = (1—Fy(x;0))/u(0) density of overshoot (u(0) = [~  fo(x; 0)dx)

Ic _ U
onroad:1 - = 7]
n,. left censored glances off road S g*._.-yj—d’—— N
likelihood: [, f§ (413 0) off road: 0 ! ) ‘time
0s 6s
doubl dcd | fFroad OO0 T L
ng. doubly censored glances off roa O Y R

likelihood: ng.(1 — F§(w)) off road: 0

i
Os 6S



But: n,,., N, N N4 also contains information about 6

po = Pr(start in zero-interval), p;= Pr(start in one-interval)
F§ overshoot distribution function of one-intervals
fi> overshoot density of one-intervals

Prc(w,0) = [y Fo(w — s)f7(s)ds
prC(w7 9) — fow(l o FO(w o S))flo(s)ds

L(nlm Ndcsy Mnc, nrc’n) =(C X (poFOO(’w, (9))nlc (po(]_ — Fg(w7 H))ndc
(P1Pne (w0, 0)" (D1Pre(w, ) / (p1 (1 — FP(w)))™

Replace F, by estimate, disregard p,, p; and then estimate 8 by maximizing
the product of the remaining likelihood, and the 4 likelihoods on previous slide



Most important case: Fy(x) =1 — e ~AoX Fi(x)=1-— e~ Mx
(= overshoot distribution = ordinary distribution)

Nic Nnc Nyrc
(o) = =X U 1 + Ndc2w + D tnck+ > lrek) +miclog(l —e o)
k=1 k=1 k=1

)\0 —5\1w + >\1 —)\o’w)

+Npe log(1 + e —e
( Ao — A1

Ao — N\
A1
Ao — A1

+n-e log( (6_5‘1“’ — e_’\ow) + (nge + Npe) log Ag.

- /10 = (.92 (A, estimated “externally”)



Theoretical Quantile

Theoretical Quantile

Start within the first second
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Alt. 1: use gamma distribution or phase type distribution

Alt. 2: ... but more complicated, and one is only really interested in
tails = use tail estimation, i.e. only use observations which are
longer than athreshold u and assume excesses [* = [ —u have
a Generalized Pareto distribution with d.f. Gz)=1—(1+ }x)jrl/”
and density g(z;0,7) = £(1 + 2z)~/7~1 Then

Fy(z;0,7) = Fo(u)G(z —u;0,7), for z>u
and we get the overshoot density for [l — u as

f§(z;0,7) = Fo(W)G(z;0,7)/p, @ >ufor p= [ zfo(z)+ut+F(u) [,” zg(z)

Now replace Fy(u) and [ zfo(z) by their empirical counterparts
q9u and ., to get a”likelihood” as the product of the 4 factors on
the next slide:



nc

Ny, uncensored excess lengths likelihood: Hzicl g(lee ,;0,7)
rc )
n,. right censored excess lengths likelihood: [ G(€ 1;0,7)
Ic i
n,. left censored excess lengths likelihood: [k, f8( 'I“C,k; 7,7)
dc

n,;. doubly censored excess lengths  ]ikelihood: ﬁdCFS( glc 30, %)

Ny , .., Ngc doesn’t contain further information about o,y



Next: divide into different situations, estimate tail separately
for each group (or covariate model)



UMTRI (Gordon et al (2010)) “do near-crashes give
similar risk estimates as crashes?”

Seemingly Unrelated Regression - yes to question 1 (?)
EVS: TTEC - road departure = road way departure crash

2.3 mile segment of US-23 with117 traversals by 43 different
drivers in instrumented cars.

EV distribution fit to minimum TTEC values for the 117
traversals = predicts 12 road departures/year

On the average there were 1.8 road way departure
crashes/year

- yes to question 1 (?)
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Daytime right-angle collisior

Slide from presentation by P. Tarko, Purdue university:
”Risk evaluation for intersections”

30 A

20 A

10 A

O four year actual counts of daytime right angle collisions

e EVS estimate of crash frequency from gap measurements

-- 8-hour observations of crossing gaps. Signalized intersections in
the Lafayette area. Summer 2003 °

-- Error bars show 95% Poisson confidence intervals based on
observed counts T

—> yes to question 1 (??)
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One conclusion

different kinds of nearcrashes and crashes;
naturalistics studies; vehicles; drivers, all lead to
different kinds of

* Selection bias
* Crash proximity measures
* Driver behavior —and “covariates”
All require separate careful analysis

No omnibus answer to ”is there selection bias in
choice of near-crashes”



The future

e Use near-crashes to investigate how (and if) attention
measures and other driving and traffic characteristics influence
crash risk 2 highdimensional variable seclection 2 new
research questions

* Develop statistical predictors of crash risk 2 optimal choice of
predictors > new research questions

* Investigate the relation of risk estimates obtained in different
naturalistic driving studies (Semifot, 100-car, SHRP 2, ...)

* Study the normal driving — near-crash/crash relation in
naturalistic driving experiments

More and better data crucial



SHRP 2

2000 cars

3 years

Much better instrumentation (?)
Started a year ago
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