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Stationary regularly varying sequences
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I A stationary time series (Xn)n is said to be regularly varying if
random vectors

(X0, . . . , Xk) k ≥ 0

are regularly varying for each k.
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A random vector X is regularly varying with tail index α if

B ‖X‖ is regularly varying, ie P (‖X‖ > u) = u−αL(u) ,

B and for x→∞
X

‖X‖

∣∣∣∣ ‖X‖ > x
d→ Θ
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Or alternatively for x→∞(‖X‖
x
,

X

‖X‖

)∣∣∣∣ ‖X‖ > x
d→ (R,Θ)

with R Pareto(α) and independent of Θ ∼ σ on Sk−1, thus

X

x

∣∣∣∣ ‖X‖ > x
d→ R · Θ

We write X ∼ RV(α, σ).

In dimension one

Θ ∼
(
−1 1
q p

)
.
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≈ u−ασ(S)
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≈ u−ασ(S)
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Regular variation is further equivalent to

P (X/x ∈ · )
P (‖X‖ > x)

v→ µ′( · ) ,

as x→∞ on Rk \ {0}.

Note: definition is independent on the choice of norm on Rk and
the normalizing event can be altered, so for instance using ‖X‖ =
max{|X1|, . . . , |Xk|}, this is equivalent to

P (X/x ∈ · )
P (|X0| > x)

v→ Cµ′( · ) =: µ( · ) ,

as x→∞ on R̄k \ {0}.
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Therefore for a stationary regularly varying sequence (Xt) as x→∞(|X0|
x
,

(X0, . . . , Xk)

|X0|

)∣∣∣∣ |X0| > x
d→ (R, (θ0, . . . , θk))

with R ∼ Pareto(α) and independent of (θ0, . . . , θk) which is not necessarily
Sk–valued any more.

Thus, for each k > 0

(X0, . . . , Xk)

x

∣∣∣∣ |X0| > x
d→ R(θ0, . . . , θk)

=: (Y0, . . . , Yk)

Clearly
|θ0| = 1 and |Y0| = R
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By construction, distributions of (θ0, . . . , θk) and (Y0, . . . , Yk) satisfy Kol-
mogorov’s consistency critera and therefore there exists a tail process

(Yt)t∈Z

such that (
Xt

x

)
t∈Z

∣∣∣∣ |X0| > x
d→ (Yt)t∈Z

and a spectral tail process

(θt)t∈Z

independent of |Y0| such that

(Yt)t
d
= |Y0|(θt)t
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Note there exists a sequence (an) such that

nP (|X0| > anu)→ u−α

for u > 0 and (
Xt

an

)
t∈Z

∣∣∣∣ |X0| > an
d→ (Yt)t∈Z.
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Examples (for simplicity, all nonnegative i.e. θ0 = 1)

a) Xt = X ∼ RV(α), θt = 1, for all t.

b) Xt iid RV(α), θt = 0, for t 6= 0.

c) Xt = Zt ∨ Zt−1, Zt iid RV(α), θt = 0, for |t| ≥ 2

(θ−1, θ0, θ1) ∼
{

(1, 1, 0) with prob. 1/2
(0, 1, 1) with prob. 1/2
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d) Xt = Zt + 1
2
Zt−1, Zt iid RV(α), θt = 0, for |t| ≥ 2

(θ−1, θ0, θ1) ∼
{

(0, 1, 1
2
) with prob. p = 1/(1 + (1/2)α)

(2, 1, 0) with prob. 1− p

e) Xt = AtXt−1+Bt, with (At, Bt) iid satisfying Kesten’s (1973) conditions,
Xt ∼ RV(α) and for t = 0, 1, 2, . . .

θt = AtAt−1 · · ·A1 .
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There is a subtle and somewhat startling connection between the past and
the future of the tail process, so for instance

P (θ−t 6= 0) = E|θt|α .
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Point processes
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Point process is a random Radon point measure, i.e. mapping

N : Ω→Mp

where Mp denotes a set of point measures on some fixed state space E. For
m ∈Mp

m =
∑
i

δxi.

Hence ∫
fdm =

∑
i

f (xi) =: f (m)
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However, Mp needs topology and even more desperately, a σ–algebra.

Vague topology is introduced by

mn
v→ m

if
f (mn)→ f (m).

for all f cont. with compact supp.
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Poisson point process (PRM) N with intensity measure µ satisfies

B N(A) ∼ Poisson(µ(A)) for all A ,

B N(A1), N(A2), . . . , N(Ak) are independent for all disjoint
A1, A2, . . . , Ak
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Note
Nn

d→ N

again means

Ef (Nn)
d→ Ef (N)

for any bounded f continuous in vague topology.
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Distribution of the point process

N =
∑
i

δPi

is uniquely determined by Laplace functionals of the form

E−f(N) = Ee−
∑

i f(Pi) ,

for f ∈ C+
K
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Laplace functionals of N ∼ PRM(µ) take form

E−f(N) = exp

[
−
∫
E

(1− ef(x))dµ(x)

]
,

for f ∈ C+
K
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For our stationary and regularly varying sequence (Xi) consider

Nn =
n∑
i=1

δ(i/n,Xi/an),

on the space
E = [0, 1]× R \ {0}.
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To check
Nn

d→ N =
∑
i

δ(Ti,Pi)

one can use Laplace functionals and show

Ee−f(Nn) d→ Ee−f(N)

ie

E exp

{
−
∑
i

f

(
i

n
,
Xi

an

)}
d→ E exp

{
−
∑
i

f (Ti, Pi)

}
for all f nonnegative continuous with relatively compact support ie f ∈ C+

K.
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Theorem For iid Xt, X0 ∼ RV(α, σ) is equivalent to

n∑
1

δ i
n ,

Xi
an

d→ N ,

where N is PRM(Leb×µ).
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u

a b

P ((b− a)u−α)

N
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Extremes of dependent sequences cluster
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Nn
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Main idea: try to break the series into ”nearly independent blocks” of size

rn, rn→∞,
n

rn
→∞ ,

so that for kn = bn/rnc

Nn

d≈ N rn
1 + · · · + N rn

k =: Ñn

for independent

N rn
j

d
=

rn∑
i=1

δ(jrn/n,Xi/an)
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Ñn
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Weak dependence condition
or A′(an) condition

WDC Following Davis and Hsing (1995) we introduce the following condi-
tion (implied by strong mixing): for some rn and all f as above

Ee−f(Nn) + o(1) = Ee−f(Ñn) = Ee−[f(N
rn
1 )+···+f(N rn

k )] =
kn∏
j=1

Ee−f(N
rn
j )
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Therefore it is sufficient to study clusters with a fixed time coordinate.
Note f ∈ C+

K has a support on |x| > ε for some ε > 0, thus

Ee−f(N
rn) = Ee−

∑rn
1 f(Xi/an)

= P (Mrn ≤ anε)

+ E
(
e−

∑rn
1 f(Xi/an)

∣∣∣Mrn > anε
)
· P (Mrn > anε)

where Mrn = max{|X1|, . . . , |Xrn|}.

Understanding asymptotics of extremes boils down to understanding behav-
ior of the two terms on the rhs.
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Or at least

B E
(∑rn

1 I|Xi|>an
∣∣Mrn > an

)
B P

(∑rn
1 I|Xi|>an ≥ k

∣∣Mrn > an
)

First, we need to restrict dependence within the cluster
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Finite mean cluster size condition
or anti-clustering condition

FCC The high level exceedances are not clustering for ”too long”:

lim
m→∞

lim sup
n→∞

P

 ∨
m≤|i|≤rn

|Xi| > anu

∣∣∣∣∣∣ |X0| > anu

 = 0 , u > 0 . (1)
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Clusters via tail process
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Under FCC the tail process satisfies

|Ym|
P→ 0, as |m|→ ∞.

Just note

P (|Ym| ≥ ε) = lim
n→∞

P (|Xm|/an > ε
∣∣|X0| > an)

and take limm→∞
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Moreover,
knP (Mrn > an)→ θ > 0.

where θ is ...
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Extremal index
of the sequence |Xt|

Really

1

knP (Mrn > an)
∼ nP (|X0| > an)

knP (Mrn > an)
∼
knE

(∑rn
1 I|Xi|>an

)
knP (Mrn > an)

= E

(
rn∑
1

I|Xi|>an

∣∣∣∣∣Mrn > an

)
→ 1

θ
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Alternatively (O’Brien)

θ = lim
n→∞

P (|X1|, . . . , |Xrn| ≤ an| |X0| > an)

= lim
n→∞

P (|X−rn|, . . . , |X−1| ≤ an| |X0| > an)

which gives

θ = P (
∨
i≥1
|Yi| ≤ 1) = P (

∨
i≤−1
|Yi| ≤ 1)
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Examples

a) Xt iid RV(α), θ = 1.

b) Xt = Zt ∨ Zt−1, θ = 1/2.

c) Xt = AtXt−1 + Bt, as above

θ = P (sup
t≥1

At · · ·A1|Y0| ≤ 1)

= E

(
1− sup

t≥1
[At · · ·A1]

α

)
+

cf de Haan et al (1989)
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Observe that θ also has the following property

P

(
Mn

an
≤ x

)
→ e−θx

−α

although

nP (|X0| > anx)→ x−α
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Formally
knP (Mrn > anx)→ θx−α

follows from WDC, FCC and stationarity, since

kn

rn∑
j=1

P (|Xj| > anx, |X1|, . . . , |Xj−1| ≤ anx)

= kn

rn∑
j=m+1

P (|Xj| > anx, |Xj−1|, . . . , |Xj−m| ≤ anx) + o(1)

= kn(rn −m)P (|X0| > anx, |X1|, . . . , |Xm| ≤ anx) + o(1)

= nP (|X0| > anx, Mm ≤ anx) + o(1)

= P (Mm ≤ anx | |X0| > anx) · nP (|X0| > anx) + o(1)

→ θx−α.
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Note

P

(
rn∑
1

I|Xi|>an ≥ k

∣∣∣∣∣Mrn > an

)

=

∑rn−m
i=1 P

(
|Xi| > an and

∑i+m
j=i I|Xj |>an = k

)
P (Mrn > an)

+ o(1)

=
rnP (|X0| > an)P

(∑m
0 I|Xj |>an = k

∣∣ |X0| > an
)

P (Mrn > an)

kn
kn

+ o(1)

→ 1

θ
P (

∞∑
1

I|Yj |>1 = k)

=
1

θ

(
P (

∞∑
0

I|Yj |>1 ≥ k)− P (
∞∑
0

I|Yj |>1 ≥ k + 1)

)
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Similarly, if f (x) = 0 for |x| ≤ 1

E
(
e−

∑rn
1 f(Xi/an)

∣∣∣Mrn > an
)

→ 1

θ

(
Ee−

∑∞
0 f(Yi) − Ee−

∑∞
1 f(Yi)Isupj≥1 |Yj |≥1

)
In general

E
(
e−

∑rn
1 f(Xi/an)

∣∣∣Mrn > an
)

→ E

(
e−

∑∞
−∞ f(Yi)

∣∣∣ sup
j<0
|Yj| ≤ 1

)
= E

(
e−

∑∞
−∞ f(Zi)

)
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Formally, this means there is a point process∑
δZi

d
=
(∑

δYi

) ∣∣ sup
j<0
|Yj| ≤ 1

such that

rn∑
i=1

δXi/an

∣∣Mrn > an
d→

∞∑
i=1

δZi
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Main result
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Theorem Under WDC and FCC, for every u > 0 and as n→∞,

Nn
d→ N =

∑
i,j

δ
(T

(u)
i ,uZij)

∣∣
Eu ,

in Eu = [0, 1]× {x : |x| > u}, where

1.
∑

i δT (u)
i

is a homogeneous Poisson process on [0, 1] with intensity

θu−α;

2. (
∑

j δZij)i is an iid sequence of point processes in E, independent of∑
i δT (u)

i

krizmanić, segers, b. (2012)
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the shape of the limiting process

47



If you are willing to forget time coordinate

Theorem

N ′n =
n∑
i=1

δXi
an

d→ N ′ =
∑
i,j

δPiQij ,

in E, where

1.
∑

i δPi is a Poisson process on (0,∞] with intensity d(−u−α);

2. (
∑

j δQij)i is an iid sequence of point processes in E, independent of∑
i δPi

davis, hsing (1995)
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Functional limit theorems
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Recall

I A stationary time series (Xn)n is said to be regularly varying if
random vectors

(X0, . . . , Xk) k ≥ 0

are regularly varying for each k.
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There exists a tail process

(Yt)t∈Z

such that (
Xt

x

)
t∈Z

∣∣∣∣ |X0| > x
d→ (Yt)t∈Z

and a spectral tail process

(θt)t∈Z

independent of |Y0| such that

(Yt)t
d
= |Y0|(θt)t
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For our stationary and regularly varying sequence (Xi) consider

Nn =
n∑
i=1

δ(i/n,Xi/an),

Then under weak dependence conditions

Nn
d→ N

Where

I N ∼ PRM(Leb× µ) in iid case

I N has clusters governed by the tail process in general
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the shape of the limiting process
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For a (stationary) sequence X1, X2, . . ., partial sums

Sn = X1 + · · · + Xn, n ∈ N

form a random walk.

For iid steps with µ = EX1 and σ2 = varX1 < ∞ it satisfies central
limit theorem, i.e. with W ∼ N(0, σ2)

1√
n

(Sn − nµ)
d→ W

54



There are other possible limits for (Sn), these are so-called stable distri-
butions.

Recall, Y is stable if for iid Y1, Y2, . . .
d
= Y and any n there exist an, bn

such that

Y1 + · · · + Yn
d
= anY + bn.

Then an = n1/α, with α ∈ (0, 2] so we call Y α–stable.
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Brownian motion (Wt)t is a random process satisfying

I W0 = 0 a.s.

I path t 7→ Wt is a.s. continuous

I increments Wt −Ws, s < t on disjoint intervals are independent and
satisfy

Wt −Ws ∼ N(0, t− s)
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It is also an example of Lévy process, which

I start at zero

I have càdlàg paths

I and stationary independent increments.

Brownian bridge is given by

Bt = Wt − tW1, t ∈ [0, 1].
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Scaling limits for random walks and e.d.f. of iid sequence X1, X2, . . . with
bn = nµ are

1√
n

(
Sbntc − bnt

) d→ (Wt) (2)

or

√
n
(
F̂n − F

)
d→ B (3)
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Recall, in a space S

Vn
d→ V

stands for

Ef (Vn)→ Ef (V )

for all f bounded, continuous on S.
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Recall, on metric space S, f : S → R is continuous if

sn → s,

implies
f (sn)→ f (s) .

Intuitively, stronger metric =⇒ there are fewer convergent sequences =⇒
there are more continuous functions =⇒ stronger notion of convergence in
distribution.
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Naturally, in our case S = D[0, 1], but we need to pick topology

very carefully.

Uniform topology (used by Donsker) causes all kinds of trouble.
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Two ways around this

Shorohod gave

. several very intuitive metrics on D[0, 1]

. among them, everybody’s favourite is J1.

Dudley suggested

. don’t use σ-algebra generated by open sets

. or even check Ef (Vn) → Ef (V ) for some smaller, but sufficiently
rich class of functions.
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We study the process

Sbntc =

bntc∑
i=1

Xi , t ∈ [0, 1].

It can be viewed as a random element in the space of cadlag functions
D[0, 1], which needs to be equipped with topology.
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For two càdlàg functions f and g on [0, 1] set

dJ1(f, g) = inf
λ

max {‖f ◦ λ− g‖∞, ‖λ− id‖∞}

where the infimum is taken over increasing and continuous mappings
λ : [0, 1]→ [0, 1].
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Uniform metric doesn’t handle jumps very well
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Functional limit theorem
in J1 metric

Theorem

For (Xi) iid RV(α) with α ∈ (0, 2) and an α–stable Lévy process Vα

Sbntc − bntc bn
an

d→ Vα(t) (n→∞),

in D[0, 1] endowed with the J1 topology.

skorohod
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A few words about the proof

For point measures
mn

v→ m ∈Mp

means that on each compact K with m(∂K) = 0, there is n0, such that
for n ≥ n0

mn

∣∣
K

=
k∑
i=1

δxni and m
∣∣
K

=
k∑
i=1

δxi

and
(xn1 , . . . , x

n
k)→ (x1, . . . , xk)
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Vague convergence illustrated
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I Introduce the sum functional m→ Ψm mapping Mp to D[0, 1]

Ψm(t) =
∑
ti≤t

xi, where m =
∞∑
i=1

δti,xi

Clearly

ΨNn
(t) = Sbntc =

bntc∑
i=1

Xi , t ≥ 0.
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I Apply contin. map. thm. to show that on K = [0, 1]× (−ε, ε)c

mn
v→ m =⇒ Ψ

mn

∣∣
K

→ Ψ
m

∣∣
K

in appropriate metric, whenever m ∈M ′ ⊂Mp.

In this case M ′ is a set of point measures

m =
∞∑
i=1

δti,xi

such that
m({t} × (−ε, ε)c) ≤ 1

and
m([0, 1],×{−ε, ε}) = 0
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I But the limiting point process is PRM, thus

P (N ∈M ′) = 1

I Apply standard approximation argument to let ε→ 0.
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What about dependent steps?

The sums were considered by many: e.g. Denker & Jakubowski (1989),
Davis & Hsing (1995), Davis & Mikosch (1998), Bartkiewicz et al. (2009)
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Partial results exist on the functional level too

If dependence is very week, that is if θ = 1 and extremes do not cluster at
all, the convergence result still holds. – Leadbetter and Rootzén (1988);
Tyran-Kamińska (2009).

For moving average processes, e.g.

Xn = c0Zn + c1Zn−1 + · · · + cmZn−m

things can go wrong, and J1 topology does not work – Avram & Taqqu
(1992).

They can still save it under additional assumption that all the coefficients
ci have the same sign using M1 topology.
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Examples

a) Xt = Zt ∨ Zt−1, Zt iid RV(α),

b) Xt = Zt + 1
2
Zt−1, Zt iid RV(α),

c) Xt = AtXt−1 + Bt, with (At, Bt) iid nonnegative satisfying Kesten’s
conditions.
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Xt = Zt +
1
2
Zt−1
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Problem for J1 metric
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Solution: use M1 metric, distance between functions f and g is measured
by comparing completed graphs Γf and Γg

Γf = {(t, x) : x = f (t) or x ∈ [f (t−), f (t)]}
and

dM1
(f, g) = inf

λf ,λg
max ‖λf − λg‖∞

where infimum is taken over continuous and increasing parametrizations of
λf , λg.
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Solution: use M1 metric
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Assumptions
some old, one new

Assume (Xn) is a stationary regularly varying sequence with α < 2 satisfy-
ing WDC and FFC

suppose further

I its tail process has no two values of the opposite signs a.s.
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Functional limit theorem
in M1 metric

Theorem

Under the assumptions, there is an α–stable Lévy process Vα such that

Sbntc − bntc bn
an

d→ Vα(t) (n→∞),

in D[0, 1] endowed with the M1 topology.

krizmanić, segers, b. (2012)
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Xt = Zt − 1
2
Zt−1 + Zt−2
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Problem for M1 metric
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Assumptions

Assume (Xn) is a stationary regularly varying MA sequence with α < 2
satisfying

Xn = c0Zn + c1Zn−1 + · · · + cmZn−m

such that for all j

0 ≤
j∑
i=1

ci ≤
m∑
i=1

ci
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Functional limit theorem
in M2 metric

Theorem

Under the assumptions, there is an α–stable Lévy process Vα such that

Sbntc − bntc bn
an

d→ Vα(t) (n→∞),

in D[0, 1] endowed with the M2 topology.

krizmanić, b. (2013)
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To remember

A stationary regularly varying sequence (Xt)

B has a tail process (Yt)

B the clusters of extremes can be described by (Yt)

B point processes Nn have a limit characterized by (Yt)

B random walks with steps (Xt) have an α–stable limit for α ∈ (0, 2) but
in strange topologies on D[0, 1].
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Related
an incomplete list

B Extremogram (Davis, Mikosch)

B Cluster functionals (Yun, Segers)

B Large deviations (Mikosch, Wintenberger)

B Markov chains, duality and time change formula (Rootzén, Segers,
Janssen)

B Other failure sets and Banach spaces (Hult, Lindskog, Segers, Meinguet)
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