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UK Air Pollution: Modelling exceedances over a moving threshold
Eastoe, Emma Lancaster University, UK, e.eastoe@lancaster.ac.uk
Janet E. Heffernan Lancaster University, UK
Jonathan A. Tawn Lancaster University, UK

Air Pollution; Generalised Pareto Distribution; Moving threshold; Asymptotic independence; Cluster maxima:

Air pollution has a deleterious effect on human health, damages ecosystems, causes deterioration of many natural
materials and reduces quality and quantity of crop yields. Discussions of such effects are well published although the
PORG report [1] is of specific interest to a study of the sources and effects of air pollution in the UK. Within the
last half century the need to impose limits on the production of air pollutants has become increasingly clear. Models
of extreme levels of air pollutants can be used to create and test legislation designed to restrict anthropological
emissions of air pollutants.

We consider the modelling of five air pollutants at twelve sites in the UK. These pollutants are Nitrogen Dioxide,
Nitrogen Oxide, Ozone, Particulate Matter with a diameter of less than 10µm and Sulphur Dioxide. Our observations
are the daily maxima. We treat the variables at each of the sites as independent. We also assume the sites are
independent of each other. To demonstrate our methods we focus on a single site (Swansea) before giving a summary
of all the sites. We look for similarities between models at different sites.

The data display short term dependence (clustering) and non-stationarity (seasonality). We follow the methods
of Ferro and Segers [2] in our estimation of the extremal index (EI) to decluster the data. Since this requires that the
data is stationary we first transform the data to the standard exponential scale using a local nonparametric method
of transformation. The local nature of this transformation ensures that the transformed data are stationary. After
threshold selection and declustering the data and threshold are transformed back to the original scale. This results
in a threshold that changes in time, generally following the seasonal pattern of the data.

Estimation of the EI on the exponential scale shows that the data are asymptotically independent but that there
is clustering at the finite threshold levels that we want to use. Following a result from Ledford and Tawn [3] we show
that the GP distribution is an appropriate model for the cluster maxima which result from declustering at these
levels. Accordingly, we fit GP distributions to the cluster maxima of each of the variables. To model seasonality and
any linear trends we allow the model parameters to be functions of time. Seasonality can then be modelled by the
inclusion of appropriate Fourier series to model the GP parameters, see, for example, Coles [4].

We assume that, given a site, the five pollutants are independent of each other. We also assume that the twelve
sites are independent of each other. There are a number of reasons why it is reasonable that neither assumption
should hold. Reactions between chemicals in the atmosphere may invalidate the first assumption and meteorological
conditions common to several sites may invalidate the second. We hope to use the models fitted here as marginal
models in future work, in which we model, separately for each site, the dependence between the variables. We then
hope to fit a single global model to the full data set.
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Testing the tail index using the right-spread function
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Key words:Exponentiality; Right-spread Function; Strictly Algebraic Distributions;

Testing the tail index of a distribution function is an interesting problem which has widely been studied in
the Statistical literature. Graphical methods were presented to characterize the nature of a distribution. In the
algebraic case, that statistical tool provides an estimation procedure of the parameter characterizing the decrease
of the survival function. This method is based on the relationship between the duration of exceeding an intensity
threshold and the accumulation of the realizations of the random variables during this length of time. If the data
proceed from an exponential distribution then the threshold will tend to infinity. This fact can not be appreciated
by using graphical methods when the limit of the relative excess mean function is zero. Furthermore, the threshold
should not be too high since the divergence of the bias. A high sample size is also needed to stable the tail index
estimator for strictly algebraic distributions. These problems can be solved using the right-spread function. This
function possesses a bounded domain and characterizes graphically the exponential distribution versus any continuous
distribution function. In this paper, we study a new approach to testing exponentiality and an estimation for the
tail index q in the algebraic case by using the right-spread function.
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[5] Fernández-Ponce, J.M., Kochar, S.C., Muñoz-Perez, J. (1998), Partial orderings of distributions based on right
spread function, J. Appl. Prob., 35, 221-228.
[6] Karr, A.F.,(1993) Probability, Springer-Verlag, New York, Inc.
[7] Shaked, M. and Shanthikuman, J.G. (1998), Two variability orders, Prob. Eng. Infor. Sci., 12, 1-23

3



A new model for time series dependence and the extremal index of
higher-order Markov chains
Ferreira, Helena University of Beira Interior, Covilhã, Portugal ferreira@fenix2.ubi.pt

Extremal coefficient, dependence, extremes, extremal index, higher-order stationary Markov sequences:

We present a new model for time series dependence and derive one criterion for convergence of extremes.
The dependence structure of a stationary sequence is described by a sequence of extremal functions. Under

a stability condition for the sequence of extremal functions, we obtain the asymptotic distribution of the sample
maximum.

As a corollary, we derive a surprisingly simple method of computing the extremal index through a limit of a
sequence of extremal coefficients.

The results may be used to determine the asymptotic distribution of extreme values from stationary time series
based on copulas. We illustrate it with the study of the extremal behaviour of dth-order stationary Markov chains in
discrete time with continous state space. For such sequences we present a way to compute the extremal index from
the upper extreme value limit for its joint distribution of d + 1 consecutive variables.
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The estimation of scale parameter based on fourth central moment in
large deviation
Ghodsi, Maryam Islamic Azad University, Iran
Farnoosch, R. Iran University of Science and Technology, Iran
Jafarpour, H. Islamic Azad University, Iran

Estimators, Large deviation, Scale parameter, Standardized fourth central moment:

In this paper we consider actual values of standardized fourth central moment for scale distributions. Then we
generate data from these distributions and compute estimations of scale parameter. We compare the estimators by
actual values We discuss about their properties and finally we suggest the best estimators.
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Analysis of flood in northern Moravia
Jarušková, Daniela Czech Technical University, Czech Republic, jarus@mat.fsv.cvut.cz
Hanek, Martin Charles University, Czech Republic

Flood in Northern Moravia; hydrological extremes; precipitation; case study :

In 1997 a big flood plagued the Northern Moravia (part of the Czech Republic). The water discharges of moravian
rivers reached almost hundred times their average. According to public opinion the flood was caused by unusual
weather conditions when severe storms occurred almost simultaneously in the basin drained by the rivers Opava
and Opavice. In a case study we examine nine precipitation series and four water discharges series and try to find
relationship between them. Using the theory of extremes we would like to answer the question whether such floods
are likely to appear again.
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Ruin problem for integrated stationary Gaussian process
Kobelkov, Sergey Moscow State University, Russia, sergey@dodo.inm.ras.ru

Gaussian process, Rice method, ruin probability :

Exact asymptotic of ruin probability is found in the case when the profit rate has the form of Gaussian stationary
process. The result is obtained by Rice’s moment method.

Consider the ruin probability

P (u) = P{∃ t ≥ 0 :
∫ t

0

Xs ds− ctθ ≥ u},

where θ > 1/2, Xt is a zero-mean real-valued stationary gaussian process with twice differentiable covariation function
R(t) such that G =

∫∞
0

R(s) ds > 0, H =
∫∞
0

sR(s) ds < ∞, and u2−2/θ
∫∞

u1/θ sR(s) ds → 0, u →∞. Then,

P (u) =
√

R(0)√
2π

u−1+1/θ(2θ − 1)1/2−1/θc−1/θ exp
{
−u2−1/θ (1+τθ

min(2θ−1)−1))2

2G(u(2θ−1)−1/c)1/θτmin−2Hu−1/θ

}
(1 + o(1))

as u →∞, where τmin = τmin(u) is a point of minimum of the function

v(τ) =
(1 + τθ(2θ − 1)−1))2

2G (u(2θ − 1)−1/c)1/θ
τ − 2Hu−1/θ

.

In the case θ = 1 we obtain

P (u) =

√
R(0)√
2π

c−1 exp{−Hc2

G2
} exp {−uc/G} (1 + o(1)).

Comparing it with the result of Debicki, we obtain that the generalized Pickand’s constant for the process η(t) =
c

G
√

2

∫ t

0
Xt dt equals to

√
R(0)/(

√
2πGc) if the covariation function R(t) is twice differentiable.

The problem of the limit distribution of the time of ruin is also considered.
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Estimation of volatility and distribution function for the stochastic
processes corresponding to stock price dynamics
Kritski, Oleg Tomsk Polytechnic University, Russia,
olegkol@yandex.ru, olegkol@mph.phtd.tpu.edu.ru

stochastic processes, volatility, evaluation of distribution function, risk, Dow Jones Industrial Index, RTS Index.

The statistical properties of the stochastic processes play a key role in the modeling of financial markets. For example,
the knowledge of the stochastic nature of the price of a financial asset is crucial aspect for a sensible pricing of an
option issued on it. And, of course, if the distribution function or conditional probability density of all orders are
known, we can make a full characterization of stochastic process and forecast its stochastic behavior in any point of
time.

The most common stochastic model of stock price dynamics assumes that stochastic processes to be used in
the investigations are a diffusive process, and logarithms of its increments have Gaussian distribution. Such model,
known as Brownian motion, provides the easiest way to estimate the behaviour of observed empirical data. But, in
practice, there are the systematic deviations from the model predictions because empirical distributions have more
leptokurtic distribution functions than Gaussian one. And we should estimate the probabilistic law corresponding to
these data by applying some theoretical method.

Such estimations were made, for example, in [1-2] by using a fractal analysis or by plotting an empirical curve of
probability density and doing subsequent comparison with Gaussian distribution respectively.

In this paper it is suggested the other method of evaluation of distribution function. Let we have some sample
of daily stock prices that change in time (e.g. we have some time series). Computing a logarithm of daily price
differences by formula

Ri =
Si+1 − Si

Si
, i = 1, 2, . . . ,

we can get raw data for an estimation.
After data processing the examination of χ2– criterion of Pierson’s goodness of fit [3-4] is made. The statistical

estimation was chosen as follows:

γn =
∑( (νj − npj(Θ))2

npj(Θ)

)

where n – total amount of points of the sample, s = log2 n+1 – quantity of classification intervals, Θ –consistent esti-
mate of evaluating parameters (in our case it is the vector consists of empirical estimation of average and dispersion),
pj(Θ) = Fmod(cj ,Θ) − Fmod(cj−1,Θ)—probability to fall into the j ’–s classification interval [cj−1, cj ], Fmod(x, Θ)–
supposed theoretically known distribution function, νj– an amount of points of the sample that lie within [cj−1, cj ],
j = 1, s.

The numerical computations of the data of companies entering Dow Jones Industrial Index and RTS Index
(Russia) have shown that some companies satisfy to the Gaussian distribution (i.e. Intel Corp., RAO UES (EESR,
http://www.rao-ees.elektra.ru/en/)) and some companies (in the most cases they are relatively small) don’t. Made
analysis allows to estimate an empirical volatility function, empirical average function and discover their approximate
functional dependencies. It make us possible to forecast future prices of asset and minimize possible risk level.
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Regional analysis of extreme precipitation events in the Czech republic
Picek, Jan Technical University in Liberec, Czech Republic, jan.picek@vslib.cz
Kyselý, Jan Institute of Atmospheric Physics AS CR, Prague, Czech Republic
Huth, Radan Institute of Atmospheric Physics AS CR, Prague, Czech Republic

extreme precipitation event; regional analysis; L moments; tests for homogeneity of regions:

Extreme high precipitation amounts are among environmental events with the most disastrous consequences
for the human society. Estimates of their return periods and design values are of great importance in hydrologic
modelling, engineering practice for water resources and reservoirs design and management, planning for weather-
related emergencies, etc. The L-moment based method of the regional frequency analysis of maximum annual 1- to
7-day precipitation totals is currently being utilized for the area of the Czech Republic. This contribution deals with
the regional analysis.

Daily precipitation amounts over 1961-2000 measured at 78 stations are used as an input dataset. Candidate
regions are formed by the cluster analysis of site characteristics (longitude, latitude, elevation, mean annual precip-
itation, mean ratio of summer half-year (May to October) to winter half-year (November to April) precipitation,
and mean annual number of dry days), using the average-linkage clustering and Ward’s method. Several tests for
the homogeneity of regions are utilized, based on the 10-yr event, L-moment ratios, and the variation of L-moment
statistics. In compliance with the results of the tests, the area of the Czech Republic has been divided into four
homogeneous regions according to characteristics of extreme precipitation events. The last steps of the regional
frequency analysis consists in the selection of the most appropriate distribution, and estimation of parameters and
quantiles of the fitted distribution together with their uncertainty.
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Application of block bootstrap optimal choice in the extremal index
estimation
Prata Gomes, Dora 1 Universidade Nova de Lisboa, Portugal, dsrp@fct.unl.pt
Neves, M. Manuela 2 Universidade Técnica de Lisboa, Portugal, manela@isa.utl.pt

extremal index; block bootstrap; estimation; blocking; simulation:

Let {Xn}n≥1 be a stationary dependent sequence of random variables. Under suitable regularity conditions, the
maximum, suitably normalized, converges to a non-degenerate distribution function G2 (x), where G2(x) = Gθ

1(x)
and G1 is the limit of the normalized maximum of the associated i.i.d. sequence, Leadbetter et al. (1983). The
quantity θ (0 < θ ≤ 1) is termed the extremal index and plays a key role in determining the intensity of cluster
positions. The estimators for θ proposed in the literature depend crucially on the high level un.

Bootstrap methodology, providing answers to many complex problems, can help in obtaining better estimators or
even in dealing with nuisance parameters. However Efron’s (1979) classic bootstrap methodology is inadequate under
dependence and there have been several attempts to extend i.i.d. case to the dependent case. A general approach
consists of resampling blocks of data. The accuracy of block bootstrap estimation critically depends on the block size
that must be supplied by the user. The orders of magnitude of the optimal block size are known in some inference
problems.

Several ways of blocking have been recently proposed by several authors, such as Hall, Horowitz and Jing (1995),
Lahiri, Furukawa and Lee (2003), Bühlmann and Künsch (1999) and Politis and White (2003).

Those procedures will be reviewed and applied in the extremal index estimation. A simulation study considering
several dependent models will be carried out.
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Statistics for asymptotic independence
Ramos, Alexandra Universidade do Porto - FEP and CMUP, Portugal, aramos@fep.up.pt
Anthony Ledford Man Investments, U.K.

Bivariate extreme values, Asymptotic independence; Ray independence; Inference; Joint tail dependence models:

A fundamental issue in applied multivariate extremes is how to model dependence within joint tail regions. In
addressing this we developed a pseudo-polar framework that extends existing classical results to asymptotically
independent random variables and additionally obtained parametric joint tail models suitable for applications with
good performance for the important case of asymptotic independence.

In this presentation we show how these parametric joint tail models can be exploited to develop tests for asymptotic
independence and symmetry. We also introduce some additional terminology for describing the characteristics of tail
dependence structures such as convex and concave ray dependence and discuss inference for these. Our tests will be
illustrated using bivariate simulated and environmental data.
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Power-Gumbel distributions and its applications
Takahashi, Rinya Kobe University, Japan, r-taka@maritime.kobe-u.ac.jp

Gumbel distribution; Power Gumbel distribution; Power transformation:

Power-Gumbel distribution is defined and its several properties are discussed. Applications of the power-Gumbel
distribution for some data sets are shown.
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Jarušková, Daniela, 6

Kobelkov, Sergey, 7
Kritski, Oleg, 8

Picek, Jan, 9
Prata Gomes, Dora, 10

Ramos, Alexandra, 11

Takahashi, Rinya, 12

13


