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1. Introduction

Why nonlinear time series models?
What are the limitations of linear time series models?

What key features in data cannot be captured by linear time series
models?

What diagnostic tools (visual or statistical) suggest incompatibility of
a linear model with the data?
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Example: Z,, ..., Z, ~ 1ID(0,6?)
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Sample autocorrelation function (ACF):

5, (h) ~ %3 where (i) = Z"(Z Z)Zo-7)

Is the sample autocovariance function (ACVF).
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Theorem.

Proof. (see problem 6.24 TSTM)
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Cor. If{Z}~1ID(0,c?) and E|Z|* < o, then
(p,.Q),....p,.(h))" is approximately 1D N(0,1/n).
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What if E|Z,|?> = 0?7 For example, suppose {Z}~ 1ID Cauchy.

Series
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Result (see TSTM 13.3): If {Z,}~ 1ID Cauchy, then
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p,(h)=
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S, and S are independent stable random variables.
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How about the ACF of the squares?

1.00 Residual ACF: Abs values 1.00 Residual ACF: Squares
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Result: If {Z}~ IID Cauchy, then
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S and S ,; are independent stable random variables.
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If plot of time series does not look time- reversible,

o0

then it cannot be modeled as an IID sequence. Use the “flip and

Reversibility. The stationary sequence of random variables {X;} is
compare” inspection test!

Result: 11D sequences {Z;} are time-reversible.

time-reversible if (X, . .

Application:
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Reversibility. Does the following series look time-reversible?
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2. Examples
Closing Price for IBM 1/2/62-11/3/00

closing price
40 80 100 120 140
| | |

20

\
1962

MaPhySto Workshop 9/04

\ \ \ \ \ \
1967 1972 1977 1982 1987 1992

time

\
1997

15



Log returns for IBM 1/3/62-11/3/00 (blue=1961-1981)
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ACF
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Sample ACF IBM (a) 1962-1981, (b) 1982-2000
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Remark: Both halves look like white noise?
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Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000
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Remark: Series are not independent white noise?
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ACF

ACF of squares for IBM (a) 1961-1981, (b) 1982-2000
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Remark: Series are not independent white noise? Try GARCH or a

stochastic volatility model.
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Example: Pound-Dollar Exchange Rates
(Oct 1, 1981 — Jun 28, 1985; Koopman website)
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Example: Daily Asthma Presentations (1990:1993)
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Remark: Usually marginal distribution of a linear process is continuous.
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bed elevation

1024

Muddy Creek- tributary to Sun River in Central Montana

Muddy Creek: surveyed every 15.24 meters, total of 5456m; 358

measurements
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Muddy Creek: residuals from poly(d=4) fit

Minimum AIC, ARMA model:

ARMA(1,1)
Y =574 Y _+¢— 31l
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Summary of models fitted to Muddy Creek bed elevation:
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Muddy Creek (cont)

Degree AIC,

0

o ~r W DN B
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294.3
251.3
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35.5

ARMA
(1,2)
(2,1)
(2,1)
(1,1)
(1,1)
(1,1)

AIC,
59.67
26.98
26.30
7.12
2.78
4.68
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Example: NEE=Net Ecosystem Exchange in Harvard Forest

* About half of the CO2 emitted by humans accumulates in the
atomosphere

» Other half is absorbed by “sink” processes on land and
In the oceans

NEE= (Rh + Ra) - GPP (carbon flux)
GPP = Gross Primary Production (photosysynthesis)
Rh = Heterotrophic (microbial) respiration

Ra = autotrophic (plant) respiration.

The NEE data from the Harvard Forest consists of hourly
measurements. We will aggregate over the day and consider daily
data from Jan 1, 1992 to Dec 31, 2001.

Go to ITSM Demo
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3. Linear Processes
3.1 Preliminaries

Def: The stochastic process {X,, t=0, 1, £2, . . .} defined on a
probability space is called a discrete-time time series.

Def: {X;} is stationary or weakly stationary if
. E|X|? <, forallt.
. EX,=m, forall t.
. Cov(X,, X..n)=y(h) depends on h only.
Def: {X} is strictly stationary if (X, ..., X,) =¢ Kpsps - - - Xap) fOralln
>1 and h=0, +1, +2, ...

Remarks:

. SS + (E[X{|? < ©) = weak stationarity
i. WS % SS (think of an example)
lii. WS + Gaussian = SS (why?)

MaPhySto Workshop 9/04
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3.1 Preliminaries (cont)

Def: {X;} is a Gaussian time series if
(X - - - X)) Is multivariate normal

for all integers m < n, i.e., all finite dimensional distributions are normal.

Remark: A Gaussian time series is completely determined by the mean

function and covariance functions,
m(t) = EX; and y(s,t) = Cov(X,, X)).

If follows that a Gaussian TS is stationary (SS or WS) if and only if
m(t) = m and y(s,t) = y(t-s) depends only on the time lag t-s.
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3.1 Preliminaries (cont)

Def: {X} is a linear time series with mean O if

X, = Z\Vth—j’
=

where {Z} ~ WN(0,6?) and 2 v’ <.

Important remark: As a reminder WN means uncorrelated random

variables and not necessarily independent noise nor independent

Gaussian noise.

Proposition: A linear TS is stationary with

. EX;=0, for all t.
i. y(h)=o Z\v V. and plh) = Z\I’ V! Z\lff

Jj==0

If{Z,} ~ ||D(O,('52), then the linear TS is strictly statlonary.

MaPhySto Workshop 9/04 28



Is the converse to the previous proposition true? That is, are all
stationary processes linear?
Answer: Almost.

3.2 Wold Decomposition (TSTM Section 5.7)

Example: Set
X, = A cos(mt) + B sin(ot), ®e(0,n),

where A,B ~ WN(0,c?). Then {X} is stationary since

- EX=0,

*  v(h) =6? cos(wh)
Def: Let é(-) be the best linear predictor operator onto the linear span
of the observations X, X, 4, . . ..
For this example,

i)n—l(Xn) — Xn

Such processes with this property are called deterministic.
MaPhySto Workshop 9/04
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3.2 Wold Decomposition (cont)

The Wold Decomposition. If {X;} Is a nondeterministic stationary time
series with mean zero, then

X, = Z\ijt—j +V,

j=0

where
Ly =1, Ty <o,

. {Z} ~WN(0,5?)
. Cov(Z,,V, =0 forall sandt
Iv. E(Zt) =7/, forallt.
V. E(Vt) =V, forallsandt.
vi. {V,} Is deterministic.
The sequences {Z}, {V,}, and {y} are unique and can be written as

Z,=X,—-F,(X), YV, = E(XtZt—j)/E(th)’ V.=X, _Z\V]’Zt—j'

t
j=0

MaPhySto Workshop 9/04
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3.2 Wold Decomposition (cont)

Remark. For many time series (in particular for all ARMA processes) the
deterministic component V, is O for all t and the series is then said to be
purely nondeterministic.

Example. Let

X,= U, +Y, where {U} ~ WN(0,02) and is independent of
Y~(0,7?). Then, in this case, Z,= U, and V, =Y (see TSTM, problem
5.24).

Remarks:
« If {X} is purely nondeterministic, then {X;} is a linear process.

e Spectral distribution for nondeterministic processes has the form
F. = F,+F,, where U, =Yy Z_, which has spectral density

j=0

G2 0 ) 62 _
}L — = .elﬁu 2:_ el?\. 2
10 =5 12w e P vl

MaPhySto Workshop 9/04
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3.2 Wold Decomposition (cont)

.« Ifo?=E(X,—P_(X)?*>0, then
F.=F,+F,,
IS the Lebesque decomposition of the spectral distribution
function; F, is the absolutely continuous part and F,, is the

singular part.

Example. Let
X,=U,+Y, where {U} ~ WN(0,5%) and is independent of

Y~(0,7%). Then

F,(d\) = % (dA) + 125, (d).)

Kolmogorov’s Formulan.
o? = 2mexp{(2n)™ j In £(L)d)\}, where ¢ = E(X, — P_,(X,))>.

Clearly o2 > Qiff j In £ (L)d > —o.

MaPhySto Workshop 9/04
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3.2 Wold Decomposition (cont)
Example (TSTM problem 5.23).

t- Sz, o, v-(2[5)

T J
This process has a spectral density function but is deterministic!!

j=—0

Example (see TSTM problem 5.20). Let
X, =¢,-2¢,_,, {¢,}~WN(O, 12),

Z =@-.5B)"X,

and set

=Y 58X, =¢-2,_+5(—2¢,)+.5(c_,—€. )+
=0

o0
_ j
=g, —32.5 g,
j=1

It follows that {Z }~WN(0,6°) and X, =Z —.5Z _, is the WD for {X}.
a) If {eJ~IID N(0,62), is {Z} lID? Answer?
b) If {}~1ID(0,c?), is {Z} IID? Answer?
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3.2 Wold Decomposition (cont)

Remark: In this last example, the process {Z} is called an allpass
model of order 1. More on this type of process later.

Go to ITSM Demo

3.3 Reversibility

Recall that the stationary time series {X;} is time-reversible if
Xy - X)) =4 (X, ..., Xy) foralln.
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3.3 Reversibility

Recall that the stationary time series {X;} is time-reversible if
Xy - X)) =4 (X, ..., Xy) foralln.

Theorem (Breidt & Davis 1991). Consider the linear time series {X}

o0

X,=>YwvZ_., {Z}~ 1D,

j=—0

where y(z) = £z"y(z?) for any integer r. Assume either

(a) Zyhas mean 0 and finite variance and {X;} has a spectral density
positive almost everywhere.
or
(b) y(2)=n(z)=2mZ, the series converging absolutely in some annulus
D containing the unit circle and
n(B)X;= Zm Xy = Z,

Then {X{} is time-reversible if and only if Z, is Gaussian.

MaPhySto Workshop 9/04
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3.3 Reversibility (cont)

Remark: The condition y(z) # +z"y(z!) on the filter precludes the filter
from being symmetric about one of the coefficients. In this case, the
time series would be time-reversible for non-Gaussian noise. For
example, consider the series

X =72 -5Z +Z._, {Z}~IID

Here yw(z2)=1- .52+ 22 =22 (1-.5 z1+ z%)= z? y(z') and the series is
time-reversible.

Proof of Theorem: Clearly any stationary Gaussian time series is time-
reversible (why?). So suppose Z, is nonGaussian and assume (a). If
{X{} time-reversible, then

Z, :LXt —d 1—1 X, = W(B—Z Z, = Zath—j'
y(B) y(B™) v(B™Y) =

MaPhySto Workshop 9/04 36



3.3 Reversibility (cont)
The first equality takes a bit of argument and relies on the spectral
representation of {X;} given by

X = j e™dz (L),

(—TE,TE]

where Z(A) is a process of orthogonal increments (see TSTM, Chapter 4).
It follows, by the assumptions on the spectral density of {X;} that

X = [ ez,
y(B7) Cavie™)

Is well defined. So
y(B) N
BT ,;oajzt‘j |
and, by the assumption on y(z), the rhs is a non-trivial sum. Note that
Zajz. =1 Why?

j=—

The above relation is a characterization of a Gaussian distribution
varhReSviSagan,..Linnik, and Rao (1973).) [ .




3.3 Reversibility (cont)
Example: Recall for the example
Xt =& 28t—1’ {St} - [[D(Q TZ)’
and non-normal, the Wold decomposition is given by

X, =2 -57, 4,
where
Z, =¢,-3) 5e,._,.
j=1
By previous result, {Z;} cannot be time-reversible and hence is not IID.

Remark: This theorem can be used to show identifiability of the
parameters and noise sequence for an ARMA process.

MaPhySto Workshop 9/04

38



3.4 Identifiability
Motivating example: The invertible MA(1) process

X =7+60Z_,, {Z}~1D(0,6°), |01,

has a non-invertible MA(1) representation,
X =¢,+07",,, {}~WN(0,06°°), |0|<1.

Question: Can the {g;} also be IID?
Answer: Only if the Z, are Gaussian.

If the Z, are Gaussian, then there is an identifiability problem,

(6, 02) VAN (6_1, 9262), 10<1,

give the same model.

MaPhySto Workshop 9/04
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3.4 ldentifiability (cont)
For ARMA processes {X;} satisfying the recursions,

Xt - (I)lXt—l - (I)pXt—p = Zt + e1Zt—1 T 'qut—qi {Zt} - ]]D(O’ 62)’
o(B)X, =0(B)Z,

casuality and invertibility are typically assumed, i.e.,

d(z) %0 and O(z) =0 for|z|<1.

By flipping roots of the AR and MA polynomials from outside the unit circle
to inside the unit circle, there are approximately 2P+ equivalent

ARMA representations of X, driven with noise that is white (not I1ID). For
each of these equivalent representations, the noise is only IID in the
Gaussian case.

Bottom line: For nonGaussian ARMA, there is a distinction between
causal and noncausal; and invertible and non-invertible models.
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3.4 ldentifiability (cont)

Theorem (Cheng 1992): Suppose the linear time series

X, = vz, {Z}~1ID(0,c°), ) v; <o,

j=—

has a positive spectral density a.e. and can also be represented as

_ N _ 2 2
X, =Y, {£}~1D(0,7*), ) ) <.
Jj=—00
Then if {X{} is nonGaussian, it follows that

1
Yt = CZt—tO’ N, = EWJ’HO’

for some positive constant c.

Proof of Theorem: As in the proof of the reversibility result, we can write

1 n(B)
=—X = Y a Y d Y b.7
B wB) Z P4 Z f
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3.4 ldentifiability (cont)
Now let {Y(s,t)} ~IID, Y(s,t) =, Y, and set

U, = iasY(S,t).

Clearly, {U;} is IID with same distribution as Z,. Consequently,

Y, =, ibtUt = i ibtasY(S,t).

{=—00 {=—00§=—00

Since

Zzbz 2

f=—00s5=

Which by applying Theorems 5.6.1 and 3.3.1 in Kagan, Linnik, and Rao
(1973), the sum above is trivial, i.e., there exists integers mand n such
that a, and b, are the only two nonzero coefficients. It follows that

1
}/t = ant—n’ nj :b_\vj+n'

MaPhySto Workshop 9/04 n 42



3.5 Linear Tests

Cumulants and Polyspectra. We cannot base tests for linearity on
second moments. A direct approach is to consider moments of higher
order and corresponding generalizations of spectral analysis.

Suppose that {X;} satisfies sup, E|Xt|k < oo for some k > 3 and
E(X X, X, )=EX, X, X, )

for all t,,t,, . . . h=0, andj=0,.. ., k-1.

] J’

k' order cumulant. Coefficient, C,(ry, . . ., ), of ikz,Z,...z, in the

Taylor series expansion about (0,0,...,0) of

X2,z ) =InEexpliz X, +iz,X,,, +-+iz, X

t+rk—l )

MaPhySto Workshop 9/04
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3.5 Linear Tests (cont)

3 order cumulant.

CS(I",S) — E((Xt _H)(Xm _,‘J‘)(XHS _M))

If

>3 Cslrs) oo

then we define the bispectral density or (3 — order polyspectral density)
To be the Fourier transform,

1 C N —Ir@; —is®
]%((01’0‘)2) = (27_5)2 ,,_Z_ Z_:CS(I",S)Q ' 2;

00 S=—00

TS M, ®, < T
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3.5 Linear Tests (cont)

kth - order polyspectral density.

Provided
Zrl Zrz o .Z’”k—ll Ck (I/i_’ seey 7}{_1) |< OO,
fk((Dp y 00y, 1) —
1 > — Iy — - —IF, 1O
(Zn)k_l _Z _Z ZC (r,... 1 )e " A

-T<o,...,0_ <1 (See Rosenblatt (1985) Stationary Sequences and
Random Fields for more details.)

MaPhySto Workshop 9/04
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3.5 Linear Tests (cont)

Applied to a linear process. If {X;} has the Wold decomposition

X,=>v.Z_, {Z}~1ID(0,c),

j=0

with E|Z,[° < oo, EZ® =m, and I [y < o, then

o0

Cy(rys) =m ZWj\'jj+r\|!j+s

Jj=—00
where y;:= 0 for ] <0. Hence

fu(o,,0,) = ﬁw( (e ™ )y(e ™).

MaPhySto Workshop 9/04
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3.5 Linear Tests (cont)

The spectral density of {X;} is
2
] 0
flw)=—]|y()f.
27T

Hence, defining

oo, ®,) = | fa(®, »,) |2
v (o) f(w,)f (o, +0)2),
we find that
_
d)(@l’@z) T 27[(56 .

Testing for constancy of ¢(-) thus provides a test for linearity of {X;} (see
Subba Rao and Gabr (1980)).

MaPhySto Workshop 9/04
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3.5 Linear Tests (cont)

Gaussian linear process. If {X;} is Gaussian, then EZ3=0, and the third

order cumulant is zero (why?). In fact C, = O for all k >2.

It follows that fy(w,, ®,) =0 for all ®,, ®, €[0,w]. A test for linear
Gaussianity can therefore be obtained by estimating f;(»,,®,) and

testing the hypothesis that f;= 0 (see Subba Rao and Gabr (1980)).

MaPhySto Workshop 9/04
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3.6 Prediction

Suppose {X} is a purely nondeterministic process with WD given by

X, =>v.Z_, {Z}~WN(0,%).

j=0

Then _
Zt — Xt _Pt—l(Xt)

so that
Pz—le — Z\ijz—j :
=1

Question. When does the best linear predictor equal the best predictor?

That is, when does

Pz—lXt — E( Xt |Xt—1’Xt—2'”)?

MaPhySto Workshop 9/04
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3.6 Prediction (cont)

~

Pz—lXt — E( Xt |Xt—1’Xt—2’”)?

Answer. Need

~

Zt — Xt _Pt—lXt 1 G(Xt—l’Xt—Z"")
or, equivalently,

E(Zt |Xt—1’Xt—2””) — O

That is,
BLP = BP
If and only if {Z;} is a Martingale-difference sequence.

Def. {Z;} is a Martingale-difference sequence wrt a filtration F, (an
iIncreasing sequence of sigma fields) if E|Z,| < « for all t and

a) Z,is F, measurable
b) E(Z| F.1)=0 a.s.

MaPhySto Workshop 9/04
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3.6 Prediction (cont)
Remarks.
1) An IID sequence with mean zero is a MG difference sequence.
2) A purely nondeterministic Gaussian process is a Gaussian linear
process. This follows by the Wold decomposition and the fact that

the resulting {Z;} sequence must be IID N(0,c?) .

Example (Whittle): Consider the noncausal AR(1) process given by
Xi=2 X+ 4,

where {Z}~IID P(Z, = -1) = P(Z, = 0)=.5. lterating backwards in time, we

find that

X, =5X -5Z
— '52Xz+1 B '5ZZt+1 o 'SZt

— '5(_Zt — '5Zt+1 - '5ZZt+2 - )

MaPhySto Workshop 9/04
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Mal

3.6 Prediction (cont)
Xt — '5(_Zt+l — 'SZt+2 — ,SZZH?’ _ )

* * *

:Zé+1+22f;2+22f§3 TR Z;
IS a binary expansion of a uniform (0,1) random variable. Notice that
from X,, we can find X,,,, by lopping off the first term in the binary
expansion. This operation is exactly,
Xy =2 X, mod 1
2X,, If X, <.5,
B {th-l, if X, > .5.

t+1

=2

Properties:

1. EX: =3

2. py(h) = (0.5)".

3. P(X¢|1, X5 <t) =z +2X;_1.

4. BE(X¢|Xs,s<t)=2X;_1(mod 1) = X;.

5. Xt —3=25(Xi—1—3) +e, {e} ~WN(0,052).
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Realization

from an all-

pass model
of order 2

(t3 noise )

=
=
X

ACF

4. Allpass models
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T ‘Hl w ku ' Wit ‘ ([T Hy”\ ﬂw‘ ”M” ” { I w’u w ” w i

T T T T T T

0 200 400 600 800 1000

ACF : (allpass) t ACF: (allpass)2
o N model
u sample
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Po

o L i ‘ L o [ 20004, o 5
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4. Allpass models (cont)

Causal AR polynomial: ¢(z)=1-¢,z—...— $,2°, ¢(z) # O for |z|<1.

Define MA polynomial:
0(z) = -zP ¢z N, = —~(z° —,zP* —, .. =) ¢,

# 0 for |z|>1 (MA polynomial is non-invertible).

Model for data {X}: &(B)X;=06(B) Z,, {Z} ~ lIID (non-Gaussian)
BXX; = X

Examples:
Allpass(l): X, - Xy =2~ 41 Zus, 10]<1.
All-pass(2): X;—=¢; X1 =0 Xio= Zi+ 0/ 0, 21— 1/ 0, Zy5

MaPhySto Workshop 9/04
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Properties:

* causal, non-invertible ARMA with MA representation

p -1 o0
= B (I)(B )Zt _ Z\Vth—j
o (I)p(l)(B) j=0
* uncorrelated (flat spectrum)
.2 .12
e o o
fX (O‘)) — 2 i 2 2 = 2 2
3loe™) 2m ¢,2m
® Zero mean

* data are dependent if noise is non-Gaussian
(e.g. Breidt & Davis 1991).
* squares and absolute values are correlated.

* X, Is heavy-tailed if noise is heavy-tailed.
MaPhySto Workshop 9/04
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Estimation for All-Pass Models

= Second-order moment techniques do not work
e least squares
» Gaussian likelihood
% Higher-order cumulant methods
e Giannakis and Swami (1990)
e Chi and Kung (1995)
% Non-Gaussian likelihood methods
e likelihood approximation assuming known density
e quasi-likelihood
& Other
* LAD- least absolute deviation

e R-estimation (minimum dispersion)

MaPhySto Workshop 9/04
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4.1 Application of Allpass models

Noninvertible MA models with heavy tailed noise

Xe= £+ 0,2+ = =+0,Z,,
a. {Z} ~ 11D nonnormal

D. 6(2)=1+6,Z+- « - +6,2Z"

No zeros inside the unit circle = invertible

Some zero(s) inside the unit circle = noninvertible

MaPhySto Workshop 9/04
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Realizations of an invertible and noninvertible MA(2) processes

Model: X, = 0,(B) Z,, {Z} ~ ID(c. = 1), where
0.(B) = (1 +1/2B)(1 + 1/3B) and 0,(B) = (1 + 2B)(1 + 3B)

-20 0 20
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-40

-300
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Application of all-pass to noninvertible MA model fitting

Suppose {X} follows the noninvertible MA model
X=6,B) 0,(B) Z,, {Z}~IID.

Step 1: Let {U;} be the residuals obtained by fitting a purely
invertible MA model, i.e.,
X, =0(B)U,
~0,(B)0 (B)U,, (O,. is the invertible version of 0 ).
eni (B)

Ut R = Zt
6ni(B)

So

Step 2: Fit a purely causal AP model to {U,}

6ni (B)Ut = eni (B)Zt

MaPhySto Workshop 9/04
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Volumes of Microsoft (MSFT) stock traded over 755 transaction days
(6/3/96 to 5/28/99)

1076
|

X(t)
6*10"5
I

2*1075
| |
_—
_——
e
e
=
——

0 200 400 600

MaPhySto Workshop 9/04

60



Analysis of MSFT:

Step 1: Log(volume) follows MA(4).

X, =(1+.513B+.277B2+.270B3+.202B%) U,  (invertible MA(4))

Step 2: All-pass model of order 4 fitted to {U,} using MLE (t-dist):

(1-.628B+-.229B* +.131B° —.202B*)U,
=(1-.649B +1.135B° +3.116B° - 4.960B*)Z,. (V = 6.26)

(Model using R-estimation is nearly the same.)

Conclude that {X;} follows a noninvertible MA(4) which after refitting has
the form:

X, =(1+1.34B+1.374B2+2.54B3+4.96B%) Z, , {Z}~1ID 1(6.3)
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Summary: Microsoft Trading Volume

= Two-step fit of noninvertible MA(4):
e invertible MA(4): residuals not iid
e causal AP(4); residuals iid

< Direct fit of purely noninvertible MA(4):
(1+1.34B+1.374B%+2.54B3+4.96B%)

= For MCHP, invertible MA(4) fits.
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Muddy Creek: residuals from poly(d=4) fit
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lag (m)

Minimum AIC, ARMA model:
ARMA(1,1)

Y, = .574Y,, +¢ -

acf
00 02 04 06 08 1.0

Blue = sample
Red = model

0 100 200 300 400
lag (m)

311 g, 4, {e}~WN(O,.0564)

64



Residual ACF: Abs values
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Example: Seismoqgram Deconvolution

Simulated water gun seismogram

Xt =% BrZi—y

* {B} = wavelet sequence (Lii and Rosenblatt, 1988)

* {Z} 11D reflectivity sequence
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Water Gun Seismogram Fit
Step 1: AICC suggests ARMA (12,13) fit
= fit invertible ARMA(12,13) via Gaussian MLE

= residuals {W;}not IID

Step 2: fit all-pass to{W;} residuals
= order selected isr = 2.
= residuals {Z;} appear IID

Step 3: Conclude that {X} follows a non-invertible ARMA

MaPhySto Workshop 9/04
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ACF of W2

ACF of 2?2
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Recorded water gun wavelet and its estimate
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Water Gun Seismogram Fit (cont)

Simulated reflectivity sequence and its estimates
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4.2 Estimation for Allpass Models: approximating the likelihood

Data: (X, . . ., X))

Model:

Xt — (I)OlXt—l Tt (I)OpXt—p
- (Zt—p - (|)01Zz—p+1 _"'_(I)opzz)/(l)or

where ¢, Is the last non-zero coefficient among the ¢y;'s.
Noise: z,_, =gz, + - +Pg,z, — (X, =P X,y = =g, X,_ ),

where z, =Z, | ¢,

More generally define,

Zip ((I)) = {

0, ift=n+p,.,n+1
¢1Zt—p+1(¢)+°”+¢pzt(¢)_¢(B)Xt’ if 1= n""1p+1'

Note: z(¢,) IS a close approximation to z, (initialization error)
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Assume that Z, has density function f_ and consider the vector

Z= (:Xl_p,...,XO,Zl_p (9),... Zo(d)) Zl((l)) Zy- p+l((|)) 1 2, ((I)z)'

Independent pieces
Joint density of z:

h(z) = hl(Xl—p""’XO’Zl—p (), 24(9))
. (ﬁ S5 (0,2,(0)) | b, |j hy(z,_ 1 (9),..., 2, (9)),

and hence the joint density of the data can be approximated by

h(x) = [H (0,200 [0, |j

where g=max{0 <] < p: ¢;# 0}.
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Log-likelihood:
L(¢,0)=—(n-p)In(c/|¢,|) +HZI':IH f(c70,z,(6))

where f_(z)= o~! f(z/o).

Least absolute deviations: choose Laplace density

1
f(z)= ﬁexm—ﬁ Ed)

and log-likelinood becomes
n—p
constant — (n— p) Ink = > V2| z,(9) | /', k=51, |
t=1

Concentrated Laplacian likelihood

[(¢) = constant—(n— p) In nzl':| z,(9) |

Maximizing I(¢) Is equivalent to minimizing the absolute deviations
n—p

m,(®)=12,0)].

MaPhySto Workshop 9/04
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Assumptions for MLE

= Assume {Z} iid f_(z)=c"f(c1z) with
e ¢ a scale parameter
e mean 0, variance c?

o further smoothness assumptions (integrability,
symmetry, etc.) on f

* Fisher information:

I=c?[(f') ] f(2)dz
Results

=" Let y(h) = ACVF of AR model with AR poly ¢,(.) and
L) = [v(]J- k)]?,k:l

o (e ~0) > N (O, ——

~ @)
MaPhySto Workshop 9/0 2(021 _ l)
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Further comments on MLE

the parameters of pdf f.

Set

FaN

= A=c[(f'(=B)) 1/ (zB,)dz
~ K= ocop+1{[ (£ B | £ Bz~

_ J‘ S (zBy) I (z; Bo)
N T rE8,) OBy
= If(BO):_[ L JER) 6fT(Z;B0)dZ (Fisher Information)

f(ZBy) By, By
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Under smoothness conditions on fwrt B, ..., B, we have

\/;(&'MLE —0lg) E) N(O, Z_l)’

where
ZlA o’ ;1 0 0
2(cyl -1)
>t= 0 (K—{'I;lL)‘l ) —-K*L(1, jLK‘lL')‘l
0 ~(,—LK*L') LK™ (I,-LK*L')™

Note: (T)MLE is asymptotically independent of o, e and Buie
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Asymptotic Covariance Matrix

* For LS estimators of AR(p):

Ji (s —6,) > N(0,67T)

* For LAD estimators of AR(p):

A D
\/;((I)LAD — ) > N(O,
e For LAD estimators of AP(p):

J1 (B0 —00) > N(O

* For MLE estimators of AP(p):

J1 e o) N(O.

1
o)
45°/*(0)

21
)

Var(|Z, )

2(26° £,(0)-E| Z,])*

1

MaPhySto Workshop 9/04
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Laplace: (LAD=MLE)

Var(| Z, ) 1 1
20262 £.(0)—E|Z,)? 2 2(c?I-1)

Students t,, v >2:

: BFZE(VV;?) B (n(v-12T2(v/2)-4(v-2)?*((v+1)/2))
MLE: 1 _(v-2)(v+3)
2(c°1-1) 12
Student’s t;:
LAD: .7337
MLE: 0.5

ARE: .7337/.5=1.4674

MaPhySto Workshop 9/04
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R-Estimation:

Minimize the objective function

S
(¢) = Z(P( . jz(t) )

where {z(¢)} are the ordered {z,(¢)}, and the weight function ¢
satisfies:

* ¢ Is differentiable and nondecreasing on (0,1)
« ¢ is uniformly continuous

* @(X) = —0(1-X)

Remarks:

. 5=, ( k(@) jz(¢)

-1, 0<x<1/2,
1, 1/2 < x <1.

s For LAD, take o(x)=

MaPhySto Workshop 9/04
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Assumptions for R-estimation

= Assume {Z;} iid with density function f (distr F)
e mean 0, variance c?

< Assume weight function ¢ is nondecreasing and continuously
differentiable with @(X) = —@(1-X)

Results

& Set

= [@*(s)ds, K=[F(s)p(s)ds, L= f(F(s))e'(s)ds

O e

= If 6°L > K, then

27 2

- K
G;{ ~262Fz;1)
2(6’L —K)

Ji (B —00) > N,

MaPhySto Workshop 9/04
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Further comments on R-estimation

" p(X) =x-1/2 is called the Wilcoxon weight function

-1, O0<x<1/2,
& By formally choosing @(x) = 112 <x <1
we obtain
c°J -K°* 21 Var(| Zl |) 21

~ =~——0O = e) .
2(c’L-K)* " 225’ f,(0)-E|Z])* 7

That is R = LAD, asymptotically.

“~ The R-estimation objective function is smoother than the

LAD-objective function and hence easier to minimize.
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Obijective Functions

23.0 23.5 24.0 24.5
| | | |

22.5
|

R-estimation
LAD

22.0
|
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Summary of asymptotics

% Maximum likelihood:

1 @)
2(c*1 —1)

\/;((,I\)MLE B (I)o) i N(O’

211
)

& R-estimation

c2J - K*
2(c°L — K)?

Ji(bs — o) N,

2171
o))

" Least absolute deviations:

Var(|Z, )

Vb =00 >N O o O

MaPhySto Workshop 9/04
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Laplace: (LAD=MLE)
R. 62.7—]22
2(c’L — K)?

zg (using @(X) = x—1/2, Wilcoxon)

LAD=MLE: 1/2

Students t,;

LAD R MLE LAD/R MLE/R
733 .520 500 1.411 .962
6.22 3.01 3.00 2.068 .997
16.8 7.15 7.00 2.354 .980
12 32.6 13.0 12.5 2.510 .964
15 53.4 20.5 19.5 2.607 .952
20 99.6 36.8 34.5 2.7/07 .937
30 234 83.6 /7.0 2.810 .921

MaPhySto Workshop 9/04
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Central Limit Theorem (R-estimation)

* Think of u = n?(¢—¢,) as an element of RP

e Define

S, (u) = "2@( R (@, ; Wy (¢o+n'”2u>J-'§p[<p<R("’°’> (¢0>]

t=1

where R(¢) is the rank of z(¢) among z,(9), - . -, Z,,(¢).
* Then S,(u) —» S(u) in distribution on C(RP), where

SW) = o, [t (6°L —K)u's 2T u+u'N, N~ N(0,2(c°T —K?)|d,. |? o7T ),
Or p 0r p

* Hence,

argmin S, (u) = n"* (9, — ¢,
—arg min S(u)

27 12
- K
— |2¢Or | _ c$21—'—1N - N(O, 2? J~ . - G21—;1)
- 2(c*L -K) 2(c’L—K)? |y, |
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Main ideas (R-estimation)

e Define

5,(0) = 2 0(F. (2 )2, (6 +1770) - 2 0(F. (2,))7, ()
where F, is the df of z..

« Using a Taylor series, we have

5,)~ nmuz[ (Fz) (d‘i’O)j +21n'1u'§(<p( (z ))aafbém

;)u N—uK|c|>0r| c? u
e Also,

S, (U) =S, (u)=Uu'c’La™T,ul|d,, | +0, Q).

e Hence
S, (U)=> 1, I (6°L —K)u's[,u+u'N, N~ N(0,2(c*J —K?)|d,, | o°T,).
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Order Selection:

Partial ACE From the previous result, if true model is of order r and fitted

model is of order p >r, then
o Var(z)
P 2(25°£,(0)-E| Z, |)°

n

)

where (T)p,LAD is the pth element of ¢, .

Procedure:

1. Fit high order (P-th order), obtain residuals and estimate scalar,

b Var(Z])
225°,0)-E12, )’

by empirical moments of residuals and density estimates.
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2. Fit AP models of order p=1,2, ..., P via LAD and obtain p-th coefficient

N

¢,, for each.

3. Choose model order r as the smallest order beyond which the estimated

coefficients are statistically insignificant.
Note: Can replace (T)p’p with J)p’MLE If using MLE. In this case

for p>r

1725 1

n — N(O, =
paaz = N 2(c?1 -1)

).
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AlC: 2p or not 2p?

* An approximately unbiased estimate of the Kullback-Leiber index of fitted

to true model:

o va(z)  (26°£.0)
ACP) =209 o 0= E | Z, |)2( E1Z,] 1}’

* Penalty term for Laplace case:

Var(|Z, ) (26% 0 _ 1} .
(ZGZfG(O)_Elzl |)2 E|Z |

* Penalty term can be estimated from the data.
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Sample realization of all-pass of order 2

(a) Data From Allpass Model

20

X(t)

-20

-40

0 100 200 300 400 500
t
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Simulation results:
* 1000 replicates of all-pass models

* model order parameter value
1 d, =.5
2 $,=.3, ¢p,=.4

* noise distribution is t with 3 d.f.
* sample sizes n=500, 5000

e estimation method is LAD

MaPhySto Workshop 9/04
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To guard against being trapped in local minima, we adopted the
following strategy.

* 250 random starting values were chosen at random. For model
of order p, k-th starting value was computed recursively as
follows:

1. Draw ¢¥, (212),...,4);];) iid uniform (-1,1).
2. Forj=2, ..., p, compute

) _ _
(I)( ) (I)( 1,1 (I)( i—1 1—1

k
¢§ ])—1 d)( i-1,j-1 | (I)( 1,1

* Select top 10 based on minimum function evaluation.

* Run Hooke and Jeeves with each of the 10 starting values and
choose best optimized value.
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Asymptotic Empirical
N mean stddev mean std dev %coverage releff*
500 $,=.5 .0332 4979  .0397 94.2 11.8
5000 ¢,=.5 .0105 4998 .0109 95.4 9.3
Asymptotic Empirical
N mean stddev mean std dev %coverage
500 ¢,=.3 .0351 .2990 .0456 92.5
¢,=4 .0351 .3965  .0447 92.1
5000 ¢,=3 .0111 .3003 .0118 95.5
¢,=.4 .0111 .3990 .0117 94.7

*Efficiency relative to maximum absolute residual kurtosis:

n—pia\ Vo
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R-Estimator: Minimize the objective fcn

S)= z[

where {z,(¢)} are the ordered {z,(¢)}.

11 ij(t) ((I))

500
5000
500

5000

Empirical
mean std dev
4978  .0315
4997  .0094
2988 .0374
3957 .0360
3007 .0101
3993 .0104

Empirical LAD
mean std dev
4979  .0397
4998 .0109
2990 .0456
3965 .0447
3003 .0118
3990 .0117
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