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Part I: Introduction to Linear and Nonlinear Time Series
1. Introduction
2. Examples
3. Linear processes

3.1 Preliminaries
3.2 Wold Decomposition
3.3 Reversibility
3.4 Identifiability
3.5 Linear tests
3.6 Prediction

4. Allpass models
4.1 Application of allpass

• Noninvertible MA model fitting
• Microsoft
• Muddy Creek
• Seisomogram deconvolution

4.2 Estimation
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Part II: Time Series Models in Finance
1. Classification of white noise
2. Examples
3. “Stylized facts” concerning financial time series
4. ARCH and GARCH models
5. Forecasting with GARCH
6. IGARCH
7. Stochastic volatility models
8. Regular variation and application to financial TS

8.1 univariate case
8.2 multivariate case
8.3 applications of multivariate regular variation
8.4 application of multivariate RV equivalence
8.5 examples
8.6 Extremes for GARCH and SV models
8.7 Summary of results for ACF of GARCH & SV models
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Part III: Nonlinear and NonGaussian State-Space Models
1. Introduction

1.1 Motivation examples
1.2 Linear state-space models
1.3 Generalized state-space models

2. Observation-driven models
2.1 GLARMA models for TS of counts
2.2 GLARMA extensions
3.3 Other

3. Parameter-driven models
3.1 Estimation
3.2 Simulation and Application
3.3 How good is the posterior approximation
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Part IV: Structural Break Detection in Time Series
1. Piecewise AR models
2. Minimum description length (MDL)
3. Genetic algorithm (GA)
4. Simulation examples
5. Applications (EEG and speech examples)
6. Application to nonlinear models
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Why nonlinear time series models?

≡
What are the limitations of linear time series models?

≡
What key features in data cannot be captured by linear time series 
models?

What diagnostic tools (visual or statistical) suggest incompatibility of 
a linear model with the data?

1. Introduction
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Example: Z1, . . . , Zn  ~ IID(0,σ2)

Sample autocorrelation function (ACF):
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Theorem. If {Zt}~ IID(0,σ2), then

is approximately IID N(0,1/n).

Proof: (see problem 6.24 TSTM)
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Cor. If {Zt}~ IID(0,σ2) and E|Z1|4 < ∞, then

is approximately IID N(0,1/n).))'(ˆ,),1(ˆ( 22 h
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What if E|Z1|2 = ∞?  For example, suppose {Zt}~ IID Cauchy.
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Result (see TSTM 13.3): If {Zt}~ IID Cauchy, then

S1 and S.5 are independent stable random variables. 

,)(ˆ
ln 5.

1

S
Sh

n
n

Z ⇒ρ ,)(ˆ
ln 5.

1

S
Sh

n
n

Z ⇒ρ



12MaPhySto Workshop 9/04

 -1.00

  -.80

  -.60

  -.40

  -.20

   .00

   .20

   .40

   .60

   .80

  1.00

0 5 10 15 20 25 30 35 40

Residual ACF: Abs values

 -1.00

  -.80

  -.60

  -.40

  -.20

   .00

   .20

   .40

   .60

   .80

  1.00

0 5 10 15 20 25 30 35 40

Residual ACF: Squares

Result: If {Zt}~ IID Cauchy, then

S.5 and S.25 are independent stable random variables.           

How about the ACF of the squares?
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Result: IID sequences {Zt} are time-reversible. 

Application:  If plot of time series does not look time- reversible, 
then it cannot be modeled as an IID sequence.   Use the “flip and 
compare” inspection test!

Reversibility. The stationary sequence of random variables {Xt} is 
time-reversible if (X1, . . . ,Xn) =d (Xn, . . . ,X1).
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Reversibility. Does the following series look time-reversible?  
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2. Examples
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(b) ACF of IBM (2nd half)

Sample ACF IBM (a) 1962-1981, (b) 1982-2000

Remark: Both halves look like white noise?
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Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000

Remark: Series are not independent white noise?
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(b) ACF, Squares of IBM (2nd half)

ACF of squares for IBM (a) 1961-1981, (b) 1982-2000

Remark: Series are not independent white noise?  Try GARCH or a 
stochastic volatility model.
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Example: Pound-Dollar Exchange Rates  
(Oct 1, 1981 – Jun 28, 1985; Koopman website)
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Example: Daily Asthma Presentations (1990:1993)

Remark: Usually marginal distribution of a linear process is continuous.
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Muddy Creek: surveyed every 15.24 meters, total of 5456m; 358 
measurements 

Degree AICc

0 1455

1 294.3

2 251.3

3 47.1

4 34.0

5 35.5

4 34.0

Muddy Creek- tributary to Sun River in Central Montana
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Blue = sample
Red = model

Blue = sample
Red = model

Minimum AICc ARMA model:  
ARMA(1,1)
Yt = .574 Yt-1 + εt – .311 εt-1, 
{εt}~WN(0,.0564)       Some theory:

• LS estimates of trend parameters are 
asymptotically efficient.

• LS estimates are asymptotically indep
of cov parameter estimates.

Noncausal ARMA(1,1) model:  
Yt = 1.743 Yt-1 + εt – .311 εt-1

Muddy Creek: residuals from poly(d=4) fit
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Summary of models fitted to Muddy Creek bed elevation:

Degree AICc

0 1455

1 294.3

2 251.3

3 47.1

4 34.0

5 35.5

ARMA AICc

(1,2) 59.67

(2,1) 26.98

(2,1) 26.30

(1,1) 7.12

(1,1) 2.78

(1,1) 4.68

Muddy Creek (cont)
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• About half of the CO2 emitted by humans accumulates in the 
atomosphere

• Other half is absorbed by “sink” processes on land and
in the oceans

NEE= (Rh + Ra) – GPP  (carbon flux)

GPP = Gross Primary Production (photosysynthesis)

Rh = Heterotrophic (microbial) respiration

Ra = autotrophic (plant) respiration.

The NEE data from the Harvard Forest consists of hourly 
measurements.  We will aggregate over the day and consider daily
data from Jan 1, 1992 to Dec 31, 2001.

Go to ITSM Demo

Example: NEE=Net Ecosystem Exchange in Harvard Forest
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3.1 Preliminaries 

Def: The stochastic process {Xt , t=0, ±1, ±2, . . .} defined on a 
probability space is called a discrete-time time series. 

Def: {Xt} is stationary or weakly stationary if

i. E|Xt|2 < ∞ , for all t.

ii. EXt = m, for all t.

iii. Cov(Xt, Xt+h)=γ(h) depends on h only.

Def: {Xt} is strictly stationary if (X1, . . . ,Xn) =d (X1+h, . . . ,Xn+h) for all n
≥1 and h=0, ±1, ±2, …

Remarks:

i. SS + (E|Xt|2 < ∞) ⇒ weak stationarity

ii. WS   ⇒ SS  (think of an example)

iii. WS + Gaussian ⇒ SS  (why?)

3. Linear Processes
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Def: {Xt} is a Gaussian time series if 
(Xm, . . . ,Xn) is multivariate normal

for all integers m < n, i.e., all finite dimensional distributions are normal.

Remark: A Gaussian time series is completely determined by the mean 
function and covariance functions, 

m(t) = EXt and γ(s,t) = Cov(Xs, Xt).

If follows that a Gaussian TS is stationary (SS or WS) if and only if
m(t) = m and γ(s,t) = γ(t-s) depends only on the time lag t-s. 

3.1 Preliminaries (cont)
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Def: {Xt} is a linear time series with mean 0 if 

where {Zt} ~ WN(0,σ2) and

Important remark: As a reminder WN means uncorrelated random 

variables and not necessarily independent noise nor independent 

Gaussian noise.

Proposition: A linear TS is stationary with

i. EXt = 0, for all t.

ii. and 

If {Zt} ~ IID(0,σ2), then the linear TS is strictly stationary.

∑
∞

−∞=
−ψ=

j
jtjt ZX ,

∑
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−∞=
+ψψσ=γ
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hjjh 2)( ∑∑
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3.1 Preliminaries (cont)
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Is the converse to the previous proposition true?  That is, are all
stationary processes linear?
Answer: Almost.

3.2 Wold Decomposition (TSTM Section 5.7)

Example: Set
Xt = A cos(ωt) + B sin(ωt), ω∈(0,π),

where A,B ~ WN(0,σ2).  Then {Xt} is stationary since
• E Xt= 0,
• γ(h) =σ2 cos(ωh) 

Def: Let          be the best linear predictor operator onto the linear span
of the observations Xn, Xn-1, . . . .
For this example,

Such processes with this property are called deterministic.

)(~ ⋅nP

.)(~
1 nnn XXP =−
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The Wold Decomposition. If {Xt} is a nondeterministic stationary time 
series with mean zero, then 

where
i. ψ0 = 1,  Σ ψj

2 <∞.

ii. {Zt} ~ WN(0,σ2) 

iii. Cov(Zs,Vt) = 0 for all s and t

iv. for all t.

v. for all s and t.

vi. {Vt} is deterministic.

The sequences {Zt}, {Vt}, and {ψt} are unique and can be written as

,
0

∑
∞

=
− +ψ=

j
tjtjt VZX

ttt ZZP =)(~

tts VVP =)(~

.     ),(/)(    ),(~
0

2
1 ∑
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=
−−− ψ−==ψ−=

j
jtjtttjttjtttt ZXVZEZXEXPXZ

3.2 Wold Decomposition (cont)
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Remark. For many time series (in particular for all ARMA processes) the
deterministic component Vt is 0 for all t and the series is then said to be
purely nondeterministic. 

Example. Let 
Xt = Ut + Y,  where {Ut} ~ WN(0,σ2) and is independent of

Y~(0,τ2).  Then, in this case, Zt = Ut and Vt = Y (see TSTM, problem
5.24).

Remarks:
• If {Xt} is purely nondeterministic, then {Xt} is a linear process. 
• Spectral distribution for nondeterministic processes has the form  

FX = FU + FV, where                       which has spectral density∑
∞

=
−ψ=

0j
jtjt ZU

∑
∞

=

λλ ψ
π

σ
=ψ

π
σ

=λ
0

2
2

2
2

|)(|
2

||
2

)(
j

iij
j eef

3.2 Wold Decomposition (cont)
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• If                                             then
FX = FU + FV,

is the Lebesque decomposition of the spectral distribution 
function; FU is the absolutely continuous part and FV is the 
singular part.

Example. Let 
Xt = Ut + Y,  where {Ut} ~ WN(0,σ2) and is independent of

Y~(0,τ2).  Then
)()(

2
)( 0

2
2

λδτ+λ
π

σ
=λ dddFX

,0))(~( 2
1

2 >−=σ − ttt XPXE

Kolmogorov’s Formula.

.))(~(    where,})(ln)2exp{(2 2
1

212
ttt XPXEdf −

π
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− −=σλλππ=σ ∫

Clearly ∫
π

π−

−∞>λλ>σ .)(ln iff 02 df

3.2 Wold Decomposition (cont)
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Example (TSTM problem 5.23). 

This process has a spectral density function but is deterministic!!
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Example (see TSTM problem 5.20). Let 

and set

It follows that                              and                is the WD for {Xt}.
a) If {εt}~IID N(0,σ2), is {Zt} IID?  Answer?
b) If {εt}~IID(0,σ2), is {Zt} IID?  Answer? 

),,0(~}{   ,2 2
1 τεε−ε= − WNX tttt

   5.3

)(5.)2(5.25.

)5.1(

1

32
2

211
0

1

∑

∑
∞

=
−

−−−−−

∞

=
−

−

ε−ε=

+ε−ε+ε−ε+ε−ε==

−=

j
jt

j
t

ttttt
j

tjt
j

tt

X

XBZ

L

),0(~}{ 2σWNZt 15. −−= ttt ZZX

3.2 Wold Decomposition (cont)
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Remark: In this last example, the process {Zt} is called an allpass
model of order 1. More on this type of process later.  

Recall that the stationary time series {Xt} is time-reversible if 
(X1, . . . ,Xn) =d (Xn, . . . ,X1)  for all n.

Go to ITSM Demo

3.2 Wold Decomposition (cont)

3.3 Reversibility
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Recall that the stationary time series {Xt} is time-reversible if 
(X1, . . . ,Xn) =d (Xn, . . . ,X1)  for all n.

Theorem (Breidt & Davis 1991). Consider the linear time series {Xt}

where ψ(z) ≠ ±zr ψ(z-1) for any integer r.  Assume either

(a) Z0 has mean 0 and finite variance and {Xt} has a spectral density 
positive almost everywhere. 

or
(b) 1/ψ(z)=π(z)=Σjπjzj, the series converging absolutely in some annulus 

D containing the unit circle and
π(B)Xt = ΣjπjXt-j = Zt.

Then {Xt} is time-reversible if and only if Z0 is Gaussian. 

   ,~}{   , IIDZZX t
j

jtjt ∑
∞

−∞=
−ψ=

3.3 Reversibility
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Remark: The condition ψ(z) ≠ ±zr ψ(z-1) on the filter precludes the filter
from being symmetric about one of the coefficients.  In this case, the 
time series would be time-reversible for non-Gaussian noise.  For
example, consider the series 

Here ψ(z)=1 - .5z + z2 = z2 (1 - .5 z-1 + z2)= z2 ψ(z-1) and the series is
time-reversible.

Proof of Theorem: Clearly any stationary Gaussian time series is time-
reversible (why?).  So suppose Z0 is nonGaussian and assume (a).  If
{Xt} time-reversible, then

   ~}{   ,5. 21 IIDZZZZX ttttt −− +−=
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3.3 Reversibility (cont)



37MaPhySto Workshop 9/04

The first equality takes a bit of argument and relies on the spectral
representation of {Xt} given by

where Z(λ) is a process of orthogonal increments (see TSTM, Chapter 4).
It follows, by the assumptions on the spectral density of {Xt} that

is well defined.  So

and, by the assumption on ψ(z), the rhs is a non-trivial sum.  Note that
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ja Why?  

The above relation is a characterization of a Gaussian distribution
(see Kagan, Linnik, and Rao (1973).)  �

3.3 Reversibility (cont)
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Example: Recall for the example 

and non-normal, the Wold decomposition is given by

where

By previous result, {Zt} cannot be time-reversible and hence is not IID.

),,0(~}{   ,2 2
1 τεε−ε= − IIDX tttt
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Remark: This theorem can be used to show identifiability of the
parameters and noise sequence for an ARMA process. 

3.3 Reversibility (cont)
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Motivating example: The invertible MA(1) process

has a non-invertible MA(1) representation,

Question: Can the {εt} also be IID?

Answer: Only if the Zt are Gaussian.

If the Zt are Gaussian, then there is an identifiability problem, 

give the same model.

,1||   ),,0(~}{   , 2
1 <θσθ+= − IIDZZZX tttt

.1||   ),,0(~}{   , 22
1

1 <θσθεεθ+ε= −
− WNX tttt

,1||       ),,(),( 2212 <θσθθ↔σθ −

3.4 Identifiability
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For ARMA processes {Xt} satisfying the recursions,

casuality and invertibility are typically assumed, i.e.,

By flipping roots of the AR and MA polynomials from outside the unit circle
to inside the unit circle, there are approximately 2p+q equivalent
ARMA representations of Xt driven with noise that is white (not IID).   For
each of these equivalent representations, the noise is only IID in the
Gaussian case. 

Bottom line: For nonGaussian ARMA, there is a distinction between
causal and noncausal; and  invertible and non-invertible models.

tt

tqtqttptptt

ZBXB
IIDZZZZXXX
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σθ+θ+=φ−−φ− −−−− LL

1. |z|for   0)(  and  0)( ≤≠θ≠φ zz

3.4 Identifiability (cont)
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Theorem (Cheng 1992): Suppose the linear time series

has a positive spectral density a.e. and can also be represented as

Then if {Xt} is nonGaussian, it follows that

for some positive constant c.
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Proof of Theorem: As in the proof of the reversibility result, we can write
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3.4 Identifiability (cont)
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Now let {Y(s,t)} ~IID, Y(s,t) =d Y1 and set

Clearly, {Ut} is IID with same distribution as Z1.  Consequently,

Since 

Which by applying Theorems 5.6.1 and 3.3.1 in Kagan, Linnik, and Rao
(1973), the sum above is trivial, i.e., there exists integers m and n such
that am and bn are the only two nonzero coefficients.  It follows that
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3.4 Identifiability (cont)
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Cumulants and Polyspectra. We cannot base tests for linearity on
second moments.  A direct approach is to consider moments of higher
order and corresponding generalizations of spectral analysis.

Suppose that {Xt} satisfies supt E|Xt|k < ∞ for some k ≥ 3 and

for all t0,t1, . . . , tj, h=0,  and j =0, . . ., k-1.

)()(
1010 hththtttt jj

XXXEXXXE +++= LL

kth order cumulant. Coefficient, Ck(r1, . . . , rk-1), of ikz1z2…zk in the 
Taylor series expansion about (0,0,…,0) of 

)exp(ln),,(
11211 −++ +++=χ

krtkrttk XizXizXizEzz LK

3.5 Linear Tests
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( )))()((),(3 µ−µ−µ−= ++ strtt XXXEsrC

3rd order cumulant.

If

then we define the bispectral density or (3rd – order polyspectral density)
To be the Fourier transform,

-π ≤ ω1, ω2 ≤ π.
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3.5 Linear Tests (cont)
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kth - order polyspectral density.

Provided

-π ≤ ω1, . . . , ωk−1 ≤ π.  (See Rosenblatt (1985) Stationary Sequences and 
Random Fields for more details.)
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3.5 Linear Tests (cont)
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Applied to a linear process. If {Xt} has the Wold decomposition

with E|Zt|3 < ∞, EZt
3 = η, and Σj |ψj| < ∞, then

where ψj := 0 for j < 0.  Hence
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3.5 Linear Tests (cont)
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The spectral density of {Xt} is

Hence, defining

we find that

Testing for constancy of φ(⋅) thus provides a test for linearity of {Xt} (see
Subba Rao and Gabr (1980)).

.|)(|
2

)( 2
2

ωψ
π

σ
=ω ief

,
)()()(

|),(|),(
2121

2
213

21 ω+ωωω
ωω

=ωωφ
fff

f

.
2

),( 6

2

21 πσ
η

=ωωφ

3.5 Linear Tests (cont)
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Gaussian linear process. If {Xt} is Gaussian, then EZ3=0, and the third

order cumulant is zero (why?). In fact Ck ≡ 0 for all k >2.

It follows that f3(ω1, ω2) ≡ 0 for all ω1, ω2 ∈[0,π].  A test for linear

Gaussianity can therefore be obtained by estimating f3(ω1,ω2) and

testing the hypothesis that f3 ≡ 0 (see Subba Rao and Gabr (1980)).

3.5 Linear Tests (cont)
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Suppose {Xt} is a purely nondeterministic process with WD given by

3.6 Prediction

    ).,0(~}{   , 2
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Then

so that 
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Question. When does the best linear predictor equal the best predictor?  

That is, when does 

? ),| (~
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3.6 Prediction (cont)

? ),| (~
211 K−−− = ttttt XXXEXP

Answer. Need

or, equivalently,
),,(~

211 K−−− σ⊥−= tttttt XXXPXZ

.0),,|( 21 =−− Kttt XXZE

That is, 
BLP = BP

if and only if {Zt} is a Martingale-difference sequence.

Def. {Zt} is a Martingale-difference sequence wrt a filtration Ft (an

increasing sequence of sigma fields) if E|Zt| < ∞ for all t and

a) Zt is Ft measurable
b) E(Zt | Ft-1)=0 a.s.
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3.6 Prediction (cont)
Remarks.
1) An IID sequence with mean zero is a MG difference sequence.
2) A purely nondeterministic Gaussian process is a Gaussian linear 

process.  This follows by the Wold decomposition and the fact that 
the resulting {Zt} sequence must be IID N(0,σ2) .

Example (Whittle): Consider the noncausal AR(1) process given by
Xt = 2 Xt-1 + Zt ,

where  {Zt}~IID P(Zt = -1) = P(Zt = 0)=.5. Iterating backwards in time, we
find that 
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3.6 Prediction (cont)

is a binary expansion of a uniform (0,1) random variable.  Notice that
from Xt, we can find Xt+1, by lopping off the first term in the binary
expansion.  This operation is exactly,

Xt+1 = 2 Xt mod 1
2Xt ,     if Xt < .5,
2Xt -1,  if Xt > .5.
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Realization 
from an all-
pass model 
of order 2

(t3 noise )

0 1 0 2 0 3 0 4 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L a g

A
C

F

A C F : (a llp a s s )2

0 1 0 2 0 3 0 4 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L a g

A
C

F

 A C F  :  (a llp a s s )

model
sample

t

X(
t)

0 200 400 600 800 1000

-3
0

-2
0

-1
0

0
10

20

4. Allpass models
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Causal AR polynomial: φ(z)=1−φ1z − − φpzp , φ(z) ≠ 0 for |z|≤1.

Define MA polynomial:

θ(z) = −zp φ(z−1)/φp = −(zp −φ1zp-1 − − φp)/ φp

≠ 0 for |z|≥1  (MA polynomial is non-invertible).

Model for data {Xt} :  φ(B)Xt = θ(B) Zt ,  {Zt} ~ IID (non-Gaussian)

BkXt = Xt-k

Examples:

All-pass(1): Xt − φ Xt-1 = Zt − φ−1 Zt-1 ,   | φ | < 1.

All-pass(2): Xt − φ1 Xt-1 − φ2 Xt-2 = Zt + φ1/ φ2 Zt-1 − 1/ φ2 Zt-2 

L

L

4. Allpass models (cont)
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Properties:

• causal, non-invertible ARMA with MA representation

• uncorrelated (flat spectrum)

• zero mean

• data are dependent if noise is non-Gaussian

(e.g. Breidt & Davis 1991).

• squares and absolute values are correlated.

• Xt is heavy-tailed if noise is heavy-tailed.
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Second-order moment techniques do not work

• least squares

• Gaussian likelihood

Higher-order cumulant methods

• Giannakis and Swami (1990)

• Chi and Kung (1995)

Non-Gaussian likelihood methods

• likelihood approximation assuming known density

• quasi-likelihood

Other

• LAD- least absolute deviation

• R-estimation (minimum dispersion)

Estimation for All-Pass Models
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Noninvertible MA models with heavy tailed noise

Xt =  Zt + θ1 Zt-1 +          + θq Zt-q ,  

a. {Zt} ~ IID nonnormal

b. θ(z) = 1 + θ1 z +          + θq zq

No zeros inside the unit circle ⇒ invertible

Some zero(s) inside the unit circle ⇒ noninvertible

. . .

. . .

4.1 Application of Allpass models
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Realizations of an invertible and noninvertible MA(2) processes
Model: Xt = θ∗(B) Zt ,  {Zt} ~ IID(α = 1),  where
θi(B) = (1 +1/2B)(1 + 1/3B)  and θni(B) = (1 + 2B)(1 + 3B)
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Application of all-pass to noninvertible MA model fitting

Suppose {Xt} follows the noninvertible MA model

Xt= θi(B) θni(B) Zt ,   {Zt} ~ IID.

Step 1: Let {Ut} be the residuals obtained by fitting a purely 
invertible MA model, i.e., 

So

Step 2: Fit a purely causal AP model to {Ut} 

 Z
(B)~
(B)U

). of version invertible  theis ~(   ,(B)U~(B)
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t

X(
t)
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Volumes of Microsoft (MSFT) stock traded over 755 transaction days 
(6/3/96 to 5/28/99)
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Analysis of MSFT:

Step 1: Log(volume) follows MA(4).

Xt =(1+.513B+.277B2+.270B3+.202B4) Ut (invertible MA(4))

Step 2: All-pass model of order 4 fitted to {Ut} using MLE (t-dist):

(Model using R-estimation is nearly the same.)

Conclude that {Xt} follows a noninvertible MA(4) which after refitting has 

the form: 

Xt =(1+1.34B+1.374B2+2.54B3+4.96B4) Zt , {Zt}~IID t(6.3)

6.26)ˆ(  .)ZB960.43.116B1.135BB649.1(     

)U02B2..131BB229..628B1(

t
432

t
432

=ν−++−=
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Summary: Microsoft Trading Volume

Two-step fit of noninvertible MA(4):

• invertible MA(4): residuals not iid

• causal AP(4); residuals iid

Direct fit of purely noninvertible MA(4):

(1+1.34B+1.374B2+2.54B3+4.96B4) 

For MCHP, invertible MA(4) fits.
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Blue = sample
Red = model

Blue = sample
Red = model

Minimum AICc ARMA model:  
ARMA(1,1)
Yt = .574 Yt-1 + εt – .311 εt-1, {εt}~WN(0,.0564)    

Muddy Creek: residuals from poly(d=4) fit
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Causal 
ARMA(1,1) model
Yt = .574 Yt-1

+ εt – .311 εt-1, 
{εt}~WN(0,.0564)       

Noncausal 
ARMA(1,1) 
model:  
Yt = 1.743 Yt-1

+ εt – .311 εt-1
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Example:  Seismogram Deconvolution

Simulated water gun seismogram

• {βk} = wavelet sequence (Lii and Rosenblatt, 1988)

• {Zt} IID reflectivity sequence
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Water Gun Seismogram Fit

Step 1: AICC suggests ARMA (12,13) fit

fit invertible ARMA(12,13) via Gaussian MLE

residuals         not IID

Step 2: fit all-pass to         residuals 

order selected is r = 2.

residuals         appear IID

Step 3: Conclude that {Xt} follows a non-invertible ARMA
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Water Gun Seismogram Fit (cont)

Recorded water gun wavelet and its estimate
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Water Gun Seismogram Fit (cont)

Simulated reflectivity sequence and its estimates
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4.2 Estimation for Allpass Models:  approximating the likelihood

Data: (X1, . . ., Xn)

Model:

where φ0r is the last non-zero coefficient among the φ0j’s.

Noise:

where zt =Zt / φ0r.

More generally define, 

Note: zt(φ0) is a close approximation to zt (initialization error)
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Assume that Zt has density function fσ and consider the vector

Joint density of z:

and hence the joint density of the data can be approximated by

where q=max{0 ≤ j ≤ p: φj ≠ 0}.
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Log-likelihood:

where fσ(z)= σ−1 f(z/σ).

Least absolute deviations: choose Laplace density

and log-likelihood becomes

Concentrated Laplacian likelihood

Maximizing l(φ) is equivalent to minimizing the absolute deviations
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Assumptions for MLE

Assume {Zt} iid fσ(z)=σ−1f(σ−1z) with

• σ a scale parameter

• mean 0, variance σ2

• further smoothness assumptions (integrability,
symmetry, etc.) on f

• Fisher information:

Results

Let γ(h) = ACVF of AR model with AR poly φ0(.) and
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Further comments on MLE

Let α=(φ1, . . . , φp, σ /|φp|, β1, . . . , βq), where β1, . . . , βq are 

the parameters of pdf f.  

Set 

(Fisher Information)
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Under smoothness conditions on f wrt β1, . . . , βq we have

where

Note: is asymptotically independent of                and
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Asymptotic Covariance Matrix

• For LS estimators of AR(p):

• For LAD estimators of AR(p): 

• For LAD estimators of AP(p):

• For MLE estimators of AP(p):
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Laplace:  (LAD=MLE) 

Students tν, ν >2:

LAD:

MLE:

Student’s t3: 

LAD: .7337

MLE: 0.5

ARE: .7337/.5=1.4674
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R-Estimation:

Minimize the objective function

where {z(t)(φ)} are the ordered {zt(φ)}, and the weight function ϕ

satisfies:

• ϕ is differentiable and nondecreasing on (0,1)

• ϕ´ is uniformly continuous

• ϕ(x) = −ϕ(1−x)

Remarks:

•

• For LAD, take 
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Assumptions for R-estimation

Assume {Zt} iid with density function f (distr F)

• mean 0, variance σ2

Assume weight function ϕ is nondecreasing and continuously
differentiable with ϕ(x) = −ϕ(1−x)

Results

Set

If                 then
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Further comments on R-estimation

ϕ(x) = x−1/2 is called the Wilcoxon weight function

By formally choosing                                       

we obtain

That is R = LAD, asymptotically.

The R-estimation objective function is smoother than the

LAD-objective function and hence easier to minimize.                
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phi
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Summary of asymptotics

Maximum likelihood:

R-estimation

Least absolute deviations:
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Laplace: (LAD=MLE)

R: (using ϕ(x) = x−1/2, Wilcoxon)

LAD=MLE: 1/2

Students tν:

6
5

)~~(2

~~
22

22

=
−σ

−σ
KL
KJ

ν LAD R  MLE LAD/R MLE/R
3 .733 .520    .500        1.411 .962
6 6.22 3.01 3.00 2.068 .997
9 16.8 7.15 7.00 2.354 .980
12 32.6 13.0 12.5 2.510 .964
15 53.4 20.5 19.5 2.607 .952
20 99.6 36.8 34.5 2.707 .937
30 234 83.6 77.0 2.810 .921
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Central Limit Theorem (R-estimation)

• Think of u = n1/2(φ−φ0) as an element of RRp

• Define

where Rt(φ) is the rank of zt(φ) among z1(φ), . . ., zn-p(φ).

• Then Sn(u) → S(u) in distribution on C(RRp), where 

• Hence,
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Main ideas (R-estimation)

• Define

where Fz is the df of zt.

• Using a Taylor series, we have

• Also,

• Hence

,)())((-  )())(()(~
1

0
1

1/2-
0 ∑∑

−

=

−

=

ϕ+ϕ=
pn

t
ttz

pn

t
ttzn zzFnzzFS φφ uu

uuNu

uuuu

prD

pn

t

t
tz

pn

t

t
tzn

K

zzFnzzFnS

Γσφ−→

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
ϕ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ϕ

−−

−

=

−
−

=
∑∑

21
0

1

0
2

1-1

1

01/2-

||~''          

        
'
)())(('2  )())(('~)(~

φφ
φ

φ
φ

).1(||/~')(~)( 0
22

prpnn oLSS +φΓσσ=− − uuuu

).||)~~(2 ,(~  ,'')~~(||)( 22
0

22221
0 prprDn KJNKLS Γσφ−σ+Γσ−σφ→ −−−− 0NNuuuu



87MaPhySto Workshop 9/04

Order Selection:

Partial ACF From the previous result, if true model is of order r and fitted 

model is of order p > r, then

where            is the pth element of .

Procedure:

1. Fit high order (P-th order), obtain residuals and estimate scalar,

by empirical moments of residuals and density estimates.
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2. Fit AP models of order p=1,2, . . . , P via LAD and obtain p-th coefficient  

for each. 

3. Choose model order r as the smallest order beyond which the estimated 

coefficients are statistically insignificant.

Note: Can replace        with            if using MLE. In this case

for p > r
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AIC: 2p or not 2p?

• An approximately unbiased estimate of the Kullback-Leiber index of fitted 

to true model:

• Penalty term for Laplace case:

• Penalty term can be estimated from the data.
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Sample realization of all-pass of order 2
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Simulation results:

• 1000 replicates of all-pass models

• model order     parameter value

1 φ1 =.5

2 φ1=.3, φ2=.4

• noise distribution is t with 3 d.f.

• sample sizes n=500, 5000

• estimation method is LAD
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To guard against being trapped in local minima, we adopted the 
following strategy.

• 250 random starting values were chosen at random. For model 
of order p, k-th starting value was computed recursively as 
follows:

1. Draw                              iid uniform (-1,1).
2. For j=2, …, p, compute

• Select top 10 based on minimum function evaluation.

• Run Hooke and Jeeves with each of the 10 starting values and 
choose best optimized value.
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Asymptotic Empirical
N mean std dev     mean     std dev %coverage   rel eff*
500 φ1=.5 .0332 .4979     .0397 94.2 11.8
5000 φ1=.5 .0105 .4998     .0109 95.4 9.3

Asymptotic Empirical
N mean std dev    mean     std dev %coverage
500 φ1=.3 .0351 .2990      .0456 92.5

φ2=.4 .0351 .3965      .0447 92.1
5000 φ1=.3 .0111 .3003      .0118 95.5

φ2=.4 .0111 .3990      .0117 94.7

*Efficiency relative to maximum absolute residual kurtosis:
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Empirical               Empirical LAD
N mean     std dev mean     std dev
500 φ1=.5 .4978      .0315 .4979     .0397
5000 φ1=.5 .4997      .0094 .4998     .0109
500 φ1=.3 .2988      .0374 .2990     .0456

φ2=.4 .3957      .0360 .3965     .0447
5000 φ1=.3 .3007      .0101 .3003     .0118

φ2=.4 .3993      .0104 .3990     .0117

R-Estimator: Minimize the objective fcn

where {z(t)(φ)} are the ordered {zt(φ)}.
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