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Chapter 0

Ex. 0.2. Define H : (Rn − {0})× I → Rn − {0} by

H(x, t) = (1− t)x+
t

|x|
x,

x ∈ Rn − {0}, t ∈ I. It is easily verified that H is a homotopy between the identity map and a
retraction onto Sn−1, i.e. a deformation retraction.

Ex. 0.3. First a few results which make things easier.

Lemma 1. Let f0, f1 and f2 be maps X → Y . If f0 ' f1 and f1 ' f2 then f0 ' f2.

Proof. Let F0 : X × I → Y be a homotopy between f0 and f1, and F1 : X × I → Y a homotopy
between f1 and f2.

Define F : X × I → Y by

F (x, t) =
{
F0(x, 2t), t ∈ [0, 1/2]
F1(x, 2t− 1), t ∈ [1/2, 1].

If t = 1/2 then F0(x, 2t) = F0(x, 1) = f1(x) = F1(x, 0) = F1(x, 2t − 1), i.e. the map F is
well-defined. By the pasting lemma, F is continuous. Since F (x, 0) = F0(x, 0) = f0(x) and
F (x, 1) = F1(x, 1) = f2(x), F is a homotopy between f0 and f2. �

Lemma 2. If f0, f1 : X → Y are homotopic and g0, g1 : Y → Z are homotopic then g0f0, g1f1 : X →
Z are homotopic.

Proof. Let F : X×I → Y be a homotopy between f0 and f1, and let G : Y ×I → Z be a homotopy
between g0 and g1.

One proof: Now the composite g0F : X × I → Z is a homotopy between g0f0 and g0f1, and
the composite G(f1 × idI) : X × I → Z is a homotopy between g0f1 and g1f1. By lemma 1,
g0f0 ' g1f1.

Another proof: The map G(F × idI)(idX ×∆): X × I → Z is continuous, where ∆: I → I × I
is the diagonal map, that is, ∆(t) = (t, t). Since

G(F × idI)(idX ×∆)(x, 0) = G(F × idI)(x, 0, 0) = G(F (x, 0), 0) = g0f0(x)

and
G(F × idI)(idX ×∆)(x, 1) = G(F × idI)(x, 1, 1) = G(F (x, 1), 1) = g1f1(x),

g0f0 and g1f1 are homotopic. �

(a). Suppose f0 : X → Y is a homotopy equivalence with homotopy inverse f1 : Y → X, and
g0 : Y → Z is a homotopy equivalence with homotopy inverse g1 : Z → Y .

Using lemma 2, f1g1g0f0 ' f1 idY f0 = f1f0 ' idX and g0f0f1g1 ' g0 idY g1 = g0g1 ' idZ . In
other words, g0f0 : X → Z is a homotopy equivalence.

Since being homotopy equivalent clearly is reflexive and symmetric, homotopy equivalence
among spaces is an equivalence relation.
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(b). Trivially, f ' f for any map f : X → Y . Let f0, f1 : X → Y be homotopic, i.e. there exists
a homotopy F : X × I → Y between f0 and f1. Now G(x, t) = F (x, 1 − t) is a homotopy with
G(x, 0) = F (x, 1) = f1(x) and G(x, 1) = F (x, 0) = f0(x), i.e. a homotopy between f1 and f0.

Thus, the relation of homotopy among maps between two fixed spaces is reflexive, symmetric
and transitive, the latter by lemma 1, i.e. an equivalence relation.

(c). Let f0 : X → Y be a homotopy equivalence with homotopy inverse g0 : Y → X. If f0 ' f1,
then, by lemma 2, idX ' g0f0 ' g0f1 and idY ' f0g0 ' f1g0. Thus, f1 is a homotopy equivalence
with g0 as homotopy inverse.

Remarks. Homotopy inverses are unique up to homotopy:

Lemma 3. If f : X → Y is a homotopy equivalence with homotopy inverses g0, g1 : Y → X then
g0 ' g1.

Proof. g0 = g0 idY ' g0fg1 ' idX g1 = g1. �

Using lemma 2, there is a homotopy category of topological spaces whose objects are topological
spaces and whose morphisms are homotopy classes. Furthermore, there is a covariant functor from
the category of topological spaces to the homotopy category that sends a map to its homotopy
class. A homotopy equivalence is an equivalence in the homotopy category.

Ex. 0.9. Let X be a contractible space, that is, idX is nullhomotopic, i.e., the identity map is
homotopic to a constant map c. Furthermore, let r : X → A be a retraction onto the subspace A.
Finally, let i : A→ X be the inclusion map.

One proof: By lemma 2, idA = ri = r idX i ' rci, where the latter map is a constant map.
Hence A is contractible.

Another proof: Let f : X × I → X be a nullhomotopy of idX . Clearly, rf |A×I : A× I → A is a
nullhomotopy of idA.

Ex. 0.10.

Lemma 4. For a space X, the following are equivalent:
(i) X contractible.
(ii) Every map f : X → Y for all Y is nullhomotopic.
(iii) Every map g : Y → X for all Y is nullhomotopic.

Proof. (i) ⇒ (ii) : If h : X × I → X be a homotopy from the identity to a constant map, then
fh : X × I → Y is a homotopy from f to a constant map.

(ii) ⇒ (iii) : If h : X × I → X be a homotopy from the identity to a constant map, then
h(g × id) : Y × I → X is a homotopy from g to a constant map.

(iii) ⇒ (i) : The identity map on X is nullhomotopic. �

Ex. 0.12. Let X and Y be spaces, and let π0(X) and π0(Y ) denote the sets of path components
of X and Y , respectively.

Recall that, if f : X → Y and A is a path component of X, then f(A) is path connected
and there is a unique path component of Y containing f(A). Furthermore, path components are
either disjoint or equal. Thus, f induces a well-defined map f∗ : π0(X) → π0(Y ) which sends a
path component A of X to the unique path component f∗(A) of Y containing f(A). Clearly,
(idX)∗ = idπ0(X).

Lemma 5. Let f, g : X → Y . If f ' g then f∗ = g∗.

Proof. Let A be a path component of X, and let h : X × I → Y be a homotopy between f and g.
Since f(A), g(A) ⊂ h(A × I) and h(A × I) is path connected, f(A) and g(A) is contained in the
same path component of Y , that is, f∗(A) = g∗(A). �

Lemma 6. If f : X → Y and g : Y → Z then (gf)∗ = g∗f∗.

Proof. Let A be a path component of X. Since gf(A) ⊂ g(f∗(A)) ⊂ g∗f∗(A), (gf)∗(A) =
g∗f∗(A). �
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Thus, in the realm of categories, there is a functor from the category of topological spaces to
the category of sets sending a space X to the set of path components π0(X), and a map f : X → Y
to f∗ : π0(X) → π0(Y ).

Lemma 7. If f : X → Y is a homotopy equivalence, then f∗ is bijective.

Proof. If g : Y → X be a homotopy inverse of f , then idπ0(X) = (gf)∗ = g∗f∗ and idπ0(Y ) =
(fg)∗ = f∗g∗. �

Lemma 8. If f : X → Y is a homotopy equivalence, then f |A : A → f∗(A) is a homotopy equi-
valence for all path components A of X.

Proof. Let g : Y → X be a homotopy inverse of f , and let A be a path component of X. Further-
more, let h1 be a homotopy from gf to idX and h2 a homotopy from fg to idY .

Since h1(A×{1}) = A and A× I is path connected, h1(A× I) ⊂ A. Thus, h1|A×I : A× I → A
is a homotopy from (gf)|A = (g|f∗(A))(f |A) to idA.

Similarly, if B is a path component of Y , then h2|B×I : B × I → B is a homotopy from
(fg)|B = (f |g∗(B))(g|B) to idB .

In particular, if B = f∗(A), then (f |g∗(f∗(A)))(g|f∗(A)) = (f |A)(g|f∗(A)) to idf∗(A), that is,
f |A : A→ f∗(A) is a homotopy equivalence with homotopy inverse g|f∗(A) : f∗(A) → A. �

The arguments above are easily modified to prove the equivalent result about components
instead of path components, using that the continuous image of a connected space is connected.
The details are left to the reader. Write π′0(X) for the set of components of X, and f ′∗ : π′0(X) →
π′0(Y ) for the map induced by f .

Lemma 9. If f : X → Y is a homotopy equivalence and the components and path components of
X coincide, then the components and path components of Y coincide.

Proof. Let B′ ∈ π′0(Y ) and B ∈ π0(B′), that is, B is path component of Y contained in B′.
By assumption and the results above, B′ ' g′∗(B

′) = g∗(B) ' B. Hence, |π0(B′)| = |π0(B)| =
|{B}| = 1, that is, B′ has exactly one path component. �

Ex. 0.16. See example 1B.3.

Ex. 0.17. One idea is to attach the core circle of the Möbius band to a boundary circle of the
annulus (the region between two concentric circles), see figure 1. The CW complex consists of
four 0-cells, seven 1-cells and three 2-cells.

A deformation retraction of the Möbius band onto its core circle gives the annulus, and a
deformation retraction of the annulus onto its boundary circle c gives the Möbius band.
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Figure 1. A 2-dim CW complex containing an annulus and a Möbius band.

Ex. 0.20. By collapsing the closed (and contractible) disk where the klein bottle, immersed in
R3, intersects itself and inserting two strings, A (inside the sphere) and B, we get a space which
is homotopy equivalent to the space in figure 2. By collapsing the contractible arcs C and D on
the sphere we get S2 ∨ S1 ∨ S1.
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Figure 2. A space homotopy equivalent to the klein bottle immersed in R3.

Chapter 1

Ex. 1.1.5.

Lemma 10. For a space X, the following are equivalent:
(a) Every map S1 → X is nullhomotopic.
(b) Every map S1 → X extends to a map D2 → X.
(c) π1(X,x0) = 0 for all x0 ∈ X.

Proof. Let i : S1 → D2 be the inclusion map.
(a) ⇒ (b): Suppose f : S1 → X is nullhomotopic, i.e., there is a homotopy h : S1× I → X from

a constant map, S1 7→ x0, to f .
One proof: Observe that h is a partial homotopy of the constant map D2 7→ x0. Since (D2, S1)

has the homotopy extension property, h extends to a homotopy h̃ : D2 × I → X such that the
restriction of h̃ to S1 × {1} is f .

Another proof (thanks to Nicolai and Rune): Clearly, h extends to a map

h̃ : D2 = (D2 × I)− (Int(D2)× [0, 1[) → X,

by letting h̃ be the constant map on D2 × {1}.
(b) ⇒ (c): Let f : (S1, s0) → (X,x0) be a loop in X, and let f̃ : D2 → X be an extension of f

to D2. Furthermore, let h : D2 × I → D2 be the deformation retraction of D2 onto s0 along the
lines through s0. In particular, h does not move s0, i.e., h(s0, t) = s0.

Now,

h̃ : S1 × I
i×id // D2 × I

h // D2
ef // X

is a homotopy from h̃(s, 0) = f̃h(s, 0) = f(s) to h̃(s, 1) = f̃h(s, 1) = f̃(s0) = x0, and f̃h(s0, t) =
f̃(s0) = x0. Thus, h̃ is a homotopy of loops from f to the constant loop.

(c) ⇒ (a): Clear.
�

Lemma 11. A space X is simply-connected if and only if all maps S1 → X are homotopic.

Proof. Suppose X is simply-connected. Since X is path connected and π1(X,x0) = 0 for all x0 in
X, then, by lemma 10, all maps S1 → X are homotopic to any constant map S1 → X.

Conversely, suppose all maps S1 → X are homotopic. Then, all maps S1 → X are homotopic
to any constant map. In particular, all constant maps are homotopic, i.e., X is path connected.
By lemma 10, π1(X,x0) = 0 for all x0 in X. �

Ex. 1.1.6. Consider maps (I, ∂I) → (X,x0) as maps (I/∂I, ∂I/∂I) = (S1, s0) → (X,x0). Let
Φ: π1(X,x0) → [S1, X] be the map that sends a based homotopy class of a map S1 → X to its
unbased homotopy class.

Suppose X is path connected.
4



Lemma 12. Φ is surjective.

Proof. It suffices to prove that any map f : S1 → X is homotopic to a map (S1, s0) → (X,x0).
Let h : I → X be a path from f(s0) to x0, that is, h is a partial homotopy of f on the subset

{s0}. Since (S1, s0) has the HEP, there exists ϕ : S1 × I → X such that the diagram

S1 × {0} ∪ {s0} × I

i

��

f∪h // X

S1 × I

ϕ

77

commutes, where i is the inclusion map. Now, ϕ|S1×{0} = f and ϕ(s0, 1) = h(1) = x0, i.e.,
Φ([ϕ|S1×{1}]) = [f ]. �

Lemma 13. ∀ [f ], [g] ∈ π1(X,x0) : Φ([f ]) = Φ([g]) ⇔ ∃ [h] ∈ π1(X,x0) : [h][f ][h]−1 = [g].

Proof. ”⇒”: Since Φ([f ]) = Φ([g]), there is a homotopy ϕt : S1 → X from f to g. Let h : S1 → X
be the loop h(t) = ϕt(s0). By 1.19, the diagram

π1(X,x0)

βh

��

π1(S1, s0)

f∗
44iiiiiiiiiiii

g∗

**UUUUUUUUUUUU

π1(X,x0)

commutes. In particular,

[g] = g∗[idS1 ] = βhf∗[idS1 ] = βh[f ] = [h][f ][h]−1.

”⇐”: For t ∈ I, let ht : I → X be the path ht(s) = h((1 − s)t + s), that is, a path from h(t)
to h(1) = x0. Observe that h0 = h and h1 = x0. Now, ϕt = ht · f · ht, where · denotes pah
composition, is a homotopy with ϕ0 = h0 · f · h0 = h · f · h and ϕ1 = f (draw a picture of this
homotopy), i.e., Φ([f ]) = Φ([h · f · h]) = Φ([g]).

�

Ex. 1.1.9. Since A1, A2 and A3 is compact they have finite measure. Every point s ∈ S2

determines a unit vector i R3 and hence a direction, so we can regard s as a unit vector in R3.
For each Ai choose a plane Pi with s as a normal, such that Pi divides Ai in two pieces of equal

measure. It is intuitively clear that Pi exists, by continuously sliding Pi along the line determined
by s, and is unique, but the proof is omitted.

Let di(s), i = 1, 2, denote the Euclidean distance between P3 and Pi in the direction determined
by s. The situation is illustrated in figure 3. In the situation pictured below are d1(s) < 0 and
d2(s) > 0. We want to proof that there exists s ∈ S2, such that di(s) = 0, i = 1, 2, hence the
three planes coincide and the result follows.

Now define f : S2 → R2 by f(s) = (d1(s), d2(s)). Clearly, f is continuous. Note that f is
an odd map, i.e. f(−s) = −f(s). By the Borsuk-Ulam Theorem, there exists s0 ∈ S2 such that
f(s0) = f(−s0). But this means that di(s0) = −di(s0), hence di(s0) = 0, i = 1, 2, as desired.

Finally, since the Borsuk-Ulam Theorem hold for continuous maps Sn → Rn, this argument
easily generalises to Rn for a hyperplane of dimension n− 1. Hence the result also holds i Rn.

Ex. 1.1.10. Let f : I → X × {y0} and g : I → {x0} × Y be loops based at x0 × y0. Furthermore,
let · denote path composition. By definition,

f · g(s) =
{
f(2s)× y0, t ∈ [0, 1/2]
x0 × g(2s− 1), t ∈ [1/2, 1]

and

g · f(s) =
{
x0 × g(2s), t ∈ [0, 1/2]
f(2s− 1)× y0, t ∈ [1/2, 1].
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Figure 3. The Ham Sandwich theorem.

Define x : I × I → X and y : I × I → Y by

x(s, t) =

 x0, s ∈ [0, t/2]
f(2s− t), s ∈ [t/2, (1 + t)/2]
x0, s ∈ [(1 + t)/2, 1]

and

y(s, t) =

 y0, s ∈ [0, (1− t)/2]
g(2s+ t− 1), s ∈ [(1− t)/2, (2− t)/2]
y0, s ∈ [(2− t)/2, 1],

where we regard f and g as maps I → X and I → respectively. See figure 4 for an illustration of
these maps. By the pasting lemma, x and y are continuous.

s

t

x0

x0

f(2s− t) oooooooooooooooooooo

oooooooooooooooooooo s

t

y0

y0

g(2s+ t− 1)

OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOO

Figure 4. The maps x (left) and y (right).

Now h : I × I → X × Y , h(s, t) = x(s, t)× y(s, t), is continuous with h(0, t) = h(1, t) = x0 × y0,
h(s, 0) = x(s, 0) × y(s, 0) = f · g(s) and h(s, 1) = x(s, 1) × y(s, 1) = g · f(s). Thus, h is a base
point preserving homotopy between f · g and g · f .
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Ex. 1.1.11. Let X be a space with base point x0, and let X0 be the path component of X con-
taining x0. Let i : X0 → X be the inclusion map. Consider the homomorphism i∗ : π1(X0, x0) →
π1(X,x0).
i∗ is surjective: Let f : I → X be a loop based at x0. Since f(I) ⊂ X0, the corestriction of f

to X0 is a loop in X0, hence i∗[f ] = [if ] = [f ], i.e. i∗ is surjective.
i∗ is injective: Let g, h : I → X0 be loops based at x0. Suppose i∗[g] = [ig] and i∗[h] = [ih]

are homotopic as loops in X, i.e. there exists base point preserving homotopy between ig and ih.
The image of this homotopy is path connected, hence contained in X0, hence corestriction gives a
homotopy between g and h, i.e. [g] = [h]. In other words, i∗ is injective.

Summarizing, i∗ is an isomorphism.

Ex. 1.1.12. Any endomorphism of the abelian group Z is multiplication by n for some n ∈ Z.
Recall that n equals the image of the generator 1.

Let n ∈ Z. Consider S1 as the unit circle i C with base point 1. Let f, g : S1 → S1 be the maps
given by f(z) = zn and g(z) = z−n.

Recall, c.f. theorem 1.7, that the path ω1(t) = e2πit, t ∈ I, generates π1(S1, 1). Note that
fω1(t) = e2πint = ωn(t), i.e. n times the generator of π1(S1, 1), c.f. theorem 1.7. Hence f∗ is
multiplication by n via the isomorphism in theorem 1.7. Similarly, g∗ is multiplication by −n.

Ex. 1.1.13. Let X be a space with base point x0, and let A be a path connected subspace of X
containing x0. Let i : A→ X be the inclusion map. Let · denote path composition. Consider the
homomorphism i∗ : π1(A, x0) → π1(X,x0).

Suppose i∗ is surjective. Let g : I → X be a path in X with end points, g(0) = x1 and g(1) = x2,
in A. Since A is path connected, there exists a path f in X contained in A from x0 to x1 and a path
h in X contained in A from x2 to x0. Now f · g · h is a loop based at x0, i.e. [f · g · h] ∈ π1(X,x0).
Since i∗ is surjective, there exists a loop l in A based at x0 such that i∗[l] = [il] = [f · g ·h]. Hence
[g] = [f · il · h] as paths in X from x1 to x2, and f · il · h is a path in X contained A.

Conversely, suppose every path in X with end points in A is path homotopic to a path in A.
In particular, every loop in X based at x0 is path homotopic to a loop in A, i.e. i∗ is surjective.

Ex. 1.1.15. Let · denote path composition. First a lemma:

Lemma 14. If f : X → Y is a map and if g and h are paths in X with g(1) = h(0), then
f(g · h) = fg · fh.

Proof. This follows immediately from the definition of path composition. �

Now f : X → Y be a map and h : I → X a path from x0 to x1. Let g : I → X be a loop based
at x1. Note that fh = fh. By lemma 14,

βfhf∗[g] = [fh · fg · fh] = [f(h · g) · fh] = [f(h · g · h)],

and

f∗βh[g] = [f(h · g · h)].

Hence the diagram

π1(X,x1)
βh //

f∗

��

π1(X,x0)

f∗

��
π1(Y, f(x1))

βfh // π1(Y, f(x0))

commutes.

Ex. 1.1.16.
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(e). Choose the base point x0 ∈ A ⊂ X to be the point on the boundary of X corresponding to
the identification of the two points on the boundary of the disk. Let i : A → X be the inclusion
map. We will give two proofs:

(1) Consider the loops a and b in A illustrated in figure 5. Note that A = S1
a ∨ S1

b , and X
deformation retracts onto S1

a. The map r = idS1
a
∨x0 : S1

a ∨S1
b → S1

a is a retraction. In particular,
r(a) = a and r(b) = x0, i.e., r∗[a] = [a] and r∗[b] = 0. Thus, [a] 6= [b] in π1(A, x0).

Clearly, a and b are path homotopic in X. Thus [a] = [b] in π1(X,x0). Now i∗([a]) = i∗([b]),
but [a] 6= [b], i.e., i∗ is not injective. By 1.17, A is not a retract of X.

x0 x0

A

• •

a

b

//

//

Figure 5.

(2) Since A = S1 ∨ S1 and X = S1, π1(A, x0) = Z ∗ Z and π1(X,x0) = Z. Since Z ∗ Z is not
abelian and all subgroups of Z are abelian, there is no injective homomorphism Z ∗ Z → Z. In
particular, the map i∗ : π1(A, x0) → π1(X,x0) is not injective. By 1.17, A is not a retract of X.

(f). Note that X deformation retracts onto its core circle C. Choose a base point x0 ∈ A ⊂ X,
see figure 6. Furthermore, π1(A, x0) = Z = 〈[idA]〉 and π1(X,x0) = Z = 〈[idC ]〉. Now, i∗[idA] =
[idC ]2, since going once around the boundary cirle, A, corresponds in X to go twice around C.

x0

x0

A

A

C

•

•

OO ��

���������������������������������

Figure 6.

Suppose r : X → A is a retraction, that is, the diagram

X

r

��
A

i

>>~~~~~~~
A
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commutes, where i : A→ X is the inclusion map. Applying π1 gives the commutative diagram

π1(X,x0)

r∗

��
π1(A, x0)

i∗

88qqqqqqqqqq
π1(A, x0).

Thus, r∗i∗[idA] = r∗[idC ]2 = [idA], which is a contradiction; there is no homomorphism Z → Z
mapping twice a generator to a generator. Recall, every homomorphism Z → Z is z 7→ nz for
some nonnegative integer n.

Ex. 1.2.2. We use induction on the number n of open convex sets. Suppose n = 1. Any convex
set in Rm is simply connected, c.f. example 1.4.

Suppose n > 1 and Y = X1 ∪ · · · ∪Xn−1 is simply connected. We want to use Van Kampen’s
theorem.
X1 ∪ · · · ∪Xn−1 is path connected: Let x, y ∈ X1 ∪ · · · ∪Xn−1, i.e. there exists 1 ≤ i, j ≤ n− 1

such that x ∈ Xi and y ∈ Xj . Choose z ∈ Xi ∩ Xj 6= ∅. Since Xk is path connected for all k,
there exists a path in Xi from x to z and a path in Xj from z to y. Hence X1 ∪ · · · ∪Xn−1 is path
connected.

(X1 ∪ · · · ∪Xn−1) ∩Xn is path connected: Let x, y ∈ (X1 ∪ · · · ∪Xn−1) ∩Xn, i.e. there exists
1 ≤ i, j ≤ n − 1 such that x ∈ Xi and y ∈ Xj . Choose z ∈ Xi ∩Xj ∩Xn 6= ∅. Since Xk is path
connected for all k, there exists a path in Xi from x to z and a path in Xj from z to y. Hence
(X1 ∪ · · · ∪Xn−1) ∩Xn is path connected.

Now X1 ∪ · · · ∪ Xn−1 and Xn are open path connected sets, and (X1 ∪ · · · ∪ Xn−1) ∩ Xn is
path connected and not empty. Choose a base point x0 in (X1 ∪ · · · ∪ Xn−1) ∩ Xn. By Van
Kampen’s theorem, π1(X,x0) ' (π1(X1 ∪ · · · ∪Xn−1) ∗ π1(Xn))/N for some normal subgroup N .
By induction, π1(X1 ∪ · · · ∪Xn−1) is trivial. So π1(X1 ∪ · · · ∪Xn−1) and π1(Xn) are both trivial,
i.e. X is simply connected.

Ex. 1.2.3. Consider Rn with base point x0. Let x1, . . . , xm be m distinct points in Rn − {x0}.
We use induction on the number m of distint points. By example 1.15, Rn − {x1} is simply

connected if n ≥ 3.
Suppose m > 1 and Rn−{x1, . . . , xm−1} is simply connected. It suffices to show that any loop

f in Rn − {x1, . . . , xm} is homotopic to a loop in Rn − {x1, . . . , xm−1}. This follows as in the
proof of 1.14.

There is a more general result concerning manifolds. Recall that a manifold is a locally euclidian
second countable Hausdorff space. Lemma 15 and the fact that an open subspace of a manifold is
a manifold gives another proof of the result above.

Lemma 15. Let M be a n-manifold, and let x0 and x1 be distint points in M . If n ≥ 3 then
π1(M,x0) ' π1(M − {x1}, x0).

Ex. 1.2.4. Let X be the union of n lines through the origin, and let x0 ∈ R−X.
R3 − {0} deformation retracts onto S2, c.f. ex. 0.2. Restriction of this deformation retraction

gives a deformation retraction of R3−X onto S2−(X∩S2). By proposition 1.17, π1(R3−X,x0) '
π1(S2 − (X ∩ S2), x0).

Note that S2− (X ∩S2) is S2 with 2n holes. By stereographic projection, S2 with a hole is R2,
hence S2 − (X ∩ S2) is R2 with 2n− 1 holes, which deformation retracts onto a wedge of 2n− 1
circles. Thus, π1(R3 −X,x0) is the free product of 2n− 1 copies of Z.

Ex. 1.2.6. Let Y be obtained from a path connected subspace X by attaching n-cells for a fixed
n ≥ 3. Let i : X → Y be the inclusion map. Let the base point x0 be in X.

Claim 16. The induced map i∗ : π1(X,x0) → π1(Y, x0) is an isomorphism.

Proof. Modify the proof of 1.26 by replacing 2-cells with n-cells. Since n ≥ 3, Aα is simply
connected, i.e. A ∩B = ∪Aα is simply connected. Furthermore, B is still contractible. �
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Let A be a discrete subspace of Rn, n ≥ 3. Choose a base point x0 ∈ Rn −A.

Claim 17. The complement Rn −A is simply connected.

Proof. For each x ∈ A, there exists an open n-ball Bx such that Bx is homeomorphic to Dn and
Bx ∩A = {x}. Clearly X = Rn −

⋃
x∈ABx deformation retracts onto Rn −A.

Now let Y be the space obtained by attachning n-cells to X via homeomorphisms ϕx : ∂Dn →
∂Bx for each x ∈ A. Now X is path connected and Y = Rn. By claim 16, π1(Rn − A, x0) '
π1(X,x0) ' π1(Y, x0) = 0. �

Ex. 1.2.7. One CW complex structure on X consists of one 0-cell, x0, one 1-cell, a, and one
2-cell. The attachment map is aa−1. By 1.26, π1(X,x0) = 〈 a | aa−1 = 1 〉 = 〈 a 〉 = Z.

Another CW complex consists of one 0-cell, x0, two 1-cells, a, b, and two 2-cells, c, d. The
attachment map of both 2-cells is ab. Again by 1.26, π1(X,x0) = 〈 a, b | ab = 1 〉 = 〈 a 〉 = Z.

Ex. 1.2.9. For later reference we give some basic properties about the abelianization of a group.
Let G be a group, let A be a subset of G. We write group composition multiplicatively and

denote the identity element by 1. Let H be the set of subgroups of G containing A. Now, the
subgroup

〈A〉 =
⋂

H∈H
H

of G is called the subgroup of G generated by A. By construction, 〈A 〉 is the smallest subgroup of
G containing A. It is easily verified that any element of 〈A 〉 can be written as a product a1 · · · an,
a1, . . . , an ∈ A, n ∈ Z+, repetitions are allowed.

The commutator of two elements a and b in G is the element aba−1b−1 and is denoted [a, b].
Clearly, [a, b] = 1 iff a and b commute. Let G′ denote the subgroup of G generated by the set of
commutators in G, i.e., G′ = 〈 { [a, b] | a, b ∈ G } 〉.

For any a, b and g in G, g[a, b]g−1 = [gag−1, gbg−1]. Let [a1, b1] · · · [an, bn], a1, b1 . . . , an, bn ∈ G,
n ∈ Z+, be any element of G′. Now,

g[a1, b1] · · · [an, bn]g−1 = g[a1, b1]g−1g · · · g−1g[an, bn]g−1 = [ga1g
−1, gb1g

−1] · · · [gang
−1, gbng

−1]

for any g in G. Hence, g[a1, b1] · · · [an, bn]g−1 ∈ G′, i.e. G′ is a normal subgroup of G.

Theorem 18. If H is a normal subgroup of G, then G/H is abelian iff G′ ⊂ H.

Proof. Suppose G/H is abelian. Let a, b ∈ G. Now [a][b] = [b][a] in G/H, i.e. [a][b][a]−1[b]−1 =
[aba−1b−1] = [1], i.e., aba−1b−1 ∈ H. Hence, G′ ⊂ H.

Conversely, suppose G′ ⊂ H, i.e. aba−1b−1 ∈ H for all a, b ∈ G. Hence [a][b][a]−1[b]−1 = [1] in
G/H, i.e., [a] and [b] commutes. �

In other words, G′ is the smallest normal subgroup of G with abelian factor group or G/G′ is
the largest abelian factor group of G. Clearly, G abelian iff G′ is trivial. Let π : G→ G/G′ denote
the residue homomorphism, i.e., π maps an element g in G to the residue class [g] in G/G′.

Theorem 19. If f : G → H be a homomorphism into an abelian group H, then there exists a
unique homomorphism f ′ : G/G′ → H such that

G
f //

π

��

H

G/G′
f ′

<<zzzzzzzz

commutes.

Proof. Let a, b ∈ G. Since H abelian, f([a, b]) = f(aba−1b−1) = f(a)f(b)f(a)−1f(b)−1 = 1,
i.e. G′ ⊂ Ker f . By the homomorphism theorem, f factors uniquely through the factor group
G/G′. �
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For any group G we define the abelianization Gab of G to be G/G′. Theorem 1 says that Gab

is the largest abelian factor group og G. Theorem 19 says that any homomorphism from G into
an abelian group factors uniquely through Gab.

Exercise 1.2.9. A CW complex structure on M ′
h consists of one 0-cell, x0, 2h + 1 1-cells,

a1, b1, . . . , ah, bh, C, and one 2-cell. Hence, the 1-skeleton is a wedge of 2g+ 1 circles. The attach-
ment map of the 2-cell is [a1, b1] · · · [ah, bh]C−1. (It might be instructive to draw the situation for
h = 2 using the usual visualization of the 1-skeleton of M2 as a polygon with 8 edges and the
circle C as a circle inside the polygon intersecting the 1-skeleton at one of the points representing
x0. Remember to choose the orientations in accordance with the attachment map or adjust the
attachment map appropriately.)

Now, by 1.26,

π1(M ′
h, x0) = 〈 a1, b1, . . . ah, bh, C | [a1, b1] · · · [ah, bh]C−1 = 1 〉.

Since

(†) [a1, b1] · · · [ah, bh] = C,

another presentation of the fundamental group is

π1(M ′
h, x0) = 〈 a1, b1, . . . , ah, bh 〉,

the free product of 2h copies of Z.
Suppose r : M ′

h → C is a retraction. Let i : C →M ′
h be the inclusion map. As always, ri = idC

and r∗i∗ = idπ1(C,x0). Note that π1(C, x0) = 〈C 〉 = Z, and i∗(C) = C = [a1, b1] · · · [ah, bh], by
(†). We will derive a contraction to the existence of the retraction r in two almost identical ways:

(1) Since π1(C, x0) is abelian,

r∗i∗(C) = r∗([a1, b1] · · · [ah, bh]) = [r∗(a1), r∗(b1)] · · · [r∗(ah), r∗(bh)] = 1,

i.e., r∗i∗ is the trivial homomorphism, a contradiction.
(2) Since π1(C, x0) is abelian, there exists a homomorphism r′∗ : π1(M ′

h, x0)ab → π1(C, x0) such
that the diagram

π1(C, x0)

idπ1(C,x0)

''
i∗ // π1(M ′

h, x0)
r∗ //

π

��

π1(C, x0)

π1(M ′
h, x0)ab

r′∗

77ppppppppppp

commutes, c.f. theorem 19. Since C is a product of commutators in π1(M ′
h, x0), c.f. (†), πi∗(C) =

1. Hence, r∗i∗ = r′∗πi∗ is the trivial homomorphism, a contradiction.
In particular, there is no retraction Mg → C, since restriction would give a retraction M ′

h → C.
The usual CW complex structure on Mg consists of one 0-cell, 2g 1-cells, a1, b1, . . . , ag, bg and

one 2-cell. The 1-skeleton is the wedge
g∨

i=1

(S1
ai
∨ S1

bi
).

The attachment map of the 2-cell is [a1, b1] · · · [ag, bg]. Collapsing
g∨

i=2

(S1
ai
∨ S1

bi
)

gives a quotient map q : Mg →M1. The map r : M1 = S1×S1 → S1×{s0} = C ′, s0 ∈ S1, defined
by r(x, y) = (x, s0) is a retraction. Now rq : Mg → C ′ is a retraction.
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Ex. 1.2.20. Let X be
⋃∞

n=1 Cn, and let Y =
∨
∞ S1.

π1(X) = ∗∞n=1π1(Cn): Let U be an open ball with center 0 and radius less than 1. Then
V = U ∩X is contractible. Let An = V ∪ (Cn − {0}). Then An is open, being the union of two
open sets, and

⋃∞
n=1An = X. By van Kampen’s theorem,

π1(X, 0) = ∗∞n=1π1(Cn, 0).

Note that the closure X of X in R2 is X ∪ ({0} ×R).
X and Y are homotopy equivalent: Observe that R2− (2Z+− 1) deformation retracts onto X,

which is homotopy equivalent to X. See figure 7 for an illustration of this deformation retraction,
where the arrows illustrates the deformation.

• • •

//

//

//

oo //

OO

��

oo // oo //

dd

zz

dd

zz

· · ·

Figure 7. The deformation retraction of R2 − (2Z+ − 1) onto X.

But R2 − (2Z+ − 1) also deformation retracts onto Z =
⋃∞

n=1 Sn, where Sn ⊂ R2 is the circle
with center 2n − 1 and radius 1. See figure 8 for an illustration of this deformation retraction,
where the arrows illustrates the deformation. By collapsing the union of the southern hemispheres
of the circles, which is contractible, Z is homotopy equivalent to Y .

• • •oo //

OO

��

oo //

OO

��

oo //

OO

��

//

��

OO

��

OO

��

OO

· · ·

Figure 8. The deformation retraction of R2 − (2Z+ − 1) onto Z.

Recall that a space is first countable if every point x has a countable neighborhood basis, that is,
for each x there is a countable set {Un} of open neighborhoods of x such that for any neighborhood
V of x there is an n with Un ⊂ V .
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Lemma 20. The infinite wedge of circles is not first countable.

Proof. Let s0 ∈ S1. Consider the quotient map

q :
∐
∞
S1 = Z+ × S1 → Z+ × S1/Z+ × {s0} =

∨
∞
S1,

where

q({n} × {s}) =
{
{n} × {s}, s 6= s0
Z+ × {s0}, s = s0,

where Z+ × {s0} denotes the subset of
∐
∞ S1, as well as the common point in

∨
∞ S1.

Recall that U is open in
∨
∞ S1 iff q−1(U) open in

∐
∞ S1 iff ({n} × S1) ∩ q−1(U) open in

{n} × S1 for all n.
Let {Un}n∈Z+ be a countable set of open neighborhoods of Z+ × {s0} ⊂

∨
∞ S1. Now,

Vn = q−1(Un) ∩ ({n} × S1)

is an open neighborhood of {n}×{s0} in {n}×S1. Observe that {n}×{s0} ( Vn, since {n}×{s0}
is closed in {n} × S1 which is connected, that is, ∅ and {n} × S1 are the only clopen subsets of
{n} × S1. Hence, there exists xn ∈ Vn − ({n} × {s0}).

Now,
Wn = Vn − {xn} = ((Z+ × S1)− {xn}) ∩ Vn

is an open proper subset of Vn containing {n} × {s0}. Thus, W =
⋃

nWn is open in Z+ × S1.
Clearly, q−1q(W ) = W (by the definition of q). Hence, q(W ) is an open neighborhood of Z+×{s0}.

If Un ⊂ q(W ), then

Vn = q−1(Un) ∩ ({n} × S1) ⊂W ∩ ({n} × S1) = Wn,

which is a contradiction. Hence, the infinite wedge of circles is not first countable at Z+×{s0}. �

An immediate consequence is that
∨
∞ S1 does not embed in any first countable space, in

particular R2. Thus, X and Y are not homeomorphic.

Ex. 1.3.1. Let p : X̃ → X be a covering space, and let A be a subspace of X. Furthermore, let
x0 ∈ A, and let U be an open neighborhood of x0 in X which is evenly covered by p, that is,
p−1(U) is a disjoint union of open sets Vα each of which is mapped homeomorphically onto U .
Then U ∩ A is an open neighborhood of x0 in A, Vα ∩ p−1(A) are disjoint open sets in X̃ with
union p−1(U ∩A), and each Vα∩p−1(A) are mapped homeomorphically onto U ∩A by p. In other
words, x0 has an open neighborhood which is evenly covered by the restriction of p.

Ex. 1.3.2. Let p1 : X̃1 → X1 and p2 : X̃2 → X2 be covering spaces. Let (x1, x2) ∈ X1 ×X2, and
let U1 and U2 be open neighborhoods of x1 and x2, respectively, which are evenly covered by p1

and p2, respectively. Now, (p1 × p2)−1(U1 × U2) is the disjoint union of products of open sets in
p−1
1 (U1) and p−1

2 (U2), and each is mapped homeomorphically onto U1 × U2 by p1 × p2.

Ex. 1.3.4. Let X ⊂ R3 be the union of the unit sphere S2 in R3 and the diameter D connecting
(−1, 0, 0) and (1, 0, 0). For t ∈ R, let τt : R3 → R3 be translation by t along the first axis, that is,
τt(x, y, z) = (x+ t, y, z).

Let X̃ ⊂ R3 be the union ⋃
n∈Z

(τ4n(S2) ∪ τ4n+1(D)),

see figure 9, which is simply connected, since homotopy equivalent to the wedge of countable
infinite circles (why?).

Define pX : X̃ → X to be the inverse translation on each translated sphere, and the inverse
translation followed by a reflection on each translated diameter. The map pX is clearly a covering
map.

Let Y ⊂ R3 be the union of S2 and a circle intersection it in two points. For convenience, let
the two points be the north pole and the south pole.
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· · ·· · ·

Figure 9. The universal covering space of X.

Consider the space Ỹ in figure 10, which is simply connected, since homotopy equivalent to the
wedge of countably infinite spheres (why?). Let pY : Ỹ → Y be the map that maps a sphere in Ỹ
to the sphere in Y , maps the horizontal arcs to the circle segment inside (or outside) the sphere,
and maps the vertical lines to the circle segment outside (or inside) the sphere. Clearly, pY is a
covering map.

· · ·· · ·

...

...

...

...

...

...

· · ·· · ·

· · ·· · ·

Figure 10. The universal covering space of Y.

Ex. 1.3.9. Let X be a space with finite π1(X). Consider a map f : X → S1. Since f∗(π1(X)) is a
finite subgroup of π1(S1) = Z and Z contains no nontrivial finite subgroups, f∗ : π1(X) → π1(S1)
is the trivial homomorphism.

Let p : R → S1 be the universal covering space. By 1.33, f lifts to the universal covering space,
i.e. there exists a map f̃ : X → R such that f = pf̃ .

Since R is contractible, idR is homotopic to a constant map. Thus, g = idR g ' ∗g = ∗ for any
map g : Y → R and any space Y . This also follows from ex. 0.10. Now, f = pf̃ ' p∗ = ∗.
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Chapter 2

Ex. 2.1.1. Consider the subdivision pictured in the left figure below.

//
a

��a

??
??

??
??

??
??

??
??

?

��
b1

��
b2

���������

??c
//

b2

��c

//
b1

OO c

??
??

??
??

??
??

??
??

?

��a

Rearrangement gives the ∆-complex on the right, which is the Möbius band.

Ex. 2.1.4. Let X be the triangular parachute. The ∆-complex structure, see figure 11, has one
0-simplex v, three 1-simplices a, b, c, and one 2-simplex T .

//
a

�����������������

??c

?????????????????

__ b

v

v

v

T

Figure 11. The triangular parachute.

The boundary maps are ∂1(a) = ∂1(b) = ∂1(c) = v − v = 0, and ∂2(T ) = b − c + a. The
simplicial chain complex is

0 // Z{T} ∂2 // Z{a, b, c} = Z{a, b, b− c+ a} ∂1 // Z{v} // 0.

The nontrivial homology groups are H∆
0 (X) = Z,

H∆
1 (X) = Ker ∂1/ Im ∂2 = Z{a, b, b− c+ a}/Z{b− c+ a} = Z2,

and H∆
2 (X) = Ker ∂2 = 0.

Ex. 2.1.9. Let X be the ∆-complex obtained from ∆n by identifying all faces of the same
dimension.

Observe that H∆
m(X) = 0 for m > n, and, by the identifications, that ∆m(X) = Z{[v0, . . . , vm]}

for 0 ≤ m ≤ n. The simplicial chain complex is

0 // Z{[v0, . . . , vn]} ∂n // Z{[v0, . . . , vn−1]} // · · · // Z{[v0, v1]}
∂1 // Z{[v0]} // 0.

For 0 < m ≤ n,

∂m([v0, . . . , vm]) =
m∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vm]

= [v0, . . . , vm−1]
m∑

i=0

(−1)i

=
{

0, m odd
[v0, . . . , vm−1], m even,

where the second equality follows by the identification of all faces of the same dimension. Hence,
∂m is a isomorphism when m is even (mapping generator to generator), and the zero map when
m is odd.
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For 0 < m < n,

Ker ∂m = Im ∂m+1 =
{

0, m even
∆m(X), m odd,

that is, H∆
m(X) = 0. Furthermore,

H∆
0 (X) = ∆0(X)/ Im ∂1 = Z,

and

H∆
n (X) = Ker ∂n =

{
0, n even
Z, n odd.

Ex. 2.1.11. Let r : X → A be a retract, and let i : A→ X be the inclusion map. Then ri = idA.
Applying the covariant functor Hn(−) gives that Hn(ri) = Hn(r)Hn(i) = idHn(A), i.e., Hn(i) is
injective.

Ex. 2.1.16. Let X be a space, let {Xα} be the path components of X, and let

· · · // C1(X)
∂1 // C0(X) // 0.

be the singular chain complex of X. Recall that the 0-simplices are the points of X, and the
1-simplices are the paths in X.

Lemma 21. Let x, y ∈ X. Then y − x ∈ Im ∂1 iff x and y lie in the same path component of X.

Proof. Suppose σ : I → X is a path with y − x = ∂1(σ) = σ(1)− σ(0). Since the points of X is a
basis of C0(X), σ(0) = x and σ(1) = y, that is, σ is a path from x to y.

Conversely, suppose σ : I → X is a path from x to y. Then ∂1(σ) = σ(1)− σ(0) = y − x. �

For a point x in X let [x] denote its coset in H0(X) = C0(X)/ Im ∂1. By lemma 21, [x] = [y]
in H0(X) iff x and y lie in the same path component. In particular, if X is path connected, then
every point in X generates H0(X). In other words, H0(X) is free abelian with basis the path
components of X, i.e., the map pX : H0(X) → Z{Xα}, defined by letting pX([x]) be the unique
path component of X containing x, is an isomorphism.

Now, let A be a subspace of X, and let {Aβ} be the set of path components of A. Observe that

Xα ∩A =
⋃

{ β |Aβ⊂Xα }

Aβ .

As usual, let i : A→ X be the inclusion map. By definition, i∗ : H0(A) → H0(X) maps a coset
[x] ∈ H0(A), x ∈ A ⊂ X, to the coset [i(x)] = [x] ∈ H0(X).

The diagram

H0(A)
i∗ //

∼=pA

��

H0(X)

∼=pX

��
Z{Aβ} i′ // Z{Xα}

commutes, where i′ : Z{Aβ} → Z{Xα} is defined by letting i′(Aβ) be the unique path component
of X containing Aβ . The description of i∗ via i′ gives the following result.

Lemma 22. (1) i∗ : H0(A) → H0(X) is surjective iff A meets each path component of X iff
Xα ∩A is nonempty for all α.

(2) i∗ : H0(A) → H0(X) is injective iff each path component of X contains at most one path
component of A iff Xα ∩A is path connected for all α.

(a). Since

H0(A)
i∗ // H0(X) // H0(X,A) // 0

is exact, H0(X,A) = 0 iff i∗ : H0(A) → H0(X) is surjective iff A meets each path component of
X, c.f. lemma 22(1).
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(b). Since

H1(A)
i∗ // H1(X) // H1(X,A) // H0(A)

i∗ // H0(X)

is exact, H1(X,A) = 0 iff i∗ : H1(A) → H1(X) is surjective and i∗ : H0(A) → H0(X) is injective
iff i∗ : H1(A) → H1(X) is surjective and each path component of X contains at most one path
component of A, c.f. lemma 22(2).

Ex. 2.1.18. Since R is contractible, the long exact sequence of reduced homology groups gives
the exact sequence

0 = H̃1(R) // H̃1(R,Q) = H1(R,Q) // H̃0(Q) // H̃0(R) = 0,

that is, H1(R,Q) = H̃0(Q).
Recall that H̃0(Q) = Ker ε, where ε is the map induced by the augmentation map, which maps

a finite linear combination of 0-simplices to the sum of the coefficients, in the augmented singular
chain complex. In other words, there is a short exact sequence

0 // H̃0(Q) // H0(Q) ε // Z // 0.

Since Q is totally disconnected, H0(Q) = ⊕QZ with basis the 0-simplices in Q, that is, the set
consisting of maps σq : ∆0 → Q, ∆0 7→ q, q ∈ Q. Thus, the kernel of ε consists of finite integer
linear combinations of 0-simplices such that the sum of the coefficients is zero. Hence, the set

{σ0 − σq | q ∈ Q }

is a basis for the kernel of ε.

Ex. 2.1.29. By 2.3, 2.14 and 2.25,

Hn(S1 × S1) = Hn(S2 ∨ S1 ∨ S1) =


Z, n = 0
Z2, n = 1
Z, n = 2
0, n ≥ 3.

The universal covering space of S1 × S1 is R × R, c.f. ex. 1.3.2, which is contractible. In
particular, Hn(R×R) = 0 for all n 6= 0.

The universal covering space p : E → S2 ∨ S1 ∨ S1 is the universal covering space of S1 ∨ S1,
c.f. 1.45, with a S2 attached at each vertex.

We will prove that R2 and E do not have the same homology in two ways:
(1) Since S2 is simply connected, the inclusion i : S2 → S2 ∨ S1 ∨ S1 lifts to E, that is, there

exists j : S2 → E such that i = pj. In particular, the diagram

H2(E)

p∗

��
H2(S2)

j∗
77nnnnnnnnnnnn

i∗ // H2(S2 ∨ S1 ∨ S1)

commutes. The map S2 ∨ S1 ∨ S1 → S2 mapping S1 ∨ S1 to the base point is a retraction. By
ex. 2.1.11, i∗ : Z = H2(S2) → H2(S2 ∨ S1 ∨ S1) is injective. Hence, H2(E) 6= 0 = H2(R×R).

(2) Any tree is contractible: For any vertex v, there is a unique path γv from a fixed base point
to v. Now, the homotopy that at time t sends v to γv(t) is a deformation retraction of the tree
onto the base point fixing the base point.

The homology of E: Let G be the free on two generators. Since the universal covering space
of S1 ∨ S1 is contractible, being a tree, E is homotopy equivalent to

∨
g∈G S

2. Thus, H̃n(E) is⊕
g∈G Z for n = 2 and zero otherwise. In particular, the homology of E and R2 are not equal.
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Ex. 2.1.30. Recall that composites of isomorphisms are isomorphisms.
Consider the commutative diagram

A

β ��@
@@

@@
@@

α // B

C

γ

??~~~~~~~

There are three cases:
(1) If α, β are isomorphisms, then γ = αβ−1 is an isomorphism.
(2) If α and γ are isomorphisms, then β = γ−1α is an isomorphism.
(3) If β and γ are isomorphisms, then α = γβ is an isomorphism.

Consider the commutative diagram

A

β

��

α // B

γ

��
C

δ
// D

There are four cases:
(1) If α, β and γ are isomorphisms, then δ = γαβ−1 is an isomorphism.
(2) If α, β and δ are isomorphisms, then γ = δβα−1 is an isomorphism.
(3) If α, γ and δ are isomorphisms, then β = δ−1γα is an isomorphism.
(4) If β, γ and δ are isomorphisms, then α = γ−1δβ is an isomorphism.

Consider the commutative diagram

A

β

��

α // B

C
δ

// D

γ

OO

There are four cases:
(1) If α, β and γ are isomorphisms, then δ = γ−1αβ−1 is an isomorphism.
(2) If α, β and δ are isomorphisms, then γ = αβ−1δ−1 is an isomorphism.
(3) If α, γ and δ are isomorphisms, then β = δ−1γ−1α is an isomorphism.
(4) If β, γ and δ are isomorphisms, then α = γδβ is an isomorphism.

Ex. 2.2.2.

Lemma 23. For any map f : S2n → S2n there exists x ∈ S2n such that f(x) = x or f(x) = −x,
that is, either f of −f has a fixed point.

Note that −f = af , where a is the antipodal map.

Proof. Since

(∀x ∈ S2n : f(x) 6= x)
(g)⇒ deg(f) = (−1)2n+1 = −1

and
(∀x ∈ S2n : f(x) 6= −x) ⇔ (∀x ∈ S2n : (−f)(x) 6= x)

(g)⇒ deg(−f) = (−1)2n+1 = −1
(d)⇒ −1 = deg(−f) = deg(a) deg(f) = (−1)2n+1 deg(f) = −deg(f)

⇒ deg(f) = 1,

either f or −f has a fixed point. �

Lemma 24. Any map g : RP2n → RP2n has a fixed point.
18



Proof. Let p : S2n → RP2n be the universal covering space identifying antipodal points, c.f. 1.43.
By the lifting criterion, c.f. 1.33, there exists f : S2n → S2n such that the diagram

S2n
f //

p

��

S2n

p

��
RP2n

g // RP2n

commutes. By lemma 23, there exists x ∈ S2n such that f(x) = ±x. Now, gp(x) = pf(x) =
p(±x) = p(x), i.e., g fixes p(x). �

Lemma 25. There exists maps RP2n−1 → RP2n−1 without fixed points.

Before proving this result we give a short survey of projective linear maps. Regard RPn as the
quotient space of Rn+1 by identifying lines through 0. Let [−] : Rn+1 → RPn be the quotient
map.

A linear map T ∈ GL(n + 1,R) induces a projective linear map T̃ : RPn → RPn defined by
T̃ ([v]) = [T (v)], v ∈ Rn+1. This is clearly well-defined, if [v] = [w], then v = λw, λ 6= 0, and
T̃ ([v]) = [T (v)] = [λT (w)] = [T (w)] = T̃ ([w]).

Let I be the identity matrix, and for a group G let Z(G) denote its center.

Lemma 26. Z(GL(n,R)) = {λI |λ 6= 0 }.

Proof. Let M ∈ Z(GL(n,R)). In particular, M commutes with the elementary matrices, see the
solution of ex. 2.2.7. Thus, for any c 6= 0, multiplying the ith row of M by c is equal to multiplying
the ith column of M by c, that is, M is a diagonal matrix. Furthermore, since interchanging the
ith and jth row of M is equal to interchanging the ith and jth column of M , the ith diagonal
entry of M is equal to jth diagonal entry of M . In other words, M = λI for some λ 6= 0.

Clearly, λI, λ 6= 0, commutes with all matrices. �

Lemma 27. If S, T ∈ GL(n+ 1,R), then S̃ = T̃ iff there exists λ 6= 0 such that T = λS.

Proof. Suppose S̃ = T̃ . Let {e1, . . . , en+1} be the standard basis of Rn+1. Since T̃ ([ei]) = S̃([ei]),
T (ei) = λiS(ei). Hence, S−1T (ei) = λiei, that is, S−1T = diag(λ1, . . . , λn+1).

Let v = e1 + · · · en+1. Since S̃ = T̃ , S−1T (v) = λv for some λ 6= 0. Now,

λv = S−1T (v) = λ1e1 + · · ·λn+1en+1,

that is, λ = λ1 = · · · = λn+1. In other words, S−1T = λI.
Conversely, suppose T = λS, λ 6= 0. Then T̃ ([v]) = [T (v)] = [λS(v)] = [S(v)] = S̃([v]). �

The set Aut(RPn) of automorphisms of RPn is a group under composition. There is a homo-
morphism GL(n+1,R) → Aut(RPn), T 7→ T̃ , with kernel the center of GL(n+1,R), c.f. lemma
27. Hence,

PGL(n,R) = GL(n+ 1,R)/Z(GL(n+ 1,R))

is isomorphic to a subgroup of Aut(RPn), and is called the projective linear group.

Lemma 28. If T ∈ GL(n+ 1,R), then T̃ ([v]) = [v] iff v is an eigenvector of T .

Proof. Suppose T̃ ([v]) = [T (v)] = [v]. Then T (v) = λv, λ 6= 0, that is, v eigenvector associated
with the eigenvalue λ.

Conversely, suppose T (v) = λv, λ 6= 0. Then T̃ ([v]) = [T (v)] = [λv] = [v]. �

Proof of lemma 25. By lemma 28, it suffices to construct Tn ∈ GL(2n,R) such that Tn has no
real eigenvalues. Let A be the matrix (

0 −1
−1 0

)
,

19



that is, A is a clockwise rotation of R2 by angle π/2, and let Tn be the block matrix
A 0

A
. . .

0 A

 .

Since detA = 1 and det(Tn) = (detA)n = 1, T ∈ GL(2n,R). Now,

det(λI − Tn) = (det
(
λ −1
−1 λ

)
)n = (λ2 + 1)n.

Hence, Tn has no real eigenvalues. �

Ex. 2.2.4. The loop f : S1 → S1, f = idS1 ·idS1 where · denotes path composition, is surjective
and nullhomotopic, hence f has degree zero. Since the suspension of a surjective map is surjective,
Snf : Sn → Sn is surjective of degree zero, c.f. 2.33.

Ex. 2.2.7. Let M(n,R) denote the n×n matrices with coefficients in R. We view M(n,R) as the
vector space Rn2

with the standard topology. Note that M(n,R) is locally compact. The group
GL(n,R) of invertible matrices is topologized as a subspace of M(n,R) = Rn2

. In particular
GL(n,R) is locally path connected, so particular the components and path components coincide,
and locally compact.

Recall that the determinant is a map det : M(n,R) → R, and continuous since it is a polynomial
in the n2 entries in of a n× n matrix. Note that GL(n,R) = det−1(R−{0}) is an open subset of
M(n,R), and det−1(0) is a closed subset of M(n,R). Thus, det : GL(n,R) → R× is a continuous
group homomorphism, where R× = R− {0} denotes the multiplicative group of units in R..

Let In denote the n×n identity matrix, let Ii,j be the n×n matrix with a 1 at entry (i, j) and
0 otherwise. Let

Æi(c) = In + (c− 1)Ii,i,

Øi,j = In − Ii,i + Ii,j − Ij,j + Ij,i and

Åi,j(c) = In + cIi,j ,

where c is a nonzero real number. These matrices are called the elementary matrices.
Let A be a n×n matrix. The matrices Æ, Ø and Å correspond to the three types of elementary

row operations:
Æ: Æi(c)A is obtained from A by multiplying the ith row of A by c.
Ø: Øi,jA is obtained from A by interchanging the ith and jth row of A.
Å: Åi,j(c)A is obtained from A by adding c times the ith row of A to the jth row of A.

Recall that det Æi(c) = c, detØi,j = −1 and det Åi,j(c) = 1, that is, the elementary matrices
are invertible. The elementary column operations correspond to right multiplication by Æ, Ø and
Å.

For 1 ≤ i < j ≤ n consider the rotation matrix,

Ri,j(θ) = In − Ii,i − Ij,j + cos(θ)(Ii,i + Ij,j) + sin(θ)(Ij,i − Ii,j),

that is, a clockwise rotation by θ radians in the plane spanned by the ith and jth basis vectors of
Rn. In particular, detRi,j(θ) = 1.

Lemma 29. GL(n,R) is not connected.

Proof. Suppose γ is a path in GL(n,R) connecting Æ1(−1) and In. Then det ◦γ : I → R is a
path in R− {0} connecting detÆ1(−1) = −1 and det In = 1, a contradiction.

Another proof is noting that det−1(R−) and det−1(R+) is a separation of GL(n,R). �

But, det−1(R−) and det−1(R+) are path connected subspaces of GL(n,R):

Lemma 30. There is a path in GL(n,R) from any A ∈ GL(n,R) to Æ1(sign(detA)).
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Proof. Let A ∈ GL(n,R). First, we define three types of paths in GL(n,R):
Type Æ: Suppose c > 0 and c 6= 1. Then (1− t) + tc > 0 for all t ∈ I. Define Æ(A, i, c) : I →

GL(n,R) by Æ(A, i, c)(t) = Æi((1− t)+ tc)A. Clearly, Æ(A, i, c) is continuous, i.e., a path from A
to Æi(c)A. Furthermore, detÆ(A, i, c)(t) = det Æi((1− t)+ tc) detA = ((1− t)+ tc) detA 6= 0 for
all t ∈ I. Observe that sign(det Æ(A, i, c)) = sign(detA), that is, the determinant do not change
sign along the path. Hence, the path is well-defined.

Type Å: Define Å(A, i, j, c) : I → GL(n,R) by Å(A, i, j, c)(t) = Åi,j(tc)A. Clearly, Å(A, i, j, c)
is continuous, i.e., a path from A to Åi,j(c)A. Furthermore, det Å(A, i, j, c) = det Åi,j(tc) detA =
detA, that is, the determinant is constant along the path. Hence, the path is well-defined.

Type R: Define R(A, i, j, θ) : I → GL(n,R) by R(A, i, j, θ)(t) = Ri,j(tθ)A. Clearly, R(A, i, j, θ)
is continuous, i.e., a path fromA toRi,j(θ)A. Furthermore, detR(A, i, j, θ)(t) = detRi,j(θ) detA =
detA, that is, the determinant is constant along the path. Hence, the path is well-defined.

By composing paths of type Å, there is a path from A to a diagonal matrix B = diag(b1, . . . , bn),
bi 6= 0, 1 ≤ i ≤ n.

By composing paths of type Æ, there is a path from B to C = diag(sign(b1), . . . , sign(bn)).
Suppose sign(bi) = sign(bj) = −1, i < j. Then R(C, i, j, π) is a path from C to the matrix

C + 2(Ii,i + Ij,j), i.e., the pair of -1’s in B is changed to 1’s.
Thus, if there is an even number of -1’s in C, then there is a path from A to Æ1(1) = In. If

there is an odd number of -1’s in C, then there is a path from C to Æi(−1) for some 1 ≤ i ≤ n.
If i > 1, then composing with the path R(C, 1, i, π) gives a path from Æi(−1) to Æ1(−1). �

In particular, GL(n,R) has two components, det−1(R−) and det−1(R+). Next, is a topological
property of the determinant map:

Lemma 31. The determinant det : M(n,R) → R is an open map.

Proof. It suffices to show that the determinant maps connected neighborhoods to neighborhoods.
Let A ∈ M(n,R), and let U be a connected neighborhood of A, e.g. an open n2-ball. The proof
is divided into two cases, A invertible and A not invertible:

Suppose A ∈ GL(n,R). For t ∈ R, det(1 − t)A = (1 − t)n detA, and |A − (1 − t)A| = |t| |A|.
If 0 < t < 1, then (1 − t)n < 1 < (1 − (−t))n = (1 + t)n, i.e. det(1 − t)A < detA < det(1 + t)A.
Hence, for t > 0 sufficiently small, (1 − t)A, (1 + t)A ∈ U . Since det(U) is a connected subspace
of R, detA ∈ [det(1− t)A,det(1 + t)A] ⊂ det(U), i.e., det(U) is a neighborhood of detA.

Suppose detA = 0. It suffices to show that U contains matrices of opposite sign. Using row
operations of type Å, there exists an invertible matrix B (a product of Å’s) such that C = BA is
an upper triangular matrix. In particular, detB = 1, i.e., c1,1 · · · cn,n = detC = detA = 0. Let
I0 be the non-empty subset of {1, . . . , n} such that ci,i = 0 iff i ∈ I0.

Let i0 ∈ I0. For t ∈ R, define matrices D+(t) and D−(t) by

D+(t) = C + tIn

and
D−(t) = C + tÆi0(−1).

Thus,

detD+(t) =
n∏

i=1

(t+ ci,i) = −detD−(t),

and detD+(t) = 0 iff t = 0, and sign(detD+(t)) = − sign(detD−(t)). Now,

det(B−1D+(t)) = detD+(t) = −detD−(t) = −det(B−1D+(t)).

Furthermore,
|A−B−1D+(t)| = |A−B−1(BA+ tIn)| = |t| |B−1|

and
|A−B−1D−(t)| = |t||B−1Æi0(−1)| = |t| |B−1|.

It follows that there exists invertible matrices with opposite signs arbitrarily close to A. �
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Since the restriction of an open map to an open subspace is an open map, det : GL(n,R) → R
is open. Since there exists invertible matrices with opposite signs arbitrarily close to any non-
invertible matrix, the boundary of both components of GL(n,R) is det−1(0). Another immediate
consequence:

Corollary 32. GL(n,R) is dense in M(n,R).

In other words, a random matrix is likely to be invertible. Recall that the orthogonal group
O(n) is the group of n× n matrices A such that AAt = In.

Lemma 33. GL(n,R) deformation retracts onto O(n).

Proof. For B ∈ M(n,R) let Bi denote the ith column of B. Furthermore, let 〈−,−〉 : Rn → R
be the usual inner product on Rn. Recall that the projection of a vector u onto a vector v is the
vector

projv(u) =
〈u, v 〉
〈 v, v 〉

v,

and projection is a linear map. Furthermore, recall that the Gram-Schmidt orthogonalization
(GS) process applied to the columns of an invertible matrix gives an orthogonal matrix. In other
words, GS is a map GL(n,R) → O(n). Concretely, applying GS to A yields the matrix E with
columns Ei = Bi/|Bi|, where Bi are defined inductively by

Bi =
{
A1, i = 1
Ai −

∑i−1
j=1 projBj

(Ai), i = 2, . . . , n.

Note that GS(A) = A if A ∈ O(n). By construction, GS is continuous, that is, a retraction.
Define H : GL(n,R)× I → GL(n,R) by H(A, t) = (1− t)A+ tGS(A). It is straightforward to

verify that H is continuous, e.g. use A.14.
Note that detH(A, t) = 0 iff H(A, t) has a zero column iff |H(A, t)i| = 0 for some 1 ≤ i ≤ n.

Since |Ai| > 0 and |GS(A)i| = 1,

|H(A, t)i|2 = |(1− t)Ai + tGS(A)i|2

= 〈(1− t)Ai + tGS(A)i, (1− t)Ai + tGS(A)i〉
= 〈(1− t)Ai, (1− t)Ai〉+ 〈tGS(A)i, tGS(A)i〉+ 2〈(1− t)Ai, tGS(A)i〉
= (1− t)2|Ai|2 + t2|GS(A)i|2 + 2(1− t)t〈Ai,GS(A)i〉 > 0

for all t ∈ R. Hence, H(A, t) ∈ GL(n,R), i.e. H is well-defined. �

Recall that SL(n,R) = Ker (det : GL(n,R) → R×) and SO(n) = Ker (det : O(n) → R×).
In particular, GL(n,R)/SL(n,R) ∼= R×. Careful use of the Gram-Schmidt orthogonalization
process will show that SL(n,R) deformation retracts onto SO(n).

The orthogonal group is compact: Define Oi,j : GL(n,R) → R by Oi,j(A) = 〈Ai, Aj〉. Clearly,
Oi,j is continuous. Now,

O(n) =
⋂

1≤i<j≤n

O−1
i,j (0) ∩

⋂
1≤i≤n

O−1
i,i (1)

is an intersection of closed set, i.e., closed. If A ∈ O(n), then

|A|2 =
n∑

j=1

n∑
i=1

a2
i,j =

n∑
j=1

|Ai|2 = n.

Thus, O(n) is also bounded, hence compact.
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Exercise 2.2.7. Let f : Rn → Rn be an invertible linear transformation. Fix a basis for Rn, e.g.
the standard basis, and let A ∈ GL(n,R) be the matrix of f . Write A instead of f . In particular,
A is a map (Rn,Rn − {0}) → (Rn,Rn − {0}).

Recall that Rn−{0} deformation retracts on Sn−1, c.f. exercise 0.2. Let r : Rn−{0} → Sn−1,
r(x) = x/|x|, be the usual retraction, and let i : Sn−1 → Rn − {0} be the inclusion map. In
particular, ri = id and ir ' id, i.e., r∗i∗ = id and i∗r∗ = id.

By naturality of the long exact sequence of reduced homology groups of the pair (Rn,Rn−{0}),
the diagram

H̃n−1(Sn−1)

∼= i∗

��
0 = Hn(Rn) // Hn(Rn,Rn − {0}) ∂

∼=
//

A∗

��

H̃n−1(Rn − {0}) //

A∗

��

H̃n−1(Rn) = 0

0 = Hn(Rn) // Hn(Rn,Rn − {0}) ∂
∼=

// H̃n−1(Rn − {0}) //

∼= r∗

��

H̃n−1(Rn) = 0

H̃n−1(Sn−1)

commutes, and has exact rows, that is, the connecting homomorphisms are isomorphisms. Let
1 ∈ Hn(Rn,Rn − {0}) be a generator, i.e., 1′ = r∗(∂(1)) ∈ Hn−1(Sn−1) is a generator.

By lemma 30, there is a path γ : I → GL(n,R) from A to Æ1(sign(detA)). Now, F : Rn ×
I → Rn defined by F (x, t) = γ(t)x is continuous by A.14, that is, a homotopy from A to B =
Æ1(sign(detA)).

Consider Sn−1 as the vectors of unit length in Rn. Since B ∈ O(n), the restriction B|Sn−1

is a map Sn−1 → Sn−1. If detA > 0 then B = In, and if detA < 0 then B(x1, . . . , xn)t =
(−x1, . . . , xn)t, i.e., a reflection. Hence, r∗B∗i∗ = r∗A∗i∗ is multiplication by sign(detA). Since

r∗A∗i∗(1′) = sign(detA)1′ ⇔ r∗A∗i∗(r∗(∂(1))) = sign(detA)r∗(∂(1))

⇔ r∗A∗(∂(1)) = sign(detA)r∗(∂(1))

⇔ i∗r∗A∗(∂(1)) = sign(detA)i∗r∗(∂(1))

⇔ A∗(∂(1)) = sign(detA)∂(1),

it follows that A∗ : Hn(Rn,Rn − {0}) → Hn(Rn,Rn − {0}) is also multiplication by sign(detA).

Ex. 2.2.9. All boundary maps are computed using the cellular boundary formula.

(a). Let X be S2 with the north and south poles identified to a point.
(1) By 0.8, the space X is homotopy equivalent to S2 ∨ S1.
(2) A CW complex structure consists of one 0-cell x, one 1-cell a, and one 2-cell U . The

attachment map is aa−1, which is nullhomotopic. The cellular chain complex is

0 // Z{U} ∂2 // Z{a} ∂1 // Z{x} // 0 ,

where ∂2 = ∂1 = 0. Hence,

Hn(X) =
{

Z, n = 0, 1, 2
0, n ≥ 3,

(b). A CW complex structure of S1 consists of one 0-cell x and one 1-cell a with obvious attach-
ment map. A CW complex structure of S1∨S1 consists of one 0-cell y, two 1-cells b, c with obvious
attachment maps.

Using A.6, a CW complex of S1 × (S1 ∨ S1) consists of one 1-cell x × y, three 1-cells x × b,
x× c, a× y, and two 2-cells a× b, a× c. The attachment map of the 2-cell a× b is [a× y, x× b],
and [a× y, x× c] for a× c. The CW complex structure is illustrated in 12
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//
a× y

��x× b

//
a× y

OO
x× ba× b

x× y x× y

x× y x× y

• •

• •

//
a× y

��x× c

//
a× y

OO
x× ca× c

x× y x× y

x× y x× y

• •

• •

Figure 12. The product CW complex structure on S1 × (S1 ∨ S1).

The cellular chain complex is

0 // Z{a× b, a× c} ∂2=0 // Z{x× b, x× c, a× y} ∂1=0 // Z{x× y} // 0.

Thus,

Hn(S1 × (S1 ∨ S1)) =


Z, n = 0
Z3, n = 1
Z2, n = 2
0, n ≥ 3.

(c). Let Y be space under consideration. A CW complex structure consists of one 0-cell x, three
1-cells a, b, c, and one 2-cell U , see figure 13. The attachment map of the 2-cell is aba−1b−1ca−1c−1.

��
��

��
��

��
��

��
�

�� b

77
77

77
77

77
77

77
7

��c

<
a

<
a

<
a

•
x

•
x

•
x

Figure 13. A CW complex structure on Y .

The cellular chain complex is

0 // Z{U} ∂2 // Z{a, b, c} ∂1=0 // Z{x} // 0,

and

∂2 =

−1
0
0

 .

Thus,

Hn(Y ) =

 Z, n = 0
Z2, n = 1
0, n ≥ 2.
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(d). Let Z be the space under consideration. A CW complex structure consists of one 0-cell x,
two 1-cells a, b, and one 2-cell U . See figure 14, where there are n horizontal repetitions of a, and
m vertical repetitions of b. The attachment map is anbma−nb−m.

//
a

//
a

• • · · · • •

//
a

//
a

• • · · · • •
OO

b

OO
b

•

•

...

OO
b

OO
b

•

•

...

x x

x x

x x

x x

x

x

x

x

Figure 14. A CW complex structure on Z.

The cellular chain complex is

0 // Z{U} ∂2=0 // Z{a, b} ∂1=0 // Z{x} // 0.

Thus,

Hn(Z) =


Z, n = 0
Z2, n = 1
Z, n = 2
0, n ≥ 3.

Ex. 2.2.13. Let 2, 3: S1 → S1 denote the attachment maps of degree 2 and 3, respectively, of
the 2-cells e21 and e22. Let S1 = e0 ∪ e1 be the usual CW complex structure consisting of one 0-cell
e0, and one 1-cell e1.

(a). Since X = S1 ∪2 e
2
1 ∪3 e

2
2, the subcomplexes are the e0, S1, S1 ∪2 e

2
1, S

1 ∪3 e
2
2 and X. Recall

that H̃n(e0) = 0 for all n, and

H̃n(S1) =
{

Z, n = 1
0, n 6= 1.

The homology of S1 ∪2 e
2
1: The cellular chain complex is

0 // Z{e21}
d2 // Z{e1} d1=0 // Z{e0} // 0.

Since ∂2 is multiplication by 2,

H̃n(S1 ∪2 e
2
1) =

{
Z/2Z, n = 1
0, n 6= 1.

The homology of S1 ∪3 e
2
2: The cellular chain complex is

0 // Z{e22}
d2 // Z{e1} d1=0 // Z{e0} // 0.

Since ∂2 is multiplication by 3,

H̃n(S1 ∪3 e
2
2) =

{
Z/3Z, n = 1
0, n 6= 1.

The homology of X: The cellular chain complex is

0 // Z{e21, e22}
d2 // Z{e1} d1=0 // Z{e0} // 0,
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where d2 =
(
2 3

)
. Note that we write elements as columns. Thus,

Ker d2 = Z{−3e21 + 2e22} = Z
{(

−3
2

)}
,

that is,

H̃n(X) =
{

Z, n = 2
0, n 6= 2.

The quotient complexes are X/e0 = X, X/S1 = S2∨S2, X/(S1∪2e
2
1) = S2, and X/(S1∪3e

2
2) =

S2, the homology of these spaces are well-known.

(b). Clearly, the quotient map X → X/e0 = X is a homotopy equivalence.
The quotient map X → X/S1 = S2 ∨ S2 is not a homotopy equivalence, since H2(X) = Z 6=

Z2 = H2(S2 ∨ S2).
Consider the quotient map q : X → X/(S1 ∪2 e

2
1) = e0 ∪ e22 = S2. Since q is cellular, q induces

a cellular chain map, see ex. 2.2.17. Since q(X − e22) = e0,

q# = q∗ : H2(X,S1) = H̃2(X/S1) = Z{e21, e22} → Z{e22} = H̃2(S2) = H2(S2, e0)

is given by the matrix
(
0 1

)
. Summarizing, the diagram

0 // Z{e21, e22}

q#

��

d2 // Z{e1}

q#

��

d1=0 // Z{e0}

q#

��

// 0

0 // Z{e22}
d2=0 // 0

d1=0 // Z{e0} // 0

commutes, where the left q# is
(
0 1

)
. Now, q∗ : H2(X) → H2(S2) induced by q# satisfy

q∗(
[(
−3
2

)]
) =

[(
0 1

) (
−3
2

)]
= [2].

Hence, q∗ is not an isomorphism, i.e., q is not a homotopy equivalence.
A similar argument shows that the quotient map X → X/(S1 ∪3 e

2
2) = S2 is not a homotopy

equivalence.
The sphere S2 and X are homotopy equivalent: Using 1.26, π1(S1 ∪2 e

2
1, e

0) = 〈 e1 | (e1)2 〉,
which is not surprising since S1 ∪2 e

2
1 = RP2. The attachment map 3: S1 → S1 ⊂ S1 ∪2 e

2
1 is

an element in π1(S1 ∪2 e
2
1) and [3] = (e1)3 = e1. Thus, the attachment map is homotopic to the

degree one attachment map 1: S1 → S1 ⊂ S1 ∪2 e
2
1.

Let 0 : S1 → S1, S1 7→ e0, be the constant map. Using 0.18,

X = S1 ∪2 e
2
1 ∪3 e

2
2

' S1 ∪2 e
2
1 ∪1 e

2
2

= S1 ∪1 e
2
2 ∪2 e

2
1

= D2 ∪2 e
2
1

' D2 ∪0 e
2
1

= D2 ∨ S2

' S2.

Ex. 2.2.17. Let X and Y be CW complexes, and let f : X → Y be a cellular map, that is,
f(Xn) ⊂ Y n for all n.
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By naturality of singular homology, the diagram

Hn(Xn, Xn−1)
∂n //

f∗

��

dn

))
Hn−1(Xn−1)

jn //

f∗

��

Hn−1(Xn−1, Xn−2)

f∗

��
Hn(Y n, Y n−1)

∂n //

dn

55
Hn−1(Y n−1)

jn // Hn−1(Y n−1, Y n−2)

commutes, where f∗ is the map induced on singular homology by f . Thus, f induces a cellular
chain map f# between the cellular chain complexes of X and Y , that is,

· · · // Hn+1(Xn, Xn−1)

f#

��

dn+1 // Hn(Xn, Xn−1)

f#

��

dn // Hn−1(Xn−1, Xn−2)

f#

��

// · · ·

· · · // Hn+1(Y n, Y n−1)
dn+1 // Hn(Y n, Y n−1)

dn // Hn−1(Y n−1, Y n−2) // · · ·

commutes. Thus, f induces a map on cellular homology which we denote fCW
∗ .

Using 2.34 and the long exact sequence of the pair (Xn+1, Xn), there is a commutative diagram

0

��
0 // Im ∂n+1

// Hn(Xn) in
// Hn(Xn+1)

in+1

��

// 0

Hn(X)

��
0

with exact row and column, where in : Xn → Xn+1 and in+1 : Xn+1 → X are the inclusion maps.
Since in+1i

n is the inclusion in : Xn → X, there is a short exact sequence

0 // Im ∂n+1
// Hn(Xn)

in // Hn(X) // 0.

By the definition of cellular homology, there is a short exact sequence

0 // Im dn+1
// Ker dn

// HCW
n (X) // 0.

By the proof of 2.35, the isomorphism ϕX : Hn(X) → HCW
n (X) between singular and cellular

homology is induced by jn, that is, it fits into the commutative diagram

0 // Im ∂n+1
//

jn∼=
��

Hn(Xn)
in //

jn∼=
��

Hn(X) //

ϕX∼=
��

0

0 // Im dn+1
// Ker dn

// HCW
n (X) // 0
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with exact rows. Consider the diagram

0 // Im ∂n+1

jn∼=
��

//

f∗ &&NNNNNN Hn(Xn)

jn∼=
��

in //

f∗ ''NNN
NNN

Hn(X)

ϕX∼=
��

//

f∗ ''PPPPPP 0

0 // Im ∂n+1

jn∼=
��

// Hn(Y n)

jn∼=
��

// Hn(Y )

ϕY∼=
��

// 0

0 // Im dn+1
//

f# &&MMMMMM Ker dn
in //

f# &&NNN
NNN

N HCW
n (X) //

fCW
∗ ''OOOOOO

0

0 // Im dn+1
// Ker dn

// HCW
n (Y ) // 0

We already know that the front and the back of the diagram commutes. By naturality of
singular homology, the left cube, the top, and the bottom of the diagram also commutes. By the
construction of the isomorphism between singular and cellular homology, the right cube must also
commute, that is,

Hn(X)

ϕY∼=
��

f∗ // Hn(Y )

ϕY∼=
��

HCW
n (X)

fCW
∗ // HCW

n

commutes. In other words, the isomorphism between singular and cellular homology is natural.

Ex. 2.2.20. For a finite CW complex X let cn(X) denote the number of n-cells. Recall that the
n-cells in X × Y are the products of an i-cell of X and an j-cell of Y with i + j = n, c.f. A.6.
Now,

χ(X × Y ) =
∑

n

(−1)ncn(X × Y )

=
∑

n

∑
i+j=n

(−1)i+jci(X)cj(Y )

=
∑

i

(−1)ici(X)
∑

j

(−1)jcj(Y )

= χ(X)χ(Y ).

Ex. 2.2.21. If X is the union of subcomplexes A and B, then A ∩ B is a subcomplex of X
consisting of the cells of X that are cells in both A and B. Clearly,

cn(X) = cn(A) + cn(B)− cn(A ∩B).

Hence, χ(X) = χ(A) + χ(B)− χ(A ∩B).

Ex. 2.2.22. Let p : X̃ → X be an n-sheeted, n < ∞, covering space of a finite CW complex X
with cd cells in dimension d. Then, by corollary 41, X̃ is a finite CW complex with ncd cells in
dimension d. Thus, χ(X̃) =

∑
d(−1)dncd = nχ(X).

Ex. 2.2.23. Note that, since Mg is compact, any covering space Mg →Mh is finite sheeted. Let
Mg →Mh be an n-sheeted covering space. Then

2− 2g = χ(Mg) = nχ(Mh) = n(2− 2h),

by ex. 2.2.22, which implies that g = n(h − 1) + 1. Note that the converse statement also hold,
c.f. 1.41.

Ex. 2.2.32. The suspension SX is the union CX ∪CX of two cones on X with CX ∩CX = X.
The reduced Mayer-Vietoris sequence gives exact sequences

0 = H̃n(CX)⊕ H̃n(CX) // H̃n(SX) // H̃n−1(X) // H̃n−1(CX)⊕ H̃n−1(CX) = 0

for all n, that is, H̃n(SX) ∼= H̃n−1(X) for all n.
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Ex. 2.2.36. Let {x0, x1} = S0 ⊂ S1 ⊂ · · · ⊂ Sn−1 ⊂ Sn.

Lemma 34. If X retracts onto a subspace A, then the homomorphism i∗ : Hn(A) → Hn(X)
induced by the inclusion is injective for all n. If X deformation retracts onto A, then i∗ is an
isomorphism for all n.

Proof. The first part is ex. 2.1.11.
For the second part, suppose X deformation retracts onto A, that is, idX is homotopic relative

to A to a retraction r : X → A ⊂ X. Since ri = idX and ir ' idX , the inclusion i : A → X is a
homotopy equivalence. In particular, i∗ : Hn(A) → Hn(X) is an isomorphism for all n. �

Lemma 35. Hi(X × Sn) = Hi(X)⊕Hi(X × Sn, X × {x0}).

Proof. Let A = X×Dn+1 ' X×{x0} = X, x0 ∈ ∂Dn+1 = Sn, and let B = X×Sn. Furthermore,
let C = {x1} × {x0} ⊂ A, x1 ∈ X, and let D = X × {x0} ⊂ B. We will use the relative Mayer-
Vietoris of the pair (A∪B,C∪D) = (X×Dn+1, X×{x0}), where (A,C) = (X×Dn+1, {x1}×{x0}),
(B,D) = (X × Sn, X × {x0}) and (A ∩B,C ∩D) = (X ×Dn+1, {x1} × {x0}).

SinceX×Dn+1 deformation retracts ontoX×{x0}, the inclusionX×{x0} → X×Dn+1 induces
isomorphisms on homology groups. In particular, Hi(A∪B,C∪D) = Hi(X×Dn+1, X×{x0}) = 0
for all i. Thus, the relative Mayer-Vietoris sequence, 2.17 and 2.18 gives that

H̃i(X × Sn) = Hi(X × Sn, {x1} × {x0})
= Hi(A ∩B,C ∩D)

= Hi(A,C)⊕Hi(B,D)

= Hi(X ×Dn+1, {x1} × {x0})⊕Hi(X × Sn, X × {x0})

= H̃i(X)⊕Hi(X × Sn, X × {x0}).

for all i. Hence, Hi(X × Sn) = Hi(X)⊕Hi(X × Sn, X × {x0}) for all i. �

Lemma 36. Hi(X × Sn, X × {x0}) = Hi−1(X × Sn−1, X × {x0}).

Proof. Write Sn = Dn
u ∪Dn

l as the union of the upper and lower hemispheres, and let Sn−1 ⊂ Sn

denote the equator.
Let A = X × Dn

u ' X × {x0}, x0 ∈ Sn−1, and let B = X × Dn
l . Furthermore, let C = D =

X × {x0}.
We will use the relative Mayer-Vietoris of the pair (A ∪ B,C ∪ D) = (X × Sn, X × {x0}),

where (A,C) = (X × Dn
u , X × {x0}), (B,D) = (X × Dn

l , X × {x0}) and (A ∩ B,C ∩ D) =
(X × Sn−1, X × {x0}).

As in the proof of lemma 35, Hi(A,C) = Hi(B,D) = Hi(X × Dn, X × {x0}) = 0 for all i.
Thus, the relative Mayer-Vietoris sequence gives that

Hi(X × Sn, X × {x0}) = Hi(A ∪B,C ∪D) = Hi−i(A ∩B,C ∩D) = Hi−1(X × Sn−1, X × {x0}).

�

Now, using the lemmas and induction,

Hi(X × Sn) = Hi(X)⊕Hi(X × Sn, X × {x0})
= Hi(X)⊕Hi−1(X × Sn−1, X × {x0})
= · · ·
= Hi(X)⊕Hi−n(X × S0, X × {x0})
= Hi(X)⊕Hi−n(X).

The latter isomorphism follows since C∗(X × S0) = C∗(X × {x0}) ⊕ C∗(X × {x1}), that is,
C∗(X × S0, X × {x0}) = C∗(X × {x1}) = C∗(X).

29



Ex. 2.B.10. Recall that S∞ is contractible, c.f. 1B.3. Hence, Hn(S∞;Z2) = 0 for n > 0 and
H0(S∞;Z2) = Z2. The transfer sequence for the universal covering space p : S∞ → RP∞ gives
that the connecting homomorphism ∂ : Hn+1(RP∞;Z2) → Hn(RP∞;Z2) is an isomorphism for
n > 0. Consider the exact sequence

0 // H1(RP∞;Z2)
∂ // H0(RP∞;Z2)

τ∗ // H0(S∞;Z2)
p∗ // H0(RP∞;Z2) // 0

Z2 Z2 Z2

from the transfer sequence. Since p∗ is surjective, p∗ is an isomorphism. Hence, τ∗ = 0, i.e., ∂ is
surjective. Since ∂ is also injective, ∂ : H1(RP∞;Z2) → H0(RP∞;Z2) is an isomorphism. Thus,
Hn(RP∞;Z2) = Z2 for all n.

Ex. 2.C.2.

Lemma 37. If X is path connected and f : X → X is a map, then f∗ : H0(X) → H0(X) is the
identity map.

Proof. Let σ : ∆0 → X be a 0-simplex, and let γ : ∆1 → X be a path from σ to fσ. Then
∂1(γ) = fσ − σ, where ∂1 : C1(X) → C0(X) is the singular boundary map. Hence, [fσ] = [σ] in
H0(X), that is, f∗ is the identity map. �

Lemma 38. Let f : Sn → Sn, n > 0. Then Λ(f) = 1 + (−1)n deg f .

Proof. Using lemma 37,

Λ(f) =
∑
m

(−1)m tr(f∗ : Hm(Sn) → Hm(Sn))

= tr(f∗ : H0(Sn) → H0(Sn)) + (−1)n tr(f∗ : Hn(Sn) → Hn(Sn))

= 1 + (−1)n deg f.

�

Now consider a map f : Sn → Sn. By Lefschetz fixed point theorem and lemma 38, f has a
fixed point unless Λ(f) = 1 + (−1)n deg f = 0, i.e. unless deg f = (−1)n+1 = deg(x 7→ −x).

Ex. 2.C.8. Suppose X is homotopy equivalent to a finite simplicial complex K = (VK , SK) and
Y is homotopy equivalent to a countable simplicial complex L = (VL, SL). Let ϕX : X → K be a
homotopy equivalence with homotopy inverse ψX : K → X, and let ϕY : Y → L be a homotopy
equivalence with homotopy inverse ψY : K → Y .
|[X,Y ]| = |[K,L]|: Define Λ: [X,Y ] → [K,L] by Λ([f ]) = ϕY fψX for [f ] ∈ [X,Y ], and

λ : [K,L] → [X,Y ] by λ([f ]) = ψY fϕX for [f ] ∈ [K,L]. Now,

Λλ([f ]) = [ϕY ψY fϕXψX ] = [idL f idK ] = [f ]

and
λΛ([f ]) = [ψY ϕY fψXϕX ] = [idY f idX ] = [f ],

i.e., Λλ = id[K,L] and λΛ = id[X,Y ]. Hence, |[X,Y ]| = |[K,L]|.
By the simplicial approximation theorem,

|[X,Y ]| = |[K,L]| ≤ | ∪n∈N V Vsdn K

L | ≤ ℵ0,

since a countable union of countable sets is countable (assuming, as always, the Axiom of Choice),
and for each n the set Vsdn K is finite, i.e., V Vsdn K

L is countable.

Ex. 2.C.9. By 2C.5, a finite CW complex is homotopy equivalent to a finite simplicial complex.
Thus, it suffices to prove there are only countably many finite simplicial complexes. Since

| ∪n∈N P(P({1, . . . , n}))| = | ∪n∈N {0, 1}{0,1}{1,...,n}
| = ℵ0,

there are only countably many finite simplicial complexes.
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Appendix

Ex. 1. First a little lemma.

Lemma 39. A covering map is an open map.

Proof. Let p : X̃ → X be a covering map, and let Ũ be an open set of X̃. For x ∈ p(Ũ) choose a
neighborhood U of x evenly covered by p, that is, p−1(U) is a set of disjoint open sets {Ũα} in X̃
such that each Ũα is mapped homeomorphically onto V by p.

Choose x̃ ∈ Ũ with p(x̃) = x, and let Ũβ be the open set in {Ũα} containing x̃. Now, Ũ ∩ Ũβ

is open in Ũβ . Since the restriction of p to Ũβ is a homeomorphism onto U , p(Ũ ∩ Ũβ) is open in
U . Since U is open in X, p(Ũ ∩ Ũβ) is also open in X, that is, it is an open neighborhood of x
contained in p(Ũ). �

Theorem 40. Let p : X̃ → X be a covering space. If X is a CW complex, then X̃ is a CW
complex with n-skeleton X̃n = p−1(Xn), and p maps open cells homeomorphically onto open cells.

Proof. We have a CW complex structure on X, that is, a sequence

X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn ⊂ · · · ⊂ X

of subspaces of X such that X =
⋃

nX
n, and X has the weak topology with respect to the

collection {Xn}, and Xn is homeomorphic to an n-cellular extension of Xn−1 for n > 0, that is,

Xn = Xn−1 ∪ϕ

∐
α

Dn,

where ϕ =
∐

α(ϕα : ∂Dn → Xn−1) is the attaching map and Φ:
∐

α(Φα : Dn → X) is the
characteristic map. As usual, let en

α denote the (open) n-cell corresponding to Φα.
Note that X̃0 = p−1(X0) is a discrete set of points, and

p−1(X0) ⊂ p−1(X1) ⊂ · · · ⊂ p−1(Xn−1) ⊂ p−1(Xn) ⊂ · · · ⊂ X̃

with
X̃ = p−1(X) = p−1(

⋃
n

Xn) =
⋃
n

p−1(Xn) =
⋃
n

X̃n.

To prove that X̃ is a CW complex, it remains to prove that X̃n is homeomorphic to an n-cellular
extension of X̃n−1 for n > 0, and that the topology on X̃ is the weak topology with respect to
the collection {X̃n}.
X̃n is homeomorphic to an n-cellular extension of X̃n−1: Let x0 ∈ Dn − ∂Dn, and let xα =

Φα(x0). For each x̃α,β ∈ p−1(x̃α) let Φ̃α,β : Dn → X̃ be the lift of Φα, i.e., Φα = p ◦ Φ̃α,β , with
Φ̃α,β(x0) = x̃α,β . These lifts exists since Dn is contractible, by the lifting criterion. Since Dn is
connected, there is exactly one lift for each point in p−1(xα), by the unique lifting property. Note
that Φ̃α,β restricts to a map ϕ̃α,β : ∂Dn → X̃n−1.

Since Φα maps Dn−∂Dn homeomorphically onto en
α and p◦Φ̃α,β = Φα, p maps Φ̃α,β(Dn−∂Dn)

bijectively onto en
α. By lemma 39, p is also open, that is, pmaps Φ̃α,β(Dn−∂Dn) homeomorphically

onto en
α. Thus, Φ̃α,β maps Dn − ∂Dn homeomorphically onto its image.

Now, the n-cellular extension
X̃n−1 ∪eϕ ∐

α,β

Dn

where ϕ̃ =
∐

α,β(ϕ̃α,β :
∐

α,β ∂D
n → X̃n−1), has Φ̃ =

∐
α,β(Φ̃α,β :

∐
α,β D

n → X̃n−1) as charac-
teristic map. Let ẽn

α,β be the n-cell corresponding to Φ̃α,β .
Since Xn is the disjoint union (as a set) of Xn−1 and the n-cells en

α, X̃n is the disjoint union
(as a set) of X̃n−1 and the n-cells ẽn

α,β . Now, it suffices to prove that the topology of X̃n as a
subspace of X̃ corresponds to the quotient topology of the n-cellular extension, that is, a subset
Ũ of X̃n is open iff Ũ ∩ X̃n−1 is open in X̃n−1 as a subspace of X̃, and each of the sets Φ̃−1

α,β(Ũ)
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are open: For the non-trivial direction, suppose Ũ ∩ X̃n−1 is open and Φ̃−1
α,β(Ũ) is open for all

α, β. By ex. 1.3.1, the restriction p : X̃n → Xn is a covering space. Hence, there is an open cover
{Uγ} of Xn such that each Uγ is evenly covered by p. Thus, we may assume that Ũ is contained
in an open set which is mapped homeomorphically to an open set of Xn by p. Hence, it suffices
to prove that U = p(Ũ) is open in Xn. It is straightforward to verify that

p(Ũ ∩ X̃n−1) = U ∩Xn−1

and
Φ−1

α (U) =
⋃
β

Φ̃−1
α,β(Ũ).

Using the assumptions and lemma 39, U ∩Xn−1 is open, and Φ−1
α (U) are open for all α. Thus,

U is open in Xn.
The topology on X̃ is the weak topology with respect to the collection {X̃n}: Let Ũ be a subset

of X̃ with Ũ ∩ X̃n open for all n. As above, we may assume Ũ is contained in an open set of X̃
which is mapped homeomorphically onto an open set of X by p. Again, it suffices to prove that
U = p(Ũ) is open. It is easily verified that p(Ũ ∩ X̃n) = U ∩Xn for all n. Since p is open, U ∩Xn

open for all n, that is, U is open in X. �

The construction of the CW complex structure on a covering space in the proof gives the
following result.

Corollary 41. If p : X̃ → X is an n-sheeted, n < ∞, covering space of a finite CW complex X
with cd cells in dimension d, then X̃ is a finite CW complex with ncd d-cells.

Actually, a covering space of a topological group is a topological group, and a covering space
of an n-manifold is an n-manifold, the proofs are left to the reader.

Additional Exercises

Ex. 2.1.1. Consider the ∆-complex of S1 with n 0-simplices v1, . . . , vn, and n 1-simplices
a1, . . . , an, where ai : ∆1 → S1 are given by ai([v1]) = vi+1 and ai([v0]) = vi (vn+1 = v1) for
1 ≤ i ≤ n.

The simplicial chain complex is

0 // Z{a1, . . . , an}
∂1 // Z{v1, . . . , vn} // 0.

The nontrivial boundary map is ∂1(ai) = vi+1 − vi. Hence, [v1] = · · · = [vn] in H∆
0 (S1) =

Z{v1, . . . , vn}/ Im ∂1.
Suppose z1a1 + · · · zn−1an−1 + znan ∈ Ker ∂1, that is,

0 = ∂1(z1a1 + · · · zn−1an−1 + znan)

= z1(v2 − v1) + · · ·+ zn−1(vn − vn−1) + zn(v1 − vn)

= (zn − z1)v1 + (z1 − z2)v2 + · · ·+ (zn−1 − zn)vn.

Since {v1, . . . , vn} is a basis, zn − z1 = z1 − z2 = · · · = zn−1 − zn = 0, that is, z1 = z2 = · · · = zn.
Hence, Ker ∂1 = Z{a1 + · · ·+ an}.

Summarizing, H∆
0 (S1) = H∆

1 (S1) = Z and zero otherwise.

Ex. 2.2.4. Consider a simplicial complex structure on a closed surface with v vertices, e edges
and f faces, and with Euler characteristic χ. Since each face has 3 edges, and a closed surface is
a compact 2-manifold without boundary, each edge in a face is an edge in exactly one other face,
i.e., e = 3f/2. Substituting e = 3f/2 and f = 2e/3 into χ = v − e + f gives that f = 2(v − χ)
and e = 3(v − χ). The maximal number of edges from each vertex is v − 1. Thus, the maximal
number of edges is v(v − 1)/2, i.e., e ≤ v(v − 1)/2. Since e = 3(v − χ), 6(v − χ) ≤ v2 − v.

Consider a simplicial complex structure on S1×S1 with v vertices, e edges and f faces. Recall
that χ(S1 × S1) = 0. Thus, 6v ≤ v2 − v, i.e., 6 ≤ v − 1, i.e., v ≥ 7. Now, f = 2v ≥ 14 and
e = 3v ≥ 21. Clearly, the diagram is a simplicial complex structure on the torus.
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Consider a simplicial complex structure on RP2 with v vertices, e edges and f faces. Recall
that χ(RP2) = 1. Thus 6(v− 1) ≤ v2− v, i.e. v2− 7v+ 6 ≥ 0. We require that v > 1, why v ≥ 6.
Hence, f = 2(v − 1) ≥ 10 and e = 3(v − 1) ≥ 15.

Recall that RP2 is S2 with antipodal points identified. The icosahedron is a simplicial complex
structure on S2 with 12 vertices, 30 edges and 20 faces. Identifying antipodal point on the
icosahedron is a simplicial map. Thus, the icosahedron describes a triangulation of RP2 with 6
vertices, 15 edges and 10 faces. The simplicial complex structure is illustrated in figure 15.
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Figure 15. A triangulation of RP2 using an icosahedron

Ex. 2.2.5. Assume Rn = X ×X. Define

f : Rn ×Rn = X ×X ×X ×X → X ×X ×X ×X = Rn ×Rn

by f(x1, x2, x3, x4) = (x2, x3, x4, x1), that is, cyclic permutation. In particular, f is a homeo-
morphism, i.e., deg(f) = ±1.

Observe that f2(x, y) = (y, x), (x, y) ∈ Rn×Rn. Thus, f is an invertible linear map R2n → R2n

with matrix

F =
(

0 In
In 0

)
.

where In is the n × n identity matrix. Since F is obtained from I2n by interchanging n rows,
det(F ) = (−1)n. By ex. 2.2.7, deg(f2) = −1 if n is odd, a contradiction.
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