Topology

Books, notes, calculators, and computers are allowed at this three hour written exam. You may write your answers in pencil.

Problem 1 (33%)

For each natural number n = 1, 2, 3, ... let $C_n = \{(x, y) \in \mathbf{R}^2 \mid x^2 + (y - n)^2 = n^2\}$ be the circle with radius n centered at (0, n). Consider the subspace $C = \bigcup_{n=1}^{\infty} C_n$ of the plane \mathbf{R}^2 that is the union of these expanding circles.

- (1) What is the interior of C? Is C open?
- (2) What is the closure of C? Is C closed?
- (3) Is C locally compact?

Problem 2 (33%)

Let X be a topological space and \mathcal{A} an open covering of X by connected subspaces. This means that \mathcal{A} is a set of subsets of X such that

- any set $A \in \mathcal{A}$ is an open and connected subspace of X, and
- any point of X lies in A for some $A \in \mathcal{A}$.

For any two points $x, y \in X$, we shall write $x \sim y$ if and only if there exist finitely many sets $A_0, \ldots, A_k \in \mathcal{A}$ such that

$$x \in A_0$$
, and $A_{i-1} \cap A_i \neq \emptyset$ for $1 \le i \le k$, and $y \in A_k$

for some integer $k \ge 1$.

- (1) Show that \sim is an equivalence relation on X.
- (2) Show that if $x \sim y$ and A_0, \ldots, A_k are as in the definition of the equivalence relation \sim , then $A_0 \cup \cdots \cup A_k$ is connected.
- (3) Show that the equivalence classes for \sim are connected and open.
- (4) Show that the equivalence classes for \sim are the connected components of X.

Problem 3 (34%)

- (1) Find a 2-dimensional abstract simplicial complex (ASC) T (with 6 vertices) such that |T| is homeomorphic to the cylinder $\partial \Delta^2 \times \Delta^1$.
- (2) If K_1 and K_2 are finite ASCs, such that $|K_1|$ and $|K_2|$ are (nonempty) surfaces, describe a new ASC, $K_1 \# K_2$, containing T as a subcomplex, such that $|K_1 \# K_2| = |K_1| \# |K_2|$.
- (3) Show that $\chi(K_1 \# K_2) = \chi(K_1) + \chi(K_2) 2$.

(THE END)