Topology

Books, notes, calculators, and computers are allowed at this three hour written exam. You may write your answers in pencil.

Problem 1 (33\%)
For each natural number $n=1,2,3, \ldots$ let $C_{n}=\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+(y-n)^{2}=n^{2}\right\}$ be the circle with radius n centered at $(0, n)$. Consider the subspace $C=\bigcup_{n=1}^{\infty} C_{n}$ of the plane \mathbf{R}^{2} that is the union of these expanding circles.
(1) What is the interior of C ? Is C open?
(2) What is the closure of C ? Is C closed?
(3) Is C locally compact?

Problem 2 (33\%)

Let X be a topological space and \mathcal{A} an open covering of X by connected subspaces. This means that \mathcal{A} is a set of subsets of X such that

- any set $A \in \mathcal{A}$ is an open and connected subspace of X, and
- any point of X lies in A for some $A \in \mathcal{A}$.

For any two points $x, y \in X$, we shall write $x \sim y$ if and only if there exist finitely many sets $A_{0}, \ldots, A_{k} \in \mathcal{A}$ such that

$$
x \in A_{0}, \text { and } A_{i-1} \cap A_{i} \neq \emptyset \text { for } 1 \leq i \leq k, \text { and } y \in A_{k}
$$

for some integer $k \geq 1$.
(1) Show that \sim is an equivalence relation on X.
(2) Show that if $x \sim y$ and A_{0}, \ldots, A_{k} are as in the definition of the equivalence relation \sim, then $A_{0} \cup \cdots \cup A_{k}$ is connected.
(3) Show that the equivalence classes for \sim are connected and open.
(4) Show that the equivalence classes for \sim are the connected components of X.

Problem 3 (34\%)
(1) Find a 2-dimensional abstract simplicial complex (ASC) T (with 6 vertices) such that $|T|$ is homeomorphic to the cylinder $\partial \Delta^{2} \times \Delta^{1}$.
(2) If K_{1} and K_{2} are finite ASCs, such that $\left|K_{1}\right|$ and $\left|K_{2}\right|$ are (nonempty) surfaces, describe a new ASC, $K_{1} \# K_{2}$, containing T as a subcomplex, such that $\left|K_{1} \# K_{2}\right|=$ $\left|K_{1}\right| \#\left|K_{2}\right|$.
(3) Show that $\chi\left(K_{1} \# K_{2}\right)=\chi\left(K_{1}\right)+\chi\left(K_{2}\right)-2$.

