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Munkres §29
Ex. 29.1. Closed intervals [a, b] ∩ Q in Q are not compact for they are not even sequentially
compact [Thm 28.2]. It follows that all compact subsets of Q have empty interior (are nowhere
dense) so Q can not be locally compact.

To see that compact subsets of Q are nowhere dense we may argue as follows: If C ⊂ Q is
compact and C has an interior point then there is a whole open interval (a, b) ∩Q ⊂ C and also
[a, b] ∩Q ⊂ C for C is closed (as a compact subset of a Hausdorff space [Thm 26.3]). The closed
subspace [a, b]∩Q of C is compact [Thm 26.2]. This contradicts that no closed intervals of Q are
compact.

Ex. 29.2.

(a). Assume that the product
∏

Xα is locally compact. Projections are continuous and open [Ex
16.4], so Xα is locally compact for all α [Ex 29.3]. Furthermore, there are subspaces U ⊂ C such
that U is nonempty and open and C is compact. Since πα(U) = Xα for all but finitely many α,
also πα(C) = Xα for all but finitely many α. But C is compact so also πα(C) is compact.

(b). We have
∏

Xα = X1 ×X2 where X1 is a finite product of locally compact spaces and X2 is
a product of compact spaces. It is clear that finite products of locally compact spaces are locally
compact for finite products of open sets are open and all products of compact spaces are compact
by Tychonoff. So X1 is locally compact. X2 is compact, hence locally compact. Thus the product
of X1 and X2 is locally compact.

Conclusion:
∏

Xα is locally compact if and only if Xα is locally compact for all α and compact
for all but finitely many α.

Example: Rω and Zω
+ are not locally compact.

Ex. 29.3. Local compactness is not preserved under continuous maps. For an example, let
S ⊂ R2 be the graph of sin(1/x), x ∈ (0, 1]. The space {(0, 0)}∪S is not locally compact at (0, 0):
Any neighborhood U of (0, 0) contains an infinite subset without limit points, the intersection of
S and a horizontal straight line, so U can not [Thm 28.1] be contained in any compact subset of S.
On the other hand, {(0, 0)} ∪ S is the image of a continuous map defined on the locally compact
Hausdorff space {−1} ∪ (0, 1] [Thm 29.2].

Local compactness is clearly preserved under open continuous maps as open continuous maps
preserve both compactness and openness.

Ex. 29.4 (Morten Poulsen). Let d denote the uniform metric. Suppose [0, 1]ω is locally
compact at 0. Then 0 ∈ U ⊂ C, where U is open and C is compact. There exists ε > 0 such that
Bd(0, ε) ⊂ U . Note that A = {0, ε/3}ω ⊂ Bd(0, ε), hence A ⊂ C. By theorem 28.2 A has a limit
point in C, contradicting Ex. 28.1.

Ex. 29.5 (Morten Poulsen).

Lemma 1. A homeomorphism between locally compact Hausdorff spaces extends to a homeomor-
phism between the one-point compactifications. In other words, homeomorphic locally compact
Hausdorff spaces have homeomorphic one-point compactifications.

Proof. Let f : X1 → X2 be a homeomorphism between locally compact Hausdorff spaces. Fur-
thermore let ωX1 = X1 ∪ {ω1} and ωX2 = X2 ∪ {ω2} denote the one-point compactifications.
Define f̃ : ωX1 → ωX2 by

f̃(x) =
{

f(x), x ∈ X1

ω2, x = ω1.

Note that f̃ is bijective. Recall that for a locally compact Hausdorff space X the topology on
the one-point compactification, ωX, is the collection

{U |U ⊂ X open } ∪ {ωX − C |C ⊂ X compact },
c.f. the proof of theorem 29.1.
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If U ⊂ X2 is open then f̃−1(U) = f−1(U) is open in ωX1. If C ⊂ X2 is compact then
f̃−1(ωX2 − C) = f̃−1(ωX2) − f̃−1(C) = ωX1 − f−1(C) is open in ωX1, since f−1(C) ⊂ X1 is
compact. It follows that f̃ is continuous, hence a homeomorphism, by theorem 26.6. �

Finally note that the converse statement does not hold: If X1 = [0, 1/2)∪(1/2, 1] and X2 = [0, 1)
then ωX1 = [0, 1] = ωX2. But X1 and X2 are not homeomorphic, since X1 is not connected and
X2 is connected.

Ex. 29.6 (Morten Poulsen). Let Sn denote the unit sphere in Rn+1. Let p denote the point
(0, . . . , 0, 1) ∈ Rn+1.

Lemma 2. The punctured sphere Sn − p is homeomorphic to Rn.

Proof. Define f : (Sn − p) → Rn by

f(x) = f(x1, . . . , xn+1) =
1

1− xn+1
(x1, . . . , xn).

The map f is also known as stereographic projection. It is straightforward to check that the
map g : Rn → (Sn − p) defined by

g(y) = g(y1, . . . , yn) = (t(y) y1, . . . , t(y) yn, 1− t(y)),

where t(y) = 2/(1 + ‖y‖2), is a right and left inverse for f . �

Theorem 3. The one-point compactification of Rn is homeomorphic to Sn.

Proof. By the preceding lemma Rn is homeomorphic to Sn − p. The one-point compactification
of Sn − p is clearly Sn. Now the result follows from Ex. 29.5. �

Ex. 29.7. Let X be any linearly ordered space with the least upper bound property. As [a, b] =
[a, b) ∪ {b} is compact Hausdorff [Thm 27.1, Thm 17.11], the right half-open interval [a, b) is
locally compact Hausdorff and its Alexandroff compactification is [a, b] [Thm 29.1]. Apply this
to SΩ = [1,Ω) ⊂ SΩ = [1,Ω]. (Apply also to Z+ = [1, ω) ⊂ Z+ × Z+ where ω = 2 × 1 for (an
alternative answer to) [Ex 29.8])

Also X itself is locally compact Hausdorff [Thm 17.11] as all closed and bounded intervals in
X are compact [Thm 27.1]. Is the one-point compactification of X a linearly ordered space?

Ex. 29.9. This follows from Ex 29.3 for the quotient map G → G/H is open [SupplEx 22.5.(c)].

Ex. 29.11. It is not always true that the product of two quotient maps is a quotient map
[Example 7, p. 143] but here is a case where it is true.

Lemma 4 (Whitehead Theorem). [1, 3.3.17] Let p : X → Y be a quotient map and Z a locally
compact space. Then

p× 1: X × Z → Y × Z

is a quotient map.

Proof. Let A ⊂ X × Z. We must show: (p× 1)−1(A) is open ⇒ A is open. This means that for
any point (x, y) ∈ (p×1)−1(A) we must find a saturated neighborhood U of x and a neighborhood
V of y such that U × V ⊂ (p× 1)−1(A).

Since (p × 1)−1(A) is open in the product topology there is a neighborhood U1 of x and a
neighborhood V of y such that U1 × V ⊂ (p × 1)−1(A). Since Y is locally compact Hausdorff
we may assume [Thm 29.2] that V is compact and U1 × V ⊂ (p × 1)−1(A). Note that also
p−1(pU1) × V is contained in (p × 1)−1(A). The tube lemma [Lemma 26.8] says that each point
of p−1(pU1) has a neighborhood such that the product of this neighborhood with V is contained
in the open set (p× 1)−1(A). Let U2 be the union of these neighborhoods. Then p−1(pU1) ⊂ U2

and U2 × V ⊂ (p × 1)−1(A). Continuing inductively we find open sets U1 ⊂ U2 ⊂ · · · ⊂ Ui ⊂
Ui+1 ⊂ · · · such that p−1(pUi) ⊂ Ui+1 and Ui+1 × V ⊂ (p × 1)−1(A). The open set U =

⋃
Ui is

saturated because U ⊂ p−1(pU) =
⋃

p−1(pUi) ⊂
⋃

Ui+1 = U . Thus also U × V is saturated and
U × V ⊂

⋃
Ui × V ⊂ (p× 1)−1(A). �
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Example: If p : X → Z is a quotient map, then also p× id : X × [0, 1] → Z × [0, 1] is a quotient
map. This fact is important for homotopy theory.

Theorem 5. Let p : A → B and q : C → D be quotient maps. If B and C are locally compact
Hausdorff spaces then p× q : A× C → B ×D is a quotient map.

Proof. The map p× q is the composition

A× C
p×1 //B × C

1×q //B ×D

of two quotient maps and therefore itself a quotient map [p. 141]. �
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