
Hatcher §3.2

Ex 3.2.1

Let q : Mg →
∨
M1 be the quotient map of Mg to a wedge of g tori M1 = S1×S1. We know [1, 3.13]

that
⊕
H̃∗(M1) ∼= H̃∗(

∨
M1). The induced map H1(f) : H1(Mg)→ H1(

∨
M1) is an isomorphism

and H2(f) : Z ∼= H2(Mg)→ H2(
∨
M1) ∼=

⊕
Z is the diagonal map. (Use local degree [1, 2.30] to

see that each summand H2(Mg)→ H2(M1) is an isomorphism.)
The induced ring map H∗(f) :

∏
H̃∗(M1) ∼= H̃∗(

∨
M1)→ H∗(Mg) in cohomology is an isomor-

phism in degree 1 and in degree 2 the restriction H2(M1)→ H2(Mg) to any of the g summands is
an isomorphism.

Let αi, βi ∈ H1(Mg), 1 ≤ i ≤ g, and be the standard generators [1, 3.8]. We may also view
αi, βi as elements of the ith summand H1(M1) = H1(S1 × S1). Since αi ∪ βi generate H2(M1),
this cup product taken in H1(Mg) will generate H2(Mg). In view of the general property that
α2 = −α2 when α has odd degree [1, 3.14], αi2 = 0 = βi

2. In view of the ring isomorphism
H̃∗(

∨
Xi) ∼=

∏
H̃∗(Xi) [1, 3.13], the cup products αi ∪ αj = 0 = αi ∪ βj when i 6= j.

Ex 3.2.3

(a) Use the relations in the cohomology algebras.
(b) Show that the induced map π1(RPn−1)→ π1(RPn) is non-zero; look at the proof of [1, 3.20].

Ex 3.2.7

See [1, p 215]. The two spaces have isomorphic homology and cohomology groups but not isomor-
phic cohomology rings as

H1(RP 3; Z/2) ∪H2(RP 3; Z/2) 6= 0, H1(RP 2 ∨ S3; Z/2) ∪H2(RP 2 ∨ S3; Z/2) = 0

Ex 3.2.14

The identification R2n+2 = Cn+1 induces a quotient map

RP 2n+1 = S2n+1/{±1} q−→ S2n+1/S1 = CPn

[x0 : y0 : · · · : xn : yn]→ [x0 + iy0 : · · · : xn + iyn]
(1)

where we represent points of RP 2n+1 and CPn as equivalence classes of non-zero vectors of
R2n+2 3 (x0, y0, . . . , xn, yn) = (x0 + iy0, . . . , xn + iyn) ∈ Cn+1. We shall also write q : RP 2n →
CPn for the restriction of (1) to RP 2n. This map is cellular since it takes the (2n − 1)-skeleton,
RP 2n−1, of RP 2n into the (2n− 1) skeleton, CPn−1, of CPn. Since the composite

R2n '−→ RP 2n −RP 2n−1 q−→ CPn −CPn−1 '←− Cn

(x0, y0, . . . , xn−1, yn−1)→ [x0 : y0 : · · · : xn−1 : yn−1 : 1 : 0]→ [x0 + iy0 : · · · : xn−1 + iyn−1 : 1]

← (x0 + iy0, . . . , xn−1 + iyn−1)

is a homeorphism, the induced map RP 2n/RP 2n−1 = (RP 2n−RP 2n−1)+ → (CPn−CPn−1)+ =
CPn/CPn−1 is also a homeomorphism. This describes the effect of q on the cellular (co)chain
complexes.

In particular, RP 2/RP 1 is mapped homeomorphically to CP 1/CP 0 (where CP 0 is a point)
and since R ∼= H2(RP 2,RP 1; R)→ H2(RP 2; R) ∼= R/2R is surjective by cellular cohomology we
see from

H2(RP 2,RP 1; R) // // H2(RP 2; R)

H2(CP 2,CP 0; R)

∼=

OO

∼= // H2(CP 2;R)

OO

that R ∼= H2(CP 1;R)→ H2(RP 2;R) ∼= R/2R is surjective. The cup structure then implies that
q∗ : H∗(CPn;R)→ H∗(RP 2n;R) is surjective in even degrees.
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Let X = CPn ∪q RP∞ be the adjunction space with data CPn RP 2n
qoo � � ι //RP∞ . In other

words X is the push-out

(2) RP 2n � � ι //

q

��

RP∞

q

��
CPn � �

ι
// X

of the maps q and ι. Since the quotient spaces X/CPn and RP∞/RP 2n are homeomorphic, the
induced map

H∗(X,CPn;R) ∼=

q∗ //H∗(RP∞,RP 2n;R)

is an isomorphism. Thus H∗(X,CPn;R) is known [1, 3.12, 3.24].
The map q : (RP∞,RP 2n) → (X,CPn) induces a morphism of the associated long exact se-

quences. Since Hi(RP∞,RP 2n;R)→ Hi(RP∞;R) is injective (use the cellular cochain complex
for RP∞/RP 2n), we obtain the commutative diagram

0 // Hi(X,CPn;R) //

∼=
��

Hi(X;R) ι∗ //

q∗

��

Hi(CPn;R) //

��

0

0 // Hi(RP∞,RP 2n;R) � � // Hi(RP∞;R) // Hi(RP 2n;R) // 0

with exact rows. Since Hi(X,CPn;R) = 0 for i ≤ 2n and Hi(CPn;R) = 0 = Hi(RP 2n;R) for
i > 2n, it follows that

Hi(X;R) ∼=

{
Hi(CPn;R) i ≤ 2n
Hi(RP∞;R) i > 2n

where the isomorphisms are induced by the maps CPn � � ι //X RP∞
qoo from (2).

Assume that R = Z. The cohomology of X is concentrated in even dimensions and

H2i(X; Z) ∼=

{
Z 0 ≤ i ≤ n
Z/2 i > n

is generated by αi where α ∈ H2(X) ∼= H2(CPn) ∼= Z is a generator. To see this, note that both
H∗(CPn; Z) ∼= Z[ι∗α]/(ι∗αn+1) and H∗(RP∞; Z) ∼= Z[q∗α]/(2q∗α) are generated by the images
of α. In other words, we have an isomorphism

Z[α]/(2αn+1)
∼=−→ H∗(X; Z)

of graded rings.
Assume that R = Z/2. The cohomology of X is concentrated in even dimensions and in odd

dimensions greater then 2n. The even degree cohomology group H2i(X; Z/2) ∼= Z/2 is generated
by αi where α ∈ H2(X; Z/2) ∼= H2(CPn; Z/2) ∼= Z/2 is the non-zero element; the odd degree
> 2n cohomology group H2n+1+2i(X; Z/2) ∼= H2n+1+2i(RP∞; Z/2) ∼= Z/2 is generated by βαi

where β ∈ H2n+1(X; Z/2) ∼= H2n+1(RP∞; Z/2) ∼= Z/2 is the non-zero element, i ≥ 0. We have
α2n+1 = β2 ∈ H4n+2(X; Z/2) ∼= H4n+2(RP∞; Z/2) for both classes are non-zero. In other words,
we have an isomorphism

Z/2[α, β]/(α2n+1 − β2)
∼=−→ H∗(X; Z/2)

of graded rings.
Analogously, there is a quotient map q : CP 2n → HPn inducing an isomorphism q∗ : H4(HP 1; Z)

∼=−→
H4(CP 2; Z). Form the adjunction space Y = HPn ∪q CP∞ as in the push-out diagram

(3) CP 2n � � ι //

q

��

CP∞

q

��
HPn

� �

ι
// Y
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As abovce, there are isomorphisms

Hi(X) ∼=

{
Hi(HPn) i ≤ 4n
Hi(CP∞) i > 4n

induced by the maps HPn � � ι //Y CP∞
qoo from (3). The cohomology of Y is concentrated in

degrees divisible by 4 and in even degrees greater then 4n. The cohomology group H4i(Y ; Z) ∼= Z
is generated by αi where α ∈ H4(Y ; Z) ∼= H4(HPn; Z) is a generator; the cohomology group
H4n+2+4i(Y ; Z) ∼= Z is generated by βαi where β ∈ H4n+2(Y ; Z) ∼= H4n+2(CP∞; Z) is a generator.
We have β2 = ±α2n+1 for the images of these two cohomology classes generate H8n+4(CP∞; Z) ∼=
Z. In other words, we have an isomorphism

Z[α, β]/(α2n+1 − β2)
∼=−→ H∗(Y ; Z)

of graded rings.
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