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ABSTRACT. The main purpose of this paper is to formulate a general scheme for the possible
classification of 2-compact groups in terms of maximal torus normalizer pairs. As an application
it is shown that the connected 2-compact groups associated to the simple compact Lie groups
of the A-, B-, C, and D-families, as well as G2 and F4, are determined up to isomorphism by
their maximal torus normalizers. Also the exotic 2-compact group DI(4) is uniquely determined
by its maximal torus normalizer.
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sec:intro

CHAPTER 1

Introduction

A p-compact group, where p is a prime number, is a p-complete space BX whose loop space
X = QBX has finite mod p singular cohomology. If G is a Lie group and my(G) is a finite p-group
then the p-completed classifying space of G is a p-compact group. The Sullivan spheres (BS?"~1) ;\,
n|(p — 1), or, more generally, the Clark—-Ewing spaces [9] are also examples of p-compact groups.
These homotopy Lie groups were defined and explored by W.G. Dwyer and C.W. Wilkerson in
a series of papers [17, 18, 19, 16]. (The reader may also consult one of the survey articles
11, 33, 50, 41].) They show that any p-compact group BX has a maximal torus BT — BX and

a Weyl group such that the normalizer BN — BX of the maximal torus is an extension
BT —- BN —- BW

of the maximal torus by the Weyl group. (Stricly speaking, BN is in general not a p-compact group
as its fundamental group may not be a finite p-group; instead, BN is an example of an extended
p-compact torus [18, 3.12].) It is a conjecture, suggested by the analogous situation for connected
compact Lie groups [10] (and some nonconnected ones [25, 26]), that BN determines BX. This
classification conjecture has been verified for odd primes [44, 47, 2]. For p = 2, however, only
scattered results are known. It is the main purpose of this paper to establish an environment
facilitating a structured approach to the classification problem for 2-compact groups. First, we
have to be clear about what it means for two 2-compact groups to have the same maximal torus
normalizer.

The first obstacle for a classification of 2-compact groups in terms of their maximal torus
normalizers is that the maximal torus normalizer does not retain information about the component
group of the 2-compact group. For instance, the nonconnected 2-compact group BO(2n) and the
connected 2-compact group BSO(2n + 1) have identical maximal torus normalizers. Thus we have
to use a stronger invariant. One way to store information about component groups is to replace
maximal torus normalizers by maximal torus normalizer pairs.

Let BN be an extended 2-compact torus with a normal maximal rank subgroup BNy — BN;
this simply means that there is a fibration sequence of the form BNy, — BN — Bm where
m = N/Np is a finite group. Consider a 2-compact group BX with identity component BX, — BX
and component group m(X) = X/Xo. We shall say that the pair (BN, BNy) is a mazimal torus
normalizer pair for the 2-compact group BX (2.2) if there exists a map of fibrations

Bjo

BX, BN,

|

BX <—BN

L

BTl'()(X) <:— Bﬂ'

where the horizontal maps are maximal torus normalizers of 2-compact groups (so that the map
between the base spaces is a homotopy equivalence). In particular, the maximal torus normalizer
pair determines the component group in that mo(X) = N/Ny.
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6 1. INTRODUCTION

According to this definition, two 2-compact groups, BX and BX' have the same maximal
torus normalizer pair if there exists a commutative diagram

. B -/
BXy <2"_ BN, . BX}
l Bj l Bj/ l
BX BN BX'
Bro(X) <—— Br ——> Bmy(X')

where the horizontal maps are maximal torus normalizers of 2-compact groups.
We shall say that a 2-compact group BX with maximal torus normalizer pair (BN, BNy) —
(BXo, BX) is totally N-determined (2.11) if

(1) automorphisms of BX are determined by their restrictions to BN, and

(2) for any other connected 2-compact group BX’ with the same maximal torus normal-
izer pair as BX there exist an isomorphism Bjf: BX — BX’' and an automorphism
Ba: BN — BN, inducing the identity map on homotopy groups, making the diagram

BN —=> BN

L

BXTf>BX’

commutative

We shall say that BX is uniquely N-determined if in addition the automorphisms of BX are
determined by their effect on the (two nontrivial) homotopy groups of BN. (See Lemma 2.13 for
a justification of the terminology.) The role of Ba is to compensate for the automorphisms of BN
that do not extend to automorphisms of BX; such automorphisms do exist when p = 2 whereas
they do not occur at odd primes.

1.1. CoNJECTURE. All (connected) 2-compact groups are (uniquely) totally N-determined.

The proposed plan for proving the conjecture has two stages. The first stage, which is com-
pleted in this paper, consists of a reduction of the problem to case of connected, simple and
centerless 2-compact groups. The next stage, only partially solved in this paper, is an induct-
ive case-by-case checking of the simple 2-compact groups. This approach follows the inductive
principle for 2-compact groups [18, 9.1].

The classification conjecture for 2-compact groups can be reduced to the case of connected,
centerless, and simple 2-compact groups because N-determinism is to a large extent hereditary
(2.§2): The product of two N-determined 2-compact groups is N-determined, and any connected
2-compact group whose adjoint form is N-determined is itself N-determined. Furthermore, any
connected and centerless 2-compact group can be decomposed into a homotopy colimit of a system
of 2-compact group of smaller dimension [15] and, under certain hypotheses (2.48, 2.51), N-
determinism is hereditary also under homotopy colimits. Thus there is a theoretical possibility of
proving the classification conjecture by induction over the dimension.

In this paper we prove the classification conjecture for the 2-compact groups associated to the
classical matrix Lie groups of the infinite A-, B-, C- and D-families, for the exceptional compact
Lie groups Gz and Fy4, and for the exotic 2-compact group DI(4) from [16].

Any connected Lie group G has an associated 2-compact group obtained as the 2-completion
of the classifying space of G. We shall denote the 2-compact group associated to G by G also.
As 2-compact groups, SL(2n + 1,R) and SO(2n + 1), for instance, are synonyms because their
classifying spaces are homotopy equivalent.

The main results are the theorems below (whose proofs are in Chapter 7 and in Chapter 8).
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thm:afam THEOREM 1.2. The simple 2-compact group PGL(n+1,C), n > 1, is uniquely N -determined,
and its automorphism group is
Z*\Z; n=1
Aut(PGL(n +1,C)) = 2
(PGL(n+1,C)) {Z; "
THEOREM 1.3. The simple 2-compact groups PSL(2n,R), n > 4, SL(2n + 1,R), n > 2, and

PGL(n,H), n > 3, are uniquely N-determined for all n > 1. Their automorphism groups are
ZX\Z;< X 23 n=4
Aut(PSL(2n,R)) = { ZX\Z) X {c1) n >4 even
Zy n >4 odd

where (c1) is a group of order two, Aut(SL(2n+1,R)) = Z*\ZJ' forn > 2, and Aut(PGL(n,H)) =
ZX\Z5 forn > 3.

thm: g2 THEOREM 1.4. [60, 1.3] The simple 2-compact group Gg is uniquely N-determined and its
automorphism group is Aut(Gs) = Z*\Z5 x Cs.
THEOREM 1.5. The simple 2-compact group DI(4) is uniquely N-determined and its auto-

morphism group is Aut(DI(4)) = Z*\Z5 .

thm:f4 THEOREM 1.6. The simple 2-compact group ¥4 is uniquely N-determined and its automorph-
ism group is Aut(Fy) = Z*\Z; .

The methods are not limited to simple nor even to connected 2-compact groups. Here are two
examples of the type of consequences that can obtained for more general 2-compact groups.

!

cor:af 1.7. COROLLARY. [38, 1.9] The 2-compact group GL(n,C) is uniquely N-determined and its
automorphism group is

Aut(GL(n, C)) = {ZX\AutZ222(Zg) n=2

Autz22n (ZEL) n>2
1.8. COROLLARY. The 2-compact group GL(n,R) is totally N-determined for all m > 2 and
its automorphism group is
ZX\Z3 n >3 odd
VA n=2
Aut(GL(n,R)) = 2
(GL(n, R)) Z; x (6) n=2mod4, n>2

ZX\Z3 x (c1) x (§) n=0mod4
where (§) and {c1) are subgroups of order two.

Related uniqueness results can be found in the papers [49, 51, 52, 60, 59, 58] by Dietrich
Notbohm, Antonio Viruel and Ales Vavpetic, respectively.

It has been conjectured [11, 5.1, 5.2] that any connected 2-compact group splits as a product
of the form BDI(4)® x BG for some connected Lie group G and some s > 0. This conjecture is
true on the level of maximal torus normalizers [14, 1.12] (and hence also true rationally [52, 1.5]).
If it can be shown that also the three members of the E-family are uniquely N-determined, the
conjecture will follow.
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CHAPTER 2

N-determined 2-compact groups

This chapter contains the fundamental definitions and the first general results. Whereas p-
compact groups are determined by their maximal torus normalizers [47, 2] when p > 2, a finer
invariant is needed for 2-compact groups as there are examples (2.3) of distinct 2-compact groups
with identical maximal torus normalizers.

1. Maximal torus normalizer pairs

Let Ny — N be a maximal rank normal monomorphism between two extended 2-compact tori,
meaning simply that there exists a short exact sequence [17, 3.2] of loop spaces Ng — N — 7 for
some finite group 7. For a 2-compact group, X, let (X, Xo) be the pair consistsing of X and its
identity component Xy. Then there is a short exact sequence Xo — X — mo(X) of loop spaces
where my(X) = X/ X is a finite 2-group, the component group of X.

2.2. DEFINITION. If there exists a morphism of loop space short exact sequences [18, 2.1]
Ny N m

T

Xog—— X ——mp(X)

where jo: No = Xo and j: N — X are mazimal torus normalizers [17, 9.8], and m — mo(X) an
isomorphism of finite 2-groups, then we say that (N, Ny) is a mazimal torus normalizer pair for
(X, Xo).

A maximal torus normalizer pair for X determines the maximal torus T'(X), isomorphic to
the identity component of N, the Weyl groups, W (X) = mo(IN) and W(Xy) = mo(No), of X and
Xy, the component group mo(X) = N/Ny = W(X)/W(X,) [37, 3.8], and [18, 7.5] the center
Z(Xo) — Xo of Xo [37, 18]

2.3. EXAMPLE. (1) Since GL(2,R)1X, = N(SL(2n + 1,R)) C GL(2n,R) C SL(2n + 1,R),
GL(2n,R) and SL(2n + 1,R) (Chp 5) have the same maximal torus normalizer. Their maximal
torus normalizer pairs are distinct, however, as their component groups are distinct.

(2) More generally [25], let G be any compact connected Lie group and N(G) its maximal torus
normalizer. If N(G) is not maximal, there exists a compact Lie group H such that N(G) C H C G.
The two compact Lie groups, G and H, have isomorphic maximal torus normalizers but distinct
maximal torus normalizer pairs as H is nonconnected [6].

3. The Weyl groups for SL(2n + 1,R) (Chp 5) and GL(n,H), n > 3, (Chp 6) are isomorphic as
reflection groups but N(SL(2n + 1,R)) is a split and N(GL(n, H)) a nonsplit extension [10, 34]
of the Weyl group by the maximal torus. Thus connected 2-compact groups can not be classified
by their Weyl group alone.

2.4. The Adams—Mahmud homomorphism. For a 2-compact group (or extended 2-
compact torus [18, 3.12]) X, we let End(X) = [BX,*; BX, ] denote the monoid of pointed
homotopy classes of self-maps of BX. The automorphism group Aut(X) C [BX,#; BX,*] of
X is the group of invertible elements in End(X) and the outer automorphism group Out(X) =
mo(X)\ Aut(X) C [BX; BX] is the group of conjugacy classes (free homotopy classes [18, 2.1]) of
automorphisms of X.

Let X be a 2-compact group with maximal torus normalizer pair (N, Np). Turn the maximal
torus normalizer Bj: BN — BX into a fibration. Any automorphism f: X — X of the 2-compact
group X restricts to an automorphism AM(f): N — N of the maximal torus normalizer, unique

9
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up to the action of the Weyl group W (Xy) = m1(X/N) [37, 3.8, 5.6.(1)] of the identity component
Xo of X, such that the diagram

B(AM
BN (AM(f)) BN
le lBj
BX 57 BX

commutes up to based homotopy [44, §3]. The Adams-Mahmud homomorphism is the resulting
homomorphism

(2.5) AM: Aut(X) — W(Xp)\ Aut(N)

of automorphism groups.
The automorphism group of N sits [42, 5.2] in a short exact sequence (T(X) is the discrete
approximation [17, 6.5] to T'(X))

(2.6) 0— H' (W(X); T(X)) = Aut(N) = Aut(W(X),T(X),e(X)) = 1

where the normal subgroup to the left consists of all automorphisms of N that induce the identity on
homotopy groups and the group to the right consists of all pairs (a,8) € Aut(W (X)) x Aut(T(X))
such that 6 is a-linear and the induced automorphism H?(a~!, 6) [61, 6.7.6] preserves the extension
class e(X) € H*(W(X);T(X)). The image of W(Xp) in Aut(N) does not intersect the subgroup
H (W (X);T(X)) (as W (X)) is represented faithfully in Aut(7(X)) [17, 9.7]) so there is an induced

short exact sequence
(2.7)  0— H'(W(X);T(X)) = W(Xo)\ Aut(N) == W(Xo)\ Aut(W(X), T(X),e(X)) — 1

whose middle term is the target of the Adams—Mahmud homomorphism. In particular, if X is
connected, this short exact sequence

(2.8) 0 — H'(W(X);T(X)) = Out(N) == W(X)\ Aut(W(X), T(X),e(X)) — 1
has the group Out(N) = W(X)\ Aut(N) of outer automorphisms of N as its middle term. The

group Aut(W(X),T(X),0) may also be described as the normalizer Ngr,(1(x))(W (X)) of W(X)
in GL(L(X)) where L(X) = ma(BT(X)). This group evidently fits into an exact sequence [40, §2]

(2.9) 1= Z(W(X))\ Autz,w (x)(L(X)) = W(X)\NerLx)) (W(X)) = Outw(W(X))

where Autz,w(x)(L(X)) = Z5 if X is simple by Schur’s lemma, and Out,(W (X)) is the group
of outer automorphisms of W (X) that preserve the trace taken in L(X).

2.10. Totally N-determined 2-compact groups. We are now ready to formulate the
concept of N-determinism that will be used in this paper. The extra complications compared
to the odd p case [44, 7.1] stem from the fact that H'(W;T), the first cohomology group of the
Weyl group with coefficients in the discrete maximal torus, is trivial for any connected p-compact
group when p is odd [3] but when p = 2 it may very well be nontrivial [24].

2.11. DEFINITION. Let X be a 2-compact group with mazimal torus normalizer pair (N, Ng) M)
(X, Xo) (2-2).

(1) X has N-determined (7. (IV)-determined) automorphisms if
AM: Aut(X) — Wo\ Aut(N)  (ms 0 AM: Aut(X) — Wo\ Aut(W, T e))
18 injective.
(2) X is N-determined if, for any other 2-compact group X' with mazimal torus normalizer
pair (N, Ng) o), (X', X{), there exist an isomorphism f: X — X' and an automorph-
ism o € H'(W;T) C Wo\ Aut(N) such that the diagram

(2.12) BN —2- BN

B,-l lB"'

BX —7§?>'l3)('
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commutes up to based homotopy.

Furthermore, we say that

e X is totally N-determined if X has N-determined automorphisms and is N-determined,
e X is uniquely N-determined if X is totally N-determined and X has (N )-determined
automorphisms.

If X is a totally N-determined 2-compact group then
X is uniquely N-determined <= H'(W;T)N Aut(X) =0

as we see from the short exact sequence (2.7).

2.13. LEMMA. Let X be a 2-compact group as in Definition 2.11.
(1) X has N-determined automorphisms if and only if for any o € Wy\ Aut(N) with m,(Ba) =

Id and for any 2-compact group X' as in 2.11.(2) there is at most one isomorphism
f: X = X' such that diagram (2.12) commutes up to based homotopy.

defcons?2 (2) X has m«(N)-determined automorphisms if and only if for any given X' as in 2.11.(2),
diagram (2.12) has at most one solution (f,a) with m.(Ba) =1d .

PROOF. (1) Suppose that X has N-determined automorphisms. Let (f1,a) and (f2, @) be two
solutions to diagram (2.12) with the same o € H'(W;T) C W (X,)\ Aut(N). Then AM(f, ' f1) is
the identity of W (Xo)\ Aut(N) and since AM: Aut(X) — W (Xo)\ Aut(V) is injective, f1 = fa.
For the converse, take Ba to be the identity of BN and take X’ to be X. Then the assumption is
precisely that AM is injective.

(2) Suppose that X has m.(N)-determined automorphisms and let (fi,a1) and (f2,a2) be two
solutions to diagram (2.12). Then AM(f; ' f1) = a; 'an € AM(Aut(X)) N HY(W(X);T(X)) and
this intersection is trivial by hypothesis. Thus AM(f;'f;) = 1 and fo = f; as AM is injective.
If X does not have 7,(N)-determined automorphisms, then AM(f) lies in H'(W(X);T(X)) C
W (Xo)\ Aut(N) for some nontrivial f € Aut(X) so that (f, AM(f)) and (1,0) are two solutions
to diagram (2.12) with X’ = X and j' = j. O

2.14. EXAMPLE. For (the 2-compact group associated to) a connected Lie group G, the co-
homology group HY(W(G);T(G)) is always an elementary abelian 2-group [35, 1.1] (2.21). For
instance, this first cohomology group has order two for G = PGL(4, C) [34, Appendix B]. Let «
be an isomorphism of N(PGL(4, C)) representing the nontrivial element of H'(W;T). The unique
solution (2.13.(2)) to diagram (2.12) is

N(PGL(4,C)) —>— N(PGL(4,C))

|

PGIL(4,C) =——— PGL(4,C)

when we use the morphisms 7, induced by an inclusion of Lie groups, and j' = ja for maximal torus
normalizers. This example demonstrates that, in contrast with the p odd case [44, 7.1] [47, 2],
diagram (2.12) can not always be solved with « the identity.

2.15. LEMMA. Let X be a connected 2-compact group with mazimal torus normalizer j: N — X
and mazimal torus T < N L X.
(1) X is N-determined if and only if for any other connected 2-compact group X' with maz-

imal torus normalizer j': N — X' there exists a morphism f: X — X' such that

BT
Bjy %BT

BX TBX’

(2.10

commutes up to conjugacy.

underT2 (2) X is uniquely N-determined if and only if for any other connected 2-compact group
X' with mazimal torus normalizer Bj': BN — BX' there exists a unique morphism
Bf: BX — BX' such that (2.16) commutes up to homotopy.
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PROOF. (1) Suppose that the connected 2-compact group X is N-determined and let X' be
another connected 2-compact group with the same maximal torus normalizer. Then X and X’ have
the same maximal torus normalizer pair, (N, N), and therefore diagram (2.12) admits a solution
(f,a) such that m,(Bca) is the identity. In particular, m2(Ba) is the identity of mo(BT') which
means that Ba restricts to the identity on the identity component BT of BN.

Conversely, under the existence assumption of point (1), we shall show that X is N-determined.
Let X' be another 2-compact group with the same maximal torus normalizer pair as X. Since
the maximal torus normalizer pair informs about component groups (see the remarks just below
2.2), X' is connected. By assumption, there exists a morphism, in fact [19, 5.6] [45, 3.11] an
isomorphism, Bf: BX — BX' under BT. Let Ba: BN — BN, Ba € Out(N) = W\ Aut(N), be
the restriction of Bf to BN [47, §3] so that

BN —22~ BN

le lBj,

= !
BX — > BX

commutes up to based homotopy as in the definition of the Adams—Mahmud homomorphism (§2.4).
The further restriction of Ba to the maximal torus BT agrees with the restriction of Bf to BT, the
identity of BT, up to the action of a Weyl group element w € W because W\[BT, BT| = [BT, BX'|
[43, 3.4] [19, 3.4]. Since m(BN) = W is faithfully represented in mo(BT) for the connected 2-
compact group X' [17, 9.7], it follows that 71 (Bea) is conjugation by w. Thus Ba belongs (2.8) to
the subgroup H'(W;T) of Out(N) so that (f,a) is a legitimate solution to diagram (2.12).

(2) Suppose that X is uniquely N-determined and let X’ be another connected 2-compact group
with the same maximal torus normalizer as X. From point (1) we already know that there exists at
least one isomorphism f: X — X’ under T. Suppose f1, f2: X — X’ are two such isomorphisms
under T. Then f;'f; is an automorphism of X under T, i.e. m.(BAM(f;'f1)) € W\ Aut(W,T)
is the identity. As m. o AM is injective, f5 1 1 is the identity of X, so fi = fo.

Conversely, under the existence and uniqueness assumption of point (2), we shall show that X
is uniquely N-determined. By point (1), X is N-determined, so we only need to show that m, 0 AM
is injective. Let f: X — X be an automorphism of X such that m.(BAM(f)) € W\ Aut(W,T) is
the identity. Since BAM(f) is determined only up to conjugacy, we may assume that m.(BAM(f))
is the identity of m,(BN). In particular, mo(BAM(f)) is the identity of m2(BT') meaning that f is
an automorphism under 7'. The identity of X is also an automorphism under 7', so f is the identity
automorphism of X by the uniqueness hypothesis. This shows that 7, o AM is injective. O

2.17. LEMMA. Let X be a connected 2-compact group with maximal torus normalizer N — X.

(1) Out(N) = HY(W(X); T(X)) - AM(Aut(X)) if X is N-determined.

(2) Out(N) = HY(W(X); T(X)) x Aut(X) and Aut(X) = W(X)\ Aut(W(X),T(X),e(X))
if X is uniquely N-determined. The group Aut(W(X),T(X),e(X)) is a subgroup of
Nenx)y)(W(X)) (2.9) and isomorphic to this group if e(X) = 0.

PRrOOF. (1) For any 8 € Out(N) there exist an automorphism o € H'(W(X);T(X)) C
Out(N) and an automorphism f € Aut(X) such that the diagram

BN 2% BN

le lBjoBB

BXTf>BX

commutes up to homotopy (2.11.(2)). Thus AM(f) = Ba in Out(N) (§2.4).
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(2) If the connected 2-compact group X is uniquely N-determined, then there is commutative
diagram

0 ——= HY(W(X); (X)) —> Out(N) —> W(X)\ Aut(W(X), T(X), e(X)) — 1

o

Aut(X)

where the top row is the short exact sequence (2.8). The composite homomorphism 7, o AM is
injectice by assumption (2.11.(1)). It is surjective since Out(N) is generated by H* (W (X); T(X))
by item (1) of this lemma. Thus m, o AM is an isomorphism and AM is a splitting of the short
exact sequence (2.8). O

As evidence of the conjecture that all connected 2-compact groups are uniquely N-determined
we note that all compact connected Lie groups have m,(IV)-determined automorphisms [31, 2.5]
and satisfy the above two formulas for automorphism groups [25, 3.10].

With a view to the situation for possibly nonconnected 2-compact groups, let Aut(N, Np)
denote the subgroup of Aut(NN) consissting of all automorphism ¢ € Aut(N) such that mo(¢) takes
mo(Np) to itself inducing an isomorphism

mo(Nog) — mo(N) ——=

l: :\LWO(@

7T()(N0) —>7T0(N) —> T

o~

of short exact sequences. Since H'(W;T) is contained in Aut(N, Ny), there are short exact se-
quences similar to (2.6) and (2.7) except that Aut(W,T,e) has been replaced by its subgroup
Aut(T, W, Wy, e) of all (a,8) € Aut(W,T,e) for which a(Wy) = Wy. (If N = Ny, then Aut(N) =
Aut(N,Ny).) Observe that the Adams—Mahmud homomorphism for a nonconnected 2-compact
group actually takes values in the subgroup W (Xy)\ Aut(N, Ny) of W(Xy)\ Aut(N).

2.18. LEMMA. Let X be a 2-compact group with mazimal torus normalizer pair (N, Ny) —
(X, XO)'
(1) W(Xo)\ Aut(N, No) = HY (W (X); T(X)) - AM(Aut(X)) if X is N-determined.
(2) W(Xo)\ Aut(N, No) = H'(W(X); T(X)) X g1 (o (x):2(x0)) Aut(X) if X is totally N-
determined.

PROOF. The first item is proved like the first item in 2.17. The claim of the second item is
that

H (mo(X); (X)) Aut(X)
l AM
HY (W (X); 7/(X)) > W (Xo)\ Aut(V, No)
is a push-out diagram. This is proved in 2.37 (allowing ourselves to refer ahead!). O

2.19. REMARK. When the 2-compact group X has N-determined automorphisms, also the
unbased Adams—Mahmud homomorphism

Out(X) = mo(X)\ Aut(X) = Out(N) = mo(N)\ Aut(N) = mo(X)\W(Xp)\ Aut(N)
is injective.
2.20. Regular 2-compact groups. For a connected 2-compact group X with maximal torus
T — X and Weyl group W, let
(2.20) 0 =6(X): Hom(W,TW) = H'\(W;T") - H'(W;T)

be the homomorphism induced by the inclusion 7% < T. Following [24, 5.3] we say that X is
regular if (2.20) is surjective. See [35] for a thorough investigation of 6.
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2.21. LEMMA. [35] Let X be the connected 2-compact group associated to a connected Lie
group. Assume that X contains no direct factors isomorphic to an odd orthogonal group SO(2n+1),
n > 1. Consider the homomorphism 6 = 6(X) (2.20) associated to X.

(1) Hom(W,TY) and H'(W;T) are Fy-vector spaces, and the kernel of 8, consisting of those
homomorphisms W — TW that are principal crossed homomorphisms W — T, is an Fa-
vector space of dimension equal to the number of direct factors of PX isomorphic to
SO(2n+1), n> 1.

(2) Suppose that the projective group PX contains no direct factors isomorphic to an odd
orthogonal group SO(2n + 1), n > 1, PSU(4), PSp(3), PSp(4), or PS0(8). Then X is
regular.

PROOF. (1) Hom(W,T) and its subgroup Hom(W,T") are elementary abelian 2-groups since
the abelianization W, of W is an elementary abelian 2-group of finite rank. The cohomology
group HY(W;T) is isomorphic to H?(W;L ® Z;) where L is the fundamental group of the Lie
group maximal torus of the Lie group underlying the 2-compact group X. Homological algebra
shows that H*(W; L ® Zy) = H?(W; L) ® Zy where H2(W; L) is an elementary abelian 2-group
by [35, 1.1]. The injection TW — T of W-modules gives a coefficient group long exact sequence

0= (/7)Y = Hom(W, TW) & H'(W;T) —» H\(W; T/TW) — HX(W;TW) > ---

in cohomology. Thus the kernel of 4 is isomorphic to (T/ TW)W in general. If X is without direct
factors isomorphic to SO(2n + 1), then TW is the center of X, T/T" is the maximal torus of the
adjoint 2-compact group PX, and (T/TW)W is isomorphic to (Z/2)° where s is the number of
direct factors isomorphic to an odd special orthogonal group in the adjoint 2-compact group PX
[35, 1.6] [37, 4.6, 4.7]. (See 2.25 for the general case.)

(2) The discrete maximal torus of PX = X/Z(X) is T(PX) = T/T" for Z(X) =T" as X con-
tains no direct factors isomorphic to an odd orthogonal group. The projective group PX = [[ G;
splits as a product of simple and centerfree compact Lie groups G; all of which satisfy TW(Gi) =0
since they are not odd orthogonal groups. Therefore H*(W;T/TW) = HY([[W(G:); [I1T(G:)) =
[T HY(W(G;); T(G;)) and these cohomology groups are trivial except in the excluded cases [24].
By the above exact sequence, 6 is surjective. O

For a compact connected Lie group X, let s(X) denote the number of direct factors of X
isomorphic to SO(2n + 1) with n > 1. (Keep the low degree identifications (9.25) in mind.)

2.22. LEMMA. Let X be a compact connected Lie group and PX its adjoint form. The kernel
of (X): HY(W; Z)(X) — HY(W;T)(X) is an Fa-vector space of dimension s(PX) — s(X).

PROOF. In the exact sequence

02 -1 - (T/Z)W — H'(W;Z) - H' (W;T)

induced from the inclusion Z — T' of W-modules, the fixed point groups 7% = Z(X) x 25(X) and
(T/2)" = 2(X)2) x 25X/7) = 23(X/2) (35, 1.6]. m

2.23. LEMMA. Let X be a connected 2-compact group with mazimal torus T — X and Weyl
group W, and let Z — T — X be a central monomorphism. If X is regular and H*(W;Z) —
H?(W;T) is injective, then the quotient 2-compact group X/Z is reqular.

PROOF. Since the hypothesis implies that H'(W;T) — H'(W;T/Z) is surjective, the claim
follows from the commutative square

Hom(W, TW) ———— Hom(W, (I'/2)")
9(x)i lO(X/Z)
HY(W;T)

H'(W;T/Z)

induced by the projection T — T'/Z of W-modules [37, 4.6]. O
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2.24. EXAMPLE. (1) GL(m, C) is regular for all m > 1. For m = 1, this is obvious. For m > 2,
the restriction homomorphism (S = Z/2%°)

res=0(GL(m,C)) Shapiro
% —

Hom(%,,, 8) = H (T3 5) HY(Zm; S™) HY(2pm_1;8) = Hom(%,,_1,5)

is bijective and for m = 2 it is surjective. It now follows [24, 5.7] that all products [[ GL(m;, C)
are regular.
(2) PGL(m, C), 2 < m, is regular for m # 4 since (2.23)

Sha,_piro

Hom(H3 (), 8) = HX(Zm; 8) = H?(Z,n; S™) H*(2p_1;8) = Hom(H3(Zm_1),5)

is then an isomorphism. The 2-compact group PGL(4, C) is not regular as H'(W;T) = Z/2 is
nontrivial while the discrete center 7% is trivial.

2.25. REMARK. If X =SO(2n + 1), n > 1, then TW = Z/2, W,y, is Z/2 for n = 1 and (Z/2)?
for n > 2, 0: Hom(W,T") — HY(W;T) is surjective [24, 5.5], and H(W;T) is trivial for n = 1,
Z/2 for n = 2, and (Z/2)? for n > 2 [24, Main Theorem, 5.5]. Thus the kernel of 6 is

e W [Z/2 n=1,2
(T/TW) _{0 n>2

In general, write the connected Lie group X = X; x X where X; is the product of all direct
factors of X isomorphic to SO(2n + 1) for some n > 1 and X3 is without such direct factors. Then
. .. W .. W
(@7 = (Ty/F) " x (B T1) " = (22052 x (z/2) )
where s<2(X) is the number of direct factors of X isomorphic to SO(3) or SO(5) and s(PX3) is
the number of direct factors of PX5 isomorphic to SO(2n + 1) for some n > 1.

2.26. LHS 2-compact groups. Let Ny — N be maximal rank normal monomorphism
between two extended 2-compact tori, i.e. a commutative diagram with rows and columns that are
short exact sequences of loop spaces [17, 3.2]

T——T—{1}

L

No——> N —=W/W,

a

Wo —W ——= W/W,

where T is a 2-compact torus and Wy = mo(Np) a normal subgroup of the finite group W = m(N).
The 5-term exact sequence

0 — HY(W/Wo; TW0) 25 HY(W; T) 255 HY(Wo; T)W/Wo 225 H2(W/Wo; TW0) 25 H2(W;T)
is part of the Lyndon-Hochschild-Serre spectral sequence [27] converging to H*(W;T).

2.27. DEFINITION. A 2-compact group with mazimal torus normalizer pair (N, Ng) is LHS if
the restriction homomorphism res: H'(W;T) — H(Wy; T)W/Wo is surjective.

Thus X is LHS if and only if the initial segment of the Lyndon—Hochschild-Serre spectral
sequence

0 — HY(W/Wo; TW0) 25 HY(W; T) 5 HY (Wo; T)/ ™ = 0
is exact. If TWo = 0 or W = W x W /W, is a direct product, then X is LHS. Note that the Weyl
group of a compact Lie group G is always the semi-direct product W(G) = W(Gy) x mo(G) for
the action of the component group mo(G) on the Weyl group W(Gp) of the identity component

[25, §2.5]. (In fact, It is not so easy to find a nonconnected compact Lie group G for which the
extension Gog = G — G/Go = 7 is nonsplit [26].)
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2.28. LEMMA. Let W = W(X) be the Weyl group of the 2-compact group X, Wy = W(Xp)
the Weyl group of the identity component, and m = W/W, the component group [37, 3.8] of X. If
W =Wy x 7 is a semi-direct product and

0(Xo)™: Hom(Wo, TWo)™ — H'(Wo; T)™
is surjective, then X is LHS.

PROOF. Assume that the group G = H X @ is the semi-direct product for a group action
Q — Aut(H), and let A be a G-module. We show that the image of the restriction homo-
morphism res: H!(G; A) — H'(H; A)? contains the image of §2: Hom(H, A#)? — H(H; A)%.
Let ¢ € Hom(H,A”)? be a Q-equivariant homomorphism of H into the fixed point module
AH. Then 0(¢) € H'(H; A)? is the cohomology class represented by the crossed homomorphism
¢: H — AH C A. If we define ¢: H x Q — A by ¢(nq) = ¢(n), n € H, g € Q, then

B(niqinagz) = B(n1(@in2g; )a1g2) = d(na(qr - n2)q1g2) % $(na(qr - n2)) = d(n1) + d(q1 - n2)
= ¢(n1) + q19(n2)
and also
P(mar) + mard(nage) < d(ma) + marp(na) = p(n1) + q16(na)

as q1¢(ny) € AH. This shows that the crossed homomorphism ¢ defined on H extends to a crossed
homomorphism ¢ defined on G = H x Q. (I do not know if the LHS spectral sequence differential
dy: HY(H; A)? — H?(Q; A¥) is always trivial for a semi-direct product H x @ of finite groups.) [

The next example demonstrates that condition 2.28 is not necessary.

2.29. EXAMPLE. (1) X = PGL(6,R) = PSL(6,R) x Cy does not satisfy the condition of 2.28
for HY(Wo;T) = Z/2 [24, Main Theorem] while 7"° = Z(X,) = 0. Nevertheless, X is LHS
because also H!(W;T) = Z/2 (computer computation).

(2) X = PGL(8,R) = PSL(8,R) x C, does not satisfy the condition of 2.28 for H'(Wy;T) =
Z/2 @ Z/2 [24, Main Theorem] while 7"° = Z(X;) = 0. Nevertheless, X is LHS because
HY(W;T) = Z/2 and the outer automorphism group Cs acts nontrivially on H'(Wy;T) (com-
puter computation).

(3) When X, = SL(2,C), the Weyl group Wy = X, has order two, the center Z = T"° also has
order two, and H'(Wp;T) = 0 is trivial, so the homomorphism 8(Xj) is trivial as well, of course.
Indeed, the nontrivial homomorphism Wy, — Z C T is the principal crossed homomorphism
corresponding to the element diag(i, —i) of the maximal torus. More generally, the direct product
X§ = SL(2,C)" is regular [24, 5.7], has Weyl group W, center Z", and 2.21.(1) identifies the
kernel of 6(X,) enabling us to conclude that

(2.30) HY (W;T)(X5) = Hom(Wg, 27)

~ Hom(W, Z)"

is an Fy-vector space of dimension r2 — r as in [24, 5.8]. Let X = X, x C, be the semi-direct
product for the nontrivial outer automorphism of Xy. The component group C3 of X" acts trivially
on (2.30) and as H'(W;T)(X") has dimension 2r?> — r (by induction) and H'(C}; Z") dimension
r2, the direct product X" is LHS for all 7 > 1.
(4) When X = SL(4,R), the Weyl group W = (0, cic2) = Z/2 X Z/2 is elementary abelian gener-
atedby o = (g f)?) and ¢;cy = diag(—1,1,—1,1). The center Z = TW = (diag(-1,—1,—1,—-1)) =
Z/2 has order 2, and the first cohomology group H'(W;T) = 0 is trivial, so the homomorph-
ism 0: Hom(W;TW) — H'(W;T) is also trivial, of course. Indeed, the principal homomorphism
o(w) = (w-t)-t~': W — T, is the first coordinate function W — Z(X) when t = diag(—E, E)
and the second coordinate function when ¢ = diag(I,I). The outer automorphism, conjugation
with D = diag(—1,1,1,1) € GL(4,R), sends o to 0P = o(c1c2) and c;cp to itself.

More generally, when X" is a product of r copies of SL(4, R), the Weyl group W is a product
of 7 copies W = W(SL(4,R)) = Z/2 x Z/2, the center Z(X) = Z" is a product of r copies of
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7Z = Z(SL(4,R)) = Z/2 and as §: Hom(W",Z") — H'(W;T)(X") is surjective [24, 5.5, 5.7], the
first cohomology group

Hom(W™,Z")

Hom(W, Z)r

has dimension 2r? — 2r over Fo (2.21). The component group mo(GL(4,R)") = C} acts on this
F,-vector space such that the space of fixed vectors has dimension 2 — r. By induction we see
that H'(W;T)(GL(4,R)") is an Fy-vector space of dimension 2r? — r and clearly H'(C5; Z") has
dimension r2. Thus GL(4,R)" is LHS for all r > 1.

(5) The homomorphisms 6 is surjective for SL(2n,R) for all n > 1 [24, Main Theorem, 5.4]
and H'(W;T)(SL(2n,R)) = 0 for n = 1,2 and H'(W;T)(SL(2n,R)) = Z/2 for n > 3. Hence
GL(2n,R) is LHS for all n > 1 by 2.28.

H(W;T)(X7) =

I do not know any examples of 2-compact groups that are not LHS.
The coefficient group short exact sequence 0 - L - L® Q — T — 0 gives the exact sequence

0— H'(W;L) - H'(W;L® Q) - H*(W;T) - H'(W;L) =0
form which we see that
HO(W;L®Q)/H(W;L)® H' (W;L) i=0

(2.31) HY(W;T) = {Hi+l(W. L) i>0

2.32. The center of the maximal torus normalizer. We need criteria to ensure that the
center of the 2-compact group X agrees with the center of its maximal torus normalizer. (This is
automatic when p > 2 [44, 3.4] but not when p = 2 [18, §7].)

2.33. PROPOSITION. Let X be a 2-compact group with identity component Xy. If Z(Xy) =
Z(N(Xy)) and Xy has N-determined automorphisms, then Z(X) = Z(N(X)).

PRrOOF. This is proved in [47, 4.12] for p-compact groups where p is odd. If we replace the
assumption that p is odd by the assumption that Z(X,) = Z(N(Xp)) (which always holds when
p > 2 [18, 7.1]), then the same proof works also for 2-compact groups. O

w(x) and there

Assume now that X is a connected 2-compact group. Then Z(N(X)) = T(X)
is an injection Z(X) < Z(N(X)) which is not necessarily an isomorphism [18, §7].

Inspection shows that Z(G) = ZN(G) for any simply connected compact Lie group G; see [13,
1.4] for a conceptual proof of this fact. In fact, Z(G) = ZN(G) for any connected compact Lie
group G containing no direct factors isomorphic to SO(2n + 1) [35, 1.6].

Let Z — N(X) be a central monomorphism such that also the composition Z - N(X) — X
is central. Under these assumptions, the quotient loop spaces N(X)/Z and X/Z can be defined
[18, 2.8]. The action map [17, 8.6] BZ x BN(X) — BN(X) induces an action [BN(X), BZ] x
Out(N(X)) — Out(N(X)) of the group [BN(X), BZ] = H'(N(X);Z) on the set Out(N(X)).
Let [BN(X), BZ](1) denote the isotropy subgroup at (1) € Out(N(X)).

2.34. LeMMA. If Z(X) = Z(N(X)) and [BN(X), BZ]) = 0, then Z(X/Z) = ZN(X/Z).

PROOF. Using [37, 4.6.4], the assumption of the lemma, and [47, 5.11], we get Z(X/Z) =
Z(X)]Z =Z(N(X))/Z=Z(N(X)/Z)=ZN(X/Z). O
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2. Reduction to the connected, centerless (simple) case

In this section we reduce the general classification problem first to the connected case and next
to the connected and centerless case. We first show (2.35, 2.40) that if X is any nonconnected
2-compact group with identity component X, then

X is uniquely N-determined
X is LHS = X is totally N-determined
H{(W/Wy; Z(Xo)) — HY(W/Wo; T™°) is injective for i = 1,2

The H'-injectivity conditions holds when X, is a connected Lie group [35, 1.6] or equals DI(4)
[16, 52]. To see this observe that the condition obviously holds when Z(X) = T(Xo)"° or Z(Xo)
is trivial. If the conjecture [11, 5.1] that any connected 2-compact group splits as a product
of a compact connected Lie group and a finite number of DI(4) is true, then this condition is
always satisfied. Indeed, if the splitting conjecture is true then Xy = G’ x G” x DI(4)° where
G’ is a connected compact Lie group with no direct factors isomorphic to SO(2n + 1), G” is a
direct product of SO(2n + 1)s, and s > 0. The mo(X)-equivariant group homomorphism Z(G') =
Z(Xo) = T(G)(E) x T(G")W(G") has a left inverse since it takes Z(G') isomorphically to the
mo(X)-subgroup {1} xT(G")W(G") of the left hand side. The induced map on cohomology therefore
also has a left inverse. However, it is not at present clear if all nonconnected 2-compact groups are
LHS.

Next we consider a connected 2-compact group X with adjoint form PX = X/Z(X) [18, 2.8]
and show (2.38, 2.42) that

PX is uniquely N-determined = X is uniquely /N-determined

This reduces in principle the problem to the connected and centerless case. One can go a little
further since connected, centerless 2-compact groups split into products of simple factors [19, 48].
We show (2.39, 2.43) that

X7 and X3 are uniquely N-determined = X; X X3 is uniquely N-determined

when X; and X5 are connected. Therefore it suffices to show that all connected, centerless and
simple 2-compact groups are uniquely N-determined. It is already known that all connected
compact Lie groups as well as DI(4) have 7, (IN)-determined automorphisms [31, 52].

Let X be a 2-compact group with maximal torus normalizer pair (N, No)(X) = (N, Np).

2.35. LEMMA. [44, 4.2] Suppose that Xo has N-determined automorphisms. Then
X has N-determined automorphisms <= H(W/Wy; Z(Xo)) — H(W/Wy; TY°) is injective

PROOF. The restriction of AM to the subgroup H(W/Wy; Z(X,)) C Aut(X) is the homo-
morphism

(2.36) HY(W/Wo; Z(Xo)) — HY(W/Wo; V) 25 HY(W;T)

where inf is the inflation monomorphism. If the first homomorphism has a nontrivial kernel, X
does not have N-determined automorphisms. Conversely, assume that the first homomorphism is
injective, and let f € Aut(X) be an automorphism such that AM(f) € Wp\ Aut(N) is the identity.
Then AM(fo) € Wo\ Aut(Np) and mo(f) equal the respective identity maps. Since Xy has N-
determined automorphisms by assumption, fy is the identity. Thus f belongs to the subgroup
HY(W/Wo; Z(Xy)) of Aut(X) [42, 5.2] where AM is injective, so f is the identity automorphism
of X. (The description of the kernel in the short exact sequence of [42, 5.2] holds for all p-compact
groups, not just those with a completely reducible identity component.) O

2.37. LEMMA. Suppose that X has N-determined automorphisms and that Xy has w.(N)-
determined automorphisms. Then Aut(X)N HY(W;T) = HY (W/Wy; Z(X,)) so that
X has m,(N)-determined automorphisms <= H(W/Wy; Z(Xo)) =0

PROOF. Let f € Aut(X) be an automorphism such that m,. AM(f) is the identity. Then also

7« AM(fo) and mo(f) equal the respective identity maps. Since X is assumed to have m,(IN)-
determined automorphisms, fo is the identity. Thus f belongs to the subgroup H(W/W; Z(X,))
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of Aut(X) [42, 5.2]. This shows that Aut(X) N HY (W;T) C H'(W/Wy; Z(Xo)). The opposite
inclusion is immediate from (2.36). O

2.38. LEMMA. [44, 4.8] Suppose that X is connected. If the adjoint form PX = X/Z(X) has
m«(N)-determined automorphisms, so does X.

PRrOOF. If f € Aut(X) is an automorphism under T'(X), the induced automorphism Pf €
Aut(PX) is an automorphism under T'(PX), hence equals the identity, and the induced auto-
morphism Z(f) € Aut(ZX) is also the identity since the center ZX — X factors through the
maximal torus T'(X) — X [18, 7.5] [37, 4.3]. But then f itself is the identity for Aut(X) embeds
into Aut(PX) x Aut(ZX) [43, 4.3]. O

2.39. LEMMA. [47, 9.4] If the two connected 2-compact groups X1 and Xo have N-determined
(resp. m«(N)-determined) automorphisms, so does the product X1 x X.

PRrRoOOF. Since the statement concerning N-determined automorphisms is proved in [47, 9.4]
we deal here only with the case of 7. (IN)-determined automorphisms. Let f be an automorphism
under T x T, of the product 2-compact group X; x Xs. Then

fl:Xl_)Xl XXQL)XIXXQ_)Xl
f22X2—)X1 XX2i>X1><X2—>X2

are endomorphisms under the maximal tori and therefore conjugate to the respective identity maps.
But f is [47, 9.3] in fact conjugate to the product morphism (fi, f2) which is the identity. O

2.40. LEMMA. (Cf [44, 7.8]) Suppose that
(1) Xo is uniquely N-determined.
(2) X is LHS.
(3) H>(W/Wy, Z(Xo)) — H?(W/Wy, T™0) is injective.
Then X is N-determined.

PROOF. Let X' be another 2-compact group with maximal torus normalizer pair (N, Np).
The assumption on the identity component X, means (2.15) that there exists an isomorphism
fo: Xo — X}, under T. For any ¢ € W/Wy = N/Ny = X/Xy = X'/X],, the isomorphism & foé~!
is also an isomorphism under T and thus £fy = fo€ as Xp is uniquely N-determined. By the
second assumption, the automorphism ay = AM(fy): Ng — Ng with m,(Bayg) = Id extends to an
isomorphism a: N — N with 7, (Ba) = Id.

The situation is now as shown in the commutative diagram

Bfo
]
B‘fo Bijo B]LVO Bag BTO Bj} Bfo
BX~ 2 gy B _pn_ P . px
Bro(X) <= B(W/Wo) == B(W/Wo) — Bro(X')

Our aim is to find an isomorphism f: X — X’ to fill in the based homotopy commutative
diagram

BX, —2r . BXx}

L

BX o >BXI

L

Bmy(X) —= Bmy(X')

IR
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where the isomorphism between the base 2-compact groups is given by the isomorphisms 7o (X) +
N/Noy — mo(X'"). Since fy is mo(X)-equivariant up to homotopy, map(BXo, BX()gy, is a mo(X)-
space in the sense that there exists a fibration

map(BXy, BX{; Bfy) — map(BXo, BX{; B fo)hmo(x) = Bmo(X)

over Bmo(X) with map(BXo, BX()Bf,, here written as map(BXy, BX(; Bfo), as fibre. The space
of sections of this fibration, map(BXj, BX(’))’E}‘;(X), is a space of fibre maps of BX to BX'. This

fibration sits to the left in the commutative diagram

~

map(BXo, BX{; Bfo) map(BNy, BXy; B(jy)) map(BNy, BNy; Bay)

! l |

map(BXo, BX(I), BfO)hwo(X) — map(BNo, BX(I), B(]éa))h(w/wo) -~ map(BNo, BN(), Bao)h(W/WO)

| | |

Bro(X) B(W/W) B(W/Wo)

where the columns are fibrations and the horizontal maps are defined as composition with Bj
and Bj’, respectively. The fibre map from the right column to the central one is actually a fibre
homotopy equivalence because the centralizer of the maximal torus in X}, and in Ny are isomorphic
in that they are both isomorphic to the maximal torus.

The middle fibration admits a section corresponding to the fibrewise map Bj’ o Ba. But
then the left fibration also admits a section: The obstruction to a section of the left fibration is
a cohomology class in H?(mo(X); Z(Xp)). Since the middle fibration does admit a section, this
obstruction class is in the kernel of the coefficient group homomorphism H?(m(X); Z(Xo)) —
2 (W/ WO,TWO). But the assumption is that this is an injection and therefore the obstruction
must vanish. (We are here tacitly replacing the three fibrations above by their fibrewise discrete
approximations [42, 4.3].)

A section of the left fibration corresponds to a morphism Bf: BX — BX’ under the iso-
morphism Bfy: BXo — BX}) and over Bmo(X) —» Bmo(X') such that Bf o Bj and Bj o Ba are
homotopic over B(N/Ny) — Bmo(X'). But since the fibre BX] of BX' — Bmo(X') is simply
connected this means that Bf o Bj and Bj o Ba are based homotopic maps BN — BX'. I

2.41. EXAMPLE. 1. Any 2-compact torus T is uniquely N-determined for if j: T — X is the

maximal torus normalizer for the connected 2-compact group X, then j is an isomorphism. In-
deed, H*(BT;Q2) = H*(BX;Q2) [17, 9.7.(3)] and the connected space X/T has cohomological
dimension cdg,(X/T) = 0 [18, 4.5, 5.6] so is a point.
2. Any 2-compact toral group G is totally N-determined: G clearly has N-determined automorph-
isms as G is its own maximal torus normalizer. If the 2-compact group X has the same maximal
torus normalizer pair (G,T) as G, then X is a 2-compact toral group and j': G — X is an iso-
morphism. G is uniquely N-determined if and only if H'(mo(G);T) = 0. In particular, GL(2,R)
is uniquely N-determined.

2.42. LEMMA. (Cf [44, 7.10]) Let X be a connected 2-compact group and Z — X its center.
If X/Z is N-determined, so is X.

PRrROOF. Let j: N — X be the maximal torus normalizer for X and j': N — X' the maximal
torus normalizer for some other connected 2-compact group X’. It suffices (2.15) to find a morphism

f: X — X’ under the maximal tori X & 7 ¥y X', The 2-discrete center Z of X and X' is
contained in the the 2-discrete maximal torus 7' [18, 7.5]. Factoring out [17, 8.3] these central
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monomorphisms we obtain the commutative diagram

. B ~ Bi’ .
BX BT BX'
B(X/2) <22 p(1/7) 2E1D, p(x1/2)
T syyi—

where the vertical maps are fibrations with fibre BZ, the total spaces, such as BX, are the fibre-
wise discrete approximations, and f/Z: X/Z — X'/Z is the isomorphism under T'/Z that exists
because X/Z is N-determined. Construct the fibration

map(BZ,BZ; B1) — BZyx/z) — B(X/Z)

whose sections are maps BX — BX' over B(f/Z) and under BZ. There are two other such
fibrations related to this one as shown in the commutative diagram

map(BZ, BZ; Bl) ——— map(BZ, BZ; Bl) ——— map(BZ, BZ; B1)
BZnx/2) BZn(r)z) = BZn(ryz)
B(X/Z) 56/2) B(T/Z) B(T/Z)

where the middle fibration is the pull-back along B(i/Z) of the left fibration and the fibre over b €
B(T/Z) of the right fibration consists of one component of the space of maps of the fibre BT} over b
into the fibre BX B(ir/2)(v) Over B(i'/Z)(b). The fibre equivalence Bi* is induced by Bi: BT — BX.
The middle fibration has a section u' such that Bi* o’ is the section Bi': BT — BX' of the right
fibration. We now have fibre maps

u|X/T

X/T Bf
BT BZy(x)z)
Bm /
B(X/Z)

where u is the composition of u' and BZh(T/Z) — BZh(X/Z)- The canonical map, given by
constants, BZ — map(X/T, BZ) is a homotopy equivalence since X/T is simply connected [37,
5.6] and hence a version [44, 6.6] of the Zabrodsky lemma implies that u = v o B(¢/Z) for some
section v: B(X/Z) — BZy(x/z) of the left fibration. The section v is, after fibre-wise completion,
a fibre map BX — BX' under BT. O

Let j1: N1 — X; and j2: N» — X5 be maximal torus normalizers for the connected 2-compact
groups X7 and X and suppose that X' is some connected 2-compact group that admits a maximal
torus normalizer of the form j': N7 x No — X'. The Splitting Theorem [19, 1.4], or more explicitly
in the form of [48, 5.5], says that there exist 2-compact groups X; and X} and an isomorphism
X{ x X} — X' such that

BN1 X BN2

B:W Bj'

~

BX! x BX}, BX'
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commutes where jj: N3 — X] and j): Np — X} are maximal torus normalizers. The following
lemma is an immediate consequence

2.43. LEMMA. The product of two N -determined connected 2-compact groups is N -determined.

PROOF. Since X1, X2 are N-determined there exist isomorphisms f;: X; — X1, fa: Xo — X}
and automorphisms a3 € H(W1;T1) C Out(Ny), as € HY(Wa;T3) C Out(N3) such that
BN, x BN, 222%P°%_pn « BN,
| |
Bj1 X Bja Bj! x B3}

BX! x BX},

~

BX1 X BX2

/
BfixBf2 BX

commutes up to based homotopy. O
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3. N-determined connected, centerless 2-compact groups

In this section we formulate inductive criteria that, at least in favorable cases, can be used to
show total N-determinacy for connected, centerless (simple) 2-compact groups X. The key tool is
the homology decomposition [18, 8.1]

(244) hOCOlimA(X)op BCx —» BX

of BX in terms of centralizers of elementary abelian subgroups. Since X has no center, the
cohomological dimension of each centralizer Cx(V,v) is smaller than the cohomological dimension
of X. As part of an inductive argument we will therefore assume that all centralizers are totally
N-determined and formulate criteria (2.48, 2.51) that imply that also X is totally N-determined.

2.45. DEFINITION. [18, §8] The objects of the Quillen category A(X) are conjugacy classes
of monomorphisms v: V — X of nontrivial elementary abelian 2-groups into X ; the morphisms
a: (Vi,v1) = (Va,va) are injective group homomorphisms a: Vi — Va such that v1 and vaa are
conjugate monomorphisms Vi — X. We shall write A(X)(V1, V) for the set of morphism Vi — Va
and A(X)(V) for the group of all endomorphisms (which are all isomorphisms) of V.

The functor
(2.46) BCx: A(X)°? — Top (topological spaces)

takes an object (V, v) of the Quillen category A(X) to its centralizer BCx (V,v) = map(BV, BX)p,.
The covariant functor

(2.47) m(BZCx): A(X) — Ab (abelian groups)

takes (V,v) into the abelian homotopy group m;(map(BCx(V,v),BX),e(v)) based at the evalu-
ation map e(v): BCx(V,v) — BX. The space map(BCx(V,v), BX) is homotopy equivalent to
BZCx(V,v) [12]).

2.48. LEMMA. [44, 4.9] Suppose that X is connected and centerless. If

(1) Cx(L, ) has N-determined (resp. m.(N)-determined) automorphisms for each rank 1
object (L, \) of A(X) and
(2) lim'(A(X);m(BZCx)) = 0 = lim*(A(X); m2(BZCx))

Then X has N-determined (resp. m.(N)-determined) automorphisms.
PROOF. Suppose first that each line centralizer has m.(IN)-determined automorphisms. Let

f: X = X be an automorphism under the maximal torus 77 — X. Since any monomorphism
A L — X, L =12/2, factors through the maximal torus, the commutative diagram

N—X

)\T
L——T AM(f) | f
N—X

shows that fA = A and gives a commutative diagram

Cn(L) ——= Cx(L)

T/ LCAMU)(L) \Cf(l‘)
\

Cn(L) —— Cx(L)

of automorphisms under 7. Thus AM(Cy(L)) = Cam(s)(L): Cn(L) — Cn(L). Now, m.(Cn(L))
is a subgroup of m.(N) (for m(Cn(L)) = m(N) and mo(Cn(L)) = W(X)(L) is [18, 7.6] [43,
3.2.(1)] the stabilizer subgroup at L < T for the action of W(X) on T') so m,(Cam(s)(L)) = 1 and
Ct(L) =~ 1¢, (1) since Cx (L) has m,(N)-determined automorphisms. For any other object (V,v)
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of A(X) of rank > 1, choose a line L in V. Since the monomorphism v: V' — X canonically factors
through Cx (L) [17, 8.2] [47, 3.18], the commutative diagram

//’X

V=——=Cx(L) f
\\)X

shows that fr = v and the induced diagram

L Ox(V)
/
Cox (V) Cr(V)

PN

- Cx(V)

that Cf(V): Cx(V) = Cx(V) is conjugate to the identity. The third assumption of the lemma
assures that there are no obstructions to conjugating f to the the identity now that we know that
the restriction of f to each of the centralizers is conjugate to the identity, see [44, 4.9].

Suppose next that each line centralizer has N-determined automorphisms. Let f: X — X be
an automorphism such that the diagram

commutes up to conjugacy. For each line L in T, the induced diagram

Cx(L)
/
Cn(L) Cs(L)

~

Cx(L)

also commutes up to conjugacy. By assumption, this means (2.19) that the induced automorphisms
C#(L) of line centralizers are conjugate to the identity. As above, this implies that the induced
map Cf(V): Cx(V) = Cx (V) is conjugate to the identity for any object (V,v) of the Quillen
category for X and that f is conjugate to the identity. O

Consider next an extended 2-compact torus N and two connected, centerless 2-compact groups
X and X’ both having N as their maximal torus normalizer

-/

(240 xton e

Our task is (2.15.1) to construct an isomorphism X — X' under the maximal torus.

2.50. DEFINITION. An object (V,v) of A(X) is toral if the monomorphism v: V — X factors
through the mazimal torus T — X. Let A(X)<! denote the full subcategory of toral objects, and

A(X )g the full subcategory of toral objects of rank < 2.

For each toral object (V,v) of A(X)<t, let v™: V — N be the unique preferred lift [45, 4.10]
of v (which factors through the identity component of N) and let (V,7') be the toral object of
A(X") defined by v/ = jov™: V — X’ as in the commutative diagram
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The functor A(X)<! — A(X')<! that takes the object (V, v) to the object (V') and is the identity
on morphisms is an equivalence of toral Quillen categories [47, 2.8].

THEOREM 2.51. (Cf [47, 3.8]) In the situation of (2.49), assume the following:

(1) The centralizer Cx (V,v) of any (V,v) € Ob(A(X)é;) has N -determined automorphisms.
(2) There exists a self-homotopy equivalence oo € H'(W;T) C Out(N) such that for every
object (L, \) € Ob(A(X)g'l) the diagram

alCn(AY)

CN(La)‘N) CN(L> ’\N)

J‘ICN(/\N)l J{j’ICN(A”)
Cx(L, )\) —f> CXI(L, )\')
X

commutes for some isomorphism f.
(3) For any nontoral rank two object (V,v) of A(X) the composite monomorphism

(L) fuiL

Cx(L,v|L) —— Cx/(L, (v[L)) ———— X'

7
vt 'V

and the induced isomorphism f, 1: Cx(V,v) = Cx:(V,v},) defined by the commutative
diagram

Cf,, L _
Cex L) (V,7(L)) Y Co i)y (Vs for 0 9(L))
Cx(V,v) ; Cx/(V,vy)

do not depend on the choice of line L < V. (See 2.65 for the definition of the canonical
factorization U(L).)
(4) lim*(A(X);m(BZCx)) = 0 = lim*(A(X); ma(BZCx)).

Then there exists an isomorphism f: X — X' under T (2.15).

PROOF. The idea is that the isomorphisms fy: Cx(A) = Cx:()\') on the line centralizers re-
strict to isomorphisms f,: Cx(v) — Cx/ (V') for all centralizers in the Fa-homology decomposition
(2.44) of BX. These locally defined isomorphisms combine to a globally defined isomorphism
BX — BX'.

First observe that the isomorphisms fy on the line centralizers are uniquely determined by the
cohomology class « € HY(W;T) (2.13.(1)).

Let now (V, v) be a rank two object of A(X) and L a line in the plane V. If (V,v) is toral, define
fv: Cx(V,v) = Cx:(V,v') to be the isomorphism induced by f,1: Cx(L,v|L) = Cx/(L,(v|L)".
Since £, is an isomorphism under a|Cnx(V, ") it does not depend on the choice of L in V' (2.13.(1)).
If (V,v) is nontoral, define v’ to be v} and define f,: Cx(V,v) = Cx/(V,v') to be f,r. By
assumption 2.51.(3), the monomorphism v’ and the isomorphism f, ;, are independent of the choice
of L.

This construction respects morphisms in A(X). Consider first, for instance, a morphism
B: (L1,A1) = (L2, X2) between two lines in X. Then \; = A8 and AN = A 3. The commutative
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diagram of isomorphisms

Cx(B
Cx (M) ®) Cx (2

Cn(\) =— Cn (X))

g a|cN(,\f’)l la|cN(,\§) gy

Cn(\Y) 57 On(AY)

Cn(B)
/ \

Cx (A} Cx/(A3)

Cx(8)

shows that Cx:(8) " tofr,0Cx(B) = f», for they are both isomorphism under Cn (8) toa|Cn(AY)o
Cn(B) = a|Cn(AY). Second, by the very definition of f,, the diagram

Cx(V,v) —Ls Cxo (V1)

l |

CX(L’ V|L) f—> CX’(L’ (V|L)I)
v|L
commutes whenever L < V and (V,v) is (toral or nontoral) rank 2 object of A(X).
We have now defined natural isomorphisms f,: Cx(V,v) — Cx:(V,v') for all objects (V,v) €
Ob(A (X)) of rank < 2. For any other object (E,¢) of A(X), choose a line L < E and proceed as
for toral rank 2 objects. That is, define ¢’: E — X' to be the monomorphism

(L)

fE
E—""" > Cx(E,e|L) Iz

Cx:(E,(e|L)) ———X'
and define f.: Cx(FE,e) = Cx/(E,¢€') to be the isomorphism

_ (Fern) _
Cox(B.ein) (E(L)) ——" Co,,(5,ely) (for 0 E(L))

Ei lg

Cx(E,E) Cxl(E,E’)

fe
induced by f,z. If L; and Lo are two distinct lines in E, let P = (L1, L) be the plane generated

by them. Then the commutative diagram

fs\Ll

Cx(L1,€|L1) T> CXI(Ll, (€|L1)’)

g(I‘l) T T res

P Oy (PelP) — = Cxi(P, (e|P)) = x

Cx (L3, L2) —=—= Cxr(La, (¢ La))

e|Lg

shows that neither (E, ') € Ob(A(X’)) nor the isomorphism f. depend on the choice of line in E.
Thus we have constructed a collection of centric [12] maps

(2.52) BCx(V,v) - BX’', (V,v) € Ob(A(X)),

that are homotopy invariant under A (X )-morphisms. The vanishing (2.51.(4)) of the obstruction
groups means [62] that these homotopy A (X)-invariant maps can be realized by a map

Bf: BX < hocolimBCx — BX'
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such that f ores =reso f, for all (V,v) € Ob(A(X)). In particular, f is a map under T and an
isomorphism (2.15). O

2.53. Verification of condition 2.51.(2). Let A(X)<! be the toral part of the Quillen cat-
egory and let H'(Wo; T)W/Wo: A(X)=<t — Ab the functor with value H' (W (Cx (V, v)g); T)™Cx (V:¥)
on the object (V,v). If the 2-compact group C satisfies the conditions of Lemma 2.40 and
Z(Co) = T(Cp)W (o) we say that C satisfies the the conditions of Lemma 2.40 in the strong
sense.

2.54. LEMMA. Suppose that

o The centralizers Cx (V,v) of all (V,v) € Ob(A(X)Z!) satisfy the conditions of Lemma 2.40
in the strong sense, a
o H'(W;T) — limO(A(X)<2,H1 (Wo; T)W/Wo) is surjective
Then conditions 2.51.(1) and 2.51.(2) are satisfied.
PROOF. Let (V,v) be an object of A(X)<! of rank < 2. Since (2.40) the centralizer Cx (V,v)
is N-determined there is a solution (f(V,v),a(V,v)) to the isomorphism problem

Cn (V™) 22 oy

l |

Cx(V,v) —— T Cx(V,v')

and the set of all solutions is (2.35, 2.37) a H'(W/Wy; T%0)(Cx (V,v))-coset. Let
a(V,v) € H (Wo; TV/™0)(Cx (V,v))

be the restriction of any solution a(V, v) € H(W;T)(Cx(V,v)) to the above isomorphism problem.
Then

(2.55) 1@a(Vor)} vuconams € lim® (A (X)Z5; H' (Wo; )W/ ™)

because the restriction of a solution is a solution. By assumption, there is an element o € H!(W; T)
that maps to (2.55) and « satisfies 2.51.(2). O

In case HY(W;T) = 0, the second point reduces to limO(A(X)<2,H1(W0 T)W/Wo) = 0.

Alternatively, if lim'(A(X )<2,H L(W/Wp; T™e)) = 0, then the short exact sequences (2.27) for
Cx(V,v), (V,v) € Ob(A(X ):é), will produce a short exact sequence

0 — lim® (A(X)Z5, H'(W/Wo; TW0)) — lim® (A(X)Z5, H' (W; T))
— lim® (A(X)Z5, H' (Wo; T)V/ W) — 0,

in the limit. Since H'(W;T) is isomorphic to the middle term by [16, 8.1], it maps onto the third
term.

2.56. Verification of condition 2.51.(3). In this subsection we assume that conditions
2.51.(1) and 2.51.(2) are satisfied. The following observations can sometimes be useful in the
verification of condition 2.51.(3).

Let (V,v) be a nontoral rank two object of A(X) and L < V a rank one subgroup. The
commtutative diagram

(2.57) N - N \
v U o (1,0 |L) — S O (L, L) X’

Li |
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shows that v}, which is defined to be res o f,|;, o 7(L), is equal to the composite v; = j' o a0 vl

Moreover, we see by taking the centralizer of 7(L) that

(2.58) 1%
=Y
CX(‘/, 7/) = CX/(V, V’)
commutes.

We are looking for criteria that ensure that v} : V — X' is independent of the choice of L < V.
2.59. LEMMA. Let (V,v) be a nontoral rank two object of A(X) and L <V a line in V. Write
C3 for the Sylow 3-subgroup of GL(V'). Suppose that
(1) Cs C A(X)(V,0) N AX)(V, )
(2) fo.r: Cx(V,v) = Cx:/(V,v}) is Cs-equivariant
Then condition 2.51.(8) is satisfied.

PRrOOF. Let 8 be an automorphism of V. For general reasons, vl = (1/,6’)2]_1 ;, and the
diagram

Cx (Vyw) — "2 Ox (Vi)
Ox(ﬂ)l: :lcx,(ﬁ)
Cx(V,vpB) Cx:(V,v1p)
vB,8—1L

commutes. Now, if 3 € A(X)(V,v)NA(X')(V,vy), thenvB =v,viB=vy,and fg5-11 = fup-1L
so that f, g1, = Cx/(8) o fu,L 0 Cx (8)~! according to the above diagram. If also fv,L commutes
with the action of 3, we conclude that f, 1 = f, g-1L. O

The following lemma assures that condition 2.59.(1) holds.

2.60. LEMMA. Let L and V denote elementary abelian 2-groups of rank one and two, respect-
iely. Suppose that

(1) There is (up to conjugacy) a unique monomorphism \: L — X with nonconnected cent-
ralizer
(2) There is (up to conjugacy) a unique nontoral monomorphismv: V — X

Then the same holds for X', and A(X)(V,v) = GL(V) = A(X')(V,V') for the unique nontoral
rank two objects (V,v) of A(X) and (V,v') of A(X').

PRrROOF. Let v': V — X' be a nontoral monomorphism and i: L — V an inclusion. Then
(L,v'i) = (L,XN) for Cx/(L,v'7) is nonconnected so that v’ and A must correspond under the
bijection A(X)<! — A(X’)S! between toral categories. Moreover, the diagram

Fa

1R

(2.61) X <= Cx(L,\) Cx/(L,\N) —== X'
V v

is commutative. To see this, observe that (V,res o f; ' o7/(L)) is a nontoral rank two object of
A(X) (its centralizer is isomorphic to C¢,(z,a)(V,7'(L)) = Cx:(V,v')) so that (V,v) = (V,res o
fy ' o7 (L)) by uniqueness of (V,v). Also, we see from the commutative diagram

A L
=}
o(L)
X <—5— COx(L, ) %4

frev' (L)
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that 7(L) = f5 ' o 7/(L) by uniqueness of canonical factorizations under L [46, 3.9]. We conclude
that v/ = reso?/'(L) = reso f) ov(L). This means (2.57) that v’ = v}, for any choice of line L < V.
Since thus v’ is unique up to conjugacy, v'3 = v’ for any automorphism £ of V. O

Note in connection with the verification of condition 2.59.(2), that if 2.59.(1) is satisfied so
that v} = v/ is independent of L, then (2.58) shows that f, 1 is a map under V in the sense that

N

x(V,v) —>CX/V1/)

(2.62)

commutes. Since the canonical monomorphisms, 7(V) and 7'(V), are GL(V)-equivariant, the
restriction of f, 1 to V is C3-equivariant.

For any nontoral object (not necessarily of rank two) (V,v) of A(X) and any rank one subgroup
L C V,let vY:V — N be a preferred lift of v such that v |L is the preferred lift of v|L, ie
vN|L = (v|L)N. (It is always possible to extend a preferred lift given on the subgroup L to a
preferred lift defined on all of V' but a preferred lift defined on V' may not restrict to a preferred
lift on L [45, 4.9].) Also, define v7,: V — X’ and f, : Cx(V,v) = Cx/(V,v}) as in 2.51.(3).

2.63. LEMMA. Let v: V — X be any nontoral object of A(X).

(1) If the centralizer of v has a nontrivial identity component, then vi: V — X' is independ-
ent up to conjugacy of the choice of LC V, and v}, = j' oaovl.

(2) If also there ezist a 2-compact torus T, and isomorphisms T, — Cn(V,vY)o such that
the composites T, — Cn(V, Viv)o — T are independent up to conjugacy of L <V, then

fo.r: Cx(V,v) — Cx:/(V,v') are isomorphisms under the mazimal torus T, for all L < V.

PROOF. (1) Just as in (2.57) we see that v}, =reso f,|; o U(L) = j' o a0 v}. The hypothesis
implies that there exists [17, 5.4, 7.3] a morphism ¢: L; X V — X extending v: V — X whose
adjoint L1 — Cx(v) factors through the identity component of Cx (v). Let Ly — Cn(V,vY) be
the preferred lift of L; — Cx(V,v) as in the commutative diagram

Cn(Viv)) —>N

ol

L —Cx(V,v) —o> X

This preferred lift will factor through the identity component of Cy(vY) (and hence its composition
with Cn(v)Y) — N will factor through the identity component of N) since L; — Cx(V,v) factors
through the identity component of Cx(v) [45, 4.10]. Let ¢Y: L; x V — N be the adjoint of
the preferred lift Ly — Cn(vY). Then ¢¥|L;: L1 — N factors through the identity component
of N (the maximal torus) so it is [45, 4.10] the preferred lift of ¢|L1: Ly — X. In particular,
¢Y|L1 = (¢|L1)YN does not depend on the choice of L.

The adjoints, ¢35 : V — Cn(¢¥|L1) and ¢o: V — Cx(¢|L1), of Y and ¢, respectively, with
respect to the second factor, give a commutative diagram

FolL
Cx (L1, ¢|L1) —— Cx:(L1, (¢|L1)")
B | o=
o3 Ca
V ——— Cn(L1, ¢} |L1) ——— Cn(L1,¢7 | L1) X'

[e%

We conclude that v/} = j'oaov) =reso folL, 0¢2: V — X' is independent of the choice of L < V.
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(2) The upper square in the diagram
T, ———————T,

| !

CN(V, I/iv) —a> CN(V, Cﬂliv)

| |

Cx(V,v) Cx:(V,v')

v,L

commutes because « restricts to the identity on the identity component 7" of N and hence also on
T,. That the lower square is commutative is consequence of the commutative diagram

ON(L, v |L) —22> Cx (L, av))

e |

[ L.v|L) —— (L L)
Vo Ox(LviE) = Cx (1, L))

where 7Y (L) and 7(L) are the canonical factorizations (2.65). O

Let u: U — X be a nontrivial elementary abelian 2-group and yg: U — X a monomorphism
whose centralizer Cx (U, ) has nontrivial identity component. Suppose that U contains a nontrivial
subgroup V < U such that the restriction of y to V is nontoral. Choose a rank one subgroup
L C V CU. We may choose the preferred lifts u¥ and (u|V)¥ such that u¥ |V = (u[V)¥. Since
Cx (U, ) has nontrivial identity component, the conjugacy classes of the monomorphisms u' = p’;
and (u|V)}, = p'|L are independent of the choice of L by 2.63.(1). Then there is a commutative
diagram

(2.64) U
Ox (V. V) ————> Cx (Vo |V)

similar to (2.62).

2.65. Canonical factorizations. Let v: V — X be a monomorphism from an elementary
abelian p-group to the p-compact group X. The canonical factorization of v through its centralizer
is the central monomorphism 7(V): V — Cx(V,v) whose adjoint is V x V =5 V' % X [17, 8.2].
If a: (Vi,v1) = (Va,12) is a morphism in A(X) then the canonical factorizations are related by a
commutative diagram

v1(V1)

(266) 1% CX (Vi, 1/1) res X
at Cx(a)T H
Vo ———>Cx(Vo,10) —o> X

U2 (Va)

and we shall write 72(V}): Vo — Cx (V1,v1) for Cx (a)ov2(V2) and call it the canonical factorization
of vy through the centralizer of v;. The induced diagram
(2.67)

CCX(V2,V2)(I/2’52(V'2)) CCX(V1,V1)(‘/2’v2(V1)) CCX(V1,V1)(‘/1’51(‘/1))

El _ lg

Cx (Va,1n) Cx(V1,11)

Cox(a) Cox(vi v (@)
_—

Cx ()

is a factorization of Cx ().
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4. An exact functor

Let W be a finite group, p a prime, and p: W — GL(t) a representation of W in an F,-vector
space t of finite dimension. For any nontrivial subgroup V C t, let

WWV)={weW |VYveV:wv=uv}

be the subgroup of elements of W that act as the identity on V. For any two nontrivial subgroups
Vi,Va C t, let

W(Vi, Va) = {w € W]wWi C Va}
be the transporter set. (Even though suppresed in the notation, these set depend on the repres-
entation p.)

Suppose that we are given also a Z,W-module L.

2.68. DEFINITION. [47, 2.2] A(p,t) is the category whose objects are nontrivial subspaces
of V and whose morphisms are group homomorphisms induced by the W-action. The functor
L;: A(p,t) — Ab is the functor that takes the object V. C t to H (W (V);L) and the morph-

ism w: Vi — Vg to Hi(W(V1); L) —>H (W (V1)*; L) —~Hi(W(V); L) where res is restric-
tion and w* induced from conjugation with w € W.

The category A(p,t) depends only on the image of W in GL(¢) but the functor L; depends on
the actual representation. The morphism set in A(p,t) is the set of orbits

A(p,t)(Va, V) = W(Va, V) /W (V)

for the action of the group W (V7) on the set W(Vi, V). We shall often write A (W,t) for A(p,t)
when the representation p is clear from the context and A (W, t)(V) will be used as an abbreviation

for the endomorphism group A(W,¢)(V,V) =W (V,V)/W (V).
2.69. LEMMA. [16, 8.1] L; is an ezact functor with limit H'(W;L):
HiW;L) j=0

lim? (A(W, ), Li) = {0 < 0
J

PROOF. The proof of [16, 8.1] also applies to this slightly different setting where the action of
W on the Fj,-vector space ¢ may not be faithful and L is a Z,W-module (and not an F,W-module).

Another possibility is to use the ideas of [30]. It suffices to show that the category A(W,t)
satisfies (the dual of) the conditions of [30, 5.16] and that L, is a proto-Mackey functor. Define
L*: A(W,t) — Ab to be the contravariant functor that agrees with L, on objects but takes the
A (W, t)-morphism w: Ey — E; to the group homomorphism

(w—l)*

H*(W(Ep); L)~——

t

H*(W(Eo)*; L)<——— H*(W(E1); L)

where tr is transfer. To prove the existence of coproducts and push-outs in the multiplicative
extension A(W,t)r we follow [30, 6.3]. Let Eo, E1, E2 be elementary abelian subgroups of ¢ where
Ey C E; and there is a morphism Ej — E, represented by an element w € W (Ey, Ez) C W. (Ey is
possibly empty to allow for the construction of coproducts.) Each coset gW (E;) € W(Ey) /W (E1)
has an associated special diagram

Ey——Ey

Tk
Ezc—> E2 + ’ll)gEl
where we note that W(Es 4+ wgE1) = W (E2) NW (E1)™9. This construction determines a bijection

between the double coset w ™ 1W (E2)w\W (E,)/W (E;) and the set of isomorphism classes of special
diagrams, cf. [30, 7.3], and therefore

Ey———E;

wl |1

Ey——T](E2 + wgEn)
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where the product is taken over all g € w™ W (E2)w\W (Ey)/W (E1), is a push-out diagram in
A(W,t)r7 [30, 6.3]. By [30, 5.13], we need to show that the diagram

. L* (EoCEn) .
H*(W (Ep); L) - H*(W(Ey); L)
L*(w)l il‘[h(wg)
H(W(E2)i L) <= = cprromy LT (W(E2) N W (E1)¥%; L)

commutes. But this is precisely the content of the Cartan—Eilenberg double coset formula relating
the restriction and transfer homomorphisms in group cohomology [8] [21, 4.2.6].

The restriction homomorphism H*(W; L) — lim°(A (W, t); L.) is injective since ¢ contains an
elementary abelian subgroup E C t such that the index of W(E) in W is prime to p. To show
surjectivity, we use the argument from the proof of [30, 7.2]. O
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CHAPTER 3

The A-family

The A-family consists of the matrix groups
GL(n+1,C)

GL(1,C) ’
where GL(n + 1, C) is the Lie group of complex (n + 1) x (n + 1) matrices with center GL(1, C)
consisting of scalar matrices. The maximal torus normalizer for PGL(n + 1, C) is

GL(1,C)™+!
N(PGL(n+1,C)) = 2 w5,
( (n+ ) )) GL(I, C) A +1
where ¥,,11 = W(PGL(n+1,C)) C PGL(n+1, C) is the Weyl group of permutation matrices. It
is known [24, 35] that

PGL(n+1,C) = n>1,

Z/2 n=1
0 n>1’

V. JE/2 n=3
H(W’T)_{o n#3

for PGL(n+1, C). For all n, PGL(n+1,C) = PSL(n+1,C). When n+1is odd, PGL(n+1,C) =
PSL(n +1,C) = SL(n + 1, C) as 2-compact groups.

(3.1) HO(W;T) = {

1. The structure of PGL(n + 1,C)

In this and the following section we use the results of Chapter 2 to show that the 2-compact
groups PGL(n + 1,C), n > 1, are uniquely N-determined. This section provides the information
about the Quillen category needed for the calculation (3.18) of the higher limit obstruction groups
from 2.48 and 2.51.

3.2. The toral subcategory of A(PGL(n + 1,C)). We consider the full subcategory of
A(PGL(n+1, C)) generated by the toral nontrivial elementary abelian 2-groups in PGL(n+1, C),
A(PGL(n +1,C))St (2.50) .

3.3. LEMMA. The monomorphism v: V — PGL(n + 1,C) is toral if and only if it lifts to a
morphism V — GL(n +1,C). If n+ 1 is odd, all objects of A(PGL(n + 1,C)) are toral.

PROOF. Any monomorphism V' — GL(n + 1,C) — PGL(n + 1, C) is toral since it is toral
already in GL(n + 1,C) by complex representation theory. Conversely, any toral monomorph-
ism V — GL(1,C)"*/GL(1,C) € PGL(n + 1,C) lifts to GL(1, C) since GL(1,C) is divisible.
When n + 1 is odd, PGL(n 4+ 1,C) = SL(n + 1,C) C GL(n + 1,C) as 2-compact groups so all
monomorphisms V' — PGL(n + 1, C) are toral. O

Let
e; = diag(+1,...,+1,—1,+1,...,+1) € GL(n + 1,C), 1<i<n+1,
be the diagonal matrix with —1 in position 7 and +1 at all other positions. The maximal toral
elementary abelian 2-groups

Api1 = (e1,...,eny1) = (diag(+1,...,+1)) = (Z/2)"* € GL(n +1,C),
PApy1={e1,...,ent1) /(€1 - ent1) = (Z/2)" C PGL(n +1,C),
have Quillen automorphism groups ¥,4+1 =2 A(GL(n+1, C))(Ap+1) = A(PGL(n+1, C))(PAp+1).
3.4. LEMMA. The inclusion functors
A(Zpi1,A011) = A(GL(n+1,C)),  A(Zp41,PAni1) = A(PGL(n+1,C))=!

are equivalence of categories.

33
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ProOF. This is a general fact; the first part of [47, 2.8] also holds for the case p = 2. However,
it may be more illustrative to prove the lemma directly in this special case.

By complex represention theory, any nontrivial elementary abelian 2-group in GL(n + 1, C) is
conjugate to a subgroup of A,4; and A(GL(n + 1,C))(Ant1) = Zny1. Thus there is a faithful
inclusion functor A(X,41,Ant1) = A(GL(n + 1, C)) which is surjective on the sets of isomorph-
ism classes of objects. It remains to show that this functor is full. Since any morphism in the
category A(GL(n + 1,C)) is an isomorphism followed by an inclusion, it is enough to show that
any conjugation induced isomorphism V3 — V5 between nontrivial subgroups Vi, Ve C Ay is
actually induced from conjugation by an element of N(GL(n + 1, C)). But this is well-known fact
from Lie group theory easily derived from eg [7, IV.2.5].

Any toral nontrivial elementary abelian 2-group in PGL(n+1, C) is the image of a elementary
abelian 2-group in GL(n+1, C) and hence conjugate to subgroup of PA,, ;. Since any A(PGL(n+
1, C))-morphism between subgroups of PA,1; are induced from conjugation with an element of
N(PGL(n + 1,C)), it follows that A(Z,41,PA,+1) = A(PGL(n + 1,C))<! is an equivalence of
categories. O

For any partition n +1 = ig +4; + -+ + i, of n + 1 into a sum of r positive integers, let
(£1)%(£1)% ... (+1)* denote the diagonal matrix

io i1 ir
~ ~

diag(£1,... £ 1,%1,...£1,...,%1,... £ 1)

in GL(n+1,C).
For any partition (ig,%1) of n 4+ 1 =4 + 4; into a sum of two positive integers ig > i; > 1, let
L[ip,i1] C PGL(n + 1, C) be the image in PGL(n + 1, C) of the elementary abelian 2-group

L[io,il]* _ <(+1)io (_1)1'1, (_1)n+1>
in GL(n + 1, C). The centralizer of L[ig, 1] is

%L’gf X CQ 7:0 = il
(3.5) Crarmi1,0)Llio,i1] = § G Sinarime) - -
GL(1,0) o > 1

where the action of

a=((& 1))

interchanges the two GL(ig, C)-factors. The center of the centralizer of Llig, %] is

. Ll[ig, 1] 10 =11
(3.6) ZCpar(nt1,0)Lli0,i1] = {GL(I,C)XGL(I,C) o
GL(1,0) %0 >

For any partition (ig,41,i2) of m + 1 = 49 + i1 + iz into a sum of three positive integers
i > 91 > 12 > 1 let Plig,41,92] C PGL(n + 1, C) be the image in PGL(n + 1, C) of the elementary
abelian 2-group
Plig, i1, ia]* = ((+1)°(=1)" (+1)%2, (+1) (+1)" (-1)*2, (=1)**)
in GL(n + 1, C). The centralizer of Plig, %1, 2] is
GL(io, C) X GL(il, C) X GL(iz, C)
GL(1,C)

(3.7) CpcL(nt1,c)Plio, i1,12] =
so that the center of the centralizer is

. .. GL(1,C)x GL(1,C) x GL(1,C
(3.8) ZCpaLn+1,0)Plio, i1,12] = (L,C) (1,C) (1,€)

GL(1,C)

connected.

For any partition (4o, 41,4%2,73) of n+ 1 into a sum n+1 = 49 + 41 + i + i3 of n + 1 into a sum
of four positive integers ig > i3 > i > i3 > 1 let Plig,41,12,13] C PGL(n + 1, C) be the image in
PGL(n + 1, C) of the elementary abelian 2-group

Plig, i1y iz,is]" = ((+1)(=1)" (+1)" (=1)"2, (+1)" (+1)" (=1)(=1)", (=1)"*1)
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The centralizer of Plig,i1,12,13] is

GL(40,C)* . . . .
%X}(CQXCQ) 0 =11 =12 =13

GL(49,C)% x GL(42,C)? % Cy

(3.9)  Cpgrn+1,0)Plio, i1, 12,13] = GrLo) ig =11 > iy = i3
GL(?:(),C)XGL il,C)XGL(iz,C)XGL(ig,C) .
GL(1,C) otherwise

where
0 E 0 0 0 0 E 0 0 E 0 0
E 0 0 0 0 0 0 E E 0 0 0
C2X02:<000E’E000>’ 02_<000E>
0 0 E 0 0 E 0 0 0 0 E 0

1S

fhubeiin

The center of the centralizer of P[ig, 1, 2,3

(3.10)  ZCpgr(nt1,c)Plio, i1,12,13] =
Plig, 11,12, 13] 19 = 41 = i3 = i3
SLULGCOULO) o ((+1)70(—1) (+1)i2(=1)") ip = i1 > ip = i

GL(1,C)xGL(1,C)x GL(1,C) xGL(1,C)

GL,0) otherwise

We collect the information about the toral subcategory that we shall need later on in the
folllowing proposition. Let P(m, k) denote the number of partitions of m into sums of & natural
integers.

3.9. PROPOSITION. The category A(PGL(n + 1,C)) contains precisely
e P(n+1,2) isomorphism classes of toral rank one objects represented by the lines Llig,i1].
e P(n+1,3)+ P(n+1,4) isomorphism classes of toral rank two objects represented by the
planes Plig,i1,12] and Plig,1,12,13).
The centralizers of these objects are listed in (3.5), (3.7), and (3.9).
The automorphism groups are easily computed using complex representation theory because
A(GL(n + 1, C))(PJip, i1, i2,13]") = A(PGL(n + 1, C))(Plio, i1, i2,13])
is surjective (as in 3.16). One finds that
GL(2,F3) {(ip,1,%2,13) > 3
A(PGL(n +1,C))Plig, i1, d2,13] = § C2 L(ig, 11, 12,13) =
{1} L(ig,11,12,13) =1
where £(ig,%1,12,i3) = maxi<j<4 #{k | ix = 4;} is the maximal number of repetitions in the

sequence (ig,%1,42,%3). This formula also holds for the objects Plig,i1,%2] when interpreted as
Plig, 1,12,0].

2. Centralizers of objects of A(PGL(n+1, C))éé are LHS
In this section we check that all toral objects of rank < 2 have LHS (2.§2.26) centralizers.
3.10. LEMMA. The centralizers of the objects of A(PGL(n + 1, C))é;,
(1) SLEOL 5y (3.5),

GL(1,0)
GL(i,C)*

(2) Gidy @ (Cax Cy) (8.9),

. 2 - 2
(3) SRleGIrEl2CL % C, (3.9)
are LHS.
PROOF. (1) Let X = SLG:OZ o Ca, i > 1, where the Cs-action switches the two GL(¢, C)-
GL(1,0)

factors. For ¢ = 1, X is a 2-compact toral group, hence LHS. For ¢ = 2 explicit computer
computation yields

D 1 Oy | BN ) | BN W T) | B (Wos T)™ | B (Wi T) |

[ i=2 [ 0 [ Z/2 | Z/)2 | Z/]2 |
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so X is manifestly LHS in this case (even though Xj is not regular). For ¢ > 2, §(X,) is bijective
and thus X is LHS by 2.28. (6(Xj) is injective by 2.21.(1) and surjective by 2.21.(2) for ¢ # 4 and
for ¢ = 4 by inspection or by 2.23 and 2.24 for all ¢ > 2.)

(2) Let X = %LL<(’1‘2) (Cy x C3), i > 1, where Cy X Cp = ((12)(34), (13)(24)) permutes the four

GL(¢, C)-factors. For ¢ = 1, X is a 2-compact toral group, hence LHS. For i = 2 explicit computer
computation yields

[ S  (Co x @) [ B (m T%) [ H (W) | H (Wi )" | B (Wi T) |

| i=2 L z2 [ (z/2° | (z/2° [ (Z/2° |

so X is manifestly LHS in this case. (Alternatively, observe that Xy is regular (2.24, 2.23), the
kernel of §(X,) is (Z/2)%, and (X,)™ is surjective because H'(Cy x Ca; (Z/2)*) = 0 for the regular
representation.) For i > 2, we see as in 3.10.(1) above that 6(Xj) is bijective and hence X is LHS
by 2.28.

(3) Let X = (GL(iO’gI)ISé)(i?’C))z X O, 1 < iy < iz, where Cy switches the two identical factors.
Using 2.23 and 2.24 we see (details omitted) that X, is regular. By 2.21.(1), 8(Xy) is in fact
bijective except when i or iz is 2. In those cases, the kernel of 6(Xp) is (Z/2)? and 6(X,)“? is
surjective as H'(C2; (Z/2)?) = 0 for the regular representation. Therefore X is LHS by 2.28. O

3. Limits over the Quillen category of PGL(n + 1,C)

In this section we show that the problem of computing the higher limits of the functors
7i(BZCpgL(n+1,c)), § = 1,2, (2.47) is concentrated on the nontoral objects of the Quillen category.

3.11. LEMMA. [47, 2.8] Let V C PA, 1 be a nontrivial subgroup representing an object of
A(Z,41,PA,1 1) = A(PGL(n +1,C))St (8.4). Then

ZCparnt1,c) (V) = TP+ (V)

where T = T(PGL(n, C)) is the discrete approzimation [18, §3] to the mazimal torus of PGL(n +
1,C) and ¥,+1(V) is the point-wise stabilizer subgroup (2.68).

Proor. Let v*: V — T(GL(n + 1, C)) be alift to GL(n+1, C) of the inclusion homomorphism
of V into T(PGL(n + 1,C)). Then

C1GL('n+1 C) v V H GL p7 7 TL+1 v V H Zzp
peEVY pEVY

where i: VV — Z records the multiplicity of each linear character p € V'V in the representation v*.
Using [47, 5.11] and 9.20 we get that

Carnt1,0)("V) :
CraLr(n+1,0) (V)= GLéE(llc)C) X V)5, Znt1(V) = Znpr (vV'V) % | A4

where V% = {¢ € V¥V = Hom(V,GL(1,C)) | Vp € VV:i¢, = i,}. The semi-direct products
are obtained because the elements of V% can be effectuated by permutations from ¥, that fix
V ¢ PGL(n+1, C) point-wise. The discrete approximation [18, §3] to the center of the centralizer

is therefore
[GLGy C) | v e, (TIGLG,, C) v
GL(1,C) v GL(1,C)
1z

N(

ZCparin+1,0)(V
GL(ip O)\ "™ _ (T(GL(n+ 1,01\ ™
GL(1,C) B GL(1,C)

(

( (PGL(n + 1, C)) =1 (v V)) = T(PGL(n + 1, C))Z++ ()

where the penultimate equlity sign is justified by the fact that H!(Z,y;(v*V);GL(1,C)) —
HY (11 (v*V); T(GL(n + 1,C))) is injective. O
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Define 7;(BZCpgr(n+1,c)) £t to be the subfunctor of m;(BZCpar(nt1,c)) (2-47) that vanishes
on all toral objects and is unchanged on all nontoral objects of the Quillen category. This means
that
0 (V,v) is toral

3.12 {(BZC V,v) =
(312) i parnt,0)z(V:V) {ﬂ'i(BZCPGL(n—H,C))(Vu v) (V,v) is nontoral

for all objects (V,v) of A(PGL(n + 1,C)). The reason for introducing this subfunctor is that in
the computation of the higher limits, we can ignore the toral objects.

3.13. COROLLARY. Whenn > 1,
lim*(A(PGL(n + 1, C)); mi(BZC)y,) = lim*(A(PGL(n + 1,C)); m(BZC)), i=1,2,
where m;(BZC) = 1;(BZCpqarn+t1,c)) (2-47).
PROOF. The result of Lemma 3.11 is (2.31) equivalent to
mi(BZC)(V) = H* *(Spa(V);L),  V CPAny,
where L is the Z3Y,,11-module 7o BT(PGL(n + 1, C)) and therefore (2.69)
lim? (A(PGL(n + 1,C))<!, m(BZC)) = {gp_z@”*l’m j i g

where the cohomology groups H2*(X,41; L), i = 1,2, are trivial for n > 1 (3.1).
Since the quotient functor m;(BZC)/n;(BZC)«; vanishes on all nontoral objects
_ [47,13.12] |
lim? (A(PGL(n + 1,C)), 7;(BZC)/mi(BZC)¢;) =  lim’(A(PGL(n + 1,C))S!, m(BZC))
We conclude that lim*(A(PGL(n + 1,C)),m;(BZC)/n;(BZC)4;) = 0. The long exact coeffi-
cient functor sequence for higher limits now shows that lim* (A (PGL(n + 1, C)), m;(BZC)«;) and
lim*(A(PGL(n + 1, C)), m;(BZC)) are isomorphic. O

4. The category A(PGL(n +1,C))[- 1#0

For any nontrivial elementary abelian 2-group V in PGL(n + 1,C), let [, |: V XV = Fq
be the symplectic bilinear form [28, I1.9.1] given by [uC*,vC*] = r if [u,v] = (—E)" where
u,v € GL(n + 1,C) are such that uC*, vC* € V. (The elements [u,v] and u? lie in the center
C* of GL(n +1,C) so that E = [u?,v] = [u,v]*[u,v] = [u,v]? and thus [u,v] € C* has order 2.
Therefore [u,v] = [u,v]™! = [v,u].)

3.14. LEMMA. V in PGL(n + 1, C) is toral <= [V,V]=0

PROOF. Let ¢;C*, 1 < i < d, be a basis for V. Since C* is divisible, we can assume that each
e; € GL(n + 1, C) has order 2. If [V, V] = 0, these e;s commute and span a lift to GL(n + 1, C) of
V C PGL(n + 1, C). O

An extra special 2-group is of positive type if it is isomorphic to a central product of dihedral
groups Dg of order 8 [56, p 145-146].

3.15. LEMMA. [23, 3.1] [47, 5.4] Let v: V — PGL(n, C) be a nontoral monomorphism of a
nontrivial elementary abelian 2-group V into PGL(n + 1,C). Then there ezists a morphism of
short exact sequences of groups

1——= Z(P) P ‘f 1
1 CX GL(n+1,C) —=PGL(n+1,C) ——1

where PE is the direct product of an extra special 2-group P C GL(n + 1, C) of positive type and
an elementary abelian 2-group E C GL(n + 1,C) with PN E = {1} = [P, E].
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Let G = (P, E,i) = P o Cy x E be the group generated by E and the central product P o Cy
of P and the cyclic group Cy = (i) C C* with C; = (—F) amalgamated. The image of G in
PGL(n+1,C) is V.

Let A(GL(n,C))(G) be the subgroup, isomorphic to Ngr(n+1,c)(G)/G - Car(nt1,c)(G), of
Out(G) consisting of all outer automorphisms of G induced from conjugation in GL(n + 1, C)
[47, 5.8]. In other words, A(GL(n,C))(G) = Out(G) is the group of trace preserving outer
automorphisms of G.

3.16. LEMMA. A(GL(n +1,C))(G) - A(PGL(n + 1,C))(V) is surjective.

PROOF. Suppose that B € GL(n + 1,C) is such that VB€" = V. Then GB C G- C*: For
any g € G there exist h € G and z € C* such that g® = hz. But since G has exponent 4, z* =1
so z € Cy and ¢g® € G. O

A monomorphic conjugacy class v: V — PGL(n + 1, C) is said to be a (2d + r,7) object of
A(PGL(n+1, C)) if the underlying symplectic vector space of (V,v) is isomorphic to V = HIx V+
where H denotes the symplectic plane over Fy and dimg, V- = r [28, I11.9.6] (so that dimg, V =
2d + 7). An (r,r) object is the same thing as an r-dimensional toral object. We write Sp(V) or
Sp(2d + r,7) (abbreviated to Sp(2d) if » = 0) for the group of linear automorphisms of V' that
preserve the symplectic form.

3.17. COROLLARY. Suppose that n+ 1 = 2%m for some natural numbers d > 1 and m > 1.
(1) There is up to isomorphism a unique (2d,0) object H® of A(PGL(n + 1,C)), and
A(PGL(n+1,C))(H? = Sp(2d), Cpar(n+1,c)(H*) = H* x PGL(m, C)
for this object.
(2) Isomorphism classes of (2d + r,7), r > 0, objects V of A(PGL(2¢m,C)) correspond
bijectively to isomorphism classes of (r,7) objects VL of A(PGL(m,C)), and

A(PGL(2%m, C))(V) = <Sp(*2d) A(PGL(T?S, C))(VL))

CPGL(2dm,c)(V) = V/VL X CpgL(m,C) (VJ')
for these objects.

Proo¥. 1. The group 2172?04 has [29, 7.5] 2'+24 characters of degree 1 and 2 irreducible
characters of degree 2¢ (interchanged by the action of Out(2}">¢04) = Sp(2d) x Aut(C4) [22, pp.

403-404]) given by
_J2Ng) g€ G
xa(9) = {0 9&Cy

where A: Cy — C* is an injective group homomorphism (A(Z) = %¢). The linear characters vanish
on the derived group 2 = [272% 0 4,229 6 4] but the irreducible characters of degree 2¢ do not.
Thus the only faithful representations of 21_"'2‘1 o4 with central centers are multiples my of x for
a fixed X. Phrased slightly differently, GL(m2%, C) contains up to conjugacy a unique subgroup
with central center isomorphic to 21+2? o 4. For this group and its image H? in PGL(2¢m,C) we
have

A(GL(m2%,C)) (24724 0 4,21 729 0 4) 2 Sp(2d) = A(PGL(m2?,C))(H?, H?)
Car(mza,0) (25?4 04) 2 GL(m,C), Cpar(mae,c)(H?) = H? x PGL(m, C)
where the last isomorphism is a consequence of [47, 5.9].
2. The (2d+r,7) object (V,v) of A(PGL(2%m, C)) and the (r,0) object (V+,v1) of A(PGL(m, C))
correspond to each other iff there is an m-dimensional representation p: V+ — GL(m, C) such that
g w is a lift of v|V+ and u a lift of v*. According to 3.15 any lift of v|V+ has this form for
some p uniquely determined up to the action of (V+)Y.
We use 3.16 to calculate the Quillen automorphism group of a (2d + r,r) object H d % VL of

A(PGL(2¢m,C)). Let H? x V* be covered by the group P o Cy x V1 as in 3.15. Let « be an
automorphism of PoCy, let # be any homomorphism of the form PoCy — H¢ — V', and let y be
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any Quillen automorphism of (V+,v1). Choose a homomorphism ¢;: PoCy — H% x Cy4/Co — C4
such that A(¢1(z)a(z)) = A(z) for all z € C4 and a homomorphism (2: V+ — C; such that
A¢a(v))p(y(v)) = p(v) for all v € VL. Then the automorphism of P o C4 that takes (z,v) to
(¢1(z)¢2(v)a(z), B(z) + v(v)) preserves the trace of x #u and therefore the automorphism in-
duced on the quotient is a Quillen automorphism of H? x V1. Conversely, any automorphism
of PoCy x V! takes the center Cy x V' isomorphically to itself and hence it is of the form
(z,v) — ({(z,v)a(z),B(z) + v(v)) for some automorphism « of P o C4, some homomorphism
B: PoC4 — V- vanishing on Cy4, and some homomorphism (: P o Cy x V+ — Cj4. Such an auto-
morphism preserves the trace of xx#pu iff \(¢(z,v)a(z)) = u(y(v)) for all (z,v) € Z(PoCyx V1) =
Cy x V+. But this means that the induced automorphism of H? x V1 is of the stated form. [

We conclude that the nontoral objects of A(PGL(2m, C)) of rank < 4 are

e One (2,0) object H, A(PGL(2m, C))(V) = Sp(2),

e P(m,2) (3,1) objects V, A(PGL(2m, C))(V) = Sp(3,1),

o P(m,3)+P(m, 4) (4,2) objects E, A(PGL(2m, C))(E) = (Sp*@) A(PGL(HS, o) (Ei))

where A(PGL(m, C))(E+) = 1, C2, or GL(E1),

e One (4,0) object H? if m is even, A(PGL(m, C))(H?) = Sp(4).
This information will be needed in the next section as input for Oliver’s cochain complex [53] for
computing higher limits of the functors m(BZCpGL(n_H’C)),{_t.
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5. Higher limits of the functor m;BZCpgr,(n+1,c) on A(PGL(n + 1,C))l > 170

We compute the higher limits from 2.48.(2) and 2.51.(4) by means of 3.13 and Oliver’s cochain
complex [53].

3.18. LEMMA. The low degree higher limits of the functors m; BZCpgL(nt1,0), ¢ = 1,2, are:
(1) lim? (A(PGL(n + 1,C)), mBZCpgr(nt1,0c)) = 0 for j = 1,2,
(2) lim? (A(PGL(n + 1,C)), m2BZCpaL(n+1,c)) = 0 for j = 2,3,
for alln > 1.

For any elementary abelian 2-group F in PGL(n + 1, C) we shall write

[E] = Homp (pg1(n+1,0))(B) (St(E), 11 (BZCpaL(n+1,0) (£)))

for the Fa-vector space of FoA(PGL(n + 1, C))(E)-module homomorphisms from the Steinberg
representation St(E) over Fy of GL(E) to m1(BZCpgL(n+1,0)(E)-

Oliver’s cochain complex for computing the first limits of the functor m; (BZCPGL(n+1,C))$t
has the form

d! . . .
(319) 0= [H = [ [H#LIm—i,i] = [H#P[L,1,m=2]x [[ [H#P[,i—1,m—i]]
1<i<[m/2] 2<i<[m/2]

where we only list some of the nontoral rank four objects. Here,

[H] = Homsp(g)(St(H),H) = F2

[H#L[m — i,i]] = Homgp3,1)(St(V),V) = Fy, V = H#Lm — 1,1,
[H#P[1,1,m — 2]] = Hom Sp(2) 0 (St(Ey), Eo/Ey) = Fy, Ey = H#P[1,1,m— 2],
(" c)
[H#P[1,i—1,m —i]] = Hom (Sp(2) 0

(St(E;), FE;) 2 Fy xFy, E;=H#P[l,i—1,m —i]
* 1)

where 2 < 4 < [m/2] in the last line. The dimensions of these spaces were found using the computer
algebra program magma. It suffices to show that the first differential d* is injective and that the
second differential d* has rank [m/2] — 1.

Let H = Fae;+Faeq be a 2-dimensional vector space over Fo with basis {e;, e2} and symplectic

inner product matrix
01
1 0

Let F3[1] be the 3-dimensional Fa-vector space on all length zero flags [L] of nontrivial proper
subspaces L C H. The Steinberg module St(H) for H is the 2-dimensional FoGL(H)-module that
is the kernel for the augmentation d: Fo[1] — F3 given by d[L] = 1 for all L. Let f: St(H) — H be
the restriction to St(H) of the FoGL(H)-module homomorphism f: F;[1] — H given by f[L] = L.

Let V = Fae; + Foes + Faes be a 3-dimensional vector space over Fy with basis {e;, eq, e3}
and (degenerate) symplectic inner product matrix

010
1 00
0 00

Let F2[1] be the 21-dimensional Fo-vector space on all length one flags [P > L] and F3[0] the 14-
dimensional Fa-vector space on all length zero flags, [P] or [L], of non-trivial and proper subspaces
of V. The Steinberg module St(V') over Fy for V is the 23 = 8-dimensional kernel of the linear
map d: Fa[1] — F2[0] given by d[P > L] = [P] + [L]. Define df: St(V) — V to be the restriction
to St(V) of the linear map df : F5[1] — V given by

_ {L PN Pt ={0}

3.20 df[P > L] =
( ) fl ] 0 otherwise

on the basis vectors.
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Let E = Faey + Foes + Faoes + Faey be a 4-dimensional vector space over Fo with basis
{e1, €2, €3, €4} and (degenerate) symplectic inner product matrix

0100
1.0 00
0 0 0O
0 0 0O

Let F3[2] be the 315-dimensional F-vector space on all length two flags [V > P > L] and F5[1]
the also 315-dimensional Fa-vector space on all length one flags, [P > L] or [V > L] or [V > P],
of non-trivial, proper subspaces of E. The Steinberg module St(E) over Fy for E is the 26 = 64-
dimensional kernel of the linear map d: F2[2] — F3[1] given by d[V > P > L| =[P > L]+ [V >
L]+ [V > P]. Define F; = F1|St(E): St(E) — E as the restriction to St(E) of the linear map
F,: F3[2] - E with values

L PNPL=0,VNV!t ="Faes

(3.21) Fi[V>P>1L]= )
0 otherwise

on the basis elements. Define F» = F|St(E): St(E) — E similarly but replace the condition

VNVL =Fees by VNVL = Faey. The linear maps F; and F, are (Sp>£2) 1
because this group preserves the symplectic inner product on E and preserves V- = Fy (e3, e4)

pointwise.

) -equivariant

3.22. LEMMA. Let f and Fy, Fy be the linear maps defined above.

(1) The vector f is a basis for [H].

(2) The vector df is a basis for [H#L[m —i,1]], 1 <1 < [m/2].

(3) The vector Fy is a basis for [H#P[1,1,m — 2]].

(4) The set {Fy, Fy} is a basis for [H#P[1l,i —1,m —1]], 2 < i < [m/2]. The sum F; + F
is the linear map defined as in (3.21) but with condition V N VL = Faes replaced by
Vnvi= Fa(es + €4).

PRrROOF. This can be directly verified by machine computation. O

PRrROOF OF LEMMA 3.18. Since we already know that these higher limits vanish when n + 1
is odd (3.3, 3.13) we can assume that n +1 = 2m is even.
(1) See 8.2 for the case m = 1 and assume now that m > 2. The image in [H#L[m — ,1]] of
fe[H]is
L P=H

dfpim—iq[P > L] =

frim—iil ] {0 otherwise
which equals df (3.20). For 1 < i < [m/2], let

L V=H#Lm—iji, P=H

dd m—i.i V>P>L|=
fL[ ’][ ] {0 otherwise

The object H#P[1,1, m —2| receives morphisms from H#L[m—1,1] and (when m > 2) H#L[m—
2,2]. Using a computer program one easily checks that ddfrim—1,) = F2 = ddfpm—2y2) in
[H#P[1,1,m — 2]]. The object H#P[1,i — 1,m — 7] receives morphisms from H#L[m — 1,1],
H#L[m — i+ 1,i — 1], and H#L[m — 1,i]. Using a computer program one easily checks that
dde[m—i+1,i—1] = Fl, dde[m—i,i] = Fl, and dde[m—l,l] = F1 + F2 in [H#P[l,i - l,m - ’L] For
m = 2 or m = 3, the cochain complexes (3.19) take the form

0 [H] L HELL, 1] S 0
0 o[H] L (H#LR, 1] L [H#P1,1,1]]

where d' is an isomorphism. For m > 4, and with our choice of basis (3.22), the matrix for the
differential d' is the injective (1 x [m/2])-matrix

(11 - 1)
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and the matrix for d? (or rather, the components of d? shown in 3.19) is the ([m/2] x (2[m/2] —3))-
matrix

[H#P[1,1,8]] [H#P[1,2,7]] [H#P[1,3,6]] [H#P[1,4,5]]
[H#L[9,1]] 1 11 ) 1 1
[H#L[8,2]| 8 10
[H#L[7,3]] 0 1 (1 0)
[H#L[6, 4]] (0 1) 10
[H#L][5,5]] Eo 1;

(shown here for m = 10) of rank [m/2] — 1.
(2) Oliver’s cochain complex for computing these higher limits over A(PGL(2m, C)) involve the
Zj-modules (3.17.(2))

Hom Sp(2) 0 (St(E), m2(BZCpaL(2m,C) (EY))), dimg, E = 3,4,
* A(PGL(m, C))(E1)
that are submodules of finite products of Zs-modules of the form

Hom (Sp(z) 0) (St(E),Z2), dimp, E=3,4,
* 1

where the action on Zj, is trivial. According to the computer program magma, these latter modules
are trivial. [
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CHAPTER 4

The D-family

Let GL(2n,R), n > 1, be the matrix group of 2n x 2n real matrices and SL(2n,R) the closed
subgroup of matrices with determinant 1. The D-family is the infinite family of matrix groups

PSL(2n,R) = %, n>4,

with trivial center. These groups also exist for n = 1,2, 3; however, PSL(2,R) = {1} is the trivial
group, and PSL(4,R) = PGL(2,C)?, PSL(6,R) = PGL(4, C) are already known to be uniquely
N-determined (1.2).

The maximal torus, the maximal torus normalizer of GL(2n,R), SL(2n,R), and PSL(2n,R)
are

T(GL(2n,R)) = SL(2,R)", N(GL(2n,R)) = GL(2,R) 1 %,
(41) T(SL(2n,R)) = SL(2,R)", N(SL(2n,R)) = SL(2n,R) N N(GL(2n,R))
' SL(2,R)" N(SL(2n,R))

T(PSL(2n,R)) = N(PSL(2n, R)) =

(-E) (—E)

In all three cases, the maximal torus normalizer is the semi-direct product for the action of the
Weyl group

W(GL(2n,R)) = 213, X2 =W(GL(2,R)) = < (0 1) >,

(4.2) 10

W(SL(2n,R)) = Az N (21 Sn) = W(PSL(2n, R))

on the maximal torus. It is known that for n > 3 [5, 24, 34, 35]

Z/2 n=3
(4.3) HO(W;T)(PSL(2n,R)) =0,  H'(W;T)(PSL(2n,R)) = Z/2xZ/2 n=4
0 n>4

for these projective groups. (The group of outer Lie automorphisms of the Lie group PSL(8,R),
isomorphic to X3, is faithfully represented in H!(W;T)(PSL(8,R)).)
The Lie groups

GL(2n,R) = SL(2n,R) % (D), PGL(2n,R) = PSL(2n,R) x (D (—E))

are the semi-direct products of their identity components with the order two subgroup generated by
the matrix D = diag(—1,1,...,1) (or any other order two matrix with negative determinant) and
conjugation with D induces an outer automorphism of the Lie groups SL(2n,R) and PSL(2n,R).

1. The structure of PSL(2n,R)

In this section we investigate the Quillen category A (PSL(2n,R)) (2.45) for PSL(2n,R) (and
related 2-compact groups SL(2n,R), GL(2n,R), PGL(2n,R)).

43
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Consider the elementary abelian 2-groups
t(SL(2n,R)) = t(GL(2n,R)) = (e1,...,en) C SL(2n,R) C GL(2n,R)
Aoy = (e1,...,€n,C1,...,Cp) = (diag(£1,...,£1)) = (Z/2)*" c GL(2n,R)
PAg, = Ao/ (e1---€,) 2 (Z/2)*"~ € PGL(2n,R) (e1---en =—FE)
(4.4) SAgz, = (e1,---,en,c1C,---,c1¢n) = SL(2n,R) N Ay, = (Z/2)?" 1 C SL(2n,R)
PSAs, = SAg,/ (e1---en) = (Z/2)*"% C PSL(2n,R) (e1---en =—F)
t(PSL(2n,R)) = t(PGL(2n,R)) = (I,€e1,...,€n) /(€1...€,) C PSL(2n,R) C PGL(2n,R)
Pt(SL(2n,R)) = Pt(GL(2n,R)) = (e1,...,€n) / {€1---en) C SL(2n,R) C GL(2n,R)

. 1 0 -1 0 1 0 .
ej:dlag(<0 1),...,( 0 _1),...,(0 1>>€SL(2n,R), 1<j<n

(4.5) I = diag ((‘1) _01) <(1) _01>) € SL(2n,R),

. 1 0 -1 0 10 .
cj—dlag<<0 1),...,( 0 +1>,...,(0 1)>€GL(2n,R), 1<j<n

The matrices e; and c; have order two and commute with each other while Ie; = e;1, Ic; = ejc;1,
and I’ =e;---e, = —E.
The representation of the Weyl groups
(4.6) W(GL(2n,R)) = (c1,..-,Cn) X Zp = 21 Xy,
(47) W(SL(2n, R)) = <0162, ey C]Cn> A En = Agn N (22 i En)

where

on the maximal toral elementary abelian 2-group ¢(SL(2n,R)) = t(GL(2n,R)) is trivial on the
subgroup (ci,...,c,) = X% while ¥, C GL(n,C) C SL(2n,R) permutes the n basis vectors
€1,-.-,en of t{(SL(2n,R)) = ¢t(GL(2n,R)).

Let V be a nontrivial elementary abelian 2-group in PGL(2n,R) and V* its inverse image in
GL(2n,R). Let q: V — F3 = {0,1} be the function and [, ]: V x V — F3 = {0,1} the bilinear
map given by v** = (—E)") and [v}, v}] = (—E)[**2] where v*, v}, v € SL(2n,R) are preimages
of v,v1,v9 € PSL(2n, R), respectively. The equations

[vi,v2] = [v2,v1], [v,v] =0, q(v1+v2)=q(v1)+ q(v2) + [v1,v2]

show that ¢ is the quadratic function associated to the symplectic bilinear form [, | [28, p. 356].
The bilinear form is the deviation from linearity of the quadratic function. Define V- > R(V) to
be the subgroups

Vi={veV|[vV]=0}D>{veV!|qw)=0}=RV)

of V.. Since q is a group homomorphism on V*, the subgroup R(V) is either all of V+ or a subgroup
of index 2.

In the following we write G o H for the product of the groups G and H with a common central
subgroup amalgamated. The subgroup U;(V*) is generated by all squares of elements of V* [28,
I11.10.4].

4.8. LEMMA. Let V be a nontrivial elementary abelian 2-group in PGL(2n,R). The preimage
V* in GL(2n,R) is

CoxV qV)=0
ye_ JCaoV [V,V]=0, g(V) #0
| PxR(V) [V, V1#0, (Vi) =0
(C20P)x R(V) [V,V]#0, ¢(V')#0

where Cy = (—E) C Cy C SL(2n,R), P = 21724 is extraspecial, Cy o P is generalized extraspecial
with center of order 4, and B1(V*) C (—E).
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PROOF. As long as the bilinear form is trivial, [V, V] = 0, V* is abelian and the structure
theorem for finitely generated abelian groups applies. Assume that the bilinear form does not
completely vanish, [V, V] # 0. Then V* is nonabelian with commutator subgroup [V*,V*] = Cj.
Write V' = U x R(V) for some nontrivial subgroup U complementary to R(V). Then V1 =
ViNn(U x R(V)) = (V1 NnU) x R(V) and ¢(V1') = ¢(V+ NU). If U* denotes the preimage of
U, we have V* = U*(C2 x R(V)) = U* x R(V) as the preimage of R(V'), C2 x R(V), is central
in V*. The commutator subgroup [U*,U*] = [U*R(V),U*R(V)] = [V*,V*] = C; and the center
Z(U*) is the preimage of VL NU. If ¢(V+) =0, R(V) = V1L and V1 NU = R(V)NU is trivial
so Z(U*) = Cy and U* = P is extraspecial. If ¢(V1) # 0, R(V) has index 2 in V1, V- NU has
order 2, and ¢(V+ NU) # 0 so that Z(U*) contains an element of order 4. Therefore Z(U*) = Cy4
and U* is generalized extraspecial. There are two isomorphism classes of such groups but only
U* =Cq0Dgo---Dg=C4o0 P has elementary abelian abelianization [56, Ex. 8, p. 146]. O

For instance, the preimage of the maximal toral elementary abelian 2-group ¢(PSL(2n,R) of
PSL(2n,R) is the abelian group

(4.9) t(PSL(2n,R))* = (I, e1,...,€n),
generated by I and t(SL(2n,R)).
4.10. COROLLARY. Let V be a nontrivial elementary abelian 2-group in PSL(2n,R). If
q(V)=0, [V,V]=0:V is toral in PSL(2n,R) <= V* =y xV is toral in SL(2n,R)

q(V)#£0, [V,V]=0:V is toral
q(V)#£0, [V,V]#0: V is nontoral

ProoOF. We have
V is toral <= V C t(PSL(2n,R)) <= V* C t¢(PSL(2n,R))*

where the symbol ‘C’ reads ‘is subconjugate to’. In the first case of the corollary, the preimage V*
contains no elements of order 4 so that

V* C t(PSL(2n,R))* <= V* C t(SL(2n, R))

as t(SL(2n,R)) consists of the elements of order < 2 in ¢(PSL(2n,R))*. In the second case,
V* = C4 x R(V) so that R(V) C Csp(2n,r)(I) = GL(n,C). But any complex representation
of the elementary abelian 2-group R(V) is toral, so R(V) C t(GL(n,C)) = ¢(SL(2n,R)) and

C (C4,t(SL(2n,R))) = t(PSL(2n,R))*. In the third case, the nonabelian group V* can not be
a subgroup of the abelian group ¢(PSL(2n,R))*. O

4.11. LEMMA. Let Vi and Va be elementary abelian 2-groups in PSL(2n,R). Then
Vi and Vz are conjugate in PSL(2n,R) <= V{* and Vy are conjugate in SL(2n,R)
where V¥, Vo C SL(2n,R) are the preimages.
PROOF. This is clear. O

Write A(PGL(2n,R))?=° and A(PGL(2n,R))<9=0 for the full subcategories of A(PGL(2n, R))
generated by all elementary abelian 2-groups V' C PGL(2n,R) with trivial quadratic function
g, respectively, all toral elementary abelian 2-groups V' C PGL(2n,R) with trivial quadratic
function g. Define A(PSL(2n,R))?=° and A(PSL(2n,R))<%9=0 similarly as full subcategories
of A(PSL(2n,R)).

4.12. LEMMA. Write GL for GL(2n,R), SL for SL(2n,R), and PSL for PSL(2n,R). The
inclusion functors

A(X2n, A2,) = A(GL) A(Z2n, SAs,) — A(SL)
A(W(SL),#(SL)) — A(SL)*

A(S2n, PAzn) = A(PGL)™™"  A(Yan, PSAop) — A(PSL)*—"
A(W(PSL), {(PSL)) — A(PSL)St
A(W(PSL), Pt(SL)) — A(PSL)<t9=0
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are equivalences of categories. In particular, A(SL) and A(PSL) are full subcategories of A(GL)
and A(PGL), respectively. (See 2.68 for the meaning of A(Xan, Aap)-)

PROOF. By real representation theory any nontrivial elementary abelian 2-group of GL(2n, R)
is conjugate to a subgroup V of Ay, and

Cerenr) (V) = [[ GL(,,R)

peEVY

where i: VV — Z records the multiplicity of p € V'V in the representation V C Ay, C GL(2n,R).
Observe that Ay, is the maximal elementary abelian 2-group in Cgr(2n,r)(V). (For any i > 1,
GL(7,R) contains the subgroup A;, consisting of diagonal matrices with +1 in the diagonal, as
a maximal elementary abelian 2-group.) Therefore, by the standard argument from [7, IV.2.5],
used also in 3.4, any group homomorphism between two nontrivial subgroups of As, induced
by conjugation with a matrix from GL(2n,R), is in fact induced by conjugation with a matrix
from Ngp(2n,r)(A2n) = Aon X Loy [54, Lemmma 3]. Thus the inclusion functor A(Xan, Agy) —
A(GL(2n,R)) is a category equivalence.

Any nontrivial elementary abelian 2-group V' C PGL(2n,R) with ¢(V) = 0 is conjugate to
a subgroup of PAy, since V*, the preimage in GL(2n,R), is conjugate to subgroup of Ag,. Let
V1, V2 be two nontrivial subgroups of PA,,. From the commutative diagram of morphism sets

A(Z2n, B2n)(V1", V5') = A(GL(2n, R))(V{", V)

| |

A(E2na PA2n)(Vv1a ‘/2)C—> A(PGL(Q’I’L, R))q:O(V'l, ‘/2)

we see that the the bottom horizontal arrow is a bijection. This implies that A(3s,, PAg,) —
A(PGL(2n,R))?7" is an equivalence of categories.

Any nontrivial elementary abelian 2-group in SL(2n,R) is conjugate in GL(2n,R) to a sub-
group of SL(2n,R) N Ay, = SAy, (4.4). The Quillen category of SL(2n,R) is a full subcat-
egory of the Quillen catgory of GL(2n,R) since Cgr(2n,r)(V) ¢ SL(2n,R) for all objects V' of
A(SL(2n,R)). Thus the inclusion functor A(Xs,,SAs,) — A(SL(2n,R)) is an equivalence of
categories.

Any toral elementary abelian 2-group in SL(2n, R) is conjugate to a subgroup of ¢(SL(2n, R))
by its very definition (2.50). Any morphism between two nontrivial subgroups of t(SL(2n,R))
induced by conjugation with a matrix from SL(2n,R), is in fact induced by conjugation with a
matrix from N(SL(2n,R)) and hence from W (SL(2n,R)) [7, IV.2.5]. Thus A(W(SL),t(SL)) —
A(SL(2n,R))<! is a category equivalence. The same argument can be used to identify the
toral subcategory for PSL(2n,R) (and it is actually a general fact that the inclusion functor
A(W(X),t(X)) — A(X)=S! is an equivalence of categories where ¢(X) — X is the maximal toral
elementary abelian p-group in the connected p-compact group X [47, 2.8]).

Any nontrivial toral elementary abelian 2-group V' C PSL(2n, R) with ¢(V) = 0 is conjugate to
a subgroup of Pt(SL) (4.4) since V*, the preimage (4.8) in GL(2n, R), is conjugate to subgroup of
t(SL) C t(PSL)* (4.9). As A(PSL)<%9=0 is a full subcategory of A (PSL)<! = A(W (PSL), ¢t(PSL)),
this means that A (W (PSL), Pt(SL)) — A(PSL)<%%=0 is a category equivalence.

O

We now specialize to full subcategory A (PSL(2n, R))é; (2.50).

4.13. PROPOSITION. The chart

<t Lines Planes
A(PSL(2n,R))2,
q=0]qg#0 =0 | a#0
n even n/2 2 | P(n,3)+ P(n,4) | n/2+ [n/4]
n odd [n/2] 1 | P(n,3)+ P(n,4) [n/2]

gives the number of isomorphism classes of toral objects of rank 1 and 2 in A(PSL(2n,R)).
When n is even, the § toral lines with ¢ = 0 are L(2i,2n — 2i), 1 <4 < %, and the two toral
lines with ¢ # 0 are I and IP. The toral planes with ¢ = 0 are the planes P(2ig, 2iy,2i2,0) where
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(%0,%1,12) is a partition of n into three natural numbers, P(2ig,2i1,2is,2i3) where (ig,i1,12,13) s
a partition of n into four natural numbers, and the toral planes with ¢ # 0 are I#L(i,n — 1),
1<i<2, and I#L(i,n — )P for even i.

When n is odd, the [%] toral lines with ¢ = 0 are L(2i,2n — 2i), 1 <1 < [%}, and the toral
line with g # 0 is I. The toral planes with ¢ = 0 are the planes P(2ig, 2i1, 2i2,0) where (ig,41,1%2)
is a partition of n into three natural numbers, P(2ig, 2i1, 219, 2i3) where (%o, 1,12,13) 1S a partition
of n into four natural numbers, and the toral planes with ¢ # 0 are I#L(i,n —1), 1 <i < [ ]

In (4.14) and (4.15) we list the centralizers of the rank one objects and in (4.16) and (4 17)
the centralizers of the rank two objects.

Proposition 4.13 is the conclusion of the following considerations.
For any partition ¢ = (ip,4%1) of n = ip + ¢; into a sum of two positive integers ip > i3 > 1 let
L[i] = L[24p,2i1] C t(SL(2n,R)) C SL(2n,R) be the toral subgroup generated by

i0 i1
A A

-

diag(+E,...,+E,-E,...,—E)

Then the centralizer (of the image in PSL(2n,R)) of this subgroup is

SL(2io,RZ>;ESL(2ii,R) « (diag(D1, Dy)) io £ i1
414 Crsiion ) L[2i0, 2i1] = . o E\\ . .
(4.14) PSL(2n,R) L[2i0, 21] SL&{(E?)Q y <diag(D1,D2), (E 0>> P

where D; = diag(—1,1,...,1) € GL(2i;, R) are matrices of determinant —1. The diagonal matrix
diag(D;, D7) acts on the identity component of the centralizer by the outer action on both factors.

In the second case, which only occurs when n = 2ig is even, the matrix (g 0) acts by permuting

the factors.
The element I € ¢(PSL(2n,R))* C SL(2n,R) of order four generates an order two toral
subgroup of PSL(2n,R) with centralizer [47, 5.11]

GL(n,C)/-E) n odd
(4.15) Cpsr(enr)(I) = {GL(n, C)/(—E) x {c1---¢) n even
where, in the even case, the component group acts on the identity component through the unstable
Adams operation 1~!. The nontrivial outer automorphism of PSL(2n,R) takes I to I” where
I # IP if and only if n is even (9.4.(4)).

For any partition ¢ = (4g,%1,42,0) of n = ip + 41 + 42 into a sum of three positive integers
ip > 91 > 12 > 0 or any partition ¢ = (39, %1,%2,%3) of n =49+ 141 +i2 + i3 into a sum of four positive
integers ig > i1 > ig > i3 > 0 let P[i]| = P[2ig,2i1, 2i2,2i3] C t(SL(2n,R)) C SL(2n,R) be the
subgroup generated by the two elements

1o i1 i2 i3
diag(XE,....+B,~E,....—E,%E,...,.+B,~F,...,.—B)
0 n 2 3
diag(+E,...,+E,+E,...,.+E,—E,...,—E,~E,...,—E)
The centralizers in PSL(2n, R) are
(4.16)
—SL(<2jfgf‘_);f§gf2_ig;‘)2 x (ker (C5D 5 ) % Z/2) i = (2o, 2ig, 21z, 2i2)
CrspionmyPi) = § e B g (ker (C5D 5 Cy) % (B2 x Z/z)) i = (2io, 2o, 240, 2i0)

I1s;) SL(2i;,R)

5 x ker (C, 56 Cs) otherwise
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diag(D1, E, E,D,)) (when #5(i) =

where ker (C3 ) — Cy) = (diag(D1, Dy, E, E), dlag(Dl,E Ds, E),
€ GL(2i;,R), and

4) is generated by diagonal matrices, D; = diag(—1,1,...,1) €
0 FE 0 O 0 FE 0 O 0 0 FE O
E 0 0 O E 0 0 O 0 0 0 FE
2/2:< 00 0 E > Z/2XZ/2:< 000 E|'|E 0 0 0 >
0 0 E O 0 0 E O 0 FE 0 O

are generated by block permutation matrices. (The component group of the first line is C3 x Dg;
the component group of second line is extra special of order 32 isomorphic to Dg o Dg.)

For any partition i = (ig,41) of n = i + 41 into a sum of two positive integers ig > i; > 0 let
I#L[ig,i1] C PSL(2n,R) be the elementary abelian 2-group that is the quotient of

0 21
(I#Lio,i1))* = (I, diag(+E, " ,+E,—E, . ,—E)) C t(PSL(2n,R))*
It follows that
GL(zo,C)xGL(zl,C) n odd
(4.17) Crst.(2n,r) I #L(i0,11) = GL(’O’C)XGL(“’C) x{(c1---cn)  meven,ig # iy
w (c1-+-¢cn, P) meven,ig =1
where P = (g 0) permutes the two identical factors.

4.18. PROPOSITION. I#L(i,n — i) # I#L(i,n — i)P if and only if n and i are even.

PROOF. The automorphism group of (i) x () = Cy x Cy = I#L(i,n—1)* is the dihedral group
of order eight

Aut(Cy x C2) = <a b a,b%,bab=a >
generated by the two automorphisms given by a(i) = ie, a(e) = i%¢ and b(i) = 4, b(e) = i%c. The
automorphism a? € Aut(C4) C Aut(Cy x Cs) is induced by conjugation with the matrix

. (01
diag(P,...,P), P_(l 0>,

of determinant (—1)". Thus A(SL(2n,R))(I#L(i,n — i)*) # A(GL(2n,R))(I#L(i,n —i)*) and
I#L(i,n — i) = I#L(i,n — )P when n is odd (9.2).
Assume now that n is even. The group of trace preserving automorphisms

e

has index 2 in general but is actually equal to the full automorphism group in case ¢ = n/2. The
conjugating matrix for ba is
L N
diag(P,...,P,E,...,E)

of determinant (—1)%. Thus I#L(i,n — i) = I#L(i,n — i)P when i is odd. If n = 2i then the
conjugating matrices for the automorphisms a and b are

(E 0>d1ag(P P,E,..,E) and (E O)

The permutation matrix for b has positive determinant and the matrix for a has determinant (—1)%.
Thus I#L(i,n — i) = I#L(i,n — i)P if and only if i is odd. O
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2. Centralizers of objects of A(PSL(2n,R))S, are LHS
sec:1lhs -
In this section we check that all toral objects of rank < 2 have LHS (2.26) centralizers.

4.19. LEMMA. The centralizers of the objects of A(PSL(2n,R))=},
1nst (1) GL(i, C)(—E) x Cy, 1 < (4.15)
1hs? (2) SL(ZZO,R) o SL(le,R) X Co, 1< 14y < 1 (414)
The3 (3) (SL(2i,R) 0 SL(2i,R)) x (Cy x Cs), 1 < i (4.14)
(4)
)

lhs4 CpsL(2n, R)(V) q(V) =0 (4.16)
1hsb ( CPSL(Zn R) (V) (V) 7é 0 (417)

The cases of interest here are summarized in the following charts, obtained by use of a com-
puter, for rank one centralizers with quadratic form ¢ = 0 (4.14)

SL(2io, R) o SL(2i, R) || ker® | Hom(W,T") | H'(W;T)| @
1=1i0,2=141 Z/27 | (2)2)? Z/2 0
1=19,3=1 0 Z/2 (Z/2)? | mono
1=1i0,4< 4 0 Z/2 Z/2 iso

2=19p<01 (Z/2)? (Z/2)3 Z/2 epi
3<io < 0 (Z]2)? (Z/2)7 | iso
SL(2;, R) o SL(2i, R) | kerd | Hom(W,T%) | H'(W;T) | @
1=2 (Z/2)* (Z/2)* (Z/2)3 0
>3 0 (Z/2)? (Z/2)* |iso
and g # 0 (4.15)
| GL(4,C)/ (=E) | ker§ | Hom(W;T") | H(W;T) | 6 |
=2 Z/2 (Z/2)? Z/2 epi
i=3 0 Z/2 Z)/2 iso
i=4 0 Z/2 (Z/2)* | mono
1>4 0 Z)/2 Z)/2 iso

and for rank two centralizers with quadratic form ¢ = 0 (4.16)

| SL(2i9,R)? 0 SL(2i1,R)? || ker§ [Hom(W;TW) [ H'(W;T)[ 6 |

= io2 =i, @2t 22" Z/2° | eni
1=140,2 < iy 0 (Z/2)° (Z/2)° | iso
T —io < i1 @/ 2T [ (Z/2)™ [epi
2<ip <ty 0 (Z/2)'? (Z/2)? | iso

| [T;0SL(2i;,R)/ (—E) || ker¢ |Hom(W;T")|H'(W;T)]| 6 |

1=149,2 =11 <1 (Z/2)* (Z/2)° (Z/2) epi
1=1p,2 < i1 < iz 0 (Z/2)* (Z/2)* |iso
2=10 <11 <2 (Z/2)* (Z/2)3 (Z/2)° epi
2< 19 <11 <19 0 (Z/2)6 (Z/2)6 iso

| [T;_oSL(2i;,R)/ (—E) || ker¢ |Hom(W;T")|H'(W;T)| 6 |

1=10,2=1i1 <ip <i3 || (Z/2)> (Z/2)"2 (Z/2)10 | epi
1 :i0,2 <t <19 <13 0 (Z/2)9 (Z/2)9 iso
2=14p<i1 <iz<iz | (Z/2)* (Z/2)™ (Z/2)"3 | epi
2<ig <t <ig<ig 0 (Z/2)12 (Z/2)12 iso
| SL(2i,R)"/(—E) || kerf [Hom(W;TV)|H'(W;T)] 6 |
2=i (Z/2° | (2/2)* (Z/2)"° | epi
3<1 0 (Z/2)'* (Z/2)** | iso

and with quadratic form ¢ # 0 (4.17)
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| GL(40, C) o GL(i1,C) | ker6 | Hom(W;TW) | H'(W;T) | 6 |

1=19,2 =11 Z/2 (Z/2)? Z/2 epi
1=1p,2 < i3 0 (Z/2)? (Z/2)? | iso
2 =1y < i Z/2 (Z/2)* (Z/2)° | epi
2<19 <11 0 (Z/2)4 (Z/2)4 iso
| GL(4,C) 0o GL(5,C) || ker6 | Hom(W;TV) | H'(W;T)| 6 |
2=1 (Z/2)? (z/2)* (Z2/2)°
3<4 0 (Z/2)* (Z/2)* |iso

PRrROOF OF LEMMA 4.19. (1) Let X = GL(%,C)/(—E) x Cs for i > 1. Since the Weyl group
for X is a direct product W = Wy x Cy, X is LHS.
(2) Let X = (SL(2ip,R) 0 SL(2¢1,R)) x Cs for 1 < 49 < i;. The first problematic case is when
ip = 1 and 7; = 2 or 3. In this case, explicit computer computation results in the chart

| SL(2,R) 0 SL(2i1,R)) x Cy || HY(m;T™°) | HX(W;T) | H(Wo; T) | H(Wo; T)™ |
iy =2 0 Z/2 Z/2 72
i1 =3 0 (2/2)° (z/2)° (z/2)°

showing that X is LHS. The second problematic case is 2 = 49 < i1 where 6(X() is epimorphic.
Since H'(Wp; T) = Z/2, also 6(Xp)™ is epimorphic so that X is LHS (2.28).

(3) Let X = (SL(2¢,R) 0 SL(24,R)) x (C2 x C5) for i > 1. X is a 2-compact toral group when
1 =1 and hence obviously LHS. For 7 > 2 explicit computer computation gives

(L, R) o SL(2i, R)) % (G x O) [ ' @I [ (W3 1) | B (Wor 1) | B (Wi 1) |
i=2 @27 | Z2) | (Z2P | (22
>3 @27 | (2 | (Zf2) Z/2

so X is manifestly LHS for ¢ = 2. For ¢ > 2, §(X) is bijective so X is LHS (2.28).
(4) Let X = (SL(2i,R)*/(—E)) x (Dgo Dg) for i > 1. When i = 1, X is a 2-compact toral group
which are all LHS. When i = 2 explicit computer computation gives

| (SL(2i,R)?/ (—E)) x (Dg o Ds) || H'(m; T"°) | HY(W;T) | H'(Wo; T) | H'(Wo; T)™ |
| 1=2 L @z/2" [ @Z/2° | Z/2° [ (Z/2* |

so X is LHS by definition. For ¢ > 2, §(Xj) is bijective.

(5) Let X = (SL(2ip, R)? 0 SL(2i1,R)?) x (C2 x Ds) for 1 < ip < i;. The problematic cases are
ip = 1,41 = 2 and 2 = 49 < i3 where 0(Xy) is surjective but not bijective. With the help of
computer computations we obtain the table

| (SL(2io,R)? 0 SL(2i1,R)?) x (Ds x Cy) || H' (m;TW°) | HY(W;T) | H'(Wo; T) | H (Wo; T)™ |
fo=1,i1=2 (Z/2)° (Z/2)7 (Z/2)° (Z/2)?
i0=2,3<1% (2/2)° z/2" | (z/9" (z/2)°

showing that X is LHS in these cases also.
2 i
(6) Let X = W x C2. The problematic cases are 1 = ig,2 = i; < iz and 2 = iy < i1 < ia.

With the help of computer computations we obtain the table

Hio P2 s Cf || HY (ms T0) | BY (W3 T) | Y (Wos T) | H (Wi T)
io=1,2=i1<iy | (Z/2)} (2/2)° (z/2)* (2/2)°
2=ip<i<i || (Z2' | (Z2° | (22" | (2]

showing that X is LHS in these cases also.
3 i
(7) Let X = % x C3. The problematic cases are 1 = ip,2 = i1 < i < i3 and

2 =1y < 11 < 12 < t3. With the help of computer computations we obtain the table
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o SL(2i;,R)

E’W c3 | H'(mT") | HY(W;T) | H'(Wo; T) | H'(Wo; T)™
o—L2—ii<ia<is|| (Z22° | @2° | Z2)° | (22
2 =1 <1y <ip < i3 (z/2)° (z/2* | (/2" (z/2)"

showing that X is LHS in these cases also.
(8) The 2-compact group (GL(¢, C) o GL(¢, C)) x
When i = 2 we find

| (GL(43,C) 0o GL(4,C)) x (C2 x Cy) || H (m; TW0) | H'(W;T) | H' (Wo;
| i=2 L (z/2* | (Z/2)" |

(Z/2 x Z/2) is LHS for i > 2 where 6 is bijective.

T) | H'(Wo; T)" |
(z/2)° | (Z2/2)* |

so X is also LHS in this case.

(9) Let X = GL(49,C) 0o GL(41,C) % Ca, 1 < iy < i;. Since the identity component has surjective
6-homomorphism and the component group 7 = Cy acts trivially on H(Wo; T), X is LHS by 2.28.
The values of the relevant cohomology groups are

| (GL(4p,C) 0 GL(i1,C)) x C || H'(m; TW°) | H'(W;T) | H'(Wo; T) | H' (Wo; T)™ |
1=14p,2=1 0 Z/2 Z/2 Z/2
1=140,2<1; 0 (Z/2)* (Z/2)* (Z/2)?
2=19 <1y 0 (Z/2)3 (Z/2)3 (Z/2)*
2<49 <11 0 (Z/2)4 (Z/2)4 (Z/2)4
according to computer computations. O

3. The limit of the functor H'(Wy;T)"/"° on A(PSL(2n,R))§;

Let H' (Wp; T): A(PSL(2n,R))S! — Ab be the functor that takes the toral elementary abelian
2-group V C t(PSL(2n, R)) to the abelian group H(Wy(Cpsr.(2n,r)(V); T)), and H(Wo; T)W/Wo
the functor that takes V' to the the invariants for the action of the component group moCpsr,(2n,r) (V)
on this first cohomology group (2.53).

4.20. PROPOSITION. The restriction map

H'(W(PSL(2n, R); T) — lim° (A (PSL(2n, R))Z5, H' (Wo; T)W/"°)
is an isomorphism for all n > 4.

PRrOOF. Consider first that case where n = 4. The 2-compact group X = PSL(8,R) con-
tains (4.13) the four rank one elementary abelian 2-groups L(2,6), L(4,4), I, I” with centralizers
SL(2,R) o SL(6,R) x Cq, SL(4,R) 0 SL(4,R) x (C3 x C3), GL(4,C)/ (—E) (twice). The claim of
the proposition follows from the fact, verifiable by computer computations, that in all four cases,
the restriction H'(W;T(X)) — H 1(WO(C’X( )); T)W/We happens to be isomorphism.

For n > 4, the claim is that the limit of the functor H*(Wo;T)"/Wo is trivial. In fact, even
the limit of the functor H'(Wy;T) is trivial. To see this, recall (4.13) that PSL(2n,R) contains
the toral lines L(2i,2n —2i), 1 < i < [n/2], I and also I” when n is even. Computer computations
show that the morphisms

HY(Wo; T)(L(2,2n — 2)) < H*(Wo; T)(I#L(1,n — 1)) <> H*(Wo; T)(I)

are injective with and that their images intersect trivially. When n > 6 is even, also the images of
the injective morphisms

H'(Wo; T)(L(4,2n — 4)) — H' (Wo; T)(I#L(2,n — 2)P) < H'(Wo; T)(I7)
intersect trivially. More computer computations show that, similarly, the morphisms
H(Wo; T)(L(2i,2n — 2i)) — H*(Wo; T)(I#L(i,n — 1)) « H*(Wo; T)(I), 1<i<[n/2],

are injective with and that their images intersect trivially. O
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4. Rank two nontoral objects of A(PSL(2n,R))

In this section we take a closer look at the nontoral rank two objects of A(PSL(2n,R)) in
order to verify the conditions of 2.63.
Nontoral rank two objects P of PSL(2n,R) satisfy either ¢(P) = 0 or [P, P] # 0 (4.10) and
the latter case only occurs if n is even.
q(P) = 0: For any partition g > i; > 1o > i3 > 1, let
Plig, i1y iz, i3]" = ((+1)(=1)" (+1)72 (=1)", (+1)% (+1)* (=1)2(=1)"*, —E) C Agy,
P[iO,ilai2>i3] = P[iOailaiQai3]*/ <_E> c PAZn
where we apply the notation from notation from 3.§1. Then Plig,1,%2,43]* C SAz, if and only
if 49, 41, i3, and i3 all have the same parity and Plip,1,%2,%3]* is nontoral iff this parity is odd.
It follows that the set of isomorphism classes of nontoral rank two objects of A(PSL(2n,R))7=°

corresponds bijectively to the P(n + 2, 4) partitions i = [ig, 1,42, 43] of n+ 2 into sums of 4 natural
numbers, n + 2 = ig + 41 + i3 + i3, 49 > %1 > i3 > i3 > 1. The correspondence is via the map

1= [’io,il,ig,i3] — P[Z] = P[Z’Lo —1,247 — 1,2t9 — 1,243 — ].]

that to the partition ¢ = [ig,1,12,3] associates the quotient P[i{] C PSAy, of P[i]* C SAq,
generated by the three elements

2ip—1 2i,—1 2i5—1 2i5—1
vy = diag(+1,...,+1,=1,...,—1,%1,...,+1,~1,...,-1)
2i9—1 241 —1 2i5—1 2i3—1

A A A

vy = diag(+1,...,+1,F1,...,+1,=1,...,-1,=1,...,-1),
vz = diag(—1,...,—1)
The centralizer of P[i]* in SL(2n,R) is

CSL(Q:”’R) (P[’L]*) = SL(2TL, R) n CSL(QH’R) (P[l]*)

= SL(2n,R) N (H GL(2i; — 1,R)) = Pli]* x [] SL(2i; - 1,R)

3=0 =0
and centralizer of P[i] in PSL(2n,R) is therefore [47, 5.11]

(4.21) Cest(an) (Pli)) = Pli] x ( T] SL(2i; — 1, R)) = PllY

where P[i]; is a group of permutation matrices isomorphic to Cs if i = [ig, ig, 92, %2], to Ca X Co
if ¢ = [io, %0, %0, %0], and trivial in all other cases. Note that P[:]* is contained in N(SL(2n,R)) =
SL(2n,R) N GL(2,R) 1 X,, because we may write

10—1 7:1—1 ’ig—l ’i3—1

. ——ft—— —— 1 0
(422) v =diag(B,....B,R"E,...,.~-EE,....E,R"E,...,.-E), R=(,
i0—1 i1—1 i2—1 i3—1

——— —N— -
(423) v =diag(E,...,B,EE,....B,_E,...,—E,~E_E,...,—E)

and that the centralizer of P[i]* there is

Cn(sL(zn,r))(P[i]*) = SL(2n, R) N Car(2,rys, (v1) N Carz,r)s, (v2)

3

(9.10) (9.10) . .,

= SL(2n’ R) N CGL(27R)1(E~;0+~;171 X2i2+i3—1)(vl) = P['L] X (H GL(Q,R) l Zij—l)
j=0

It follows that the centralizer of P[i] in N(PSL(2n,R)) is

3

Cn(psi(2n,r)) (P[i]) = P[i] x (H GL(2, R)2 Eirl) x Pli];{ = N(Cpsv(an,r)(Pli]))
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For instance, if 7 = [ig, %9, %2, i2], then P[i]Y is the group of order two generated by diag(Cp, Cs) €

N(PSL(2n,R)) where Cy is the (4o — 2) x (44 — 2) matrix

0 0 E

o 1 0), 1o (0
E 0 0

and C is a similar (4ip —2) X (4iz — 2) matrix. Thus P[i] C N(PSL(2n,R)) is a preferred lift [45]
of P[i] € PSL(2n,R). The two other preferred lifts [44, 6.2] of P[i] C PSL(2n,R) are obtained
by composing the inclusion P[i{] C N(PSL(2n,R)) with the inner automorphism given by the
permutation matrices (1, 2)(2i9,2n — 2i3 + 1)

2i0A—1 21'3:1 21'3:1 21’_3:1
F1,41, ..., 41,21, ., 1,41, .., 41,1, 1)
t 4 t t
2i9—1 241 —1 2i9—1 21';3\—1
G+, + 0,5, 1,1, -1, )
t 4 t t
and (1, 2)(2ig, 2n — 263 + 2)
2i90—1 241 —1 2i—1 21'3’:1
Gr, 41,000, =05+ T D)
t 4 t ]
2ip—1 211 21 251
(+1, +1,A. SR i I T i ,—1)

t ¢ t f

taking v; and vy as in (4.22, 4.23) to

. ig—1 i1—1 ia—1 ig—1
vy = diag(E,...,E,E,—-E,...,—E,E,...,.E,—E,—FE,...,—F),
790—1 71—1 i2—1 iz3—1
. ,—/H /—H A ~ A
ve = diag(E,...,E,R,E,...,E,—E,...,—E,R,—E,...,—E)
respectively to
io—1 i1—1 ia—1 iz—1
. —— ———
v; = diag(E,...,E,R,-E,...,—E,E,...,E,R,—E,...,—F),
790—1 71—1 i2—1 iz3—1
—_— —_— A < A
ve = diag(E,...,E,R,E,...,E,—E,...,—E,R,—E,...,—E)

In the same way as above, we see that these are really preferred lifts of P[i]. The three lifts are not
conjugate in N(PSL(2n,R)) because the intersection with the maximal torus is ve in case (4.22,
4.23) but v; and v1 + vz in the two other cases. Observe that all three preferred lifts of P[i] have
the same image in W (PSL(2n,R)) = moN(PSL(2n,R)) C moGL(2,R) 1 X,. Observe also that the
inclusion P[i] X P[i]{ — Cpsr(2n,r)(P[i]) induces an isomorphism on component groups and that
the centralizer

CPSL(Qn,R) (P[’L] X P[Z]:/) = CCPSL(?n,R)(P[i])(P[i]’I\:/)

Pli] x SL(2ip — 1, R) i = [do, 10, 10, 0]
= P[Z] X SL(2ZO — ].,R) X SL(QZQ — ].,R) 1= [’io,io,ig,ig]
Cpsr(2n,r) (P[i]) otherwise

has nontrivial identity component when n > 2.
[P,P] # 0: A(PSL(4n,R)) contains (up to isomorphism) four rank two objects with nontrivial

inner product, namely H,, Hf, H_, and HP where H. is the image of 25:2 C SL(2n,R) (4.50).
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The extraspecial 2-group 217 C SL(4n, R) is described in 9.4.(6) or, alternatively, in 9.7 as

n
A A

~

21+2 — <d1ag <’(§ —0E>’ ( ) , diag (E f]?) ,<Jg J(E]?))>=<g1,gz>

Note that 212 is contained in N(SL(4n, R)) = SL(4n, R)N(GL(2, R)1X,,) and that its centralizer
there is

CN(SL(4n, R))( ?) =SL(4n,R) N Cavn,r)(v1) N CaLz,rnss. (V2)
9.10
“29 SL(4n, R) N Caramynw(cam,) (1) = GL(2, R) 1 8, = N(GL(2n,R))
It follows, as in 4.50, that the centralizer of H, in N(PSL(4n,R)) is

Cn(srnr)) (H:) = Hy x Cn(snnr)) (257%)/ (—E) = N(H} x PGL(2n,R))

which means that H; C N(PSL(4n,R)) is a preferred lift of H; C PSL(4n,R). Another preferred
lift can be obtained by pre-composing the inclusion H; C N(PSL(4n,R)) with the nontrivial
automorphism in A(PSL(4n,R))(Hy) = O1(2,F3). The final preferred lift is

n

14+2vdiag(B,...,B) _ diag(B,...,B) ,diag(B,...,B) B = 1 (B I
(2+ ) —<—(glg2) )92 >, _ﬁ 1 E

o I 0 I 0
_(9192)0;1 &(B.. ’B)dlag<<0 _I>a"'a<0 —I))’ 923292

Also this subgroup is actually contained in the maximal torus normalizer with centralizer
Cn(sL(n,R)) (217%)328(BB) = Q1 (4n, R) N Cari2,r):s, ( — (9192) 28 EB)) N Caranr) (92)

2% (GL(1,©)? % C2) 12 N Carian.my(92) = (GL(L, C)  C2) 15, = N(GL(2n, R))

=((z ) 7=( o)

Observe that, for all three preferred lifts of H,, the image in the Weyl group W(PSL(4n,R)) =
moN(PSL(4n,R)) C moGL(2,R)1X2, is the order 2 subgroup of Xy, generated by the permutation
(1,2)(3,4)---(2n — 1,2n). Observe also the inclusion H, #L(1,2n — 1) = Cpsrn,r)(H) (4.39)
induces an isomorphism on component groups and that the centralizer Cpgr,(4n,r) (H4 #L(1,2n~1))
has nontrivial identity component (according to the proof of 4.54) when n > 2.

The extraspecial 2-group 21_"'2 C SL(4n,R) is described in 9.4.(7) or, alternatively, in 9.7 as

where

n

~

21_+2:<diag(<é _OI> ( > , diag (I (I)) (2 é))>=<91,92>

Note that 2" is contained in N(SL(4n, R)) = SL(4n, R)N(GL(2, R)1X2,) and that its centralizer
there is

Cn(sLin,Rr)) (21%) = SL(4n, R) N Care,ryss, (91) N CaLin,r) (92)
T
O (GL(1,C)? % C2) 1 Bn N Carganr) (92) = <GL(1, C), (_OT 0) >22n Y N(GL(n, H))

It follows, as in 4.50, that the centralizer of H_ in N(PSL(4n,R)) is
On(sr(an,r)) (H-) = H_ x Cn(s.(an,Rr)) (257%)/ (—=E) = N(H_ x PGL(n, H))

which means that H_ C N(PSL(4n,R)) is a preferred lift of H_ C PSL(4n,R). The two other
preferred lifts can be obtained by pre-composing the inclusion H_ C N(PSL(4n,R)) with the
nontrivial automorphisms in A(PSL(4n,R))(H-) = O~ (2,F2) = Sp(2,F3) = GL(2,F;). Ob-
serve that, for all three preferred lifts of H_, the image in the Weyl group W(PSL(4n,R)) =
moN(PSL(4n, R)) C moGL(2, R)1Xa, is the order 2 subgroup of Xy, generated by (1,2)(3,4) - - - (2n—
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1,2n). Observe also that H_ is contained in the rank three subgroup H#L(1,n—1) (4.41) whose
centralizer has a nontrivial identity component when n > 2 (according to the proof of 4.54).
We conclude that for every nontoral rank two object P of A(PSL(2n,R)) the identity com-
ponent Cpgr,(2n,R)(P)o of the centralizer is center-less. By (part of) [42, 5.2], the homomorphism
Aut(Cpsr(2n,r)(P)) — Aut(moCpsr(2n,r)(P)) X Aut(CpsL(2n,r)(P)o),

obtained by applying the functors 7y and ( ), is injective. Under the inductive assumption that
CpsL(2n,r)(P)o (see (4.21) and (4.50)) has 7, (N)-determined automorphisms it then follows from
Lemma 2.63 and diagram (2.64) that condition (3) of Theorem 2.51 is satisfied.

5. Limits over the Quillen category of PSL(2n,R)

In this section we show that the problem of computing the higher limits of the functors
7i(BZCpgL(2n,R)), © = 1,2, (2.47) is concentrated on objects of the Quillen category with g # 0.

4.24. LEMMA. Let V. C PSAs, (4.4) be a nontrivial subgroup representing an object of the
category A(PSL(2n,R))?=0 = A(2,,, PSAy,) (4.12). Then
ZCpsr(2n,r) (V) = psayY)
where Yo, (V) C oy, is the point-wise stabilizer subgroup (2.68).

PROOF. Let v*: V — SAy, be a lift to SL(2n,R) of the inclusion homomorphism of V' into
PSL(2n,R). Then
CSL(2n R)(l/ V) = SL 2n, ﬂ H GL p, , Egn v V H Z,p

pEVY pEVY
where i: VV — Z records the multiplicity of each p € VV in the representation v*. Write

i1 'L:LL

v*(v) = diag(p1(v),...,p1(v), ..., pm(V), ..., pm (V)

where p1,...,pm € VYV = Hom(V, C2) are pairwise distinct homomorphisms V' — Cs = (+1) and
i1+ -+ + iy = 2n. There is a corresponding decomposition {1,...,2n} = I; U--- U I, of the set

{1,...,2n} into k disjoint subsets I; containing i; elements.
Using [47, 5.11] and 9.20 we get that
Csrionr)(V*V .
Crsiinm) (V) = Gsanm (V) oy Son(V) = Son(v*V) x VY

(=E) v

where V% = {¢ € Hom(V,GL(1,R)) | Vp € VV: i¢, = i,}. Suppose that ¢ is a nontrivial element
of V.. Choose a vector v € V such that ((v) = —1. Then the determinant of v*(v) is (—1)"
for v*(v) consists of an equal number of +1 and —1. Thus n is even. Let o be the permutation
associated to ¢ that moves the subset I; monotonically to I where (p; = px. Then o is even for it
is a product of n transpositions. In this way we imbed V,% as a subgroup of the alternating group
Asp, C PSL(2n,R) to obtain the semi-direct products.

The center of the centralizer is

[1SL(2n, R) N GL(ip, R) VV) 1), (H SL(2n, R) N GL(i,, R) ) Vo

ZCpsrLnr) (V) =2 (

<_E> <—E>
(9.18) <SL(2TL, R)NTI ZGL(ip, R))V,,V* _ w V)
5 (~E)

* VV
_ (PSA§;"(” V>) = psay)

where the penultimate equlity sign is justified by observing that the coefficient group homomorph-
ism H (X9, (v*V); (—E)) — H(Z2,(v*V); SAz,) — HY(Z2,(v*V); Agy) is injective. O

Let Wi(BZC) = ﬂ-i(BZCPSL(Qn’R)) (247)
4.25. COROLLARY. lim*(A(PSL(2n,R))%=%, m;(BZC)) =0 forn > 2 andi=1,2.
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PROOF. This is obvious for i = 2 as m3(BZC) = 0. For ¢ = 1, use 2.69 to compute the limits of
the functor w1 (BZC)(V) = psAY) (4.24). The fixed-point group PSD32" = 0 since PSDs,

2n
is an irreducible F9Y5,-module of dimension 2n — 2 for n > 2. O

4.26. LEMMA. Let V C Pt(SL) = Pt(SL(2n,R)) (4.4) be a nontrivial subgroup representing
an object of the category A(Az, N (X21%,), Pt(SL)) = A(PSL(2n,R))<%9=0 (4.12). Then

ZCps(anr) (V) = Pt(SL)A2nN(E21Ea) (V)
where (Azn N (T212,))(V) is the point-wise stabilizer subgroup (2.68).
PROOF. The point-wise stabilizer subgroups are
(4.27) (A2n N (B2 1 Z,))(V) = Agp, N X2 (V), Yon(V) =38 x 3, (V)

Because these stabilizer subgroup have these particular forms and PSAQEE = Pt(SL), we get
ZCpsyanp) (V) = PSAY (V) = pSAYE ™ n(V) — py(SL) (V) — py(SL)A2n"(PENIn(V))
from 4.24 O

4.28. COROLLARY. lim*(A(PSL(2n,R))s49=% m;(BZC)) =0 forn > 2 and i = 1,2.
PROOF. Similar to 4.25 but using H%( Az, N (321 %,,); Pt(SL)) = H°(Z,,; Pt(SL)) = 0. O

4.29. LEMMA. Let V C t(PSL) = t(PSL(2n,R)) (4-4) be a nontrivial subgroup representing
an object of the category A(Az, N (X211 %,),t(PSL)) = A(PSL(2n,R))<t (4.12) where n > 32.
Then
Z0pst,(2n,r) (V) = T "2EDW)

where T = T(PSL(2n,R)) is the discrete approzimation [18, §3] to the mazimal torus of PSL(2n, R)
and (Azp, N (B213,))(V) is the point-wise stabilizer subgroup of V' (2.68).

ProOF. Consider first the case where V' C Pt(SL) C t(PSL). One checks that T42»M%2 —
Pt(SL) for n > 2. Since (Agp N (Z21X,))(V) D A2n N XY we get

ZChsian (V) "2° PHSL) A BHZV) - fAn(E25))(V)

in this case.

Consider next the case where V*, the preimage of V in SL(2n, R), contains I (4.5) so that V* =
(I,U) (4.8) for some (possibly trivial) elementary abelian 2-group U C t(SL) C Csr(2n,r)(Ca) =
GL(n, C). Then

CsLenp) (V) = [[ GLG,C),  (Z215)(V*) =Ba(U) C Asn
peUY

where i: UY — Z records the multiplicity of the linear character p € U in the representa-
tion v*: U — GL(n,C) and X,(U) is point-wise stabilizer subgroup for the action of ¥, =
W(GL(n,C)) on ¢(SL) = t(GL(n,C)) = (e1,...e,). It now follows [47, 5.11] and 9.20, as in
(4.15) and (4.17), that

Osian.r) (V") n odd
Cpsren,r)(V) =1 ¢ <7E>(V*)

e 4 (U x (c1++ca))  meven

=a(U) n odd

Azp D (X215,)(V) = {En(U) X (UY x {(c1-+-¢cp)) neven

where U). = {¢( € UY = Hom(U, (—E)) | Vp € U": i¢, = i,} can be realized as a subgroup of ¥,
and (c; -+ - ¢,,) is the diagonal order two subgroup of ¥%. Consequently, if n is odd,

[1GL(i,, C)) ~ [1ZGL(i,,C) T(SL(2n,R))>®)
(—E) (—E) (—E)
— FEa(U) _ PA2nN(Z2050))(V)

ZCrpsrnm)(V) =2 (
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and if n is even,

. ~ . U,» x(c1++Cn)
ZCrsiammy(V) = Z (% 5 (U 5 {1 cn») 5,14 (%)
_ (T(SL(ZZE;))EH(U))U,,*x<cl..-cn) _ (T)]JU))UV*X(CI'HC")

— TUux x{e1en) — J(A2aN(T2280)) (V)

where we use that H(X,(U); (—E)) — H(Z,.(U); T(SL(2n, R))) is injective. (In fact, the center
of the centralizer, ZCpsy,2n,r)(V), is a product, T=#(U), of 2-compact tori when n is odd, and a
finite abelian group, T=r@)* (U x{eren)) — (Pleren))Ba(U)nUs — y(PSL) (¥ when n is
even.) O

Lemma 4.26 can also be proved along the lines of [47, 2.8] using 2.33.
4.30. COROLLARY. lim*(A(PSL(2n,R))St, 7;(BZC)) =0 forn >3 and i = 1,2.
PROOF. Similar to 4.25 but using that that H°(W;T)(PSL(2n,R)) =0 for n >3 (4.3). O

As we shall next see, Corollaries 4.25, 4.28 and 4.30 reduce the problem of computing the
graded abelian group lim* (A (PSL(2n,R)), m;(BZC)) considerably.

Let A be a category containing two full subcategories, A, j = 1,2, such that any object of A
with a morphism to an object of A; is an object of A;. Write A; N Ay for the full subcategory
with objects Ob(A1 N Ag) = Ob(A;)NOb(A3) and A; U A, for the full subcategory with objects
Ob(A; UA3) = Ob(A;)UODb(Az). Let M: A — Ab be a functor taking values in abelian groups.
Consider the subfunctor M;2 of M given by

_Jo a € Ob(A; UA»)
MM)_{M@)a¢OMMUAﬂ

We now state a kind of Mayer—Vietoris sequence argument for cohomology of categories.

4.31. LEMMA. If the graded abelian groups lim* (A, M), im*(Ag, M), and lim*(A; N Ay, M)
are trivial, then lim* (A, M1s) = lim*(A; M).

PRrROOF. Consider also the subfunctor M; of M given by

- 0 a € Ob(Al)
Mﬂ@_{Mm)agouAg

Then there are natural transformations M3 — M; — M of functors. The induced long exact
sequences imply that it suffices to show lim*(A; M/M;) = 0 = lim*(A; M1 /M;s).

The quotient functor M/M; vanishes outside A; where it agrees with M and therefore [47,
13.12] im*(A; M/M;) = lim(A;; M) which is trivial by assumption.

The same argument applied to A, instead of A gives that lim*(Aq; M/M;) = lim(A;NAg; M).
Since this abelian group is trivial by assumption, we have that lim*(Ag; M) = lim*(Ag; M). Also
this abelian group is trivial by assumption.

The quotient functor M; /M3 vanishes outside A; U Ay where it agrees with M; and therefore
lim*(A; M;/Mi2) = lim(A; U Ay; M;). Here, the functor M; vanishes outside A, and hence
lim(A;UA; M7) =2 lim*(Ag; M;). Since we just showed that this abelian group is trivial, we have
that hm* (A, Ml/Mlg) =0. O

We conclude that
hm* (A(PSL(ZTL, R)), ﬂ-j(BZCPSL(Qn,R))12) - 11111* (A(PSL(Q’H,, R)), 5 (BZCPSL(QTL,R)))
where 7;(BZCpgL(2n,r))12 is the subfunctor of 7;(BZCpgr(2n,r)) given by

0 Vis toral or ¢(V) =0

il Pst(anm)12(V) {ﬂ'j (BZCpsL(2n,r)(V)) V is nontoral and ¢(V') # 0
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According to 4.10 we have
V is nontoral and ¢(V) #0 < [V,V]#0

for all elementary abelian 2-groups V in PSL(2n,R). Thus the problem of computing the higher
limits of the functors 7;(BZCpgr,(2n,r)) is concentrated on the full subcategory A (PSL(2n, R))l: 170
of A(PSL(2n,R)) generated by all elementary abelian 2-groups V' C PSL(2n,R) with nontrivial
inner product. Note that if PSL(2n, R) contains an elementary abelian 2-group V with [V, V] # 0
then PSL(2n,R) in particular contains such a subgroup of rank two. The preimage in SL(2n,R)
of rank two V C PSL(2n,R) with nontrivial inner product is an extraspecial 2-group 2% with
central U; (4.8) so that, by real representation theory (9.5), n must be even.
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6. Higher limits of the functors 7;BZCpgy,4n,r) on A(PSL(4n, R))L: 170

In this section we compute the first higher limits of the functors m; BZCpgsr,4n,R), ¢ = 1,2, by
means of Oliver’s cochain complex [53].

4.32. LEMMA. hml WlBZCPSL(lln,R) =0= hIIl2 ﬂ-lBZCPSL(Iln,R) and 111112 7T2BZCPSL(4TL,R) =
0 = lim® 7T2BZCPSL(4n,R)'

The case i = 2 is easy. Since m2 BZCpgr,(4n,r) has value 0 on all objects of A(PSL(4n, R))l: 170
of rank < 4 (4.54) it is immediate from Oliver’s cochain complex that lim? and lim® of this functor
are trivial.

We shall therefore now concentrate on the case i+ = 1. The claim of the above lemma is that
Oliver’s cochain complex [53]

(4.33) o [[PS [ VS I BS--

|P|=22 [V|=23 |E|=24

is exact at objects of rank < 3. Here, as a matter of notational convention,

[E] = Homa (pst(4n,R))(E) (St(E), E)
stands for the Fa-vector space of Fo A (PSL(4n, R))(E)-module homomorphisms from the Steinberg
module St(E) to E. The Steinberg module is the FoGL(E)-module obtained in the following way.

Let P = Fae; + Faes be a 2-dimensional vector space over Fy with basis vectors e, es. Let
F5[0] be the 3-dimensional Fj-vector space on length zero flags, [L], of nontrivial and proper
subspaces L of P. The Steinberg module St(P) is the 2-dimensional kernel of the augmentation
map d: F2[0] — F2 given by d[L] = 1.

Let V = Fae; + Faeq 4+ Faes be a 3-dimensional vector space over Fo with basis vectors ey,
es, e3. Let Fy[1] be the 21-dimensional Fa-vector space on length one flags [P > L] of nontrivial
and proper subspaces of V' and F3[0] the 14-dimensional Fy-vector space on all length 0 flags, [P]
or [L], of nontrivial and proper subspaces of V. The Steinberg module St(V') over F; for V is the
23-dimensional kernel of the linear map d: Fy[1] — F5[0] given by d[P > L] = [P] + [L].

4.34. PROPOSITION. Hy # HP and H_ # HP in A(PSL(4n,R). The automorphism groups
of the objects Hy and H_ (4.50) are

A(PSL(4n,R))(H,) = Ot(2,F3) 2 Cy,  A(PSL(4n,R))(H_) = O~ (2,F3) = GL(2, F),
and the dimensions of the spaces of equivariant maps are
dim[H,] =2,  dim[H_]=1

PROOF. The first part was proved in 4.50. The Quillen automorphismgroup A (SL(4n,R))(21"?) =
A(GL(4n,R))(25?) = Out(2?) = O*(2,F;) where the isomorphism is induced by abelianiza-
tion 2372 — Hy (9.4.(2), 9.4.(3), 9.5). According to magma, dim[H,] =2 and dim[H_]=1. 0O

The F3A(PSL(4n, R))(H )-equivariant maps given by

A(Hy) —
H qg(L)=20
(4.35) =1, ppj={0T a0 =
0 otherwise
form a basis for the 2-dimensional space [H]. The FoA(PSL(4n,R))(H_ )-equivariant map given
by
(4.36) fL =L

is a basis for the 1-dimensional space [H_].
The quadratic function (9.5) q(v1,v2,v3) = v? + vav3 on Vy (4.51) has automorphism group
1 00 1 00
O(q) = Sp(2,Fa) = < 11 1),(1 11 > C GL(3,F>)
0 10 0 01

of order 6.
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4.37. PROPOSITION. Vy # VP in A(PSL(4n,R)). The automorphism group A(PSL(4n,R)) (Vo) =
O(q) and dim[Vp] = 4.

PROOF. See 9.4.(5) for the first part. According to magma, dim[V;] = 4. O
The four F2 A (PSL(4n,R))(Vo)-module homomorphisms

(438) {df+,df0,df,,f0}
given by
L P=H PAP) p_H, o(L)=0
df+[P > L] = T dfP>1I]= + (L)
0 otherwise 0 otherwise
L P=H_ AVo) 1p pl=0,q(L) =
df-[P> L] = . folp>p)= V0 BPI=04(1)=0
0 otherwise 0 otherwise

is a basis for [Vp].
The quadratic function on H;#L(i,2n — i) € Ob(A(PSL(4n,R))), 0 < i < n, g(v1,v2,v3) =
v1V2, has automorphism group

010\ /100y /100

+
O(q)z(O(Z’F2)(1)):<1OO,010,010>
001/ \10o1) \o11

of order |O"(2,F5)|-22 =8.
4.39. PROPOSITION. H #L(i,2n — i) # (Hy#L(i,2n — i))P? <= i is even. The Quillen

automorphism group is
0 10 1 00
10 0],[{0 1 0 > 1 odd
1 11

0 01
O(q) i even

A(PSL(4n, R))(H, #L(i,2n — 7)) = <

and the dimension of the space of equivariant maps is

6 ¢ odd

dim[H, #L(i,2n —i)] = {3 : even

PROOF. H,#L(i,2n — i) C PSL(4n, R) is (4.51) the quotient of
i 2n—1i

——N—
G = (diag(R, ..., R),diag(T,...,T),diag(—E,...,—E,E, ..., E)) = (91, g2,93) C SL(4n,R)

The centralizer of G is GL(4n,R) is contained in the centralizer of its subgroup 2}? which is

contained in SL(4n,R) (9.4). Observe that
e R and T are conjugate in GL(2,R)
i 2n—i
1

. . . . 7 Y 7 N - [
e Conjugation with diag(7,...,T,E,..., E) induces (g1, 92,93) — (9193, 92, g3)
) o
. . . . : > 4 — N - o2
e Conjugation with diag(R,...,R, E,..., E) induces (g1, 92,93) — (91, 9293, 93)

e When 7 = n, conjugation with (g %)?) induces (g1, 92, 93) 2, (91,92, —93)

Consider the automorphism groups
A(SL(4n,R))(G) C A(GL(4n,R))(G) C Out(G) — O(q) C Aut(H#L(i,2n — 1))

where the outer automorphism group has order 16. Note that the automorphism ¢ is in the kernel
of the homomorphism Out(G) — O(q) induced by abelianization G — H#L(i,2n — i). Using
the above observations we see that A(GL(4n,R))(G), even A(SL(4n,R))(G) for even i, maps
onto O(g). Thus the Quillen automorphism group A(GL(4n,R))(G) has order 8 or 16. When
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i = n the automorphism ¢ is in A(GL(4n,R))(G), even in A(SL(4n,R))(G), and when i # n,
¢ € A(GL(4n,R))(G) as it does not preserve trace. Thus

16 i=n

8 i#n

In any case the group A(SL(4n,R))(G) equals the group A(GL(4n,R))(G) if and only if 7 is even.

When ¢ is odd, the automorphism ¢; is induced from a matrix of negative determinant so that
Ngran,r)(G) € SL(4n,R). According to magma, dim[H #L(i,2n — i)] is 3 when i is even and 6

|A(GL(4n, R))(G)| = {

when ¢ is odd. O
The six FoA(PSL(4n, R))(H4+#L(t, 2n — i))-linear maps
(4.40) {df+, dfo, fo, df L, dfs’, f3'}
given by
L P=H PAP) pP_—H L)=0
df ([P > L] = + dfo[P > L] = T’q( )
0 otherwise 0 otherwise

vy [P,P]=0,¢9(L)=0
0 otherwise

fo[P>L] :{

is a basis for the 6-dimensional Fa-vector space [H;#L(,2n — 4)] for ¢ odd and [Hy#L(i,2n —
i)] x [(Hy#L(i,2n — i))P] for i even. Here, v; is one of the two non-zero vectors of VA(V)
that are not D-invariant when i is odd and the nonzero vector of VA() when i is even where
V = H,#L(i,2n — i).

The quadratic function on H_#L(i,n—i) € Ob(A(PSL(4n,R))), 1 < i < [n/2], g(v1,v2,v3) =
v? 4 v1v9 + v2, has automorphism group

of order |0~ (2,Fs)|- 22 = 24.

4.41. PROPOSITION. H_#L(i,n —1i) # (H_#L(i,n — 1)) for all n > 2. The Quillen auto-
morphism group A(PSL(4n,R))(H_#L(i,n — 1)) = O(q) has order 24 and the dimension of the
space of equivariant maps is dim[H_#L(i,n —i)] = 1.

PROOF. H_#L(i,n — i) C PSL(4n,R) is the quotient of

G:21+2x2:<diag<(g _OR),...,@ _OR)),diag((g, _OT),...,G _OT>),

[ n—i
A A
- ~

diag(r(_OE _OE),...,(_OE _OE),(ff g)(]g g)))—<g1,g2,gg)CSL(4n,R)

The centralizer of G in GL(4n,R) is contained in the centralizer of its subgroup 212 which is
contained in SL(4n,R) (9.4). Observe that

e A(SL(4,R))(2'+?) =~ 0(q)

A n—i
A A
- ~

e Conjugation with diag ( (g g) yeees (g g,), (f)? g) ey (f)? g) ) induces the

automorphism (g1, g2, 93) 2> (9193, 92, 93)
[

n—i
A

e Conjugation with diag ( (10% }02) ey (ﬁ }02>, <§ g) ey (ﬁ g) ) induces the

automorphism (g1, g2, gs) 22 (g1, 929, 95)

e When i = n/2, conjugation with (g f)?) induces (g1, g2, 93) 2, (91,92,—93)
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Consider the automorphism groups
A(SL(4n,R))(G) € A(GL(4n,R))(G) C Out(G) — O(q) C Aut(H_#L(i,n — 1))

where the outer automorphism group has order 48. Note that the automorphism ¢ is in the kernel
of the homomorphism Out(G) — O(q) induced by abelianization G — H_#L(i,n —1). Using the
above observations we see that A(SL(4n, R))(G) maps onto O(q). Thus the Quillen automorphism
group A(GL(4n,R))(G) has order 48 or 24. When n is even and ¢ = n/2 the automorphism ¢ is
in A(SL(4n,R))(G) and when ¢ < n/2, ¢ is not in A(GL(4n,R))(G) as it does not preserve trace.
Thus

i=n/2

i<n/2

[A(GL(n, R))(G n-{24

In any case, the group A(SL(4n,R))(G) equals A(GL(4n,R))(G) so that H #L(i,n — i) #
(H_#L(i,n —i))P (9.2). According to magma, dim[H_#L(i,n —i)] = 1. O

The F,A(PSL(4n, R))(H_#L(i,n — i))-linear map

(4.42) {df-}
given by
L P=H_
df_[P> L] = .
0 otherwise

is a basis for the 1-dimensional Fo-vector space [H_#L(i,n — 1)].
The quadratic function g(vi,va,v3,v4) = v¥ + vov3 has automorphism group

100 1 00

o(q):<Sp(20,Fz) I) sp(2,F2):< 11 1],{1 11 >CGL(3,F2)
010 0 0 1

of order 48.

4.43. PROPOSITION. The 4-dimensional object Vo#L(i,n — 1), 1 < i < [n/2], of the category
A (PSL(4n,R)) satisfies Vo#L(i,n — i) # (Vo#L(i,n — i))P. It contains the objects objects Vj,
H, #L(2i,2n—21), and H_#L(i,n—1). The automorphism group A(PSL(4n,R))(Vo#L(i,n—1)) =
O(q) and the dimension of the space of equivariant maps is dim[Vo#L(i,n — i)] = 5.

PrOOF. Vo#L(i,n —1i) C PSL(4n,R) is (9.7) the quotient of
G=2"04x2=

(dia 0 —-FE 0 —-FE dia R 0 R 0 dia T 0 T 0
t\\g o) \E 0)) " \o r)>>"\0 R)) (0 1)\0 1))

diag((_OE _OE),...,(‘OE _°E>,<§ g)(ﬁ g))):<g1,gg,g3,g4>CSL(4n,R)

The centralizer of G in GL(4n,R) is contained in the centralizer of its subgroup 2'*2
contained in SL(4n,R) (9.4). Observe that
e A(SL(4,R))(25" 04) = Out(G) = Out(C4) x Sp(2, F3) (9.4)

n—i
A A

e Conjugation with diag ( (g f)?) vy <g g), (g g) vy <§ g) ) induces the

automorphism (g1, g2, g3, 94) (9194, 92,93, 94)

e Conjugation with diag < > < ) (? g) (g g)) induces the
(

which is

2

automorphism (g1, g2, 93,94) — (91, 9294, 93, g4)
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n—i

™~

e Conjugation with diag ( (15’ 10{> ( ) ( ) . (ﬁ 2?) ) induces the

. b3,
automorphism (g1, 92, g3, 94) — (91, g2, 9394, ga)
0 E 0

E o
E 0/)>"7\E 0

e Conjugation with diag ) induces the automorphism (g1, g2, g3, 94) —

(—91, 92, 9394)

e When i = n/2, conjugation with (0 E

B 0> € SL(4n,R) induces the automorphism

(91,92, 93, 94) 2> (91,92, 93, —94)
Consider the automorphism groups

A(SL(4n, R))(G) C A(GL(4n, R))(G) C Out(G) — O(q) C Aut(Vo#L(i,n — 1))

where the outer automorphism group has order 196 and O(q) order 48. Note that the automorphism
¢4 of order 2 is in the kernel of the homomorphism Out(G) — O(q) induced by abelianization
G — Vo#L(i,n — i). Using the above observations we see that A(SL(4n,R))(G) maps onto O(q)
with a kernel of order at least 2. Thus the Quillen automorphism group A(GL(4n,R))(G) has
order 192 or 96. When n is even and ¢ = n/2 the automorphism ¢5 is in A(SL(4n,R))(G) and
when 7 < n/2, ¢5 is not in A(GL(4n,R))(G) as it does not preserve trace. Thus

192 i=n/2

|A(GL(4n,R))(G)| = {96 i<n/2

In any case, the group A(SL(4n,R))(G) equals A(GL(4n, ))(G) so that Vo#L(i,n — i) #
(Vo#L(i,n —i))P (9.2). According to magma, dim[Vo#L(i,n —i)] = O

The five FoA(PSL(4n, R))(Vo#L(i,n — ©))-linear maps
(4.44) {ddf 1.(2i,2n—2i)> ddfor.(2i,2n—2i)» AfoL(26,2n—2i)» Af — L(6,n—s), Afov, }
given by

L V =H,#L(2,2n—2),P=H,

dd o _on |V > P > L
f+L(2'L,2n 21)[ { otherwise

ddfor(2i,2n—2i)[V > P > L]

PA(P) vV = H #L(2i,2n —2i),P = H,,q(L) =0
0 otherwise

VAWV) V= H{#L(2i,2n — 2i),[P,P] = 0,q(L) = 0

d ion—2i) [V > P > L]
ifor(2i,2n—2)[ 0 otherwise

ddf_pim_olV > P> I] {L V = H_#L(i,n—i),P = H_

0 otherwise

vAYV) vV =V,,[P,P]=0,q(L) =0

d V>P>1L|=
fova [ 0 otherwise

constitute a basis for [Vo#L(i,n — 1))

4.45. LEMMA. The 4-dimensional object Hy#P(1,i — 1,2n —,0), 2 < i < n, of the category
A(PSL(4n,R)), n > 2, satisfies H.#P(1,i — 1,2n — i,0) = (H #P(1,i — 1,2n —,0))P. It
contains the 3-dimensional objects

4 L(1,2n—1),L(i —1,2n—i+1),L(i — 1,2n — i+ 1)P | L(3,2n — i) i odd
* L(1,2n —1),L(i —1,2n — i+ 1), L(i,2n — i), L(3,2n — )P i even
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Its Quillen automorphism group is

A(PSL(4n,R))(H #P(1,i—1,2n —4,0)) =
(/001 00\ /1010 /1000 /1011
1 0 0O 01 00 01 10 0 1 1 1 .
) ) ) 1> 2 odd
0 010 0 010 0 010 0 01 0
0 0 01 0 0 01 0 0 01 0 0 01
01 00 1 0 01 1 0 0 O 1 0 1 1
1 0 0O 01 00 01 01 01 11 .
R s , 1> 2 even
0 010 0 010 0 010 0 010
0 0 01 0 0 01 0 001 0 0 01
of order 16. The space of equivariant maps has dimension dim[H, #P(1,i—1,2n —14,0)] = 16.
PROOF. H,#P(1,i—1,2n — i) C PSL(4n, R) is (4.52) the quotient of
G = (diag(R, ..., R),diag(T,...,T),
i-1 2n—i i-1 2n—i
——— —l— ——
diag(E,—E,...,—E,E,...,FE),diag(E,E,...,E,—E,...,—FE)) = (g1, 92,93, ga) C SL(4n,R)

The centralizer of G in GL(4n,R) is contained in the centralizer of its subgroup 21++2 which
is contained in SL(4n,R) (9.4). This means (9.3) that the elements of A(GL(4n,R))(G) and
A(PGL(4n,R))(H;+#P(1,i — 1,2n — 4,0)) have a well-defined sign. The Quillen automorphism

+
07(2,F2) *> of order 2° = 32. Observe that

group is contained in the group 0 B

e R and T are conjugate in GL(2,R) so that (g1,92,93,94) o, (92,91, 93,94) is in the

Quillen automorphism group and has sign +1
i—1 2n—i

. . . . ety e b2
b Conjugatlon. with dla‘g(EaEa"'aE) Ta’T) induces (91’92’93794) — (glg4’g2ag3vg4)

of sign (—1)*
i—1 2n—i
——
b Conjuga‘tion Wlth dla’g(Ea T7 RS Ta Ea RS E) induces (gla g2, 93794) ¢—3) (9193792793794)
of sign —(—1)*
i—1 2n—i
. . . . =T . o
e Conjugation with diag(E, E, ..., E, R,..., R) induces (g1, 92, 93,94) — (91, 9294, 93, 94)
of sign (—1)
i—1 2n—1i

. . . . —Nn @5
b Con.]uga‘tlon Wlth dla‘g(E’ Ra IRRN] Ra Ev LR E) induces (glg3a 92, 93, g4) — (gla 9293, g3ag4)

of sign —(—1)"

i—1 2n—1
e Conjugation with diag(E ,?ZT, RN RT,RT, RN Rif) induces the automorphism given by
¢ .
(91,92, 93, 9a) = (919394, 929394, g3, 9a) of sign +1.
It follows that Nar,(an,r)(G) ¢ SL(4n,R) as this normalizer contains elements of negative determ-
inant regardless of the parity of i. Also, A(PSL(4n,R))(H#P(1,i—1,2n—1,0)) is generated by
(the automorphisms induced by) ¢1, ¢2, ¢4, and ¢ when i is even, and ¢1, @3, ¢5, and g when ¢
is odd. O

The fourteen Fo A(PSL(4n,R))(H+#P(1,i — 1,2n — 1))-linear maps

(4.46) {ddf+L(i—1,2n—i+1),ddff[,(if1,2n7i+1)>ddfOL(i—1,2n—i+1)addf(ﬁ,(i71,2n71’+1o)a

for(i—1,2n—i41)> FoL.i—1,2n—i41)>

ddf  1(i2n—i)> ddffL(i,gn_i) » ddfor(i,2n—i)s ddfoDL(i,gn_i) s dfor(i2n—i)> dfo.i(i,zn_i) )
dfOL(1,2nfl) ) df(ﬁ,(l,Qn—l)}
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form a partial basis for the 16-dimensional vector space [Hy#P(1,i —1,2n —1)], 2 < i < n. For
1 << nand:odd,

L V=H_#L(i,2n—1),P=H
ddf { Lian_y[V > P > L] = { L ) *

otherwise
H. #L(7,2 P — HD
ddf Vrion oV > P> L] = V= Hi#L(i,2n — i), e
' otherwise
PAP) vV —H #L(i,2n—1%),P=H,,q(L) =0
ddfor i 2n—i)[V >P>1L)= jlr# (4,2n —1) +,q(L)
’ 0 otherwise
PAP) V= H #L(i,2n — i), P = HP,q(L) = 0
ddfODL(i on—iy[V > P> L] = '+# (,2n — 1), +ra(L)
’ 0 otherwise
VN0, V= H#L(i,2n—i),[P,P] = 0,¢(L) = 0
dforrien—iV > P> L] = ‘+# (4,2n —4), [P, P] »q(L)
0 otherwise

df(ﬁL(iﬂn—i) V>P>I|=

VNOo, V= H+#L(’i,2n—i),[P,P] = O’q(L) =0
otherwise

where (in the last two formulas), O; and O, are the two orbits of length 2 for the action of
A(PSL(4n,R))(H+#P(1,i—1,2n — 4,0)) on Hy#P(1,i — 1,2n —4,0). Each of the hyperplanes
isomorphic to V' = H,#L(i,2n — i) contains precisely one vector v; from O; and one vector v
from Oy and {v1,vs} is a basis for the fixed point group VAFSLUnR)V) For 1 < 4 < n and i
even,

L V=H_#L(,2n—4),P=H,

ddf i p(ion—5[V > P > L] = {0 otherwise

L V= (H+#L(i,2n—i))D,P: (H+)D
dd NV >P>L]=
fLizn ’)[ 1= {0 otherwise
PAP) vV = H #L(i,2 P=H,_qL)=0
ddfOL(z o z)[V > P > L] +# (27 n— ) +7q( )
0 otherwise
PA(P) = (Hy#L(i,2n —4))P, P = (H,)P,q(L) =
’ 0 otherwise
AV) = H, #L(i,2n —1),[P,P] = L)=
dfOL(z' 2nfi)[V SP> L] V 14 +# (7" n 'L),[ s ] an( ) 0
’ 0 otherwise
vAV) v = (H #L(’La 2n — i))D’ [Pa P] =0, Q(L) =0
dfoDL(i,2n—i) V>pP>1L|= F
0 otherwise
mma : intoH+P1120 | 4.47. LEMMA. The 4-dimensional object Hy#P(1,1,2,0) of the category A(PSL(8,R.)) satis-

fies Hy#P(1,1,2,0) = (H,#P(1,1,2,0))P. It contains the 3-dimensional objects

H—l—#L(la 3)’ H+#L(27 2)7 (H+#L(27 2))D

Its Quillen automorphism group is

A(PSL(8,R))(H#P(1,1,2,0)) =
01 00 1 0 0 1 1 0 0 O 1 0 1 1 1 0 0O
1 0 0 0 01 00 01 0 1 01 1 1 01 00
0 01 0[’Jj0O O 1 0’0 O 1 O0J’10 0 1 O0f’]O0 0 1 1
0 0 01 0 0 0 1 0 0 01 0 0 01 0 0 01
of order 32, and dim[H#P(1,i—1,2n —,0)] =8
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PROOF. The proof is similar to that of 4.45. H,#P(1,1,2,0) C PSL(8,R) is the quotient of
G = (diag(R, R, R, R), diag(T, T, T, T), diag(E, — E, E, E), diag(E, E, — E, —E)) C SL(8, R)

The extra element of A(PSL(8,R))(H+#P(1,1,2,0)) is induced by conjugation with the matrix
diag ((g g) ) (ﬁ? g)) € SL(8,R). According to magma, dim[H,#P(1,1,2,0)] = 8. O
The eight F;A(PSL(8,R))(H4#P(1,1,2,0))-linear maps

{ddf L(2,2) ddffL(z,z), ddfor(2,2), ddf(ﬁ(z,z), dfor(2,2)> dfoDL(z,z), dforL(1,3) df(ﬁL(Lg)}

is a basis for the vector space [H;#P(1,1,2,0)].

We are now ready to describe the differentials d* and d? in Oliver’s cochain complex (4.33) for
computing the limits of the functor m;(BZCpsrn,r)(V)) = V on the category A(PSL(4n,R)).
The 6 x (6n + 2[n/2] + 8) matrix for d* is of the following form (shown here for n = 3)

| [H #L(1,5)] [H #L(2,4)] x [Hy#L(2,4)]° Hi4L(3,3)

(4.48)

(] A0 A0 A0
|t 4 o 4 o 4
[H_]
[H-]P
[H_#L(1,1)] x [H_#L(1, D)]P V] x [Vo]? |
H 0) |[H:]
0 H) |[HP
10 B 0) |[H_]
Eo 13 0 B) |[H]P

where
100 1000
A_(O ) 0), H_(O 1 0 0), B=(0 0 1 0)
is injective so lim' = 0. Exactness is thus equivalent to
dim(im d®) > 6n + 2[n/2] + 2
We shall show this by mapping the n + [n/2] + 2[n/2] 4+ 2 objects of dimension 3,

H #L(i,2n — i), (Hy #L(i,2n — i))P(i even), 1<i<n,

H_#L(i,n—1), (H_#L(i,n —4)?, 1<i<[n/2], Vo, V&,
of A(PSL(4n,R)) to the n — 2 4 2[n/2] objects of dimension 4,
H, #P(1,i—1,2n—14,0), 2<i<mn, Vo#L(n —i,4), (Vo#L(n —1,i))”, 1<i<[n/2),

for n > 2 and to
H o #P(1,1,2,0), Vo#L(1,1), (Vo#L(1,1))P
when n = 2. The (6n + 2[n/2] + 8) x (16(n — 2) + 10[n/2])-matrix for d* (shown here for n = 5) is

[H.#L(1,9)] (A A B) (A A B) (A A B)
[H+#L(2,8)]X[H+#L(2,8)]D E 00

[Hy#L(3,7)] 0 E 0 E 00

[Hy#L(4,6)] x [Hy#L(4,6)]" Eo E 03 (E 0 0)
[H,#L(5,5)] (0 E 0)
[H_#L(1,4)] x [H_#L(1,4)]”

[H_#L(2,3)] x [H_#L(2,3)]P

V] x [Vo]P
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H

(
(

[H#L(1,9)]
[H#L(2,8)] x [H #L(2,8)]”
[H#L(3,7)]
[H#L(4,6)] x [H #L(4,6)]”
[H +#L(5,5)]
[H_#L(1,4)] x [H_#L(1,4)]”

[H_#L(2,3)] x [H-#L(2,3)]"

K K K K
G G G 6 |mxwr
where
1 0 00 0O 0 0 0O
010 0 0O 0 0 0O 1 0 0 0 O
0 01 00O 0 0 0O 0 0 0 0O
4= 0 0 01 0 0}’ B= 0 0 0 0]}’ K= 0 0 0 10
0 000 0O 1 0 0 0 0 0 0 01
0 000 OO 01 00
1 0 0 0O
H=|0 1 0 0 0}, L=(0 0 0 1 0)
0 01 0O

while E is (6 x 6) unit matrix and 0 a zero matrix. These matrices are given with respect to the

bases (4.38, 4.40, 4.42, 4.46, 4.44).

The case n = 2 of PSL(8, R) is special. Part of the matrix for d? is the (22 x 18)-matrix

[Hy#P(1,1,2,0)] [Vo#L(1,1)] [Vo#L(1,1)]P
[H #L(1,3)] (4 B)
[HL#L(2,2)] x [Hy#L(2,2)]P (£ 0) @ (191)
[H_#L(1,1)] x [H_#L(1,1)]P (g> (2)
o« (02 0 &)
where now
0 0
0 0
0 0
B=10 o
1 0
0 1

while E is 6 X 6 unit matrix and 0 a zero matrix. As (partial)
4.42, 4.38, 4.48, 4.44, 4.40). This matrix has rank 16.

bases we use the ordered sets (4.40,
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4.49. COROLLARY. The partial differential

Il  [He#LG2n—di)x ]  [He#LG,2n —6)] x [Hy#L(6,2n —0)]P

1<i<n 1<i1<n
i odd i even
x  JI H-#L(,n—i)] x [H-#L3En —4)]” x [Vo] x [Vo]”
1<i<[n/2]
L 00 AP i - 1,2n 0,0 x [ Vo#LG,n—1)]
2<i<n 1<i<[n/2]

has rank 6n + 2[n/2] + 2.
PROOF. By now we know a matrix for this linear map so we simply check its rank.

PROOF OF LEMMA 4.32. For m use that it is trivial on the objects with [,] # 0.
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7. The category A (PSL(4n, R))[<’4]¢0

We shall need information about all objects of A(PSL(4n,R))!"1#0 of rank < 3 and some
objects of rank 4. If V. C PSL(4n,R) is a nontoral elementary abelian 2-group with nontrivial
inner product then its preimage V* C SL(4n,R) is P x R(V) or (C4 0 P) x R(V) where P is
an extraspecial 2-group, Cy o P a generalized extraspecial 2-group, and U1(V*) = (—E) (4.8).
We manufacture all oriented real representations of these product groups as direct sums of tensor
products of irreducible representations of the factors (9.6).

4.50. Rank two objects with nontrivial inner product. The category A(PSL(4n,R))
contains up to isomorphism four rank two objects with nontrivial inner product, Hy and HP.
The elementary abelian 2-group Hi C PSL(4n,R) is the quotient of the extraspecial 2-group
212 C SL(4n,R) with U;(24"?) = (~E) described in 9.4.(6) and 9.4.(7). Their centralizers [54,
Proposition 4] in SL(4n,R) and PSL(4n,R) are
Csn,r)(257%) = GL(2n,R), Cpsrnr)(Hy) = Hy x PGL(2n,R) =V x (PSL(2n,R) x Cs)
Cst.anr)(25%) = GL(n,H),  Cpsr(anr)(H_) = H_ x PGL(n, H)

where H, and H_ are hyperbolic planes with quadratic functions g4 (v1,v2) = v1v2 and ¢_(v1,v2) =
v? + v1v2 + v3 (9.5), respectively. In the first case, for instance, the commutative diagram

1 — PGL(2n,R) — Cpsrn,Rr)(H4) — HY ——0
b =T
H,
gives a central section of the short exact sequence from [47, 5.11].
4.51. Rank three objects with nontrivial inner product. Let V be a rank three object
of A(PSL(4n, R)) with nontrivial inner product. Then V or V' is isomorphic to H; #L(i,2n — 1)

(1<i<n), H#L(i,n—1) (1 <i<[n/2]) or Vo. Hy#L(i,2n —1) C PSL(4n,R) is defined to be
the quotient of

i 2n—1

(diag(R, ..., R),diag(T,...,T),diag(—E,...,—E,E,...,E)) C SL(4n,R),
1 0 0 1
(o 2) (o)
isomorphic to 2?2 x Cy and H_#L(i,n — i) C PSL(4n,R) to be the quotient of

(& ) (8 )t )

i n—i
A A

diag(<_0E _°E>,...,(_0E _OE),<]§ g)(? g)‘>>CSL(4n,R)

isomorphic to 272 x Cy. The elementary abelian 2-group Vo C PSL(4n, R) is the quotient of

(a (5 &) (5 7))o ((§ 7)o 7))
we(( 7)o (3 D))

isomorphic to the generalized extraspecial 2-group Cy o 2172 C SL(4n,R) as described in 9.4.(5).
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4.52. Rank four objects with nontrivial inner product. The following partial census
of rank four objects with nontrivial inner product suffices for our purposes. Define the elementary
abelian 2-group H#P(1,i—1,2n — i) C PSL(4n,R), 2 < i < n, to be the quotient of

(diag(R, ..., R),diag(T,...,T),

i—1 2n—1 i—

1 2n—1
——f— ——
diag(E,~E,...,~E,E, ..., E),diag(E,B,...,B,~E,...,—E)) C SL(4n,R)

Define Vo#L(i,n — i) C PSL(4n,R), 1 <i < [n/2], to be the quotient of

(o8 )3 D) (5 ) (F )
(5 2)0 3)

n—i

dig ( (_OE _OE) (_OE _OE)‘,r(ﬁ g) (ﬁ g) )) c SL(n, R)

isomorphic to Cy 0 2172 x Cs.

4.53. Centers of centralizers. For the computations in §6 we need to know the centers of
the centralizers for some of the low dimensional objects of A (PSL(4n,R))!-170.
4.54. PROPOSITION. Let V € Ob(A(PSL(4n,R))[>1#9) be one of the objects
H+; H,,
H #L(,2n—14) (1<i<n), H#L({,n—1) (1<i<[n/2]), Vo, or
H #P(1Li—1,20—4,0) (1 <i <n), Vo#L{i,n — i) (1 <i < [n/2])
introduced in 4.50~4.52. Then ZCpsrunr)(V)=V.

PROOF. The proof is a case-by-case checking.

H, and H_ Since the centralizers of the rank two objects H, and H_ are Cpsrunr)(Hy) =
H, x PGL(2n,R) and Cpsr,4n,r)(H-) = H_ x PGL(n, H), Proposition 4.54 is immediate in these
cases.

H, #L(i,2n —1) (1 <i<n)and H #P(1,i—1,2n —i,0) (1 < i < n) We shall only prove the 2-
dimensional case since the 3-dimensional case is similar. The centralizer of H,#L(i,2n — 1) is
isomorphic to the product of H; with the centralizer of L = L(%,2n — ) in PGL(2n,R). There is
[47, 5.11] a short exact sequence

GL(i,R) x GL(2n — i, R)
- (—E)

1 — Cpar(2n,Rr)(L) = Hom(L, (-E)), — 1
where the group to the right consists of all homomorphisms ¢: L — (—E) such that p and ¢- p are
conjugate representations in GL(2n,R). By trace considerations, this group is trivial if ¢ < n and
of order two if 2 = n. Hence

o . GL(3,R) Z_G;)(%L—i,R) i<n
PGL(2n,R = n .
( ) —GIZ(_’EI){) X <Cl> 1=n

where Cy = (g g) is the (2n x 2n)-matrix that interchanges the two GL(n, R)-factors. In case

i < m, use 9.18. In case i = n, the center is (9.13) the pull-back of the group homomorphisms
GL(n,R) x ((E, —E)) (GL(n, R)2><Cl> (GL(n,R)2>
= — Aut | ——F=—=) « (C4)
(~E) (—E) (—E)

GL(LR)x((—E,E)) _
(-E) -

which is L again.
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Vo and Vo#L(i,n — i) The object Vo C PSL(4n,R) is the quotient of G = 4 0 21t C SL(4n, R)
as described in 9.4.(5). As this representation p = n(x + X) is the n-fold sum of an irreducible
representation of complex type there are exact sequences

1 —— G2 —— Cesian,r) (Vo) — Hom(G, (—E)), — 1
1—=2(6)/¢ ejlel G/Z(G) ——1

where the top row is [47, 5.11]. The elementary abelian group Hom(G, (—E)),, consisting of all
homomorphisms ¢: G — (—FE) such that p and ¢ - p are conjugate in SL(4n,R), equals all of
Hom(G, (—E)) = 23 since conjugation with the first two of the generators from 4.51 and with

ci-ans((§ %) (5 )

induce three independent generators. Hence
GL(n,C)
Crsi(an,r) (Vo) = (7
( ) (—E)
Note that conjugation with the matrix C2 induces complex conjugation on GL(n,C). The center
of this semi-direct product is (9.13) the pull-back of the group homomorphisms

X VO/VOL) x (Cs)

GL(n,R) o (i) . ({GL(n,C) 1\ GL(n, C) i
which is SRR Vo /Vih = A x Vo /Vih = T

The case of Vo#L(i,n — 1), 1 < i < [n/2], is quite similar. The centralizer is
GL(¢,C) x GL(n — 4, C)
(-E)

and its center is the pull-back of the homomorphisms

Cpsran,r)(Vo#L(i,n — 1)) = ( X VO/VI)L) x (Cy)

(GL(,R) x GL(n —i,R)) o (§) . .1 _ (GL(,C) x CL(n—i,C) . .1\
GL(i,C) x GL(n — i, C) N
— Aut ( —E) x Vo/Vy ) «(C2)

which is ZCpsr,(an,r)(Vo#L(i,n — i) = (GL(l’R)jf*;;l’R”"“) X VoVt =22 x Vo)Vt = Vo x L.
If n is even and ¢ = n/2, there is a short exact sequence
GL(n,C)?
(—E)
where the elementary abelian group to the right is all of Hom(G x L,(—E)) = 2%. Hence the
centralizer

1— — CPSL(4n,R)(W) X L) — Hom(G X L, <—E>)p —1

GL(n,C)?

Crsr(an,r)(Vo X L) = ( —E) X VO/VZ)L) x (C1, C3)

where C> is as above and C; is the (4n x 4n)-matrix (g f)?

. The matrix C; commutes with V,/Vz- and

switches the two factors of GL(n, C)2. The center of the centralizer is the pull-back of the group
homomorphisms

GL(n,R) o (i) x ((E,-E)) . _ (GL(m,C)?* R
(—E) Vo/Vo~ = ( (—E) Vo/Vs )

>. The matrix Cy commutes with

2
Vo/Vg- and acts as complex conjugation on %

GL(n, C)?

— Aut ( )

x %/V&) +(C1,Cs)
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which is ZCPSL(4n,R)(Vb % L) _ GL(l,R)o<<i)EX><(E,*E')) X VO/V(']J_ — 92 %/VOJ_ =V, x L.
H_#L(i,n — i) As above we have that

GL(i,H) X GL(n—i,H .
)OI H i< [n/2]

CpsLianr) (H- x L) = IR
pst(n.R)( ) {% x (Cy) x H_ n even and i = n/2

with center ZCpgr,an,r)(H- X L) = w =2xH_=H_ XxLincasei#n—i. Ifn
is even and ¢ = n/2, then the center is the pull-back of the group homomorphisms
GL(i,H) x ((-E, E)) ~ GL(3,H)? GL(i, H)? y H)  (C)

(—E) H-=Th )

which is ZCpsp(anry(H- x L) = w xH_ =2xH_=H_xL. 0

xH—>Aut(
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CHAPTER 5

The B-family

The B-family consists of the matrix groups
SL(2n+1,R), n>2,

of real (2n + 1) x (2n + 1) matrices of determinant +1. When n = 1 we obtain the 2-compact
group SL(3,R) = PGL(2, C) considered in Chapter 3. The embedding

A 0
GL(2n,R) — SL(2n+ 1,R): A — (0 detA)

permits us to consider GL(2n, R) as a maximal rank subgroup of SL(2n+1, R). The maximal torus
normalizer for the subgroup GL(2n,R) is also the maximal torus normalizer for SL(2n 4+ 1,R),
N(SL(2n+1,R)) = N(GL(2n,R) (4.1), so that, in particular, the Weyl group W (SL(2n+1,R)) =
W(GL(2n,R)) = 201 %, (4.2).

It is known that [35, 1.6] [24, Main Theorem|
Z/2 n=2

H'(W;T)=12/2, H'(W;T)= {z/2 xXZ/2 n>2

for these groups.
The full general linear group GL(2n + 1,R) = SL(2n + 1,R) x (—E) is the direct product of
SL(2n + 1, R) with the opposite of the identity matrix so that PGL(2n + 1,R) = SL(2n + 1,R).

1. The structure of SL(2n + 1,R)
Consider the elementary abelian 2-groups
Agpi1 = (diag(£l,...,£1)) C GL(2n + 1,R)
SAgn+1 =SL(2n +1,R) N Agpt1 C SL(2n + 1, R)
t=t(SL(2n+ 1,R)) = Agn11 NT(SL(2n + 1,R)) = (e1,...,en) C T(SL(2n + 1,R))
in GL(2n + 1,R) and SL(2n + 1,R).
5.1. LEMMA. The inclusion functors
A(Z2n+t1,A2nt1) = A(GL(2n + 1, R)), A(Zont1,SA2n41) =& ASL(2n + 1,R)),
A(221%,,t) = A(SL(2n + 1,R))<

are equivalences of categories.

PROOF. Similar to 4.12. A(SL(2n + 1,R) is a full subcategory of A(GL(2n + 1,R) since
conjugation with the central element —F of negative determinant is the identity. O

The Quillen categories A(GL(2n,R)) = A(Z2n,A2,) A(SL(2n + 1,R)) = A(Z2n+t1,D2n+1)
(4.12, 5.1) are not equivalent.
For any partition ¢ = (4p,%1), % > 0, @1 > 0, of 2n + 1, let L[ip, 1] C A2n+1 be the subgroup
generated by
20 21

diag(+1, ey —‘,—f, -1,..., —D = (iOPO + ilpl)(el)

73
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For any partition (g, i1, i2,%3) of 2n+1 where at least two of i1, i2, i3 are positive, let P[ig, 1, i2,43] C
Asg,+1 be the subgroup generated by

i0 i1 i i3
diag(+1,...,+1,=1,...,-1,%1,...,4+1,=1,...,—1) = (iopo + i1p1 + i2p2 + isps)(e1)
i 11 s i
diag(q_]-a RN +]Taq_1$ - '7+i, _17 L) _17:]-, RS _D = (iOPO + ilpl + Z.2/)2 + 7:3/)3)(62)

Note that L[ig,%1] is a subgroup of SAg,1; if and only if 4, is even, and that Plig,11,12,13] is a
subbgroup of SAs,; if and only of i1, 3,73 have the same parity, the opposite parity of 4.

Let P(k,r) denote the number of partitions of k& = i9 + -+ + i,_1 into sums of r positive
integers 1 <49 < --- < 14,_1. From the above discussion we conclude

5.2. PROPOSITION. The category A(SL(2n + 1,R)) contains precisely

e n isomorphism classes of rank one objects represented by the lines L[2iy + 1,2i1] where
0<i9<n—1andiy =n—1g.

° 2?22 P(,2) + 2;23 P(j,3) isomorphism classes of toral rank two objects. They are
represented by the subgroups P[2iy + 1,2i1,2is,0], where 0 < iy < n —2 and (i1,42) is a
partition of n—1ig, together with the subgroups P[2ig+1, 2i1, 212, 2i3], where 0 < iy <n—3
and (i1,12,13) is a partition of n — ig.

° 2?232 P(34,3) isomorphism classes of nontoral rank two objects represented by the sub-
groups P[2ig,2i1 —1,2i5 — 1,243 — 1] where 0 < ip < n—1 and (i1,12,%3) is a partition of
n — 9 + 2.

The centralizers of these objects are
Csr2n+1,r)L[2i0 + 1,2i1] = SL(2n + 1, R) N (GL(2ip + 1,R) x GL(2i1,R))

5.3
(5:3) — SL(2iy + 1, R) x GL(2i1, R)
Csy(2n+1,R)Pli] = SL(2n + 1, R) N H GL(j,R)
5.4 o
(5:4) _ [SL(2ig + 1, R) x GL(2i1, R) x GL(2i2, R) x GL(2is, R) P[i] toral
| GL(2i, R) x GL(2i; — 1,R) x GL(2i2 — 1,R) x SL(2i3 — 1,R) P[i] nontoral

as, for instance,
SL(2n+ 1,R)N (GL(Zio +1,R) x GL(Zil,R))
=SL(2n + 1,R) N (SL(2io + 1,R) x (—E) x SL(2i1,R) x (D))
= SL(2ip + 1,R) x SL(24;,R) x (—=D) = SL(2ip + 1,R) x GL(24;,R),
and the centers of the centralizers are

(5.5)  ZCsp(ani1m)L(20 + 1,2i1] = L[240 + 1,2i1],

(5.6) ZCsrent1m)Plil =SL(2n+1,R) N [] ZGL(i;,R) =
i;>0

{Pm #{jli; >0} =3
Pl x Z/2 #{j|i; >0} =4

5.7. LEMMA. For any nontrivial subgroup V. C SAsy, 11 there is a natural isomorphism
ZCsen+1,r)(V) = H°(Z2,41(V); SA2n11)
where Xan11(V) is the point-wise stabilizer subgroup (2.68).
PROOF. Let V C SAjy,4+1 be any nontrivial subgroup of rank r. Then V' = V7i] is the image
of 3 cyv ipp for some function i: Hom((Z/2)",R*) — Z where }_ v i, =2n+1 and
ZCsteni1,m) Vil = Z(SL(2n+ 1,R) N J] GL(,, R))
ip>0

= SL2n+ L,R) N [ ZGL(ip,R) = SAgnsr N ALY = sATzm 0 (VD
i,>0
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where the second equality can be proved by using that Cgr,(; r)SL(%, R) = ZGL(¢, R) and the final
equality follows from the observation that the stabilizer subgroup Xo,4+1(V[i]) =[], . X O

5.8. COROLLARY. im*(A(SL(2n + 1,R), m1(BZCst,2n+1,R))) = 0 for all i > 0.

PROOF. Immediate from the general exactness theorem (2.69) for functors of the form as in
5.7. O

ip>0 o’

5.9. PROPOSITION. Centralizers of objects of A(SL(2n + l,R))éé are LHS.

PROOF. Let X; and Xs be connected Lie groups and m; and w9 finite 2-groups acting on
them. Suppose that the homomorphisms 6(X;)™ and 6(X1)™ (2.20) are surjective. Then also
6(X1 x X2)™*7™2 jg surjective and so the product X; X m X Xy X7 is LHS (2.28). This observation
applies to the products (5.3, 5.4) since the f-homomorphisms are surjective [24, 5.4] (2.29) for
SL(2i + 1,R), i > 0, and SL(2i,R), i > 1. O

2. The limit of the functor H'(W;T)/H"(ro; Z( )o) on A(PSL(2n+1,R))SE

sec:sloddlimO

In this subsection we check, using a modification of 2.53, that conditions (1) and (2) of 2.51
with X = SL(2n+1, R) are satisfied under the inductive assumptions that the connected 2-compact
groups SL(2i + 1,R), 0 <14 < n, and SL(2i,R), 1 < ¢ < n, are uniquely N-determined.

The objects V C SL(2n +1,R) of the category A (PSL(2n +1,R))Z) are the rank one objects
L[ig, 1] and the rank two objects P[2ig+1, 2i1, 2i2,0] and P[2ig+1, 21, 2is, 2i3] as described in 5.2.
The rank two object P[2ig+1,2i1, 212, 23], i3 > 0, contains the three lines L[2ig+2i1 +1, 2i5+ 2i3],
L[2iy + 2ia + 1,241 + 2i3], and L[2iy + 243 + 1,241 + 2i5]. Their centralizers are described in (5.3)
and (5.4). Note that there are functorial isomorphisms

(5.11) THo(Cortaniimn (V) = (2/2) (01 x 2(Cstaner, 1) (Vo)

as modules over moCsr,(2n+1,r)(V)-

Condition (1) of 2.51 is satisfied as Cx (V) has N-determined automorphisms and is N-
determined for general reasons (2.39, 2.35, 2.40). This means that there are isomorphisms, ay and
fv, such that the diagrams

Cx (V) % Cx (V)

commute and oy € H'(W;T)(Cx(V)). There may be more than choice for ay but for each ay

there is just one possibility for fir (2.13). The set of possible ay for a given V is a H (mo; Z(( )0))(Cx (V))-
coset in H'(W;T)(Cx(V)) (2.37). The collection of the ay for various V represents an element

of the inverse limit

HYW;T)

(512 im® (ASLER + 1R 7 200

of the quotient functor over the category A(SL(2n + 1, R))§§ Condition (2) of 2.51 is satisfied if

the restriction map from H'(W;T)(SL(2n + 1,R)) to (5.12) is surjective. Because of the natural
splitting (5.11) and because the centralizers Cgr,(2n+1,r) (V') are LHS there is a short exact sequence

infi H'(W;T -
0 — Hom(o, (Z/2)™intio:1}) 1(—) — H' (Wo; T)™ — 0
H (w03 Z(( o))
of functors on A(SL(2n+1,R))SE. If we apply the functor Hom (g, (Z/2)™"{%0:1}) to the morph-
isms -

: sloddmorphisms ‘ (513) L[220 + 1,24, + 222] — P[Q’Lo + 1,244, 2i9, 0] «— L[2ZO + 241 + 1, 222]
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we see that the induced morphisms are injective and that their images intersect trivially. Thus
the inverse limit of this functor is trivial and from the above short exact sequence we obtain an
injective map

<t H' (W; T)
<2 >

=7 H'(mo; Z(()o))
between the inverse limits. As the inverse limit to the right is a subgroup of the inverse limit of
the functor H'(Wy;T) we conclude that if the restriction map

lim® (A(SL(2n + 1, R)) ) = lim® (A(SL(2n + 1, R))Z}, H' (Wo; T)™)

(5.14) H'(Wo; T)(SL(2n + 1,R)) — lim® (A(SL(2n + 1,R))Z5, H'(Wo; T))
is surjective, then condition (2) of 2.51 is satisfied.
5.15. LEMMA. The restriction homomorphism (5.14) is an isomorphism for all n > 2.

PROOF. Forn = 2, the image under the functor H'(Wy; T) of the category L[1,4] — P[1,2,2,0] +
L[3,2] is 0 — 0 + Z/2 so that the limit of the functor H!(Wy;T) is Z/2. Since SL(3,R) x
SL(2; R) — SL(5,R) turns out to induce an isomorphism on H!(Wy;T') the claim follows in this
case.

For n = 3, taking into account only the planes of type P[2ig — 1, 241, 2ig, 0], we should compute
the limit of the diagram

H'(WoCsr7,r)L[1,6])

\

H'(WoCsL(rr)P[1,4,2,0))

/

H'(WoCsr,7,r)L[3,4])

H! (W()CSL(7’R)P[3, 2,2, 0])

/

H'(WoCsr7,r)L[5,2])

of Fs-vector spaces. For each of the planes P take the intersections of the images in the cohomology
groups H'(WyCsr(7,r)P; T) of Hl(WOCSL(ZR)L;T) for each line L. C P. Take the intersection
of the pre-images in each H'(WyCs(7,r)L; T) of these subspaces of H' (WoCsr(7,r) P; T). Using
the computer program magma one may see that these subspaces have dimensions 1,2,2 for L =
L[1,6],L[3,4], L[5, 2], respectively, and that they equal the image of the restriction maps from
H'(Wy; T)(SL(7,R)). This shows that the lemma is true in this case.

In general, the above mentioned subspaces of H 1(WOC’SL(7’R)L; T) have dimension 1 for L =
L[1,2n] and dimension 2 for the lines L = L[2i+1,2n — 2] with 1 <7 < n—1 and these subspaces
equal the image of the restriction maps from H'(Wp; T)(SL(2n + 1, R)). O

3. Rank two nontoral objects of A(SL(2n + 1,R))

The nontoral rank two objects of A(SL(2n + 1,R)) are represented by the subgroups P[i] C
SAs,11 generated by the elements

2ig 2i1—1 2ip—1 2ig—1
o Y 2 3
_ - <
er = diag(F1,...,+1,=1,...,—1,%1,...,+1,=1,...,—1)
219 2i1—1 2i9—1 2i3—1
io 1 2 32

e = diag(*F1,...,+1,%1,...,+1,=1,...,—1,~1,...,—1)
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where i = (249,247 — 1,265 — 1,2i3 — 1), 0 < i9 < n— 1 and (iy,142,3) is a partition of n + 2 — 4g
(5.2). The generators of P[i] may also be written as

—1 71—1 i5—1 i3—1
/—10/‘—\ f—l/\—\ /—2/‘—\/—3’\—\ 1 0
(517) e = diag(E, ..., E,E,~E,...,~E,~R,E,...,E,~E,...,-E,~1), R=|(, |
1:0—1 1:1—1 i2—1 ’i3—1
——N— e N A ~ ~ A
(5.18) ey = diag(E,...,E,E,E,...,E,R,—E,...,—E,—E,...,—E,-1)

The centralizer of P[i] is
Cstiznt1.m)Pli] = SL(2n + 1, R) N (GL(2ip, R) x GL(2i; — 1, R) x GL(2i3 — 1, R) x GL(2i3 — 1, R))
= GL(2io, R) x GL(2i; — 1,R) x GL(2i2 — 1, R) x SL(2i3 — 1, R)
Note that P[i] is contained in the maximal torus normalizer N(SL(2n + 1,R)) = GL(2,R) %,,.
Since the centralizer of P[i] in the maximal torus normalizer,
Coreryz, Plil = GL(2, R) 134 x GL(2,R) 1 %;, 1 x GL(1, R)
X GL(].,R) X GL(Q,R) i Zi2_1 X GL(Z,R) i Z'i;;—la
is the maximal torus normalizer for the centralizer of P[i], the lift P[i] C N(SL(2n + 1,R)) is a
preferred lift of P[i] C SL(2n+1,R) [45]. The two other preferred lifts are given by composing with

the permutation matrices for the permutations (1,2)(ig +41,2n + 1) and (1,2)(ip +41 +1,2n+1)
(assuming 79 > 0) resulting in the lifts given by

i9—1 i1—1 ig—1 i3—1
e, = diag(E,...,E,E,~E,...,—E,~E,E,...,E,~E,...,—E, 1),
ig—1 i1—1 ia—1 ig—1
. ——— — ~ ~
es = diag(®,...,E,E,E,...,E,R,~E,...,—E,~E,...,—E,—1)
and
i0—1 11—1 io—1 i3—1
. ——— ——N— —N— ——
e, = diag(®,...,E,E,~E,...,—E,R,E,...,E,~E,...,—E,—1),
ig—1 i1—1 ia—1 ia—1
——N— —N— - -
e, = diag(E,...,E,E,E,...,E,~E,~E,...,—-E,~E,...,—E, 1)

respectively. These two lifts are also preferred lifts of P[i] C SL(2n+1,R). The three preferred lifts
are not conjugate in N(SL(2n+1, R)) because the intersection with the maximal torus is generated
by e; + es in the first case and by e;, respectively ey, in the next two cases. Note that all three
preferred lifts have the same maximal torus, SL(2, R)% xSL(2, R)* ~!xSL(2,R)%2 "1 xSL(2,R)% 1.
Let U = (e1,e2,e3) be elementary abelian 2-group generated by e; and ey as in (5.17, 5.18)
together with
io—1 -1 iz—1 ig—1
—— —— —N—
es =diag(E,...,E,RE,...,E,E|E,...,E,E,...,E,—1),
Note that the centralizer of U has a nontrivial identity component, that the inclusion U C
Csv(2n+1,r) P[i] induces an isomorphism on mo.

Under the inductive assumption that SL(2{,R), 1 <i<n—1, and SL(2:i — 1,R), 1 < i <mn,
have ,(N)-determined automorphisms (or using [31]) we conclude from 2.63 and 2.64 and (part
of) [42, 5.2] that condition (3) of 2.51 is satisfied for SL(2n + 1,R). (Namely, 2.63.(1) says that
vy does not depend on the choice of L < V. The difference f;’ }42 o f,,1, between any two of the
maps f, 1, from 2.51.(3) is an automorphismof Cgsr,(2n+1,r)P[i] that, by 2.63.(2), is the identity on
the identity component and by the commutative diagram (2.64)

(5.19) U

P

CsLzn+1,R)Pli] CsL2n+1,R)Pli]

-1
v,Lo ofv,Ly
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also the identity on moCsy(2n+1,r)P[#]- Any such automorphism of Cgr,(2n+1,r)Pli] has [42, 5.2]
the form A — ¢(A)A where
1 GL(2io, R) x GL(2i1 — 1, R) x GL(2i, — 1, R) x SL(2i3 — 1, R) —
70 (GL(2ig, R) x GL(2i; — 1, R) x GL(2i5 — 1, R) x SL(2i3 — 1, R)) = ZGL(2io, R)

is some homomorphisms. Diagram (5.19) thus implies that the inclusion U — SL(2n + 1,R) and
the monomorphism given by e; — ¢(e;)e;, 1 < i < 3, are conjugate. Since the traceof e;, 1 <1 < 3,
is odd (nonzero), ¢ must be trivial. Thus f, 1, and f, 1, are identical isomorphisms.)
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CHAPTER 6

The C-family

Let H = {a + bj|a,b € C}, where 5?2 = —1 and ja = @j for a € C, be the quaternion algebra.
The C-family consists of the matrix groups

PGL(n,H) = GL(n,H)/(—E), n >3,
of quaternion projective n x n matrices. (These 2-compact groups also exist for n = 1 or n = 2.
However, PGL(1,H) = SL(3,R) = PGL(2,C) and PGL(2,H) = SL(5,R) (9.25) are already
covered.)

The maximal torus normalizer for GL(1, H) = H*, generated by the maximal torus GL(1, C) =
C* and the element j, sits in the non-split extension

1— GL(1,C) —» N(GL(1,H)) — (j) /(-1) = 1
of X3 by GL(1,C) = C*. The maximal torus normalizer for GL(n, H) is the subgroup
N(GL(n,H)) = N(GL(1,H)) 1 %,

generated by N(GL(1,H))™ C GL(n, H) and the permutation matrices. The maximal torus nor-
malizer for PGL(n, H), the quotient N(GL(n, H)) by the order two group (—E), sits in the exten-
sion
GL(1,C)" . N(GL(1,H))" N(GL(1,H))
(—E) (—E) GL(1,C)
which does not split (for n > 3).
It is known that [35, 1.6] [24, Main Theorem|]

1—

1Y, =1

Z/2 n=34

HO(W; T)(PGL(n, H)) = 0, Hl(W;T)(PGL("’H”:{o n> 4

for the projective groups.

1. The structure of PGL(n,H)

Let
A, = t(GL(n,H)) = (diag(+1,...,+1)) C GL(n,H)
be the maximal elementary abelian 2-group in GL(n, H) and C4 = (I) C GL(n, H) the cyclic order
four group generated by I = diag(s,...,¢). The maximal elementary abelian 2-group in PGL(n, H)
is the quotient

H(PGL(n, 1)) = G

so that the toral part of the Quillen category is equivalent
Cy o (diag(=+1, ..., :I:l)))
(—E)
to the category whose objects are nontrivial subgroups of ¢(PGL(n, H)) and whose morphisms are
induced from the action of the Weyl group.
For any partition ¢ = (ig,41) of n = ip + ¢ into a sum of two positive integers ig >3 > 1 >0
let L[é] = L[ig,i1] C GL(n,H) be the subgroup generated by

t(PGL(n, H))* = Cy o t(GL(n, H))

A(PGL(n,H))St = A(Cy 1 By,

) i1
~

diag(+1,...,+1,-1,...,—1)

79
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Then the centralizer

GLio H)x GL(i1.H) io 4 iy
(6.2) Crar(nm)Llio, i1] = § qr(io,m)? 0 E .
B X < E 0 <—E> > 0 =11

so that the center ZCpgyn,u)L[t0, 1] = Llio,%1] as in the proof of 4.54 and 9.18.
Let (also) I € PGL(n,H) denote the order two element that is the image of the order four
element ¢ € GL(n, H). Then

(6.3) CraLmm)(I) = % X (j (—E))

so that the center ZCpgyn,u)(I) = (I) as shown in the proof of 4.54.

For any partition (g, 1, 12,0) of n = ip + 41 + 42 into a sum of three positive integers ig > i1 >
ig > 0 or any partition (¢9,%1,%2,%3) of n = 49 + 41 + i2 + i3 into a sum of four positive integers
i > 91 > 12 > i3 > 0 let Plig,41,12,13] C A2n+1 be the subgroup generated by the two elements

io i1 ia is
diag(+1,...,+1,=1,...,-1,%1,...,+1,=1,...,-1)
i ‘ ‘ ;
diag(F1,...,+1,%+1,...,+1,=1,...,—1,=1,...,-1)
Then the centralizer
i 4 . ...
% X (Cy x C9) i = (o, %0, %0, %0)

(6.4) CraLmu)Pli] = GL(iO’H)<2 XEC;L(i2’H)2 X Cy i = (io, io, 12, i2)

io,H) x GL(i1,H) x GL (i2,H) x GL(ig, .
GL(()H)X L(lHlXE>L(2H)X L(3H) #224

where the groups C5 are generated by permutation matrices.
For any partition ¢ = (ig,41) of m = i + 41 into a sum of two positive integers ig > i; > 0 let
I#L[ig,11] C PGL(n,H) be the elementary abelian 2-group that is the quotient of
10 71

(I#L[io, 7:1])* = <Ia dia‘g(q_la A ,+1, -1, A > _D>

Then the centralizer

SHELQEEHRE) X (7 (- ) io # i1
__eq:cfamCIL (6.5) CraLm,mI#Lio,11] = { ariic.C)2 ) 0 E ] )
. SO % (=B}, o] (-BY) do=1ir

6.6. PROPOSITION. The category A(PGL(n,H)) contains ezactly

e [n/2] + 1 rank one toral objects represented by the lines L[i,n —i], 1 < i < [n/2] (with
q=0), and by the line I (with ¢ #0).

e P(n,3)+P(n,4)+[n/2] rank two toral objects represented by the P(n, 3) planes Plig, i1, i2,0]
(with ¢ = 0), the P(n,4) planes Plig,i1,i2,i3] (with ¢ = 0), and the [n/2] planes
I#Li,n—1],1 <i<[n/2] (withq #0).

6.7. PROPOSITION. Let V C PGL(n,H) be a nontrivial elementary abelian 2-group. Then
V is toral <= [V,V]#0

PROOF. The proof is similar to 4.10 with the extra input that all elementary abelian 2-groups
in GL(n, H) are toral by quaternion representation theory [1]. O

prop:cfamlimHiW ‘ 6.9. PROPOSITION. Centralizers of objects of A(GL(n,H))g are LHS.

PROOF. The centralizers C = Cy x 7 in question are the nonconnected centralizers listed in
(6.2), (6.3), (6.4), and (6.5). In fact, we only need to deal with

GL(i, H)? GL(io, H)? x GL(i, H)?
(-E) (—E)

GL(i, H)*
(-E)

X 02, X 02, X (02 X 02)



2. THE LIMIT OF THE FUNCTOR H'(Wo; T)"/"o ON A(PGL(n,H)S! 81

as the other cases are covered by 4.19. It suffices (2.28) to show that §(Cp)™ (2.20) is surjective.
Computations with the program magma results in the table

SLCHE 0y || kerd |Homw,TW) | B\(W;T) | 0 | B (W;1)" |
1=1 (Z/2?|  (2/2) 0 epi 0
2= (z/2)*]|  (z/2)° (Z/2)° (Z/2)°
2 < 0 (Z/2)" (Z/2)" |Tso | (Z/2)?

From the table we see that 6™ is surjective unless ¢ = 2. In that exceptional case, more compute
computations show that H!(m;TW) = Z/2 and H'(W x C;T) = (Z/2)® which means that also

LI % Cy is LHS.

Computations with the program magma results in the table

LoD CLOHY [ kerg | Hom(W,7%) | B\ W;T) | 0 | B\ (W;T)" |

1=i0,2=u | (Z2/27] (Z/2)F (Z/2)F |epi| (Z/2)
T=i2<u | (2/27] (Z/2)F (Z/2)S [epi| (Z/2)°
2= iy < i1 Z/27 [ (Z2)2)F (Z]2) [epi| (2/2)1
3<ip< iy 0 (Z/2)% (Z/2" [iso | (Z/2)7

Since 6 is surjective and H>%(m;kerf) = 0 because the action of m on ker is induced from the
trivial subgroup, 6™ is surjective.
Computations with the program magma results in the table

SLEI 50 (Cy % Cy) || ker® | Hom(W,TW) | B\(W;T) | 0 | B (W;T)" |

prop:cfamlimOH1

(—E)
1= (Z/2* | (Z/2)” (Z/2)° |epi| (Z/2)
2= (Z/2)" | (2/2)* (Z/2)* |epi| (Z/2)°
2<i 0 (Z/2)** (Z/2)** |iso | (Z/2)°
Since 6 is surjective and H>%(m;ker §) = 0 because the action of 7 on ker# is induced from the
trivial subgroup, 6™ is surjective. O

2. The limit of the functor H'(Wy;T)"/"° on A(PGL(n,H)Z!

Let H(Wo; T): A(PGL(n, H))S! — Ab be the functor that takes the toral elementary abelian
2-group V C t(PGL(n, H)) to the abelian group H'(Wo(Cpgr(n,m)(V); T)), and H'(Wy; T)W/Wo
the functor that takes V' to the the invariants for the action of the component group moCpgrn,u)(V)
on this first cohomology group.

6.11. PROPOSITION. The restriction map
HY(W (PGL(n,H); T) — lim° (A (PGL(n, H))§;, HY(Wo; T)WV/Wo)
is an isomorphism for all n > 3.

Proor. PGL(4,H): Computer computations show that the intersection of the images of the
morphisms

H' (Wo; T) /™o (L[1,3]) — H' (Wos T)/™ (I#L[1, 3]) < H' (Wo; T)™/ (1)
is 1-dimensional and that its pre-image in H'(Wy;T)"/Wo(I) equals the image of the restriction
map from H'(W,T)(PGL(4,H)). Similarly, the images of the monomorphisms
HY(Wo; T)W/Wo(L[1,3]) — HY(Wo; T)W/Wo(P[1,1,2,0]) + HY(Wo; T)W/Wo (L[2,2))

meet in a 1-dimensional subspace whose inverse images in the cohomology groups to the right and
to the left agree with the images of the restriction maps from H'(W,T)(PGL(4, H)).
PGL(n,H), n > 4: Computer computations show that the images of the morphisms

H (Wo; T)W/Wo(L[1,n — 1]) = H' (Wo; T)V/Wo(I#L[1,n — 1)) < H'(Wo; T)V/ "o (1)
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intersect trivially and that the arrow pointing left is an isomorphism. Similarly, the images of the
injective morphisms

H' (Wo; T)W/™°(Lli,n — i]) — H'(Wo; T)W/™°(P[i,1,n — i — 1,0))
— HWo; TYV/™o(Lli +1,n—i—1]), 1<i<[n/2],

intersect trivially. These observations imply that lim®(A(PGL(n, H))=! 20 H' (Wo; T)W/Wo) =0. O

3. The category A(PGL(n, H))[§,£¢0

We shall need information about all nontoral objects of A(PGL(n,H)) of rank < 3 and some
objects of rank 4. If V' C PGL(n, H) is an elementary abelian 2-group with nontrivial inner product
then its preimage V* C GL(n,H) is P x R(V) or (Cy o P) x R(V) where P is an extraspecial
2-group, C4 o P a generalized extraspecial 2-group, and U;(V*) = (—E) (4.8). We manufacture
all oriented quaternion representations of these product groups as direct sums of tensor products
of irreducible representations of the factors (9.6) as described in [1, 3.7, 3.65].

Note that the degrees of the faithful irreducible representations over H for the groups
and Cyo 21;2 are even and that the quaternion group 272 has a faithful irreducible representation
over H, namely the defining representation.

1+2
2+

6.12. The category A(PGL(2n + 1 H))[ J#0. The category A(PGL(2n + 1,H)) contains
up to isomorphism just one nontoral rank two object, H_, whose inverse image in GL(2n + 1,H)
is
Qs = 2112 = (diag(i, . . ., 1), diag(j, - - . , 4))
As in 4.50, the centralizers [54, Proposition 4] of 272 and H_ are

Car(zni1,m)(211%) = GL(2n + 1, R), Crarnt,m (H-) = H. x SL(2n+ 1,R)

so that ZCPGL(QTH_LH) (H_) =H_.
There are n nontoral objects of rank three, H_#L[i,2n+1—4], 1 <14 < n. The inverse image
in GL(2n + 1, H) of H_#L[i,2n + 1 — 4] is
i 2n+1—

(diag(i,....,q),diag(j,. .., ), diag(+1,..., +1,~1,..., -1))

and the center of the centralizer, Cpgr(2n+1,1) (H - #L[i,2n+1—1]) = H_ x Csp,2n+1,r) L[i,n—1],
is ZOpgr(ent1,m)(H-#L[i,2n +1 —i]) = H_#Lli,2n 4 1 — 4] according to (5.5).

The objects H_#Plig, 1,142, 3], where Pl[ig,%1,12,%3] is as in 1, are rank four nontoral objects.

We need to know that the nontoral object H_ satisfies condition (3) of 2.51. Note that the
conditions of 2.63 are satisfied because the identity component of Cpgr,(2n+1,1)(H-) is nontrivial
and because the Quillen automorphism group A(PGL(2n + 1,H))(H_) = GL(2,F3) acts trans-
itively on the set preferred lifts H_ C N(PGL(2n + 1,H)) of H_ C PGL(2n + 1,H). Under the
inductive assumption that SL(2n + 1,R) has m.(IN)-determined automorphisms (or using [31])
we conclude from 2.51 and diagram (2.64) and (part of) [42, 5.2] that condition (3) of 2.51 is
satisfied for the nontoral rank 2 object H_. (Namely, 2.63.(1) says that v} does not depend on the
choice of L < V. The difference f, iz o fu,,1, between any two of the maps f, 1, from 2.51.(3) is an
automorphism of Cpgr(2nt1,1)(H_) that, by 2.63.(2), is the identity on the identity component
and by the commutative diagram (2.64)

/\

CraLi@nt1H)(H-) ————— CpaL@n+1,1)(H-)

fu L2°fV L

(6.13)

also the identity on moCpgr(2n+1,1)(H-). Since the identity component SL(2n + 1, R) of the cent-
ralizer Cpgr,(2n+1,1) (H-) has no center, this shows that fo iz © fu, L, is the identity automorphism.)
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3. THE CATEGORY A(PGL(n, H))L,'7° 8

6.14. Rank two nontoral objects of A(PGL(2n,H)). The category A(PGL(2n,H)) con-
tains up to isomorphism two nontoral rank two objects, H, and H_, whose inverse images in
GL(2n,H) are

210 = g myne(rmy, n= () ) 7= (0 0)
22 — (diag(i,...,1),diag(j,..., 7))

where the representation of the dihedral group is of real type and the representation of the
quaternion group 2:72 of quaternion type. This follows from 4.8 because 2?2 has one faithful
irreducible H-representation of degree 2 and 22
degree 1. The centralizers are [54, Proposition 4]

142
2+

has one faithful irreducible H-representation of

Car(znm)(257?) = GL(n, H), Cpavenm (Hy) = Hy x PGL(n, H)
CGL(ZTL,H) (21_+2) = GL(2n7 R)a CPGL(Zn,H) (H—) - H_ X PGL(Zn, R)

as we see by an argument similar to that of 4.50. This implies (9.18) that ZCpqgr(2n,m)(H) = H
for all nontoral rank two objects H of A(PGL(2n, H)).

We need to know that these nontoral objects satisfy condition (3) of 2.51. To see this we use
2.63.

H: Condition (1) of 2.63 is clearly satisfied since the identity component of Cpgr(2n,1) (H+)
is nontrivial when n > 3. The group H* = 2/ is contained in N(GL(2n, H)) = N(GL(1,H))1Z2,
and its centralizer there is

Cn(aLenm) (2Y?) = Cy (L mys., (2172) = N(GL(1,H))1 %, = N(GL(n, H))
and therefore H_ is contained in N(GL(2n,H))/ (—E) = N(PGL(2n, H)) where its centralizer is

CnpaLenm)(Hy) = Hy x N(PGL(n, H)) = N(Car(2n,m)(H4+))

as in 4.50. This means that H; C N(PGL(2n,H)) is a preferred lift [45] of H; C GL(2n,H). Pre-
composing the inclusion Hy C N(PGL(2n,H)) with the nontrivial element of A(PGL(2n,H))(H,) =
O1(2,F3) = O (6.21) leads to another preferred lift. The third preferred lift is the quotient of

(2112)diae(B.B) — ( diag(RE, ..., R®),diag((RT)%, ..., (RT)")),

() wen (i )

Note that these three preferred lifts all have the same image in the Weyl group mo N(GL(2n,H)) =
mo(N(GL(1,H))) ! g, namely the subgroup generated by the permutation (1,2)(3,4)---(2n —
1,2n) € Say.

Under the inductive assumption that PGL(n,H) has m,(/V)-determined automorphisms (or
using [31]) we conclude from 2.63 and diagram (2.64) and (part of) [42, 5.2] that condition (3) of
2.51 is satisfied for the nontoral rank 2 object H of A(PGL(2n,H)). (Namely, 2.63.(1) says that
vy does not depend on the choice of L < V. The difference fo, }42 o fu,r, between any two of the
maps f, 1, from 2.51.(3) is an automorphism of Cpgr,(2n,1)(H+) that, by 2.63.(2), is the identity
on the identity component and by the commutative diagram (2.64)

N

CraLnm)(Hy) ——— Cpar(ann)(Hy)
fu Ly ofv,ry

(6.15)

also the identity on moCpgr(2n,m)(H+)- Since the identity component of Cpgr,(2n,u)(H4) has no
center, this shows that f,; iz © fy,L, is the identity automorphism.)

H_: Condition (1) of 2.63 is clearly satisfied since the identity component of Cpqr(2n,m)(H-)
is nontrivial when n > 3. The group H* = 22 is contained in N(GL(2n,H)) = N(GL(1, H))1Zs,
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and its centralizer there is
CN(GL(1,H)) 1%, (21+2) = CN(GL(l u))(4,7) 1 ¥ = GL(1,R) 1 X2, = N(GL(2n,R))

and therefore H_ is contained in N(GL(2n,H))/(—E) = N(PGL(2n, H)) where its centralizer is
CN(PGL(ZTL,H))(H—) =H_xXx N(GL(2TL, R))/ <—E> =H_x N(PGL(2TL, R)) = N(CPGL(Zn,H) (H_))
as in 4.50. This means that H_ C N(PGL(2n,H)) is a preferred lift [45] of H_ C GL(2n,H).
Precomposing the inclusion H_ C N(PGL(2n,H)) with elements of A(PGL(2n,H))(H_-) =
O~ (2,F3) = GL(2,F3) (6.21) leads to other two preferred lifts of H_.

Under the inductive assumption that the identity component PSL(2n,R) of PGL(2n,R) has
74 (N )-determined automorphisms (or using [31]) we conclude from 2.63 and diagam (2.64) and
(part of) [42, 5.2] that condition (3) of 2.51 is satisfied for the nontoral rank 2 object H_ of

A(PGL(2n,H)). (The argument for this is the same as in case of Hy with the little extra com-
plication that moCpar(2n,m)(H-) has an extra generator so that we replace diagram (6.15) by

(6.16) (H_,diag(~1,1,...,1)

T

Crar(en,m)(Hy) Crarenn)(Hy)

-1
fu,L2 Ofu,Ll

from (2.64) where the slanted arrows induce isomorphisms on the component groups.)

6.17. Rank three nontoral objects of A(PGL(2n,H)). The nontoral rank three objects
of the category A(PGL(2n,H)) are the quotients of H, #L[i,n—1i], 1 <i < [n/2], H_#L[i,2n—1],
1 <4 < n, and Vp. These subgroups of GL(2n, H) are defined to be

n n i n—i
(diag(R, ... ) diag(T T) diag(E ...,BE,—E,...,—E))
( diag(t, ,z),dlag R dlag — —1)>

<diag(i,...,i),diag(R,...,R),diag(T,...,T),>

and their centralizers are
CPGL(2n,H)(H+#L[ia n—i]) = H; x CPGL(n,H)L[i,n -1,
Crcriznm) (H-#L[i,n —i]) = H_ x Cpgr(2n,r) LI, 2n — 1],
6.3 GL(n,C .
Crar(en,m) (Vo) = Hy x Cparnm)(I) = Hy X ﬁ x (j (—E))
so that (6.2, 4.54, 6.3) ZCpqr(2n,1) (V) = V for all nontoral rank three objects V of A(PGL(2n, H)).

The elements of Hy#L[i,n —1i|, H_#L[i,2n —i], and V; have traces (computed in GL(4n, C)) in
the sets +{0,4n — 8i,4n}, £{0,4n — 4¢,4n}, and +{0,4n}.

6.18. Rank four nontoral objects of A(PGL(2n,H)). H_#P[1,i—1,2n—1i,0] C GL(2n,H),
1<i<mn,is

2n—1 i—1 2n—1

(diag(, - ,z),dlag Jy---57),diag(1, —1 -1,1,...,1),diag(1,1,...,1,-1,...,-1))

The elements of P have traces {2n+2— 21, —2n+2z, 2n+1} and these three integers are all distinct
so that the Quillen automorphism group (6.21) has order 3 - 25. This nontoral rank four object
contains the two nontoral rank three objects H_#L[1,2n — 1|,H_#L[2,2n — 2] when ¢ = 2 and
the three nontoral rank three objects H_#UL[1,2n — 1],H _#L[i —1,2n — i+ 1], H_#L[i,2n — i]
when ¢ > 2.

Vo#Ll[i,n —1] C GL(2n C)cC GL(2n, H), 1 <i < [n/2], is the subgroup

n A n—i

——N— —N————
(diag(t, . ..,1),diag(R ) diag(T,...,T),diag (E,...,E,~E,...,—E))
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containing the three rank three objects H #L[i,n —i|, H_#L[2i,2n — 2i], and Vj.

For these nontoral rank four objects E C GL(2n, H), the center of the centralizer is finite (4.54)
and as, of course, E C ZCpgr(2n,1)(F) we see that Homa (pgr(2n,m)) (St(E), E) is a subspace of
Homa (pgL(2n,1)) (St(E), 11 BZCpar(2n,1) (E))-

4. Higher limits of the functor 7;BZCpgrn,u) on A(PGL(n, H))[ » 1#0

In this section we compute the first higher limits of the functors m; BZCpgrnm), J = 1,2.

6.19. LEMMA. liml WIBZCPGL(n,H) =0= lim2 ﬂlBZCPGL(n,H) and lim2 7T2BZCPGL(n,H) =
0 = lim® 7 BZCpar.(n1)-

The case j = 2 is easy. Since T2 BZCpgr,(,m) has value 0 on all objects of A(PGL(n, H))[» 170
of rank < 4 it is immediate from Oliver’s cochain complex [53] that lim?® and lim® of this functor

are trivial. We shall therefore now concentrate on the case j = 1.
For any elementary abelian 2-group E in PGL(n, H) we shall write

(6.20) [E] = Homg (pGL(n,H)(E)) (St(E), E)
for the Fa-vector space of Fo A(PGL(n, H)(E)-equivariant maps from the Steinberg representation
St(E) over Fy of GL(E) to E. Olivers cochain complex has the form (4.33).

6.21. PROPOSITION. Regardless of the parity of n, the Quillen automorphism groups
A(PGL(na H))(H—) =0~ (25 FZ)
— o~ (27 F2) *
A(PGL(n, H))(H-#V) = ( 0 A(GL(n,R))(V)

and dimy, [H_] =1 = dimg, [H_#L[i,2n + 1 — ]| as described in 4.84 and 4.41.

PrOOF. A(GL(n,H))(2'™?) = Out(2""?) since all automorphisms of 2"+ preserve the trace.
This group maps (isomorphically) to the subgroup O~ (2,F2) C GL(H_) of automorphisms that
preserve the quadratic function ¢ on H_. The Quillen automorphism group of H_#V consists of

the automorphisms that lift to trace preserving automorphisms of 2*?#V. The dimension of the
vector spaces of equivariant maps was computed by magma. O

In the odd case of GL(2n + 1, H) the cochain complex (4.33) takes the form
(6.22) 0 H 1S [ 17 #Lb2n+1-1 S ] (815 -
1<i<n |B|=2¢

and we need to show that d' is injective and that dim(imd?) > n — 1.
If E = H_+#PJi], where P[i] is as in (6.4), then

A(PGL(2n + 1,H))(H_#P[i]) = (0_(3’ £2) A(SL(2n +*1,R))(P[i]))

where A(SL(2n +1,R))(PJi]) is the group of trace preserving automorphisms of P[i]. It turns out
that
2 A(SL(2n+1,R))(P[i]) = {E}
dimp, [H_#Plig,1,i2,33]] = { 1 A(SL(2n + 1, R))(P[i]) = C;
0 A(SL(2n+1,R))(P[i]) = GL(2,F3)

When n =1 or n = 2, the cochain complex (6.22) has the form
1 2
0 [H_] % [H_#L[1,2]] > [H-#P[1,1,1,0]] = ---
d! d?
0—[H ] — [H #L[1,4)] x [H_#L[2,3]] — [H_#P[1,1,3,0]] x [H_#P[1,2,2,0]] = - --
where all vector spaces are one-dimensional. In the case of n = 1, d' is an isomorphism, and in

the case n = 2, d' has matrix (1 1) and d? has matrix (} }) In case n > 3, it is enough to
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show that d! is injective and d? has rank n — 1 in the cochain complex
1 2
0 [H] % [ H-#Ll2n+1-i] S [ [H-#P[1,i—1,2n—i+1,0]]

1<i<n 2<i<n

that agrees with (6.22) in degrees 1, a product of one-dimensional vector spaces, and 2, a product
of two-dimensional vector spaces. The elementary abelian 2-group H_#P[1,i—1,2n —i+1,0] C
GL(2n+1, H) contains the nontoral subspaces H_#ULI[1,2n|, H_#L[i—1,2n—i+2], and H_#L[i, 2n—
i+ 1]. The map f_, defined exactly as in 4.36, is the nonzero element of [H_] and the maps
df , defined exactly as in 4.42, are nonzero in H_ #UL[i,2n + 1 — i]. Thus d' is injective. A
magma computation reveals that {ddf_r[i_1 2n—it2], ddf_L[i 2n—i+1]}, Where these Fo A(GL(2n +
1,H))(H_#P[1,i—1,2n—i+1,0])-maps are defined as in 4.44, is a basis for the two-dimensional
space H_ #P[l,l — ]., 2n—1+ ]., 0] and that ddf—L[1,2n] = ddf—L[i—1,2n—i+2} + ddf—L[i,Qn—i-l—l]- This
shows that d? has rank n — 1.
In the even case of GL(2n, H) the cochain complex (4.33) takes the form

0= [H ) x[H] S T] H #Lli2n—i]x ] [Ho#tllin—i) x %] S ] (B
1<i<n 1<i<[n/2] |El=2*

6.23. PROPOSITION. The automorphism groups of the low-degree nontoral objects of the Quil-
len category A(PGL(2n, H)) are:

A(PGL(2n, H))(H,) = O+(2,F5) A(PGL(2n,H))(H+#V):(O+(%’F2) A(GL(;H))(V))

A(PGL(2n, H)) (Vo) = Sp(2, F2) A(PGL(znaH))(VO#L[i,n—i])g(Sp(ZO’FQ) ;)

and dimg,[H]| = 2, dimg,[Hy#L[i,n — i]] = 3, dimg,[Vy] = 4, and dimg, [Vo#L[i,n —1i] =5 as
described in 4.34, 4.39, and 4.37, and 4.44.

PROOF. The Quillen automorphism groups of the dihedral group 23r+2 and the generalized
extraspecial group 4o 2?2 are the full outer automorphism groups because the traces are nonzero
only on the derived groups which are characteristic. The images in GL(H ), respectively, GL(Vp),
isomorphic to O1(2,F3) = Cs and to Sp(2,F2) = GL(2,F;), are the Quillen automorphism
groups for H, and V4. For the middle formula, recall that the trace of Hi#V is the product of
the traces. O

As in the real case (Chp 4) we get that d* embeds [H_] x [H,] into [Vp]. The only problem is
to show that the rank of d? is > n + 3[n/2] +4 — 3 = n + 3[n/2] + 1. We have to show that

dim(im d*) > n + 3[n/2] + 1

We show this by mapping the n + [n/2] 4+ 1 nontoral rank three objects (6.17),

o [H_#L[i,2n —1i]], 1 <1 < n, with basis {df} as in (4.42),
o [Hi#Lli,n—1]],1<1i<[n/2], with basis {dfy,dfo, fo} as in (4.40), and
o [Vo] with basis {dfy,dfo,df—, fo} as in (4.38)

into the (n — 2) + [n/2] nontoral rank four objects (6.18)
(] H_#P[].,’t — 1, 2n+1— Z], 2<1 < n, with basis {ddffL[i71,2n+17i]7 ddffL[i,ani]} where
these maps are defined as the similar maps in (4.44),
o Vo#L[i,n —1i|, 1 <i<[n/2], with basis
{ddf Liin—a)> ddforin—i), Aforfin—i)> Adf - L2, 2n—24), Afovi, }
as in (4.44)

Computations with magma shows that the resulting (n + 3[n/2] + 4) X (2n + 5[n/2])-matrix has
rank n + 3[n/2] + 1. The matrix has the form (shown here for n = 5)
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[(H_#P[1,2,7]] [H_#P[1,3,6]] [H_#P[1,4,5]
H_#L[1,9] () () )
H_#L[2,8] 10
H_#L[3,7] Eo 1; 10
H_#L[4,6] Eo 1; 10
H_#L[5,5| Eo 13
H 4[4
H{#L[2,3]

Vo
H_#LL,9]
(000 1 0 H_#L[2,8]
H_#L[3,7)
0 0 0 1 0)|H_#L[4,5]
H_#L]5,5]
A H, #L[1, 4]
A H,#L[2,3]
B B Vo
where 1 0 0 00
1 0 0 0O
A:(olooo), pf0 1000
0 01 0O
0 0 0 01
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CHAPTER 7
The 2-compact groups Gs, DI(4) and Fy

We use the material of the previous chapters to (re)prove that the 2-compact groups Go, DI(4)
and F, are uniquely N-determined.

1. The 2-compact group Go

BGs is a rank two 2-compact group containing a rank three elementary abelian 2-group F3 C
Go such that A(G2)(E3) = GL(3,F2) [23, 6.1] [20, 5.3] and

H*(BGy : Fy) = H*(BE3; Fy)tGF2) =~ Fyley, ¢, 7]

realizes the mod 2 rank 3 Dickson algebra [36]. The Quillen category A(Gz)) contains exactly
one isomorphism class of objects E1, Fa, F3 of ranks 1,2,3 as Lannes theory [32] implies that the
inclusion functor A(FEs,GL(3,F2)) — A(Gz) is an equivalence of categories. The centralizers of
E1 C EQ C E3 are

SO(4) DT x (—FE) D Es,

In all three cases, ZCg,(E;) = E; so that m;BZCg, = 0 and m BZCg, = H°(GL(3,F2)(-); Es3).
Thus 7, BZCg, is an exact functor (2.69) with lim° 7, BZCq, = H°(GL(3,F5); E3) = 0.
The Weyl W(G2) C GL(2,Z) C GL(2,Z3), of order 12, is generated by the two matrices [4,

VI1.4.13]
) G )

and the maximal torus normalizer N(Gz) is the semi-direct product of the maximal torus and the
Weyl group [10].
It is known that HO(W;T)(Gz) =0, HY(W;T)(G2) = 0, and H*(W;T)(G2) = 0 [24, 26].

PROOF OF THEOREM 1.4. The rank one centralizer, SL(4, R) = SL(2, C)oSL(2, C), is uniquely
N-determined (1.2). Condition 2.51.(2) is satisfied because H'(W(X);T(X)) = 0 for X = G,
SL(4,R) [24], 2.51.(1) and 2.51.(3) because the only rank two object in G is toral and its cent-
ralizer is a 2-compact toral group. We noted above that the higher limits vanish. Now, 2.48 and
2.51 show that G is uniquely N-determined.

We have Aut(Gz2) = W(G2)\Ngr(2,2,)(W(G2)) (2.17) as the extension class e(Gz) = 0 [10].
The exact sequence (2.8) can be used to calculate the automorphism group. Using the description
of the root system from [4, VI.4.13] with short root a; = &1 — &2 and long root ag = 26 — g2 — &3
generating the integral lattice in Z3 one finds that

NGL(z,Zz)(W(GZ)) = <Z§<,A, W(G2)>’ A=v=3 <(1) g)

and therefore Aut(Gs) = Z5 /Z* x Cy where the cyclic group of order two is generated by the
exotic automorphism A interchanging the two roots. O

2. The 2-compact group DI(4)

BDI(4) is a rank three 2-compact group containing a rank four elementary abelian 2-group
E, C DI(4) such that A(DI(4))(E4) = GL(4,F5) and [16]

H*(BDI(4); F3) = H*(BEy; F3)Cl4F2) & Fylcq, 19, c14, €15]

89
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realizes the mod 2 rank 4 Dickson algebra. Lannes theory [32] implies that the Quillen category
A(DI(4)) is equivalent to A(GL(4, F3), E4) with exactly one elementary abelian 2-group (isomorph-
ism class), E1,...,Es, of each rank 1,...,4. The centralizers of the toral subgroups Ej, Es, E3
and the nontoral subgrouop F, are, respectively,

Spin(7) D SU(2)*/ ((—E,—E,—E)) DT x (—E) D E4
and ZCpy(4)(E;) = E; in all four cases so that the functor m; BZCpy4): A(GL(4,F2), E;) — Ab
is the O-functor for j = 2 and equivalent to the functor H°(GL(4,F3)(—); E4) for j = 1. This is
an exact functor (2.69) and lim® 71 BZCpy(sy = H(GL(4, F2); E4) = 0.
As may be seen from [57], the Weyl group W (DI(4)) C GL(3,Z3) of order 2|GL(3,F2)| = 336
is generated by the matrices

1 0 0 1 0 0 -1 1 1 —v 0 v+
2 -1 -1/, 0o 0 1], 0 1 0}, -1 1 v
0 0 1 2 -1 -1 0 0 1 —2v 0 v

where v € Zs is the unique 2-adic integer with 20?2 — v + 1 = 0. The first three matrices generate
W (Spin(7)) [7, 3.9, 3.11]. Since W(DI(4)) is isomorphic to GL(3,F2) x (—E),
H™(W;T)(DI(4)) = @D H™ *(GL(3,Fo); H*((—E); T) = @ H" *(GL(3,F2); (Z/2)°)
2i<n 2i<n
and, in particular,
HO(W;T)(DI(@)) =0, H*(W;T)(DI() = Z/2, H*(W;T)(DI(4)) = /2

We may characterize the maximal torus normalizer short exact sequence for DI(4) as the unique
nonsplit extension of 7" by W(DI(4)); it is nonsplit because the restriction to W (Spin(7)) C
W (DI(4)) is nonsplit [10].

We can not use 2.51 as it stands because condition (2) fails: The restriction map

7/2 = H'(W;T)(DI(4)) — H'(W;T)(Spin(7)) 2’ (2/2)?

is not surjective. Note, however, that the proof of 2.51 goes through with only insignificant changes
if we replace hypotheses (1) and (2) by

(1 & 2) The centralizer of any toral (V,v) € Ob(A(X )2’;) is uniquely N-determined.

and leave the other conditions unchanged.

ProOOF OF THEOREM 1.5. Condition (1 & 2) is satisfied for DI(4) since the connected 2-
compact groups Spin(7) and SU(2)?/A are uniquely N-determined (1.2, 1.3) and the general results
of 2.§2. Since also the relevant higher limits vanish [16, 2.4], DI(4) is uniquely N-determined by 2.48
and 2.51. Since Out, (W (DI(4))) is trivial and Z(W(DI(4))) = (—FE) has order two, Aut(DI(4))
can be read off from 2.17 and the short exact sequence (2.9). O

3. The 2-compact group Fy

BF, is a rank four 2-compact group containing a rank five elementary abelian 2-group E5 C F4
such that [59, 2.1]

H*(BF4;Fy) = H*(BEs; F3)2F)Fs) = By [ys, ys, y7, Y16, y24]

where the Quillen automorphism group is the parabolic subgroup

A(F4)(E5) = (GL(% FQ) GL(;, F2)> - GL(5’F2)

of order 26|GL(2, F2)||GL(3, F2)|. The inclusion functor A(A(F4)(Es), E5) — A(F4) is a category
equivalence by Lannes theory [32]. Inspection of the list of centralizers of elementary abelian
2-groups in Fy [59, 3.2] shows that ZCr, (V) = V for each nontrivial V' C Es5 so that the functor
m3BZCr, = 0 and 7 BZCy, = H°(A(F4)(E5)(—); E5). Thus m; BZCF, is an exact functor (2.69)
and lim° 7, BZCy, = H°(A(F4)(Es); Es) = 0.

It is known that HO(W;T)(F4) = 0, H'(W;T)(F4) = 0, and H*(W;T)(F,) = Z/2 [24, 26].
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PROOF OF THEOREM 1.6. Condition (1 & 2) is satisfied for F4 because centralizers of rank
one objects [59, 3.2]
SU(2) x Sp(3)

)2 ,  Spin(9)
and centralizers of rank two objects [59, 3.2],
U(1) x U(3) Spin(4) x Spin(5) .
T A Z/2, Z/2 5 Spln(8)

have uniquely N-determined centralizers. This follows from 2.§2 as the simple factors are uniquely
N-determined (1.2, 1.3). All elementary abelian 2-groups in Fy4 of order at most four are toral.
Since also the relevant higher limits vanish, F4 is uniquely N-determined by 2.48 and 2.51.

The automorphism group of the 2-compact group F4 is (2.17) the middle term of the exact
sequence (2.9). ( All automorphisms of F4 preserve the extension class e(F4) which is the non-
trivial element of H?(W;T) = Z/2 [10, 34].) The group Out.(W(F4)) of trace preserving outer
automorphisms is cyclic of order two but the nontrivial outer automorphism of W(F,) can not be
realized as conjugating with an element of Ngp,z)(W). The center of W(Fy) is C2 = (—E). We
conclude that Aut(F4) = Z*\ZJ consists entirely of unstable Adams operations. O






vercond

CHAPTER 8

Proofs of the main theorems

This chapter contains the proofs the main results stated in the Introduction.

1. Proof of Theorem 1.2

We show that PGL(n + 1, C) is uniquely N-determined by induction over n. The induction
step is provided by Lemma 8.1 and the start of the induction by Proposition 8.2.

8.1. LEMMA. Suppose that PGL(r + 1,C) is uniquely N-determined for all 0 < r < n.
Then PGL(n +1,C), n > 1, satisfies conditions 2.48.(1) (for m.(N)-determined automorphisms),
2.51.(1), 2.51.(2), and 2.51.(3).

Proor. Condition (1) of 2.48 (for m,(IN)-determined automorphisms) is concerned with cent-
ralizers Cpgr(n+t1,0)(L, A) of rank one objects (3.5). The condition is satisfied for all connected
rank one centralizers by the induction hypothesis and 2.42, 2.39. The condition is satisfied for the
nonconnected rank one centralizer (when n + 1 is even) by 2.35 since H!(Cy;Z/2%°) = 0 for the
nontrivial action of the cyclic group C; of order two on Z /2.

We use 2.54 to verify conditions (1) and (2) of 2.51. Let (V,v) be a toral elementary abelian
2-subgroup of PGL(n + 1,C) of rank < 2 and C(v) = Cpgr(n+1,c)(¥) its centralizer. We have
seen that C(v) is LHS (§2) and that Z(C(v)) = Z(No(C(v))) as C(v)o does not contain a direct
factor isomorphic to GL(2, C)/GL(1,C) = SO(3) (2.32, (3.5)). The identity component C(v)g
has 7, (IV)-determined automorphisms according to 2.38 and 2.39, and C(v) has N-determined
automorphisms by 2.35. The identity component C(v)g is N-determined according to 2.42 and
2.43, and C(v) is N-determined by 2.40. Thus C(v) is LHS and totally N-determined.

The functor H(W/Wo;TJ¥) is zero on A(PGL(n + 1,C))S, except on the object (V,v) =
(40,10, 40,90), When n + 1 = 4ig, where it has value Z/2. However, this object has Quillen auto-
morphism group GL(V) and since the only GL(V')-equivariant homomorphism St(V) =V — Z/2
is the trivial homomorphism, lim! (A (PGL(n+1, C))S%; HY(W/Woy; T)V)) = 0 follows from Oliver’s
cochain complex [53]. -

We now turn to condition (3) of 2.51. When n + 1 is odd there are no nontoral rank two
objects (3.3) and so there is nothing to prove. When n + 1 = 2m is even, let (H,v) be the
unique nontoral rank two object of A(PGL(2m, C)) (3.17.(1)). Let X' be a connected 2-compact
group with maximal torus normalizer j': N(PGL(2m,C) — X’. We must show that v} and
Jv,r.: Cparem,c)(H,v) = Cx:(H,v}) as defined in 2.51.(3) are independent of the choice of rank
one subgroup L C V. When m = 1, the claim follows from 2.59, 2.60, 2.62 (where (V') and 7'(V)
are isomorphisms in this case) since PGL(2, C) does contain a unique rank one elementary abelian
2-group with nonconnected centralizer (3.9) and a unique nontoral rank two elementary abelian
2-group (3.17.(1)). When m > 1, we use 2.63 which immediately yields that v} is independent
of the choice of L < V. There exists a torus T, — Cn(V,vY) as in 2.63.(2) because the three
preferred lifts v, L < V, differ by an automorphism of H (the Quillen automorphism group of
(H,v) is the full automorphism group Aut(H) of H (3.17.(1))). Since the identity component
of CpaLn+1,c)(H,v) is uniquely N-determined by induction hypothesis, the restriction (f,,z)o
of f,. 1, to the identity components is independent of the choice of L (2.15.(2)). Also mo(fu,z) is
independent of the choice of L < V by 2.62 (where mo(#(V)) and 7o(7’(V)) are isomorphisms).
But since PGL(m, C) is centerfree f, 1. is in fact determined (use one half of [42, 5.2]) by (f.,r)o
and mo(f,,r). We conclude that f, ;, is independent of the choice of L < V.

O

8.2. PROPOSITION. The 2-compact group PGL(2, C) is uniquely N -determined.
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PROOF. The centralizer cofunctor Cpgr,(2,c) takes the Quillen category of PGL(2, C), consist-
ing (3.9, 3.17) of one toral line, L, and one nontoral plane, H,

(8.3) L H ) GLm
to the diagram
(8.4) GL(1,C)%/GL(1,C) x Cs H ) GL®™

of uniquely N-determined 2-compact groups. The 2-compact toral group to the left is uniquely
N-determined because (2.41) H*(Cq;Z/2°°) = 0 for the nontrivial action of Cy on Z/2°°. The
center cofunctor takes this diagram back to the starting point (8.3) for which the higher limits
vanish (2.69). PGL(2, C) is thus uniquely N-determined by 2.48 and 2.51. O

PROOF OF THEOREM 1.2. The proof is by induction over n > 1. The start of the induction
is provided by 8.2. The induction step is provided by 8.1 and 3.18 using 2.48 and 2.51.
According to 2.17, the automorphism group

Aut(PGL(n + 1,C)) = W\Nar ) (W) = W\ (25, W) = Z(W)\ZS

is isomorphic to Z*\Z5 for n = 1 and to Z; for n > 1. Here we use [39] or the exact sequence
(2.9) where we note that Out, (W), is trivial for all n > 1; Out(X,1) is trivial for all n # 5 [28,
I1.5.5] and the nontrivial outer automorphism of ¥ does not preserve trace. O

PROOF OF COROLLARY 1.7. Let X = GL(n,C), n > 1, and write 7, W and L for T'(X),
W(X), and L(X). Since the adjoint form PX = PGL(n,C) of X is uniquely N-determined
(1.2), so is X (2.38, 2.42). The extension class e(X) € H?(W;T) (§2.4) is the zero class since
the maximal torus normalizer N(X) = GL(1,C) X, splits. Therefore, Aut(X) is isomorphic to
WA\Ngr)(W) (2.17). Using the exact sequence (2.9), we conclude, as in the proof of Theorem 1.2,
that Aut(X) =2 Z(W)\ Autz,w (L) = Z(W)\ Autz,s_ (Z3). O

2. Proof of Theorem 1.3

The proof of Theorem 1.3 uses induction over n simultaneously applied to the three infinite
families PSL(2n,R), SL(2n + 1,R), and PGL(n, H).

PROOF OF THEOREM 1.3. The statement of the theorem means (2.11) that the 2-compact
groups
e PSL(2n,R), SL(2n + 1,R), and PGL(n, H) have 7, (IN)-determined automorphisms,
e PSL(2n,R), SL(2n + 1,R), and PGL(n, H) are N-determined.

We may inductively assume that the connected 2-compact groups PSL(2{,R), 1 < i < n — 1,
SL(2i + 1,R), 1 < i < n —1, and PGL(;,H), 1 < i < n, are uniquely N-determined. From
Theorem 1.2 we know that PGL(%, C) is uniquely N-determined for all ¢ > 1. The plan is now to
use 2.48 and 2.51 inductively.

Consider first the connected, centerless 2-compact group PSL(2n, R).
PSL(2n,R) has N-determined automorphisms: According to 2.48 it suffices to show that

(1) Cpsr(2n,r)(L) has N-determined automorphism for any rank one elementary abelian 2-

group L C PSL(2n,R).

(2) lim'(A(PSL(2n, R)), 11 BZCpsr,2n,r)) = 0 = lim*(A(PSL(2n, R)), 12 BZCpsr(2n,R))-
Item (2) is proved in 4.32. The centralizers that occur in item (1) are listed in (4.14) and (4.15).
That the centralizers of (4.14) have N-determined automorphisms follows, under the induction
hypothesis that the 2-compact groups PSL(2¢,R), 1 < i < n — 1, have N-determined automorph-
isms, from general hereditary properties of N-determined 2-compact groups (§2). Note here that
Z(Co) = T(Co)"(©) for C = Cpsp,2n,r)(L) by [35, 1.6]. Similarly, the centralizers of (4.15)
have N-determined automorphisms because the 2-compact groups PGL(n,C), 1 < n < oo, have
N-determined automorphisms (1.2).

PSL(2n,R) is N-determined: We verify the four conditions of 2.51. Let V' C PSL(2n,R) be a
toral elementary abelian 2-group of rank at most 2. The centralizer C' = Cpgr,(2n,r) (V) is one of
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the 2-compact groups listed in (4.14), (4.16), (4.15), or (4.17), so it is LHS (4.19). The identity
component Cy of C satisfies the equation Z(Cp) = T(Cp)"(©0) [35, 1.6] and the adjoint form

PSL(2ig, R) x PSL(2iy, R) io+i1=n

po, — | PSL(2i, R) x PSL(21, R) x PSL(2iz, R) x PSL(2i3, R) io+i1 +iz +i5 =n
PGL(n,C)
PGL(io, C) x PGL(i1, C) i +i1=n

in these four cases. The induction hypothesis and the general results of §2 imply that Cy is uniquely
N-determined and that C is totally N-determined. Since also the homomorphism H'(W;T) —
lim' (A (PSL(2n, R))S:; HY (Wo; T)W/™o) is surjective (4.§3), we get from 2.54 that the first two
conditions of 2.51 are satisfied. The third condition has been verified in 4.§4 and the fourth, and
final, condition in 4.32.

PSL(2n,R) has m.(IN)-determined automorphisms: This means that the only automorphism of
PSL(2n, R) that restricts to the identity on the maximal torus is the identity, ie that

H'(W;T)(PSL(2n, R)) N AM(Aut(PSL(2n,R))) = {0}

where AM is the Adams-Mahmud homomorphism (§2.4). For n > 4, H*(W;T)(PSL(2n,R)) = 0,
and there is nothing to prove. Consider the case n = 4. Let f be an automorphism of PSL(8, R)
such that AM(f) € H'(W;T). Let L C PSL(8,R) be any rank one elementary abelian 2-
group. Since f is the identity on the maximal torus, f(L) is conjugate to L so that f re-
stricts to an automorphism of Cpgy,s r)(L) and to an automorphism of the identity component
of Cpgr(s,r)(L). Since Cpgsrs,r)(L)o has m.(IV)-determined automorphisms by 2.38 and 2.39,
f € HY(W;T)(PSL(2n,R)) restricts to 0 in H'(W;T)(Cpsrs,r)(L)o). However, the restriction
map is injective (see the proof of 4.20) so that f = 0. This shows that PSL(8,R) has m,(IV)-
determined automorphisms.

Consider next the 2-compact group SL(2m + 1, R) where m =n — 1.
SL(2m + 1,R) has N-determined automorphisms: We verify the conditions of 2.48. Let L C
SL(2m + 1,R) be an elementary abelian 2-group of rank 1. The centralizer C' = Cgr,(2m+1,r)(L)
is given in (5.3). According to §2, C' has N-determined automorphisms. (Use the natural splitting
of (5.11) in connection with 2.35.) See 5.8 for the vanishing of the higher limits.
SL(2m + 1,R) is N-determined: Conditions (1) and (2) of 2.51 are verified in 5.§2, condition (3)
in 5.83, and condition (4) in 5.8.
SL(2m + 1,R) has 7. (IN)-determined automorphisms: To prove this, it suffices to find a rank one
elementary abelian 2-group L C SL(2m + 1, R) such that Csp,2m+1,r)(L)o has 7. (V)-determined
automorphisms and such that Csr2m+1,r)(L)o — SL(2m + 1,R) induces a monomorphism on
HY(W;T). Such a line is provided by I = L[2m — 1,2] with centralizer identity component
Csrzm+1,r)(L)o = SL(2m — 1,R) x SL(2, R); see the proof of 5.15.

Consider finally the 2-compact group PGL(n,H) for n > 3.
PGL(n, H) has N-determined automorphisms: We verify the conditions of 2.48. Let L C PGL(n, H)
be an elementary abelian 2-group of rank 1. The centralizer C = Cpgr(n,1)(L) is given in (6.2) and
(6.3). According to the general results of §2, C has N-determined automorphisms and according
to 6.19 the higher limits vanish.
PGL(n,H) is N-determined: Note that PGL(3, H) satisfies condition (1 & 2) of 7.§2 so that we
may apply the same variant of 2.51 used for DI(4) (7.§2). When n > 3, conditions (1) and (2) of 2.51
follow if we can verify that the conditions of 2.54 are satisfied. That the centralizer Cpgr,n,u)(V)
(6.2, 6.3, 6.4, 6.5), where V is an elementary abelian 2-group of rank at most two, satisfies the
conditions of 2.54 is a consequence of the general results of §2 and 6.9, 6.11. See 6.12 and 6.14 for
condition (3) and 6.19 for condition (4) of 2.51.
PGL(n, H) has 7, (NN)-determined automorphisms: We only need to consider the cases n = 3 and
n =4 as H' (W;T)(PGL(n,H)) = 0 for n > 4 [24]. In those two cases, it suffices, as above, to
find a rank one elementary abelian 2-group L C PGL(n, H) such that Cpgr(n,u)(L)o has m.(N)-
determined automorphisms and such that Cpgr.(n,m))(L)o — PGL(n, H) induces a monomorphism
on H'(W;T). Such a line is provided by L = I for which Cpgr(nm)(I)o = GL(n,C)/(~E) (6.3).
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Since PSL(2n,R), n > 4, is uniquely N-determined and has a split maximal torus normal-
izer, its automorphism group is isomorphic to W\Ngrr)(W) by 2.17. When n = 4, the group,
Out, (W), to the right in the exact sequence (2.9) is the permutation group X3. There are Lie
group outer automorphisms inducing ¥35. When n > 4,

Aut(PSL(2n, R)) = W\Ngr ) (W) = W\ (Z5, W(PGL(2n, R))) = W\ (25, W, 1)

_ x x ) {=en\ (ZF,c1) =75 n odd
= (Wﬂ <Z2 ,Cl>)\ <ZQ ,Cl> - {<—1>\<Z§<,Cl> _ ZX\Z£< > <Cl> n even

Similarly,

Aut(SL(2n + 1, R)) = W\Ngr,y(W) = W\ (Z5, W) = (W N Z5)\Z5 = Z*\ZJ
for n > 2 by 2.17.

The automorphism group Aut(PGL(n,H)), n > 3, is (2.17) contained in W\Ngr)(W) =
Z*\Zy. Since H?(W;T) is an elementary abelian 2-group [34], it is isomorphic to the second
cohomology group H?(W;t(PGL(n,H))) with coefficient module ¢(PGL(n, H)), the maximal ele-
mentary abelian 2-group in the maximal torus. The unstable Adams operations with index in
Z; act trivially here since they act as coefficient group automorphisms. Thus all elements of
W\Ngr()(W) preserve the extension class e € H?(W;T) and we conclude that Aut(PGL(n, H)) =
ZX\Z;. O

PrOOF OF COROLLARY 1.8. Note first that GL(n,R) is LHS for all n > 1. If n is odd,
GL(n,R) = SL(n,R) x (—E) is LHS because its Weyl group is the direct product of the Weyl
group of the identity component with the component group. If n is even, see 2.29.(5). According
to 2.35 and 2.40, GL(n,R) is totally N-determined.

If n is odd, the identity component has trivial center, so that Aut(GL(n,R)) = Aut(SL(n,R)) =
Z*\Zj by the short exact sequence [42, 5.2].

Suppose next that n = 2m is even. When m = 1, Aut(GL(2,R)) = Aut(Z/2,Z/2*,0) =
Aut(Z/2%) = Z5 according to (2.6). When m > 1, H'(m; Z(SL(2m,R))) = H'(r; (—E)) is the
order two subgroup (&) of Aut(GL(2m, R)) generated by the group isomorphism 6(A) = (det A) A,
A € GL(2m,R), and H' (W;T) = Hom(Way, (—E)) = Z/2 x Z/2 (for m > 2) [24, 34] is the
middle group of an exact sequence

0 — H'(m;(—E)) - H'(W;T) - H*(Wy;T) = 0
because GL(2m, R) is LHS. (For m = 2, H*(Wy; T) = 0 and H'(n; Z(SL(2m,R))) = Z/2, though.)
In the exact sequence (2.6) for the automorphism group of N = N(GL(2m,R)) = N(SL(2m +
1,R)), the group on the right hand side is Aut(W,T,0) = (W,Z5) as for SL(2m + 1,R). Thus
Aut(N) is generated by H(W;T), W, and Z5 so that Aut(N, Ny) = Aut(N) as Wy is normal in
W. Note that these three subgroups of Aut(N, Ny) commute because of the special form of the
elements of H'(W;T) = Hom(Wap, (—FE)). Hence

Awt(N,Ny)  (HYW;T),W,Z5) (H'(W;T),Wo,c1,25)  (HY(W;T),c1,Z5)
WO o W() N WO B W00<H1(W;T),CI,Z;>

(H*(W;T),c1,2)

Ly 7
(H (W;T),e1,25)

(-1
According to 2.18, the automorphism group Aut(GL(2m,R)) is a subgroup of the above group
and

= HY(W;T) x Z5 m odd
HY(W;T) x (c1) x ZX\ZX m even

Aut(GL(2m,R)) = {<5> x Z3 m odd

(8) X {1y x Z*\ZS m even
for m > 1. O
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CHAPTER 9

Miscellaneous

This chapter contains standard facts used at various places in this paper.

1. Real representation theory

Real representations are semi-simple and determined by their characters [29, 2.11, 3.12.(c)].
Any simple real representation arises from a simple complex representation in the following way:
Let x be the character of a simple complex representation of a finite group G. Then [29, 13.1,
13.11, 13.12]

X ZX,e2(x) = 0: 9 = x +X is the character of a simple R-module of complex type.
X = X,e2(x) = +1: x is the character of a simple R-module of real type.
X = X,€2(x) = —1: ¢ = 2y is the character of simple R-module of quaternion type.

where £2(x) = &7 Xgeq X(9%)-

9.1. EXAMPLE. (1) The character table of the cyclic group C4 of order 4
[Callea[1[ 1] ] 3]

il +]1] 1] 1] 1

vz | + 1] 1]—-1]-1

x3| O|1|—-1| 4| —i

X4 | O|1|—-1|—i| ¢

shows that there are two linear real representations and one 2-dimensional simple real faithful
representation of complex type with character ¥ = x3 + x4 = (2, —2,0,0).
(2) The character table of the dihedral group Dg = 21>
[Ds ez [1[-L[Ri| R | ]
xi|+11] 1] 1] 1] 1

x2 | + 1] 1]-1] 1]-1
s || + 1] 1] 1]-1]-1
xa | + 1] 1]-1[-1] 1

xs || +12]-2| 0| 0] O
shows that there are four linear real representations and one 2-dimensional simple real faithful
representation of real type with character x5 = (2, —2,0,0,0).

(3) The character table of the quaternion group Qs = ol +2 (identical to the one for Dg except for
one value of €3)

(Qs]lea[1] 1] k] j[ i
il £11] 1] 1] 1] 1
xa |l £11] 1] =1 1]-1
sl £11] 1] 1[|-1]-1
xall £11] 1]—-1[-1] 1
sl =12 =2] o] o o

shows that there are four linear real representations and one 4-dimensional simple real faithful
representation of quaternion type with character ¢ = 2x5 = (4,—4,0,0,0).

We are interested in real oriented representations, i.e. homomorphisms of finite groups into
the special linear group SL(2n,R) (as opposed to homomorphisms into the general linear group
GL(2n,R)). The outer automorphism of SL(2n,R) is conjugation by any orientation reversing
matrix such as D = diag(—1,1,...,1).

97
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9.2. LEMMA. Let V C PSL(2n,R) be an object of A(PSL(2n,R)) and G = V* C SL(2n,R)
its inverse image in SL(2n,R) as in 4.8. Then

V and VP are nonisomorphic objects of A(PSL(2n,R)) <= Ngren,r)(G) C SL(2n,R)
PROOF. We note that

V, VP are isomorphic objects of A(PSL(2n,R)) <= G, GP are conjugate subgroups of SL(2n, R)

— G E GDSL(Q‘!L,R)

<~ NGL(zn,R)(G) N DSL(2n,R) # 1]
— NoLanw(G) 7 SLCn,R)
for any nontrivial elementary abelian 2-group V' C PSL(2n,R). 0

For instance, all representations of elementary abelian p-groups are conjugate in SL(2n,R) if
and only if they are conjugate in GL(2n,R) - as in 4.12.

Let A(GL(2n,R))(G) be the subgroup of Out(G) consisting of all outer automorphisms of G
induced by conjugation with some element of GL(2n,R) [47, 5.8] (ie A(GL(2n,R))(G) is the group
Out, (G) of all trace preserving outer automorphisms of G) and A(SL(2n,R))(G) the subgroup of
Out(G) consisting of all outer automorphisms of G induced by conjugation with some element of
SL(2n,R). Since

(9-3) Ner(2n,r)(G)/GCq1(2nr) (G) = A(GL(2n, R))(G)

we conclude from 9.2 that
G, GP are nonconjugate subgroups of SL(2n,R) <= NaLe2n,r)(G) C SL(2n,R)

CGL(QTL’R) (G) C SL(ZTL,R)
A(SL(2n,R))(G) = A(GL(2n,R))(G)
Let V and E be objects of A(PSL(2n,R)) such that dim V+1 = dim E. If there are morphisms
V — E and VP — E, then (some representative of) E = (V,V?) is generated by the images of
(some representatives of) V and VP so that E = EP. Conversely, if E = EP and there is
morphism V' — E then there is also a morphism V? — EP = E.

We have 2(¢P) = 2¢ € Rep(G,SL(4n,R)) for any oriented real degree 2n representation
¢ € Rep(G,SL(2n,R)) as the conjugating matrix 2D is orientation preserving.

9.4. EXAMPLE. (1) Let G C SL(2d,R) be a finite group making R?¢ a simple RG-module
of complex type. Consider the image of G C SL(2nd,R) of G under the n-fold diagonal
SL(2d,R) ABn, SL(2dn,R). The centralizer Cgr(2nd,r)(G) = GL(n,C) is connected, hence
contained in SL(2dn,R). Since Cqr(24,r)(G) = GL(1,C), the elements of G commute with
i € GL(1, C) and we may factor the inclusion of G into SL(2dn,R) as

G — Carap) (i) = GL(d, C) 2% GL(dn, C) — SL(2dn, R)

Let x be the character for G in GL(d, C) so that the character for G in GL(2d,R) is x +X. There
are inclusions

A(GL(2dn, R))(G) == A(GL(2d, R))(G) = Outy+»(G)

A(SL(2dn, R))(G) ~<——A(GL(d, C))(G) =—— Out,(G)

where Outy(G) is the group of all outer automorphisms that respect the function ¢.

(2) Let G C GL(d,R) be a finite group making R? a simple RG-module of real type. Consider

the image of G C SL(2nd,R) of G under the 2n-fold diagonal GL(d, R) Lan, SL(2dn,R). The

centralizer Cgr(2n4,r)(G) = GL(2n, R) is contained in SL(2dn, R) when d is even. We my factor
the inclusion of G into SL(2dn,R) as

G — GL(d,R) — GL(d, C) 2% GL(nd, C) — SL(2nd,R)
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and as the trace functions for G in GL(d, C) and GL(2nd, R) are proportional A(GL(2nd,R))(G) =
A(GL(d, C))(G) c A(SL(2dn,R))(G). Hence G # GP in SL(2nd, R).

(3) Let G C SL(4d,R) be a finite group making R*? a simple RG-module of quaternion type.
Consider the image of G C SL(4nd, R) of G under the n-fold diagonal SL(4d, R) Lo, SL(4dn,R).
The centralizer Cqr,(4dn,r)(G) = GL(n, H) is connected so it is contained in SL(4dn,R). Since
Cerd,r)(G) = GL(1,H) C GL(2, C) the elements of G commute with i € GL(2, C) and we may
factor the inclusion of G into SL(4dn,R) as

G — Coriar)(i) = GL(2d, C) 2% GL(2nd, C) — SL(4nd, R)
and as the trace functions for G in GL(2d, C) and GL(4nd, R) are proportional A (GL(4nd,R))(G) =
A(GL(2d,C))(G) C A(SL(4dn,R))(G). Hence G # GP in SL(4nd,R).
(4) R? is a simple RCs-module of complex type with respect to the group

Ci=(I) CSL(2,R), I= ((1) _01)

Consider the image of C4 in SL(2n,R) under the n-fold diagonal. The Quillen automorphism
group A(GL(2n,R))(C4) = A(GL(2,R))(C4) = Out(C4) since the trace lives on U;1(Cy) = (—E)
only. However,

Out(C4) n even

A(SL(zna R))(C4) = {{1} n odd

so that Cy # CP <= n even.
(5) R* is a simple RG¢-module of complex type with respect to the group

R 0\ (T 0\ (0 -E 1 0 0 1
_ 1+2 _ _
G = 4021 _<<0 R),(O T)(E 0>>CSL(4,R), R_<0 1>, T_(l 0)

Consider the image of Gi6 in SL(4n,R) under the n-fold diagonal. The Quillen automorphism
group A(GL(4n,R))(G16) = A(GL(4,R))(G16) = Out(G16) = Out(Cs) x Sp(2,F3) since the
trace lives on the derived group [G16, G16] = (—F) only. In fact, A(GL(2, C))(Gis) is the factor
Sp(2,F2) and since the generator of the factor Out(Cy) is induced from conjugation with the

matrix (0 E) of SL(4,R), we see that also A(SL(4,R))(G16) C A(SL(4n,R))(G16) is the full

E 0
outer automorphism group of G1¢. Hence G16 # GT} in SL(4n,R).
(6) R? is a simple RG-module of real type with respect to the group
G =2 = (R,T) C GL(2,R)
Consider the image of G in SL(4n,R) under the 2n-fold diagonal map. Then G # GP in
SL(4n,R).
(7) R* is a simple RG-module of quaternion type with respect to the group

G=2"= <(g _0R> , (g _OT)> c SL(4,R)

Consider the image of G in SL(4n, R) under the n-fold diagonal map. Then G # GP in SL(4n, R).

ec:xtraspecreps

9.5. Representations of (generalized) extraspecial 2-groups. The extraspecial 2-groups
G = 27?4 have [29, 7.5] 2¢ linear characters (that vanish on U;(G) = G/ = Z(G) = C3) and one
simple complex character

x(9) =
2'X9) g€ Z(G)
induced from the nontrivial linear character (group isomorphism) A: Z(G) — {£1}.

IfG = 2?2‘1 is of positive type, €2(x) = +1 and xa = x for all @ € Out(G), isomorphic to
0O%(2d,2) [28, I11.13.9.b]. This complex character is also the character of the unique simple real
representation G — GL(Zd, R) which is of real type; when d is even this representation actually
takes values in SL(2%, R) but when d is odd this representation is not oriented. The unique faithful
real representation G — GL(2-2¢, R) with central U; has character 2 and it splits into two distinct

{o 9¢ Z(G)
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oriented real faithful representations v, % : G — SL(2-2%, R) invariant under the action of Out(G)
(9.4.(2)).

If G = 2'+%4 is of negative type, e2(x) = —1 and ya = x for all a € Out(G), isomorphic to
O~ (2d,2) [28, 111.13.9.b)]. The unique simple real representation G — GL(2-2¢, R) with character
2x is of quaternion type. It splits into two distinct oriented representations 1, %? : G — SL(2-2¢,R)
invariant under the action of Out(G) (9.4.(3)).

The generalized extraspecial 2-group G = 4 o 2}72? has [29, 7.5] 2!+ linear characters (that
vanish on U;(G) = G’ = 0y € Z(G) = C4) and two simple complex characters

_Jo 9 ¢ 2(G)
x(9) = d
2°AMg) g€ Z(G)
induced from the two faithful linear characters A: Z(G) — (i) = C;. These two degree 2¢ simple
characters, x and Y, are interchanged by the action of Out(G) = Out(C4) x Sp(2d, 2) [22] (inter-
changed by the first factor Out(Cy) and preserved by the second factor Sp(2d,2)). The unique
simple real representation G — GL(2-2¢, R) has character x-+Y and is of complex type as 2(x) = 0.
It splits up into two distinct oriented representations 1,4 : G — SL(2-2¢, R) invariant under the
action of Out(G) (9.4.(1)).
These irreducible faithful representations have easy explicit constructions that we now explain.
Let E be a nontrivial elementary abelian 2-group of rank d > 1 and R[E] its real group algebra.
For ( € EY = Hom(E,R*) and u € v, let R¢,T,, € GL(R[E]) be the linear automorphisms given
by R¢(v) = {(v)v and T, (v) = u+ v for all v € E. The computation

R:T,(v) = Re(u-v) = ¢(u)¢(v)(u-v) = ((uw)Tu(¢(v)v) = ((u)TuR¢(v)
shows that R.T, = ((u)Ty R or, equivalently, [R¢, Ty] = ¢((u).
The group 2}¢ = (R¢,T,) C GL(R[E]) C GL(C[E]) C SL(29*1,R) is extraspecial and the

quadratic form on its abelianization 22¢ is given by

Q(xla"'vxdayl,"'ayd) =x1Y1 + -+ TayYd

because
d d
G e D | (GO D (o
i=1 i=1
where 717, ...,Ty correspond to a basis of E, Ry, ..., Ry correspond to the dual basis, and z;,y; €

{0,1} = F,. This is the unique faithful complex representation of degree 2%. It is also the character
of a simple real representation G — GL(2%,R), even G — SL(2¢,R) when d is even, of real type.

The group 2224 = (R,,...,Ry_1,iRq,Th, ..., Ty_1,iTs) C GL(C[E]) C SL(2¢+1 R) is ex-
traspecial and the quadratic form on its abelianization 22¢ is given by

q(T1, -, TayY1y- -, Ya) = T1Y1 + - + Ta 1Yd 1 + T4+ Taya + Y3
because
(B - RS ((Ra) ™ T{ -+ T3 (iT0)%)* = (—E)™HA(RY - RGTY" - Tf)?
where z;,y; € {0,1} = Fy. This is the unique faithful complex representation of degree 2.

The group 4 0 21724 = 402142 — (; R, T,) = (2124 21424} — 4521424  QL(C[E]) C
SL(24t1, R) is generalized extraspecial with center Cy = (i), derived group [4 0 2124 4021729 =
0140252 = Cy, € Oy = Z(40217%), and elementary abelian abelianization 2 x 22¢, The
quadratic form on its abelianization is given by

d
(2,21, Ty Y1y -, Yd) = 22 —i—inyi
i=1
because
d
(PR R T3 = (<B) [[(RETY) = (~E)7 (Rft - R -T2

i=1
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where z, z;,y; € {0,1}. This representation and its conjugate are the two faithful complex repres-
entation of degree 2¢.
In the first two cases the associated symplectic inner product is

d
[('Tlr sy Tdy Y1, - - '7yd)’ (xll, .- '7$:1aylla s 7yld)] = Z(z'ty; +.’L‘iy1)
=1
while it is
d
[(Z, TlyeesyTdy Y1y 'ayd)7 (zlaxlla' .. ,x:ivylla .- 'ayzli)] = Z(z'ty: +$;y1)
=1

in the last case.

sec:tensor

9.6. Tensor products of real representations. Suppose that R™ is an RG-module with
trace x and R™ an RH module with trace p. Consider R™® = R™ @ R” as an R(G x H)-
module in the usual way where (g,h)(u ® v) = gu ® hv. The trace of this representation is
x#p(g,h) = x(g9)p(h) and the determinant is det(g, h) = (det g)™(det h)™. This means that if

¢ m and n are both even, or if
e m is even and R™ an oriented G-representation

then R™" is a real oriented G x H-representation.

sec:glnCtosl2nR

9.7. Embedding GL(n, C) in SL(2n,R). Here are two embeddings 7: GL(n, C) — GL"(2n,R)
with the property that tr(r(A4)) = tr(A4) + tr(A4) for all A € GL(n,C).
If we write C™ = (R +iR)", then

GL(n,C) 3 A+iB & ((ZJ _b”)) € GL*(2n,R)
' 1<i,j<n

ij  Gij

In particular, 7 € GL(n,C) is sent to diag([,---,I) € SL(2n,R) and Cgp,(2,,r)(¢) consists of
matrices with 2 x 2 blocks as above. For (2 x 2)-matrices this embedding has the form

(o ) G o)

a; + iag b] + Zbg T ag ai bz b1

GL(2,C)9<CI+Z.CZ d1+id2>—> o e, i _g\ | €SLAR)
C2 C1 dg d1

and with this convention the six subgroups of SL(4, R) isomorphic to Dg, Qg, G1g = 4o 2?2 are
_J/(E 0 0 F p_ /J(E O 0 -R
2=((5 5) (2 ©)) =0 %) (5 )
/(I 0 0 I D -1 0 0 T
@=(( %)@ 1)) o =((v %) (% 7))
Gre — E 0 0 FE I 0 GP — E 0 0 -—-R -I 0
¥=\\o —-E)’\E 0)’\0 1)/’ 6—=\\o —-E)’\-R 0 )'\0 I

If we write C™ = R™ + iR" then

A -B

GL(n,C)> A+iB 5 (B 1

) € GL™(2n,R)

E 0
matrices of the form as above. For (2 x 2)-matrices this embedding has the form

In particular, i € GL(n, C) is sent to (0 _E> € SL(2n,R) and Csy,(2n,r) (%) consists of block

a; b (a2 bs
a; + ’iaz b1 + ’Lb2 T C1 dl Co d2
GL(Z, C) > (Cl + ’ng d1 + ’Ldz) as b2 ai b1 € SL(4, R)

c2 da caa di
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and with this convention the six subgroups of SL(4,R) isomorphic to Dg, Qs, G16 = 40 21;2 are
/(R O T 0 p_ /(R O -T 0
v=((0 7)o 7)) or=((0 #) (0 7))
- 0 —-R 0 -T D _ 0 FE 0o -I
@=((z 2)(z 7)) #=((% 0)(% 7))
G — R 0 T 0 0 —-F GP. — R 0 -T 0 0 R
¥=\\o R)’\0 T)'\E 0))/° ©6=\\0o R)’\0 T)'\-R 0

2. Lie group theory

sec:lietheory

‘sec:centerings‘

Some facts from Lie theory are collected here.

9.8. Centerings. There are centerings [55]
L(pin(2n)) & L(GL(2n,R)) % L(PGL(2n,R))
where
P(z1,22,...,2n) = (2z1—22— - —Zp, T2,...,Zn), Q(z1,T2,...,2n) = (2T1,21—T2,...,T1—Tp)

The expression for P is worked out in [7, pp. 174-175]. The expression for @ follows from the
commutative diagram

T(GL(2n,R)) =U(1)" —=U(1)"/((-1,...,-1)) = T(PGL(2n,R)
e
u@)”
where (21, 20,...,2n) = (23,2125 ,..., 212, ") is surjective with kernel Cy = ((—1,...,—1)).

Since the action of the Weyl group C31%, is known in L(GL(2n,R)), the two other actions can be
worked out as well. The action in L(pin(2n)) is P~1(C21%,)P and the action in L(PGL(2n,R))
is Q(C21%,)Q 1. Here,

1
Pil(UI,UQ,. cyUp) = (§(u1 +etup), Uy, Up),

_ 1 1
Q l(ul,uQ,...,un) = (zu1, zuy — ug,...

25 3t~ un)

2

are the inverses.

sec:semicent

9.9. Centralizers in semi-direct products. Let G X W be the semi-direct product for a
group action of W on G. The following lemma is elementary.

9.10. LEMMA. For any g € G and w € W,
Coxw(g,w) ={(h,v) | Jw € Cw(w): g(wh) = h(vg)},
Caoxw(9) = {(h,v) € G X W | vg = g"}, Coxw(w) =G¥ x Cw(w)
where G* is the fized point group for the action of w on G. If G is abelian then

Caxw(g) = G x W(g)
where W(g) = {w € W | wg = g} is is the isotropy subgroup at g.

Let p: V — T x W be a group homomorphism of an elementary abelian 2-group V into the
semi-direct product of a discrete 2-compact torus 7" and a group W. Write p = (T'(u), W(p))

for the two coordinates of pr. Then W(u): V — W is a group homomorphism and T(u): VT

a crossed homomorphism into the V-module V' W, w - Aut(T). Let H'(V;T) be the first

cohomology group for this V-module and [T'(x)] € H'(V;T) the cohomology class represented by
the crossed homomorphism T'(y).
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9.11. LEMMA. There is a short exact sequence
0= HY(V;T) = Crop (1) = Cow(W (1)) 7 = 1
where Cy (W (1)) 7)) i the isotopy subgroup at [T(1)] for the action of Cyw (W (p)) on H (V;T).

PROOF. We first determine the kernel of the homomorphism Cj. .y (1) = Cw (W (p)). Let
t€T. Then

(t,1) commutes with V <= Vv e V: (t,1)(T(x)(v), W(p)(v)) = (T(1)(v)
= YweVit+T(u)(v)=T(p)(v) + W) (v)(t
= YWweV:W)(v)t=t
> te H(V;T)

W (k) (), 1)
)

More generally, for any element (¢,w) € T X W we have

(t,w) commutes with V <= Yv € V: (¢, w)(T (1) (v), W (1) (v)) = (T () (v), W (1) (v)) (¢, w)
= Yo e V:s+wl(p)(v) =T(u)(v) + W(w)(0)(t), wW (1) (v) = W(g)(v)w
< w e Cw(W(w) and Yo € V: (1 —w)T(p)(v) = (1 — W(u)(v))t

< w € Cw(W(w)) and Vv € V: wT(1)
It follows that for w € Cy (W (1)) we have
w € im (Cpo (1) = Cw(W()) <= 3t € T: (t,w) € Crypy(b)
= w[T(p)] = [T(u)]
i.e. that w fixes the crossed homomorphism ’f(u) up to a principal crossed homomorphism. O

9.12. Centers of semi-direct products. Let G x ¥ be the semi-direct product for the
action ¥ — Aut(G) of the group ¥ on the group G. Let G¥ = {g € G|Xg = g} and ¢ = {0 €
Y|o(g) = g for all g € G}.

9.13. LEMMA. The center Z(G x ) = G® X aut(@) Z(X) of G x X is the pull-back
Z(GxXE)——Z(%)

L

GE — Aut(G)

of the action map restricted to the center of ¥ along the map G¥ — Aut(G) given by inner
automorphisms.

PROOF. Suppose that (g,0) € G x T is in the center of G x X. Since

(ga U) : (1’7—) = (g’UT) = (1’7—) : (g’U) = (T(g)’TU)
for all 7 € 3, g is fixed by ¥ and o is central in ¥. Moreover, from
(9,0) - (h,1) = (g-0(h),0) = (h,1) - (9,0) = (hg,0)

we see that o(h) = h9 for all h € G. O

9.14. COROLLARY. If the center of ¥ acts faithfully on G through automorphisms that are not
inner, then Z(G x ) = Z(G)%. If G is abelian, then Z(G x ¥) = G* x Z(X)¢g is a direct product.

PROOF. In the first case, the vertical map Z(X) — Aut(G) is injective and its image intersects
trivially with the image of the horizontal map G* — Aut(G). So the pull-back is G* N Z(G) =
Z(G)%. In the second case, the bottom horizontal homomorphism G* — Aut(G) is trivial. O

9.15. COROLLARY. Let G be a group and Z # G a central subgroup. Let the cyclic group C,
of prime order p act on GP/Z by cyclic permutation. Then
Z(G)]Z x{z€ Z|Z? =1} 2 Z(G?/Z x Cp)
via the isomorphism that takes the element z € Z of order p to (1,z,...,2°P"1)Z € GP/Z and is
the diagonal on Z(G)/Z.
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PROOF. Observe that
G/Z x{z € Z|z* =1} 2 (GP/2)"

via the isomorphism that takes (9Z,2) to g(1,z,...,2P 1)Z. To see this, consider an element
(91,---,9p)Z which is fixed by Cp. Then (91,92,.--,9p)Z = (9p> g1, --,9p—1)Z so there exists an
element z € Z so that g, = g12,95 = g22 = glzz,...,gp = 1271, g1 = g12P. Therefore, 2P =1

and (g1,92,---,9p) = g1(1,2,...,2P71).
Thus Z(GP/Z x C,) is the pull back of the group homomorphisms
G/Z x{z € Z|2*» =1} & Aut(G?/Z) + C,
where ©(9Z,2)((915---,9p)Z) = (91,.-.,99)Z. Let ((9Z,z),0) be an element of the pull back.
Assume that o is non-trivial. Since p is a prime number, ¢ has no fixed points. The equation
V917 --59p € G: (gi}a ce ,gg)Z = (ga(1)7 s aga(p))Z

shows that g7 Z = 9o(1)Z- This is impossible unless o is the identity since otherwise we can find
a g1 € Zand a g,1) € Z. Thus the permutation o must be the identity. The requirement for
((9Z,2),1) to be in the pull back is that

Y(g1,---,9p) €EGPIu€ Z: (91,43, ..,93) = (914, g2, . . ., gput)
which implies that [g1,9] = u = [gs, g] for all g1,g2 € G. If we take g; = 1 to be the identity, we

see that g must be central. O

9.16. Centers of Lie groups and p-compact groups. Let Y be a compact connected Lie
group and ZY its center. Let BY denote the p-completed classifying space of Y, ie the p-compact
group associated to Y. Lie group multiplication ZY X Y — Y induces a homotopy equivalence
BZY — map(BY, BY)p1 [18, 1.4] of the p-completed classifying space BZY to the the mapping
space component containing the identity map. We need a version that holds for nonconnected Lie
groups as well.

Let G be a possible nonconnected Lie group and ZG its center. Let BZG and BG denote
the Fp-localized classifying spaces of ZG and G, respectively. The space map(BG, BG)p1 is the
center of the p-compact group BG [18, 1.3].

9.17. LEMMA. The map
BZG — map(BG, BG)
induced by Lie group multiplication ZG X G — G, is a weak homotopy equivalence.
PROOF. Let Y be the identity component of G and m = G/Y the group of components. Note
that the group 7 acts on the center ZY of Y and that there is an exact sequence of abelian groups
1— H(m2Y) = ZG — Z7 — H*(m; ZY)

relating the centers ZY, Z(G, and Z7, of Y, G, and . The abelian Lie group ZG, a product of a
torus and a finite abelian group, is described by the data

m(ZG)® Q= H(m;m(ZY) ® Q)
1 — H(m;m(2Y)) x HY (m;m1(2Y)) = m0(ZG) = Zm — H(m;70(ZY)) x H?(m;711(ZY))

where the second line is an exact sequence.
Similarly, there is a fibration of mapping spaces

map(BY, BY)"™ — map(BG, BG) — map(BG, Br)
where the fibre over BG =% Br is the space map(BY, BY)"™ of self-maps of BG over Br. If we
restrict to a single component of the total space, we obtain a fibration
map(BG, BG)p1 — map(BG, BT)gr, ~ map(Bm, BT)p;

between path-connected spaces. The base space is BZw. The fibre consists of some path-
components of map(BY, BY )&% = (BZY)"™, the space of self-maps of BG over Br with restriction
to BY homotopic to the identity map. We have

T ((BZY)"™) = H' (1, m0(ZY)) x H> ¥ (m; 71 (ZY))
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because BZY = K(mY,1) x K(m1Y,2) is a product of Eilenberg-MacLane spaces [37, 3.1] [18,
1.1]. It follows that map(BG, BG)p; is an abelian [17, 3.5, 8.6] p-compact toral group described
by the data

ﬂg((BZY)h") ® Q = mp(map(BG, BG)p1) ® Q
1 — 1 ((BZY)") — 71 (map(BG, BG)p1) = Z7 — mo((BZY)"™)

where the second line is an exact sequence is an exact sequence.
Finally, the left commutative diagram of Lie groups

(ZY)" x G —=@ B(ZY)" ——— (BZY)""

] |

ZG x G —— G ~= BZG — map(BG, BG) p1

L |

ZIr X | ——">T BZw — map(Bn, Bm)p;

induces the right commutative diagram of mapping space. Compairing the homotopy groups, we
see that BZ(G) — map(BG, BG) g1 is weak homotopy equivalence. O

lemma : ZGLprod 9.18. LEMMA. We have

7 (GL(iO,R) X ---GL(it,R)) _(=E)x---x({=E) ot
(—E) (—E) :
P (SL(n, R)N (GL(i<0,R>) X ---GL(it,R))) _ SL(n,R)N (<<—E) >x - x (—E))
-F —F
GL(io, H) x ---GL(it, H)\  (=E) x---x(=E) _,
2 5 )= e

for all natural numbers 1o, .. .,i; > 0 with sum n (which, in the second line, is even).

PRrROOF. (For the case where the field is R.) Put G = GL(i0,R) X - - - GL(4;, R). There is [47,
5.11] a short exact sequence

1= Z(G)/ (~E) — Z(G/ (—E)) — Hom(G, (—E))iq — 1

where the group to the right consists of all homomorphisms ¢: G — (—FE) such that the map
g — ¢(g)g is conjugate to the identity of G. Let B € GL(i;, R) be any matrix of positive trace.
Then ¢(E,...,E,B,E,...,E) = FE since the map g — ¢(g)g preserves trace. It follows that
#(g) = E for all g € G since ¢ is constant on the 2! components of G. Thus the group to the right
in the above short exact sequence, Hom(G, (—FE))gq, is trivial.

Since

Z(SL(n,R) n ] GL(i;, R)) C Crycrq,m)(J [ LG, R)) = [[ Z2GL(;, R)

we see that Z (SL(n, R)N[] GL(i;,R)) = SL(n, R)N[] ZGL(i;,R). Suppose that the homomorph-
ism ¢: SL(n,R) N[ GL(¢;, R) — (—F) is such that the map g — ¢(g)g is conjugate to the identity.
Let By € GL(¢j,,R) and By € GL(i},), R) be any pair of matrices such that tr(B;) + tr(Bz) > 0.
Then ¢(E,...,Bi,,.-.,Bi,,..., E) = E by trace considerations. The short exact sequence from
[47, 5.11], similar to (9.16), now yields the formula of the second line.

The formula of the third line has a similar proof. O

It is not true in general that Z(G)/Z is the center of the quotient G/Z of the Lie group G by
the central subgroup Z.



sec:centralquot

lemma:WVWVast

sec:actlLie

106 9. MISCELLANEOUS

9.19. Centralizers in quotients. Let G be a Lie group and Z C G a central subgroup.
Write N(G) for the normalizer of the maximal torus, T(G), and W = W(G) = N(G)/T(G) for
the Weyl group. Suppose that V' C T(G)/Z is a toral subgroup of the quotient Lie group G/Z
and let V* C T(G) C G be the preimage of V in G.

There is an exact sequence

1-W({V*)—> W(V)— Hom(V*, Z)
relating the point-wise stabilizer subgroups for the action of the Weyl group W on V* and V. The
image of homomorphism to the right consists of all ( € Hom(V*, Z) for which the automorphism
of V* given by v* — ((v*)v*, v* € V*, is of the form v* — wv* for some Weyl group element
weW.

Similarly, there is an exact sequence [47, 5.11]

1—Cg(V*)/Z = Cg/z(V) = Hom(V*, Z)
relating the centraizers of V* C G and G C G/Z. The image of homomorphism to the right
consists of all ¢ € Hom(V*, Z) for which the automorphism of V* given by v* — {(v*)v*, v* € V*,
is of the form v* — g~ 'v*g for some g € G.
9.20. LEMMA. W(V)/W(V*) = Cgz(V)/Ca(V).

PROOF. Any automorphism of the toral subgroup V* that is induced by conjugation with an
element of G is in fact induced by conjugation with an element of N(G) [7, IV.2.5] and hence
agrees with the action of a Weyl group element. O

9.21. Action on centralizers in Lie case. Let v: V — G be a monomorphism of a non-
trivial elementary abelian p-group to a compact Lie group G. There is a canonical map BCq(v(V)) —
map(BV,BG)g, from the classifying space of the Lie theoretic centralizer of v(V') to the mapping
space component containing Bv. Write ¢4 for conjugation with g € G.

9.22. LEMMA. Suppose that va = cqv for some element g € G and some automorphism
a € GL(V). Then conjugation by g takes Cq(v(V)) to Ca(cgv(V)) = Ca(va(V)) = Ca(v(V))
and the diagram
BCg(v(V)) —— map(BV,BG)g,

BCQTE %’l(Ba)*

BCg(v(V)) —— map(BV,BG)g,
is homotopy commutative.

PROOF. The commutative diagram of Lie group morphisms

V x Caw(V)) 25 u(V) x Ca(w(V)) =24 g

axcgl H

V x Ca((V)) —v(V) x Caw(V)) —=G

mult
induces a commutative diagram

BV x BCg(v(V)) 2o g

BaXBcgl H
multo(v
BV x BCq(v(V)) 22D g

of classifying spaces. Taking adjoints, we obtain the homotopy commutative diagram

BCg(v(V)) — map(BV,BG)s,

Beg T l (Ba)™

BCg(v(V)) — map(BV,BG)z,
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as claimed. O

9.23. COROLLARY. Suppose that u: V — N(G) is a monomorphism and that pa = cpp for
some o € GL(V) and n € N(G). Then

w! = my((Ba)*): m(BT(G))™ W) 5 7y (BT(G)) W)
where w € W(G) is the image of n € N(G).

PROOF. There is a commutative diagram

m2(BT) 72(BN(G)) <—m2(BC(a)(V; 1)) — a2 (map(BV, BN), By)

wT TWZ(BCH) T'/rg(Bcn) l'/rg((Ba)*)

m3(BT) == my(BN(G)) <—m2(BCn(c) (Vs #)) — > ma(map(BV, BN), By)

where m2(BCn () (V, 1)) = m2(BT(G))™ (V) denotes the fixed point group for the group action
mo(p): V — W(G) C Aut(m2(BT(G))). Since Be,: BN — BN is freely homotopic to the identity
along the loop w € 71 (BN) its effect on the Zy[r1(BN)]-module w3 (BN) is multiplication by w. O

9.24. Low degree identifications. There are the following low degree identifications [7, pp.
61, 292] [34, above def 3.3]

Spin(3) = Sp(1) = SU(2), SO(3) =PSp(1) = PSU(2)

Spin(4) = Spin(3) x Spin(3) = SU(2) x SU(2), PSO(4) = SO(3) x SO(3)
(9.25) Spin(5) = Sp(2),  SO(5) = PSp(2)

Spin(6) = SU(4), PSO(6) = PSU(4)
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