
Journal of Algebraic Combinatorics (2021) 54:915–946
https://doi.org/10.1007/s10801-021-01031-z

Equivariant Euler characteristics of unitary buildings

Jesper M. Møller1

Received: 9 September 2018 / Accepted: 1 March 2021 / Published online: 24 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The (p-primary) equivariant Euler characteristics of the buildings for the general
unitary groups over finite fields are determined.
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1 Introduction

Let G be a finite group, � a finite G-poset, and r ≥ 1 a natural number. The r th
equivariant reduced Euler characteristic of the G-poset � as defined by Atiyah and
Segal [2] is the normalised sum

χ̃r (�,G) = 1

|G|
∑

X∈Hom(Zr ,G)

χ̃ (C�(X(Zr )) (1.1)

of the reduced Euler characteristics of the X(Zr )-fixed �-subposets, C�(X(Zr )),
as X ranges over the set of all homomorphisms of Zr to G. For example, when
G acts trivially on �, χ̃r (�,G) = χ̃ (�)|Hom(Zr ,G)|/|G| is the reduced Euler
characteristic of � times the number of conjugacy classes of commuting (r − 1)-
tuples of elements of G [10, Lemma 4.13]. Here are three more examples of already
known equivariant reduced Euler characteristics:
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(1) The symmetric group �n acts on the poset B(n)∗ of non-extreme subsets of the
n-set. The generating function for the (r + 1)th equivariant reduced Euler charac-
teristics of the �n-posets B(n)∗ is

1 +
∑

n≥1

χ̃r+1(B(n)∗, �n)x
n =

∏

n≥1

(1 − xn)λr (n)

where λr (n) is the number of index r -subgroups of Zn ([3, Theorem 2.1] with
M = {0, 1}).

(2) The symmetric group �n acts on the poset �(n)∗ of non-extreme partitions of the
n-set. The equivariant reduced Euler characteristics of the �n-posets �(n)∗ are

χ̃r (�(n)∗, �n) = 1

n
cr (n)

where cr is the sequence with Dirichlet convolution (cr ∗ λr )(n) = (−1)n+1 [20,
Theorem 1.3, Corollary 1.4].

(3) The general linear group GL+
n (Fq) acts on the poset L+

n (Fq)
∗ of non-extreme sub-

spaces of the n-dimensional vector space over the field Fq of prime power order q.
The generating function for the (r +1)th equivariant reduced Euler characteristics
of the GL+

n (Fq)-posets L+
n (Fq)

∗ is

1 +
∑

n≥0

χ̃r+1(L
+
n (Fq),GL

+
n (Fq))x

n =
∏

0≤ j≤r

(1 − q j x)(−1)r− j(rj)

according to [21, Theorem 1.4].

In this article we shall consider the general unitary group GL−
n (Fq), the isometry

group of the unitary n-geometry over the field Fq2 , acting on the poset L−
n (Fq)

∗ =
{0 � U � Fn

q2
| U ⊆ U⊥} of nontrivial totally isotropic subspaces. (See Sect. 2

for more details.) We now emphasise the definition of the equivariant reduced Euler
characteristics in this particular case and proceed to present the main results of this
paper.

Definition 1.1 [2] The r th equivariant reduced Euler characteristic of the GL−
n (Fq)-

poset L−
n (Fq)

∗ is the normalised sum

χ̃r (L
−
n (Fq)

∗,GL−
n (Fq)) = 1

|GL−
n (Fq)|

∑

X∈Hom(Zr ,GL−
n (Fq ))

χ̃ (CL−
n (Fq )∗(X(Zr )))

of the Euler characteristics of the induced subposets CL−
n (Fq )∗(X(Zr )) of X(Zr )-

invariant subspaces as X ranges over all homomorphisms of the free abelian group Zr

on r generators into the general unitary group.
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The generating function for the negative r th equivariant reduced Euler character-
istics is the power series

FGL−
r (q, x) = 1 −

∑

n≥1

χ̃r (GL
−
n (Fq))x

n (1.2)

with coefficients in the ring of integral polynomials in q. (The shortened notation
χ̃r (GL−

n (Fq)) is and will be used for the r th equivariant reduced Euler characteristic
χ̃r (L−

n (Fq)
∗,GL−

n (Fq)) of Definition 1.1.)

Theorem 1.2 FGL−
r+1(q, x) = ∏

0≤ j≤r (1 + (−1)r− j q j x)(−1)r− j(rj) for all r ≥ 0.

The first few instances of the generating function

FGL−
r+1(q, x) =

∏

0≤ j≤r

(1 + (−1)r− j q j x)(−1)r− j(rj) =
∏

j≡r mod 2(1 + q j x)(
r
j)

∏

j 	≡r mod 2(1 − q j x)(
r
j)

are

1 + x,
1 + qx

1 − x
,

(1 + q2x)(1 + x)

(1 − qx)2
,

(1 + q3x)(1 + qx)3

(1 − q2x)3(1 − x)
,

(1 + q4x)(1 + q2x)6(1 + x)

(1 − q3x)4(1 − qx)4

for r + 1 = 1, 2, 3, 4. In particular, −χ̃2(GL−
n (Fq)) = q + 1 and −χ̃3(GL−

n (Fq)) =
nqn−1(q + 1)2 for n ≥ 1.

The proofs of Theorem 1.2 and its corollary below are in Sect. 6.

Corollary 1.3 FGL−
r+1(q, x) = exp

( − ∑

n≥1(−1)n(qn − (−1)n)r x
n

n

)

for all r ≥ 0.

We also consider, for any prime p, the p-primary equivariant reduced Euler charac-
teristics, χ̃r (p,GL−

n (Fq)), for the GL−
n (Fq)-poset L−

n (Fq)
∗ (Definition 8.1) as defined

by Tamanoi [27]. It turns out that the r th p-primary generating function at q, the gen-
erating function FGL−

r (p, q, x) for the negative r th p-primary equivariant reduced
Euler characteristics (8.1), is in some sense a p-local version of the exponential form
of FGL−

r (q, x) from Corollary 1.3. (We write n p for the p-part of the natural number
n.)

Theorem 1.4 FGL−
r+1(p, q, x) = exp

(−∑

n≥1(−1)n(qn−(−1)n)rp
xn
n

)

for all r ≥ 0.

The infinite product expansions of the absolute and the p-primary generating func-
tions

FGL−
r+1(q, x) =

∏

n≥1

(1 − xn)a
−
r+1(q,n)

a−
r+1(q, n) = 1

n

∑

d|n
(−1)dμ(n/d)(qd − (−1)d)r

123



918 Journal of Algebraic Combinatorics (2021) 54:915–946

FGL−
r+1(p, q, x) =

∏

n≥1

(1 − xn)a
−
r+1(p,q,n)

a−
r+1(p, q, n) = 1

n

∑

d|n
(−1)dμ(n/d)(qd − (−1)d)rp

follow immediately fromTheorems 1.2 and 1.4 using the elementary [21, Lemma 3.7].
More explicitly, the equivariant Euler characteristics and the p-primary Euler char-

acteristics of the general unitary group are

−χ̃r+1(GL
−
n (Fq)) = 1

|Wn|
∑

w∈Wn

det(w) det(q + w)r ,

−χ̃r+1(p,GL
−
n (Fq)) = 1

|Wn|
∑

w∈Wn

det(w) det(q + w)rp

where the sum ranges over the elements of the standard n-dimensional integral per-
mutation representation Wn of the symmetric group �n (Propositions 6.4, 8.4).

This paper is organised as follows. Section 2 describes the general unitary group
GL−

n (Fq) as a subgroup of GL+
n (Fq2). Characteristic polynomials for elements of

GL−
n (Fq) are self-dual and Sect. 3 is an exposition of the combinatorics of self-dual

irreducible monic polynomials over Fq2 . The main result of Sect. 4 is the product
formula of Lemma 4.2 for equivariant Euler characteristics. Section 5 establishes the
key ingredients in the proof of Theorem 1.2: a vanishing result (Lemma 5.2) and a
recursion formula (Lemma 5.3). Theorem 1.2 and Corollary 1.3 are proved in Sect. 6.
This section also connects the equivariant Euler characteristics of the general unitary
group to representation theory and algebraic geometry: Remark 6.3 explains the role
of the second equivariant Euler characteristic χ̃2(GL−

n (Fq)) in the Knörr-Robinson
conjecture for GL−

n (Fq) at the defining characteristic [15], and Sect. 6.2 points out a
curious coincidence with Hasse–Weil zeta functions of supersingular elliptic curves
over Fq2 . In Sect. 6.1 we develop more explicit expressions for the equivariant Euler
characteristics. (The formulas of Proposition 6.4 may indicate a general description
of the equivariant Euler characteristics of finite groups of Lie type.) In Sect. 7 we
shortly review the S-transform and use it to (re)prove polynomial identities associated
to partitions. Section 8 discusses p-primary equivariant reduced Euler characteristics
of general unitary groups for a given prime p. The corresponding unreduced Euler
characteristics can be interpreted as Euler characteristics computed in Morava K -
theories at p of the homotopy orbit spacesBL−

n (Fq)
∗
hGL−

n (Fq )
for the action ofGL−

n (Fq)

on the classifying space of the poset L−
n (Fq)

∗. The proof of Theorem 1.4 together
with more explicit expressions for the p-primary equivariant Euler characteristics
χ̃r (p,GL−

n (Fq)) can be found here.
The following notation will be used in this paper in addition to notation related to

multisets introduced at the beginning of Sect. 6.1:
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p a prime number
νp(n) the p-adic valuation of n
n p the p-part of the natural number n (n p = pνp(n))
Zp the ring of p-adic integers
q a prime power
Fq the finite field with q elements
s the characteristic of Fq
χ̃r (GL

±
n (Fq )) equivariant Euler characteristic χ̃r (L

±
n (Fq )∗,GL±

n (Fq )) (Definition 1.1)
[21, Definition 1.2],

χ̃r (p,GL
±
n (Fq )) p-primary Euler characteristic χ̃r (p,L

±
n (Fq )∗,GL±

n (Fq )) (Definition 8.1)
[21, Definition 4.2]

( m
−k

)

the signed binomial coefficient (−1)k
(m
k
)

2 The general unitary group GL−n (Fq)

Let q be a prime power, n ≥ 1 a natural number, and Vn(Fq2) = Fn
q2

the vector space

of dimension n over the field Fq2 with q
2 elements. The non-degenerate sesquilinear

form

〈u, v〉 = c
∑

1≤i≤n

(−1)i+1uiv
q
n+1−i u, v ∈ Vn(Fq2) (2.1)

is Hermitian (〈au, v〉 = a〈u, v〉, 〈u, v〉q = 〈v, u〉, a ∈ Fq2 , u, v ∈ Vn(Fq2)) when the
constant c ∈ Fq2 satisfies c

q−1 = (−1)n+1. The general unitary group GL−
n (Fq) [9,

§2.7] is the group of all linear automorphisms of Vn(Fq2) preserving the Hermitian
bilinear form (2.1). Let ϕq(g) denote the matrix obtained from g ∈ GL+

n (Fq2) by
raising all entries to the powerq. Then g lies inGL−

n (Fq) if and only if gA(ϕq(g))t = A
where A is the matrix whose only nonzero entries are a string of alternating +1’s and
−1’s running diagonally from upper right to lower left corner. The order of GL−

n (Fq)

is [32, (2.6.1)] [35, (3.25)]

|GL−
n (Fq)| = (q + 1)|SL−

n (Fq)| = q(n2)
∏

1≤i≤n

(qi − (−1)i )

=
∏

0≤i≤n−1

(qn − (−1)n−i qi )

and there is a short exact sequence

1 SL−
n (Fq) GL−

n (Fq) Cq+1 1det
(2.2)

where Cq+1 is the order q + 1 subgroup of the cyclic unit group F×
q2
. We have

|GL−
n |(q) = (−1)n|GL+

n |(−q) where |GL+
n |(q) = ∏

0≤i≤n−1(q
n − qi ) and

|GL−
n |(q) = ∏

0≤i≤n−1(q
n − (−1)n−i qi ) are the order polynomials [17, p. 207]

123



920 Journal of Algebraic Combinatorics (2021) 54:915–946

for the general linear and unitary groups. The special unitary group SL−
n (Fq) is gen-

erated by root group elements xα̂(t) or xα̂(t, u) of type I, II, and (for odd n) IV [9,
Table 2.4] and the general unitary group GL−

n (Fq) by root groups together with the
diagonal matrices diag(z, 1, . . . , 1, z−q) for z ∈ F×

q2
.

A subspace of Vn(Fq2) is totally isotropic if the Hermitian sesquilinear form (2.1)
vanishes completely on it. Let L−

n (Fq) be the poset of totally isotropic subspaces
in Vn(Fq2) and L−

n (Fq)
∗ the subposet of nontrivial totally isotropic subspaces. The

standard action ofGL+
n (Fq2)on subspaces ofVn(Fq2) restricts to an action ofGL

−
n (Fq)

on L−
n (Fq)

∗. The classifying simplicial complex of L−
n (Fq)

∗, the flag complex of
totally isotropic subspaces, is the building for GL−

n (Fq) [1, §6.8]. We may replace
the flag complex L−

n (Fq)
∗ by the Brown subgroup poset Ss+∗

GL−
n (Fq )

of nontrivial s-

subgroups of GL−
n (Fq) where s is the defining characteristic [22, Theorem 3.1].

The (non-equivariant) reducedEuler characteristics of the spherical posets L±
n (Fq)

∗
are given by

−χ̃ (L+
n (Fq)

∗) = (−1)n−1q(n2), −χ̃ (L−
n (Fq)

∗) = (−1)�n/2
q(n2)

according to the Solomon–Tits theorem [7, Proposition 8.3] (or [26, Example 3.10.2]
for the case of L+

n (Fq)
∗).

3 Self-dual polynomials over Fq2

In the next lemma, we consider field extensions Fq ⊆ Fqm1 ⊆ Fqm2 where 1 ≤ m1 ≤
m2. Let σ0, σ1, . . . , σn be the elementary symmetric polynomials in n ≥ 1 variables
[16, Example 1.74] (where σ0 stands for the constant polynomial 1).

Lemma 3.1 Let a1, . . . , an be n elements of the field Fqm2 . Then

∀i ∈ {0, 1, . . . , n} : σi (a1, . . . , an) ∈ Fqm1

⇐⇒ ∀i ∈ {0, 1, . . . , n} : σi (a
−q
1 , . . . , a−q

n ) ∈ Fqm1

Proof The nth elementary symmetric function is σn(a1, . . . , an) = a1 · · · an . Observe
that

∀i ∈ {0, 1, . . . , n} : σi (a
−1
1 , . . . , a−1

n )σn(a1, . . . , an) = σn−i (a1, . . . , an)

If all values of σi (a1, . . . , an) are in the subfield Fqm1 , also all values of σi (a
−1
1 , . . . ,

a−1
n ) and σi (a

−q
1 , . . . , a−q

n ) = σi (a
−1
1 , . . . , a−1

n )q are in this subfield. ��
Definition 3.2 (Dual polynomial) [32, Notation p. 13] Let p(x) = a0xm + a1xm−1 +
· · · + am−1x + am ∈ Fq2 [x] be a polynomial of degree m ≥ 1 with nonzero constant
term (so that a0 	= 0 and am 	= 0). The dual polynomial to p(x) is

p(x) = a0
∏

1≤i≤m

(x − α
−q
i )
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where p(x) = a0
∏

1≤i≤m(x −αi ) with α1, . . . , αm in the splitting field for p(x) over
Fq2 .

If p(x) = p(x) we say that p(x) is self-dual.

We note that

• dualization is involutory: p = p
• dualization respects products: p1 p2 = p1 p2
• dualization respects divisibility: p1 | p2 ⇐⇒ p1 | p2
• a polynomial (with nonzero constant term) is irreducible if and only its dual poly-
nomial is irreducible

• if p = a0
∏

reii is the canonical factorisation of the polynomial p [12, Theorem
1.59] then p = a0

∏

reii is the canonical factorisation of the dual polynomial

Although the dual of a polynomial over Fq2 is defined in terms of elements of an
extension of Fq2 , it is actually again a polynomial over Fq2 as Lemma 3.1 shows that
the coefficients of p(x) lie in Fq2 if those of p(x) do.

Proposition 3.3 Let p(x) = a0xm + a1xm−1 + · · · + am−1x + am ∈ Fq2 [x] be a
polynomial as in Definition 3.2 with a0 	= 0 and am 	= 0. The dual polynomial p(x)
is given by

aqm p(x) = a0(a
q
mx

m + aqm−1x
m−1 + · · · + aq1 x + aq0 )

and p(x) is self-dual if and only if its coefficients satisfy the equation

aqm(a0, a1, . . . , am−1, am) = a0(a
q
m, aqm−1, . . . , a

q
1 , aq0 )

Proof The reciprocal [16, Definition 3.12] to the polynomial p(x) is

p∗(x) = xm p(x−1) = amx
m + am−1x

m−1 + · · · + a1x + a0 = am
∏

1≤i≤m

(x − α−1
i )

and thus

aqm
∏

1≤i≤m

(x − α
−q
i ) = aqmx

m + aqm−1x
m−1 + · · · + a1q x + aq0

since the Frobenius map σq(x) = xq is a field automorphism of Fq2 . The dual poly-
nomial is

p(x) = a0
∏

1≤i≤m

(x − α
−q
i ) = a0

aqm
(aqmx

m + aqm−1x
m−1 + · · · + aq1 x + aq0 )

and hence

p(x) = p(x) ⇐⇒ aqm p(x) = aqm p(x)

⇐⇒ aqm(a0x
m + a1x

m−1 + · · · + am−1x + am)
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= a0(a
q
mx

m + aqm−1x
m−1 + · · · + aq1 x + aq0 )

which is the criterion of the proposition. ��
If g is a unitary automorphism of a vector space over Fq2 and p(x) the polynomial

of Definition 3.2 then

aq0 〈p(g)x, y〉 = am〈gm(x), p̄(g)(y)〉 (3.1)

for all vectors x, y.

Lemma 3.4 The characteristic polynomial cg of any unitary automorphism g ∈
GL−

n (Fq) is self-dual.

Proof Let r ∈ Fq2 [x] be an irreducible polynomial. Then

r � cg ⇐⇒ r(g) is invertible
(3.4)⇐⇒ r̄(g) is invertible ⇐⇒ r̄ � cg

or, equivalently, r | cg ⇐⇒ r̄ | cg . This shows that cg = c̄g . ��
Corollary 3.5 [32, Proof of (ii), p. 35] The number of self-dual monic polynomials in
Fq2 [x] of degree m > 0 with nonzero constant term is qm + qm−1.

Proof Amonic polynomial of degreem, p(x) = xm +a1xm−1 +· · ·+am−1x +am ∈
Fq2 [x] with am 	= 0 is by Proposition 3.3 self-dual if and only if

aqm(a1, a2, . . . , am−1, am) = (aqm−1, . . . , a
q
1 , 1)

or, equivalently,

aq+1
m = 1 and (a1, . . . , am−1) = am(aqm−1, . . . , a

q
1 ) (3.2)

Suppose first that m = 2k + 1 is odd. There are q + 1 elements am in Fq2 such that

aq+1
m = 1. For 1 ≤ j ≤ k, let a j be any element of Fq2 and put am− j = ama

q
j . Then

ama
q
m− j = aq

2

j = a j . This shows that the self-duality criterion (3.2) has (q+1)q2k =
qm +qm−1 solutions. Suppose next that m = 2k is even. The coefficient am can again
be chosen in exactly q + 1 ways. For each j with 1 ≤ j ≤ k − 1, the coefficient a j

can be chosen freely in Fq2 and we let am− j = ama
q
j . There are q = (q − 1) + 1

possibilities for choosing the coefficient ak such that ak = ama
q
k as aq+1

m = 1. Thus
the self-duality criterion (3.2) has (q + 1)q2k−2q = qm + qm−1 solutions. ��
Definition 3.6 (See Fig. 1) For every integer d ≥ 1,

• IMd(q) is the number of Irreducible Monic polynomials of degree d over Fq with
nonzero constant term
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d = 1 d = 2 d = 3 d = 4 d = 5 d = 6
d IMd(q) q − 1 q2 − q q3 − q q4 − q2 q5 − q q6 − q3 − q2 + q
d IMd(q2) q2 − 1 q4 − q2 q6 − q2 q8 − q4 q10 − q2 q12 − q6 − q4 + q2

d SDIM−
d (q) q + 1 0 q3 − q 0 q5 − q 0

2d SDIM+
d (q) q2 − q − 2 q4 − q2 q6 − q3 − q2 + q q8 − q4 q10 − q5 − q2 + q q12 − q6 − q4 + q2

Fig. 1 The polynomials IMd (q), IMd (q2) and SDIM±
d (q) for d = 1, . . . , 6

• SDIM−
d (q) is the number of Self-Dual Irreducible Monic polynomials of degree

d over Fq2 with nonzero constant term

• SDIM+
d (q) = 1

2 (IMd(q2) − SDIM−
d (q)) is the number of unordered pairs of

non-self-dual irreducible monic polynomials of degree d over Fq2 with nonzero
constant term

For all d ≥ 1, IMd(q2) = ∑

d|n μ(n/d)(q2d −1) [16, Corollary 3.21] (simplifying

to IMd(q2) = ∑

d|n μ(n/d)q2d when d > 1). The well-known identities [33, p. 258]

∏

d≥1

1

(1 − xd)IMd (q)
= 1 − x

1 − qx
,

∏

d≥1

1

(1 − xd)IMd (q2)
= 1 − x

1 − q2x
(3.3)

are easily proved using [21, Lemma 3.7].When d = 1, IM1(q2) = q2−1 (represented
by the polynomials x−λ, λ ∈ F×

q2
), SDIM−

1 (q) = q+1 (represented by the polynomi-

als x−λ, λ ∈ F×
q2
, λ = λ−q ) and SDIM+

1 (q) = 1
2 (q

2−1−(q+1)) = 1
2 (q+1)(q−2)

(represented by the pairs (x − λ, x − λ−q), λ ∈ F×
q2
, λ 	= λ−q ).

The next proposition shows among other things that self-dual irreducible polyno-
mials have odd degrees, i.e. that SDIM−

d (q) = 0 for all even d.

Proposition 3.7 Let p(x) ∈ Fq2 [x] be a self-dual irreducible monic polynomial of
degree m ≥ 1 over Fq2 with p(0) 	= 0. Then m is odd and

p(x) =
∏

0≤ j≤m−1

(x − λq
2 j

)

where λ ∈ Fq2m , λ
qm+1 = 1, and all the elements λ, λq

2
, . . . , λq

2m−2
are distinct.

Proof Let p(x) be a monic irreducible polynomial p(x) of degree m over Fq2 . The
field Fq2m contains an element λ such that

p(x) =
∏

0≤ j≤m−1

(x − λq
2 j

)

and all the elements λ, λq
2
, . . . , λq

2m−2
are distinct [16, Theorem2.14]. By self-duality

λ−q = λq
2k
for a unique integer k with 0 ≤ k ≤ m − 1.

Assume first that p(x) has degree m = 2. The roots of p(x) are {λ, λq
2} where

λ−q equals λ or λq
2
by self-duality. In the first case, 1 = λλ−1 = λλq = λq+1 and
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λq
2−1 = (λq+1)q−1 = 1. In the second case, λq = λ−q2 = (λ−q)q = (λq

2
)q = λq

3

and 1 = λq
3−q = (λq

2−1)q so λq
2−1 = 1 also here. In both cases, we have that

λ, λq
2 ∈ F×

q2
. Since this contradicts irreducibility of p(x) over Fq2 , monic irreducible

self-dual polynomials of degree 2 do not exist.
Assume next that m > 2. Since λq

2 = (λ−q)−q = λq
4k
it follows that m divides

2k−1 and is odd. Furthermore, k equals 1 or 1
2 (m+1) as k is at mostm−1. However,

k = 1 implies λq
2 = λq

4k = λq
4
contradicting that λq

2
and λq

4
are distinct when

m ≥ 3. From 2k = m + 1 we get λ−q = λq
2k = λq

m+1
, equivalently, λ−1 = λq

m
or

λq
m+1 = 1. ��
The next count of self-dual irreducible monic polynomials in Fq2 [x] is closely

related to the classical count of irreducible monic polynomials or self-reciprocal
irreducible monic polynomials in Fq [x] [16, Corollary 3.21, Theorem 3.25] [18, The-
orem 3]

Lemma 3.8 Let m ≥ 1 be an odd integer.

(1) The self-dual irreducible monic polynomials in Fq2 [x] with nonzero constant term
whose degrees divide the odd integer m ≥ 1 are precisely the irreducible factors
of the polynomial xq

m+1 − 1 ∈ Fq2 [x].
(2)

∑

d|m d SDIM−
d (q) = qm + 1 and m SDIM−

m(q) = ∑

d|m μ(m/d)(qd + 1) for
any odd integer m ≥ 1.

Proof (1) Let p(x) be an irreducible factor of xq
m+1 − 1. Obviously, p(0) 	= 0. If α

is a root of p(x) in its splitting field then αqm+1 = α. Therefore α−q = αqm is also a
root of p(x). This shows that p(x) is self-dual (Definition 3.2).

Next, let p(x) be a self-dual irreducible monic polynomial with nonzero constant
term of degree d dividing m. According to Proposition 3.7, p(x) has a root λ ∈ Fq2d

such that λq
d+1 − 1 = 0. Then p(x) divides xq

d+1 − 1 which divides xq
m+1 − 1 as

d ≤ m [16, Lemma 2.12, Corollary 3.7].
(2) The polynomial xq

2m −x = x(xq
2m−1−1) ∈ Fq2 [x] has nomultiple roots according

to the standard criterion of [16, Theorem 1.68]. The polynomial xq
m+1 − 1 is a factor

of xq
2m − x by [16, Corollary 3.7] and hence also has no multiple roots. From (1) it

now follows that xq
m+1 −1 is the product of all self-dual irreducible polynomials with

nonzero constant terms of degrees dividing m. The second assertion is the Möbius
inversion of the first one which is a count of degrees. ��
Corollary 3.9 The arithmetic functions IMn(q) andSDIM±

n (q) ofDefinition 3.6 satisfy
the relations

SDIM−
n (q) =

⎧

⎪

⎨

⎪

⎩

q + 1 n = 1

IMn(q) n > 1 odd

0 n > 0 even

SDIM+
n (q) =

{

1
2q(q − 1) − 1 n = 1

IM2n(q) n > 1

Proof For n = 1, the SDIM−
1 (q) = q + 1 self-dual irreducible monic polynomials

are the polynomials x − λ with λ ∈ Fq2 such that λq+1 = 1. For odd n > 1,
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Lemma 3.8.(2) shows that SDIM−
n (q) = 1

n

∑

d|n μ(n/d)qd = IMn(q), the number of
irreducible polynomials of degree n over Fq [23, Chapter 2, Corollary], [12, Theorem
3.25].

When n > 1 is odd

IM2n(q) = 1

2n

∑

D|2n
μ(2n/D)qD = 1

2n

∑

d|n
μ(n/d)q2d + 1

2n

∑

d|n
μ(2n/d)qd

= 1

2n

∑

d|n
μ(n/d)q2d − 1

2n

∑

d|n
μ(n/d)qd

= 1

2
(IMn(q

2) − IMn(q)) = SDIM+
n (q)

where we use that μ(2k) = −μ(k) for odd k ≥ 1. When n > 0 is even

IM2n(q) = 1

2n

∑

D|2n
μ(2n/D)qD = 1

2n

∑

d|n
μ(n/d)q2d + 1

2n

∑

d|n
dodd

μ(2n/d)qd

= 1

2n

∑

d|n
μ(n/d)q2d = 1

2
IMn(q

2) = SDIM+
n (q)

where we use that an even divisor of 2n has the form 2d for a divisor d of n, an odd
divisor of 2n is a divisor of n, and μ(2k) = 0 even k ≥ 2. ��
Corollary 3.10

∑

d|n d SDIM
−
d (q) = qn/n2 + 1 and

∑

d|n d SDIM
+
d (q) = 1

2 (q
2n −

qn/n2) − 1 for any natural number n ≥ 1.

Proof To get the first equation,

∑

d|n
d SDIM−

d (q) = 2 +
∑

d|n/n2

d IMd(q) = 2 + qn/n2 − 1 = qn/n2 + 1

we use Corollary 3.9 and [16, Corollary 3.21]. The second equation,

∑

d|n
d SDIM+

d (q) = 1

2
(
∑

d|n
d IMd(q

2) −
∑

d|n
d SDIM−

d (q))

= 1

2
(q2n − 1 − qn/n2 − 1) = 1

2
(q2n − qn/n2) − 1

follows because SDIM+
d (q) = 1

2 (IMd(q2) − SDIM−
d (q)) (Definition 3.6). ��

4 Equivariant reduced Euler characteristics of products

This short section establishes a multiplicative property of equivariant Euler character-
istics for use in the proof of the crucial Lemma 5.3.
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Lemma 4.1 −χ̃ (P1 ∗ · · · ∗ Pt ) = ∏

1≤i≤t −χ̃ (Pi ) for finitely many finite posets
P1, . . . , Pt .

Proof The join P ∗ Q, of the finite posets P and Q, is the poset P
∐

Q where all
elements of P are < all elements of Q. The n-simplices of the join are n-simplices of
P , i simplices of P joined to j-simplices of Q where i + j = n − 1, and n-simplices
of Q. Alternatively, when we regard a poset as having a single cell ∅ in degree −1, the
n-simplices of the join are all i-simplices of P joined to all j-simplices of Q where
i + j = n − 1. In other words cn(P ∗ Q) = ∑

i+ j=n−1 ci (P)c j (Q), where cn stands
for the number of n-simplices. The reduced Euler characteristic of the join is

−χ̃ (P ∗ Q) =
∑

n≥−1

(−1)n−1cn(P ∗ Q) =
∑

n≥−1

∑

i+ j=n−1

(−1)i ci (P)(−1) j c j (Q)

=
∑

i≥−1

ci (P)
∑

j≥−1

c j (Q)

= χ̃(P)χ̃(Q) = (−χ̃ (P))(−χ̃ (Q))

Proceeding by induction we get the formula for the reduced Euler characteristic of
finite joins of finite posets. ��

For a finite poset P with a least element ̂0, let P∗ = P − {̂0} be the induced
subposet obtained by removinĝ0 from P . Let Gi be finite groups and Pi finite Gi -
posets with least elements indexed by the finite set I . The product poset

∏

i∈I Pi is a
finite

∏

i∈I Gi -poset with a least element.

Lemma 4.2 The classical and the equivariant Euler characteristics of the
∏

i∈I Gi -
poset

( ∏

i∈I Pi
)∗

are given by

−χ̃
(

(
∏

i∈I
Pi

)∗) =
∏

i∈I
−χ̃ (P∗

i ), −χ̃r

(

(
∏

i∈I
Pi

)∗
,
∏

i∈I
Gi

)

=
∏

i∈I
−χ̃r (P

∗
i ,Gi )

where r ≥ 1.

Proof If P1 and P2 are finite posets with least elements then Lemma 4.1 implies
−χ̃ ((P1 × P2)∗) = (−χ̃ (P∗

1 ))(−χ̃ (P∗
2 )) because (P1 × P2)∗ = (P1 × P2)>(̂0,̂0) =

(P1)>0 ∗ (P2)>0 = P∗
1 ∗ P∗

2 by [22, Proposition 1.9], [31, Theorem 5.1.(c)]. The
general formula for the classical Euler characteristic follows by induction over the
cardinality of the index set I . Proceed exactly as in [21, Lemma 2.3] to obtain the
formula for the equivariant Euler characteristics ��

5 Semisimple classes of the general unitary group

Conjugacy classes in the general linear group GL+
n (Fq) or the general unitary group

GL−
n (Fq) are classified by functions from the set of irreducible polynomials in Fq [x]

or Fq2 [x] to the set of partitions [5] [4, §2.1, §2.2], [8, Proposition 1A].
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An element of GL−
n (Fq) is semisimple if it is diagonalisable over the algebraic clo-

sure of Fq [6, §1.4]. Alternatively, the semisimple elements of GL−
n (Fq) are precisely

the q-regular elements (the elements of order prime to q); see [28, §2]. A semisimple
or q-regular class in GL−

n (Fq) is the conjugacy class of a semisimple (= q-regular)
element.

Corollary 5.1 GL±
n (Fq) contains exactly qn ∓qn−1 semisimple classes for any n ≥ 1.

Two semisimple elements of GL±
n (Fq) are conjugate if and only if their characteristic

polynomials are identical.

Proof The number of semisimple classes is given by a general result of Steinberg [6,
Theorem 3.7.6]. The second statement is an immediate consequence of the classifica-
tion of q-regular classes in GL−

n (Fq) mentioned above. ��
For aG-poset�, let∼ be the equivalence relation betweenG-poset endomorphisms

of � generated by the relation f0 ∼ f1 if f0(x) ≤ f1(x) for all x ∈ �. We say that
� is G-poset contractible if there is a G-fixed point x0 in � such that 1� ∼ x0 where
1� is the identity map of � and x0 is the constant map with value x0 [21, §2]. If �

is G-poset contractible then any subposet C�(X) fixed by a subset X of G is poset
contractible.

Lemma 5.2 For n > 1, the poset CL−
n (Fq )∗(g) is CGL−

n (Fq )(g)-poset contractible unless

g ∈ GL−
n (Fq) is semisimple.

Proof This is proved in [34, §4] oncewe recall Quillen’s identification [22] of L−
n (Fq)

∗
with the Brown poset of nontrivial s-subgroups of GL−

n (Fq) where s is the character-
istic of Fq . ��

The next lemma facilitates a recursive approach to the equivariant Euler charac-
teristics χ̃r (GL−

n (Fq)). The characteristic polynomial of any unitary automorphism is
self-dual by Lemma 3.4 and thus admits an essentially unique factorisation of the form
∏

r
m−
i

i ×∏

j (s j s̄ j )
m+

j where the ri are distinct self-dual irreducible monic polynomi-
als and the s j are distinct non-self-dual irreducible monic polynomials. ([GL−

n (Fq)]
denotes the set of conjugacy classes in GL−

n (Fq).)

Lemma 5.3 For n > 1 and r ≥ 1, the (r + 1)th equivariant Euler characteristic of
the GL−

n (Fq)-poset L−
n (Fq)

∗ is

χ̃r+1(GL
−
n (Fq)) =

∑

[g]∈[GL−
n (Fq )]

GCD(q,|g|,=)1

χ̃r (CL−
n (Fq )∗(g),CGL−

n (Fq )(g))

where the contribution from the semisimple class g with characteristic polynomial
∏

r
m−
i

i × ∏

j (s j s̄ j )
m+

j is given by

−χ̃r (CL−
n (Fq )∗(g),CGL−

n (Fq )(g))=
∏

i

−̃χr (GL
−
m−
i
(F

qd
−
i

)) ×
∏

j

+̃χr (GL
+
m+

j
(F

q
2d+

j
))

for deg ri = d−
i , deg s j = d+

j and
∑

i m
−
i d

−
i + ∑

j 2m
+
j d

+
j = n.
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Proof View the n-dimensional unitary geometry V as an Fq2 [x]-module via the action
of g. Since g is semisimple the Fq2 [x]-module V is

V =
⊕

ri=r̄i

ker(ri (g)) ⊕
⊕

s j 	=s̄ j

ker(s j (g)) ⊕ ker(s̄ j (g))

=
⊕

ri=r̄i

(Fq2 [x]/(ri (x)))m
−
i ⊕

⊕

s j 	=s̄ j

(Fq2 [x]/(s j (x)) ⊕ Fq2 [x]/(s̄ j (x)))m
+
j

The direct summands, ker ri (g) and ker(s j (g))⊕ker(s̄ j (g)), in this decomposition
of V are pairwise orthogonal. For example, let ri1 and ri2 be two distinct self-dual
irreducible factors of the characteristic polynomial. For v1 ∈ ker(ri1(g)) and v2 ∈
ker(ri2(g)), the inner products 〈rm

−
i2

i2
(g)v1, v2〉 and 〈gd−

i2
m−
i2 v1, r

m−
i2

i2
(g)v2〉 = 0 agree

up to a nonzero scalar by (3.1). Since r
m−
i2

i2
(g) defines an automorphism of ker(ri1(g)),

this shows that ker(ri1(g)) ⊥ ker(ri2(g)). Similarly, ker(si (g)) ⊥ (ker(r j (g)) ⊕
ker(r̄ j (g))) and ker(r j1(g)) ⊥ (ker(r j2(g)) ⊕ ker(r̄ j2(g))) for distinct factors r j1 and
r j2 . Thus all summands ker ri (g) and ker(s j (g)) ⊕ ker(s̄ j (g)) are non-degenerate
unitary geometries.

The centraliser of g in the general unitary group of V is the group [32], [8, Propo-
sition 1A] [4, Lemma 2.3], [30, Lemma 3.3]

CGL−(V )(g) =
∏

i

GL−
m−
i
(F

qd
−
i

) ×
∏

j

GL+
m+

j
(F

q
2d+

j
)

of unitary Fq2 [x]-automorphisms and the centraliser of g in the poset of totally
isotropic subspaces of V is the poset

CL−(V )(g) =
∏

i

L−(ker ri (g)) ×
∏

j

L−(ker(s j (g)) ⊕ ker(s̄ j (g)))

of totally isotropicFq2 [x]-subspaces. The representation of GL−
m−
i
(F

qd
−
i

) in ker(si (g))

∼= F
m−
i

q2d
−
i
is standard.Wenow turn to the representation ofGL+

m+
j
(F

q
2d+

j
) in ker(s j (g))⊕

ker(s̄ j (g)) ∼= (F
q
2d+

j
⊕ F

q
2d+

j
)
m+

j = F
2m+

j

q
2d+

j
described in [8, §1, p 112, 1])

The Kleidman–Liebeck Theorem [14] [35, Theorem 3.9] lists certain natural sub-
groups of the general unitary groups. The unitary 2m-geometry V2m(Fq2) over Fq2

has a basis e1, . . . , em, f1, . . . , fm such that 〈ei , fi 〉 = 1, 1 ≤ i ≤ m, are the only
nonzero Hermitian inner products between the basis vectors [14, Proposition 2.3.2].
Write V2m(Fq2) = V1 ⊕ V2 as the direct sum of the two maximal totally isotropic
subspaces V1 and V2 spanned by e1, . . . , em , and f1, . . . , fm , respectively. The repre-
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sentation of GL+
m(Fq2) in GL

−
2m(Fq) given by

GL+
m(Fq2) � A →

(

A 0
0 A−1αt

)

∈ GL−
2m(Fq)

stabilises the direct sum decomposition V = V1 ⊕ V2 [14, Lemma 4.1.9, Table 4.2.A,
Lemma 4.2.3]. (The matrix A−1αt is the conjugate-transpose of the inverse of A so
that 〈Av1, A−1αtv2〉 = 〈A−1Av1, v2〉 = 〈v1, v2〉 for v1 ∈ V1, v2 ∈ V2.) The stabiliser
of g in the poset of totally isotropic subspaces of V2m(Fq2) is the GL

+
m(Fq)-poset of

pairs of orthogonal subspaces

� L+
m(Fq2) = {(U1,U2) | U1 ≤ V1,U2 ≤ V2,U1 ⊥ U2}

The subposet � L+
m(Fq2)

∗, obtained from � L+
m(Fq2) by removing the pair (0, 0), is

GL+
m(Fq)-homotopy equivalent to the suspension [31, §3] of L+

m(Fq2)
∗: Let {1, 2} be

the discrete poset of two incomparable points. The two GL+
m(Fq)-poset morphisms

{1, 2} ∗ L+
m(Fq2)

∗ � L+
m(Fq2)

∗f

g

given by f (1,U ) = (U , 0), f (2,U ) = (0,U ), and

g(U1,U2) =
{

(1,U1) U1 	= 0

(2,U2) U1 = 0

are homotopy equivalences as g f is the identity of the suspension of L+
m(Fq2)

∗ and
f g is homotopic to the identity of � L+

m(Fq2)
∗ as f g(U1,U2) ≤ (U1,U2). By the

product formula in Lemma 4.1,

−χ̃r (� L+
m(Fq2)

∗,GL+
m(Fq2))

= −χ̃r ({1, 2} ∗ L+
m(Fq2)

∗,GL+
m(Fq2)) = χ̃r (L

+
m(Fq2)

∗,GL+
m(Fq2))

and the formula of the lemma is a consequence of the product formula in Lemma 4.2.
��

Observe that the contribution of a q-regular class depends only on the multiplicities
and degrees of the irreducible factors of its characteristic polynomial.

6 Proofs of Theorem 1.2 and Corollary 1.3

We use Lemma 5.3 in an inductive computation of the generating functions (1.2). The
next proposition gives the start of the induction.

Proposition 6.1 Suppose that r = 1 or n = 1.
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(1) When r = 1, −χ̃1(GL−
n (Fq)) = δ1,n is 1 for n = 1 and 0 for all n > 1.

(2) When n = 1, −χ̃r (GL
−
1 (Fq)) = (q + 1)r−1 for all r ≥ 1.

Proof When n = 1, L−
1 (Fq)

∗ = ∅ is empty. Since χ̃ (∅) = −1, the r th equivariant
Euler characteristic is

−χ̃r (GL
−
1 (Fq)) = |Hom(Zr ,GL−

1 (Fq))|/|GL−
1 (Fq)|

= |GL−
1 (Fq)|r−1 = (q + 1)r−1

for all r ≥ 1.
The first equivariant reduced Euler characteristic of χ̃1(GL−

n (Fq)), where n > 1,
is the classical Euler characteristic of the orbit space BL−

n (Fq)
∗/GL−

n (Fq) for the
GL−

n (Fq)-action on the building, the classifying space of the poset L−
n (Fq)

∗ [19,
Proposition 2.13]. According to Quillen we can replace L−

n (Fq)
∗ by the Brown poset

Ss+∗
GL−

n (Fq )
of nontrivial s-subgroups of GL−

n (Fq) [22], Theorem 3.1]. Webb’s theo-

rem [34, Proposition 8.2.(i)] applies to this replacement showing χ̃1(GL−
n (Fq)) =

χ̃
(

BL−
n (Fq)

∗/GL−
n (Fq)

) = 0. ��
Lemma 5.3 can be reformulated succinctly as the recurrence

FGL−
r+1(q, x) = TSDIM−(q)(FGL

−
r (q, x))TSDIM+(q)(FGL

+
r (q2, x2)) (6.1)

using the power series transform from [21, Definition 3.1] reviewed in Sect. 7 below.

Corollary 6.2 The following identities hold

TSDIM−(q)(1 − x)TSDIM+(q)(1 − x2) = 1 − qx

1 + x
TSDIM−(q)(1 + x)TSDIM+(q)

×(1 − x2)

= 1 + qx

1 − x

TSDIM−(q)

(1 + x

1 − x

)

= (1 + x)(1 + qx)

(1 − x)(1 − qx)

Proof For the first identity, note that

TSDIM−(q)(1 − x)−1TSDIM+(q)(1 − x2)−1 = 1 +
∑

n≥1

(qn + qn−1)xn

= 1 +
∑

n≥1

(qx)n + x
∑

n≥1

(qx)n−1 = 1 + x

1 − qx

since the coefficient of xn in this power series is the number of self-dual monic poly-
nomials in Fq2 [x] determined in Corollary 3.5. (An alternative proof,

TSDIM−(q)(1 − x)TSDIM+(q)(1 − x2) =
∏

d≥1

(1 − xd)SDIM
−
d (q)

∏

d≥1

(1 − x2d)SDIM
+
d (q)
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= (1 − x)2
∏

d≥1
dodd

(1 − xd)IMd (q)(1 − x2)−1
∏

d≥2
deven

(1 − xd)IMd (q)

= 1 − x

1 + x

∏

d≥1

(1 − xd)IMd (q) (3.9)= 1 − qx

1 + x

follows from Corollary 3.9.) Since SDIM−
d (q) is nonzero only for odd d (Proposi-

tion 3.7),

TSDIM−(q)(1 + x) =
∏

d≥1

(1 + xd)SDIM
−
d (q) =

∏

d≥1

(1 − (−x)d)SDIM
−
d (q)

is the SDIM−(q)-transform of 1 − x evaluated at −x . Obviously, the SDIM+(q)-
transform of 1− x2 is an even function of x . Thus TSDIM−(q)(1+ x)TSDIM+(q)(1− x2)

is TSDIM−(q)(1−x)TSDIM+(q)(1−x2) evaluated at−x . This proves the second identity.
The third identity is simply the quotient of the first two. ��
Proof of Theorem 1.2 The first generating function (6.3) is FGL−

1 (q, x) = 1 + x by
Proposition 6.1.(1). Assume the formula of Theorem 1.2 holds for some r ≥ 1. Using
a consequence of Corollary 6.2,

TSDIM−(q)(1 ± q j x)TSDIM+(q)(1 − q2 j x2) = 1 ± q j+1x

1 ∓ q j x

which follows from the multiplicative property of these power series transforms [21,
(3.2)], and recursion (6.1), the computation

FGL−
r+1(q, x)

= TSDIM−(q)(FGL
−
r (q, x))TSDIM+(q)(FGL

+
r (q2, x2))

= TSDIM−(q)(
∏

j≡r mod 2(1 + q j x)(
r
j))

TSDIM−(q)(
∏

j 	≡r mod 2(1 − q j x)(
r
j))

TSDIM+(q)(
∏

j≡r mod 2(1 − q2 j x2)(
r
j))

TSDIM+(q)(
∏

j 	≡r mod 2(1 − q2 j x2)(
r
j))

=
∏

j≡r mod 2(1 + q j+1x)(
r
j)

∏

j≡r mod 2(1 − q j x)(
r
j)

∏

j 	≡r mod 2(1 + q j x)(
r
j)

∏

j 	≡r mod 2(1 − q j+1x)(
r
j)

=
∏

j≡r+1 mod 2(1 + q j x)(
r
j−1)

∏

j 	≡r+1 mod 2(1 − q j x)(
r
j)

∏

j≡r+1 mod 2(1 + q j x)(
r
j)

∏

j 	≡r+1 mod 2(1 − q j x)(
r
j−1)

=
∏

j≡r+1 mod 2(1 + q j x)(
r+1
j )

∏

j 	≡r+1 mod 2(1 − q j x)(
r+1
j )

shows that the formula holds also for r + 1. ��
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Proof of Corollary 1.3 The logarithmof the (r+1)th generating function FGL−
r+1(q, x)

is

log FGL−
r+1(q, x)

=
∑

0≤ j≤r

(−1)r− j
(

r

j

)

log(1 + (−1)r− j q j x)

=
∑

0≤ j≤r

(−1)r− j
(

r

j

)

∑

n≥1

(−1)n+1(−1)n(r− j)qnj
xn

n

=
∑

n≥1

(−1)n+1
∑

0≤ j≤r

(

r

j

)

(−1)(n+1)(r− j)qnj
xn

n

=
∑

n≥1

(−1)n+1(qn + (−1)n+1)r
xn

n

= −
∑

n≥1

(−1)n(qn − (−1)n)r
xn

n

��
Remark 6.3 (The Knörr-Robinson conjecture) The (non-block-wise form of the) the
Knörr-Robinson conjecture for the general unitary group GL−

n (Fq) relative to the
characteristic s of Fq asserts that [15,29] [22, Theorem 3.1]

−χ̃2(GL
−
n (Fq)) = zs(GL

−
n (Fq))

where zs(GL−
n (Fq)) = |{χ ∈ IrrC(GL−

n (Fq)) | |GL−
n (Fq)|s | χ(1)}| is the number

of irreducible complex representations of GL−
n (Fq) of s-defect 0 [13, p. 134]. As

FGL−
2 (q, x) = 1+qx

1−x , the left side is q + 1 and so is the right side [11, Remark, p. 69].
This confirms the Knörr–Robinson conjecture for GL−

n (Fq) relative to the defining
characteristic.

6.1 Alternative presentations of the equivariant reduced Euler characteristics

The binomial formula applied to the right hand side of Theorem 1.2 gives the more
direct expression

− χ̃r+1(GL
−
n (Fq)) =

∑

n0+···+nr=n

∏

0≤ j≤r

(−1) jn j

(

(−1) j
(r
j

)

n j

)

qn j (r− j) (6.2)

where the sum ranges over all
(n+r

n

)

weak compositions of n into r + 1 parts [26, p.
15]. This is also a consequence of [21, Corollary 3.10] and ‘Ennola duality’,

FGL−
r (q, x) = FGL+

r (−q, (−1)r x), r ≥ 1 (6.3)
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which follows by comparing the expressions of [21, Theorem 1.4] and Theorem 1.2.
We shall next relate the equivariant Euler characteristics more directly to the struc-

ture of the general linear and unitary groups. Recall that a (finite) multiset λ is a (finite)
base set B(λ) with a multiplicity function assigning a natural number E(λ, b) to all
b ∈ B(λ). Representing the multiset as λ = {bE(λ,b) | b ∈ B(λ)} and assuming the
base B(λ) consists of natural numbers, we let

|λ| =
∑

b∈B(λ)

E(λ, b) n(λ) =
∑

b∈B(λ)

bE(λ, b)

T (λ) = n(λ)!
∏

b∈B(λ) E(λ, b)!bE(λ,b)
U (λ, q) =

∏

b∈B(λ)

(qb − 1)E(λ,b)

so that |λ| is the cardinality or number of parts of λ, λ partitions n, λ � n, if n(λ) = n,
T (λ) is the number of elements in the symmetric group �n(λ) of cycle type λ [24,
Proposition 1.1.1], and U (λ, q) is an integral polynomial in q. With this notation, the
coefficients of xn in the power series of [21, Corollary 1.5] and Corollary 1.3 are

χ̃r+1(GL
+
n (Fq)) = 1

n!
∑

λ�n
(−1)|λ|T (λ)U (λ, q)r ,

−χ̃r+1(GL
−
n (Fq)) = (−1)n(r+1) 1

n!
∑

λ�n
(−1)|λ|T (λ)U (λ,−q)r (6.4)

with summation over all partitions λ of n.
Let Fq denote the standard Frobenius endomorphism of the algebraic group

GLn(Fs), s = char(Fq), with fixed points GLn(Fs)
Fq = GL+

n (Fq). The standard

maximal torus Tn(Fs) ∼= F
×
s ×· · ·×F

×
s consisting of the diagonalmatrices inGLn(Fs)

is maximally split with respect to Fq [17, Definition 21.13, Example 21.14]. TheWeyl
group Wn of Tn(Fs) acts as the standard permutation representation of the symmet-
ric group �n in the n-dimensional real vector space X(Tn(Fs)) ⊗ R spanned by the
character group X(Tn(Fs)). As usual, Tn(Fs)w denotes the Fq -stable maximal torus
of GLn(Fs) corresponding to the Weyl group element w ∈ Wn [17, Proposition 25.1].

Let σ be the graph automorphism of GLn(Fs) given by σ(M) = A−1(Mt )−1A,
M ∈ GLn(Fs), where A is the involutory permutation A(i) = n + 1 − i , 1 ≤ i ≤ n.
The fixed points for the Steinberg endomorphism Fqσ are GLn(Fs)

Fqσ = GL−
n (Fq),

Tn(Fs) is amaximally split torus alsowith respect to Fqσ , andσ acts on X(Tn(Fs))⊗R
as −A [17, Examples 21.14.(2), 22.11.(2)].

Proposition 6.4 The equivariant Euler characteristics of the GL±
n (Fq)-posets L±

n
(Fq)

∗, n ≥ 1, are

χ̃r+1(GL
+
n (Fq)) = (−1)n

|Wn|
∑

w∈Wn

det(w)|Tn(Fs)
Fq
w |r

= (−1)n

|Wn|
∑

w∈Wn

det(w) det(q − w)r
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−χ̃r+1(GL
−
n (Fq)) = (−1)(

n
2)

|Wn|
∑

w∈Wn

det(w)|Tn(Fs)
Fqσ
w |r

= 1

|Wn|
∑

w∈Wn

det(w) det(q + w)r

Proof The number of elements of Tn(Fs)w that are fixed by the Frobenius endomor-
phism Fq is

|Tn(Fs)
Fq
w | = U (λ(w), q) = det(q − w−1)

whereλ(w) is the cycle type of the permutationw anddeterminants are computed in the
real vector space X(Tn(Fs))⊗R [17, Proposition 25.3, Example 25.4]. Equation (6.4)
now takes the form

χ̃r+1(GL
+
n (Fq))

= (−1)n

|Wn|
∑

w∈Wn

det(w)U (λ(w), q)r

= (−1)n

|Wn|
∑

w∈Wn

det(w)|Tn(Fs)
Fq
w |r = (−1)n

|Wn|
∑

w∈Wn

det(w) det(q − w−1)r

= (−1)n

|Wn|
∑

w∈Wn

det(w) det(q − w)r

since (−1)λ(w) = (−1)n det(w) and det(w) = det(w−1) for all w ∈ Wn .
The number of elements of Tn(Fs)w that are fixed by Steinberg endomorphism Fqσ

is [17, Proposition 25.3.(c)]

|Tn(Fs)
Fqσ
w | = det(q − (−wA)−1) = (−1)n det(−q − (wA)−1)

= (−1)nU (λ(wA),−q)

Using Ennola duality (6.3) combined with (6.4), and [17, Proposition 25.3], the cal-
culation

−χ̃r+1(GL
−
n (Fq ))

= (−1)n(r+1) (−1)n

|Wn |
∑

w∈Wn

det(w)U (λ(w), −q)r

= (−1)nr

|Wn |
∑

w∈Wn

det(w)U (λ(w), −q)r

= 1

|Wn |
∑

w∈Wn

det(w)((−1)nU (λ(w), −q))r = 1

|Wn |
∑

w∈Wn

det(wA)((−1)nU (λ(wA),−q))r
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= 1

|Wn |
∑

w∈Wn

det(wA)|Tn(Fs)
Fqσ
w |r = 1

|Wn |
∑

w∈Wn

det(wA) det(q − (−wA)−1)r

= 1

|Wn |
∑

w∈Wn

det(wA) det(q + (wA)−1)r = 1

|Wn |
∑

w∈Wn

det(w) det(q + w−1)r

= 1

|Wn |
∑

w∈Wn

det(w) det(q + w)r

finishes the proof. Here, det(wA) = det(A) det(w) where det(A) = (−1)(
n
2) is +1

for n ≡ 0, 1 mod 4 and −1 for n ≡ 2, 3 mod 4. ��
Let χ̃r+1(GL±

n (Fq))
−1 denote the coefficient of xn in the reciprocal power series

FGL±
r+1(q, x)−1. The proof of the next result is similar to that of Proposition 6.4

except that it is based on the identities

χ̃r+1(GL
+
n (Fq))

−1 = 1

n!
∑

λ�n
T (λ)U (λ, q)r ,

χ̃r+1(GL
−
n (Fq))

−1 = (−1)n

n!
∑

λ�n
T (λ)((−1)nU (λ,−q))r , (6.5)

rather than (6.4). The right hand sides of these identities are the coefficients of xn in
the reciprocal of the power series of Corollary 1.3 and [21, Corollary 1.5].

Proposition 6.5 The reciprocal equivariant Euler characteristics of the GL±
n (Fq)-

posets L±
n (Fq)

∗, n ≥ 1, are

χ̃r+1(GL
+
n (Fq))

−1 = 1

|Wn|
∑

w∈Wn

|Tn(Fs)
Fq
w |r = 1

|Wn|
∑

w∈Wn

det(q − w)r

(−1)nχ̃r+1(GL
−
n (Fq))

−1 = 1

|Wn|
∑

w∈Wn

|Tn(Fs)
Fqσ
w |r = 1

|Wn|
∑

w∈Wn

det(q + w)r

Again, the case r = 1 has special significance in that χ̃2(GL+
n (Fq))

−1 is the number
of semisimple classes in GL+

n (Fq) and (−1)nχ̃2(GL−
n (Fq))

−1 the number of semisim-
ple classes in GL−

n (Fq) [6, Proposition 3.7.4].

Example 6.6 The polynomial identities

1

|Wn|
∑

w∈Wn

det(1 − qw) = 1 − q

1

|Wn|
∑

w∈Wn

det(w) det(q − w)2 = (−1)n+1n(q − 1)2qn−1

1

|Wn|
∑

w∈Wn

det(1 + qw) = 1 + q
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1

|Wn|
∑

w∈Wn

det(w) det(q + w)2 = n(q + 1)2qn−1

are the instances r = 1, 2 of Proposition 6.4. The right hand sides of the
equations in the left column, where r = 1, are the negative of the number
of irreducible complex representations of s-defect 0. (Indeed, |Wn|(1 + q) =
−|Wn|χ̃2(GL−

n (Fq)) = ∑

w∈Wn
det(w) det(q + w) = ∑

w∈Wn
det(w−1) det(q +

w−1) = ∑

w∈Wn
det(w) det(q + w−1) = ∑

w∈Wn
det(1 + qw).)

The polynomial identities

1

|Wn|
∑

w∈Wn

det(q − w) = qn − qn−1 1

|Wn|
∑

w∈Wn

det(q − w)2 = q − 1

q + 1
(q2n − 1)

1

|Wn|
∑

w∈Wn

det(q + w) = qn + qn−1 1

|Wn|
∑

w∈Wn

det(q + w)2 = q + 1

q − 1
(q2n − 1)

are the instances r = 1, 2 of Proposition 6.5. The right hand sides of the equations in
the left column, where r = 1, count semisimple classes.

The next corollary, an immediate consequence of (6.4) and Proposition 6.4, lists
the generating functions for the equivariant Euler characteristics χ̃r+1(GL±(n,Fq)),
r ≥ 0, for a fixed n. (The first part is [21, Proposition 4.19].)

Corollary 6.7 For any fixed n ≥ 1,

∑

r≥0

χ̃r+1(GL
+
n (Fq))x

r = 1

n!
∑

λ�n
(−1)|λ| T (λ)

1 −U (λ, q)x

= (−1)n

|Wn|
∑

w∈Wn

det(w)

1 − x det(q − w)

∑

r≥0

−χ̃r+1(GL
−
n (Fq))x

r = (−1)n

n!
∑

λ�n
(−1)|λ| T (λ)

1 − (−1)nU (λ,−q)x

= 1

|Wn|
∑

w∈Wn

det(w)

1 − x det(q + w)

For example, the power series n! ∑

r≥0
−χ̃r+1(GL−

n (Fq))xr is

1

1 − (q + 1)x
,

1

1 − (q + 1)2x
− 1

1 − (q2 − 1)x
,

1

1 − (q + 1)3x

− 3

1 − (q2 − 1)(q + 1)x
+ 2

1 − (q3 + 1)x

for n = 1, 2, 3.
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6.2 Hasse–Weil zeta functions and equivariant Euler characteristics

The Hasse–Weil zeta function for a projective variety V defined over Fq ,

Z(V /Fq; T ) = exp
(

∑

n≥1

|V (Fqn )|T
n

n

)

encodes the number of points on V over Fqn for all n ≥ 1 [25, V.2–V.3].

Proposition 6.8 For any m ≥ 1

FGL−
2m+1(q,−T ) = Z(Em/Fq2; T )−1

is the reciprocal of the Hasse–Weil zeta function of the m-fold self-product Em =
E × · · · × E of any supersingular elliptic curve E defined over Fq2 .

Proof Let E be any supersingular elliptic curve defined over Fq2 [25, Definition, p.
145]. We note that

Z(E/Fq2 ; T ) = (1 + qT )2

(1 − T )(1 − q2T )
= FGL−

3 (q,−T )−1 Cor.1.5= exp
(

∑

n≥1

(qn − (−1)n)2
T n

n

)

(6.6)

and hence

Z(Em/Fq2; T ) = exp
(

∑

n≥1

(qn − (−1)n)2m
T n

n

)

Cor.1.5= FGL−
2m+1(q,−T )−1

as |E(Fq2)| = (qn −(−1)n)2 by (6.6) and Em(Fq2n ) = E(Fq2n )
m for general reasons.

��

7 Transforms of polynomial power series and polynomial identities

Let F(q, x) = 1 + ∑

n≥1 a(n)(q)xn ∈ 1 + (x) ⊆ Q[q][[x]] be a power series with
leading term 1 in the power series ring over the ring of rational polynomials in q. Given
a sequence S = (S(n)(q))n≥1 of rational numbers defined for each prime power q,
the S-transform of F(q, x) is the power series [21, Definition 3.1]

TS(F(q, x)) =
∏

d≥1

F(qd , xd)S(d)(q)

The transformation TS : 1 + (x) → 1 + (x) is multiplicative in F and exponential in
S the sense that

TS(1) = 1, TS(F1(q, x)F2(q, x)) = TS(F1(q, x)TS(F2(q, x)),
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TmS(F(q, x)) = TS(F(q, x))m

for all F1(q, x), F2(q, x) ∈ 1 + (x) ⊆ Q[q][[x]] and rational numbers m ∈ Q [21,
§3.2].

For example, the S-transform of 1 ± xk is easily determined by evaluating the
coefficient of xkn in the infinite product expansion TS(1±xk) = ∏

d≥1(1±xkd)S(d)(q).
(See the beginning of Sect. 6.1 for multiset notation. We use the convention that the
binomial coefficient

( m
−k

) = (−1)k
(m
k

)

for all natural numbers k.)

Lemma 7.1 For any rational number m and natural number k, the mS-transform of
the power series 1 ± xk is

TmS(1 ± xk) = 1 +
∑

n≥1

[
∑

λ�n

∏

d∈B(λ)

(

mS(d)(q)

±E(λ, d)

)

]

xkn

The below corollary is Lemma 7.1 applied to the classical identity TIM(q)(1− x) =
1−qx
1−x (3.3), while the theorem is the lemma applied to the identities

Ta±
r+1(q)(1 − x) = FGL±

r+1(q, x),

a±
r+1(q, n) = 1

n

∑

d|n
(±1)dμ(n/d)(qd − (±1)d)r

found belowTheorem1.4 or below [21, Theorem1.7], and to the power series identities
of Corollary 6.2.

Corollary 7.2 For any rational number m,

1 +
∑

n≥1

[
∑

λ�n

∏

d∈B(λ)

(

m IMd(q)

−E(λ, d)

)

]

xn =
(

1 − qx

1 − x

)m

Theorem 7.3 For any rational number m and natural number r ≥ 0

1 +
∑

n≥1

[
∑

λ�n

∏

d∈B(λ)

(

ma±
r+1(q, d)

−E(λ, d)

)

]

xn = FGL±
r+1(q, x)m

(

1 +
∑

n−≥1

[
∑

λ−�n−

∏

d−∈B(λ−)

(

m SDIM−
d− (q)

−E(λ−, d−)

)

]

xn
−)

(

1 +
[

∑

λ+�n+

∏

d+∈B(λ+)

(

m SDIM+
d+ (q)

−E(λ+, d+)

)

]

x2n
+)

=
(1 − qx

1 + x

)m

(

1 +
∑

n−≥1

[
∑

λ−�n−

∏

d−∈B(λ−)

(

m SDIM−
d− (q)

−E(λ−, d−)

)

]

xn
−)

(

1 +
[

∑

λ+�n+

∏

d+∈B(λ+)

(−m SDIM−
d+ (q)

E(λ+, d+)

)

]

xn
+)

=
( (1 − qx)(1 − x)

(1 + x)(1 + qx)

)m
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Thévenaz’ polynomial identities for partitions [28], Theorem A, Theorem B] are
the cases m = ±1 of Corollary 7.2. The purely combinatorial proof of a generalised
version of Thévenaz’ polynomial identities presented here may qualify as an answer
to question (1) on p. 129 of [28]. Corollary 7.2 is the special case r = 1 of the first
equation of Theorem 7.3 as a+

2 (q, d) = IMd(q).
These polynomial identities are examples of Corollary 7.2 and Theorem 7.3 at

n = 3

(

m IM3(q)

−1

)

+
(

m IM2(q)

−1

)(

m IM1(q)

−1

)

+
(

m IM1(q)

−3

)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(q − 1)q2 m = −1
1
16 (q − 1)(5q2 + 2q + 1) m = − 1

2
1
16 (1 − q)(q2 + 2q + 5) m = 1

2

1 − q m = 1
(

m SDIM−
3 (q)

−1

)

+
(

m SDIM−
1 (q)

−3

)

+
(

m SDIM−
1 (q)

−1

)(

m SDIM+
1 (q)

−1

)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−q3 − q2 m = −1
1
16 (q + 1)(5q2 − 2q + 1) m = − 1

2

− 1
16 (q + 1)(q2 − 2q + 5) m = 1

2

1 + q m = +1
(

m SDIM−
3 (q)

−1

)

+
(

m SDIM−
1 (q)

−3

)

+
(

m SDIM−
1 (q)

−2

)(−m SDIM−
1 (q)

1

)

+
(

m SDIM−
1 (q)

−1

)(−m SDIM−
1 (q)

2

)

+
(−m SDIM−

3 (q)

1

)

+
(−m SDIM−

1 (q)

3

)

=

⎧

⎪

⎨

⎪

⎩

1
2 (q

3 + q2 + q + 1) m = − 1
2

2(q + 1)(q2 + q + 1) m = −1

4(q + 1)(3q2 + 5q + 3) m = −2

The terms on the left side correspond to the three partitions {31}, {2111}, {13}, of
3 in the first, to (n−, n+) in {(3, 0), (1, 1)} in the second, and to (n−, n+) in
{(3, 0), (2, 1), (1, 2), (0, 3)} in the third example.

8 Primary equivariant reduced Euler characteristics

Let p be a prime and, as in the previous sections, q a prime power. (The prime p
may or may not divide the prime power q.) In this section we discuss the p-primary
equivariant reduced Euler characteristics of the GL−

n (Fq)-poset L−
n (Fq)

∗.
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Definition 8.1 [27, (1-5)] The r th p-primary equivariant reduced Euler characteristic
of the GL−

n (Fq)-poset L−
n (Fq)

∗ is the normalised sum

χ̃r (p,GL
−
n (Fq)) = 1

|GL−
n (Fq)|

∑

X∈Hom(Z×Zr−1
p ,GL−

n (Fq ))

χ̃ (CL−
n (Fq )∗(X(Z × Zr−1

p )))

of reduced Euler characteristics of fixed sub-posets.

In this definition, Zp denotes the ring of p-adic integers and the sum ranges over
all homomorphisms of Z × Zr−1

p into GL−
n (Fq) or, equivalently, over all commuting

r -tuples (X1, X2, . . . , Xr ) of elements of GL−
n (Fq) where X2, . . . , Xr have p-power

order. The first p-primary equivariant reduced Euler characteristic is independent of
p and agrees with the first equivariant reduced Euler characteristic. If p divides q,
then χ̃r (p,GL−

n (Fq)) = 0 for all r , n > 1 by Lemma 5.2.
The r th p-primary equivariant unreduced Euler characteristic χr (p,GL−

n (Fq)),
obtained by replacing the reduced Euler characteristics with Euler characteristics in
Definition 8.1, agrees with the Euler characteristic computed in Morava K (r)-theory
at p of the homotopy orbit space BL−

n (Fq)
∗
hGL−

n (Fq )
for the action of GL−

n (Fq) on the

classifying space for the poset L−
n (Fq)

∗ [10], [27, 2-3, 5-1] , [20, Remark 7.2].
The r th p-primary generating function at q is the integral power series

FGL−
r (p, q, x) = 1 −

∑

n≥1

χ̃r (p,GL
−
n (Fq))x

n ∈ Z[[x]] (8.1)

associated to the sequence (−χ̃r (p,GL−
n (Fq)))n≥1 of the negative of the p-

primary equivariant reduced Euler characteristics. For r = 1, FGL−
1 (p, q, x) =

FGL−
1 (q, x) = 1 + x , and when p | q, FGL−

r (p, q, x) = 1 + x for all r ≥ 1.
The interesting case is when the characteristic of Fq is different from p.

Definition 8.2 For every integer d ≥ 1,

• IMd(p, q) is the number of p-power order Irreducible Monic polynomials of
degree d over Fq with nonzero constant term

• SDIM−
d (p, q) is the number of p-power order Self-Dual Irreducible Monic poly-

nomials of degree d over Fq2 with nonzero constant term

• SDIM+
d (p, q) = 1

2 (IMd(p, q2)−SDIM−
d (p, q)) is the number of unordered pairs

of p-power order non-self-dual irreducible monic polynomials of degree d over
Fq2 with nonzero constant term

The next lemma follows from Lemma 3.8 combined with the fact from [16,
Lemma 3.6] that xa − 1 divides xb − 1 in Fq2 [x] if and only if a divides b.

Lemma 8.3 Assume p � q and let m ≥ 1 be an odd integer.

(1) The p-power order self-dual irreducible monic polynomials of degree dividing m
are precisely the irreducible factors of x (qm+1)p − 1 ∈ Fq2 [x].

(2)
∑

d|m
d SDIM−

d (p, q) = (qm + 1)p and m SDIM−
m(p, q) = ∑

d|m
μ(m/d)(qd + 1)p.
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The p-primary version of Lemma 5.3 states that for p � q, r ≥ 1, and n > 1,

χ̃r+1(p,GL
−
n (Fq)) =

∑

[g]∈[GL−
n (Fq )p]

χ̃r (p,CL−
n (Fq )∗(g),CGL−

n (Fq )(g))

where the sum ranges over the set [GL−
n (Fq)p] of conjugacy classes of p-elements.

The point here is that a semisimple element of GL−
n (Fq) has p-power order if and

only all irreducible factors of its characteristic polynomial have p-power order [21,
Lemma 4.4]. In terms of generating functions we get the p-primary version

FGL−
r+1(p, q, x) = TSDIM−(p,q)(FGL

−
r (p, q, x))TSDIM+(p,q)(FGL

+
r (p, q2, x2))

(8.2)

of (6.1). In the following we prefer to work with the equivalent relation

a−
r+1(p, q, N ) =

∑

d|N
a−
r (p, qd , N/d)SDIM−

d (p, q)

+
∑

2d|N
a+
r (p, q2d , N/2d)SDIM+

d (p, q) (8.3)

where

a−
r (p, q, n) = 1

n

∑

d|n
(−1)dμ(n/d)(qd − (−1)d)r−1

p

a+
r (p, q, n) = 1

n

∑

d|n
μ(n/d)(qd − 1)r−1

p

To go from (8.2) to (8.3) we use the infinite product expansions

FGL−
r+1(p, q, x) =

∏

N≥1

(1 − xN )a
−
r+1(p,q,N )

TSDIM−(p,q)(FGL
−
r (p, q, x)) =

∏

d≥1

FGL−
r (p, qd , xd)SDIM

−
d (p,q)

=
∏

n,d≥1

(1 − xdn)a
−
r (p,qd ,n)SDIM−

d (p,q)

TSDIM+(p,q) FGL
+
r (p, q2, x2) =

∏

d≥1

FGL+
r (p, q2d , x2d)SDIM

+
d (p,q)

=
∏

n,d≥1

(1 − x2dn)a
+
r (p,q2d ,n)SDIM+

d (p,q)

of the three factors in (8.2) obtained by applying [21, Lemma 3.7] to the expressions
of Theorem 1.4 and [21, Theorem 1.7].
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Proof of Theorem 1.4 We must show that the functions a±
r (p, q, n) satisfy recurrence

relation (8.3). The right side of (8.3) multiplied by N is

∑

d|N
d SDIM−

d (p, q)
∑

e|(N/d)

(−1)eμ(N/de)(qde − (−1)e)r−1
p

+
∑

2d|N
2d SDIM+

d (p, q)
∑

e|(N/2d)

μ(N/2de)(q2de − 1)r−1
p

=
∑

d|N
d SDIM−

d (p, q)
∑

e|(N/d)

(−1)eμ(N/de)(qde − (−1)e)r−1
p

−
∑

2d|N
d SDIM−

d (p, q)
∑

e|(N/2d)

μ(N/2de)(q2de − 1)r−1
p

+
∑

2d|N
d IMd(p, q

2)
∑

e|(N/2d)

μ(N/2de)(q2de − 1)r−1
p

When N is odd, we are left with

−
∑

d|N
d SDIM−

d (p, q)
∑

e|(N/d)

μ(N/de)(qde + 1)r−1
p

= −
∑

f |d1|d2|N
μ(d1/ f )μ(N/d2)(q

f + 1)p(q
d2 + 1)r−1

p

= −
∑

f |d2|N
μ(N/d2)(q

f + 1)p(q
d2 + 1)r−1

p

∑

{d1 : f |d1|d2}
μ(d1/ f )

= −
∑

d|N
μ(N/d)(qd + 1)rp = Na−

r+1(p, q, N )

where we first use Lemma 8.3.(2)and next observe that the sum

∑

{d1 : f |d1|d2}
μ(d1/ f ) =

{

1 f = d2
0 f < d2

contributes only when f = d2. Thus (8.3) holds under the assumption that N is odd.
When N = 2N1 is even we have

∑

2d|N
d IMd(p, q

2)
∑

e|(N/2d)

μ(N/2de)(q2de − 1)r−1
p

=
∑

d|N1

d IMd(p, q
2)

∑

de|N1

μ(N1/de)(q
2de − 1)r−1

p

=
∑

d1|d2|N1

d1 IMd1(p, q
2)μ(N1/d2)(q

2d2 − 1)r−1
p

=
∑

f |d2|N
μ(N/d2)(q

2 f − 1)p(q
2d2 − 1)r−1

p

∑

{d1 : f |d1|d2}
μ(d1/ f )
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=
∑

d1|N1

μ(N1/d1)(q
2d1 − 1)rp =

∑

2d|N
μ(N/2d)(q2d − 1)rp

which is the part of Na−
r+1(p, q, N ) defined by the even divisors of N . Remember that

SDIM−
d (q), and then also SDIM−

d (p, q), is nonzero only for odd d (Proposition 3.7).
Thus the claim for even N = 2N1 is

−
∑

d|N
dodd

μ(N/d)(qd + 1)rp

=
∑

d1|d2|N
d1odd

(−1)d2/d1d1 SDIM
−
d1

(p, q)μ(N/d2)(q
d2 − (−1)d2/d1)r−1

p

−
∑

d1|d2|N1
d1odd

d1 SDIM
−
d1

(p, q)μ(N1/d2)(q
2d2 − 1)r−1

p

Note that for every j = 1, . . . , k, where N2 = 2k is the highest power of 2 dividing
N , the part of the first sum with 2 j ‖ d2 is annihilated by the part of the second sum
with 2 j−1 ‖ d2. Thus the right hand side reduces to the part of the first sum where d2
is odd. By the computation just done for odd N , that sum equals the left hand side.
Thus (8.3) holds also for even N . ��

When p does not divide q, the sequences (SDIM±
d (p, q))d≥1 and hence the gen-

erating functions FGL−
r+1(p, q, x), r ≥ 1, depend only on the closure 〈q〉 of the

cyclic subgroup generated by q in the topological group Z×
p of p-adic units [21,

Lemma 4.9]. For instance, the 2-primary power series FGL−
r+1(2, q, x) are identical

for q = 3, 11, 19, 27, . . ., with log FGL−
r+1(2, 3, x) = ∑

n≥1(−1)n+1(4n)r2x
n/n, and

the 3-primary power series FGL−
r+1(3, q, x) are identical for q = 2, 5, 11, 23, . . .with

log FGL−
r+1(3, 2, x) = ∑

n≥1(−1)n+1(3n)r3x
n/n [21, Figure 3, Example 4.16].

8.1 Alternative presentations of p-primary equivariant reduced Euler
characteristics

It is immediate from [21, Theorem 1.7] and Theorem 1.4 that there is ‘Ennola duality’

FGL−
r (p, q, x) = FGL+

r (p,−q, (−1)r x), r ≥ 1 (8.4)

between the p-primary generating functions for GL±
n (Fq).

We can now proceed exactly as in Sect. 6.1 to prove the next two propositions. In
Proposition 8.5, χ̃r+1(p,GL±

n (Fq))
−1 denotes the coefficient of xn in the reciprocal

power series FGL±
r+1(p, q, x)−1.
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Proposition 8.4 The p-primary equivariant Euler characteristics of the GL±
n (Fq)-

posets L±
n (Fq)

∗, n ≥ 1, are

χ̃r+1(p,GL
+
n (Fq)) = 1

n!
∑

λ�n
(−1)|λ|T (λ)U (λ, q)rp

x = (−1)n

|Wn|
∑

w∈Wn

det(w)|Tn(Fs)
Fq
w |rp

= (−1)n

|Wn|
∑

w∈Wn

det(w) det(q − w)rp

−χ̃r+1(p,GL
−
n (Fq)) = (−1)n(r+1) 1

n!
∑

λ�n
(−1)|λ|T (λ)U (λ,−q)rp

= (−1)(
n
2)

|Wn|
∑

w∈Wn

det(w)|Tn(Fs)
Fqσ
w |rp

= 1

|Wn|
∑

w∈Wn

det(w) det(q + w)rp

Proposition 8.5 The reciprocal p-primary equivariant Euler characteristics of the
GL±

n (Fq)-posets L±
n (Fq)

∗, n ≥ 1, are

χ̃r+1(p,GL
+
n (Fq))

−1 = 1

|Wn|
∑

w∈Wn

|Tn(Fs)
Fq
w |rp = 1

|Wn|
∑

w∈Wn

det(q − w)rp

(−1)nχ̃r+1(p,GL
−
n (Fq))

−1 = 1

|Wn|
∑

w∈Wn

|Tn(Fs)
Fqσ
w |rp = 1

|Wn|
∑

w∈Wn

det(q + w)rp

A slight modification of [6, Proposition 3.7.4] shows that (±1)nχ̃2(p,GL±
n (Fq))

−1

equals the number of semisimple p-classes in GL±
n (Fq).

The next corollary, the p-primary version of Corollary 6.7, is an immediate conse-
quence of Proposition 8.4 and it specifies the generating functions for the p-primary
equivariant Euler characteristics expanded after the parameter r and with fixed n.

Corollary 8.6 For any fixed n ≥ 1,

∑

r≥0

χ̃r+1(p,GL
+
n (Fq))x

r = 1

n!
∑

λ�n

(−1)|λ|T (λ)

1 −U (λ, q)px

= (−1)n

|Wn|
∑

w∈Wn

det(w)

1 − x det(q − w)p

∑

r≥0

−χ̃r+1(p,GL
−
n (Fq))x

r = (−1)n

n!
∑

λ�n

(−1)|λ|T (λ)

1 − (−1)nU (λ,−q)px
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= 1

|Wn|
∑

w∈Wn

det(w)

1 − x det(q + w)p

For example, when n = 3, p = 2, and q = 3, 11, 19, 27, . . . is any prime power
with q ≡ 3 mod 8, (q2 − 1)2 = (32 − 1)2, the generating function (times 3!) for the
2-primary equivariant reduced Euler characteristics of GL−

3 (Fq) is

3!
∑

r≥0

−χ̃r+1(2,GL
−
3 (Fq))x

r = 1

1 − x(q + 1)32
− 3

1 − x(q2 − 1)2(q + 1)2

+ 2

1 − x(q3 + 1)2
= 1

1 − 64x
+ 2

1 − 4x
− 3

1 − 32x

with the three terms corresponding to the three partitions {13}, {1121}, {31} of 3.
Acknowledgements I wish to thank Lars Halvard Halle for pointing out the connection to Hasse–Weil
zeta-functions, and Jean Michel for a helpful remark, used in Sect. 6.1, that, to him but not to me, was
completely obvious.
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