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Abstract. The (p-primary) equivariant Euler characteristics of the buildings for the general unitary groups over

finite fields are determined.
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1. Introduction

Let G be a finite group, ⇧ a finite G-poset, and r � 1 a natural number. The rth equivariant reduced Euler

characteristic of the G-poset ⇧ as defined by Atiyah and Segal [2] is the normalised sum

(1.1) e�r(⇧, G) =
1

|G|
X

X2Hom(Zr,G)

e�(C⇧(X(Zr))

of the reduced Euler characteristics of the X(Zr)-fixed ⇧-subposets, C⇧(X(Zr)), as X ranges over the set of all
homomorphisms of Zr to G. For example, when G acts trivially on ⇧, e�r(⇧, G) = e�(⇧)|Hom(Zr, G)|/|G| is the
reduced Euler characteristic of ⇧ times the number of conjugacy classes of commuting (r� 1)-tuples of elements of
G [10, Lemma 4.13]. Here are three more examples of already known equivariant reduced Euler characteristics:

(1) The symmetric group ⌃n acts on the poset B(n)⇤ of non-extreme subsets of the n-set. The generating
function for the (r + 1)th equivariant reduced Euler characteristics of the ⌃n-posets B(n)⇤ is

1 +
X

n�1

e�r+1(B(n)⇤,⌃n)x
n =

Y

n�1

(1� xn)�r(n)

where �r(n) is the number of index r-subgroups of Zn ([3, Theorem 2.1] with M = {0, 1}).
(2) The symmetric group ⌃n acts on the poset ⇧(n)⇤ of non-extreme partitions of the n-set. The equivariant

reduced Euler characteristics of the ⌃n-posets ⇧(n)⇤ are

e�r(⇧(n)⇤,⌃n) =
1

n
cr(n)

where cr is the sequence with Dirichlet convolution (cr ⇤�r)(n) = (�1)n+1 [20, Theorem 1.3, Corollary 1.4].
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2 JESPER M. MØLLER

(3) The general linear group GL+
n (Fq) acts on the poset L+

n (Fq)⇤ of non-extreme subspaces of the n-dimensional
vector space over the field Fq of prime power order q. The generating function for the (r+1)th equivariant
reduced Euler characteristics of the GL+

n (Fq)-posets L
+
n (Fq)⇤ is

1 +
X

n�0

e�r+1(L
+
n (Fq),GL+

n (Fq))x
n =

Y

0jr

(1� qjx)(�1)r�j(rj)

according to [21, Theorem 1.4].

In this article we shall consider the general unitary group GL�
n (Fq), the isometry group of the unitary n-geometry

over the field Fq2 , acting on the poset L�
n (Fq)⇤ = {0 ( U ( Fn

q2 | U ✓ U?} of nontrivial totally isotropic subspaces.
(See Section 2 for more details.) We now emphasise the definition of the equivariant reduced Euler characteristics
in this particular case and proceed to present the main results of this paper.

Definition 1.2. [2] The rth equivariant reduced Euler characteristic of the GL�
n (Fq)-poset L�

n (Fq)⇤ is the nor-

malised sum

e�r(L
�
n (Fq)

⇤,GL�
n (Fq)) =

1

|GL�
n (Fq)|

X

X2Hom(Zr,GL�
n (Fq))

e�(CL�
n (Fq)⇤

(X(Zr)))

of the Euler characteristics of the induced subposets CL�
n (Fq)⇤

(X(Zr)) of X(Zr)-invariant subspaces as X ranges

over all homomorphisms of the free abelian group Zr
on r generators into the general unitary group.

The generating function for the negative rth equivariant reduced Euler characteristics is the power series

(1.3) FGL�
r (q, x) = 1�

X

n�1

e�r(GL�
n (Fq))x

n

with coe�cients in the ring of integral polynomials in q. (The shortened notation e�r(GL�
n (Fq)) is and will be used

for the rth equivariant reduced Euler characteristic e�r(L
�
n (Fq)⇤,GL�

n (Fq)) of Definition 1.2.)

Theorem 1.4. FGL�
r+1(q, x) =

Y

0jr

(1 + (�1)r�jqjx)(�1)r�j(rj) for all r � 0.

The first few instances of the generating function

FGL�
r+1(q, x) =

Y

0jr

(1 + (�1)r�jqjx)(�1)r�j(rj) =

Y

j⌘r mod 2

(1 + qjx)(
r
j)

Y

j 6⌘r mod 2

(1� qjx)(
r
j)

are

1 + x,
1 + qx

1� x
,

(1 + q2x)(1 + x)

(1� qx)2
,

(1 + q3x)(1 + qx)3

(1� q2x)3(1� x)
,

(1 + q4x)(1 + q2x)6(1 + x)

(1� q3x)4(1� qx)4

for r + 1 = 1, 2, 3, 4. In particular, �e�2(GL�
n (Fq)) = q + 1 and �e�3(GL�

n (Fq)) = nqn�1(q + 1)2 for n � 1.
The proofs of Theorem 1.4 and its corollary below are in Section 6.

Corollary 1.5. FGL�
r+1(q, x) = exp

�
�

X

n�1

(�1)n(qn � (�1)n)r
xn

n

�
for all r � 0.

We also consider, for any prime p, the p-primary equivariant reduced Euler characteristics, e�r(p,GL�
n (Fq)),

for the GL�
n (Fq)-poset L�

n (Fq)⇤ (Definition 8.1) as defined by Tamanoi [27]. It turns out that the rth p-primary
generating function at q, the generating function FGL�

r (p, q, x) for the negative rth p-primary equivariant reduced
Euler characteristics (8.2), is in some sense a p-local version of the exponential form of FGL�

r (q, x) from Corollary 1.5.
(We write np for the p-part of the natural number n.)

Theorem 1.6. FGL�
r+1(p, q, x) = exp

�
�

X

n�1

(�1)n(qn � (�1)n)rp
xn

n

�
for all r � 0.

The infinite product expansions of the absolute and the p-primary generating functions

FGL�
r+1(q, x) =

Y

n�1

(1� xn)a
�
r+1(q,n) a�r+1(q, n) =

1

n

X

d|n

(�1)dµ(n/d)(qd � (�1)d)r

FGL�
r+1(p, q, x) =

Y

n�1

(1� xn)a
�
r+1(p,q,n) a�r+1(p, q, n) =

1

n

X

d|n

(�1)dµ(n/d)(qd � (�1)d)rp
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EQUIVARIANT EULER CHARACTERISTICS OF UNITARY BUILDINGS 3

follow immediately from Theorems 1.4 and 1.6 using the elementary [21, Lemma 3.7].
More explicitly, the equivariant Euler characteristics and the p-primary Euler characteristics of the general

unitary group are

�e�r+1(GL�
n (Fq)) =

1

|Wn|
X

w2Wn

det(w) det(q + w)r, �e�r+1(p,GL�
n (Fq)) =

1

|Wn|
X

w2Wn

det(w) det(q + w)rp

where the sum ranges over the elements of the standard n-dimensional integral permutation representation Wn of
the symmetric group ⌃n (Propositions 6.8, 8.8).

This paper is organised as follows. Section 2 describes the general unitary group GL�
n (Fq) as a subgroup of

GL+
n (Fq2). Characteristic polynomials for elements of GL�

n (Fq) are self-dual and Section 3 is an exposition of the
combinatorics of self-dual irreducible monic polynomials over Fq2 . The main result of Section 4 is the product
formula of Lemma 4.2 for equivariant Euler characteristics. Section 5 establishes the key ingredients in the proof of
Theorem 1.4: a vanishing result (Lemma 5.2) and a recursion formula (Lemma 5.3). Theorem 1.4 and Corollary 1.5
are proved in Section 6. This section also connects the equivariant Euler characteristics of the general unitary
group to representation theory and algebraic geometry: Remark 6.4 explains the role of the second equivariant
Euler characteristic e�2(GL�

n (Fq)) in the Knörr-Robinson conjecture for GL�
n (Fq) at the defining characteristic [15],

and Subsection 6.2 points out a curious coincidence with Hasse–Weil zeta functions of supersingular elliptic curves
over Fq2 . In Section 6.1 we develop more explicit expressions for the equivariant Euler characteristics. (The formulas
of Proposition 6.8 may indicate a general description of the equivariant Euler characteristics of finite groups of Lie
type.) In Section 7 we shortly review the S-transform and use it to (re)prove polynomial identities associated to
partitions. Section 8 discusses p-primary equivariant reduced Euler characteristics of general unitary groups for
a given prime p. The corresponding unreduced Euler characteristics can be interpreted as Euler characteristics
computed in Morava K-theories at p of the homotopy orbit spaces BL�

n (Fq)⇤hGL�
n (Fq)

for the action of GL�
n (Fq) on

the classifying space of the poset L�
n (Fq)⇤. The proof of Theorem 1.6 together with more explicit expressions for

the p-primary equivariant Euler characteristics e�r(p,GL�
n (Fq)) can be found here.

The following notation will be used in this paper in addition to notation related to multisets introduced at the
beginning of Subsection 6.1:

p a prime number
⌫p(n) the p-adic valuation of n
np the p-part of the natural number n (np = p⌫p(n))
Zp the ring of p-adic integers
q a prime power
Fq the finite field with q elements
s the characteristic of Fq

e�r(GL±
n (Fq)) equivariant Euler characteristic e�r(L

±
n (Fq)⇤,GL±

n (Fq)) (Definition 1.2) [21, Definition 1.2]
e�r(p,GL±

n (Fq)) p-primary Euler characteristic e�r(p,L
±
n (Fq)⇤,GL±

n (Fq)) (Definition 8.1) [21, Definition 4.2]�m
�k

�
the signed binomial coe�cient (�1)k

�m
k

�

2. The general unitary group GL�
n (Fq)

Let q be a prime power, n � 1 a natural number, and Vn(Fq2) = Fn
q2 the vector space of dimension n over the

field Fq2 with q2 elements. The non-degenerate sesquilinear form

(2.1) hu, vi = c
X

1in

(�1)i+1uiv
q
n+1�i u, v 2 Vn(Fq2)

is Hermitian (hau, vi = ahu, vi, hu, viq = hv, ui, a 2 Fq2 , u, v 2 Vn(Fq2)) when the constant c 2 Fq2 satisfies
cq�1 = (�1)n+1. The general unitary group GL�

n (Fq) [9, §2.7] is the group of all linear automorphisms of Vn(Fq2)
preserving the Hermitian bilinear form (2.1). Let 'q(g) denote the matrix obtained from g 2 GL+

n (Fq2) by raising
all entries to the power q. Then g lies in GL�

n (Fq) if and only if gA('q(g))t = A where A is the matrix whose only
nonzero entries are a string of alternating +1’s and �1’s running diagonally from upper right to lower left corner.
The order of GL�

n (Fq) is [33, (2.6.1)] [36, (3.25)]

|GL�
n (Fq)| = (q + 1)| SL�

n (Fq)| = q(
n
2)

Y

1in

(qi � (�1)i) =
Y

0in�1

(qn � (�1)n�iqi)
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4 JESPER M. MØLLER

and there is a short exact sequence

(2.2)
1 SL�

n (Fq) GL�
n (Fq) Cq+1 1

det

where Cq+1 is the order q+1 subgroup of the cyclic unit group F⇥
q2 . We have |GL�

n |(q) = (�1)n|GL+
n |(�q) where

|GL+
n |(q) =

Q
0in�1(q

n � qi) and |GL�
n |(q) =

Q
0in�1(q

n � (�1)n�iqi) are the order polynomials [17, p 207]

for the general linear and unitary groups. The special unitary group SL�
n (Fq) is generated by root group elements

xb↵(t) or xb↵(t, u) of type I, II, and (for odd n) IV [9, Table 2.4] and the general unitary group GL�
n (Fq) by root

groups together with the diagonal matrices diag(z, 1, . . . , 1, z�q) for z 2 F⇥
q2 .

A subspace of Vn(Fq2) is totally isotropic if the Hermitian sesquilinear form (2.1) vanishes completely on it.
Let L�

n (Fq) be the poset of totally isotropic subspaces in Vn(Fq2) and L�
n (Fq)⇤ the subposet of nontrivial totally

isotropic subspaces. The standard action of GL+
n (Fq2) on subspaces of Vn(Fq2) restricts to an action of GL�

n (Fq)
on L�

n (Fq)⇤. The classifying simplicial complex of L�
n (Fq)⇤, the flag complex of totally isotropic subspaces, is the

building for GL�
n (Fq) [1, §6.8]. We may replace the flag complex L�

n (Fq)⇤ by the Brown subgroup poset Ss+⇤
GL�

n (Fq)

of nontrivial s-subgroups of GL�
n (Fq) where s is the defining characteristic [22, Theorem 3.1].

The (non-equivariant) reduced Euler characteristics of the spherical posets L±
n (Fq)⇤ are given by

�e�(L+
n (Fq)

⇤) = (�1)n�1q(
n
2), �e�(L�

n (Fq)
⇤) = (�1)bn/2cq(

n
2)

according to the Solomon–Tits theorem [7, Proposition 8.3] (or [26, Example 3.10.2] for the case of L+
n (Fq)⇤).

3. Self-dual polynomials over Fq2

In the next lemma, we consider field extensions Fq ✓ Fqm1 ✓ Fqm2 where 1  m1  m2. Let �0,�1, . . . ,�n

be the elementary symmetric polynomials in n � 1 variables [16, Example 1.74] (where �0 stands for the constant
polynomial 1).

Lemma 3.1. Let a1, . . . , an be n elements of the field Fqm2 . Then

8i 2 {0, 1, . . . , n} : �i(a1, . . . , an) 2 Fqm1 () 8i 2 {0, 1, . . . , n} : �i(a
�q
1 , . . . , a�q

n ) 2 Fqm1

Proof. The nth elementary symmetric function is �n(a1, . . . , an) = a1 · · · an. Observe that

8i 2 {0, 1, . . . , n} : �i(a
�1
1 , . . . , a�1

n )�n(a1, . . . , an) = �n�i(a1, . . . , an)

If all values of �i(a1, . . . , an) are in the subfield Fqm1 , also all values of �i(a
�1
1 , . . . , a�1

n ) and �i(a
�q
1 , . . . , a�q

n ) =
�i(a

�1
1 , . . . , a�1

n )q are in this subfield. ⇤

Definition 3.2 (Dual polynomial). [33, Notation p. 13] Let p(x) = a0xm + a1xm�1 + · · · + am�1x + am 2 Fq2 [x]
be a polynomial of degree m � 1 with nonzero constant term (so that a0 6= 0 and am 6= 0). The dual polynomial to

p(x) is

p(x) = a0
Y

1im

(x� ↵�q
i )

where p(x) = a0
Q

1im(x�↵i) with ↵1, . . . ,↵m in the splitting field for p(x) over Fq2 . If p(x) = p(x) we say that

p(x) is self-dual.

We note that

• dualization is involutory: p = p
• dualization respects products: p1p2 = p1p2
• dualization respects divisibility: p1 | p2 () p1 | p2
• a polynomial (with nonzero constant term) is irreducible if and only its dual polynomial is irreducible
• if p = a0

Q
reii is the canonical factorisation of the polynomial p [12, Theorem 1.59] then p = a0

Q
reii is the

canonical factorisation of the dual polynomial

Although the dual of a polynomial over Fq2 is defined in terms of elements of an extension of Fq2 , it is actually
again a polynomial over Fq2 as Lemma 3.1 shows that the coe�cients of p(x) lie in Fq2 if those of p(x) do.

Proposition 3.3. Let p(x) = a0xm + a1xm�1 + · · · + am�1x + am 2 Fq2 [x] be a polynomial as in Definition 3.2
with a0 6= 0 and am 6= 0. The dual polynomial p(x) is given by

aqmp(x) = a0(a
q
mxm + aqm�1x

m�1 + · · ·+ aq1x+ aq0)
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EQUIVARIANT EULER CHARACTERISTICS OF UNITARY BUILDINGS 5

and p(x) is self-dual if and only if its coe�cients satisfy the equation

aqm(a0, a1, . . . , am�1, am) = a0(a
q
m, aqm�1, . . . , a

q
1, a

q
0)

Proof. The reciprocal [16, Definition 3.12] to the polynomial p(x) is

p⇤(x) = xmp(x�1) = amxm + am�1x
m�1 + · · ·+ a1x+ a0 = am

Y

1im

(x� ↵�1
i )

and thus

aqm
Y

1im

(x� ↵�q
i ) = aqmxm + aqm�1x

m�1 + · · ·+ a1qx+ aq0

since the Frobenius map �q(x) = xq is a field automorphism of Fq2 . The dual polynomial is

p(x) = a0
Y

1im

(x� ↵�q
i ) =

a0
aqm

(aqmxm + aqm�1x
m�1 + · · ·+ aq1x+ aq0)

and hence

p(x) = p(x) () aqmp(x) = aqmp(x)

() aqm(a0x
m + a1x

m�1 + · · ·+ am�1x+ am) = a0(a
q
mxm + aqm�1x

m�1 + · · ·+ aq1x+ aq0)

which is the criterion of the proposition. ⇤

If g is a unitary automorphism of a vector space over Fq2 and p(x) the polynomial of Definition 3.2 then

(3.4) aq0hp(g)x, yi = amhgm(x), p̄(g)(y)i

for all vectors x, y.

Lemma 3.5. The characteristic polynomial cg of any unitary automorphism g 2 GL�
n (Fq) is self-dual.

Proof. Let r 2 Fq2 [x] be an irreducible polynomial. Then

r - cg () r(g) is invertible
(3.4)() r̄(g) is invertible () r̄ - cg

or, equivalently, r | cg () r̄ | cg. This shows that cg = c̄g. ⇤

Corollary 3.6. [33, Proof of (ii), p. 35] The number of self-dual monic polynomials in Fq2 [x] of degree m > 0 with

nonzero constant term is qm + qm�1
.

Proof. A monic polynomial of degree m, p(x) = xm + a1xm�1 + · · · + am�1x + am 2 Fq2 [x] with am 6= 0 is by
Proposition 3.3 self-dual if and only if

aqm(a1, a2, . . . , am�1, am) = (aqm�1, . . . , a
q
1, 1)

or, equivalently,

(3.7) aq+1
m = 1 and (a1, . . . , am�1) = am(aqm�1, . . . , a

q
1)

Suppose first that m = 2k+1 is odd. There are q+1 elements am in Fq2 such that aq+1
m = 1. For 1  j  k, let aj

be any element of Fq2 and put am�j = amaqj . Then amaqm�j = aq
2

j = aj . This shows that the self-duality criterion

(3.7) has (q + 1)q2k = qm + qm�1 solutions. Suppose next that m = 2k is even. The coe�cient am can again be
chosen in exactly q + 1 ways. For each j with 1  j  k � 1, the coe�cient aj can be chosen freely in Fq2 and we
let am�j = amaqj . There are q = (q � 1) + 1 possibilities for choosing the coe�cient ak such that ak = amaqk as

aq+1
m = 1. Thus the self-duality criterion (3.7) has (q + 1)q2k�2q = qm + qm�1 solutions. ⇤

Definition 3.8 (See Figure 1). For every integer d � 1,

• IMd(q) is the number of Irreducible Monic polynomials of degree d over Fq with nonzero constant term

• SDIM�
d (q) is the number of Self-Dual Irreducible Monic polynomials of degree d over Fq2 with nonzero

constant term

• SDIM+
d (q) =

1
2 (IMd(q2) � SDIM�

d (q)) is the number of unordered pairs of non-self-dual irreducible monic

polynomials of degree d over Fq2 with nonzero constant term
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6 JESPER M. MØLLER

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6
d IMd(q) q � 1 q2 � q q3 � q q4 � q2 q5 � q q6 � q3 � q2 + q
d IMd(q2) q2 � 1 q4 � q2 q6 � q2 q8 � q4 q10 � q2 q12 � q6 � q4 + q2

d SDIM�
d (q) q + 1 0 q3 � q 0 q5 � q 0

2d SDIM+
d (q) q2 � q � 2 q4 � q2 q6 � q3 � q2 + q q8 � q4 q10 � q5 � q2 + q q12 � q6 � q4 + q2

Figure 1. The polynomials IMd(q), IMd(q2) and SDIM±
d (q) for d = 1, . . . , 6

For all d � 1, IMd(q2) =
P

d|n µ(n/d)(q
2d � 1) [16, Corollary 3.21] (simplifying to IMd(q2) =

P
d|n µ(n/d)q

2d

when d > 1). The well-known identities [34, p. 258]

(3.9)
Y

d�1

1

(1� xd)IMd(q)
=

1� x

1� qx
,

Y

d�1

1

(1� xd)IMd(q2)
=

1� x

1� q2x

are easily proved using [21, Lemma 3.7]. When d = 1, IM1(q2) = q2 � 1 (represented by the polynomials x � �,
� 2 F⇥

q2), SDIM�
1 (q) = q + 1 (represented by the polynomials x � �, � 2 F⇥

q2 , � = ��q) and SDIM+
1 (q) =

1
2 (q

2 � 1� (q + 1)) = 1
2 (q + 1)(q � 2) (represented by the pairs (x� �, x� ��q), � 2 F⇥

q2 , � 6= ��q).
The next proposition shows among other things that self-dual irreducible polynomials have odd degrees, ie that

SDIM�
d (q) = 0 for all even d.

Proposition 3.10. Let p(x) 2 Fq2 [x] be a self-dual irreducible monic polynomial of degree m � 1 over Fq2 with

p(0) 6= 0. Then m is odd and

p(x) =
Y

0jm�1

(x� �q2j )

where � 2 Fq2m , �qm+1 = 1, and all the elements �,�q2 , . . . ,�q2m�2

are distinct.

Proof. Let p(x) be a monic irreducible polynomial p(x) of degree m over Fq2 . The field Fq2m contains an element
� such that

p(x) =
Y

0jm�1

(x� �q2j )

and all the elements �,�q2 , . . . ,�q2m�2

are distinct [16, Theorem 2.14]. By self-duality ��q = �q2k for a unique
integer k with 0  k  m� 1.

Assume first that p(x) has degree m = 2. The roots of p(x) are {�,�q2} where ��q equals � or �q2 by self-duality.

In the first case, 1 = ���1 = ��q = �q+1 and �q2�1 = (�q+1)q�1 = 1. In the second case, �q = ��q2 = (��q)q =

(�q2)q = �q3 and 1 = �q3�q = (�q2�1)q so �q2�1 = 1 also here. In both cases, we have that �,�q2 2 F⇥
q2 . Since this

contradicts irreducibility of p(x) over Fq2 , monic irreducible self-dual polynomials of degree 2 do not exist.

Assume next that m > 2. Since �q2 = (��q)�q = �q4k it follows that m divides 2k�1 and is odd. Furthermore, k

equals 1 or 1
2 (m+1) as k is at most m�1. However, k = 1 implies �q2 = �q4k = �q4 contradicting that �q2 and �q4

are distinct when m � 3. From 2k = m+ 1 we get ��q = �q2k = �qm+1

, equivalently, ��1 = �qm or �qm+1 = 1. ⇤
The next count of self-dual irreducible monic polynomials in Fq2 [x] is closely related to the classical count of

irreducible monic polynomials or self-reciprocal irreducible monic polynomials in Fq[x] [16, Corollary 3.21, Theo-
rem 3.25] [18, Theorem 3].

Lemma 3.11. Let m � 1 be an odd integer.

(1) The self-dual irreducible monic polynomials in Fq2 [x] with nonzero constant term whose degrees divide the

odd integer m � 1 are precisely the irreducible factors of the polynomial xqm+1 � 1 2 Fq2 [x].
(2)

P
d|m d SDIM�

d (q) = qm + 1 and m SDIM�
m(q) =

P
d|m µ(m/d)(qd + 1) for any odd integer m � 1.

Proof. (1) Let p(x) be an irreducible factor of xqm+1 � 1. Obviously, p(0) 6= 0. If ↵ is a root of p(x) in its splitting
field then ↵qm+1 = ↵. Therefore ↵�q = ↵qm is also a root of p(x). This shows that p(x) is self-dual (Definition 3.2).

Next, let p(x) be a self-dual irreducible monic polynomial with nonzero constant term of degree d dividing m.

According to Proposition 3.10, p(x) has a root � 2 Fq2d such that �qd+1 � 1 = 0. Then p(x) divides xqd+1 � 1 which

divides xqm+1 � 1 as d  m [16, Lemma 2.12, Corollary 3.7].

(2) The polynomial xq2m � x = x(xq2m�1 � 1) 2 Fq2 [x] has no multiple roots according to the standard criterion of

[16, Theorem 1.68]. The polynomial xqm+1 � 1 is a factor of xq2m � x by [16, Corollary 3.7] and hence also has no
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multiple roots. From (1) it now follows that xqm+1 � 1 is the product of all self-dual irreducible polynomials with
nonzero constant terms of degrees dividing m. The second assertion is the Möbius inversion of the first one which
is a count of degrees. ⇤
Corollary 3.12. The arithmetic functions IMn(q) and SDIM±

n (q) of Definition 3.8 satisfy the relations

SDIM�
n (q) =

8
><

>:

q + 1 n = 1

IMn(q) n > 1 odd

0 n > 0 even

SDIM+
n (q) =

(
1
2q(q � 1)� 1 n = 1

IM2n(q) n > 1

Proof. For n = 1, the SDIM�
1 (q) = q + 1 self-dual irreducible monic polynomials are the polynomials x � � with

� 2 Fq2 such that �q+1 = 1. For odd n > 1, Lemma 3.11.(2) shows that SDIM�
n (q) =

1
n

P
d|n µ(n/d)q

d = IMn(q),
the number of irreducible polynomials of degree n over Fq [23, Chapter 2, Corollary] [12, Theorem 3.25]. When
n > 1 is odd

IM2n(q) =
1

2n

X

D|2n

µ(2n/D)qD =
1

2n

X

d|n

µ(n/d)q2d +
1

2n

X

d|n

µ(2n/d)qd

=
1

2n

X

d|n

µ(n/d)q2d � 1

2n

X

d|n

µ(n/d)qd =
1

2
(IMn(q

2)� IMn(q)) = SDIM+
n (q)

where we use that µ(2k) = �µ(k) for odd k � 1. When n > 0 is even

IM2n(q) =
1

2n

X

D|2n

µ(2n/D)qD =
1

2n

X

d|n

µ(n/d)q2d +
1

2n

X

d|n
d odd

µ(2n/d)qd

=
1

2n

X

d|n

µ(n/d)q2d =
1

2
IMn(q

2) = SDIM+
n (q)

where we use that an even divisor of 2n has the form 2d for a divisor d of n, an odd divisor of 2n is a divisor of n,
and µ(2k) = 0 even k � 2. ⇤
Corollary 3.13.

P
d|n d SDIM�

d (q) = qn/n2 +1 and
P

d|n d SDIM+
d (q) =

1
2 (q

2n� qn/n2)�1 for any natural number

n � 1.

Proof. To get the first equation,
X

d|n

d SDIM�
d (q) = 2 +

X

d|n/n2

d IMd(q) = 2 + qn/n2 � 1 = qn/n2 + 1

we use Corollary 3.12 and [16, Corollary 3.21]. The second equation,
X

d|n

d SDIM+
d (q) =

1

2
(
X

d|n

d IMd(q
2)�

X

d|n

d SDIM�
d (q)) =

1

2
(q2n � 1� qn/n2 � 1) =

1

2
(q2n � qn/n2)� 1

follows because SDIM+
d (q) =

1
2 (IMd(q2)� SDIM�

d (q)) (Definition 3.8). ⇤

4. Equivariant reduced Euler characteristics of products

This short section establishes a multiplicative property of equivariant Euler characteristics for use in the proof
of the crucial Lemma 5.3.

Lemma 4.1. �e�(P1 ⇤ · · · ⇤ Pt) =
Q

1it �e�(Pi) for finitely many finite posets P1, . . . , Pt.

Proof. The join P ⇤Q, of the finite posets P and Q, is the poset P
`

Q where all elements of P are < all elements of
Q. The n-simplices of the join are n-simplices of P , i simplices of P joined to j-simplices of Q where i+ j = n� 1,
and n-simplices of Q. Alternatively, when we regard a poset as having a single cell ; in degree �1, the n-simplices
of the join are all i-simplices of P joined to all j-simplices of Q where i + j = n � 1. In other words cn(P ⇤ Q) =P

i+j=n�1 ci(P )cj(Q), where cn stands for the number of n-simplices. The reduced Euler characteristic of the join
is

� e�(P ⇤Q) =
X

n��1

(�1)n�1cn(P ⇤Q) =
X

n��1

X

i+j=n�1

(�1)ici(P )(�1)jcj(Q) =
X

i��1

ci(P )
X

j��1

cj(Q)

= e�(P )e�(Q) = (�e�(P ))(�e�(Q))
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Proceeding by induction we get the formula for the reduced Euler characteristic of finite joins of finite posets. ⇤

For a finite poset P with a least element b0, let P ⇤ = P � {b0} be the induced subposet obtained by removing b0
from P . Let Gi be finite groups and Pi finite Gi-posets with least elements indexed by the finite set I. The product
poset

Q
i2I Pi is a finite

Q
i2I Gi-poset with a least element.

Lemma 4.2. The classical and the equivariant Euler characteristics of the
Q

i2I Gi-poset
�Q

i2I Pi

�⇤
are given by

�e�
⇣�Y

i2I

Pi

�⇤⌘
=

Y

i2I

�e�(P ⇤
i ), �e�r

⇣�Y

i2I

Pi

�⇤
,
Y

i2I

Gi

⌘
=

Y

i2I

�e�r(P
⇤
i , Gi)

where r � 1.

Proof. If P1 and P2 are finite posets with least elements then Lemma 4.1 implies�e�((P1⇥P2)⇤) = (�e�(P ⇤
1 ))(�e�(P ⇤

2 ))
because (P1 ⇥ P2)⇤ = (P1 ⇥ P2)>(b0,b0) = (P1)>0 ⇤ (P2)>0 = P ⇤

1 ⇤ P ⇤
2 by [22, Proposition 1.9] [31, Theorem 5.1.(c)].

The general formula for the classical Euler characteristic follows by induction over the cardinality of the index set
I. Proceed exactly as in [21, Lemma 2.3] to obtain the formula for the equivariant Euler characteristics ⇤

5. Semisimple classes of the general unitary group

Conjugacy classes in the general linear group GL+
n (Fq) or the general unitary group GL�

n (Fq) are classified by
functions from the set of irreducible polynomials in Fq[x] or Fq2 [x] to the set of partitions [5] [4, §2.1, §2.2] [8,
Proposition 1A].

An element of GL�
n (Fq) is semisimple if it is diagonalisable over the algebraic closure of Fq [6, §1.4]. Alternatively,

the semisimple elements of GL�
n (Fq) are precisely the q-regular elements (the elements of order prime to q); see

[28, §2]. A semisimple or q-regular class in GL�
n (Fq) is the conjugacy class of a semisimple (= q-regular) element.

Corollary 5.1. GL±
n (Fq) contains exactly qn ⌥ qn�1

semisimple classes for any n � 1. Two semisimple elements

of GL±
n (Fq) are conjugate if and only if their characteristic polynomials are identical.

Proof. The number of semisimple classes is given by a general result of Steinberg [6, Theorem 3.7.6]. The second
statement is an immediate consequence of the classification of q-regular classes in GL�

n (Fq) mentioned above. ⇤

For a G-poset ⇧, let ⇠ be the equivalence relation between G-poset endomorphisms of ⇧ generated by the relation
f0 ⇠ f1 if f0(x)  f1(x) for all x 2 ⇧. We say that ⇧ is G-poset contractible if there is a G-fixed point x0 in ⇧ such
that 1⇧ ⇠ x0 where 1⇧ is the identity map of ⇧ and x0 is the contant map with value x0 [21, §2]. If ⇧ is G-poset
contractible then any subposet C⇧(X) fixed by a subset X of G is poset contractible.

Lemma 5.2. For n > 1, the poset CL�
n (Fq)⇤

(g) is CGL�
n (Fq)

(g)-poset contractible unless g 2 GL�
n (Fq) is semisimple.

Proof. This is proved in [35, §4] once we recall Quillen’s identification [22] of L�
n (Fq)⇤ with the Brown poset of

nontrivial s-subgroups of GL�
n (Fq) where s is the characteristic of Fq. ⇤

The next lemma facilitates a recursive approach to the equivariant Euler characteristics e�r(GL�
n (Fq)). The char-

acteristic polynomial of any unitary automorphism is self-dual by Lemma 3.5 and thus admits an essentially unique

factorisation of the form
Q

r
m�

i
i ⇥

Q
j(sj s̄j)

m+
j where the ri are distinct self-dual irreducible monic polynomials and

the sj are distinct non-self-dual irreducible monic polynomials. ([GL�
n (Fq)] denotes the set of conjugacy classes in

GL�
n (Fq).)

Lemma 5.3. For n > 1 and r � 1, the (r+1)th equivariant Euler characteristic of the GL�
n (Fq)-poset L

�
n (Fq)⇤ is

e�r+1(GL�
n (Fq)) =

X

[g]2[GL�
n (Fq)]

gcd(q,|g|)=1

e�r(CL�
n (Fq)⇤

(g), CGL�
n (Fq)

(g))

where the contribution from the semisimple class g with characteristic polynomial
Q

r
m�

i
i ⇥

Q
j(sj s̄j)

m+
j is given by

�e�r(CL�
n (Fq)⇤

(g), CGL�
n (Fq)

(g)) =
Y

i

�e�r(GL�
m�

i

(F
qd

�
i
))⇥

Y

j

+e�r(GL+
m+

j

(F
q
2d+j

))

for deg ri = d�i , deg sj = d+j and
P

i m
�
i d

�
i +

P
j 2m

+
j d

+
j = n.
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Proof. View the n-dimensional unitary geometry V as an Fq2 [x]-module via the action of g. Since g is semisimple
the Fq2 [x]-module V is

V =
M

ri=r̄i

ker(ri(g))�
M

sj 6=s̄j

ker(sj(g))�ker(s̄j(g)) =
M

ri=r̄i

(Fq2 [x]/(ri(x)))
m�

i �
M

sj 6=s̄j

(Fq2 [x]/(sj(x))�Fq2 [x]/(s̄j(x)))
m+

j

The direct summands, ker ri(g) and ker(sj(g)) � ker(s̄j(g)), in this decomposition of V are pairwise orthogonal.
For example, let ri1 and ri2 be two distinct self-dual irreducible factors of the characteristic polynomial. For

v1 2 ker(ri1(g)) and v2 2 ker(ri2(g)), the inner products hr
m�

i2
i2

(g)v1, v2i and hgd
�
i2

m�
i2 v1, r

m�
i2

i2
(g)v2i = 0 agree up

to a nonzero scalar by (3.4). Since r
m�

i2
i2

(g) defines an automorphism of ker(ri1(g)), this shows that ker(ri1(g)) ?
ker(ri2(g)). Similarly, ker(si(g)) ? (ker(rj(g))�ker(r̄j(g))) and ker(rj1(g)) ? (ker(rj2(g))�ker(r̄j2(g))) for distinct
factors rj1 and rj2 . Thus all summands ker ri(g) and ker(sj(g))�ker(s̄j(g)) are non-degenerate unitary geometries.

The centraliser of g in the general unitary group of V is the group [33] [8, Proposition 1A] [4, Lemma 2.3] [30,
Lemma 3.3]

CGL�(V )(g) =
Y

i

GL�
m�

i

(F
qd

�
i
)⇥

Y

j

GL+
m+

j

(F
q
2d+j

)

of unitary Fq2 [x]-automorphisms and the centraliser of g in the poset of totally isotropic subspaces of V is the poset

CL�(V )(g) =
Y

i

L�(ker ri(g))⇥
Y

j

L�(ker(sj(g))� ker(s̄j(g)))

of totally isotropic Fq2 [x]-subspaces. The representation of GL�
m�

i

(F
qd

�
i
) in ker(si(g)) ⇠= F

m�
i

q2d
�
i

is standard. We

now turn to the representation of GL+
m+

j

(F
q
2d+j

) in ker(sj(g))� ker(s̄j(g)) ⇠= (F
q
2d+j

�F
q
2d+j

)m
+
j = F

2m+
j

q
2d+j

described

in [8, §1, p 112, 1)].
The Kleidman–Liebeck Theorem [14] [36, Theorem 3.9] lists certain natural subgroups of the general unitary

groups. The unitary 2m-geometry V2m(Fq2) over Fq2 has a basis e1, . . . , em, f1, . . . , fm such that hei, fii = 1,
1  i  m, are the only nonzero Hermitian inner products between the basis vectors [14, Proposition 2.3.2]. Write
V2m(Fq2) = V1 � V2 as the direct sum of the two maximal totally isotropic subspaces V1 and V2 spanned by
e1, . . . , em, and f1, . . . , fm, respectively. The representation of GL+

m(Fq2) in GL�
2m(Fq) given by

GL+
m(Fq2) 3 A !

✓
A 0
0 A�1↵t

◆
2 GL�

2m(Fq)

stabilises the direct sum decomposition V = V1 � V2 [14, Lemma 4.1.9, Table 4.2.A, Lemma 4.2.3]. (The matrix
A�1↵t is the conjugate-transpose of the inverse of A so that hAv1, A�1↵tv2i = hA�1Av1, v2i = hv1, v2i for v1 2 V1,
v2 2 V2.) The stabiliser of g in the poset of totally isotropic subspaces of V2m(Fq2) is the GL+

m(Fq)-poset of pairs
of orthogonal subspaces

⌃L+
m(Fq2) = {(U1, U2) | U1  V1, U2  V2, U1 ? U2}

The subposet ⌃L+
m(Fq2)

⇤, obtained from ⌃L+
m(Fq2) by removing the pair (0, 0), is GL+

m(Fq)-homotopy equivalent
to the suspension [32, §3] of L+

m(Fq2)
⇤: Let {1, 2} be the discrete poset of two incomparable points. The two

GL+
m(Fq)-poset morphisms

{1, 2} ⇤ L+
m(Fq2)

⇤ ⌃L+
m(Fq2)

⇤
f

g

given by f(1, U) = (U, 0), f(2, U) = (0, U), and

g(U1, U2) =

(
(1, U1) U1 6= 0

(2, U2) U1 = 0

are homotopy equivalences as gf is the identity of the suspension of L+
m(Fq2)

⇤ and fg is homotopic to the identity
of ⌃L+

m(Fq2)
⇤ as fg(U1, U2)  (U1, U2). By the product formula in Lemma 4.1,

�e�r(⌃L+
m(Fq2)

⇤,GL+
m(Fq2)) = �e�r({1, 2} ⇤ L+

m(Fq2)
⇤,GL+

m(Fq2)) = e�r(L
+
m(Fq2)

⇤,GL+
m(Fq2))

and the formula of the lemma is a consequence of the product formula in Lemma 4.2. ⇤
Observe that the contribution of a q-regular class depends only on the multiplicities and degrees of the irreducible

factors of its characteristic polynomial.
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6. Proofs of Theorem 1.4 and Corollary 1.5

We use Lemma 5.3 in an inductive computation of the generating functions (1.3). The next proposition gives
the start of the induction.

Proposition 6.1. Suppose that r = 1 or n = 1.

(1) When r = 1, �e�1(GL�
n (Fq)) = �1,n is 1 for n = 1 and 0 for all n > 1.

(2) When n = 1, �e�r(GL�
1 (Fq)) = (q + 1)r�1

for all r � 1.

Proof. When n = 1, L�
1 (Fq)⇤ = ; is empty. Since e�(;) = �1, the rth equivariant Euler characteristic is

�e�r(GL�
1 (Fq)) = |Hom(Zr,GL�

1 (Fq))|/|GL�
1 (Fq)| = |GL�

1 (Fq)|r�1 = (q + 1)r�1

for all r � 1.
The first equivariant reduced Euler characteristic of e�1(GL�

n (Fq)), where n > 1, is the classical Euler character-
istic of the orbit space BL�

n (Fq)⇤/GL�
n (Fq) for the GL�

n (Fq)-action on the building, the classifying space of the
poset L�

n (Fq)⇤ [19, Proposition 2.13]. According to Quillen we can replace L�
n (Fq)⇤ by the Brown poset Ss+⇤

GL�
n (Fq)

of nontrivial s-subgroups of GL�
n (Fq) [22, Theorem 3.1]. Webb’s theorem [35, Proposition 8.2.(i)] applies to this

replacement showing e�1(GL�
n (Fq)) = e�

�
BL�

n (Fq)⇤/GL�
n (Fq)

�
= 0. ⇤

Lemma 5.3 can be reformulated succinctly as the recurrence

(6.2) FGL�
r+1(q, x) = TSDIM�(q)(FGL�

r (q, x))TSDIM+(q)(FGL+
r (q

2, x2))

using the power series transform from [21, Definition 3.1] reviewed in Section 7 below.

Corollary 6.3. The following identities hold

TSDIM�(q)(1� x)TSDIM+(q)(1� x2) =
1� qx

1 + x
TSDIM�(q)(1 + x)TSDIM+(q)(1� x2) =

1 + qx

1� x

TSDIM�(q)

⇣1 + x

1� x

⌘
=

(1 + x)(1 + qx)

(1� x)(1� qx)

Proof. For the first identity, note that

TSDIM�(q)(1� x)�1TSDIM+(q)(1� x2)�1 = 1 +
X

n�1

(qn + qn�1)xn = 1 +
X

n�1

(qx)n + x
X

n�1

(qx)n�1 =
1 + x

1� qx

since the coe�cient of xn in this power series is the number of self-dual monic polynomials in Fq2 [x] determined in
Corollary 3.6. (An alternative proof,

TSDIM�(q)(1� x)TSDIM+(q)(1� x2) =
Y

d�1

(1� xd)SDIM�
d (q)

Y

d�1

(1� x2d)SDIM+
d (q)

= (1� x)2
Y

d�1
d odd

(1� xd)IMd(q)(1� x2)�1
Y

d�2
d even

(1� xd)IMd(q) =
1� x

1 + x

Y

d�1

(1� xd)IMd(q) (3.9)
=

1� qx

1 + x

follows from Corollary 3.12.) Since SDIM�
d (q) is nonzero only for odd d (Proposition 3.10),

TSDIM�(q)(1 + x) =
Y

d�1

(1 + xd)SDIM�
d (q) =

Y

d�1

(1� (�x)d)SDIM�
d (q)

is the SDIM�(q)-transform of 1 � x evaluated at �x. Obviously, the SDIM+(q)-transform of 1 � x2 is an even
function of x. Thus TSDIM�(q)(1+ x)TSDIM+(q)(1� x2) is TSDIM�(q)(1� x)TSDIM+(q)(1� x2) evaluated at �x. This
proves the second identity. The third identity is simply the quotient of the first two. ⇤

Proof of Theorem 1.4. The first generating function (8.7) is FGL�
1 (q, x) = 1 + x by Proposition 6.1.(1). Assume

the formula of Theorem 1.4 holds for some r � 1. Using a consequence of Corollary 6.3,

TSDIM�(q)(1± qjx)TSDIM+(q)(1� q2jx2) =
1± qj+1x

1⌥ qjx
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which follows from the multiplicative property of these power series transforms [21, (3.2)], and recursion (6.2), the
computation

FGL�
r+1(q, x) = TSDIM�(q)(FGL�

r (q, x))TSDIM+(q)(FGL+
r (q

2, x2))

=
TSDIM�(q)(

Q
j⌘r mod 2(1 + qjx)(

r
j))

TSDIM�(q)(
Q

j 6⌘r mod 2(1� qjx)(
r
j))

TSDIM+(q)(
Q

j⌘r mod 2(1� q2jx2)(
r
j))

TSDIM+(q)(
Q

j 6⌘r mod 2(1� q2jx2)(
r
j))

=

Q
j⌘r mod 2(1 + qj+1x)(

r
j)

Q
j⌘r mod 2(1� qjx)(

r
j)

Q
j 6⌘r mod 2(1 + qjx)(

r
j)

Q
j 6⌘r mod 2(1� qj+1x)(

r
j)

=

Q
j⌘r+1 mod 2(1 + qjx)(

r
j�1)

Q
j 6⌘r+1 mod 2(1� qjx)(

r
j)

Q
j⌘r+1 mod 2(1 + qjx)(

r
j)

Q
j 6⌘r+1 mod 2(1� qjx)(

r
j�1)

=

Q
j⌘r+1 mod 2(1 + qjx)(

r+1
j )

Q
j 6⌘r+1 mod 2(1� qjx)(

r+1
j )

shows that the formula holds also for r + 1. ⇤
Proof of Corollary 1.5. The logarithm of the (r + 1)th generating function FGL�

r+1(q, x) is

log FGL�
r+1(q, x) =

X

0jr

(�1)r�j

✓
r

j

◆
log(1 + (�1)r�jqjx) =

X

0jr

(�1)r�j

✓
r

j

◆X

n�1

(�1)n+1(�1)n(r�j)qnj
xn

n

=
X

n�1

(�1)n+1
X

0jr

✓
r

j

◆
(�1)(n+1)(r�j)qnj

xn

n
=

X

n�1

(�1)n+1(qn + (�1)n+1)r
xn

n
= �

X

n�1

(�1)n(qn � (�1)n)r
xn

n

⇤
Remark 6.4 (The Knörr-Robinson conjecture). The (non-block-wise form of the) the Knörr-Robinson conjecture
for the general unitary group GL�

n (Fq) relative to the characteristic s of Fq asserts that [15, 29] [22, Theorem 3.1]

�e�2(GL�
n (Fq)) = zs(GL�

n (Fq))

where zs(GL�
n (Fq)) = |{� 2 IrrC(GL�

n (Fq)) | |GL�
n (Fq)|s | �(1)}| is the number of irreducible complex representa-

tions of GL�
n (Fq) of s-defect 0 [13, p 134]. As FGL�

2 (q, x) =
1+qx
1�x , the left side is q + 1 and so is the right side [11,

Remark p 69]. This confirms the Knörr–Robinson conjecture for GL�
n (Fq) relative to the defining characteristic.

6.1. Alternative presentations of the equivariant reduced Euler characteristics. The binomial formula
applied to the right hand side of Theorem 1.4 gives the more direct expression

(6.5) � e�r+1(GL�
n (Fq)) =

X

n0+···+nr=n

Y

0jr

(�1)jnj

✓
(�1)j

�r
j

�

nj

◆
qnj(r�j)

where the sum ranges over all
�n+r

n

�
weak compositions of n into r + 1 parts [26, p 15]. This is also a consequence

of [21, Corollary 3.10] and ‘Ennola duality’,

(6.6) FGL�
r (q, x) = FGL+

r (�q, (�1)rx), r � 1

which follows by comparing the expressions of [21, Theorem 1.4] and Theorem 1.4.
We shall next relate the equivariant Euler characteristics more directly to the structure of the general linear and

unitary groups. Recall that a (finite) multiset � is a (finite) base set B(�) with a multiplicity function assigning a
natural number E(�, b) to all b 2 B(�). Representing the multiset as � = {bE(�,b) | b 2 B(�)} and assuming the
base B(�) consists of natural numbers, we let

|�| =
X

b2B(�)

E(�, b) n(�) =
X

b2B(�)

bE(�, b)

T (�) =
n(�)!Q

b2B(�) E(�, b)!bE(�,b)
U(�, q) =

Y

b2B(�)

(qb � 1)E(�,b)

so that |�| is the cardinality or number of parts of �, � partitions n, � ` n, if n(�) = n, T (�) is the number of
elements in the symmetric group ⌃n(�) of cycle type � [24, Proposition 1.1.1], and U(�, q) is an integral polynomial
in q. With this notation, the coe�cients of xn in the power series of [21, Corollary 1.5] and Corollary 1.5 are

(6.7) e�r+1(GL+
n (Fq)) =

1

n!

X

�`n
(�1)|�|T (�)U(�, q)r, �e�r+1(GL�

n (Fq)) = (�1)n(r+1) 1

n!

X

�`n
(�1)|�|T (�)U(�,�q)r
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12 JESPER M. MØLLER

with summation over all partitions � of n.
Let Fq denote the standard Frobenius endomorphism of the algebraic group GLn(Fs), s = char(Fq), with fixed

points GLn(Fs)Fq = GL+
n (Fq). The standard maximal torus Tn(Fs) ⇠= F

⇥
s ⇥ · · · ⇥ F

⇥
s consisting of the diagonal

matrices in GLn(Fs) is maximally split with respect to Fq [17, Definition 21.13, Example 21.14]. The Weyl group
Wn of Tn(Fs) acts as the standard permutation representation of the symmetric group ⌃n in the n-dimensional real
vector space X(Tn(Fs))⌦R spanned by the character group X(Tn(Fs)). As usual, Tn(Fs)w denotes the Fq-stable
maximal torus of GLn(Fs) corresponding to the Weyl group element w 2 Wn [17, Proposition 25.1].

Let � be the graph automorphism of GLn(Fs) given by �(M) = A�1(M t)�1A, M 2 GLn(Fs), where A is the
involutory permutation A(i) = n + 1 � i, 1  i  n. The fixed points for the Steinberg endomorphism Fq� are
GLn(Fs)Fq� = GL�

n (Fq), Tn(Fs) is a maximally split torus also with respect to Fq�, and � acts on X(Tn(Fs))⌦R
as �A [17, Examples 21.14.(2), 22.11.(2)].

Proposition 6.8. The equivariant Euler characteristics of the GL±
n (Fq)-posets L±

n (Fq)⇤, n � 1, are

e�r+1(GL+
n (Fq)) =

(�1)n

|Wn|
X

w2Wn

det(w)|Tn(Fs)
Fq
w |r =

(�1)n

|Wn|
X

w2Wn

det(w) det(q � w)r

�e�r+1(GL�
n (Fq)) =

(�1)(
n
2)

|Wn|
X

w2Wn

det(w)|Tn(Fs)
Fq�
w |r =

1

|Wn|
X

w2Wn

det(w) det(q + w)r

Proof. The number of elements of Tn(Fs)w that are fixed by the Frobenius endomorphism Fq is

|Tn(Fs)
Fq
w | = U(�(w), q) = det(q � w�1)

where �(w) is the cycle type of the permutation w and determinants are computed in the real vector space
X(Tn(Fs))⌦R [17, Proposition 25.3, Example 25.4]. Equation (6.7) now takes the form

e�r+1(GL+
n (Fq)) =

(�1)n

|Wn|
X

w2Wn

det(w)U(�(w), q)r

=
(�1)n

|Wn|
X

w2Wn

det(w)|Tn(Fs)
Fq
w |r =

(�1)n

|Wn|
X

w2Wn

det(w) det(q � w�1)r =
(�1)n

|Wn|
X

w2Wn

det(w) det(q � w)r

since (�1)�(w) = (�1)n det(w) and det(w) = det(w�1) for all w 2 Wn.
The number of elements of Tn(Fs)w that are fixed by Steinberg endomorphism Fq� is [17, Proposition 25.3.(c)]

|Tn(Fs)
Fq�
w | = det(q � (�wA)�1) = (�1)n det(�q � (wA)�1) = (�1)nU(�(wA),�q)

Using Ennola duality (8.7) combined with (6.7), and [17, Proposition 25.3], the calculation

� e�r+1(GL�
n (Fq)) = (�1)n(r+1) (�1)n

|Wn|
X

w2Wn

det(w)U(�(w),�q)r =
(�1)nr

|Wn|
X

w2Wn

det(w)U(�(w),�q)r

=
1

|Wn|
X

w2Wn

det(w)((�1)nU(�(w),�q))r =
1

|Wn|
X

w2Wn

det(wA)((�1)nU(�(wA),�q))r

=
1

|Wn|
X

w2Wn

det(wA)|Tn(Fs)
Fq�
w |r =

1

|Wn|
X

w2Wn

det(wA) det(q � (�wA)�1)r

=
1

|Wn|
X

w2Wn

det(wA) det(q + (wA)�1)r =
1

|Wn|
X

w2Wn

det(w) det(q + w�1)r =
1

|Wn|
X

w2Wn

det(w) det(q + w)r

finishes the proof. Here, det(wA) = det(A) det(w) where det(A) = (�1)(
n
2) is +1 for n ⌘ 0, 1 mod 4 and �1 for

n ⌘ 2, 3 mod 4. ⇤

Let e�r+1(GL±
n (Fq))�1 denote the coe�cient of xn in the reciprocal power series FGL±

r+1(q, x)
�1. The proof of

the next result is similar to that of Proposition 6.8 except that it is based on the identities

(6.9) e�r+1(GL+
n (Fq))

�1 =
1

n!

X

�`n
T (�)U(�, q)r, e�r+1(GL�

n (Fq))
�1 =

(�1)n

n!

X

�`n
T (�)((�1)nU(�,�q))r,

rather than (6.7). The right hand sides of these identities are the coe�cients of xn in the reciprocal of the power
series of Corollary 1.5 and [21, Corollary 1.5].
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Proposition 6.10. The reciprocal equivariant Euler characteristics of the GL±
n (Fq)-posets L±

n (Fq)⇤, n � 1, are

e�r+1(GL+
n (Fq))

�1 =
1

|Wn|
X

w2Wn

|Tn(Fs)
Fq
w |r =

1

|Wn|
X

w2Wn

det(q � w)r

(�1)ne�r+1(GL�
n (Fq))

�1 =
1

|Wn|
X

w2Wn

|Tn(Fs)
Fq�
w |r =

1

|Wn|
X

w2Wn

det(q + w)r

Again, the case r = 1 has special significance in that e�2(GL+
n (Fq))�1 is the number of semisimple classes in

GL+
n (Fq) and (�1)ne�2(GL�

n (Fq))�1 the number of semisimple classes in GL�
n (Fq) [6, Proposition 3.7.4].

Example 6.11. The polynomial identities

1

|Wn|
X

w2Wn

det(1� qw) = 1� q
1

|Wn|
X

w2Wn

det(w) det(q � w)2 = (�1)n+1n(q � 1)2qn�1

1

|Wn|
X

w2Wn

det(1 + qw) = 1 + q
1

|Wn|
X

w2Wn

det(w) det(q + w)2 = n(q + 1)2qn�1

are the instances r = 1, 2 of Proposition 6.8. The right hand sides of the equations in the left column, where
r = 1, are the negative of the number of irreducible complex representations of s-defect 0. (Indeed, |Wn|(1 + q) =
�|Wn|e�2(GL�

n (Fq)) =
P

w2Wn
det(w) det(q+w) =

P
w2Wn

det(w�1) det(q+w�1) =
P

w2Wn
det(w) det(q+w�1) =P

w2Wn
det(1 + qw).)

The polynomial identities

1

|Wn|
X

w2Wn

det(q � w) = qn � qn�1 1

|Wn|
X

w2Wn

det(q � w)2 =
q � 1

q + 1
(q2n � 1)

1

|Wn|
X

w2Wn

det(q + w) = qn + qn�1 1

|Wn|
X

w2Wn

det(q + w)2 =
q + 1

q � 1
(q2n � 1)

are the instances r = 1, 2 of Proposition 6.10. The right hand sides of the equations in the left column, where r = 1,
count semisimple classes.

The next corollary, an immediate consequence of (6.7) and Proposition 6.8, lists the generating functions for the
equivariant Euler characteristics e�r+1(GL±(n,Fq)), r � 0, for a fixed n. (The first part is [21, Proposition 4.19].)

Corollary 6.12. For any fixed n � 1,
X

r�0

e�r+1(GL+
n (Fq))x

r =
1

n!

X

�`n
(�1)|�|

T (�)

1� U(�, q)x
=

(�1)n

|Wn|
X

w2Wn

det(w)

1� x det(q � w)

X

r�0

�e�r+1(GL�
n (Fq))x

r =
(�1)n

n!

X

�`n
(�1)|�|

T (�)

1� (�1)nU(�,�q)x
=

1

|Wn|
X

w2Wn

det(w)

1� x det(q + w)

For example, the power series n!
P
r�0

�e�r+1(GL�
n (Fq))xr is

1

1� (q + 1)x
,

1

1� (q + 1)2x
� 1

1� (q2 � 1)x
,

1

1� (q + 1)3x
� 3

1� (q2 � 1)(q + 1)x
+

2

1� (q3 + 1)x

for n = 1, 2, 3.

6.2. Hasse–Weil zeta functions and equivariant Euler characteristics. The Hasse–Weil zeta function for a
projective variety V defined over Fq,

Z(V/Fq;T ) = exp
⇣X

n�1

|V (Fqn)|
Tn

n

⌘

encodes the number of points on V over Fqn for all n � 1 [25, V.2–V.3].

Proposition 6.13. For any m � 1

FGL�
2m+1(q,�T ) = Z(Em/Fq2 ;T )

�1

is the reciprocal of the Hasse–Weil zeta function of the m-fold self-product Em = E ⇥ · · ·⇥ E of any supersingular

elliptic curve E defined over Fq2 .
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Proof. Let E be any supersingular elliptic curve defined over Fq2 [25, Definition, p. 145]. We note that

(6.14) Z(E/Fq2 ;T ) =
(1 + qT )2

(1� T )(1� q2T )
= FGL�

3 (q,�T )�1 Cor. 1.5
= exp

⇣X

n�1

(qn � (�1)n)2
Tn

n

⌘

and hence

Z(Em/Fq2 ;T ) = exp
⇣X

n�1

(qn � (�1)n)2m
Tn

n

⌘
Cor. 1.5

= FGL�
2m+1(q,�T )�1

as |E(Fq2)| = (qn � (�1)n)2 by (6.14) and Em(Fq2n) = E(Fq2n)
m for general reasons. ⇤

7. Transforms of polynomial power series and polynomial identities

Let F (q, x) = 1+
P

n�1 a(n)(q)x
n 2 1+ (x) ✓ Q[q][[x]] be a power series with leading term 1 in the power series

ring over the ring of rational polynomials in q. Given a sequence S = (S(n)(q))n�1 of rational numbers defined for
each prime power q, the S-transform of F (q, x) is the power series [21, Definition 3.1]

TS(F (q, x)) =
Y

d�1

F (qd, xd)S(d)(q)

The transformation TS : 1 + (x) ! 1 + (x) is multiplicative in F and exponential in S the sense that

TS(1) = 1, TS(F1(q, x)F2(q, x)) = TS(F1(q, x)TS(F2(q, x)), TmS(F (q, x)) = TS(F (q, x))m

for all F1(q, x), F2(q, x) 2 1 + (x) ✓ Q[q][[x]] and rational numbers m 2 Q [21, §3.2].
For example, the S-transform of 1 ± xk is easily determined by evaluating the coe�cient of xkn in the infinite

product expansion TS(1± xk) =
Q

d�1(1± xkd)S(d)(q). (See the beginning of Subsection 6.1 for multiset notation.

We use the convention that the binomial coe�cient
�m
�k

�
= (�1)k

�m
k

�
for all natural numbers k.)

Lemma 7.1. For any rational number m and natural number k, the mS-transform of the power series 1± xk
is

TmS(1± xk) = 1 +
X

n�1

hX

�`n

Y

d2B(�)

✓
mS(d)(q)

±E(�, d)

◆i
xkn

The below corollary is Lemma 7.1 applied to the classical identity TIM(q)(1� x) = 1�qx
1�x (3.9), while the theorem

is the lemma applied to the identities

Ta±
r+1(q)

(1� x) = FGL±
r+1(q, x), a±r+1(q, n) =

1

n

X

d|n

(±1)dµ(n/d)(qd � (±1)d)r

found below Theorem 1.6 or below [21, Theorem 1.7], and to the power series identities of Corollary 6.3.

Corollary 7.2. For any rational number m,

1 +
X

n�1

hX

�`n

Y

d2B(�)

✓
m IMd(q)

�E(�, d)

◆i
xn =

✓
1� qx

1� x

◆m

Theorem 7.3. For any rational number m and natural number r � 0

1 +
X

n�1

hX

�`n

Y

d2B(�)

✓
ma±r+1(q, d)

�E(�, d)

◆i
xn = FGL±

r+1(q, x)
m

⇣
1 +

X

n��1

h X

��`n�

Y

d�2B(��)

✓
m SDIM�

d�(q)

�E(��, d�)

◆i
xn�

⌘⇣
1 +

h X

�+`n+

Y

d+2B(�+)

✓
m SDIM+

d+(q)

�E(�+, d+)

◆i
x2n+

⌘
=

⇣1� qx

1 + x

⌘m

⇣
1 +

X

n��1

h X

��`n�

Y

d�2B(��)

✓
m SDIM�

d�(q)

�E(��, d�)

◆i
xn�

⌘⇣
1 +

h X

�+`n+

Y

d+2B(�+)

✓
�m SDIM�

d+(q)

E(�+, d+)

◆i
xn+

⌘
=

⇣ (1� qx)(1� x)

(1 + x)(1 + qx)

⌘m

Thévenaz’ polynomial identities for partitions [28, Theorem A, Theorem B] are the casesm = ±1 of Corollary 7.2.
The purely combinatorial proof of a generalised version of Thévenaz’ polynomial identities presented here may
qualify as an answer to question (1) on p. 129 of [28]. Corollary 7.2 is the special case r = 1 of the first equation of
Theorem 7.3 as a+2 (q, d) = IMd(q).
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These polynomial identities are examples of Corollary 7.2 and Theorem 7.3 at n = 3

✓
m IM3(q)

�1

◆
+

✓
m IM2(q)

�1

◆✓
m IM1(q)

�1

◆
+

✓
m IM1(q)

�3

◆
=

8
>>><

>>>:

(q � 1)q2 m = �1
1
16 (q � 1)(5q2 + 2q + 1) m = � 1

2
1
16 (1� q)(q2 + 2q + 5) m = 1

2

1� q m = 1

✓
m SDIM�

3 (q)

�1

◆
+

✓
m SDIM�

1 (q)

�3

◆
+

✓
m SDIM�

1 (q)

�1

◆✓
m SDIM+

1 (q)

�1

◆
=

8
>>><

>>>:

�q3 � q2 m = �1
1
16 (q + 1)(5q2 � 2q + 1) m = � 1

2

� 1
16 (q + 1)(q2 � 2q + 5) m = 1

2

1 + q m = +1
✓
m SDIM�

3 (q)

�1

◆
+

✓
m SDIM�

1 (q)

�3

◆
+

✓
m SDIM�

1 (q)

�2

◆✓
�m SDIM�

1 (q)

1

◆
+

✓
m SDIM�

1 (q)

�1

◆✓
�m SDIM�

1 (q)

2

◆

+

✓
�m SDIM�

3 (q)

1

◆
+

✓
�m SDIM�

1 (q)

3

◆
=

8
><

>:

1
2 (q

3 + q2 + q + 1) m = � 1
2

2(q + 1)(q2 + q + 1) m = �1

4(q + 1)(3q2 + 5q + 3) m = �2

The terms on the left side correspond to the three partitions {31}, {2111}, {13}, of 3 in the first, to (n�, n+) in
{(3, 0), (1, 1)} in the second, and to (n�, n+) in {(3, 0), (2, 1), (1, 2), (0, 3)} in the third example.

8. Primary equivariant reduced Euler characteristics

Let p be a prime and, as in the previous sections, q a prime power. (The prime p may or may not divide the prime
power q.) In this section we discuss the p-primary equivariant reduced Euler characteristics of the GL�

n (Fq)-poset
L�
n (Fq)⇤.

Definition 8.1. [27, (1-5)] The rth p-primary equivariant reduced Euler characteristic of the GL�
n (Fq)-poset

L�
n (Fq)⇤ is the normalised sum

e�r(p,GL�
n (Fq)) =

1

|GL�
n (Fq)|

X

X2Hom(Z⇥Zr�1
p ,GL�

n (Fq))

e�(CL�
n (Fq)⇤

(X(Z⇥ Zr�1
p )))

of reduced Euler characteristics of fixed sub-posets.

In this definition, Zp denotes the ring of p-adic integers and the sum ranges over all homomorphisms of Z ⇥
Zr�1

p into GL�
n (Fq) or, equivalently, over all commuting r-tuples (X1, X2, . . . , Xr) of elements of GL�

n (Fq) where
X2, . . . , Xr have p-power order. The first p-primary equivariant reduced Euler characteristic is independent of p
and agrees with the first equivariant reduced Euler characteristic. If p divides q, then e�r(p,GL�

n (Fq)) = 0 for all
r, n > 1 by Lemma 5.2.

The rth p-primary equivariant unreduced Euler characteristic �r(p,GL�
n (Fq)), obtained by replacing the reduced

Euler characteristics with Euler characteristics in Definition 8.1, agrees with the Euler characteristic computed in
Morava K(r)-theory at p of the homotopy orbit space BL�

n (Fq)⇤hGL�
n (Fq)

for the action of GL�
n (Fq) on the classifying

space for the poset L�
n (Fq)⇤ [10] [27, 2-3, 5-1] [20, Remark 7.2].

The rth p-primary generating function at q is the integral power series

(8.2) FGL�
r (p, q, x) = 1�

X

n�1

e�r(p,GL�
n (Fq))x

n 2 Z[[x]]

associated to the sequence (�e�r(p,GL�
n (Fq)))n�1 of the negative of the p-primary equivariant reduced Euler char-

acteristics. For r = 1, FGL�
1 (p, q, x) = FGL�

1 (q, x) = 1 + x, and when p | q, FGL�
r (p, q, x) = 1 + x for all r � 1.

The interesting case is when the characteristic of Fq is di↵erent from p.

Definition 8.3. For every integer d � 1,

• IMd(p, q) is the number of p-power order Irreducible Monic polynomials of degree d over Fq with nonzero

constant term

• SDIM�
d (p, q) is the number of p-power order Self-Dual Irreducible Monic polynomials of degree d over Fq2

with nonzero constant term

• SDIM+
d (p, q) =

1
2 (IMd(p, q2)�SDIM�

d (p, q)) is the number of unordered pairs of p-power order non-self-dual
irreducible monic polynomials of degree d over Fq2 with nonzero constant term
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The next lemma follows from Lemma 3.11 combined with the fact from [16, Lemma 3.6] that xa � 1 divides
xb � 1 in Fq2 [x] if and only if a divides b.

Lemma 8.4. Assume p - q and let m � 1 be an odd integer.

(1) The p-power order self-dual irreducible monic polynomials of degree dividing m are precisely the irreducible

factors of x(qm+1)p � 1 2 Fq2 [x].
(2)

P
d|m

d SDIM�
d (p, q) = (qm + 1)p and m SDIM�

m(p, q) =
P
d|m

µ(m/d)(qd + 1)p.

The p-primary version of Lemma 5.3 states that for p - q, r � 1, and n > 1,

e�r+1(p,GL�
n (Fq)) =

X

[g]2[GL�
n (Fq)p]

e�r(p, CL�
n (Fq)⇤

(g), CGL�
n (Fq)

(g))

where the sum ranges over the set [GL�
n (Fq)p] of conjugacy classes of p-elements. The point here is that a semisimple

element of GL�
n (Fq) has p-power order if and only all irreducible factors of its characteristic polynomial have p-power

order [21, Lemma 4.4]. In terms of generating functions we get the p-primary version

(8.5) FGL�
r+1(p, q, x) = TSDIM�(p,q)(FGL�

r (p, q, x))TSDIM+(p,q)(FGL+
r (p, q

2, x2))

of (6.2). In the following we prefer to work with the equivalent relation

(8.6) a�r+1(p, q,N) =
X

d|N

a�r (p, q
d, N/d) SDIM�

d (p, q) +
X

2d|N

a+r (p, q
2d, N/2d) SDIM+

d (p, q)

where

a�r (p, q, n) =
1

n

X

d|n

(�1)dµ(n/d)(qd � (�1)d)r�1
p a+r (p, q, n) =

1

n

X

d|n

µ(n/d)(qd � 1)r�1
p

To go from (8.5) to (8.6) we use the infinite product expansions

FGL�
r+1(p, q, x) =

Y

N�1

(1� xN )a
�
r+1(p,q,N)

TSDIM�(p,q)(FGL�
r (p, q, x)) =

Y

d�1

FGL�
r (p, q

d, xd)SDIM�
d (p,q) =

Y

n,d�1

(1� xdn)a
�
r (p,qd,n) SDIM�

d (p,q)

TSDIM+(p,q) FGL+
r (p, q

2, x2) =
Y

d�1

FGL+
r (p, q

2d, x2d)SDIM+
d (p,q) =

Y

n,d�1

(1� x2dn)a
+
r (p,q2d,n) SDIM+

d (p,q)

of the three factors in (8.5) obtained by applying [21, Lemma 3.7] to the expressions of Theorem 1.6 and [21,
Theorem 1.7].

Proof of Theorem 1.6. We must show that the functions a±r (p, q, n) satisfy recurrence relation (8.6). The right side
of (8.6) multiplied by N is

X

d|N

d SDIM�
d (p, q)

X

e|(N/d)

(�1)eµ(N/de)(qde � (�1)e)r�1
p +

X

2d|N

2d SDIM+
d (p, q)

X

e|(N/2d)

µ(N/2de)(q2de � 1)r�1
p

=
X

d|N

d SDIM�
d (p, q)

X

e|(N/d)

(�1)eµ(N/de)(qde � (�1)e)r�1
p �

X

2d|N

d SDIM�
d (p, q)

X

e|(N/2d)

µ(N/2de)(q2de � 1)r�1
p

+
X

2d|N

d IMd(p, q
2)

X

e|(N/2d)

µ(N/2de)(q2de � 1)r�1
p

When N is odd, we are left with

�
X

d|N

d SDIM�
d (p, q)

X

e|(N/d)

µ(N/de)(qde + 1)r�1
p = �

X

f |d1|d2|N

µ(d1/f)µ(N/d2)(q
f + 1)p(q

d2 + 1)r�1
p

= �
X

f |d2|N

µ(N/d2)(q
f + 1)p(q

d2 + 1)r�1
p

X

{d1 : f |d1|d2}

µ(d1/f) = �
X

d|N

µ(N/d)(qd + 1)rp = Na�r+1(p, q,N)

where we first use Lemma 8.4.(2) and next observe that the sum

X

{d1 : f |d1|d2}

µ(d1/f) =

(
1 f = d2
0 f < d2
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contributes only when f = d2. Thus (8.6) holds under the assumption that N is odd.
When N = 2N1 is even we have
X

2d|N

d IMd(p, q
2)

X

e|(N/2d)

µ(N/2de)(q2de � 1)r�1
p =

X

d|N1

d IMd(p, q
2)

X

de|N1

µ(N1/de)(q
2de � 1)r�1

p

=
X

d1|d2|N1

d1 IMd1(p, q
2)µ(N1/d2)(q

2d2 � 1)r�1
p =

X

f |d2|N

µ(N/d2)(q
2f � 1)p(q

2d2 � 1)r�1
p

X

{d1 : f |d1|d2}

µ(d1/f)

=
X

d1|N1

µ(N1/d1)(q
2d1 � 1)rp =

X

2d|N

µ(N/2d)(q2d � 1)rp

which is the part of Na�r+1(p, q,N) defined by the even divisors of N . Remember that SDIM�
d (q), and then also

SDIM�
d (p, q), is nonzero only for odd d (Proposition 3.10). Thus the claim for even N = 2N1 is

�
X

d|N
d odd

µ(N/d)(qd + 1)rp =

X

d1|d2|N
d1 odd

(�1)d2/d1d1 SDIM�
d1
(p, q)µ(N/d2)(q

d2 � (�1)d2/d1)r�1
p �

X

d1|d2|N1
d1 odd

d1 SDIM�
d1
(p, q)µ(N1/d2)(q

2d2 � 1)r�1
p

Note that for every j = 1, . . . , k, where N2 = 2k is the highest power of 2 dividing N , the part of the first sum with
2j k d2 is annihilated by the part of the second sum with 2j�1 k d2. Thus the right hand side reduces to the part of
the first sum where d2 is odd. By the computation just done for odd N , that sum equals the left hand side. Thus
(8.6) holds also for even N . ⇤

When p does not divide q, the sequences (SDIM±
d (p, q))d�1 and hence the generating functions FGL�

r+1(p, q, x),

r � 1, depend only on the closure hqi of the cyclic subgroup generated by q in the topological group Z⇥
p of p-adic

units [21, Lemma 4.9]. For instance, the 2-primary power series FGL�
r+1(2, q, x) are identical for q = 3, 11, 19, 27, . . .,

with log FGL�
r+1(2, 3, x) =

P
n�1(�1)n+1(4n)r2x

n/n, and the 3-primary power series FGL�
r+1(3, q, x) are identical

for q = 2, 5, 11, 23, . . . with log FGL�
r+1(3, 2, x) =

P
n�1(�1)n+1(3n)r3x

n/n [21, Figure 3, Example 4.16].

8.1. Alternative presentations of p-primary equivariant reduced Euler characteristics. It is immediate
from [21, Theorem 1.7] and Theorem 1.6 that there is ‘Ennola duality’

(8.7) FGL�
r (p, q, x) = FGL+

r (p,�q, (�1)rx), r � 1

between the p-primary generating functions for GL±
n (Fq).

We can now proceed exactly as in Subsection 6.1 to prove the next two propositions. In Proposition 8.9,
e�r+1(p,GL±

n (Fq))�1 denotes the coe�cient of xn in the reciprocal power series FGL±
r+1(p, q, x)

�1.

Proposition 8.8. The p-primary equivariant Euler characteristics of the GL±
n (Fq)-posets L±

n (Fq)⇤, n � 1, are

e�r+1(p,GL+
n (Fq)) =

1

n!

X

�`n
(�1)|�|T (�)U(�, q)rp =

(�1)n

|Wn|
X

w2Wn

det(w)|Tn(Fs)
Fq
w |rp

=
(�1)n

|Wn|
X

w2Wn

det(w) det(q � w)rp

�e�r+1(p,GL�
n (Fq)) = (�1)n(r+1) 1

n!

X

�`n
(�1)|�|T (�)U(�,�q)rp =

(�1)(
n
2)

|Wn|
X

w2Wn

det(w)|Tn(Fs)
Fq�
w |rp

=
1

|Wn|
X

w2Wn

det(w) det(q + w)rp

Proposition 8.9. The reciprocal p-primary equivariant Euler characteristics of the GL±
n (Fq)-posets L

±
n (Fq)⇤, n �

1, are

e�r+1(p,GL+
n (Fq))

�1 =
1

|Wn|
X

w2Wn

|Tn(Fs)
Fq
w |rp =

1

|Wn|
X

w2Wn

det(q � w)rp

(�1)ne�r+1(p,GL�
n (Fq))

�1 =
1

|Wn|
X

w2Wn

|Tn(Fs)
Fq�
w |rp =

1

|Wn|
X

w2Wn

det(q + w)rp
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A slight modification of [6, Proposition 3.7.4] shows that (±1)ne�2(p,GL±
n (Fq))�1 equals the number of semisimple

p-classes in GL±
n (Fq).

The next corollary, the p-primary version of Corollary 6.12, is an immediate consequence of Proposition 8.8 and it
specifies the generating functions for the p-primary equivariant Euler characteristics expanded after the parameter
r and with fixed n.

Corollary 8.10. For any fixed n � 1,

X

r�0

e�r+1(p,GL+
n (Fq))x

r =
1

n!

X

�`n

(�1)|�|T (�)

1� U(�, q)px
=

(�1)n

|Wn|
X

w2Wn

det(w)

1� x det(q � w)p

X

r�0

�e�r+1(p,GL�
n (Fq))x

r =
(�1)n

n!

X

�`n

(�1)|�|T (�)

1� (�1)nU(�,�q)px
=

1

|Wn|
X

w2Wn

det(w)

1� x det(q + w)p

For example, when n = 3, p = 2, and q = 3, 11, 19, 27, . . . is any prime power with q ⌘ 3 mod 8, (q2 � 1)2 =
(32�1)2, the generating function (times 3!) for the 2-primary equivariant reduced Euler characteristics of GL�

3 (Fq)
is

3!
X

r�0

�e�r+1(2,GL�
3 (Fq))x

r =
1

1� x(q + 1)32
� 3

1� x(q2 � 1)2(q + 1)2
+

2

1� x(q3 + 1)2
=

1

1� 64x
+

2

1� 4x
� 3

1� 32x

with the three terms corresponding to the three partitions {13}, {1121}, {31} of 3.
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