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0 Introduction 

Consider a compact connected Lie group G with maximal torus T c G. The Weyl 
group Wa = N(T)/T of G is, simply by applying the cohomology functor to the 
Weyl group operation on T, faithfully represented in Hi(T; R) where R is some 
suitable commutative ring. The title of this paper refers to the normalizer, denoted 
NR(WG), of Wa considered as a subgroup of the R-module automorphism group of 
Ht(T;R). 

The normalizer Nz?(WG) obtained by taking coefficients in the p-adics is of 
particular interest here because of its close relation to the group of homotopy 
classes of self homotopy equivalences of the p-completed classifying space BG~. 
The link between these two groups is provided by the Adams-Wojtkowiak theorem 
[A-W] implying that any self homotopy equivalence of BG~ restricts to a self 
homotopy equivalence of BT~ such that the induced map on H2(BT~;2~) 
= H ~ (T; 7/~ ) normalizes the Weyl group. (Since the restriction to BT~ is unique 
up to left WG-action, one actually gets an anti-homomorphism, studied in detail in 
[W2] and [JMO3],  from the group of self homotopy equivalences of the 
p-completed classifying space into the quotient group Nz?(WG)/WG.) The main idea 
of this paper is to apply information about the algebraic structure of the normalizer 
of the Weyl group to an investigation of self homotopy equivalences and genus sets 
of Lie group classifying spaces. 

The normalizer is described algebraically in Theorem 1.3 as an extension of two 
groups defined (almost) explicitly in terms of the group of units of R and the group 
of automorphisms of the Coxeter graph of G. Two consequences of Theorem 1.3 
are mentioned in Corollary 1.6 and Corollary 1.7. The first of these is the main 
input for the treatment of self homotopy equivalences of BG and the second one 
will be needed in the discussion of genus sets. Corollary 1.6 shows that the nor- 
malizer behaves very rigidly under formation of product Lie groups. Indeed, the 
normalizer associated to a simply connected compact Lie group is generated by the 
normalizers associated to each of the simple factors together with permutations of 
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identical factors (where Spin(2n + 1) and Sp(n), n > 2, are considered identical if 
2 is invertible in R). Corollary 1.7 concerns the action, for a simply connected 
simple G, of NR(WG) on the cohomology algebra H*(BG; k) with coefficients in the 
field of fractions, k, of R. This action is obtained by identifying the cohomology of 
BG with the ring of invariants H*(BT; k) w~. It is shown that NR(W~) acts on 
H4(BG; k)= k as multiplication by a square unit from R (except that in some 
special cases multiplication by 2 or 3 may also occur). 

The next section, concerned with the cardinality of genus sets of Lie group 
classifying spaces, is motivated by Rector's demonstration [R] of the existence of 
uncountably many distinct homotopy types of the same genus as BSU(2). As 
shown in Theorem 2.3, the same extreme non-rigidity conclusion holds if SU(2) is 
replaced by any other compact connected Lie group which is not a torus. Genus 
sets of localized classifying spaces are also considered. The proofs of these results 
use the Arithmetic Square. 

It is not true in general, of course, that any self homotopy equivalence of 
a Cartesian product of spaces is homotopic to a product of self homotopy 
equivalences of each of the spaces. Nevertheless, the above is true for products of 
classifying spaces of simply connected compact Lie groups whose Dynkin diagrams 
have no identical components. This is a consequence of Corollary 3.2 expressing 
the group of self-homotopy equivalences of BG, for a simply connected G, explicitly 
by means of the self homotopy equivalences of the simple factors in G. Actually, 
a little more general statement about rational self equivalences of BG can be found 
in Theorem 3.1. The paper closes with a short discussion of rational equivalences 
between members of the genus of BG. 

1 The normalizer of the Weyl group 

Let G be a simply connected compact Lie group with maximal torus T ~ G and 
Weyl group W = W~ = N(T)/T. 

The Weyl group acts by conjugation on T and hence also on tel(T, 1) and 
Horn(tel (T), R) = H 1 (T; R) for any commutative ring R. The object of this section 
is to describe the normalizer NR(WG)~ AutaHl (T ;  R) of Wa. The ring R will 
always be assumed to be an integral domain of characteristic zero; typically 
R = Z(p), Q, Z2  or I1~,, the p-local integers, the rationals, the p-adic integers or the 
p-adic numbers. 

In terms of Lie theory, the action of W on H~(T; R) may be described as 
follows; see [B-tD, HI. 

Let LTbe the Lie algebra of T. The integral lattice I is defined to be the kernel 
of the universal covering map exp: L T ~  T; thus I =/ t l (T  ) and HI(T;R)  
=Hom~( l ,  R). The real roots of G are certain N-linear forms on LT; the root 
system q~ c LT* is the set of all roots. Actually, the roots are integral, i.e. 

~ Home(I,  7Z) c Homz(I,  IR) = LT* . 

Each root  e e r has an inverse root e*~ I; the inverse root system 

�9 * ~ I ~ I | = LT 
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is the set of all inverse roots. Define 

cry: Home(l ,  R) ~ Home(I ,  R) 

to be the R-automorphism given by 

a,(fl) = f l -  fl(~*)c~, f l~Home( I ,  R ) .  

Here we view c~ as an element of Home(I ,  7Z) c Home(I ,  R). The map a,  is an 
idempotent, W is isomorphic to the subgroup of AUtR Home(I ,  R) generated by 
{a~ ] e ~ (b }, and the isomorphism Horn(I, R) ~ H I(T; R) is an isomorphism of 
W-modules. 

The integers n~ = fl(e*), c~, fie q~, are the Cartan numbers of G. 
Choose a set of positive roots q~ + c 4~ and a set of simple roots, i.e. a basis for 

LT*, A c ~b +. The Dynkin diagram of G is a graph with A as its set of vertices and 
n,ene~ edges connecting the simple roots ~ and ft. If two simple roots are connected 
by more than one edge, the Dynkin diagram has an arrow pointing to the shorter 
(w.r.t. a W-invariant metric on LT*) root. 

We define the R-Dynkin diagram of G to be diagram obtained from the Dynkin 
diagram by removing all arrows on r-fold edges whenever r is invertible in R, 
r = 2, 3. In particular, the 7l-Dynkin diagram is the Dynkin diagram and the 
~)-Dynkin diagram is the Coxeter graph. Let FR(G) denote the group of all 
automorphisms of the R-Dynkin diagram. Then Fe(G) c FR(G) c FQ(G). For an 
irreducible root system, F~(G) has order __< 2 except that Fe(D4) = FQ(D4) = Z3 
has order 6. The root system B2 has FR equal to ;g/2 if 2 e R* and to {1} if 2 q~ R*. 

Viewing W c AUtRHI(T; R) as a group of R-automorphisms of Hi(T; R) we 
consider in the next two theorems the centralizer 

ZR(WG) = {AeAutRHI(T;  R)IVwe W: Aw = wA} 

and the normalizer 

NR(Wa) = {AeAutRH1(r;  R ) I A W =  WA} 

of W~. 
A version of the first result can also be found on p. 651 of IN-S] and for R = Q 

or Ill Papadima [P]  proved the existence of a short exact sequence similar to the 
one in Theorem 1.3. 

Theorem 1.1. The centralizer ZR(W~) is isomorphic to the abelian group 
R * x . . . x  R* where the number of factors equals the number of connected compo- 
nents of the Dynkin diagram of G. 

The description of the normalizer is less elegant. Let Perm((b +) be the group 
of permutations of the positive roots. Consider the subgroup PR(G) of those 
(pc Perm(4 ,+) for which there exist a transformation A ~ NR(W~) and a function 
2 :4  ~+ ~ R *  such that A(~)=2(c0~o(~ ) for all positive roots ct~4~ +. There is 
a homomorphism 

W ~  PR(G): w ~ w + 

where 

+ (~) = ( w'ct if wce ~ �9 + 
W 

- w c ~  if w ~ r  + 

for any  pos i t ive  root  ~. Let W + denote  the image  of this  h o m o m o r p h i s m .  
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Proposition 1.2. (a) The isotropy subgroup 

PR(G)a:= {q~ePR(G)]~pA = A} 

is isomorphic to FR(G). 
(b) PR(G) = (W+) 'FR(G) .  

W + is a normal  subgroup  of PR(G) which m a y  have a non-trivial  intersection 
with FR(G); thus PR(G) is in general not  equal to (but ra ther  a quot ient  of) the semi- 
direct p roduc t  of  these two subgroups.  

Theorem 1.3. There is a short exact sequence 

0 ~ ZR(W6) ---} NR(W~) -* PR(G) ~ 1 

o f  groups. 

Proo f  o f  Theorem 1.1. Let A~ZR(W~) .  For  any root  s, -- As = A a : s  = a~As, so 
As  = 2(a)a for some 2(c0eR*.  The  s ta tement  

V a, fl e CP: Aa~(fl) = a~A(fi) 

is then equivalent  to 

V ~,/~e r  2(~)n~ = ,~(fl)n,~. 

In  particular,  if ~, f le  A are simple roots  connected by an edge in the Coxeter  graph, 
n ~  4 :0  and 2(s) = 2(fl). Thus  2: A ~ R* is constant  on each connected componen t  
of  the Coxeter  graph. 

Conversely,  suppose that  2: A ~ R* is constant  on each componen t  of the 
Coxeter  graph. Let A be the R-au tomorph i sm  of H I ( T ; R )  that satisfies 
As  = 2(~)s, ~eA.  Then A e Z R ( W a ) .  [] 

Proo f  o f  Theorem 1.3. Let k ~ R be the field of fractions of R. Equip L T  with 
a W-invariant  euclidean metric ( , )  such that  ( I ,  I )  c Z; the Killing form multi-  
plied by the factor - 2 will do [B-tD, p. 214J. Extension of scalars gives us 
a non-degenerate  W-invariant  k-valued bit inearform on I | k and thereby also on 
the dual vector space HOmk(l | k, k) = Hom~( l ,  k). The symmet ry  a , ,  c(e 4~, then 
becomes reflection w.r.t, a• i.e. 

a,(x) = x - 2 ( x, s )  c~ 
<~, s> 

for all x e H o m z ( l ,  k). 
Suppose  A e A u t R H o m ( I , R ) c  Au tkHOm(I , k )  normalizes  W. In part icular,  

w := A a ~ A -  ~ e Wfor  any given positive root  a e q~+. Note  that  w sends Aa to - Aa 
and fixes pointwise the hyperplane  A(~• I claim that  w = a~ for some (positive) 
roo t  ft. 

First note that  we mus t  have A(~ • = fl• for some (positive) root  ft. If  not, the 
difference 

A ( a l )  - U fix c Horn( l ,  k) 

would be non-empty.  Choose  an x in it. Since x r A (a• wx = x. However ,  W acts 
freely [B-tD,  Theorem V.4.1] on H o m ( I ,  ~ ) -  w fl• and thus, by extension of 
scalars, also freely on Horn(I ,  k) - u fl• We arrive at the contradic t ion w = 1. 
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The or thogona l  t ransformat ion  w carries fl into some vector on the line kfl. 
Write Ae = 2fl + u for some 2 e k and u e fl• Since 

- 2 1 3 -  u = - A~  = wA~z = 2wfl  + u 

the uniqueness of  such decomposi t ions  shows that  u = 0. Hence Aa = 2fl and, 
because wfl = - fl and w fixes fl• pointwise, aa = w = A a ~ A - 1  

We conclude that  for any A ~ N R ( W ~ )  and any positive root  ~eq~+ there is 
a unique positive root  q~(c 0 e (b + and scalar 2(~)e R* such that  Aa = 2(~)~o(c~) and 
Aa~ = a~(~)A. 

The map  NR(WG)-+PR(G) ,  taking A to the associated permuta t ion  ~p~ 
Perm(r is easily seen to be a homomorph i sm.  By the very definition of P~(G), 
it's surjective. The  kernel, consisting of those A ~ N R ( W ~ )  for which Aa~ = a~A, 
~ + ,  is the centralizer ZR(WG). [] 

P r o o f  o f  Proposi t ion 1.2. (a) There is an obvious  h o m o m o r p h i s m  

P~(G)~ ~ YR(G): ~ -~ ~ I A  �9 

Let's first verify that  indeed (Pl A ~ Y R ( G ) ,  i.e. that the permuta t ion  ~p]A of 
the vertices of the Dynkin  d iagram is an au tomorph i sm of the R-Dynkin  dia- 
gram. Each ~p~PR(G),~ comes from some A ~ N R ( W G )  with A~ = 2(~)(p(a) and 
Aa~ = a~(:)A. The  s ta tement  

is equivalent to 

Consequently,  

V a, f l e A :  Aa~(f l )  = ao(~)A (fl) 

2(a)2(fl)n~pno~ = (2(cOn~p)(2(fl)nl~) 

= (2(fl)n~i~),p@)(2(oOn~(l~),p(a)) 

= 2(c02(fl)n~oi~)~ifl)n~([~)~(~) 

so n,t~n~, = n,pi~)q,i/~)n~,(/~)~(~ ) since R is an integral domain.  This means that  
q~] A ~FQ(G)  is an au tomorph i sm of the Coxeter  graph. Suppose that  the graph  
contains an r-fold edge, r = 2, 3, between two simple roots  ~ and fl such that  
]c~l > ]fl] but J~p(~)] < J~o(fl)]. This means  that  q~ reverses the direction of an arrow: 

~/er~f l  ~o(~)c~(m~o(fl) (r = 2).  

In this si tuation [B-tD, Propos i t ion  V.5.9], n=p = - 1 and n~(~)~0(/~) = - r. F r o m  
the equat ion 2(c0 = - 2 ( ~ ) n ~  = -2(fl)n(p(~)~0(/~)= r2(fl) we see that  r must  be 
a unit in R. This means that  ~Pl A is an au tomorph i sm of the R-Dynk in  diagram. 

Let A ENR(WG) with A~ = 2(c0q~(~), ~ q ~ + .  Suppose r ~ for all simple 
roots, i.e. A~ = 2(~)~ for ~eA.  Since A is a basis for Horn( l ,  k), it follows that  
Aa = 2(c~)~ for all positive roots  c~eq ~+, i.e. that  ~o~Perm(q ~+) is the identity 
t ransformation.  This shows that  the h o m o m o r p h i s m  q~ ~ ~Pl A is injective. 

In order  to prove  surjectivity we note  that  the Dynkin  d iagram of G consists of 
finitely m a n y  irreducible components .  Fo r  a simple Lie group  FR = Fz except when 
the g roup  is B2, F 4 or G2 and 2 or 3 is invertible in R. Fo r  a general s imply 
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connected compact Lie group, FR(G) decomposes into the (senti-direct) product of 
the automorphism groups corresponding to the simple factors of G with the group 
of permutations of identical components of the R-Dynkin diagram. Furthermore, 
when 2ER* any pair of irreducible components of type B, and C, may be 
interchanged. Hence it suffices to prove surjectivity in the following three cases 

(i) R = 7]. 
(ii) 2 e R *  and G = Sp(2), F4, Spin(2n + 1)x Sp(n), n > 2. 

(iii) 3 e R *  and G = G2. 
In case (i), any automorphism of the Dynkin diagram is known to be induced by an 
(outer) Lie group automorphism f :  (G, T) --+ (G, T); i.e. any permutation in Fz(G) 
comes from an H i ( f ;  Z)eNg(W~). In cases (ii) and (iii), Adams and Mahmud 
demonstrate that the (exotic) permutations of the roots extend to automorphisms 
of Hom(l ,  R) = H I(T; R). These automorphisms are admissible, i.e. they normal- 
ize W. This finishes the proof  of (a). 

(b) Let (pePR(G) c o m e  from AeNR(W6): Ae = )~(~)(p(~) for o~e,:b +. Choose 
w e W  such that w 1A=~oA.  The product wAeNR(WG)  and, for ~eA, 
wAct = 2(e)wtp(c 0 where w~o(cOeA c 4 )+ meaning that w+ (oa= wq)~. Hence 
w+ q)es [] 

We next list some consequences of Theorem 1.3. 
Let G be a simply connected compact simple Lie group and G" = G x � 9  x G 

the n-fold Cartesian product. Choose T" = T x .  �9 . x  T as a maximal torus for G" 
where T is a maximal torus for G. Since H I ( T ' ) = H I ( T ) x  ' ' ' x H t ( T )  and 
WG, = WG x- �9 �9 x We, there is an obvious homomorphism 

NR(W~)Z  Z .  = N R ( W G ) " ~ Z .  --" NR(W~,,) . 

The semi-direct, or wreath, product is w.r.t, to the usual right action 

(A1 . . . . .  An)" a = (Ao '(1) . . . . .  A,7 ,(,)) 

of the symmetric group Z, on NR(WG)'. 

Corollary 1.4. NR(W~,) ~ NR(W~)~ X,  for  any simply connected compact simple Lie 
group G and any n > 1. 

Proof. Since (b+(G)u '  �9 . u  q)+(G) may serve as the set of positive roots for G" we 
also have a homomorphism 

PR(G)" ~ Z, ,  --+ PR(G") 

on the quotients. This map is clearly a monomorphism and it's also an epimor- 
phism because 

P . ( O " )  = ( w  + ) " . / ' . ( 6 " )  

= ( w +  x . . . x  W + ) - ( G ( G ) x -  - - x rR(6)).S. 

= ( w  + . F R ( 6 )  x .  - �9 x w + .FR(G)) .Z .  

= ( P R ( G )  x "  �9 �9 x P R ( G ) ) "  X .  
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where we've used I~(G") ~ FR(G)~Z,. These homomorphisms extend to a map 

o , z , ( w z ) "  , N , , ( W ~ ) ~ Z .  , t ' ~ ( a ) ~ z .  , 1 

i :l 
0 -~ ZR(W6.) , NR(WG.,) * Pa(G") , 1 

of short exact sequences. The middle vertical arrow is an isomorphism since the 
two outer ones are. [~ 

A similar argument shows 

Corollary 1.5. Let G and H be two simply connected compact Lie groups such that no 
component qflthe R-Dynkin of one of the groups is isomorphic to any component of the 
R-Oynkin diagram of the other group. Then NR(WG)X NR(Wn) ~ NR(WG X Wn). 

When G = Spin(2n + 1) and H = Sp(n), n > 2, and 2~R*, the R-Dynkin dia- 
grams, B, and C,, of G and H are isomorphic and Corollary 1.5 doesn't apply. But 
since [A-M, Example 2.7] Hl(T(Spin(2n+ 1));R) and HI(T(Sp(n));R) are 
isomorphic a s  Wspin(Zn+ 1) = Wsp(,j-modules we get immediately 

NR(WSpin(2n+ l)• ~ NR(Wsp(n)• . 

For a general simply connected compact Lie group G, write G as a product 

o = I]  • < ' t •  f i  
i - 1  i 1 

of distinct simple Lie groups such that (Bi, CO has type (Bn,, C,,) for some nl > 2, 
1 _< i -< s, and the groups Hi, 1 < i _< t, have Dynkin diagrams that are not of type 
B, or C,, n > 2. Combining Corollary 1.4 and 1.5 we get 

Corollary 1.6. NR(Wa) is isomorphic to 

i = I  i = 1  

/ f 2 r  and to 

i=l  i = 1  

if 2eR*.  

Now recall Borel's theorem H*(BG; k) ~ H*(BT; k) <,. By restricting the ac- 
tion of NR(Wa) on the polynomial algebra H*(BT; k) to the ring of l+~-invariants 
we obtain a homomorphism 

NR(Wo) -~ AUtk H*(BG; k) 

whose image we list below for the simple Lie groups. We write A = {r I r e R* } for 
the (central) subgroup of unstable Adams operations and (e )  for the cyclic group 
generated by an (exotic) automorphism e ~ AUtk H*(BG; k). 

Also, let H4(NR(WG); k) be the image of the homomorphism 

NR(WG) ~ AUtk H*(BG; k) ~ AUtk H4(BG; k) = k - {0}. 
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Thus H4(NR(Wo); k) is the group of degrees in H4(BG; k) of maps induced by the 
elements of NR(Wa). Write S(R*)  for the multiplicative group of square units in R. 
The last statement of the following corollary is not surprising in view of the fact 
that any outer automorphism induces the identity on H4(BG; Q). 

Corollary 1.7. For the simply connected compact simple Lie groups G the image of  
NR(Wo) in A u t H * ( B G ;  k) is 

(i) a group containing A with index <= 6 if G = Spin(8). 
(ii) A. (e),  where e2 = r  = Spin(4n), n > 2. 

(iii) A . ( e ) ,  where e 2 = t) 2, i f  G = Sp(2) or F4 and 2~R*. 
(iv) A . ( e ) ,  where E 2 = t) 3, I f  G = G2 and 3~R*. 
(v) A in all other cases. 

Furthermore 

I S(R*)  in case (i), (ii) and (v) 

H4(NR(WG); k) = ~ S ( R * ) - ( 2 )  in case (iii) 
I 

I S ( R * ) . ( 3 )  in case (iv).  

Proof. L Fn(G) ~ {1}: In this case (A1; B2 and 2 r  Bg, l > 2; Ct, l > 2; ET; Es; 
F4 and 2 r  G2 and 3 r  PR(G) = W + so NR(WG) = R * .  W. (The product is 
direct if and only if - 1 r W.) 

II. FR(G) ~- Z/2: 
(a) At, 1 > 2; Dl, l > 5 odd; E6. The nontrivial element of FR(G) is (Wo) + where 

woe W is the element of maximal length [B, Planche I, IV, V]. Hence PR(G) = W + 
and NR(WG)= R * .  W. (The outer automorphism of G corresponds to -W o  
inducing r  on H*(BG; k).) 

(b) Dr, 1 > 6 even. L T ' ~  IW with coordinates (01,. � 9  0t) and integral lattice 
I = {(01 . . . . .  0~) ~ Z~]~ 01 e 27Z}. The integral forms 

~ = 0 1 - 0 2  . . . . .  ~i-1 = 0 1 - 1 - - 0 l ,  Ch=0t-1 +0~ 

form a system of simple roots. One easily checks that there is a unique isomorphism 
of Hom(I, 7~) satisfying ~01 = Oi for i < I and e0~ = - 01. Moreover, eeNR(WC,), 

e2 = 1, and, since e projects to a generator of FIdG), NR(Wa) = R * .  W .  (e) .  Note 
also that e preserves the invariant form Y, 02. 

(c) B2 and 2sR*.  L T g  IR 2 with coordinates (01,02) and integral lattice 
I = Z 2. The simple roots 

0~1 = 01 -- 02, g2 = 202 

form a basis for Horn(I, R). Let e be the R-automorphism with ge~ = e2, g0~2 = 20q. 
Then eeNR(Wa) ,  ~2 = 2, and, since e projects to the generator of FR(G), NR(Wa) = 
R*. W. (~). The invariant form 02 + 02 is taken to twice itself by e,. 

(d) F4 and 2eR*.  The simple roots ~1, ~2, e3, e4 form a Z-basis for Horn(l, 77) 
because the Cartan matrix has determinant 1. Let e denote the R-automorphism of 
Hom(I,  R) taking ~,, a2, ~3, e4 to a4, cq, 20~2, 2cq, respectively. Then r, G N R ( W G )  , 

e 2 = 2, and, since ~ projects to the generator of FR(G), Ng(Wo) = R * .  W .  (e) .  
According to [A-M, Table 2.14] the map induced by e has degree 2 on H4(BF4; k). 

(e) G2 and 3sR* :  Similar to (d). 
Ill. Fg(D4) ~ k'3: The root system is described in II(b) with I = 4. When 1 = 4 

there is another abelian group isomorphism 6 of Horn(l, 2~) that permutes el and 
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subgroup (6, e) c 
NR(Wa)= R*. W. 

60i = 

0 0 3  = 

we see that (also) 0 preserves the invariant form ~ 0/z. 

See [W3, Theorems B and C] for related results. 
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and e4 fixed. Moreover, 6eNR(WG), 6 2 =  1, and, since the 
NR(Wa) generated by 6 and e maps isomorphically onto FR(D4), 
(6, e). From the formulas 

1(01 -I- 02 q- 03 - -  Od.) 002 = 1(01 -~- 02 --  03 -I- 04,) 

1(01 --  02 -'~ 03 --[- 04) 004 = 22( - 01 -~- 02 -~ 0 3 @ 04) 

[] 

2 Genus sets of classifying spaces 

Let X be a connected nilpotent space of finite type and L a set of primes. Denote by 
G(XL) the genus set of all homotopy types Y of 7/L-nilpotent spaces of finite type 
over ZL such that Y(p) _~ X(p) for all p ~ L. 

We investigate here the genus set of a classifying space BG localized, first, at 
a finite set of primes and, next, away from a finite set of primes. 

Theorem 2.1. Let G be a compact connected Lie group whose universal covering 
group is non-contractible and not homotopy equivalent to SU(2). Then 

card G(BGL) = No 

for all finite sets L of at least two primes. 

The compact connected Lie groups not covered by Theorem 2.1 are tori, 
T = T  d, of dimension d > 0  and SU(2) xT,  U(2) x T  and SO(3) x T  (where 
U(2)L = SU(2)L x T2 and SO(3)L = SU(2)L if 2r  

Proposition 2.2. Let G be any of the Lie groups U(2) x T, dim T > 0, or SU(2) x T, 
SO(3) x T, dim T > 1. Then G(BGL) #: *for all (finite) sets L of at least two primes. 

Rector JR] shows the genus set G(BSU(2)) is uncountably large. The next 
theorem shows that in fact G(BG) is uncountably large for all compact connected 
Lie groups but tori. This even remains true after inverting finitely many primes. 

Theorem 2.3. Let G be any non-abelian compact connected Lie group and L any 
cofinite set of primes. Then the genus set G(BGL) is uncountably infinite. 

Now follow the proofs. The proof of Theorem 2.2 consists of Proposition 2.4 - 
Lemma 2.8 and the proof of Theorem 2.4 makes use of Lemma 2.9 - Lemma 2.12. 

We begin with a couple of remarks of a general nature. Note that when M ~ L 
are sets of primes the natural map G(XM)~ G(XL) is surjective. Note also that 
according to Glover and Mislin [G-M] there is, for finite L, a bijection between 
G(XL) and 

Aut(X(o))\Aut(X(o))L/l~ Aut(X(p)) �9 
p~L 

Here, Aut (Z) denotes the group of homotopy classes of self homotopy equivalences 
of the space Z and Aut(X(o)) L = I~p~L Aut(X(o)) is the group of functions of L into 
Aut(X(o)). 
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Proposition 2.4. Let L be a finite set of at least two primes. Then G(XL) is trivial !f 
and only if the obvious map 

Aut(X~p)) x Aut(XL _ {e}) --* Aut(X~ofl 

is surjective for all p ~ L. 

The "obvious map" mentioned in Proposition 2.4 is the one that takes 
f e  Aut(Xr and g e Aut(XL _ {p}) to f~o) c, g(o). We omit the proof as only the special 
case where L = {p, q} contains just two distinct primes p 4= q will be needed. Note 
that in this case 

G(X{p, q}) = Aut(X(p)) \ Aut(X(o))/Aut(X(q)) . 

Specializing to the case X = BG, the above formula for G(BGIn, q}) indicates 
that a key point in the proof of Theorem 2.1 is to show that the image of the 
anti-homomorphism 

H*(-;  ~): Aut(BG~p)) --* AutH*(BG; Q) _~ Aut(BG(m ) 

is rather small. This follows from the theorem of Adams and Wojtkowiak [A-W] 
which says that for any given p-complete homotopy equivalence f :  B G;  ~ BG~' 
there exists a homotopy equivalence k, unique up to left WG-action, such that the 
diagram 

BT~ k BT~ 

B G ;  Y ,  BG;  

commutes up to homotopy. Here, G can be any compact connected Lie group with 
maximal torus i: T ~  G. Moreover, k is admissible in the sense that 

H2(k; ~p~ )~ N~;(G) ~ Autz;  H2(BT; 7Z~ ) . 

Therefore we have 

Lemma 2.5. The image of  the map 

Aut(BG~) -* Aut% H*(BG; q)p) 

is contained in the image of the map 

Nz;(WG) -~ Aut% H*(BG; Qp) . 

The existence of the first map in Lemma 2.5 relies on the natural isomorphism 
H*(BG~ ; 7Z~ ) | Q ~_ H*(BG; ~ ) .  Wojtkowiak [W2, Theorems 1.3 1.4] shows 
that, when (p, I W]) = l, the first map is injective and 

Aut(BG• ) ~ N~;(W~)/WG 

so that the two maps have the same image in this case. 

Lemma 2.6. Let G be any non-trivial simply connected compact Lie group but SU(2). 
Then 

card G(BGlp, q}) = No 

for any choice of two distinct primes p 4: q. 
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Proof First assume that G is simple, G + 1, G + SU(2). For a prime p, let 
Ap c  AutH*(BG;II)) be the central subgroup of unstable Adams operations 
determined by p-adic units; i.e. Ap contains O",ue(7Z~)*, provided ukeTZlp) 
whenever H2k(BG; t~) ~ O. Lemma 2.5 and Corollary 1.7 show that H * ( f ;  ~)  is 
contained in a finite extension Ep of/lp for a l l fc  Aut (BGIp)). Using the abbreviation 
A = AutH*(BG; Q) we have surjections 

Aut(BG(p)) \ A/Aut(BG(q)) --~ Ep\ A/Eq ~-- Av\ A/.~q 
where the fibres of the right map contain at most I Ep: Ap]. t Eq: Aq] points. The right 
set is countably infinite because rank G > 1; the two other sets are then also 
countably infinite. 

For general compact simply connected G, write 

i : 1  i = 1  

as in Corollary 1.6. Lemma 2.5 and Corollary 1.6 show that the images of 
Aut(BG(,I) and Aut(BG(q)) in Aut H*(BG; Q) are contained in the subgroup 

+ AutH*(BBi; Q)~Xb,+c, �9 + AutH*(BHi; ~ ) ~ h , .  
i = I  i = 1  

Note that the corresponding set of double cosets is countably infinite if at least one 
of the numbers bi + cl, hi or s + t is > 1; i.e. whenever G is non-simple. [] 

This finishes the proof of Theorem 2.1 for simply connected Lie groups. We 
now deal with the non-simply connected ones. 

Lemma 2.7. Let G be a compact connected Lie group with universal covering group 
a. Then 

card G(BGt.) > card G(BGL) 

for any finite set L of at least two primes. 

Lemma 2.7 follows immediately from the more general statement below by 
noting that BG is homotopy equivalent to the 2-connective cover BG(2)  of BG. 

Lemma 2.8. Let X be a simply connected Ho-space of finite type with n-connective 
cover X (n),  n > 1, and L any finite set of at least two primes. The n-connective cover 
map 

-- (n ) :  G(XL) ~ G(X (n)L) 

is surjective. 

Proof Naturality (of the Postnikov approximations to the path space fibration 
over X) determines a homomorphism 

A u t ( X ) ~ A u t ( X ( n ) ) ,  n >  1. 

Similar homomorphisms exist for the various localizations of X. The rational 
version, in particular, is surjective because X~o) is a product of Eilenberg-MacLane 
spaces. The induced map will then take 

G(XL) = Aut(X~ol)\Aut(X(o~) L 1-~ Aut(X(m) 
p~L 
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on to  

G(X (n)L) = Aut(X (n>(o)) \Aut(X (n>(o)) L / l~  Aut (X (n)(p)) . []  
/ p~L 

This finishes the proof  of  Theorem 2.1. 

Proof of Proposition 2.2 for G =  U ( 2 ) x T .  We may  choose coordinates  
(01,02;~/i . . . . .  ~/d), d = dim T___ 0, for the Lie algebra of the s tandard  maximal  
torus T(G) -- S 1 x S 1 • T i n  G such that  the integral lattice I = 7/2 • ~7 e and the real 
roots  are the integral forms 01 - 0 2  and 0 2 -  01. For  any AeNR(W~), Az = zA 
where z ~ W~ ~ Z / 2  is the non-trivial  element. The  computa t ion  

-- A(Oi -- 02) = Az(O1 - -  02) ~--- zA(O i - -  02) 

shows that  A(O1 - 02) is a ( -  1)-eigenvector for z, i.e. A(01 - 02) = 2(0i - 02) for 
some 2 ~ R * .  The theorem by Adams  and Woj tkowiak  [ A - W ]  then implies that  
(0t - O 2 ) 2 ~ H 4 ( B T ( G ) ;  Q)w~ = H4(BG; Q) is an eigenvector for H4(f;  ff~) for all 
fE  Aut(BG(v)). Since this p roper ty  is not shared by all members  of Aut(BGio)), 

G(BG{p,q}) = Aut(BG(p~) \ Aut(BGto))/Aut(BG~q)) + * 

for any choice of primes p + q. [] 

The p roof  of Theo rem 2.3 makes  use of L e m m a  2.9-2.12 below. First we need 

asmal lobserva t ionconcern ingLegendresymbols (~) ,ppr ime ,  ae7Z-p7 l .  

L e m m a  2.9. Let E be a finite set of primes and s a prime not in E. Then there exist 

i n f i n i t e l y m a n y o d d p r i m e s p s u c h t h a t ( @ ) = ( ~ ) =  - I a n d ( ~ ) =  + l foral l  

eeE.  

Proof Put  e := I-Ie~E e. Let  p be any of the infinitely m a n y  (Dirichlet) pr imes of the 
form p = 4me - 1. For  any  odd pr ime e e E, p - - l ( m o d  e) and by the quadrat ic  
reciprocity law IS, Theorem 1.6] 

- 1  e p e - = 

so = + l .  I f 2 ~ E , p -  = - l ( m o d 8 )  so -- + l b y [ S ,  Theorem I.5]. More-  

over, ( @ ) = -  1 a s p -  1( lO64) .  

Le tnowsCEbeapr ime .  I f s = 2 ,  t h e n 2 r  8), i.e. ( ~ )  = - 1, for 

any of the infinitely m a n y  primes of the form p = 4(2m + 1)e - 1 = m8~ + (4e - 1). 

If s > 2 ,  choose natural numbers a and b such that ( a ) = - ( ~ )  and 

4be - 1 -- a (mod s). Then p -= a (mod  s) for any of the infinitely m a n y  primes of the 
form p = 4(b + ms)e - 1 = m4es + (4b~ - 1) so by the quadra t ic  reciprocity law 

- 1  a 

This finishes the proof. [] 
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For  the rest of this section, the letter L will stand for some cofinite set of primes 
and E for the complementary finite set of primes. F/denotes  the set of all primes. 
For  any given partition /7 = E w L, the set 

and 

is infinite. Therefore there are uncountably many sequences (ap)ps11 satisfying 

+ 1  p ~ S  or p = s  

ap = +_ 1 p ~ S but p : # s  . 

Here, s is some fixed prime in S. The idea of the proof is to associate to each such 
sequence a space in the appropriate genus set. For technical reasons it is convenient 
to consider the localization genus set G(BGL) as a subset of the completion genus 
set G~ (BGL). The completion genus set Go ~ (XL) consists of all homotopy types of 
7Za-nilpotent spaces Y of finite type over EL such that Y~ ~ - X p ,  p~L,  and 
Y~o~ -~ Xc0~. 

Lemma 2.10. Let G be any non-trivial simply connected compact simple Lie group. 
Then the genus set G(BGL) is uncountably infinite. 

Proof Wilkerson's double coset formula [Wi] 

G~ (BGL) = Aut(BGml)\ C Aut((BGL ~ )co))/Aut(BG~ ) 

expresses the completion genus set as a quotient of the subgroup C Aut((BGL ~ )m)) 
consisting of those elements of Aut(BGL ~ )co}) that induce Q | 7ZL ~-linear automor-  
phisms in homotopy. In particular, the self-homotopy equivalence 1]p~Lapx 1 of 
the formal completion 

K(Q @ Z ~ ,  4) x (BG (4)~)m) 

of BGL represents a space B(ap) in the completion genus Gr (BGL). Moreover, since 
each ap is a rational number, B(ap) is in fact contained in the localization genus 
G(BGL). It suffices to show 

B(ar) = B(bp) ~ (ap) = (bp) 

for any two sequences (ap) and (bp) that meet the requirements. 
Assume B(ap) = B(bp). Then 

for some R e Aut(BGm)) and some N e Aut(BG~ ). In 

g4(BGo~; if) | ~/~ = H4(BG,2 ; ~ ) | i f  = H4(BG; if  | ~,2 ) 

we get 

(*)  Vp~L:  pap = vpbp 

where p is the degree of H4(R; if) | ~E; and vp the degree of Ha(N;  JE; ) | I1). We 
may assume that 2 and 3 are in E. Then 2 and 3 will be square units in 2g; for all 
p~S;  by the computat ion of Hg(NR(WG); ifp) in Corollary 1.7 the same is true 
for vp. 
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F o r m u l a  ( �9 ) implies p e 7Z*, i.e. p = +_ e] . . . .  el, k for some exponents  ij e 7Z and 
some pr imes e j eE ,  1 <= j <= k. All pr imes in E are, by const ruct ion,  quadra t i c  
residues mod  p for any pr ime p e S. In par t icular ,  I Pl is a quadra t i c  residue m o d  s. 
As also p --- vs is a quadra t i c  residue m o d s  whereas - 1  is not, we must  have 
p = e] 1 . . .  e}, k > 0. Hence  p is a square unit  in 7l 7 for all p e S. We observed above  
tha t  also vp is a square unit  in Z v for all p e S and  that  - 1 is not. Therefore  ( . )  
now says ap = - 1 ,~, b r = - 1, p e S .  If  p ~ S ,  av = 1 = bp by definition. Hence 
(av)p~n = (bp)p~n. 

L e m m a  2.11. Let G be any non-trivial simply connected compact Lie group. Then the 
genus set G(BGL) is uncountably infinite. 

Proof. A detai led p roo f  is given only in the case where G = H x .  �9 - x / - / =  H", 
n > 1, for some simple Lie g roup  H + 1. I ' l l  show that  the m a p  

-- x B H [ -  1. G(BHL) ~ G(BHL x B H [ -  1) 

has an uncountab le  image. 
Wri te  H = E w L where 2 and 3 are in E. I t 's  enough to show 

B(ap) x B H [ -  1 ~_ B(bp) x B H [ -  1 ~ B(av ) ~ B(bv ) 

for any  two sequences (ap)wc and  (bv)p~L associa ted  to the given par t i t ion.  So 
assume the left s ta tement  is true. 

The space B ( a v ) x B H [ - ~ e G S ( B G D  is represented  by the self m a p  
(Hv~L diag(ap, 1 . . . . .  1)) x 1 of the formal  comple t ion  

(BG~ )lo) = K(II~ n | ~i~, 4) x ( B G ( 4 ) ~  )(o) . 

By the double  coset formula  for the comple t ion  genus there exist R e Aut(BG(o)) 
and  NpeAut(BG~')  such that  for all p e L  

R(diag(ap,  1 . . . . .  1) x 1) = (diag(bp, 1 . . . . .  1) x I ) N  v 

in C Aut ( (BG 2 )~o)). The induced II)v-linear maps  on 

H'*(BG; Qv) = H'*(BG~o); Qv) = H4(BG2 ; 7Z, 2 ) | 

satisfy 

(,) V p ~ L :  diag(ap,  1 . . . .  , 1)p = vpdiag(bp, 1 . . . . .  1) 

where p = H4(R;  II~) | 2g~ and vp = H4(Nv; 71~ ) | Q. 
The mat r ix  vp act ing on H4(BT;  Qp)w~, = H 4 ( B G ~ ; Z ~  ) |  ~ is induced from 

some element  of 

Therefore  vp = diag(v~ . . . . .  v~,)o-p for some units v ~ e Z ~  and some pe rmu ta t i on  
mat r ix  %. Since we're assuming that  2 and  3 are in E, the p-adic  numbers  v~ are 
squares  by Coro l l a ry  1.7. 

W e  rewrite 

(*)  V p e L :  diag(ap,  1 . . . . .  1)p = diag(v~ . . . . .  v~,)crpdiag(b r ,  1 . . . . .  1) 
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and from this we see that pcrp must be a diagonal matrix and that the permutation 
matrix ap is independent of p; crp = a, say, for all p ~ L .  If ptr = d i a g ( r l , . . . ,  r,), 
we get 

( . )  V p 6 L :  diag(rlap, r2 . . . .  , r,) = diag(vp 1 . . . . .  vJbp,..., Vn) 

wherej  = a(1). As in the proof  of Lemma 2.10 we conclude ap = 1 = bpi f j  # 1 and 
a p =  bp i f j  = 1, p ~ L .  [] 

Lemma 2.12. Let G + 1 be a compact simply connected Lie group and let T be 
a d-dimensional torus, d > O. Then the image o f  the map 

- x BTL: G(BG,)  ~ G(BGL x BTL) 

is uncountably infinite. 

Proof  We shall restrict ourselves to the case where G is a simply connected 
compact simple Lie group. As above we may assume L = / 7  - E for some finite set 
of primes, E, containing 2, 3 and all prime divisors of I W~I. Let (ap) and (bp) be two 
sequences as defined above. We'll show 

B(ap)L x BTL ~- B(bp)L x BTL ~ B(ap)L "~ B(bp)L . 

Assume the left statement is true. The formal completion of BGL x BTL is 

K(Q| 4) x (BG (4>~)r (BT~)r 

Wilkerson's double coset formula for G ~ ( B G ,  x B T D  shows that in 
C Aut(((BG x B T ) ?  )r 

for some ReAut(BG(o~xBT~ol) and some NsAut(BG1) x BTI)) .  In 
C Aut((BG~ )(o)) we get 

where R11 is the composite 

BG~o) ~ BG~o) x BT(o~ R , BG~ol x BT~m -~ BG~o~ 

and N~I is defined similarly. Both R~I and N~ are homotopy equivalences since 
they induce isomorphisms in homotopy. Therefore the spaces B(ap)L and B(bp)g are 
homotopy equivalent according to the double coset formula. [] 

In order to finish the proof  of Theorem 2.3, let now G be any non-abelian 
compact connected Lie group. G is the base space of a finite covering map 
H x T--* G for some non-trivial compact simply connected Lie group H. Hence 

BHL x BTL = BGL , 

provided [~z~(G): ~ 1 ( T ) 1 r  so G ( B G c ) =  G(BHc x BTc) is uncountably infinite 
by Lemma 2.12. 
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Remark 2.13. (1) Two (nilpotent and finite type) connected spaces are said to be 
clones [M-M2] of each other if they have homotopically identical p-localizations at 
all primes p as well as identical nth stage Postnikov approximations for all n > 0. 
In other words, the clones of X are the homotopy types in the intersection 
G(X) c~ SNT(X)  where SNT(X)  denotes the set of all homotopy types with the 
same n-type for all n as X. SNT(X)  and the completion genus Go ~ are related by the 
short exact sequence 

�9 -+SNT(X)-+ G~(X)-+ lim G~(X~n))-~. 
<. 

of sets. When L is a finite set of primes, and G is any Lie group, Zabrodsky [Z] 
shows that G~ (BGk ~) = G(BG{L ~) = �9 for all Postnikov approximations BG~L ~ to 
BGL. Thus SNT(BGL) = G~ (BGL) and 

G(BGL) ~ SNT(BGL) 

is the set of clones of BGL. 
When it comes to the integral space BG it is known that SNT(BG) is uncount- 

ably large [M-M 1, Theorem 4] for all non-abelian compact connected Lie groups 
G =i= SU(2), SU(3), SO(3), PSU(3). However, the cardinality of the set of clones of 
BG is not known. 

(2) The exact size of the genus sets mentioned in Proposition 2.2 are unknown. 
It follows from [M-M1, Theorem 3] that SNT(BSU(2)L), and hence also 
G(BSU(2)L), is trivial for all finite sets of primes L. 

3 Rational self equivalences of BG 

A map ~: Y--, Z between nilpotent spaces is called a rational equivalence if its 
rationalization a<o): Y<o) --+ Z{o~ is a homotopy equivalence. Let e0(Y, Z) c [Y, Z ]  
denote the set of homotopy classes of rational equivalences from Y into Z and 
eo(Y) = to(Y, Y) the monoid of rational self equivalences of u The group of 
invertible elements of ~o (Y) is Aut(Y), the group of homotopy classes of homotopy 
self equivalences of Y. We arc here interested in the case where Y is (the localization 
of) a Lie group classifying space or of the same genus as such a space. 

Let L be a nonempty set of primes and let G = G~' • �9 �9 • G~ '~ be a simply 
connected compact Lie group written as a product of its simple factors such that 
Gi =1= G~ for i =t= j. We adopt  the convention not to distinguish between Spin(2n + 1) 
and Sp(n), n > 2, in case 2 ~ L. 

Theorem 3.1. The obvious map 

+ ~o((BG,)L) ~ Z,,, ~ ~o(BGL) 
i = 1  

is a monoid isomorphism. 

Corollary 3.2. ( ~ =  1 Aut((BGi)L)~Z,i ~- Aut(BGL). 

A special (and motivating) case of this corollary, 

Aut(BSU(2)") ~- Z, 

can be found in a paper [I]  by Iwase. 
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The proof of Theorem 3.1, relying on the simple structure of NR(Wo) as well as 
results from [JMO3], consists of the following three lemmas. 

Lemma 3.3. Let G = G(1) • G(2) be the product of the two simply connected compact 
Lie groups G(1) and G(2). Assume that the Q-Dynkin diagrams of  G(1) and G(2) have 
no isomorphic components. Then the product map 

eo(BG(1)L) • eo(BG(2)L ) --* eo(BGL) 

is a monoid isomorphism. 

Lemma 3.4. Let G be any simply connected compact simple Lie group. Then the 
obvious map 

eo(BGL) ~ Z, ~ eo(BG[) 

is a monoid isomorphism for any integer n > 1. 

Lemma 3.5. Let G = Spin(2n + 1) b • Sp(n) ~, n > 2, and let L be a set of primes 
containing 2. Then the product map 

eo(B Spin(2n + 1) b) • eo(B Sp(n)~) --* eo(BGL) 

is a monoid isomorphism. 

Proof of Lemma 3.3. Choose maximal tori T(i) ~ G(i), 1, 2, and let T = T(1) x T(2) 
serve as maximal torus for G(1) x G(2) = G. 

Let f :  B G L ~ B G L  be a rational equivalence. Choose [A-W, Theorem 1.1; 
JMO3, Proposition 1.2] for each p e L  a rational equivalence k, such that the 
diagram 

(,) 

kp 
BT(1)2 • BT(2)~ , BT(])~ • BT(2)~ 

1 l 
L ~ 

BG(1)2 xBG(2)2 ~ BG(1)2 • 

commutes up to homotopy. By Corollary 1.5, the induced map 

is a product homomorphism. Then also kp = k(l)p• k(2)p is the product of two 
maps k(i)peeo(BT(i)~), i =  1, 2. Definef(i) to be the composite 

BG(i)L ~ BGL Y ' BGL -* BG(i)L 

o f f  and the appropriate inclusion and projection. Since the lift k(i)p of / ' ( / ) ;  is 
a rational equivalence, so is f(i), cfr. [JMO3, Proposition 1.2(iii)]. Note that (*) 
stays homotopy commutative if f is replaced by f (1)•  and that consequently 
[JMO3, Corollary 1.10], fiA =f(1)~  • and f = f ( 1 ) •  as eo(BGL) 

eo(BGi~)is injective [W4, Lemma 2; JMO1, Theorem 3.1]. This proves surjec- 
tivity. 

Injectivity follows from the general statement that the product map 

IX1, X1]  x [X2, X2] --~ [-X 1 x X2, X 1 x X2] 

is an injection for any two spaces X1 and X2. [] 
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The proofs of the remaining two lemmas  are similar to the one above. In each 
case it suffices, for a general rat ional  equivalence f :  BGL --* BGL, to show that  the 
restrictions kp: BTp A ~ BT~ offp A , p ~ L, are product  maps  (composed with a per- 
muta t ion  map). 

Proof of Lemma 3.4. Choose  a maximal  torus T c G and let the Cartesian product  
T" serve as maximal  torus for G'.  

For  each p ~ L, 

HZ(kp; Z~ ) | Q~N%(WG,) = N%(WG) ~ Z,  

so the rat ional  equivalence kp has the form 

kp = (k(1)px" - "x k(n)p)O ap 

for some k(i)p~ ~o(BT~) and some permuta t ion  ape  22, ~ Au t ( (BT~ )'), 1 _< i _< n, 
p ~ L. The  permuta t ion  a n is independent  of p because 2;, is faithfully represented 
in H4(BG~; Qp) = H4(BGL; I~p) n by H4(fp A ; ~ )  @ Q = H 4 ( f ;  Q) | 2 ~  = 
H 4 ( f ;  tI~v). Thus kp = (k(1)p x .  �9 �9 x k(n),) o a where a is the c o m m o n  value of the %, 
p s L .  

Proof of Lemma 3.5. Write G = G(1)x  G(2) where G(1) = Spin(2n + 1) b, 
G(2) = Sp(n) c with maximal  tori T(1) ~ G(1), T(2) c G(2)of  the form T(I) = T(0) b, 
T(2) ~ T(0) ~ for T(0) = IR"/2g". 

For  each p ~ L, 

H2(kp; Z 2 ) | II) ~ N%(W~) ~ N%(Wspin(2n + 1))2 ~Yb+c 

SO kp = (k(1)p x k(2)p) o 6p where k(t)p, k(2)p are p roduc t  of b, c rat ional  self equiva- 
lences of  BT(O)~ and ~rp6Zb+~ c Aut(BT(1)~ x BT(2)~ ) = Aut((BT(0)~)b+~) is 
a permuta t ion  map.  At the pr ime 2 e L, 

UZ(k2;  ~2 A )~N~,(Wo(1)• = N~;(W~(1)) x NT/2(Wo(2) ) 

because J~^ and k 2 are genuine h o m o t o p y  equivalences [ JMO3,  Propos i t ion  1.2 
and 1.3]. Thus the c o m m o n  value ap = o-2 ~S~ x S~ ~ Sb+~ and kp is a p roduc t  of 
rat ional  self equivalences on BT(1)~ and BT(2)~.  [] 

For  the rest of this section, G can be any compac t  connected Lie group. 
Fix a space Y~ G~ (BGD of the same comple t ion  genus as BGL where L is any 

set of at  least two primes. We shall investigate Aut(Y) and the sets of rat ional  
equivalences between Y and BGL. By assumption,  there exist h o m o t o p y  equiva- 
lences 

f :  Y~o) ~ BG(o) and g: Y~ ~ BGI~ 

and Y is h o m o t o p y  equivalent  to the h o m o t o p y  pull back of the d iagram 

BG(o) ~ (BG~ )(o) ( ~ (BG~ )(o) (-  BG~ 

where B = f o g - 1  and the unmarked  arrows represent canonical  maps. 

Proposition 3.6. Aut(Y) is isomorphic to (the image in Aut(BG(o)) of) the group of all 
pairs 

(R, U) s Aut(BG(ol) x Aut(BG~ ) 

for which RB = BU in C Aut( (BG~ )(o)). 
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Proof. Use [MM2, Lemma 4] and, for the parenthesis, Lemma 3.8 below. 

The next example shows that the group of self-homotopy equivalences is not 
a generic invariant. Recall that 

Aut(II-lP{ ~ x IHP~) ~ (Aut(lt-IP2) x Aut(IHPL~)) >~ Z'2 

by Corollary 3.2, 

Example 3.7. There exists a space Y~ G(IHP[ • 1HP~) with Aut(Y) -= Aut(IHP{ ). 

Proof The idea is to destroy the symmetry in the product X := IHP ~ • IHP ~. 
Pick some prime s e L .  Let BsGL(2 ,  7/r ~) be the matrix whose coordinate 

( ;  1 ) w h e n p  = s a n d  the identity matrix for atl other primes Bp~ GL(2, ;g~ ) is 1 

p~L .  Let Y be the homotopy pull back associated to B~GL(2 , ;g~)  
GL(2, ll~ | 7/r ~) = CAut((X~)(o)) as above. Y is in the localization genus 

G(XL). 
Let UpeAut(X~).  According to Lemma 2.5 and Corollary 1.4,  U* 

= H4(Up; 7Z~' ) | ff~ acting on H4(X~ ' ; ig~ ) | Q = Q~ is either diagonal or anti- 
diagonal: 

where •v = 0 ,  1 and p,, Vp are p-adic (square) units. 
Suppose R ~ GL(2, Q) : Aut(X(ot) represents an element of Aut(Y) as in Prop- 

osition 3.6. Then R* = H4(R; Q) | 7Z~ = U* for s :i: p 6 L  and 

o)..(, 0,) 
B'*R*(B/1)*  = 1 - 1 

are both either diagonal or anti-diagonal. This forces R to be a multiple of the 
identity matrix; indeed R = m x m for some m ~ Aut ( lHP/ )  c 7Z*. Conversely, any 
R of this form is in (the subgroup of GL(2, Q) corresponding to) Aut(Y) by 
Proposition 3.6. [] 

In particular, when L is the set of all primes, we obtain a space of the same 
genus as IHP '~ x IHP ~ but with no symmetries besides the identity. 

Now pick another member Z of G~ (BGL). Choose homotopy equivalences 

e: Z~o)--* BG~o) and h: Z ~  ~ BG~ 

so that Z corresponds to the double coset containing C:= e~-'h- 
e CAut((BG~)~o)). Consider the set c0(Y, Z) of homotopy classes of rational 
equivalences from Y into Z. 

Lemma 3.8. The rationalization map 

~,0(Y, Z) -~ [ Y~o), Z<o)] 

is injective. 
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Proof  In the commutative diagram 

co(Y, Z) ' [Ym), Z(o)] 

~o(Y~,  z/9 ) > [ (Y~ )~o~, (z,2)~o,] 

hog  '[ [h,o) ,q,o; 

co(BG~, BG~ ) , [(BG~)(o), (BG~)(o)] 

the vertical arrow from the upper left corner is injective because there are no 
phantom maps from Y to Z and the bot tom horizontal map is injective by [JMO3, 
Corollary 1.10]. [] 

In the proposition below, co(BG~ ) denotes the monoid of rational self equiva- 
lences of B G ~ .  

Proposition 3.9. The set co(Y, Z )  is in one-to-one correspondence with (the image in 
Aut(BG(o)) of) the set o f  all pairs 

(R, U) s Aut(BGmj) x co(BG~ ) 

for  which the equation R B  = CU holds in C Aut((BGt))lo)). 

Proof  Identify co(Y, Z) with its image in Aut(BG(0)) under the injection 

e. <[, l 
co(Y, Z) -+ [Ym), Z(o)] , [BG(m, BG(o)] 

taking ~ E Co( K Z) to R := e o ~(o) o f  - 1. In C Aut((BG~ )(o)), RB = e o ~ o f  1 <,.fo g- 1 = 
e o ~ o g - 1  = e o h  - l o h o ~ o g - 1  = CU for U:=ho~1?o9  -1 . 

If, conversely, RB = CU for some R E Aut(BG(o)) and some U ~ co(BGF) then 
the universal property of pull backs applied to the Arithmetic Square produces 
a rational equivalence a: Y ~ Z  with eoaco)of  -1 = R and h~ og-1 = U. [] 

Example 3.10. There are no rational equivalences between IHP{  • IHP 2 and the 
space Y constructed in Example 3.7. 

Proof  If there existed a rational equivalence from IHPL ~ x IHPF into Y, resp. from 
Y into lHP{ ~' x IHP~,  then we could find an R E Aut(ll-lP(~) x IHP~)) = GL(2, ~)  
such that R* and 

�9 1 R * ,  resp. R * ( B 2 t )  * = R *  - 1 ' 

were both diagonal or anti-diagonal. But this just isn't possible. [] 

Even in the simplest genus set, G(IHP~),  the above phenomenon may occur. 
This fact was also known to Frank Adams. 

Example 3.11. There exists a space Y e G ( I H P  ~') such that [ 1 H P % Y ]  
= ,  = [Y,  1HP~]. 
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Proof Let YEG(IHP ~) be the homotopy  type represented by B = ( b p )  
e ( Q |  = CAut(((iHP~)A)~ol ) where b 2 = - 1 and b,= + 1 for all odd 
primes. Suppose that there existed a rational equivalence between Y and IHP ~. 
Then there exists a non-zero integer r such that - r is a square in 7Z2 ~ and r is 
a square in 7Z~ for p > 2. Write r = 2it where t is an odd integer. Since 
- r = 2 ~. ( -  t) is a square in Z2 ~ , i is even and t - - 1 (rood 8) by [S, Theorem 

II.4]. On  the other hand, write t = s~e where s is a prime divisor of t and (s, e) = 1. 
Choose (Lemma 2.9) an odd prime p such that t is a unit in 2gp and 

( ~ ) =  + 1 = -  ( ~ ) .  Then 

= = = + 1  

so j is even. By picking out the prime divisors in t one by one in this manner  we 
conclude that t is a square integer contradicting t - - l (mod 8). 

Let e be any map, say, from IHP ~ to Y. Then ~ "-~ �9 for the self-map gpo ~ on 
(IHP~)~ is by the above (rationally) trivial for all p. Hence c~ ~_ ,. [] 
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