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ON SPACES WITH THE SAME n-TYPE FOR ALL n
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OveR thirty years ago J. H. C. Whitehead posed the following question: Suppose that X and
Y are two spaces whose Postnikov approximations, X ™ and Y'™, are homotopy equivalent
for each integer n. Does it follow that X and Y are homotopy equivalent?

Recall that X can be obtained by attaching to X cells of dimension n + 2 and higher to
kill off the homotopy groups of X in dimensions above n. So it is easy to see that the answer
to Whitehead’s question is yes if X is either finite dimensional (use the cetlular approxima-
tion theorem) or if X has only a finite number of nonzero homotopy groups. But in general,
the answer is no. The first such example, found by Adams in 1957, [1]. is essentially the
following.

Example A. Let K be a I-connected, finite, noncontractible CH-complex and let
X =11,,, K™ with the direct limit topology. Then X and X x K have the same n-type for
all n, but are not homotopy equivalent. a

Notice that this example does not have finite type; indeed, none of its nonzero homotopy
groups are finitely generated. In 1966, Brayton Gray found one with finite type, {7]. Let
X =QE(S? v ZCP"). He took a nontrivial phantom map from CP © 1o S 3, applied QX to
its mapping cone and obtained a different homotopy type, Y, that had the same n-type as X
for all n.

In 1975, C. Wilkerson classified, up to homotopy, those spaces Y having the same n-type
as X for all n. In [18], he proved the following fundamental result.

TueoreM 1. Given a connected CW space X, let SNT(X ) denote the set of all homotopy
types [Y] such that Y™ =~ X™ for all n. Then there is a bijection of pointed sets,

SNT(X) = lim' Aut X
where Aut X' is the group of homotopy classes of homotopy self-equivalences of X™. 0O

Our interest in this topic began with the following question: How big is the set SNT(X)
for well known infinite dimensional spaces like the classifying space of a compact Lie group
or the loop space of a finite complex? We have some answers. In Theorem 4, we show
SNT(BG) is almost always uncountably large when G is a compact connected Lie group.
There arc just a few exceptions and we list them. On the other hand, we have yet to find a
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finite complex K for which SNT(QK) has more than one member. In Theorem 5 we prove
that SNT(QK) = [QK] for a class of finite complexes that includes compact Lie groups and
many Stiefel manifolds.

To get these answers we had to figure out a way to compute lim' Aur X without
knowing very much about the individual groups in the tower. As is well known, these
automorphisms groups are next to impossible to calculate. The following algebraic result
helped us get around this obstacle. Recall that a tower of groups G, « G, « . . .is said to
have the Mittag-Leffler property if there is a descending chain condition on the images in
each G,, of G, ,, as k —» co. To put it another way, if G = image(G, + G, .,) then the tower
{G,} is Mittag-Leffler if for each n, lim G’ = G\’ for some finite N. It is well known that ifa
tower {G,} has the Mittag-Leffler property then lim' G, = +. Here is a partial converse.

THEOREM 2. Let Gy « G, « Gy + .. . be a tower of countable groups. Then lim' G, = «
if and only if the tower {G,} is Mittag-Leffler. Moreover, if lim' G, # =, it is uncountably
large. ]

Gray proved a result like this in ([7]. p. 242). Theorem 2 is stronger than his result in two
respects. First, it shows that his hypothesis, that each image(G, « G,,,) be normal, is
unnecessary. This is important because automorphism groups of Postnikov towers do not
always have this normal image property. Secondly, Gray notes that if the groups in the
tower are abelian, then the last sentence in Theorem 2 holds. We show it hoids in the
nonabelian case as well. After writing this paper we learned that the first part of this
thcorem is in the litcrature on shape theory, (5], page 78).

One might wonder if, in Theorem 2, it is really necessary to require the groups in the
tower to be countable. The following example shows that it is.

Example B. Let H,, i=1, 2,... be a scquence of nontrivial groups and define
G,=M,,,H, The tower of inclusions G, « G, «~ ... is not Mittag-Leffler and yet
lim'G, = . O

CoroLLARY 2.1. If X is a connected nilpotent space with finite type over some subring of
the rationals, then either SNT(X ) = = or else it is uncountubly large. 0

Of course, when we write SNT(X) = », we mean that [X] is its only member. The
groups Aut X ™ are countable for those spaces that satisfy the hypothesis of 2.1 and so the
corollary follows directly from Theorems | and 2.

The next result gives a homological criterion that determines whether or not SNT(X) is
trivial when X is an H-space. Recall that an Hy-space is one whose rationalization is an H-
space. It's easy to spot an Hy-space with finite type; its rational cohomology is either an
exterior algebra on odd degree generators or a polynomial algebra on generators of even
degree, or a tensor product of the two. Familiar examples of H-spaces, include H-spaces,
complex Stiefel manifolds, and the classifying spaces of compact connected Lie groups.

TueoreM 3. Let X be a 1-connected, H-space with finite type over Zp for some set of
primes P. Then the following statements are equitalent:

i) SNT(X)=~»
(ii) the canonical map Aut X — Aut X, has a finite cokernel for all n

(iii) the map Au X220 A H S"(X; Zp) has a finite cokernel for all integers n. 0
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There are some items in this theorem we should clarify. First, Z, denotes the integers
localized at the set of primes P, and the finite type hypothesis means that each n, X is a
finitely generated Zp,-module. Secondly, when we say a homomoprhism (or an anti-
homomorphism) f: A — B has a finite cokernel we mean only that its image f(A), has finite
index in B. Finally, Aut H*"(X; Z,) denotes the group of all ring automorphisms that
preserve the degrees of homogeneous elements in this graded ring.

The proof of Theorem 3 centers around the Postnikov system of X. Obviously, each
stage of it satisfies condition (i). The main step is to show each X *' also satisfies the other
two conditions. When we pass to the limit we then exploit the finite cokernels in (ii) as well
as the countability of the groups Aut X *.

Is Theorem 3 the most general result possible? The next two examples provide some
answers. The first deals with the hypothesis that X be an H-space. Perhaps this restriction
could be relaxed a little, but the following example shows that it cannot be eliminated
entirely.

Example C. Let K =(S% v §%){ J,¢* where ¢ = [[1,,1,].1,]. Then SNT(K) = », of
course, because K is a finite dimensional, but for all n > 2, the map Aut K - Aut H*"K has
an infinite cokernel. 0

The example just given is clearly not an Hg-space. The next example deals with
restrictions on the fundamental group. A glance at the proof of Theorem 3 reveals the
condition 7, X = 0 could be weakened to read: n, X is nilpotent, it acts nilpotently on the
higher homotopy groups of X, it has a finite commutator subgroup and its abelianization is
a finitely generated Zp-module. Here is what happens, among finitely genecrated nilpotent
groups, when we try to go any further in this direction.

Example D. Let n = N xZ where N is the frec nilpotent group of class 2 on two
generators. If X = K(r, 1), then obviously, SNT(X)=» and yet the cokernel of
Aut X — Aut(H' X ) is not finite. O

The next example may have been known to Adams but it came as a surprise to us.
Indced, recall Zabrodsky's result that the homotopy genus of BU is uncountably large
([21], page 190). It seems to suggest that you can't recognize BU from a long way off; you've
got to get up close and localize to be sure. On the other hand, we found that if, at each stage
in the Postnikov tower, a space looks like BU, then it must be BU. Since the classifying
spaces BU and BSp play central roles in algebraic topology, it scems worthwhile being able
to rule out counterfeits of these spaces.

Example E. If X = BU or BSp, then SNT(X) = ». In fact, something stronger than
Theorem 3 is true; namely Aut X — Aut X ?™ is surjective for each n. a

When the rational homotopy groups of X vanish above a certain point, we get a
criterion that is easier to check than the one given in Theorem 3.

CororLary 3.1. Let X and P be as in Theorem 3 and suppose there exists an integer t such
that n,, X ® Q = 0. Then SNT(X) is trivial if and only if Aut X — Aut H=<"(X;Z,) has a
finite cokernel in at least one of the following cases:

(i) forn=1,

(i) for some integer n > ¢,

(iii) for all integers n. a

TOP J1:1-M
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We use this corollary and the nonexistence of essential maps from K(Z, n) to S", when
n > 1, to get the following.

Example F. Let X = S**! x K(Z, 2n + 1) where n > 1. Then for any nonempty set of
primes P, SNT(X,) # * and SNT(QX,) # =». a

The case of QX when n = | confirms a conjecture Wilkerson made in [18], p. 283. The
assertion that SNT(X) # « contradicts a result of Zabrodsky (Example E(a) in [22]). We
will explain the connection and point out the error in his argument when we verify this
example. Incidentally, Example F shows how badly SNT( ) behaves with respect to
products, whereas the next result shows that it works well with connected covers.

CoROLLARY 3.2. Let X be an n — | connected space that satisfies the hypothesis of
Theorem 3. If X denotes the n-connective cover of X, then SNT(X) = » implies that
SNTIX) = . a

Here is our main result on classifying spaces.

TueoreMm 4. Let G be a connected compact Lie group. Then SNT(BG) = = if and only if
G=TSUmor PSU(n) whenk 20 and n =2 or 3. 0

For l-connected compact Lie groups, this means that SN T(BG) is uncountably large in
all but three cases: G = =, SU(2), SU(3). Incidentally, these three are the only cases where
Aut H* BG is finite! In the remaining cases the abundance of nontrivial operations in
cohomology and K-theory places severe restrictions on the possible self equivalences of BG.
Indeed, in most cases the image of Aut BG — Aut H* BG is finite while the range is not. We
usc Hubbuck’s results on sclf maps of BG to show this when G is simple. In other cases we
resort to direct calculations involving Weyl groups and the techniques pioneered by Adams
and Mahmud, [2]. Of course, once we show the relevant cokernel is infinite, Theorem 4 then
follows immediately from Theorem 3.

Let K be a finite complex. The homotopy theoretic nature of QK is quite different from
that of the BG’s in Theorem 4. The next result reflects this disparity. In it, K might be a finite
H-space, or a complex Stiefel manifold, or a product of odd dimensional spheres.

TueoreM S. Let K be a L-connected, finite CW-complex that is an Hg-space. Then for any
set P of primes, SNT(QK ) = ». Moreover, the map Aut QK ,) ~ AutQK{), is surjective at
almost all primes p and for almost all integers n. 0

At first we wondered if this result might be a special case of something much more
general; namely—Is the obvious map SNT(X) — SNT(QX ) always surjective? The follow-
ing example rules out this possibility.

Example G. Let X =K(Z,2n)xS?" where n>2. Then SNT(X)==%, but
SNT(QX) # «. O

Nevertheless, Theorem 5 and a growing list of the examples prompts us to make the
following:

Conjecture. 1f K is a l-connected finite CW complex, then SNT(QK) = ».

The results in Theorems 3 and 5 suggest a possible connection between SNT(X') and
SNT(X,) in general, but its precisc nature has so far eluded us. At first, we suspected that
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the obvious map SNT(X ) — [1,SNT(X,,) was bijective but the following example shows
that life is not that simple.

Example H. Let X = BSU(3). Then SNT(X) = « by Theorem 4, but SNT(X,,) # =
for p > 3. g

Our last result is an application of Theorem 5 and Zabrodsky's genus theorem, [20].
For a nilpotent space X, let G(X) denote its homotopy theoretic genus set defined in terms
of localization; that is, the set of ail homotopy types { Y] where Y is nilpotent, of finite type,
and Y, >~ X, for all primes p. With regard to the cardinality of G(X), the [ollowing is
known. Wilkerson proved that G(X) is a finite set when X is a 1-connected finite complex,
[19]. Rector gave a complete description of G(HP *) and showed it to be uncountably large,
{16]. Zabrodsky proved for Hy-spaces X with only a finite number of nonzero homotopy
{or homology) groups that G(X) is isomorphic to a finite abelian cokernel determined by a
certain monoid of self maps of X, [20]. As mentioned earlier, he also showed the genus of
BU to be uncountably large in the last chapter of his book, [21]. Beyond this, not much is
known about the genus of infinite dimensional spaces.

THEOREM 6. Let K be a 1-connected finite CW complex that is an Hy-space. Then the map
G(K) = G(QK) that sends u homotopy type [X] in G(K) to [QX]. is an epimorphism. In
particular G(QK ) inherits from G(K) the structure of a finite abelian group. 0

The situation described in this theorem is very special one and, in general, the map
G(X)— G(Q2X) is not an cpimorphism. Herc is a relevant example.

Example [. Let X be the Grassmann manifold of complex n-planes in C*** wheren 2 5
and 2k > n?. Then G(X ) = + by Glover and Mislin, [6], but G(QX) # ». ]

This concludes the list of main results. Before starting the proofs, we want to acknow-
ledge the help that Joe Neisendorfer has given us over the past year as these theorems and
examples evolved. Thanks, Joe! We will now prove the theorems in the order they were
presented and then we will work out the examples.

Proof of Theorem 2. The Mittag-Leffler property is well known to imply that lim! is
trivial; see for example [4], page 256. Assume then that the tower {G, } is not Mittag-LefTler.
This means that for some natural number a, the tower of nested images {H,}, where

H, =image{G,~ G,}, n>a,

has infinitely many different H,’s. Let K, denote the kernel of the epimorphism G, - H,.
The 6-term lim — lim' sequence, [4], page 252, applied to the short exact sequence of towers

¢ = (Ko} = {G )~ {H,}—+

ends with an epimorphism lim' G, — lim" H,. Thercfore it suffices to show that lim" H, is
uncountably large. Our notation here does not indicate whether a tower startsat n = 1 or
n = a, because Li_rp' of the tower is independent of the particular choice. To minimize
subscripts, let H = H,. If each H, were normal in H, we could form the short exact sequence
of towers,

e = {H,} = {H} = {H/H,} - =,
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apply the 6-term lim — lim® sequence and obtain
— H = limH/H, = im' H, — ».

We could then argue, as Gray did, that since H is countable and lim H/H,, is not, it follows
that Ligl‘H,, is also uncountable. We will now show that the same proof goes through
almost unchanged without the assumption that each H, is normal in H.

We denote by H/H, the set of left cosets of H, in H. The inclusion H, < H,,, induces a
surjection of coset spaces H/H, — H/H,, ,. We take the inverse limit of sets, l(an H/H,, and
it is uncountable for the same reasons as before; namely, the H,’s become ever smaller as n
increases. A typical element in lim H/H, is a nested sequence of left cosets {x,H,}. Let
d:limH/H, - lim" H, send {x,H,} to the equivalence class [ {x, YXp+1}]in lim' H,. Notice
that x; 'x,,, € H,, since x,H, © x,,,H, . Thus the definition of ¢ makes sense since
lim' H, is the following quotient of I1? H,. The group ITH, acts on the set [TH, in such a
way that two classes, say {u,} and {v,}, are in the same orbit under this action if and only if
there is a class {w,} € [1H, such that w,u, = v,w,,, forall n > a.

To show that & is well defined suppose that {x,} and {y,} are two sequences of
representatives for the same sequence of cosets in H. Thus x,H, = y,H, for each n. If we let
w, = y; ! x,, it follows that w,e H, and

-1 _ y— 1
wnxn xn+l_.Vn .V..HW.‘H-

Thus @ is well defined; it does not depend upon the particular choice of coset represent-
atives.
To see that ¢ is surjective, take a sequence {u,} € [1H,. Choose

x, =1
xa*l = u:
Xy = Ugly sy Up-y

Then d{x,H,} = [{x;'x,+1}]1=[{u,}] and so & is surjective. There is an obvious
action of H on limH/H,, namely (h, {x.H,})— {hx,H,}, and it is easily checked that
d{x,H,} = 3{hx,H,}. On the other hand suppose {x,H,} = d{y,H,}. This implies
there exists {z,}eIMH, such that

Zp Xy Y Xguy = Yo Vi 1Zae:
or
(xnz"-l)-x (Xnr1Zad1) = Yo Varr-
Now since z,e H, it follows that x,H, = x,z;'H,. Hence, if d{x,H,} = d{y.H,},

we may assume that the coset representatives {x,} and {y,} were chosen so that

X7 X, 4y = Y5 'yas, for all n > « Then solving for x, recursively we obtain

Xy = (X, ys )y, forallnza

This implies that the surjection @ is at most countable-to-one. Therefore lim' H, must be
uncountable and the theorem is proved.
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Proof of Theorem 3. The Postnikov system of X is a sequence of principal fibrations,
K(n,n)— X" o xtr-b

with certain well known properties. Since X is an Hg-space, the k-invariants, which classify
these fibrations, have finite order. We show that for the automorphism groups involved, this
has the following consequences.

LemMa 3.1. Let X be as in Theorem 3. Then for each integer n,

(a) the map Aut X™ — Aut H3"(X""; Z,) has a finite kernel and a finite cokernel, and
(b) the canonical map Aut X **V — Aut X™ has a finite cokernel. )

Notice that the first part of this lemma implies the equivalence of conditions (ii) and (iii) in
Theorem 3. To show conditions (i) and (ii) are equivalent, we need the following algebraic
result.

LemMMmA 3.2, Let G, «~ G, « ... be a tower of countable groups in which each map
G, + G, has a finite cokernel. Then the tower {G.} is Mittag—Leffler if and only if the
canonical map limG, — G, has a finite cokernel for each n. 0

Assume for the moment that these two lemmas are true. The hypothesis on X implies
that {Aut X'} is a tower of countable groups. Therefore, by Theorems 1 and 2, SNT(X)
=  if and only if the tower {Aut X *'} is Mittag-Leffler. By 3.1(b), this tower then satisfies
the hypothesis of Lemma 3.2, Since the canonical map Aut X — lim Aut X * is surjective, the
cquivalence of statements (i) and (ii) in Thecorem 3 then follows from Lemma 3.2. The proof
of Theorem 3 will be complete once we prove these two lemmas.

Proof of Lemma 3.1. We will first prove part (b) regarding the finite cokernels in the
tower {Aut X}, Consider the diagram

la l=
xw i L x™ 5 KGn+2)

Here k is the k-invariant and so ko n = 0. Moreover since X is an H-space, this k-invariant
has finite order. It is easy to see that there is a § € Aut X ** Y such that §™ = g, provided
keg =k

Let Aut X™ act on H"*3(X™; G) and consider the orbit

O ={g*[k]lge Aur X™}.

This orbit is finite because it is contained in the torsion subgroup of H"*(X ™; G). The
latter is finite because X has finite type over Z,. If N denotes the stabilizer of [k], then there
is a bijection between the orbit © and the set of left cosets of N in Aut X *, Thus the index of
N in Aut X ™ is finite. The subgroup N lies in the image of Aut X "* " and so this image must
also have a finite index.

Consider now the map in 3.1(a),

Aut X™ > Aut Hs" X",

Assume that all cohomology groups in this proof will have coefficients in Z, unless noted
otherwise. We will first show this map has a finite kernel. Since X is an H,-space, there is a
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commutative diagram,

Aur X™

AN

AutH=" X"

Aut HS"(X™; Q) — Aut X"

in which the map across the top has a finite kernel, ([8], Cor. 2.2.a). Hence the same is true
for the map in question.

We will now show this map has a finite cokernel for all n. Since X is simply connected,
this is certainly true for n = 1. Assume now that n > 2, and that the result is true in
dimensions less than n. Consider the diagram

K L

| l
Aut X" _—_— Aut Hs" X"

l |
AutX""“ AutHSn—lxln—l)_

Here K and L are the kernels of the vertical maps in the lower square. The map on the right
is induced by restriction H*"— Hs""! followed by an isomorphism HS""!X® x
Hs"" ' X"~ We assume by induction that the map along the bottom has a finite cokernel.
We already know the same is true for the lower left map. Therefore to prove it for the middle
map, it suffices to show coker(K — L) is finite. To do this we nced better descriptions of the
kerncls K and L. We begin with K.

Each class f'e K is represented by a self map of a principal fibration with the identity map
on the base space.

K(r,n) —— K(m, n)

l !
X / X m
| !
xt-v L yum-n

Let ke H** (X"~ Y, n) denote the k-invariant of this fibration. There is an obvious action
of Aut(r) on this cohomology group; let Aut(n), denote the stabilizer of k. Since k has finite
order, Aut(n), has finite index in Aut(n). According to [13], Theorems 2.1 and 2.9, there is an

exact sequence
HY X @ V1) = K — Aut(n), - 1.

The map out of K is induced by restriction to the fiber (or equivalently, by sending fto the
automorphism it induces on n, X ™). The map going into K occurs as follows. Given a
principal fibration, say F — E % B, one can use the principal action F x E — E, together
with maps from base to fiber, say ¢ B — F, to create self equivalences of E by taking the

composition

E L2 ExE  FxE—E

Since [B, F] =~ H"(X "~ ", n) for the fibration in question, this accounts for the map into K.
As for the other kernel L, recall it consists of automorphisms of H <" X ™ that restrict to
the identity in degrees less than n. When we mod out decomposables,

Dan(n)_’ H"X("'—'QH"XW.
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we get a sequence
Hom(QH"X ™, DH"X ™) - L — Aut(QH"X ™)

that is exact at L. The map K — L then induces a commutative diagram

HYX" Y n) —s K = Aut(n),

i ! !
Hom(QH"X™ DH"X™) — L — Aut(QH"X'™)

and to show coker(K — L) is finite, it suffices to show the other two vertical maps have this
property.

Consider first the image of Aut(n),. The Hurewicz-Serre homomorphism
n, X" — QH" X ‘™ becomes an isomorphism when tensored with Q. Thus the image of this
homomorphism is a Z,-submodule of finite index in QH" X ™. Let A denote this image, let
C denote the module of indecomposabiles, and let Aut(C), = {y € Aut(C)[y(4) = A}. It is
not difficult to see that the map fi— QH"(f) takes Aut(n), to a subgroup of finite index
Aut(C), and so it suffices to show the latter has finite index in Aut(C).

Suppose that A has index d in C. There can only be a finite number of submodules of this
index in C, because they all must contain dC which, since C is finitely generated, has finite
index. Aut(C) acts on this finite set of submodules (each of index d) and so the stabilizer of 4,
Aut(C), has finite index in Aut(C).

Thus we have shown that in the diagram induced by K — L, the map oa the right has a
finite cokerncl. We now consider the map on the left. The easiest way to see that it has a
finitc cokernel is to rationalize. Let # — E — B denote the rationalized fibration. Then
E =~ B x F and the homomorphism [B, F'] = Aut(B x F) sends a map ¢ to the equivalence
(x. )= (x, @(x) y). The map in the diagram applies cohomology to this process. When
tensored with Q, the map on the left factors as

H"'"B:m)® Q Hom(n*, (H,B)*)
= /l"**f‘
Hom(H,B, n ® 2)

Here we have identified n* = Hom(r, Q) with the rational indecomposables and H"(B; Q)
with the corresponding decomposables. Since these rational maps are isomorphisms, the
map in question has a finite cokernel and the proof of Lemma 3.1 is complete. a

Proof of Lemma 3.2. Fix n and recall the definitions G = image(G, «~ G,,,) and
K = kernel(G,,, = G,). We get a short exact sequence of towers,

s (k
= K = {G) 2 (G} - s

Assume that {G, } is Mittag-Lefller and apply the 6-term lim-lim' sequence to the above.
We get
- 1im G, = im G —» lim' K — « —.

By Theorem 2, the third term lim' K3*' is either trivial or uncountably large. The second
term, lim G = N, G < G, and so it is countable. Since it maps onto the third, the latter
must be trivial. By exactness then, the map lim G, — lim G is surjective. The Mittag-Leffler
property means that lim GJ¥ = G,* for some finite N and so the inclusion limG¥ — G, has
a finite cokernel. Composing this with the surjection from limG, shows that the map in
question, lim G, — G, has a finite cokerncl.

The proof in the other direction is easier. If Iim G, maps onto a subgroup [ of finite
index in G, then it is casy to scc that there can only be a finite number of distinct
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intermediate subgroups H with I < H < G, This forces lim G = G for some finite N.
Since this is true for each n. the tower is Mittag-Leffler. ]

Proof of Corollary 3.1. The proof is a diagram chase using the results of Lemma 3.1. We
will first show condition (ii) = (i). Assume (ii) holds for some m > t. Since

X" >~ X v, (e7*2)u(higher cells),

it follows that H="(X'"™; Z,) ~ H=™(X; Z;). This accounts for the isomorphism on the
right in the following diagram

AutX —— AwHS™(X:Z,)

| T=
Aut X™ —— Aut HS™(X'"™; Z,).

We are assuming the map across the top has a finite cokernel. The map on the bottom has a
finite kernel and a finite cokernel by Lemma 3.1a. This forces the map on the left side 1o
have a finite cokernel. This fact, together with a second application of Lemma 3.1, implies
that the composition

Aut X = Aut X™ = qut X' = Aut HS'(X";, Zp)—— Aut HSY(X; Z,)

has a finite cokernel. Thus condition (ii) implies (i).

Foreach integer n > t, Aut X™ — Aurt X" has a finite kernel, as well as a finite cokernel.
To verify this claim about the kernel, notice the inclusion X™ — X is a rational
equivalence and then consider the diagram

Aut X Aut X
l L s
Aut X" Au X§.

Both horizontal maps in this diagram are finite-to-one, as noted earlier, and so the left side
must likewise have a finite kernel. Therefore, the composition

Aut X = Aut X™ - Aue X©
has a finite cokernel if and only if the first map does. The implication (i) = (iii) then follows,

again using Lemma 3.1(a). The two reverse implications, (iii) = (ii) and (i) = (ii) are, of
course, obvious. O

Proof of Corollary 3.2. Let n=n,X. We have, up to homotopy, a fibration,
X — X = K(n, n), where the map into the Eilenberg-Mac Lane space is an n-equivalence.
Given fe Aut X, there is a unique f* € Aut K(r, n) so that the square on the right

X > X K(n, n)
b Lr IS
X X — K(m, n)

commutes. The map on the fiber, f; then exists to make the left square commute. This map
must be an equivalence and it can be chosen so that the assignment fi—f defines a
homomorphism Aut X — Aut X. Take cohomology with coefficients in Z,, fix a positive
integer t > n, and let £ denote the image of HS'X in HS'X. Since X is an Hg-space, X is
rationally a retract of X and so E has finite index in H =* X. Our proof now centers about the



ON SPACES WITH THE SAME n-TYPE FOR ALL n 187
following diagram.

auX L 4wx  — s AurHSY(X)ntorsion
6 4] 2]

At HS'X AutHS')i’,,_- 2. Aut(E/torsion).

Most of the maps in this diagram are the obvious ones. For example, the center map,
marked 4, sends fi— f*. Maps 1 and 6 likewise send h+— h*. We aim to show that coker(6) is
finite. We begin by assuming SNT(X) = ». By Theorem 3 this implies coker(l) is finite. The
kernel of H* X — H*X is the ideal generated by H"X and possibly some torsion elements in
higher degrees. It follows that every automorphism of H 3'(X )/torsion preserves the larger
ideal and passes to the quotient, E/torsion. This provides us with the map 2. We claim it is
surjective. To see this, consider the composition X — X — 1K (Z,. n,), where the map into
the product of Eilenberg-Mac Lane spaces induces isomorphism on QH *( )/torsion. It is
not hard to see that each ¢ € Aut(E/torsion) lifts to a self equivalence of [1K(Z,, n;). This, of
course, implies that 2 is surjective.

The domain of 3 is those automorphisms of H 5 X that take E to itself. Since E has finite
index in H='X, it follows easily that the kernel of 3 is finite. The commutativity of the right
square then forces 4 to have a finite cokernel. The cokernel of 5 is also finite by essentially
the same argument as the one used on Aut(C), in the proof of Lemma 3.1. The com-
mutativity of the left square then forces coker (6) to be finite. The conclusion then follows by
Theorem 3. O

Proof of Theorem 4. The proof is a long one and so here is an outline of it. We first show
that SNT(BG) is trivial for the groups listed. This is the easy part. We are then left to show
that SNT(BG) is nontrivial for the remaining groups. We prove this first for the simple 1-
connected Lic groups. Then we consider products of these groups using

Lemma 4.1. Let G and H be compact connected Lie groups. If either SNT(BG) or
SNT(BH) is nontrivial, then likewise SNT(B(G x H)) # . O

By the classification theorem we are then left (in the simply connected case) with
showing

ProrosiTioN 4.2. SNT(BG) # + for G =SU(m)xSU(n) where (m,n)=(22), (2,3),
or (3,3). ]

In the nonsimply connected case we use Corollary 3.2. It implies that SNT(BG) # =
provided the universal cover G contains as a retract one of the simply connected groups H
for which we have already shown SNT(BH) # . Again, by the classification theorem, there
are just a few groups left that don't fit this description.

ProrosiTion 4.3. SNT(BG) # » for G = U(n) or T x SU(n) where n = 2 or 3. 0

This, of course, is not a complete list of the groups G whose universal cover G is
homotopy equivalent to SU(2) or SU(3). However, the proof of Theorem 4 for those
omitted, such as T*x U(n) or T*x PSU(n), follows easily from this last proposition using
either Lemma 4.1 or Corollary 3.2.

This completes the outline of the proof. Let us begin. We start with those groups G for
which SNT(BG) is claimed to be trivial. For the torus T this is clear since BT* is an
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Eilenberg-Mac Lane space. For the special unitary groups G = SU(2) or SU(3), H*BG
=Z[x,] or Z[x,.x¢]. Thus Aut(H='BG) = Z/2 or (Z,/2)* for almost all values of t. In
particular, these cohomology automorphisms groups are finite. This certainly forces the
corresponding cokernel to be finite and so SNT(BG) = = by Theorem 3. For the projective
special unitary groups, G = PSU(n), BG is rationally equivalent to BSU(n) and, of course, it
also has finite type. This implies that Aut(H*'BG) is likewise finite and so, again by
Theorem 3, SNT(BG) = ».

Assume now that G is simple and 1-connected. Hubbuck, with some help from Ishiguro,
has shown that if fis a self map of BG, then there is an outer automorphism 7: G — G such
that the diagram

BU X BU

Ty Ty
BG L2, BG

commutes for some nonnegative integer k and for all g, [9], [10]. Recall that in cohomol-
ogy. the Adams operation P* has the property W*x = k"x for all x of degree 2n. Therefore
when fis a self equivalence, the ¥* in the diagram must be W', the identity map. Moreover
since the group of outer automorphisms of G is always finite (the largest it can be is £, when
G = Spin(8)). it follows that the image of Aut(BG) is finite. On the other hand, the groups
Aut(H ='BG) arc almost never finite. The only exceptions are the ones cousidered already: »,
SU(2), and SU(3).

The reason behind this lies in the rational cohomology of BG and whether or not there
exist polynomial generators and decomposable terms with the same degree. Take the
groups G = SU(n), n = 4 or Sp(n), n = 2. For these it is casy to describe infinite families of
automorphisms of f/* BG, by making usc of the decomposabie terms. For example, since
H*BSU(n) = Z{c,, ¢y, .. ., ¢,] where cach ¢; has degree 2i, one could define

o ifk#4
ey + a(c,)?

(pa(('k) = {

where « could be any integer. This ¢, extends in a unique manner to an automorphism of
H*BG. Notice that Aut(H*BG) ~ Aut(H='BG) in the special case where H*BG is a
polynomial algebra. The situation becomes more complicated, however, when H* BG is not
a polynomial algebra. Here we take a different approach to showing Aut(H =' BG) is infinite.
Consider the following diagram

Aut(BG™) — Auwt(H="BG)

Aut(KYy — Auw(H*K)

where K is a finite product of K(Z, n)'s with the rational homotopy type of BG. By Lemma
3.1 the top map has a finite kerncl and a finite cokernel. Likewise the bottom map is easily
seen to be an cpimorphism with a finite kernel. It follows from Wilkerson, [19], Theorem
2.3, the two groups joincd by the dotted line are commensurable which, in particular,
implies they have the same cardinality. Now it is a simple matter to show Aut(H*K) is
infinite. One can pick generators and write down automorphisms in terms of them as was
just done in the polynomial case. Finding an appropriate decomposable term with the same
degree as one of the gencrators is a matter of simple arithmetic. It depends, of course, only
on the rational type of G. The specific types (for example [3, 11, 15, 23] for F,) can be found
in Appendix A of Kane's book [11]. A quick glance through this list of types then confirms
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that for all of the remaining simple Lie groups G in question, Aut(H=‘BG) is infinite.
Together with Hubbuck’s Theorem and Theorem 3, this proves Theorem 4 for all simple

I-connected Lie groups.

Proof of Lemma 4.1. We can (and will) identify B(G x H) with BG x BH. Assume that
SNT(BG x BH) = ». It follows from Theorem 2 that the tower Aut(BGxBH)™ is
Mittag-Leffler as the groups in this tower are countable.

For each automorphism group, say A,, in this tower let n’ denote the smallest ¢ such that

image{A, « A,} = image{4, «— A, .y}
for all k > 0. We will show that the tower Aut(BG)"™ is also Mittag-Leffler. Take
feimage{Aut(BG)™ «— Aut(BG)""}.
It then follows that
fx 1 eimage{Aut(BG x BH)"™ « Aut(BG x BH)"}.

Here we have identified (BG x BH)™ with BG"™ x BH™, Using this identification, if
f'€ Aut(BG)™ projects to f, then f* x | projects to fx 1. It follows just as in the proof of
Lemma 3.2, that fx | lies in the image of lim Aut(BG x BH)™. Consequently there is an
equivalence ¢ € Aut(BG x BH) with ¢ = fx 1. The composition

BG =+ BG x BH —*— BG x BH =~ BG

is then a sclf map, say ¢,, of BG. Since the cohomology of BG is finitely generated, [15], we
may assume that n was initially chosen larger than the degree of any of the generators. Then
if ¢,: BG » is an n-equivalence, it is easily seen to induce a surjection (and hence an
isomorphism) in cohomology and so, ¢, € Aut(BG). It follows, therefore that the tower
Aut(BG)™ is Mittag-Leffler and so the lemma is proved. ]

Proof of Proposition 4.2. Assume that G =SUm + 1)xSU(n + 1) where n2m = 1.
Our theorem only requires three values of (m, n) but the proof of the general case is no
harder. Since QH*(BG) ~ Z @ Z it follows that GL(2, Z) is a subgroup of Aut(H*BG) and
so, in particular, the automorphism group is infinitely large. Once again, we will show that
the image of AutBG — Aut H*(BG) is finite. We need the following.

Lemwma 4.4. Let G be a connected compact Lie group with maximal torus TS G, and Weyl
group W. Given fe Aut BG, there exists F € AutBT such that

BG & BT

1 Bi 1 Bi
BG 4 BG

commutes. In terms of the action of W on BT, for each we W, there exists w'e W such that
Fw=wF, 0

This lemma is a direct consequence of a theorem of Notbohm, [ 14] that states that the
function

Rep(T, G) -£=22, [BT, BG)
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is a bijection. In more detail, his theorem implies that f* Bi = B¢ for some homomorphism
¢:T— G. We may assume ¢(T') € T, by composing it with an inner automorphism of G, if
necessary. Since f'is an automorphism, it follows that F is one also. The rest of the lemma is
then immediate.

From now on we will regard the Weyl group W as a subgroup of AutBT. Since F is
invertible we have FWF "' = w’, and so F lies in the normalizer of W in AutBT. In the case
athand we have W x X, xZ,,, and Aut BT = GL(m + n, Z). Moreover the cohomology
of BG embeds in H*BT and so F determines f, at least up to homology. Therefore, for the
purpose of showing that the image of Aut BG — Aut(H*BG) is finite it suffices to show that
the normalizer of Win GL(n + m, Z) is finite. We have an embedding,

N/C — Aut(W),

where N and C are the normalizer and centralizer of Win GL(m + n, Z), respectively. Since
Aut(W) is finite it suffices to show that the centralizer C is finite.

We claim that C is contained in the group of diagonal matrices in GL(m + n, Z). The
latter is certainly finite with order 2"*™. To see this claim about C, recall that the symmetric
group X, ,, is generated by n transpositions o; = (i,i + 1),i=1, ..., n. In its role as the
Weyl group for SU(n + 1), Z,,, acts on a vector space U with a certain nonorthogonal
basis {u,,u,,..., u,} in such a way that each g; sends u; to — u; and fixes pointwise the
orthogonal complement of u;. Moreover, the matrix representation of this action is defined
over Z. Sce ([11]. p 156) for more details.

These properties hold as well for £, ., xZ,,, acting as the Weyl group for SU(m + 1)
x SU(n + 1) on a vector space ¥ with an appropriate basis {v,,v,,.. ., U ont We have
m + n reflections o, that gencrate this product group. Each ¢, sends v, to — v; and fixes
pointwise the orthogonal complement of v,. The action is again defined over Z.

Suppose that an element g€ GL(V) centralizes W. Then a,9 = go, for each reflection ;.
Notice that

o,(g(v)) = go,(v) = g( —v) = —g(v).

Since a,(x) = — x if x is on the line spanned by v, it follows that g(v,) is a multiple of v,. Since
this is true for each i, g must be diagonal with respect to the basis {vy, ..., Upsn}. Our
claim, that the centralizer of W in GL(m + n, Z) is finite, is now verified. 0O

The proof of Proposition 4.3 is similar to the one just given. Once again the general case,
1 < n < oo, is just as easy as the case n = 2 or 3. To show SNT(BU(n)) # = for such n, we
will show that the image of AutBU(n) in Aut H* BU(n) is finite. To this end it suffices to
examine the Weyl group W of U(n) and show that the centralizer of W in
Aut BT" =~ GL(n, Z)is finite. Now the Weyl group of U(n) is the symmetric group X, and the
representation L, —» GL(n, Z) in this case is that of the permutation matrices (with only
zeroes and ones for entries). Let ¢ denote a permutation matrix and take MeGL(n, Z).
Then M +— o~ ! Mo defines an action of £, on the entries of M. This action is easily checked
to be transitive on the diagonal entries of M and also transitive on the set of off-diagonal
entries of M. Therefore M is in the centralizer of Z, if and only if it has the form (m,;) where

a fi=j
m;,, =
y b ifi#j
for two integers a and b. This n x n matrix has determinant (@ — b)" " '(a + (n — 1)b). It is
easy to check that the only integer solutions to the equation det(M) = + 1 are (a,b) =

(+1,0)for n> 2 and (0, + 1) when n = 2. Thus the centralizer in GL(n, Z) of the Weyl
group of U(n) has order 4, when n = 2, and has order 2 for 2 < n < co.
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Let W o GL(n,Z) and W' < GL(n + 1,Z) denote the Weyl groups of SU(n) and
T! x SU(n) respectively. Both groups are, of course. isomorphic to X, and the embedding
GL(n.Z)— GL(n + 1. Z), sending
M !
A

takes W onto H#". The basis vector e, is then fixed by every element of w’ and, up to scalar
multiples. is the only nonzero vector in R**! with this property. If g centralizes W', then
gle,) = w(gle,)) for every we W’ and so g(e,) = + e,. Thus the centralizer of W’ in
GL(n + 1, Z) has order twice that of the centralizer of W in GL(n, Z). The latter was shown
to have order < 2" in Proposition 4.2. This completes the proof of 4.3 and also of
Theorem 4.

Proof of Theorem S. The hypothesis on K implies that it is p-equivalent to a finite
product of odd dimensional spheres for all but a finite set, E, of exceptional primes. We will
first prove the theorem for subsets P < E, and then for subsets in the complement of E. The
general case will be shown to be an easy consequence of these results.

In the P-local part of the proof, all spaces will be assumed to be localized at P and all
cohomology groups will have Z, for cocfficients unless noted otherwise. Take ¢ to be
the largest n for which n,QK®Q #0. Let L denote the kernel of the map
Aut(H *'QK) — Aut(QH *'QK). We will show that Aut(QQK) maps onto a subgroup of finite
index in Aut(QH 3‘QK) and that L n {image of Aut(QK)} has finite index in L. This will
give the result we seek; the order of coker {Aut(QK) — Aut(HS'QK)} will be bounded
above by the product of these two indexes.

Since QK has finite type over Z,, the graded Z-module QH *'QK is finitely gencrated
and hence has a finite torsion subgroup. It follows that Aut(Q2K') maps onto a subgroup of
finite index in Aut(QH **QK) if and only if it does so in Aut(QH *(QK)/torsion). Now

Aut(QH S"(QK)/torsion) = [] GL(r;, Z,)
j=t

where r; is the rank of QH’(QK )/torsion. Of course, GL(0, Z,) = {1} and GL(l,Z,) = the
group of units in Z,.
We will construct self maps of QK using the following result

ProrosiTioN 5.1. Let K, as in Theorem 5, be localized at a set of primes P. Then there is a
Sfinite product of P-local, odd dimensional spheres and maps

KSnsm3k

such that for some N > 0, ab and ba induce multiplication by N on indecomposables. This
number N can be assumed to be relatively prime to all primes not in P. a

The proof will be given later. Suppose now that r; > 1 for some j. This means there are
exactly r; spheres of dimension j + 1 in the product I1S™. Let X denote the product of r,
copies of Q5!*' and write QIIS™ ~ X x Y. For any r;xr;-matrix M one can use the
product muitiplication on X to define a self map, say # (M): X — X, with the property that
# (M) induces multiplication by M on n;X. In particular take U in GL(r;, Z,) with U = [
mod N. Let ¢ : QI1S™ o be the product self map that restricts on X to F((U — I)/N)and is
null homotopic on Y. Let 1 denote the identity on QK. Use the loop multiplication on QK
to form the sum of self maps 1 + QbpQa. This is an equivalence. It projects to U in
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GL(r;, Z,) and to the identity on the other factors. The congruence subgroup defined by
U=1 modN has finite index in GL(r;,Z,) and so it follows that the map
Aut(QK) - Aut(QH ='QK) has a finite cokernel.

To understand the kernel L, consider first the rational cohomology of QK. It is a
polynomial algebra on a finite number of primitive generators {x,, . . ., X,} in even degrees.
We will assume that deg(x;) < deg(x;,,). Let

Lo = {pe Aut(H*(QK; Q))l¢ = | mod decomposables}.

It is clear that L, is generated by automorphisms of the form 1 + (x; - cm) that send

{xi if i
x""—’

x;+cem ifi=j

where m is a monomial in the x;’s, of length > 2, with the same degree as x;and c€ Q. There
is an isomorphism from L, onto a certain subgroup of upper triangular matrices in
GL(d, Q). Here d is the sum of Betti numbers, d = I{., rank H'(QK; Q). To set up this
isomorphism, order the monomials of degree < ¢ as follows: Start with x, < x, < ... <x,
and then say m < m' if deg(m) < deg(m’). For monomials of the same degree, say m < m' if
the fraction m/m’, in lowest terms, has a bigger subscript in its denominator. Use these
ordered monomials to label the rows and columns of a d xd matrix starting with the
smallest in the upper left hand corner. Then assign to each ¢ € Ly the matrix of coefficients
whose row m-column m’ entry is the cocfficicnt on m in @(m’). This is the isomorphism
alluded to earlier.

We seek the analogous representation from L to the corresponding subgroup of upper
triangular matrices in GL(d, Z,). This can be obtained from the rational one as follows. We
can assume that the rational monomials m, lic in the image of the coefficient homomor-
phism induced by the inclusion Z, = Q, and as such are not divisible by any prime in P, If
this is not so, replace any offender by an appropriate multiple of itself. Then for each
(possibly altered) m, let [m] denote its preimage in H QK )/torsion. The [m]'s form an
additive basis for this Zp-module, and thus provided a framework for the representation we
scek. This representation, call it p: L — GL(d, Z,;) has a finite kernel since the torsion
subgroup of H ='(QK) is finite.

Let N* be a sufficiently large power (to be determined later) of the number mentioned in
Proposition 5.1 and take any ce N*Z,. We will show that each automorphism of the form
1+ ([x;] = c[m])in L is realizable by a self map of QK. Here, of course, [x;] and [m] arc
assumed to have the same degree and [m] is rationally decomposable. Once we have
produced these maps it will follow that the index (L:I n L) is finite, where I denotes the
image of Aut(QK) in Aut(H 'QK). To see this, let C denote the congruence subgroup
defined by x = I mode N*in GL(d, Z;). C has finite index in this matrix group and so the
inclusions

Cnpl)splInl)= p(L)

together with the finite kernel of p imply that (L: I n L) is finite.

Since the [x;]'s are primitive, it is clear that cohomology automorphisms of the form
1 + ([x;] = c[m]) are induced by maps of the form 1 + f QK o where, as usual, | denotes
the identity map, + denotes loop addition, and fis a self map with the property:
0 ifi#j

Sl = {c[m] ifi=j
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Assume [x;] and [m] have degree d and take fto be the composition
ok 2. ons~ L st L asit Lok

where, in cohomology,

1 sends a generator, say 1, to (Qb)*[m]
2 sends 1 to (¢/N*n
3 sends [x;] to N and the other [m]'s to zero.

The existence of the first map follows from the decomposition of ZQITS™ as a wedge of
spheres. The third map is a consequence of Proposition 5.1. If [ denotes the rational length
of {m] then it follows f*{x;] = ¢N'*! *[m]. Consequently we can take the power s to be |
plus the maximum length of products in H *'(QK; Q).

This completes the proof that Aut(QKp) = Aut H *'(QKp: Z,) has a finite cokernel, for
subsets P < E where E is the set of primes for which K is not p-equivalent to a product of
spheres. For primes in the complement of E, the following resuit applies.

PrROPOSITION 5.2 Let X =~ S*"* ' x ... x§2™* 1 or the localization of this product at
some set of primes. Assume that 0 <n, < ... < n,. Then AutQX — Aut X ¥ is surjective for
k> 2n,. O

The proof will be given later.
Given a sct S of primes, write it as the disjoint union, § = AU B, where A = S E. In
the commutative diagram,

AwQK, = AwH*'(QK . 7,)

! i
AuQK, — AutH3(QK,: Q)
T i

AuQK, — AutH ' (QK y: Z,)

we have already seen that the map across the top has a finite cokernel. The map across the
bottom does too, by Lemma 5.2 and Theorem 3. The canonical map from AutQKg to the
pullback of the diagram

AutQK ,

l
AthKB—’ AthKo

is surjective by Theorem 4.1 of [17], while Aut H *'(QK g, Zy) is casily seen to be isomorphic
to the pullback of

Aut H3'QK . Z,)

|
AutH3'(QKg, Zg) — AutHS'(QK,. Q)

The map between these two pullbacks, induced by the commutative diagram that preceded
them, has a finite cokernel since all three horizontal maps in the diagram do. Thus it follows
AutQKs — Aut H<'(QK, Zs) has a finite cokernel and so the theorem follows from
Corollary 3.1,

We now prove the two propositions.
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Proof of 5.1. All spaces in this proof will be assumed to be P-local although this notation
won't reflect this. Let K(Z, i) denote the product Eilenberg-Mac Lane space [1K(Z, n,).
There is clearly a map f: K — K(Z, /) that is a rational equivalence. Indeed we can choose f
to induce an isomorphism on QH*( )/torsion. Moreover, if € >t > max(n,), there is a
map g:K(Z, i) » K" that is also a rational equivalence ([20]. Proposition 1.7). Similar
maps (f* and ¢’) exist when K is replaced by I1S™. Take ¢t > dim K and obtain the map
a:K — I1S™ as follows, using the cellular approximation theorem:

K4 K@z m & @msw
\
a i
\ nS"i

Obtain the other map b in the same manner:

ns~ L k@mn % (&m
\ K

It is clear that a and b are rational equivalences. On QH*( )/torsion they induce mono-
morphisms whose finite cokernels can be assumed to be P-primary. Therefore, if ab and ba
do not induce multiplication by N on indecomposabiles this can be corrected by composing
one of the maps, say a, with an appropriate seif map of [18™. O

Proof of 5.2. For each positive integer k, we have
AutQX™ < [QX, QX “)
> [ZQX, XN
~ [ v,S™ X%®7 since ZOQX =~ v, 5™
[ VoS X®]
[ VpS™ X]
c [ZQX, X] ~ [QX,QX].

In othier words, for each fe AutQX ® there is a self map g: QX o with g™ = f. We claim that
if kK > 2n,, then g must be in AutQX. To prove it we will show that if ¢: QX o is a k-
equivalence (where k > 2n,) then g*: H*(QX; Z) o is an isomorphism. Of course, since this
ring has finite type, it suffices to show that g* is an epimorphism. Now H*(QX;Z) is
isomorphic to a product of divided power algebras and so to see that g* is surjective it is
enough to check that classes of the form x"/n! are in its image. Here x has degree 2n;and is in
the image of the map induced by a projection n: QX — QS2"*!. Since g™ is an equivalence,
it has an inverse. This inverse likewise has the form §* for some §:QX ». We may then
assume that x = g*§*n*(1) where 1 is a suitable generator. It follows easily that x"/n! is in
the image of this composition of maps and thus in the image of ¢*. O

Proof of Theorem 6. For any nilpotent space X there is the obvious map
G(X)—lim G(X ™)

that sends a homotopy type [ Y] from G(X) to the coherent sequence of homotopy types,
(YL Ly, (Y™,
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LeMMA 6.1. The map ®, just defined, is

(a) injective if SNT(Y) = = for every [Y]e G(X), and
(b) surjective if SNT(X ) = » for each prime p. a

Assume for now this lemma is true. Using it and Theorem 5 we show

ProposiTION 6.2. The map ®:G(QK)—limG(QK™) is a bijection for K as in
Theorem 6. 0

Now recall Zabrodsky's genus theorem [20]. Given a connected nilpotent Hy-space X
with finite type and with only a finite number of nonzero homotopy groups, he showed that
for any ¢ sufficiently large (in the sense of the prime powers that divide it) there is an exact
sequence

k
E(X)ZLTT(Z/*) + 1)~ G(X) = 0.

The first term here is the monoid, under composition, of homotopy classes of self maps of X,
that are equivalences at each prime divisor of t. The integer k, in the middle term is the
number of n’s for which QH"(X, Z)/torsion # 0. Given fe #,(X), the determinant of f* on
this quotient module will be a unit in Z/t. The map det assigns to f the sequence of these
determinants, modulo the indicated Z/2 action on each coordinate. Although the domain of
det is not a group, its image is; it coincides with the kernel of the map onto G(X).

Now take n larger than the dimension of K. There is a commutative diagram

S(K™) 55 MH(ZM* £+ 1) - GKK™)

l |- l
EQK™) L T(Z/* £ 1) - GQK™)

where the map on the left sends fto Qf, and the map on the right sends X to QX. It follows
that the map on the right is an epimorphism with domain isomorphic to G(K). Together
with Proposition 6.2, this implies the theorem.

Proof of Lemma 6.1. To say ®(Y)=®(Z) means Y™ ~ Z™ for each n. Thus if
SNT(Y) = »,then Y =~ Z and ® is injective.

Take a coherent sequence {[Y,]} in limG(X ™). Since [¥,]eG(X™), n, ¥, =0 for
g > n. For each n choose an n-equivalence f,: Y, ,; — Y,. Using simplicial methods, [4],
one can produce a space

Y=lim(Y, Ly, L )

with the property Y™ =~ Y, for each n. It follows that Y} ~ X5} for each n and for each
prime p. Assuming SNT(X,) = », it follows that ¥,, ~ X,). Thus Y€ G(X), and so ® is
surjective.

Proof of Proposition 6.2. Let Y represent a homotopy type in G(QK). Take P to be the
set of all primes p for which the map Aut Y,, — Aut Y} is surjective. Here, as usual, t is a
finite dimension above which the rational homotopy groups of Y vanish. It follows that the

TOP 31:1-N
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corresponding map between pulibacks

MyAutY,, M, Aut Y
pullback ! — pullback !
Aut ¥, Aut YY

is also surjective. The canonical map from Aut Y, to the first pullback is surjective, by [17],
while the second pullback is isomorphic to Aut Y§’. This combined with Lemma 3.1 implies
the map

Aut Yp—— Aut H='(Y; Z;)

has a finite cokernel. From Theorem 5 we know that P is cofinite. If [ is a prime not in P, and
P’ = Py {1}, then the corresponding map

Aut Yp.— Aut H='(Y; Z;.)

has a finite cokernel because it is the composition of three maps similarly endowed. The first
is the surjection from Aut Y, to the pullback of the left column in the following diagram

AutY, —» AutHS(Y:Zp)

| |
AutYy — AwHS'(Y;Q)
T 1

Aut Yy, — Aut HS'(Y;Zy,).

The second is the map of pullbacks induced by this diagram. It has a finite cokernel because
all three horizontal maps in the diagram do. The third is an isomorphism between
Aut H='(Y, Z,.) and the pullback of the right column of the diagram. After repeating this
argument of a finite number of times (once for each prime not in P) we see that
AutY — Aut H='(Y;Z) has a finitc cokernel for cach t < x and so SNT(Y) =+ by
Theorem 3. Thus ®: G(QK) — lim G(QK ™) is injective by 6.1. That it is surjective follows
directly from 6.1 and Theorem 5. 0

THE EXAMPLES

Example A. Adams took K to be a sphere but his proof adapts easily. Here is how it
goes. It is easy to sce that X and X x K have the same n-type: namely the weak product of
KM K@ . K™Y and N, copies of K™. Now suppose that X and X x K were
homotopy equivalent. It would follow that K is a retract of X. Since K is compact, its image
under the associated inclusion i: K — X would be compact. Since X has the direct limit
topology, this implies that the inclusion of K factors through a finite product
KW x ... x K™ and thus K would be a retract of this finite product. Consequently n, K
would be a direct summand of the homotopy groups of this finite product. This is
impossible, because the homotopy groups of the finite product vanish above a certain finite
dimension whereas, by Serre’s theorem, those of K are nonzero infinitely often.

Example B. Since imG, = 0, it is clear that this tower is not Mittag-Leffler. Let {G,}
denote the constant tower in which each group is G, and each map is the identity map. Use
the inclusions G, G, to form a short exact sequence of towers

+ = {G,} = {G,} ~{G./G,} =
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Notice that G,/G,~ H;x -+ xH,_,. It follows that lim{G,/G,} = Il,,,H, =G,
= lir_n{G,} and that the quotient map in the sequence above induces an isomorphism
between these two limits. Since the constant tower is certainly Mittag-Leffler we conclude
that lim' G, = +, by using the 6 term lim-lim* sequence.

Example C. The ring structure in H*K is trivial for dimensional reasons and so it
follows that Aut(H <"K) contains as a direct summand, Aut(H ?K) which is isomorphic to
GL(2, Z). We will show that the image of Aut(K) in GL(2,Z) is the subgroup of upper
triangular matrices and hence has infinite index. Take fe Aut(S? v §?) and notice that f'is
the restriction of a class from Aut(K) if and only if f, (¢) = ne in n,(S* v §?), for some
integer n. Suppose that

Salt)) =ai +c1p
Sfoltz) = by + di,.

Since ¢ = [[1,,1,],1, ] a straightforward calculation yields
S(p) = alad — bc)p ~ clad — bo)[[11,12]. 12].

This last Whitehead product is not a multiple of ¢. Since the determinant ad — bc = + 1,
the entry ¢ must be zero for f to extend to a self equivalence of K. Of course, the Hurewicz
homomorphism faithfully records this in H > K. Thus the image of Aut(K)in GL(2, Z) is the
upper triangular matrices.

Example D. Each automorphism of n prescrves the commutator subgroup and so there
is an obvious homomorphism,

Aut(n) = Aut(n,,).

It suffices to show the cokernel here is infinite. Let x, y, and z be generators of n where x and
y generate the subgroup N, and z generates the infinite cyclic subgroup Z. Then the
commutator [x, y] generates [N, N] while the images ¥ and § generate the quotient
N,, ® Z xZ. The center Z(n) is clearly isomorphic to [N, N]xZ. Since every auto-
morphism must also preserve the center, it follows that if ¢ € Aut(n,,) lifts to an auto-
morphism of , then ¢(3) = + Z. Since Aut(r,,) ~ GL(3, Z), where the isomorphism is given
in terms of the basis {x, y, 7}, we see that the image of Aut(r) is contained in the subgroup of
those matrices whose righthand columns have zeros in their top and middle entries. The
index of this subgroup is, of course, infinite.

Example E. Take a finite type CW-decomposition of BU with cells in even dimensions
only. Given fe Aut(BU *"), restrict it to the 2n-skeleton to get a map f,: BU,,,, — BU. Since
n,BU = 0 for g odd, there are no obstructions to extending this f, to a self map, f, of BU.
The extension, f, is not unique. It may or may not be a self equivalence of BU. With care, it
can be chosen to be in Aut(BU). To see this, assume first that f, has degree | on n,BU for
q < 2n and suppose that f, has degree A # 1 for the first time on n,,, BU for some m > n.
Using G. Segal’s splitting Q(CP*) ~ BU x F, where F has finite homotopy groups, there is
a connection between stable self maps of CP* and self maps of BU. Exploiting this
connection, as was done in [ 12], one can show that 2 — 1 is a multiple of (m — 1)! and that
there is a self map, say g, of BU that has degree | — 4 on =,,BU and is null homotopic on
lower skeleta. We can replace [, by g + /., and repeat this argument if necessary to achieve
an extension of f, that is in Aut(BU). If f does not induce the identity on 7, BU ?™, there are
three other possibilities: the degree( f,) on m, could be (— 1)% ( — 1)** ' or — 1. In each case
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there is a self equivalence of Z*CP* and of BU that induces this homomorphism and the
argument just used adapts to these cases as well.

The proof for BSp is virtually the same. J. Becker's splitting, Q(HP®) ~ BSp x F', and
the results of [12] on stable self maps of HP™ imply that every 4n-equivalence
BSp,4. — BSp extends to a self equivalence of BSp.

Example F. Let P denote a nonempty set of primes and assume that all spaces
associated with this example are localized at P. By Corollary 3.1, it suffices to consider the
map

Aut X — Aut H*"* (X, Z,).

Choose a basis for H***!(X, Z,) using the projections of X onto its two factors. We can
then identify the automorphisms of this cohomology group with matrices in GL(2, Z,). We
claim that the image of Aut X in this matrix group lies in the subgroup of upper triangular
matrices. As such, it would, of course, have infinite index and so by 3.1, the result
SNT(X) # » would follow.

Let fe Aut(X) and consider the composition

K(Z2n+ ) x L x T, gme,

Zabrodsky has extended Miller's solution to the Sullivan conjecture to show that this
composition must induce the trivial map in cohomology. In fact, in [22], Theorem D, he
shows that if Z is a [-connected space with finite type that has only finitely many nonzero
homotopy groups and Y is a finite complex, then the only maps from Z to either Y or QY
arc phantom; that is, they must restrict to a null homotopic map on every finite skeleton of
the domain. Consequently, if f*, from the composition above, is represented by a 2x 2
matrix acting on the left, then that matrix must be upper triangular. The same argument
applies to the loopspace to show SNT(QX ) # =.

We mentioned earlier that this example contradicts a result of Zabrodsky. To be precise,
in the same paper (p. 135) he considers fibrations of the form

S"E~K(Z,m), m>2

and claims that if n is odd, then such a fibration must be trivial. With this in mind, take
YeSNT(S?x K(Z, 3)). Take a generator of nyY, say ¢g:S? > Y, and let f: Y — K(Z, 3)
represent in H3 Y, a generator of the kernel of g*. It follows that, up to homotopy, fis a
fibration with fiber S3. But if f is the trivial fibration, then its total space, Y, must be
homotopy equivalent to the product of the fiber and base. This, of course, implies
SNT(S? x K(Z, 3)) = *, contradicting our resuit.

Zabrodsky’s claim was based on a computation of the rational homotopy groups of the
function space, aut, S", which is in error, (p. 142). Unfortunately, he is no longer around to
correct it, and so we take this opportunity to do so. The function space in question consists
of all unbased self-maps of §" of degree 1. The evaluation map gives us a fibration

«QS"), —»aut, S" - 8"

and, rationally, this fibration has a section when n is odd. His error was the omission of
n(aut, $")® Q when n is odd.

Speaking of errors, Example F also contradicts a claim we made in an AMS abstract
announcing a preliminary version of Theorem 3. We claimed there that SN T(X') was trivial
if the map Aut X — Aut(H*(X, Z)/torsion) had a finite cokernel. This is not true! A glaring
counterexample to this claim is QS* x CP®. For this example, the map in question is
surjective!
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Example G. Let Im(k) = image {Aut X*' — Aut X{¥ }. Wilkerson showed in ([ 18], Prop.

III) that
lim' Im(k) = lim* Aut(X®)

and so this gives us another way to compute SN T(X ). In particular for X = S¥x K(Z, 2n),
we will show that the tower {Im(k)} is almost constant and thus lim' of it is trivial. More
precisely we will show that the maps in the tower, Im(k) « Im(k + 1), are isomorphisms for
all k > 4n. Choose a basis for H2"(X‘®, Z) using the projections of X onto its two factors.
We claim that

Im(k) ~ image { Aut X * — Adut H*"(X ", Z)}

and when the target is identified with GL(2, Z), Im(k) coincides with the subgroup of all
lower triangular matrices. To see this, write X = § x K where § is the sphere and K is the
Eilenberg-Mac Lane space. Then for k > 4n, we have

Im(k) = [X®, X§]
~ (X, Xo]
= [SxK, X,]
c[SvK Xl
> [S, Xo]x[K. X, ]

It is not difficult to sec that the last mapping scts mentioned are faithfully detected by
cohomology in degree 2n. The only relation listed above that isn’t obvious is the fourth one.
It can be verified using the commutative square

[SvK SxK] « [SxK,SxK]

l !
[SVvK, KxK] « [SxK,KxK]

in which the bottom map is an isomorphism of groups and the vertical maps are induced by
a principal fibration and are injective. Thus we have shown that Im(k) can be detected by
H*™(,Z). To determine those cohomology automorphisms that are realizable, let
fe€ Aut(X ®) where again k > 4n. This choice of k insures that for any ze H?"((S2")™, Z),
that z2 = 0. It follows that the composition,

K(Z,2n) o x0 L, xw o, (g2mym

must induce the zero map in H?"( , Z) because it induces the zero map in H**(, Q). Thus
Im(k) is isomorphic to a subgroup of lower triangular matrices. We claim it contains all of
them. Indeed, take any fe Aut(S), ge Aut(K), and he [S, K]. We then have a map,

SxK-+SxK
(s, k)= (f(s), h(s)- g(k)).

Since any lower triangular matrix in GL(2, Z) can be realized by an appropriate choice of f
g, and h the claim follows.

Thus we have shown SNT(X) = =. The proof that SNT(QX) # » is much easier. Since
QX is an H, space with just two nonzero rational homotopy groups, it suffices to consider
the cokernel of the following composition '

Aut(QX) = Aut(H=**""21QX) - Aut(QH*" " 'QX) - GL(2, Z).
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Here the last map is an isomorphism and the middle map has a finite cokernel. Since the
only map from K(Z,2n — 1) to QS?" is the trivial one, the image of this composition
consists again of the lower triangular matrices. The cokernel is thus infinite and by
Corollary 3.1, the result follows.

Example H. Let # denote the group of units in Z,,,. Since H*(X, Z,)) = Z,,[x,, X¢], it
is easy to see that when n > 6,

AutH="(X,Z,) =~ U xU.
Let I denote the image of AutX in AutH "(X,Z,) and assume for the moment that
I={(u? u)ueu}.

Then [ has infinite index in % x %. If this is not obvious, consider the element (1, p + 1). Itis
in % x %, but no nonzero power of it is in I. Thus it projects to an element of infinite order in
the quotient (# x #%)/I. So the cokernel is infinite and it follows that SNT(X) # ».

We will sketch the computation for the image, I. [t seems easier to work with U(3) rather
than SU(3) and so we will, as follows . .. Take fe Aut X. Since BU(3) is p-equivalent to
X x CP™, replace fon X, by g = fx | on BU(3). We would like to restrict g to a maximal
torus as was done in Lemma 4.4. While p-local versions of 4.4 are false, (this can be checked,
for example, on BSU(2)). there is a p-complete version due to Adams and Wojtkowiak, [3].
So from here on, take all spaces given to be p-complete and let Z, denote the p-adic integers.
Then by the result just cited, g is covered by a map Je AutBT?3 We identify this
automorphism group with GL(3, Z,) and the Weyl group of U(3) with the subgroup W, of
permutation matrices. The class g lies in N (W), the normalizer of Win GL(3, Z,)). One can
show that N(W) =~ W x C(W) where the centralizer C(W), consists of all matrices M, in
GL(3,Z,) of the form,

a b b
M,=1b a bl
b b a

This description of the centralizer was established in the proof of 4.3. To determine the
cohomology automorphism induced by the map f, it suffices to let § = M,, and consider its
effect on the standard invariant forms:

o, =1t +1t,+1,
Oy =10ty + Lty + 155
Gy =1,l5t5.
Here the ¢;'s form a basis for H*(BT?, Z,) and M,, sends
ty—at, + bty + bt
ty—bt) + at, + bt,
ty— bty + bty + at;.
A long calculation (omitted from this sketch) then shows that, modulo decomposables,
g*o, = (a + 2b)o,
g*o, = (a— b)’o,

g*oy = (a — b)’a;.
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The term u = a — b is a p-adic unit because det(M,,) = (a + 2b)(a — b)>. Since u? and u> are
evidently p-local, so is u, and the description of the image, I, given above follows.

Example [. Let W denote the Stiefel manifold of n-frames in C*** Consider the

principal U (n) fibration,

Un)—» W - X,

obtained by sending an n-frame of orthonormal vectors to the n-plane they span. Since the
dimension of U(n) is n* and the connectivity of W is 2k, the condition n? < 2k insures that
the inclusion of the fiber, U(n) — W, is nullhomotopic. This, in turn, forces QX ~ QW
x U{n). It is then easy to see that G(U(n)) = G(QX). Since Zabrodsky has shown that
G(U(n)) # = for n > 5, ([21] p. 152), the claim follows.
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