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Abstract

Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type
by Carles Broto, Jesper M. Mgller, and Bob Oliver

For a finite group G of Lie type and a prime p, we compare the automorphism
groups of the fusion and linking systems of G at p with the automorphism group of
G itself. When p is the defining characteristic of G, they are all isomorphic, with a
very short list of exceptions. When p is different from the defining characteristic,
the situation is much more complex, but can always be reduced to a case where the
natural map from Out(G) to outer automorphisms of the fusion or linking system
is split surjective. This work is motivated in part by questions involving extending
the local structure of a group by a group of automorphisms, and in part by wanting
to describe self homotopy equivalences of BGQ in terms of Out(G).
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vi ABSTRACT

Automorphisms of Fusion Systems of Sporadic Simple Groups
by Bob Oliver

We prove here that with a very small number of exceptions, when G is a
sporadic simple group and p is a prime such that the Sylow p-subgroups of G are
nonabelian, then Out(G) is isomorphic to the outer automorphism groups of the
fusion and linking systems of G. In particular, the p-fusion system of G is tame in
the sense of [AOV1], and is tamely realized by G itself except when G = M;; and
p = 2. From the point of view of homotopy theory, these results also imply that
Out(G) = Out(BGy)) in many (but not all) cases.
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Introduction

When p is a prime, G is a finite group, and S € Syl ,(G), the fusion system
of G at S is the category Fg(G) whose objects are the subgroups of S, and whose
morphisms are those homomorphisms between subgroups induced by conjugation
in G. In this paper, we are interested in comparing automorphisms of G, when
G is a simple group of Lie type, with those of the fusion system of G at a Sylow
p-subgroup of G (for different primes p).

Rather than work with automorphisms of Fg(G) itself, it turns out to be more
natural in many situations to study the group Out(L%(G)) of outer automorphisms
of the centric linking system of G. We refer to Chapter[lfor the definition of LG(G),
and to Definition [[L2] for precise definitions of Out(Fgs(G)) and Out(LE(G)). These
are defined in such a way that there are natural homomorphisms

Out(G) —29— Out(£4(Q)) —2%— Out(Fs(G))  and kg = pg o kq -

For example, if S controls fusion in G (i.e., if S has a normal complement), then
Out(Fs(G)) = Out(S), and k¢ is induced by projection to S. The fusion system
Fs(G) is tamely realized by G if k¢ is split surjective, and is tame if it is tamely
realized by some finite group G* where S € Syl,(G*) and F5(G) = Fs(G*). Tame-
ness plays an important role in Aschbacher’s program for shortening parts of the
proof of the classification of finite simple groups by classifying simple fusion systems
over finite 2-groups. We say more about this later in the introduction, just before
the statement of Theorem

By [BLO1, Theorem BJ, Out(L£§(G)) = Out(BG)): the group of homotopy
classes of self homotopy equivalences of the p-completed classifying space of G.
Thus one of the motivations for this paper is to compute Out(BGQ) when G is a
finite simple group of Lie type (in characteristic p or in characteristic different from
p), and compare it with Out(G).

Following the notation used in [GLS3], for each prime p, we let Lie(p) denote
the class of finite groups of Lie type in characteristic p, and let £ie denote the union
of the classes Lie(p) for all primes p. (See Definition 2] for the precise definition.)
We say that G € Lie(p) is of adjoint type if Z(G) = 1, and is of universal type if
it has no nontrivial central extensions which are in £ie(p). For example, for n > 2
and g a power of p, PSL,(q) is of adjoint type and SL,(q) of universal type.

Our results can be most simply stated in the “equi-characteristic case”: when
working with p-fusion of G € Lie(p).

THEOREM A. Let p be a prime. Assume that G € Lie(p) and is of universal
or adjoint type, and also that (G,p) # (S2(2),2). Fiz S € Syl (G). Then the
composite homomorphism

Fa: Out(G) —2¢— Out(LE(G)) —E5— Out(Fs(Q@))

is an isomorphism, and kg and pg are igomorphisms except when G = PSL3(2).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



4 INTRODUCTION

PROOF. Assume G is of adjoint type. When G % GL3(2), p¢ is an isomorphism
by [O1], Proposition 4.3[] or [02] Theorems C & 6.2]. The injectivity of &g =
UG o kg (in all cases) is shown in Lemma 3l The surjectivity of k¢ is shown in
Proposition when G has Lie rank at least three, and in Proposition when
G has Lie rank 1 and G % Sz(2). When G has Lie rank 2, k¢ is onto (when
G % SL3(2)) by Proposition 12 .14 15| 416, or I7 (See Notation ELII(H)
for the definition of Lie rank used here.)

If G is of universal type, then by Proposition B8 G/Z(G) € Lie(p) is of adjoint
type where Z(G) has order prime to p. Also, Out(G) = Out(G/Z(G)) by [GLS3|
Theorem 2.5.14(d)]. Hence Fs(G) = Fs(G/Z(G)) and LE(G) = LE(G/Z(G)); and
kg and/or kg is an isomorphism if kg z(q) and/or kg, z(q), respectively, is an
isomorphism. O

When G = PSL3(2) and p = 2, Out(G) = Out(Fs(G)) = Cs (and k¢ is an
isomorphism), while Out(£4(G)) = C3. When G = Sz(2) 2 C5 x Cy and p = 2,
Out(G@) = 1, while Out(LE(G)) = Aut(Cy) = Cs. Thus these groups are exceptions
to Theorem [Al

To simplify the statement of the next theorem, for finite groups G and H,
we write G ~, H to mean that there are Sylow subgroups S € Syl (G) and T' €

Syl,(H), together with an isomorphism ¢: S —= T which induces an isomorphism
of categories Fs(G) = Fr(H) (i-e., ¢ is fusion preserving in the sense of Definition

L2).

THEOREM B. Fiz a pair of distinct primes p and qo, and a group G € £ie(qo) of
universal or adjoint type. Assume that the Sylow p-subgroups of G are nonabelian.
Then there is a prime ¢} # p, and a group G* € Lie(ql) of universal or adjoint
type, respectively, as described in Tables Z2HO3|, such that G* ~, G and kg~ is
split surjective. If, furthermore, p is odd or G* has universal type, then pgs is an
isomorphism, and hence kg« is also split surjective.

PrOOF. Case 1: Assume p is odd and G is of universal type. Since ug is an
isomorphism by [O1], Theorem C], kg or kg~ is (split) surjective if and only if kg
or Kgx is.

By Proposition [6.8, we can choose a prime ¢ and a group G* € Lie(qg) such
that either

(l.a) G* = G(q*) or 2G(q*), for some G with Weyl group W and ¢* a power of
q;, and has a o-setup which satisfies the conditions in Hypotheses [5.1] and

B.I7] and
(lL.a.1) —Id ¢ W and G* is a Chevalley group, or

(l.a.2) —Id € W and ¢* has even order in F; or
(1.b) p =3, ¢ = 2, G = 3Dy(q) or 2Fy(q) for g some power of gy, and G* =
3D4(q*) or ?Fy(q*) for ¢* some power of 2.

1Steve Smith recently pointed out to the third author an error in the proof of this proposition.
One can get around this problem either via a more direct case-by-case argument (see the remark
in the middle of page 345 in [O1]), or by applying [O3] Theorem C]. The proof of the latter
result uses the classification of finite simple groups, but as described by Glauberman and Lynd
[GLn| § 3], the proof in (for odd p) can be modified to use an earlier result of Glauberman
[GI2] Theorem A1.4], and through that avoiding the classification.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



INTRODUCTION 5

Also (by the same proposition), if p = 3 and G* = F4(¢*), then we can assume
9 = 2.

In case (1.b), kg is split surjective by Proposition In case (1.a), it is
surjective by Proposition 515 In case (1.a.1), kg« is split by Proposition [B.I6l(b,c).
In case (1.a.2), if G* is a Chevalley group, then kg« is split by Proposition [5.10)(c).

This leaves only case (1.a.2) when G* is a twisted group. The only irreducible

root systems which have nontrivial graph automorphisms and for which —Id € W
are those of type D, for even n. Hence G* = Spin,, (¢*) for some even n > 4. By
the last statement in Proposition [6.8] G* is one of the groups listed in Proposition
[[I0 and so ¢" = —1 (mod p). Hence kg~ is split surjective by Example [6.6(a),
and we are done also in this case.
Case 2: Now assume p = 2 and G is of universal type. By Proposition [6.2]
there is an odd prime ¢, a group G* € £ie(qp), and S* € Syl,(G*), such that
Fs(G) = Fg-(G*) and G* has a o-setup which satisfies Hypotheses (.1 and 111
By the same proposition, if G* = G3(¢*), then we can arrange that ¢* = 5 or
g5 = 3. If G* = G5(5), then by Propositions 6.3 and [A.6] G* ~5 G2(3), kg, (s) is
split surjective, and g, (3) is injective.

In all remaining cases (i.e., G* % Ga(q*) or ¢f = 3), kg~ is split surjective
by Proposition BI6(a). If G* is a linear, symplectic, or orthogonal group, or an
exceptional Chevalley group, then g+ is injective by Proposition [A3] or [A12]
respectively. If G* = SU,(q*) or ?Eg(q*), then by Theorem [L8(d), Fs-(G*) is
isomorphic to the fusion system of SL,(q") or Fg(q") for some odd prime power
q", and so pg~ is injective by [A3] or again. Since neither the triality groups
3D4(q) nor the Suzuki or Ree groups satisfy Hypotheses 5.1} this shows that ug- is
injective in all cases, and hence that kg~ is also split surjective.

Case 3: Now assume G is of adjoint type. Then G = G,,/Z for some G, € Lie(qo)
of universal type and Z < Z(G,). By Proposition B8 Z = Z(G,,) and has order
prime to qo.

By Case 1 or 2, there is a prime ¢ # p and a group G}, € £ie(q) of universal
type such that G}, ~, G, and rg: is split surjective. Also, G7, is p-perfect by
definition of £ie(q) (and since ¢f # p), and H?(G%;Z/p) = 0 by Proposition B.8l
Set G* = G /Z(G?}). By Proposition [[7], with G7,/O,/ (G%) in the role of G, kg~
is also split surjective.

It remains to check that G ~, G*. Assume first that G, and G}, have o-
setups which satisfy Hypotheses B.Il Fix S € Syl,(G,) and S* € Syl,(G},), and
a fusion preserving isomorphism ¢: S —— S* (Definition [[2(a)). By Corollary
BI0, Z(Fs(Gy)) = Op(Z(Gy)) and Z(Fs«(GE)) = 0,(Z(Gr)). Since ¢ is fu-
sion preserving, it sends Z(Fg(Gy)) onto Z(Fs+(G)), and thus sends O,(Z(G,))
onto O,(Z(G})). Hence ¢ induces a fusion preserving isomorphism between Sylow
subgroups of G = G,,/Z(G,) and G* = G /Z(G?).

The only cases we considered where G or G* does not satisfy Hypotheses 5.1
were those in case (1.b) above. In those cases, G = 2Fy(q) or 3D4(q) and G* =
2Fy(q*) or ®Dy4(q*) for some g and ¢*, hence G and G* are also of universal type
(d =1 in the notation of [Cal Lemma 14.1.2(iii)]), and so there is nothing more to
prove. O

Since the strategy for replacing G by G* is quite elaborate, we summarize these
replacements in Tables 2.2} [I.2] and at the end of the introduction.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6 INTRODUCTION

The last statement in Theorem [Blis not true in general when G* is of adjoint
type. For example, if G* = PSLy(9), p = 2, and S* € Syly(G*), then Out(G*)
Out(L£§.(G*)) = C3, while Out(S”, Fs«(G*)) = Cs. By comparison, if G
SL5(9) is the universal group, then Out(S*, Fz, (G*)) = C3, and kg. and pg, are
isomorphisms.

As noted briefly above, a fusion system Fg(G) is called tame if there is a finite
group G* such that G* ~, G and kg~ is split surjective. In this situation, we
say that G* tamely realizes the fusion system Fg(G). By [AOV]| Theorem B], if
Fs(G) is not tame, then some extension of it is an “exotic” fusion system; i.e.,
an abstract fusion system not induced by any finite group. (See Chapter [ for
more details.) The original goal of this paper was to determine whether all fusion
systems of simple groups of Lie type (at all primes) are tame, and this follows as
an immediate consequence of Theorems [A] and [Bl Hence this approach cannot be
used to construct new, exotic fusion systems.

Determining which simple fusion systems over finite 2-groups are tame, and
tamely realizable by finite simple groups, plays an important role in Aschbacher’s
program for classifying simple fusion systems over 2-groups (see [AKOI Part II] or
[A3]). Given such a fusion system F over a 2-group S, and an involution z € S,
assume that the centralizer fusion system Cr(z) contains a normal quasisimple
subsystem & < Cx(z). If £ is tamely realized by a finite quasisimple group K,
then under certain additional assumptions, one can show that the entire centralizer
Cx(z) is the fusion system of some finite extension of K. (See, e.g., [06l Corollaries
2.4 & 2.5].) This is part of our motivation for looking at this question, and is also
part of the reason why we try to give as much information as possible as to which
groups tamely realize which fusion systems.

1R

THEOREM C. For any prime p and any G € L£ie of universal or adjoint type,
the p-fusion system of G is tame. If the Sylow p-subgroups of G are nonabelian, or
if p is the defining characteristic and G % Sz(2), then its fusion system is tamely
realized by some other group in Lie.

Proor. If S € Syl,(G) is abelian, then the p-fusion in G is controlled by
N¢g(S), and Fg(G) is tame by Proposition [L8l If p = 2 and G = SL3(2), then the
fusion system of G is tamely realized by PSL2(9). In all other cases, the claims
follow from Theorems [Al and [Bl O

We have stated the above three theorems only for groups of Lie type, but in
fact, we proved at the same time the corresponding results for the Tits group:

THEOREM D. Set G = 2F4(2)" (the Tits group). Then for each prime p, the
p-fusion system of G is tame. If p =2 or p =3, then kg is an isomorphism.

PROOF. The second statement is shown in Proposition 417 when p = 2, and in
Proposition when p = 3. When p > 3, the Sylow p-subgroups of G are abelian
(|G| = 211 - 33 .52 .13), so G is tame by Proposition [LE(b). O

As one example, if p = 2 and G = PSLy(17), then k¢ is not surjective, but
G* = PSLy(81) (of adjoint type) has the same 2-fusion system and kg- is an iso-
morphism [BLO1l Proposition 7.9]. Also, kg~ is non-split surjective with kernel
generated by the field automorphism of order two by [BLO1l Lemma 7.8]. How-
ever, if we consider the universal group G = SL5(81), then ké* and K&, are

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



INTRODUCTION 7

both isomorphisms by [BL, Proposition 5.5] (note that Out(F) = Out(S) in this
situation).

As another, more complicated example, consider the case where p = 41 and
G = Spiny,(9). By [St1] (3.2)-(3.6)], Outdiag(G) = C5, and Out(G) = Cy x Cy4
is generated by a diagonal element of order 2 and a field automorphism of order 4
(whose square is a graph automorphism of order 2). Also, p¢ is an isomorphism by
Proposition[A.3] so k¢ is surjective, or split surjective, if and only if kg is. We refer
to the proof of Lemma [6.5, and to Table [6.1lin that proof, for details of a o-setup
for G in which the normalizer of a maximal torus contains a Sylow p-subgroup S. In
particular, S is nonabelian if k > 41. By Proposition[5.10(d) and Example[6.6)a,b),
when k > 41, kg is surjective, kg is split (with Ker(kg) = Outdiag(G)) when k
is odd, and k¢ is not split (Ker(kg) = Cz x Cs) when k is even. By Proposition
T9(c), when k is even, G ~41 G* for G* = Sping,;,_;(9), and kg« is split surjective
(with Ker(kg+) = Outdiag(G*)) by Proposition BI6l(c). Thus Fg(G) is tame in all
cases: tamely realized by G itself when k is odd and by Spiny;,_;(9) when k is even.
Note that when k is odd, since the graph automorphism does not act trivially on
any Sylow p-subgroup, the p-fusion system of G (equivalently, of SO, (9)) is not
isomorphic to that of the full orthogonal group Oy, (9), so by [BMO. Proposition
A.3(b)], it is not isomorphic to that of Spiny,, | ;(9) either (nor to that of Sping, (9)
since its Sylow p-subgroups are smaller).

Other examples are given in Examples B.17 and For more details, in
the situation of Theorem [B] about for which groups G the homomorphism kg is
surjective or split surjective, see Propositions and

The following theorem was shown while proving Theorem [B] and could be of
independent interest. It is closely related to [Ma2, Theorem 5.19]. The case where
p is odd was handled by Gorenstein and Lyons [GLl 10-2(1,2)].

THEOREM E. Assume G € £ie(qq) is of universal type for some odd prime qq.
Fiz S € Syl,(G). Then S contains a unique abelian subgroup of maximal order,
except when G = Spy,, (q) for some n > 1 and some ¢ = +£3 (mod 8).

PrOOF. Assume S is nonabelian; otherwise there is nothing to prove. Since
qo is odd, and since the Sylow 2-subgroups of 2G5 (3%*1) are abelian for all & > 1
[Ree, Theorem 8.5, G' must be a Chevalley or Steinberg group. If G =2 3Dy(q),
then (up to isomorphism) S € Syl,(G2(gq)) by [BMO) Example 4.4]. So we can
assume that G = "G(q) for some odd prime power ¢, some G, and r = 1 or 2.

If ¢ = 3 (mod 4), then choose another prime power ¢* = 1 (mod 4) such that

va(q* — 1) = va(q + 1) (where va(m) = k if 2F|n and 2¥*! { n). Then (¢*) = ( — ¢)
and ( — ¢*) = (q) as closed subgroups of (Z2)*. By [BMOI Theorem A] (see also
Theorem [[F), there is a group G* = 'G(q¢*) (where ¢t < 2) whose 2-fusion system
is equivalent to that of G. We can thus assume that ¢ = 1 (mod 4). So by Lemma
61 G has a o-setup which satisfies Hypotheses 511 By Proposition B.13(a), S
contains a unique abelian subgroup of maximal order, unless ¢ = 5 (mod 8) and

G 2 Sp,,,(q) for some n > 1. O

In fact, when G 22 Sp,,,(q) for ¢ = £3 (mod 8), then S € Syl,(G) is isomorphic
to (Qs)™ x P for P € Syl,(%,), S contains 3" abelian subgroups of maximal order
22" and all of them are conjugate to each other in Ng ().

The main definitions and results about tame and reduced fusion systems are
given in Chapter [[I We then set up our general notation for finite groups of Lie
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8 INTRODUCTION

type in Chapters 2] and B], deal with the equicharacteristic case in Chapter [ and
with the cross characteristic case in Chapters Bl and [fl The kernel of uq, and thus
the relation between automorphism groups of the fusion and linking systems, is
handled in an appendix.

The third author would like to thank Richard Weiss for explaining how to
apply the Delgado-Stellmacher paper [DS] to simplify some of our arguments (see
Chapter M), and also thank Andy Chermak and Sergei Shpectorov for first pointing
out this connection. All three authors would especially like to thank the referee for
reading the paper very thoroughly and for the many suggestions for improvements.

Notation: In general, when C is a category and € Ob(C), we let Aut¢(x)
denote the group of automorphisms of x in C. When F is a fusion system and
P € Ob(F), we set Outz(P) = Autz(P)/Inn(P).

For any group G and g € G, ¢, € Aut(G) denotes the automorphism ¢, (h) =
ghg™'. Thus for H < G, 9H = ¢,(H) and H9 = ¢;'(H). When G, H, K are all
subgroups of a group I', we define

Te(H,K) = {ge G|9H < K}
Homg(H, K) = {¢, € Hom(H,K) |g € Te(H,K)} .

We let Autg(H) be the group Autg(H) = Homg(H,H). When H < G (so
Autg(H) > Inn(H)), we also write Outg(H) = Autg(H)/Inn(H).

Tables of substitutions for Theorem [Bl

We now present tables which describe the strategy for replacing G by G* in the
context of Theorem [Bl In all three tables, an entry within the column G* means
that the given group is p-locally equivalent to G and tamely realizes its fusion
system, while an entry “G ~, X” carried over two columns means that the group
X is p-locally equivalent to G but does not tamely realize its fusion system. In
other words, in the latter case, X is one step towards finding the appropriate group
G*, but one must continue, following the information in the tables for G = X.

Whenever G* is listed as satisfying [(TIL1)] [(TI1.2)} or [(TI1.3)] this holds by
Lemma [6.1] Lemma 6.4, or Lemma or [6.7, respectively.
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TABLES OF SUBSTITUTIONS FOR THEOREM [B] 9

The following notation is used in Table (the case p = 2):
e g5 =3 or b5, and ¢f = 3 when G = Gb;

o ¢* = () is such that (¢) = (¢*); and

o ¢ = (g5)* is such that { — q) = (¢") (equivalently, (g) = (— ¢")).

In all cases except when G* = (G2(3), G* satisfies case of Hypotheses
BT by Lemma [6.1] and kg~ is split surjective by Proposition B.I6(a). When G* =
G2(3), kg~ is an isomorphism by Proposition For all odd g, *D4(q) ~2 G2(q)
by [BMO! Example 4.4(a)].

G G q G* G~y G*
A,, Eg &) 1 (mod 4) G(g*) | Thm. [8(a)
Dy, (n odd) P (mod 4) | 2G(¢q") | Thm. [CI(d)
Bn; Cna D2m7 1 (mOd 4) G(q*)
Fy, E7, Eg &) 3 (mod 4) | G(¢g") Thon IL5(e)
1 (mod 8) G(q%)
G2(q)
7 (mod 8) | G(q¥) | Thm. [LS3(c)
*Da(q)
3,5 (mod 8) | G2(3)
A, Eg 2 1 (mod 4) | 2G(q*) | Thm. [L](b)
Dy, (n odd) @ 3 (mod 4) | G(¢¥) | Thm. LR(d)
b |, 1 (mod 4) | *Da(q”)
(neven) | D0 3 (mod 4) | 2D,(¢") Thn. [L8c)
2Gs(q) S abelian

TABLE 0.1. Substitutions in cross-characteristic for p = 2
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10 INTRODUCTION

The following notation is used in Tables and [L3] where p is always an odd
prime:
e ¢} is any given odd prime whose class generates (Z/p?)*.

o ¢* = (q¢)? is such that (g) = (¢*) and b|(p — 1)p’ for some £ > 0.

e ¢" = (q3)° is such that { — ¢) = (¢¥) and ¢|(p — 1)p® for some ¢ > 0.

’ G ‘ q, p ‘ G* ‘ Hyp Bl ‘ kg split surj. G ~p G*
SLn(q) all cases SLn(q*) (I11.1,3) Th. [[§(a)
SUn(q) all cases SLn(¢%) | (II1.1,3) Th. [[8(d)

Prop. BI6(b,c)
Spy,, (q) or ordy(g) even SL2y (q*) (I11.3)] Prop. [L9(a,b)
Sping,1+1(9) | ord,(q) odd SLon(q” L3 Prop. [L9(a,b)
n »(9) n(g”) | |UIL3) Th TH)
q"™ # € (mod p) G ~yp Spin,,, _1(q) — Prop. [L9(c)
q" Edad(mO_d 110) Sping, (¢*) | (I11.1,3) Th. [R(a)
nodd,e= Prop. EI6l(b,c)
q" =€ (mod p) | Spint (¢¥) | (111.1,3 Th. [CR(d
Spin,, () nodd, e = —1 2 (@) | ( ) LA
q" =e (mod p) | Spins (¢*) | [ML3)] | Prop. BI8c) | Th. MS(ab
n, ordp(q) even 2n(0") Ex. [6:6)(a) L.3(=.5)
q" = ¢ (mod p)
neven, e =1 Spin;rn(q\/) (T11.3)] Prop. EI6lc) Th. [CR(c)
ordy(gq) odd

TABLE 0.2. Substitutions in cross-characteristic for p odd: classi-
cal groups
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TABLES OF SUBSTITUTIONS FOR THEOREM [B] 11

G” Hyp BTl | kg split surj. G ~, G*

’Bs(q) all cases S abelian

3 3 (g5 =2) Prop. Theorem [L8(b)
Da(q) | 3 | 2 | "Dalq")

>5 | — S abelian

(I11.2)| | Prop. BI6lc) | Theorem [L8c)

Ga(q) 3 2 | Ga(q")

>5 — S abelian
*Ga(q) all cases S abelian
3 1 | Fu(¢¥) | [TIL2)]
Prop. BI6(c) | Theorem [L&(c)
Fu(q) 3 2 | Fu(q") | (a0 =2)
>5 | — S abelian
2Fy(q) or 3 2 | %Fu(q®) — Prop. Prop. [6.8(b)
2F4(2)/ >5 S abelian
,5 1 | Ee(g™) | |IILI)| | Prop. BEI6(b) | Theorem [[§(a)
E 3 9 G~ Fula? o Theorem [L8(d)
6(q) » Fala®) [BMO Ex. 4.4]
other cases S abelian
’Es(q) all cases G ~p Es(qY) — Theorem [L8(d)

357 1 | Ex(qY)

]
i
—1

11.2 Prop. 6I6(c) | Theorem [L8c)
Ex(q) [357| 2 | Exq")

other cases S abelian

35,7 1 Es(q")

(II1.2)| | Prop. BI6(c) | Theorem [L8(c)
Es(q) |357] 2 | Es(q")
5 4 | Es(¢*) | |(IIL3)| | Prop. BEI6c) | Theorem [L.8(a)
other cases S abelian

TABLE 0.3. Substitutions in cross-characteristic for p odd: excep-
tional groups
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CHAPTER 1

Tame and reduced fusion systems

Throughout this chapter, p always denotes a fixed prime. Before defining tame-
ness of fusion systems more precisely, we first recall the definitions of fusion and
linking systems of finite groups, and of automorphism groups of fusion and linking
systems.

DEFINITION 1.1. Fiz a finite group G and a Sylow p-subgroup S < G.

(a) The fusion system of G is the category Fs(G) whose objects are the subgroups
of S, and where Mor r,(c) (P, Q) = Homg (P, Q) for each P,Q < S.

(b) A subgroup P < S is p-centric in G if Z(P) € Syl (Cg(P)); equivalently, if
Cq(P) = Z(P) x CL(P) for a (unique) subgroup C(P) of order prime to p.

(c) The centric linking system of G is the category LE(G) whose objects are the p-
centric subgroups of G, and where Mor e (q) (P, Q) = Ta (P, Q)/Cg(P) for each

pair of objects P,Q. Let m: LEL(G) —— Fs(G) denote the natural functor:
m is the inclusion on objects, and sends the class of g € Ta(P,Q) to ¢4 €

Mor z, () (P, Q).

(d) For P,Q < S p-centricin G and g € Tg(P,Q), we let [g]pg € Morge ) (P, Q)
denote the class of g, and set [g]p = [9]lp.p if g € Ng(P). For each subgroup
H < Ng(P), [H]p denotes the image of H in Aut,(P) = Ng(P)/Cg(P).

The following definitions of automorphism groups are taken from [AOV] Defi-
nition 1.13 & Lemma 1.14], where they are formulated more generally for abstract
fusion and linking systems.

DEFINITION 1.2. Let G be a finite group with S € Syl,(G), and set F = Fs5(G)
and £ = LL(G).

(a) If H is another finite group with T' € Syl,(H ), then an isomorphism ¢: S =7
is called fusion preserving (with respect to G and H ) if for each P,Q < S,

Homp (o(P), 9(Q)) = ¢ o Homg(P,Q) o o~ .

(Composition is from right to left.) Fquivalently, ¢ is fusion preserving if it
induces an isomorphism of categories Fs(G) —= Fr(H).

(b) Let Aut(F) < Aut(S) be the group of fusion preserving automorphisms of S.
Set Out(F) = Aut(F)/Autz(S).

(c) For each pair of objects P < Q in L, set vpg = [1]p,o € Morz (P, Q), which we
call the inclusion in L of P in Q. For each P, we call [P] = [P]p < Aut(P)
the distinguished subgroup of Aut,(P).

13
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14 1. TAME AND REDUCED FUSION SYSTEMS

(d) Let Aut(L) be the group of automorphisms « of the category L such that «
sends inclusions to inclusions and distinguished subgroups to distinguished sub-
groups. For vy € Autz(S), let ¢, € Aut(L) be the automorphism which sends
an object P to w(v)(P), and sends 1 € Morz (P, Q) to v'¢(y") =t where v and
~" are appropriate restrictions of . Set

Out(L) = Aut(L) /{cy |7 € Autz(S)}.

(e) Let kg: Out(G) —— Out(L) be the homomorphism which sends the class
[a], for o € Aut(G) such that a(S) = S, to the class of B € Aut(LEL(G)),
where B(P) = «(P) for an object P, and B([9]po) = [[oz(g)]]a(p)ﬂ(Q) for
g€ TG(Pa Q)

(f) Define pg: Out(L) —— Out(F) by restriction: pc([B]) = [Bs|s] for B €
Aut(LE(G)), where Bg is the induced automorphism of Aut,(S), and Bs|s €
Aut(S) is its restriction to S when we identify S with its image in Aut(S) =
Ne(5)/C6(5)-

(g) Set kg = pig o kg : Out(G) —— Out(F): the homomorphism which sends the
class of & € Nauy(a)(S) to the class of afs.

By [AOV| Lemma 1.14], the above definition of Out(L£) is equivalent to that
in [BLO2]|, and by [BLO2| Lemma 8.2], both are equivalent to that in [BLO1].
So by [BLOT] Theorem 4.5(a)], Out(£$(G)) = Out(BG)): the group of homotopy
classes of self homotopy equivalences of the space BG;\.

We refer to [AOV], §2.2] and [AOV] § 1.3] for more details about the definitions
of kg and ug and the proofs that they are well defined. Note that p is defined
there for an arbitrary linking system, not necessarily one realized by a group.

We are now ready to define tameness. Again, we restrict attention to fusion
systems of finite groups, and refer to [AOV| §2.2] for the definition in the more
abstract setting.

DEFINITION 1.3. For a finite group G and S € Syl,(G), the fusion system
Fs(Q) is tame if there is a finite group G* which satisfies:

e there is a fusion preserving isomorphism S =6t for some S* € Syl ,(G*);
and

e the homomorphism kg-: Out(G*) — Outyy,(LG(G*)) = Out(BG*)) is split
surjective.

In this situation, we say that G* tamely realizes the fusion system Fs(G).

The above definition is complicated by the fact that two finite groups can have
isomorphic fusion systems but different outer automorphism groups. For example,
set G = PSLy(9) & Ag and H = PSLy(7) & GL3(2). The Sylow subgroups of
both groups are dihedral of order 8, and it is not hard to see that any isomorphism
between Sylow subgroups is fusion preserving. But Out(G) = C3 while Out(H) =
C5 (see Theorem B4 below). Also, k¢ is an isomorphism, while x g fails to be onto
(see [BLO1l, Proposition 7.9]). In conclusion, the 2-fusion system of both groups
is tame, even though g is not split surjective.

This definition of tameness was motivated in part in [AOV] by an attempt to
construct new, “exotic” fusion systems (abstract fusion systems not realized by any
finite group) as extensions of a known fusion system by an automorphism. Very
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1. TAME AND REDUCED FUSION SYSTEMS 15

roughly, if o € Aut(L%(G)) is not in the image of kg, and not in the image of
kg~ for any other finite group G* which has the same fusion and linking systems,
then one can construct and extension of Fg(G) by a which is not isomorphic to
the fusion system of any finite group. This shows why we are interested in the
surjectivity of kg; to see the importance of its being split, we refer to the proof of
[AOV] Theorem BJ.

It is usually simpler to work with automorphisms of a p-group which preserve
fusion than with automorphisms of a linking system. So in most cases, we prove
tameness for the fusion system of a group G by first showing that kg = ug o kg
is split surjective, and then showing that ¢ is injective. The following elementary
lemma will be useful.

LEMMA 1.4. Fiz a finite group G and S € Syl,(G), and set F = Fs(G). Then

(a) kg is surjective if and only if each ¢ € Aut(F) extends to some p € Aut(G),
and

(b) Ker(kig) = Caui(c)(S)/Autogs) (G).
ProoF. This follows from the following diagram

0 ——— Auty,(5)(G) —— Nau(e)(S) —— Out(G) —— 0

L

0—— AutNG(S)(S) —— s Aut(F) ———— Owt(F) —— 0
with exact rows. O

The next lemma can be useful when kg or kg is surjective but not split.
LEMMA 1.5. Fiz a prime p, a finite group G, and S € Syl (G).
(a) Assume G > G is such that G < G, p 1 |G/G|, and Outz(G) < Ker(kg).

~

Then Fs(G) = Fs(G) and L4(G) = L5(G).

(b) If kg is surjective and Ker(kg) has order prime to p, then there is G >

G/Oy(Z(G)) such that Fs(G) = Fs(Q) (where we identify S with its image
in G/Op(G)) and kg is split surjective. In particular, Fs(G) is tame, and is

tamely realized by G.

PROOF. (a) Since Outgz(G) < Ker(kg), each coset of G in G contains an ele-
ment which centralizes S. (Recall that < is induced by the restriction homomor-

phism from Nayu (@) (S) to Aut(F).) Thus Fs(G) = Fs(G) and Ecs(é) = L5(G).
(b) Since G and G/O, (Z(G)) have isomorphic fusion systems at p, we can
assume that Z(G) is a p-group. Set K = Ker(kg) < Out(G). Since H(K; Z(G)) =
0 for i = 2,3, by the obstruction theory for group extensions [McL| Theorems
IV.8.7-8], there is an extension G of G by K such that G < G and G/G = K =

~

Outz(G). In particular, C5(G) < G. Since K = Ker(kg) < Ker(kg), Fs(G) =
Fs(G), and L5(G) = LG(G) by (a). ,
By [OV] Lemma 1.2], and since K < Out(G) and H*'(K; Z(G)) = 0 for i =

~

1,2, each automorphism of G extends to an automorphism of G which is unique

~

modulo inner automorphisms. Thus Out(G) contains a subgroup isomorphic to
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16 1. TAME AND REDUCED FUSION SYSTEMS

Out(G)/K, and kg sends this subgroup isomorphically onto out(cg(é)). So kg
is split surjective, and Fg(G) is tame. O

The next proposition is really a result about constrained fusion systems (cf.
[AKO| Definition 1.4.8]): it says that every constrained fusion system is tame.
Since we are dealing here only with fusion systems of finite groups, we state it
instead in terms of p-constrained groups.

PROPOSITION 1.6. Fliz a finite group G and a Sylow subgroup S € Syl,(G).
(a) If Ca(Op(G)) < Ou(G), then ke and pe are both isomorphisms:

Out(G) —<— Out(£%(G)) —=— Out(Fs(G)).
(b) If S is abelian, or more generally if Ng(S) controls p-fusion in G, then Fs(G)
is tame, and is tamely realized by N (S)/Op (Ca(S)).

PRrROOF. (a) Set Q = O,(G), F = F5(G), and £ = LE(G). Then Aut,(Q) =

G, so (o — ag) defines a homomorphism
O: Aut(L) —— Aut(Autz(Q)) = Aut(G)

whose image lies in Ny (@) (S). For each a € Ker(®), ag = Idg and hence
«a = Idg. (Here, it is important that « sends inclusions to inclusions.) Thus ®
is a monomorphism. Also, a = ¢, for some v € Autz(S) if and only if ag = ¢4
for some g € Ng(S), so ® factors through a monomorphism ® from Out(£) to
Naur(a) (S)/Autg(S) = Out(G), and Py ok = Idout(g)- Thus kg is an isomor-
phism.

In the terminology in [AKOL §1.4], G is a model for F = Fg(G). By the
uniqueness of models (cf. [AKO| Theorem II1.5.10(c)]), each 5 € Aut(F) extends
to some x € Aut(G), and x is unique modulo Aut,(g)(G). Hence k¢ is an isomor-
phism, and so is ug-.

(b) If N¢(S) controls p-fusion in G, then Ng(S) ~, G. Also, Ng(S) ~, G*
where G* = Ng(5)/O0p(Cq(S)), G* satisfies the hypotheses of (a), and hence
tamely realizes Fs(G). In particular, this holds whenever S is abelian by Burnside’s
theorem. (]

When working with groups of Lie type when p is not the defining characteristic,
it is easier to work with the universal groups rather than those in adjoint form (ug
is better behaved in such cases). The next proposition is needed to show that
tameness for fusion systems of groups of universal type implies the corresponding
result for groups of adjoint type.

PROPOSITION 1.7. Let G be a finite p-perfect group such that O, (G) =1 and
Hy(G;Z/p) = 0 (i.e., such that each central extension of G by a finite p-group
splits). Choose S € Syl,(G), and set Z = Z(G) < S. If Fs(G) is tamely realized
by G, then Fg,7(G/Z) is tamely realized by G /Z.

PROOF. Let H be the set of all P < S such that P > Z and P/Z is p-centric
in G/Z, and let LF(G) C LL(G) be the full subcategory with object set H. By
[AOV] Lemma 2.17], L#(G) is a linking system associated to Fs(G) in the sense
of [AOV] Definition 1.9]. Hence the homomorphism

R: Out(L4(G)) ——— Out(LE(G))
induced by restriction is an isomorphism by [AOV] Lemma 1.17].
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1. TAME AND REDUCED FUSION SYSTEMS 17

Set F = Fs(G), L=LE(G),G=G/Z,5=5/Z, F = F5(G),and L = cg(é)

for short. Consider the following square:

Out(G) —=%— Out(£) = Out(£L%(Q))

(1) J ]

Out(@) —2— Out(L).

Here, p sends the class of an automorphism of G' to the class of the induced auto-
morphism of G = G/Z(G).
Assume that v has been defined so that () commutes and v is injective. If kg

is onto, then v is onto and hence an isomorphism, so kg is also onto. Similarly, if

k¢ is split surjective, then kg is also split surjective. Thus F is tamely realized by

G if F is tamely realized by G, which is what we needed to show.

It thus remains to construct the monomorphism v, by sending the class of
a € Aut(Z) to the class of a lifting of o to £. So in the rest of the proof, we show
the existence and uniqueness of such a lifting.

Let pr: £ — £ denote the projection. Let End(£) be the monoid of functors
from £ to itself which send inclusions to inclusions and distinguished subgroups into
distinguished subgroups. (Thus Aut(L) is the group of elements of End(L£) which
are invertible.) We will prove the following two statements:

(2) For each av € Aut(L), there is a functor @ € End(L) such that pro& = a.opr.
(3) If B € End(L) is such that pro 8 = pr, then § = Id,.

Assume that ([2)) and @) hold; we call @ a “lifting” of « in the situation of (2]).
For each a € Aut(L), there are liftings & of a and &@* of o~ in End(L), and these
are inverses to each other by ([B)). Hence & € Aut(L£), and is the unique such lifting
of @ by (@) again.

Define v: Out(£) — Out(£L) by setting v([a]) = [@] when & is the unique
lifting of . This is well defined as a homomorphism on Aut(Z) by the existence
and uniqueness of the lifting; and it factors through Out(z) since conjugation by
5 € AutZ(S') lifts to conjugation by v € Aut.(S) for any v € prg' (7).

Thus v is a well defined homomorphism, and is clearly injective. The square ()
commutes since for each 8 € Aut(G) such that B(S) = S, ka([B]) and vrgu([B])
are the classes of liftings of the same automorphism of L.

It remains to prove () and (3).

Proof of (2): For each a € Aut(L), consider the pullback diagram

~ P1

C — L
(4) Jﬂfz . lpr

L= —2 L.

Each functor in () is bijective on objects, and the diagram restricts to a pullback
square of morphism sets for each pair of objects in £ (and their inverse images in

L and L).
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18 1. TAME AND REDUCED FUSION SYSTEMS

Since the natural projection G —— G is a central extension with kernel Z , the
projection functor pr: £L —— L is also a central extension of linking systems in the
sense of [5a2], Definition 6.9] with kernel Z. Since ps is the pullback of a central ex-
tension, it is also a central extension of linking systems by [5a2l Proposition 6.10],
applied with w = pra*(wg) € Z2(L; Z), where wy is a 2-cocycle on £ which de-
termines the extension pr. By [BLOTl Proposition 1.1], H*(|£|;F,) & H*(G;F,),
where the last group is zero by assumption. Hence H?(|L];Z) = 0, so w is a
coboundary, and ps is the product extension by [5a2l Theorem 6.13]. In other

words, £ 2 L5(Z) x L, where L4(Z) has one object and automorphism group Z,
and there is a subcategory Ly C L (with the same objects) which is sent isomor-
phically to £ by pa. Set & = p1 o (p2|z,) L.

We first check that a sends distinguished subgroups to distinguished subgroups.
Let prg: S — S = S/Z be the projection. Fix an object P in L, and set
Q = a(P). Then Q/Z = a(P/Z), and apz([P/7]) = [Q/7], so ar([P]) <
prs ([Q/2]) = [Q].

For each subgroup P € Ob(L), there is a unique element zp € Z such that
a(tp,s) = tacp),s o [zp]acp). Note that zg = 1. Define a new functor 3: L — L
by setting 3(P) = a(P) on objects and for each ¢ € Morz (P, Q), B(¢) = [2¢]aq)°

ap) o [[ZP]]g(IP). Then £ is still a lifting of «, and for each P:

Blep,s) = [2s]s 0 alers) o [2P)5(p) = ta(r),s o [zPlap) o [zpl5(p) = ta(p).s -

For arbitrary P < @, since t5(p),a(@) 1s the unique morphism whose composite with
L&(Q),s 18 ta(p),s (see [BLO2 Lemma 1.10(a)]), 8 sends tp,q to t5(p),a(qQ)-

Thus, upon replacing a by 3, we can assume that a sends inclusions to inclu-
sions. This finishes the proof of (2.
Proof of @B): Assume that 8 € End(L) is a lift of the identity on £. Let B(Z)
be the category with one object 4 and with morphism group Z. Define a functor

X: L —— B(Z) by sending all objects in £ to 4, and by sending a morphism
9] € Morz(P, Q) to the unique element z € Z such that Spq([g]) = [g2] = [2g].

(Recall that Z < Z(G).)
Now,

H1(|£|§Fp) = H1(|£%(G)|§Fp) = HI(BGJFP) = HI(GQ Fp) =0,

where the first isomorphism holds by [5all, Theorem B] and the second by [BLO1l,
Proposition 1.1]. Hence Hom(7(|£]),F,) = Hom(H:(|£|),F,) = HY(|L|;F,) = 0,
where the second isomorphism holds by the universal coefficient theorem (cf. [McLl
Theorem I11.4.1]), and so Hom(m(|L]), Z) = 0. In particular, the homomorphism
X: m(|£]) — m(|B(Z)]) = Z induced by x is trivial.

Thus for each ¢ € Mor, (P, @), the loop in |£| formed by ¢ and the inclusions
tp,s and tg,s is sent to 1 € Z. Since 3 sends inclusions to inclusions, this proves
that xp.o(%) = 1, and hence that Sp g (1) = ¢. Thus g = Id.. |

By Proposition [[L7, when proving tameness for fusion systems of simple groups
of Lie type, it suffices to look at the universal groups (such as SL,(q), SUy,(q)) rather
than the simple groups (PSL,(q), PSU,(q)). However, it is important to note that
the proposition is false if we replace automorphisms of the linking systems by those
of the fusion system. For example, set G = SLy(3%) and G = PSLy(3*). Then
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1. TAME AND REDUCED FUSION SYSTEMS 19

S 2 Q32 and S = Dqg, Out(Fs(G)) = Out(S) =2 Out(G) = Cy x Cy (and kg is an
isomorphism), while Out(G) = Cy x Cz and Out(S, F5(G)) = Out(S) = Cz x Cs.

We already gave one example of two groups which have the same fusion system
but different outer automorphism groups. That is a special case of the main theorem
in our earlier paper, where we construct many examples of different groups of Lie
type with isomorphic fusion systems. Since this plays a crucial role in Chapter [@]
where we handle the cross characteristic case, we restate the theorem here.

As in the introduction, we write G ~, H to mean that there is a fusion pre-
serving isomorphism from a Sylow p-subgroup of G to one of H.

THEOREM 1.8 ([BMO| Theorem A]). Fiz a prime p, a connected reductive
group scheme G over Z, and a pair of prime powers q and q* both prime to p.
Then the following hold.

(a) G(q) ~p G(¢*) if (¢) = <q_*> as subgroups of Z,; .
(b) If G is of type Ay, D, or Eg, and T is a graph automorphism of G, then

"G(q) ~p "G(q") if (q) = (%) as subgroups of Z);.

(c) If the Weyl group of G contains an element which acts on the mazimal torus
by inverting all elements, then G(q) ~, G(¢*) (or "G(q) ~, "G(¢*) for T as in

(b)) if (= 1,q9) = (—1,q") as subgroups of Z, .
(d) If G is of type A, D,, for n odd, or Eg, and 7 is a graph automorphism of G
of order two, then "G(q) ~, G(q*) if ( — q) = (¢*) as subgroups of ;.

The next proposition is of similar type, but much more elementary.

PropoOSITION 1.9. Fiz an odd prime p, a prime power q prime to p, n > 2,
and € € {£1}. Then

(a) Span(q) ~p SLan(q) if ordy(q) is even;
(b) Spyy (@) ~p Sping, 1 1(q); and
(c) Spin, () ~p Sping,_1(q) if ¢ is odd and ¢" # € (mod p).
PROOF. If we replace Spini (¢) by SOE(g) in (b) and (c), then these three
points are shown in [BMOL Proposition A.3] as points (d), (a), and (c), respectively.

When ¢ is a power of 2, (b) holds because the groups are isomorphic (see [Tal
Theorem 11.9]). So it remains to show that
Sping, (q) ~p Q5. (q) ~p SO, (q)

for all m > 3 (even or odd) and ¢ odd. The first equivalence holds since p is odd
and Q5,(¢) = Spin;, (q)/K where |K| = 2. The second holds by Lemma [[.5(a),
and since Outgo: (¢)(€25,(q)) is generated by the class of a diagonal automorphism
of order 2 (see, e.g., [GLS3l §2.7]) and hence can be chosen to commute with a
Sylow p-subgroup. This last statement is shown in Lemma below, and holds
since for appropriate choices of algebraic group G containing the given group G,
and of maximal torus T < G, a Sylow p-subgroup of G is contained in N é(T) (see
[GLS3l Theorem 4.10.2]) and the diagonal automorphisms of G are induced by
conjugation by elements in Nz (G) (see Proposition B.5(c)). O

Theorem [[.8 and Proposition [[.9] together with some other, similar relations in
[BMOJ, lead to the following proposition, which when p is odd provides a relatively
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20 1. TAME AND REDUCED FUSION SYSTEMS

short list of “p-local equivalence class representatives” for groups of Lie type in
characteristic different from p.

PROPOSITION 1.10. Fiz an odd prime p, and assume G € £ie(qo) is of universal
type for some prime qo # p. Assume also that the Sylow p-subgroups of G are
nonabelian. Then there is a group G* € Lie(qs) of universal type for some qf # p,
such that G* ~, G and G™ is one of the groups in the following list:

(a) SL,(q*) for some n > p; or

(b) Spins,, (¢*), where n > p, e = £1, (¢*)* =€ (mod p), and e = 41 if n is odd;
or

(c) 3D4(q*) or Fy(q*), where p =3 and q* is a power of 2; or
(d) G(g*), where G = Go, Fy, Eg, E7, or Eg, p| [W(G)|, and ¢* =1 (mod p); or

(e) Es(q*), where p=1>5 and ¢* = £2 (mod 5).
Furthermore, in all cases except (c), we can take ¢ to be any given prime whose

class generates (Z/p*)*, and choose G* so that ¢* = (q3)” where b|(p — 1)p* for
some £.

PROOF. Let ¢ be such that G = "G(q) for some 7 and some G. Thus ¢ is
a power of go. Fix a prime ¢ as specified above. By Lemma [[IT}(a), there are

positive integers b, ¢, and powers ¢* = (¢)” and ¢ = (¢3)¢ such that (q) = (¢*),

{—q) = {(q"), and b, c|(p — 1)p® for some £ > 0.

(i)  Assume G 2 Sz(q), 2Ga(q), 2Fu(q), or G = 3Dy(q). Since p # qo, and since
S € Syl,(G) is nonabelian, p divides the order of the Weyl group W of G
by [GLl 10-1(3)]. The Weyl group of B is a 2-group, and 2 and 3 are the
only primes which divide the orders of the Weyl groups of G, Fy, and Dy.
Hence p = 3, G % 2G5 (q) since that is defined only in characteristic 3, and
so G = 2Fy(q) or 3Dy(q). Set G* = 2Fy(q*) or 3D4(q*), respectively, where
¢ = 2. Then G* ~, G, and we are in case (c).

(ii) If G = SU,(q) or *Es(q), then by Theorem [[8(d), G ~, G* where G* =
SLn(q") or Eg(q"), respectively. So we can replace G by a Chevalley group
in these cases.

(i) Assume G = Sp,,(¢) for some n and g. If ord,(q) is even, then by Proposition
La), G ~, SLan(q). If ord,(q) is odd, then ord,(g") is even since (¢") =
(—q) inF), and G~ Spy,(¢"*) by Theorem[L(c). So G is always p-locally
equivalent to a linear group in this case.

(iv) Assume G = Spin,,, ,,(q) for some n and ¢q. Then G ~, Sp,, (¢q) by Proposi-
tion [L9(b). So G is p-locally equivalent to a linear group by (iii).

(v) If G=SL,(q), set G* = SL,(q*). Then G* ~, G by Theorem [[.8(a), n > p
since the Sylow p-subgroups of GG are nonabelian, and we are in the situation

of (a).

(vi) Assume G = Spinj,(¢q) for some n and ¢, and € = £1. If ¢ is a power of 2,
then by using point (a) or (b) of Theorem [[8] we can arrange that ¢ be odd.
If ¢" # ¢ (mod p), then G ~,, Spin,,,_;(q) by Proposition [L9c), and this
is p-equivalent to a linear group by (iv). So we are left with the case where
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q" = ¢ (mod p). If nis odd and € = —1, set G* = Sping, (¢") ~, G (Theorem
[L8(d)). Otherwise, set G* = Spin3,,(¢*) ~p G (Theorem [[§(a,b)). In either
case, we are in the situation of (b).
We are left with the cases where G = G(q) for some exceptional Lie group G.
By [GL, 10-1(3)] and since the Sylow p-subgroups of G are nonabelian, p | |[W(G)|.
If ord,(q) = 1, then G* = G(¢*) ~p G by Theorem [[.8(a). If ord,(¢) = 2 and
G # Es, then G* = G(¢¥) ~, G by Theorem [L§(c), where ¢ = 1 (mod p). In
either case, we are in the situation of (d).

If ord,(q) = 2 and G = Eg(q), then (q) = (—¢?) as closed subgroups of Z
(note that v,(¢*> — 1) = v,((—¢*)?> — 1)). So by Theorem [[.8(d) and Example 4.4 in
[BMO], G = Es(q) ~p %E6(q?) ~, Fu(g*). So we can choose G* satisfying (d) as
in the last paragraph.

Assume ord,(¢q) > 2. By [GL, 10-1(3)], for S € Syl (G) to be nonabelian, there
must be some n > 1 such that p - ord,(q) ‘ n, and such that ¢ — 1 appears as a
factor in the formula for |G(q)| (see, e.g., |[GLL Table 4-2] or [Cal, Theorem 9.4.10
& Proposition 10.2.5]). Since ord,(q)|(p — 1), this shows that the case ord,(q) > 2
appears only for the group Eg(g), and only when p = 5 and ord,(¢) = 4. In
particular, ¢,¢* = £2 (mod 5). Set G* = Eg(¢*); then G* ~, G by Theorem
[[8(a), and we are in the situation of (e). O

The following lemma was needed in the proof of Proposition [[.I0 to reduce still
further the prime powers under consideration.
LEMMA 1.11. Fiz a prime p, and an integer q prime to p such that g # +1.
(a) If p is odd, then for any prime ro whose class generates (Z/p*)*, there isb > 1

such that {q) = {(ro)®), and b|(p — 1)p* for some £.

(b) If p = 2, then either (q) = (3), or (q) 5), or there are ¢ = £1 and k > 1

= {
such that e = q (mod 8) and (q) = (¢ - 3%")

PROOF. Since ¢ € Z and |g| > 1, @ is infinite.
(a) If p is odd, then for each n > 1, (Z/p™)* =2 (Z/p)* x (Z/p"~1) is cyclic

and generated by the class of ro. Hence Z); = (Z/p)* x (Zp,+), and (ro) = Z,.

Also, (q) > 1+ p*Z, for some £ > 1, since each infinite, closed subgroup of (Z,, +)
contains kap for some k.

Set b= [Z: ()] = [(Z/p")* : (q+p'Z)]|(p — 1)p*~". Then (q) = ((r0)?).
3

(b) If p=2, then Z5 = {+1} x (3), where (3) = (Z2,+). Hence the only infinite

closed subgroups of (3) are those of the form (32") for some k > 0. So (q) = (¢ - 32")
for some k > 0 and some € = £1, and the result follows since (5) = ( — 3). O

We also note, for use in Chapter [ the following more technical result.

LEMMA 1.12. Let G be a finite group, fix S € Syl,(G), and set F = Fs(G).
Let P < S be such that Cg(P) < P and Ns(P) € Syl,(Ng(P)). Then for each
¢ € Aut(F) such that p(P) = P, ¢|ng(p) extends to an automorphism ¢ of Ng(P).

ProOF. Since Cg(P) < P and Ng(P) € Syl,(Ng(P)), Ng(P) is a model for
the fusion system & = Fy,p)(Ng(P)) in the sense of [AKO| Definition 1.4.8].
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22 1. TAME AND REDUCED FUSION SYSTEMS

By the strong uniqueness property for models [AKO] Theorem 1.4.9(b)], and since
©|ng(p) preserves fusion in £, ¢|n,(p) extends to an automorphism of the model.
([l

The following elementary lemma will be useful in ChaptersBland[6 for example,
when computing orders of Sylow subgroups of groups of Lie type.

LEMMA 1.13. Fiz a prime p. Assume ¢ = 1 (mod p), and ¢ = 1 (mod 4) if
p=2. Then for eachn > 1, v,(¢" — 1) = v,(q — 1) + vp(n).

PROOF. Set 7 = v,(q¢ — 1), and let k be such that ¢ = 1 + p"k. Then ¢" =
1+ np"k + &, where v,(np"k) = vy(n) + r, and where each term in ¢ has strictly
larger valuation. O
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CHAPTER 2

Background on finite groups of Lie type

In this chapter and the next, we fix the notation to be used for finite groups of
Lie type, and list some of the (mostly standard) results which will be needed later.
We begin by recalling the following concepts used in [GLS3]. We do not repeat
the definitions of maximal tori and Borel subgroups in algebraic groups, but refer
instead to [GLS3| §§1.4-1.6].

DEFINITION 2.1 ([GLS3| Definitions 1.7.1, 1.15.1, 2.2.1]). Fiz a prime qo.

(a) A connected algebraic g?"oup_aY over Iﬁ‘qo is simple if [é, ?] %1, and all proper
closed normal subgroups of G are finite and central. If G is simple, then it is
of universal type if it is simply connected, and of adjoint type if Z(G) = 1.

(b) A Steinberg endomorphism of a connected simple algebraic group G is a sur-

jective algebraic endomorphism o € End(G) whose fized subgroup is finite.

(¢) A o-setup for a finite group G is a pair (é, o), where G is a simple algebraic
group over Fy , and where o is a Steinberg endomorphism of G such that
G = 0% (Cx(0)).

(d) Let Lie(qy) denote the class of finite groups with o-setup (é,o) where G is
simple and is defined in characteristic qo, and let Lie be the union of the
classes Lie(qo) for all primes qo. We say that G is of universal (adjoint) type

if G is of universal (adjoint) type.

If G is universal, then Cé(a) is generated by elements of go-power order (see
[St3, Theorem 12.4]), and hence G = Cg(0) in (c) above. In general, Cx(0) =
G- Cs(0) (cf. [GLS3| Theorem 2.2.6]). ~ .

A root group in a connected algebraic group G over F,, with a given maxi-
mal torus T is a one-parameter closed subgroup (thus isomorphic to ]qu) which is
normalized by T'. The roots of G are the characters for the T-actions on the root
groups, and lie in the Z-lattice X (7') = Hom(T', Fy ) of characters of T'. (Note that
this is the group of algebraic homomorphisms, and that Hom(ﬁ‘go,]l_?;o) >~ 7Z.) The
roots are regarded as lying in the R-vector space V = R ®7 X (T) We refer to
[GLS3| §1.9] for details about roots and root subgroups of algebraic groups, and
to [Brbl Chapitre VI] for a detailed survey of root systems.

The following notation and hypotheses will be used throughout this paper,
when working with a finite group of Lie type defined via a o-setup.

23
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24 2. BACKGROUND ON FINITE GROUPS OF LIE TYPE

NOTATION 2.2. Let (é‘,a) be a o-setup for the finite group G, where G is a
connected, simple algebraic group over Fy, for a prime qo. When convenient, we

also write G = G(qu), where G is a group scheme over Z.

(A) The mazximal torus and Weyl group of G. Fiz a mazimal torus T in G
such that o(T) = T. Let W = Ng(T')/T" be the Weyl group of G (and of G).

(B) The root system of G. Let X be the set of all roots of G with respect to
T, and let X, < G denote the root group for the root o € . Thus X, =
{zo(u)|u € Fyy} with respect to some fived Chevalley parametrization of G.
Set V.=R&z X(T): a real vector space with inner product (—, —) upon which
the Weyl group W acts orthogonally. Let I C X be a fundamental system of
roots, and let ¥y C X be the set of positive roots with respect to 1I. For each
a € Xy, let ht(a) denote the height of a: the number of summands in the
decomposition of a as a sum of fundamental roots.

For each o € %2, let wo, € W be the reflection in the hyperplane ot C V.
For a € ¥ and X € IFX, let ng(N) € (Xa, X o) and ho(\) € TN

(X, X o) e as defined in [Cal, §6.4] or [GLS3l Theorem 1.12.1]: the images
of( -t 0) and (0 )\9 ), respectively, under the homomorphism SLy(Fg,) —

G that sends (§4) to za(u) and (19) to v_a(v). Equivalently, no(\) =
TaN)Z_o(=2A"D20(A) and ho(N) = na(N)ne(1)71.

(C) The mazximal torus, root system and Weyl group of G. SetT = TNG.
Let 7 € Aut(V) and p € Aut(X) be the orthogonal automorphism and permu-
tation, respectively, such that for each o € B, 0(X o) = X p(a) and p(a) is a
positive multiple of T(a). Set Wy = Cw (7).

If p(IT) = 11, then set Vo = Cy (), and let pI“l/O be the orthogonal projection of
V onto V. Let S be the set of equivalence classes in 3 determined by T, where
a, 8 € X are equivalent if prv (@) is a positive scalar multiple of prV (B) (see
[GLS3| Definition 2.3.1] or [Cal §13.2]). Let Il C S, denote the images in 5.
of I C X,.

For each @ € %, set X5 = (Xola € @) and Xq = C)—(&(a). When o € ¥

is of minimal height in its class @ € &, and ¢ = |X2P|, then for u € Fy,
let To(u) € X5 be an element whose image under projection to X 18 o (1)
(uniquely determined modulo [Xg, X3z]).

Fora eIl and X € I_quo, let /ﬁa(/\) € T be an element in G N (hB(I_FqXO) |5 e a)

whose component in ha(IF‘qXO) is ho () (if there is such an element).

To see that 7 and p exist as defined in point (), recall that the root groups X
for & € ¥ are the unique closed subgroups of G which are isomorphic to (Fy,,+)

and normalized by T (see, e.g., [GLS3, Theorem 1.9.5(a,b)]). Since o is algebraic
(hence continuous) and bijective, o~ sends root subgroups to root subgroups, and
o permutes the root subgroups (hence the roots) since there are only finitely many
of them. Using Chevalley’s commutator formula, one sees that this permutation
p of ¥ preserves angles between roots, and hence (up to positive scalar multiple)
extends to an orthogonal automorphism of V.
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2. BACKGROUND ON FINITE GROUPS OF LIE TYPE 25

These definitions of Z,(u) € Xz and ﬁa()\) € T are slightly different from the
definitions in [GLS3] §2.4] of elements x5 (u) and hgz(\). We choose this notation
to emphasize that these elements depend on the choice of @ € X not only on its

class @ € 5. This will be important in some of the relations we need to use in
Chapter

LEMMA 2.3. Under the assumptions of Notation 2.2, the action of W on T
restricts to an action of Wo on T, and the natural isomorphism Ng(T)/T = W
restricts to an isomorphism

(Na(T) N NL(T)) /T = Cw () = Wy .

PRrROOF. For each a € 3, ny (1) = z4(1)z_o(—1)z4(1) represents the reflection
we € W, and hence o(na) € (Xp@), X—pa)) N NG(T) represents the reflection
Wpy(a) = (wq). Since W is generated by the w, for a € ¥, we conclude that o and
7 have the same action on W.

Thus the identification N é(T) /T = W restricts to the following inclusions:

(NG(T)WN@(T))/TSCN_ @ (0)/C7(0) < Cy_7),7(0) = Cw(7) = Wo.

If w € Wy represents the coset T C N= ( ), then 2~ 'o(z) € T. By the Lang-
Steinberg theorem, each element of T has the form t~'o(t) for some t € T, and
hence we can choose x such that o(z) = z. Then z € Cg(0), and hence z normalizes
G = OqS(CC—;(U)) and T = GNT. Since Cz(0) = GC5(0) (see [GLS3), Theorem

2.2.6(g)] or [St3] Corollary 12.3(a)]), some element of 2T lies in Ng(T). So the
above inclusions are equalities. O

The roots in G are defined formally as characters of its maximal torus 7.
But it will be useful to distinguish the (abstract) root a € ¥ from the character
O € Hom(T,]l_T;D) cVv.

For each root o € ¥ C V, let a¥ € V* be the corresponding co-root (dual
root): the unique element such that (a¥,«) = 2 and w, is reflection in the hy-
perplane Ker(a"). Since we identify V' = V* via a W-invariant inner product,
oV =2a/(a,a). Point @) of the next lemma says that o¥ = h,, when we regard
he € Horn(]l_rg07 T) as an element in V*.

LEMMA 2.4. Assume we are in the situation of (Bl and (B) in Notation 22
(a) We have C@(T) =T. In particular, Z(G) < T, and is finite of order prime to

the defining characteristic qo.

(b) The mazimal torus T in G is generated by the elements ha () ) for a €1l and

S IF‘;O If G is universal, and A, € Ty, are such that [] hoa(Aa) = 1, then
=1 for each o € 1. Thus

T =] ha(Fy)

acll

acll

and he, 1s injective for each a.
(c) For each B €%, let 3 € X(T) = Hom(T,IF‘;D) be the character such that
‘wp(u) = 25(05(t)u)
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26 2. BACKGROUND ON FINITE GROUPS OF LIE TYPE

forte T and u € Iﬁ‘qo. Then
05(ha(N) =A@ for Baex, NeFX.

The product homomorphism 0 = [[05: T —— [sen I_quo 1s surjective, and
Ker(6) = Z(G).

(d) If o, B1,...,0k € Z and nq,...,ny, € Z are such that o =n1 Y +...+nf),
then for each X € FX | ho(\) = hp, (AN™) - - - hg, (A™).

g0’

(e) For each w € W, o € X, and X\ € FX, and each n € N=(T) such that
nT =w € No(T)/T =W, "(Xa) = Xu(a) and "(ha(X)) = hua)(A). For
each a, B € ¥ and each \ € qu,

Wa(hs(N) = huy 5y (A) = hg(Wha(A~E72)) .
Hence wa(t) =t - ha(0a(t)) " for each t € T

PRrROOF. (@) By [Hu, Proposition 24.1.A], the maximal torus T is regular (i.e.,
contained in only finitely many Borel subgroups). So CG(T) = T by [Hul, Corollary
26.2.A]. Hence Z(é) < T, it is finite since G is assumed simple, and so it has order

prime to the defining characteristic ¢q.
We claim that it suffices to prove the relations in ([@—(@) in the adjoint group

G/Z (@), and hence that we can use the results in [Cal §§7.1-2]. For relations in T,
this holds since T is infinitely divisible and Z (G) is finite (thus each homomorphism
to T/Z( ) has at most one lifting to T) For relations in a root group X, this
holds since each element of X ,Z(G) of order ¢y lies in X4, since |Z(G)| is prime
to go by (@).

(B) This is stated without proof in [GLS3| Theorem 1.12.5(b)], and with a brief
sketch of a proof in [St4] p. 122]. We show here how it follows from the classification
of reductive algebraic groups in terms of root data (see, e.g., [Sp}, §10]).

Consider the homomorphism

7 def

M) | pum—

a€ell
which sends (Aa)aerr to [, ha(Aa). Then hy is surjective with finite kernel (see
[Cal §7.1]). It remains to show that it is an isomorphism when G is of universal
type.
We recall some of the notation used in [Sp} §7]. To G is associated the root
datum (X(T)7 ¥, XY(T), %Y), where

X(T) = Hom(T,Fy), X¥(T) =Hom(F},T), £ ={a" =ha|a€ X} C XV(T).

As noted before, X(T) and XY (T) are groups of algebraic homomorphisms, and
are free abelian groups of finite rank dual to each other. Recall that ¥ C X (T)7
since we identify a root a with the character 6.

Set YV = ZXV C XV(T), and let Y D X(T) be its dual. Then (V,%,YV,%Y)
is still a root datum as defined in [Sp} §7.4]. By [Sp7 Proposition 10.1. 3] and its
proof, it is realized by a connected algebraic group G with maximal torus T which
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2. BACKGROUND ON FINITE GROUPS OF LIE TYPE 27

lies in a central extension f: G —— G which extends hy. Since G is of universal
type, f and hence hy are isomorphisms.
(@) Let ZX < V be the additive subgroup generated by ¥. In the notation of

[Cal, pp. 97-98], for each a € ¥ and A € FX, ha(A) = h(Xa.n) where

q0°

Xax € Hom(ZE,I_F;D) is defined by Xa (V) = A2@v)/ () — y(a¥v)

Also, by [Cal, p. 100], for each x € Hom(ZE,]l_?qXO), BeX andue€ Iﬁ‘qo, "Mz (u) =
zg(x(8)-w). Thus there are homomorphisms 6z € Hom(T,I@;}), for each 8 € X,
such that ‘wg(u) = zg(0s(t)-u), and Og(h(x)) = x(8) for each x. For each o € &
and A € FX

g0’
(1) 0(ha(M) = 05 (h(Xa2)) = xar(B) = X

Assume t € Ker(fr). Thus ¢t € Ker(,) for all o € II, and hence for all
a € X CZI So [t,X,] = 1 for all o € %, these root subgroups generate G
(see [Spl Corollary 8.2.10]), and this proves that ¢t € Z(G). The converse is clear:
t € Z(G) implies t € T by @), and hence 3(t) = 1 for all § € II by definition of
3.

It remains to show that 6y sends T onto [] BerF
phisms

(2) i def H F hn T O H ]qu 7

acell BETL

q- Consider the homomor-

where hy was defined in the proof of (). We just saw that 0 o Ay has matrix
((av,ﬁ))aﬁen, which has nonzero determinant since II C V and IIY C V* are

bases. Since IF‘qXO is divisible and its finite subgroups are cyclic, this implies that
011 o hry is onto, and hence 6y is onto.
(d) This follows immediately from (@), where we showed, for @ € ¥, that o" can

be identified with h, in Hom(IF‘qXO,T) cCV*

@) The first statement ((X,) = Xw(a) and "(ha(A)) = huyp(a)(A)) is shown in
[Cal Lemma 7.2.1(ii) & Theorem 7.2.2]. By the usual formula for an orthogo-
nal reflection, wy(8) = 8 — (o a) a = B — (aY,B8)a. Here, we regard w, as an

automorphism of V' (not of T). Since we(f) and § have the same norm,

v_ 2wa(B) 28 _2(0‘7ﬂ). 2a —8Y —(8V.a) - a
wal®) =55 BB B (may P Fhe)en
and by (d),

Wa (hs(N) = hu(5)(A) = hg(Wha(AC D) = hg(N)ha(0a(hs(N) )

where the last equality follows from (@). Since T is generated by the hg(A) by (D),
this implies that we (t) =t - ha(0a(t)) " for all t € T

For any algebraic group H, H° denotes its identity connected component. The
following proposition holds for any connected, reductive group, but we state it
only in the context of Notation Recall the homomorphisms 03 € Hom(T , I_Fgo),
defined for § € ¥ in Lemma [ZZ)(@).
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28 2. BACKGROUND ON FINITE GROUPS OF LIE TYPE

PROPOSITION 2.5. Assume Notation 22 For any subgroup H < T, C’é(H) is
an algebraic group, C’a(H)O is reductive, and
C(H) =(T,X,|ae¥, H<Ker(dy))

(3) “

Ca(H) = C5(H) - {g € N5(T) |[g. H] = 1} .

If, furthermore, G is of universal type, then Z(G) = Cz(W).

PrOOF. The description of C’é(H)O is shown in [Ca2 Theorem 3.5.3] when
H is finite and cyclic, and the proof given there also applies in the more general
case. For each g € Cx(H), ¢y(T) is another maximal torus in CC—;(H)O, so gh €
CNC-;(T)(H) for some h € C@(H)O, and thus Cg(H) = Cé(H)O . CNE(T)(H)'

Assume G is of universal type. Since Z(G) < T by Lemma [Z7l@), we have
Z(G) < Cz(W). Conversely, by Lemma [, for each t € T and each a € %,
Y20(u)) = 24(0a(t)u), and 6_,(t) = 0,(t) 1. Hence also (na(1)) = na(0a(t)) (see
the formula for n,()) in Notation Z2[B)). If t € C7(W), then [t,n,(1)] = 1 for

each a, and since G is of universal type, (X, X o) = SLy(F,,). Thus 6,(t) = 1

for all « € X, t acts trivially on all root subgroups, and so ¢t € Z(G). |
We now look more closely at the lattice ZXV generated by the dual roots.
LEMMA 2.6. Assume Notation Z2(AIB)), and also that G (and hence G) is of

universal type.

(a) There is an isomorphism
: 7YY @ FY ——— T
with the property that ®(a¥ & X\) = ho(N) for each o € ¥ and each A € Iﬁ‘qxo.
Fiz some A € I@‘qxo, and set m = |\|. Set By = &(—,\): ZXY —— T.
(b) The map ® is Z[W]-linear, Ker(®y) = mZxY, and Im(®,) = {t € T |t" =
1}.
(c) Fizt € T and x € ZX" such that ®5(z) = t, and also such that
2] < $m - min{||a"| ’a €11},
Then Cw (t) = Cw ().
(d) If m = |\ >4, then for each o € B, Cw (ha(N)) = Cw ().
PRrROOF. (a,b) Identify ZXV as a subgroup of Hom(IE‘qXO,Y_’), and let
©: 2%V xFy ——— T
be the evaluation pairing. This is bilinear, hence induces a homomorphism on the
tensor product, and ®(a¥,\) = hs(A\) by Lemma 2Z4[@). Since {aV|a € 1} is a
Z-basis for ZXV (since XV is a root system by [Brbl § VI.1, Proposition 2]), and
since G is of universal type, ® is an isomorphism by Lemma 2.4I[L).
In particular, for fixed A € Fy of order m, ®(—, ) induces an isomorphism

from the quotient group Z¥XV/mZXY onto the m-torsion subgroup of T.
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2. BACKGROUND ON FINITE GROUPS OF LIE TYPE 29

(c) Clearly, Cw(z) < Cw(t); it remains to prove the opposite inclusion. Fix
w € Cw (t). By (a), w(z) =z (mod mZXV).

Set r = min{[|a"||| o € II}. For each a € %, [|aV|| = Vk - r for some k =
1,2,3, and hence (a",a) € r?Z. For each o, 8 € %, 2(a¥,8Y)/(a", ") € Z (cf.
[Cal, Definition 2.1.1]), and hence (a",3Y) € 3r?Z. Thus (z,z) € r*Z for each
x € Z¥", and in particular, min{||z|| ‘ 0#£zecZyV}=r.

By assumption, ||w(z)| = ||z|| < mr/2, so |lw(xz) — z|| < mr. Since each
nonzero element in mZYY has norm at least mr, this proves that w(x) —z = 0,
and hence that w € Cy ().

(d) This is the special case of (c), where x = @V and ¢ = hq (). O

LEMMA 2.7. Assume Notation 22, and assume also that G is of universal type.
Let T < Aut(V) be any finite group of isometries of (V,3). Then there is an action
of T on T, where g(ha(u)) = hga)(u) for each g €T, a € X, and u € IF‘qXO. Fix
m > 3 such that qo t m, and set T,,, = {t € T |t™ = 1}. Then T acts faithfully on
T. If 1 # g €T and £ € Z are such that g(t) = t* for each t € T),, then { = —1
(mod m).

PROOF. The action of I on T is well defined by the relations in Lemma ZZZi(dIb).

Now fix m > 3 prime to qo, and let T,, < T be the m-torsion subgroup. It
suffices to prove the rest of the lemma when m = p is an odd prime, or when
m =4 and p = 2. Fix A € IF‘;O of order m, and let ®,: ZXY — T be the
homomorphism of Lemmal[Z68(b). By definition of @y, it commutes with the actions
of T'on ZXY < V and on T},.

Assume 1 # g € T' and ¢ € Z are such that g(t) = ¢ for each t € T},,. Set
r = dim(V), and let B € GL,(Z) be the matrix for the action of g on ZXV, with
respect to some Z-basis of ZXV. Then |g| = |B|, and B = ¢I (mod mM,(Z)). If
p=2(m=4),let p € {£1} besuch that £ = p (mod 4). If pis odd (so m = p), then
let 1 € (Z,)* be such that u = ¢ (mod p) and pP~* = 1. Set B’ = p~'B € GL.(Z,).
Thus B’ also has finite order, and B’ = I (mod mM,(Z,)).

The logarithm and exponential maps define inverse bijections

In
I+mM,.(Z,) —— mM,(Z,).
exp
They are not homomorphisms, but they do have the property that In(MF*) =
kIn(M) for each M € I + mM,(Z,) and each k > 1. In particular, the only
element of finite order in I + mM,(Z,) is the identity. Thus B’ = I, so B = ul.
Since p € Z and B # I, we have p = —1 and B = —1. O

The following lemma about the lattice ZXY will also be useful when working
with the Weyl group action on certain subgroups of 7.

LEMMA 2.8. Assume Notation Z2([AIBl). Set A = ZXV: the lattice in V
generated by the dual roots. Assume that there are b € W of order 2, and a splitting
A= AL X A_, such that Ay, A_ # 0 and b acts on Ay via £Id. Then G = C),
(= Spsy,,) for some n > 2.

ProOF. Fix b € W and a splitting A = AL x A_ as above. When considering
individual cases, we use the notation of Bourbaki [Brbl Planches I-IX] to describe
the (dual) roots, lattice, and Weyl group.
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30 2. BACKGROUND ON FINITE GROUPS OF LIE TYPE

e If G=A, (n>2), then A = {(aq,...,an) € Z"" |ag+ ...+ a, =0}, and b
exchanges certain coordinates pairwise. Choose v € A with coordinates 1, —1,
and otherwise 0; where the two nonzero entries are in separate orbits of b of
which at least one is nonfixed. Then v ¢ A4 x A_, a contradiction.

o If G = (o, then as described in [Brbl Planche IX], A is generated by the dual
fundamental roots (1,—1,0) and (2, —1, —1), and does not have an orthogonal

‘ 3)7 377 3
basis.

e IfG=B, (n>3), D, (n>4), or Fy, then A < Z™ is the sublattice of n-tuples
the sum of whose coordinates is even. Also, b acts by permuting the coordinates
and changing sign (or we can assume it acts this way in the Fj case). Choose
v with two 1’s and the rest 0, where the 1’s are in separate b-orbits, of which
either at least one is nonfixed, or both are fixed and exactly one is negated.
Then v ¢ Ay x A_, a contradiction.

e If G = Eg, then A = A(Eg) < R?® is generated by %(17 1,...,1) and the n-tuples
of integers whose sum is even. We can assume (up to conjugation) that b acts
as a signed permutation. Choose v as in the last case.

o If G = F7, then A < R?® is the lattice of all x = (x1,...,25) € A(Es) such
that x7 = —xg. Up to conjugation, b can be again be assumed to act on A via
a signed permutation (permuting only the first six coordinates), and v can be
chosen as in the last case.

o If G = Eg, then A < R3 is the lattice of all z = (1, ...,23) € A(Es) such that

26 = 7 = —xg. Also, W contains a subgroup isomorphic to 2 : S5 with odd
index which acts on the remaining five coordinates via signed permutations. So
b and v can be taken as in the last three cases. O

We finish the chapter with a very elementary lemma.

It will be useful to know, in certain situations, that each coset of T in N é(T)
contains elements of G.

LEMMA 2.9. Assume that we are in the situation of Notation 2Z2([AIBl). As-
sume also that o acts on T wvia (t — t™) for some 1 # m € Z. Then for each
g € Ng(T), gT N Cxlo) # 2.

PROOF. Since o7 € Z(Aut(T)), we have g~lo(g) € OG(T) = T, the last
equality by Lemma ZZi@). So for each t € T, o(gt) = gt if and only if g~'o(g) =
t1=™ . Since T = (Fy )" for some r, and [F,, is algebraically complete (and 1 —m #
0), this always has solutions. ]
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CHAPTER 3

Automorphisms of groups of Lie type

Since automorphisms of G play a central role in this paper, we need to fix
our notation (mostly taken from [GLS3]|) for certain subgroups and elements of

Aut(G). We begin with automorphisms of the algebraic group G.

DEFINITION 3.1. Let G and its root system X be as in Notation Z2(AIB)).

(a) When q is any power of qo (the defining characteristic of G), let ¥, € End(G)
be the field endomorphism defined by q(xq(u)) = xzo(ud) for each a € ¥ and

each u € IF‘qO. Set @z = {wqg |b> 1}: the monoid of all field endomorphisms
of G.

(b) Let 'z be the group or set of graph automorphisms of G as defined in [GLS3|
Definition 1.15.5(e)]. Thus iuhen (G, q0) # (B2,2), (G2,3), nor (Fy,2), I'g
is the group of all v € Aut(G) of the form y(xa(u)) = x,)(u) (all o € £II
and u € Iﬁ‘qo) for some isometry p of ¥ such that p(Il) = 1. If (G,q0) =
(B2,2), (G2,3), or (Fy,2), then I'g = {1,v}, where for the angle-preserving
permutation p of ¥ which exchanges long and short roots and sends I to itself,
Y(xo(u)) = T (u) when a is a long root and Y(rq(u)) = T,(q)(u®) when o
s short.

(c) A Steinberg endomorphism o of G is “standard” if o = g oy =y o1y, where
q s a power of qo and vy € I'z. A o-setup (G,o) for a finite subgroup G < G
is standard if o is standard.

By [GLS3|, Theorem 2.2.3], for any G with o-setup (E},J) as in Notation 2.2]

G is é—conjugate to a subgroup G* which has a standard o-setup. This will be
made more precise in Proposition B.6{(a).

Most of the time in this paper, we will be working with standard o-setups.
But there are a few cases where we will need to work with setups which are not
standard, which is why this condition is not included in Notation

Following the usual terminology, we call G a “Chevalley group” if it has a
standard o-setup where v = Id in the notation of Definition B} i.e., if G = G(q)
where ¢ is some power of ¢gg. In this case, the root groups Xz are all abelian and
isomorphic to ;. When G has a standard o-setup with v # Id, we refer to G
as a “twisted group”, and the different possible structures of its root groups are
described in [GLS3| Table 2.4]. We also refer to G as a “Steinberg group” if v # Id
and is an algebraic automorphism of G; i.e., if G is a twisted group and not a Suzuki
or Ree group.

The following lemma will be useful in Chapters [l and

31
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32 3. AUTOMORPHISMS OF GROUPS OF LIE TYPE

LEMMA 3.2. Assume G is as in Notation R2|(MAIBl). Then for each algebraic
automorphism -y ofG which normalizes T there is an orthogonal automorphism T
of V such that 7(¥) = X, and

FY()_(Q) = )_(T(a) and ’Y(ha()‘)) = h‘r(a) ()‘)

for each o € ¥ and each \ € FX In particular, |”y\T‘ =|7| < oo. If, in addition,
~v normalizes each of the root groups X, (i.e., 7 =Id), then y € Aut- (G)

Proor. By [GLS3| Theorem 1.15.2(b)], and since + is an algebraic automor-
phism of G, ¥ = cg o Yo for some g € G and some Y € I';. Furthermore, o has
the form: ~o(za(u)) = Ty(a)(u) for all @ € ¥ and u € F,,, and some isometry
x € Aut(V) such that x(II) = II. Since v and -y both normalize T, we have

Thus by Lemma Z4(@), there is 7 € Aut(V) such that 7(X) = %, and v(X )

X (o) and y(ha(A)) = hr(q)(A) for each o € ¥ and A € ]FX In particular, M
7]
If 7 =1d, then v = Id and g € T. Thus 7 € Autf(é).

O

We next fix notation for automorphisms of G.

DEFINITION 3.3. Let G and G be as in Notation Z2(AIBIC), where in addition,
we assume the o-setup is standard.

(a) Set
Inndiag(G) = Autz(G)Inn(G) and Outdiag(G) = Inndiag(G) /Inn(G) .
(b) Set @ = {¢glc } q=4qj, b>1}, the group of field automorphisms of G.

(¢) If G is a Chevalley group, set I'q = {'y\g | v E F@}, the group of graph auto-
morphisms of G. Set T = 1 if G is a twisted group (a Steinberg, Suzuki, or
Ree group).

Note that in [GLS3] Definition 2.5.13], when G has a standard o-setup (G, o),
Inndiag(G) is defined to be the group of automorphisms induced by conjugation

by elements of C (o) (lifted to G). By [GLS3, Lemma 2.5.8], this is equal

G/2(G)
to Inndiag(G) as defined above when G is of adjoint form, and hence also in the
general case (since Z(G) < T).
Steinberg’s theorem on automorphisms of groups of Lie type can now be stated.
THEOREM 3.4 ([St1l §3]). Let G be a finite group of Lie type. Assume that

(G o) is a standard o-setup for G, where G is in adjoint or universal form. Then
Aut(G) = Inndiag(G)Pcl ¢,
where Inndiag(G) < Aut(G) and Inndiag(G) N (Pelg) =1

PROOF. See, e.g., [GLS3| Theorem 2.5.12(a)] (together with [GLS3| Theorem
2.5.14(d)]). Most of this follows from the main result in [Stl], and from [St2]
Theorems 30 & 36]. O
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3. AUTOMORPHISMS OF GROUPS OF LIE TYPE 33

We also need the following characterizations of Inndiag(G) which are indepen-
dent of the choice of o-setup.

PROPOSITION 3.5. Assume the hypotheses and notation in 22l Then
(2) Cz(G) = Z(G);
(b) Ng(G) =GNz(G); and
(c) Inndiag(G) = Aut(G)Inn(G) = Aut(G) and hence Outdiag(G) = Outz(G).
In fact, (b) and (c) hold if we replace T by any o-invariant mazimal torus in G.

PRrROOF. (a) Since the statement is independent of the choice of o-setup, we
aes, Xo and U* = =[loes, X_,

Fix g € Cx(G). Since G has a BN-pair (see [Cal Proposition 8.2. 1]), it has

a Bruhat decomposition G = BNB = UNU |[Cal Proposition 8.2.2(i)], where
B =TU and N = Ng(T). Write g = unv, where u,v € U and n € N. For each
re€UNG, % =*"%) e U implies that "z = "("z) € U.

Since n € Ng (T), conjugation by n permutes the root groups of G, in a way
determined by the class w = nT € W = NC—;(T)/T Thus w sends each (positive)
root in the decomposition of “z to a positive root. For each a € X1, Z,(1) € G,
Y@ (1)) has a in its decomposition, and hence w(a) € 4.

Thus w sends all positive roots to positive roots, so w(II) = II, and w = 1 by
[Cal Corollary 2.2.3]. Son € T, and g = unv € TU.

By the same argument applied to the negative root groups, g € TU*. Hence
geT.

For each o € %, g € T commutes with Z,(1) € G, and hence g centralizes

can assume that o is standard. Set U = 11

Xp for each B € @ (Lemma Z4@)). Thus g centralizes all root groups in G, so
g€ Z(Q).
(b) Let T* be any o-invariant maximal torus in G. Fix g € Ng(G). Then
g ' -o(g) € C5(G) = Z(G) < T* by (a). By Lang’s theorem [GLS3, Theorem
2.1.1], there is t € T* such that g=' - o(g) = t~' - o(t). Hence gt~' € Czlo) =
G-Cx, (o), where the last equality holds by [GLS3), Theorem 2.2.6(g)]. So g € GT*,
and g € GN-=, (G) since g normalizes G.
(c) By (b), Autgz(G) = Autz, (G)Inn(G) for each o-invariant maximal torus T
By definition, Inndiag(G) = Autz, (G)Inn(G) when T* is the maximal torus in a
stand‘ixrd o-setup for G. Hence Inndiag(G) = Autz(G) = Autz, (G)Inn(G) for all
such T*. O
We refer to [GLS3| Definitions 1.15.5(a,e) & 2.5.10] for more details about the

definitions of ®¢ and I'g. The next proposition describes how to identify these
subgroups when working in a nonstandard setup.

PROPOSITION 3.6. Assume é, T, and the root system of C_¥, are as in Notation
R2(MAIBl). Let o be any Steinberg endomorphism of G, and set G = Oqé(C’— (0)).

(a) There is a standard Steinberg endomorphism o* ofG such that if we set G* =
O%(C’ (c%)), then there is x € G such that G = “(G*).
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34 3. AUTOMORPHISMS OF GROUPS OF LIE TYPE

Fiz G*, o*, and x as in (a). Let Inndiag(G*), ®g+, and I'g- be as in Definition
B3 (with respect to the o-setup (G,0*)). Set Inndiag(G) = c,Inndiag(G*)c; !,
bg = c,Pg-c;t, and T'g = c,I'g-c; ', all as subgroups of Aut(G). Then the
following hold.

(b) Inndiag(G) = Autz(G).

(c) For each o € @'y such that alg- € ®g-T'c+, and each B € & - Inn(G) such
that B(G) = G, Blg = cz(a)cyt (mod Inndiag(G)).
(d) If g, normalizes G, then Inndiag(G)®q = Inndiag(G)(¥y,|a)-

Thus the subgroups P and T'¢ are well defined modulo Inndiag(G), independently
of the choice of standard o-setup for G.

PRrOOF. (a) See, e.g., [GLS3l Theorem 2.2.3]: for any given choice of maximal
torus, positive roots, and parametrizations of the root groups, each Steinberg auto-
morphism of G is conjugate, by an element of Inn(é), to a Steinberg automorphism
of standard type.

(b) This follows immediately from Proposition B35 c).

(c) By assumption, § = & = cyac;! (mod Inn(G)). Since B and cyac; ! both
normalize G, B|¢ = c.a*c; ! modulo Autg(G) = Inndiag(G).

(d) If 94, normalizes G, then (c), applied with @ = § = 1,,, implies that as
elements of Aut(Q@)/Inndiag(G), [Vg|c] = [ca(¥g,|c+)cy '] generates the image of
D O

LEMMA 3.7. Assume G, T, o, G = Oqé(C’é(U)), and the root system of G,
are as in Notation Z2(MAIB]). Assume that ¢ € Aut(T) is the restriction of an
algebraic automorphism of G such that [p,0|z] = 1. Then there is an algebraic

automorphism @ € Aut(G) such that Plz =@, [p,0] =1, and p(G) = G.

PROOF. By assumption, there is ¢ € Aut(G) such that o[z = ¢. Also, [p, o] is
an algebraic automorphism of G by [GLS3| Theorem 1.15.7(a)], it is the identity on
T, and hence [p, 0] = ¢; for some t € T by Lemma Using the Lang-Steinberg

theorem, upon replacing ¢ by ¢, for appropriate u € T, we can arrange that
[¢,0] = 1. In particular, p(G) = G. -

The following proposition is well known, but it seems to be difficult to find
references where it is proven.

PROPOSITION 3.8. Fiz a prime qo, and a group G € L£ie(qy) of universal type.
Then Z(G) has order prime to qo, G/Z(G) € Lie(qo) and is of adjoint type, and
Z(G/Z(@)) = 1. If G/Z(QG) is simple, then each central extension of G by a group
of order prime to qo splits (equivalently, H*(G;Z/p) = 0 for all primes p # qo).

PROOF. Let (G, o) be a o-setup for G, and choose a maximal torus and positive
roots in G. We can thus assume Notation By Lemma 24(@), Z(G) is finite of
order prime to go. Since Z(G) < Cg(G) = Z(G) by Proposition B5a), Z(G) also
has order prime to qg.

Set G, = G/Z(@G) and let G, < G, be the image of G under projection. Thus

G, is an algebraic group of adjoint type, and G, = OqUI(C(—; (04)) € Lie(qo) where
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3. AUTOMORPHISMS OF GROUPS OF LIE TYPE 35

0q € End(G,) is induced by o. Also, Z(G,) < Z(G,) = 1 by Proposition 35(a)
again.

It remains to prove the statement about central extensions. When G is a
Chevalley group, this was shown in [St4] Théoreme 4.5]. It was shown in [St6]
Corollary 6.2] when G = 24,,(q) for n even, and in [AG] when G = 2G2(q) or Sz(q).
The remaining cases follow by similar arguments (see [St5l 9.4 & 12.4]). (See also
[Cul, §1], as well as Theorem 6.1.4 and Tables 6.1.2 and 6.1.3 in [GLS3].) O

The next proposition shows that in most cases, C(—;(T) = T. In Chapter [

we will see some conditions which imply that Cz(O,(T')) = T when p is a prime
different from the defining characteristic.

PROPOSITION 3.9. Let (é,a) be a o-setup for G, where G and G are of uni-
versal type. Assume Notation 2.2], and in particular, that we have fized a maximal
torus T and a root system X in G.

(a) Assume that Ca(T)O > T, where (=)° denotes the connected component of
the identity. Then there is o € Y4 such that 6,(T) = 1. Also, there is

3 € Hom(T, I_quo) such that 0, = B~10*(B); i.e., Oa(t) = B(t~ta(t)) for each

telT.

(b) If the o-setup is standard, then Cé(T)O =T except possibly when G = "G(2)
for some G and some v < 3, or when G = A1(3), C,,(3) for n > 2, or 2G2(3).

(c) If C5(T)° =T, then Na(T)/T = Wy.

PRrROOF. (a) By Proposition 23] and since C’(—;(T)O > T, there is a € ¥ such

that T < Ker(f,) (equivalently, [T, X,] = 1). Since Ker(f_,) = Ker(6,), we can
assume that o € ¥.
Since G is of universal type, G = Cg(0) and T' = C7.(0). Hence there is a short
exact sequence
_ —1, _
1 T T totTle®, &
where the last map is onto by the Lang-Steinberg theorem. Upon dualizing, and

7

regarding Hom(T, I_Fgo) additively, we get an exact sequence

0 —— Hom(T, ) ~=—4 Hom(T,F} ) —="s Hom(T,F})
(see also [Ca2| Proposition 3.2.3]), where Hom(T7 I_quo) is the group of algebraic
homomorphisms. Since 6, is in the kernel of the restriction map, by assumption,
it has the form 8~'o*(8) for some 8 € Hom(T,F},).
(b) Let P(X) and Q(X) be as in [Brbl § VI.1.9] (but with ¥ in place of R to denote
the root system). Thus Q(X) = ZX, the integral lattice generated by X, and

PE)={veV|(v,aY)eZforalla e X} > Q(X).
For each v € P(X), define 6, € X(T) = Hom(T, ]P_’qxo) by setting 6, (ho(N)) =

A©ve) for o € IT and \ € IE“qO. Since G is of universal type, this is a well defined
homomorphism by Lemma 240, and the same formula holds for all « € ¥ by
Lemma 2.4(d). By Lemma 24@), this extends our definition of 5 for 8 € ¥ C
P(%).
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Recall that Hom(IF‘;U, IF‘;O) = 7, For each § € X(T) and each o € ¥, let g, € Z

be such that 0(hy(A)) = A"~ for all A € IF‘qXO. For given 6, there is v € P(X) such
that (v,a") = ng 4 for all @ € II, and hence (by Lemma ZZ|(d))) for all & € X. Then

0 = 0, as defined above. In this way, we identify P(X) with the lattice X (T) of

characters for T, while identifying Q((Y) with ZX.
From the appendix to Chapter VI in [Brb] (Planches I-IX), we obtain the
following table:

root system X An Cn B, D, Gy | Fy | Es | E7| Es
min{||v|| |v € P(X)} n/(n+1) | 1 | min{y/n/4,1} | V2| 1 4/3 | V2| V2
max{||a|| |« € X} V2 2 V2 V6 V2 V2 V2 V2

Here, the norms are given with respect to the descriptions of these lattices in [Brb]
as subgroups of Euclidean spaces.

Assume C'é(T)O > T. By (a), there are o € ¥, and 8 € Hom(T, [Fx) such
that « = B~ 1o*(B). If we regard o and j3 as elements in the normed vector space
V, then |la| = ||o*(B) = 8] = le*(B)]| — |18]]- If G = "G(q) (and o is a standard
setup), then ||o*(8)|| = q||B]|, except when G is a Suzuki or Ree group in which
case [[o*(8)[ = v/gl|B]- Thus

Il {q if G is a Chevalley or Steinberg group

4+ 1>
181l
By the above table, this is possible only if ¢ = 2, or if G is isomorphic to one of the
groups A1(3), Ba(3), Cu(3) (n > 3), 2G2(3), or *Ba(8).
Assume G = 2B,(8) =2 Sz(8). It is most convenient to use the root system for
Cy constructed in [Brb]: P(X) = Z2, and ¥ = {(£2,0), (0,£2), (£1,+1)}. Then
« and B satisfy the above inequality only if ||a|| = 2, ||8]| = 1, and ||a + B]| = V8.
So (e, 8) = 2, which is impossible for «, 3 € Z2. Hence C5(T)? =T in this case.
(c) If C’é(T)O = T, then Ng(T) < NG(T)’ and so Ng(T)/T = Wy by Lemma
O

V4 if G is a Suzuki or Ree group.

The following, more technical lemma will be needed in Chapter

LEMMA 3.10. Assume the hypotheses and notation in 22, and also that the
o-setup (G, o) is standard. Then under the action of Wy on X, each orbit contains

~

elements of 1.

PROOF. When p = 1d, this is [Cal Proposition 2.1.8]. When p # Id, it follows
from the descriptions of Wy and ¥ in [Cal, §§13.2-13.3]. O
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CHAPTER 4

The equicharacteristic case

The following notation will be used in this chapter.

NOTATION 4.1. Assume the notation in [Z2, and also that p(I1) =11, qo = p,
and Z(G) = 1. Thus G = G(F),) is a connected, simple group over F,, in adjoint
form, o is a Steinberg endomorphism of G of standard form, and G = O’ (Ca(a)).

- def =

(D) Set U = <)_(a ’oz €X,) and B= Nz(U) = UT (the Borel subgroup of G).
Set
U=Cy(o0)=(Xalaes,), B=NgU), ad T=TnNG.

Thus U = Hae§+ Xa € SylL,(G), and B =UT. (See, e.g., [GLS3, Theorems
2.3.4(d) & 2.3.7], or [Cal, Theorems 5.3.3(ii) & 9.4.10] in the case of Chevalley
groups.) When jg I is the image in §+ of a T-invariant subset J g II, let
Uz < U be the subgroup generated by root groups for positive roots in ¥, ~\(J)

(the unipotent radical subgroup associated to j), and set P57 = Ng(Uz) =
B<X,a ’ a € (J)> (the parabolic subgroup associated to j) Thus U = Ugk
and B = Pg. We also write Uy = Urgy and Pa = Pyay for each a € .

(E) The height of a positive root « = 3 ynyy € Xy (ny > 0) is defined by
ht(a) = > cpny. The height ht(@) of a class of roots & € S, is the minimum
of the heights of roots in the class Q.

(F) Set F = Fy(G) and L = LF(G).

(G) Set Uy = (Xz|a €Sy, anll=2) = (X | ht(d) > 2).

(H) The Lie rank of G is equal to |II|; equivalently, to the number of mazimal
parabolic subgroups containing B.

For example, assume o = 9, o v, where v € Aut(G) is a graph automorphism
which induces p € Aut(X,), and 1, is the field automorphism induced by t — t°.
Then for & € &, X5 = F, when @ = {a} contains only one root, X5z = Fya if
a = {p'(a)} is the p-orbit of a with length a, and X5 is nonabelian if & contains a
root a and sums of roots in its p-orbit.

We need the following, stronger version of Theorem 341

THEOREM 4.2 ([St1] §3]). Assume G is as in Notation and @1l If a €
Aut(@) is such that «(U) = U, then o = ¢, dfg for unique automorphisms ¢, €
Auty (G), d € Inndiag(G) = Autz(G), f € g, and g € I'c.

PROOF. Let Nayy(g)(U) < Aut(G) and Nindiag(e)(U) < Inndiag(G) be the
subgroups of those automorphisms that send U to itself. Since ®gI'¢ < Ny (U)

37
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38 4. THE EQUICHARACTERISTIC CASE

by definition, Theorem [3.4] implies that Nyt () (U) = Nmndiag(a)(U) - (®cl'a), a
semidirect product. Since &g NI'¢ = 1, it remains to show that Niynqiag(a)(U) =
Auty (G)Autz(G) and Auty(G) N Auts(G) = 1. The first is immediate: since
AutT(G) < NAut(G) (U) and Ng(U) =TU,

Niundiag(c)(U) = (Inn(G)Aut(G)) N Naye(a) (U)

Finally, if ¢, = ¢; € Aut(G) where w € U and t € T, then ¢, = Idg, since u has
p-power order and ¢ has order prime to p. (Il

LEMMA 4.3. Assume G € ELie(p). Then for U € Syl (G), kg sends Out(G)
injectively into Out(F).

PROOF. Assume that kg7 is injective. We claim that Aut(G) injects into
Aut(G/Z(G)), and hence that k¢ is also injective. To see this, fix @ € Aut(G)
such that [, G] < Z(G). Recall that Z(G) has order prime to p (Proposition B:S)).
For each g € G of p-power order, a(g) = gz for some z € Z(G), and z = 1 since
otherwise |zg| > |g|. Since G is generated by such elements by definition of £ie(p),
a = Idg, proving the claim. It thus suffices to prove the lemma when G is in adjoint
form.

We can thus assume Notation Il By Lemma [[4] it will suffice to prove that
Cauwt(ey(U) < Inn(G). Fix f € Aut(G) such that |y = Idy. By Theorem B2
there are unique automorphisms ¢, € Auty(G), d € Aut:—F(G), fe€®g,and g e '
such that 8 = c,df g.

If g # Id, then it permutes the fundamental root groups nontrivially, while
cudf | sends each such group to itself modulo higher root groups and commutators.
Hence g = Id. Similarly, f = Id, since otherwise 8 would act on the fundamental
root groups (modulo higher root groups) via some automorphism other than a
translation.

Thus 8 = cyd, where d = ¢; for some t € Nz(G). Then u has p-power
order while ¢ has order prime to p, so dly = ¢|y = Id. By Lemma 24l@), ¢
sends each root group in U to itself via 4 (u) — 24(04(t)u) for some character
6, € Hom(T, ]1_7;() which is linear in a. For each @ € 3, ¢t|x, = Id implies
that 0,(t) = 1 for all a € @. Thus 6,(t) = 1 for all @ € X4, so ¢; = Idg, and
B = ¢, € Inn(G). O

It now remains, when proving Theorem [Al to show the surjectivity of kg. This
will be done case-by-case. We first handle groups of Lie rank at least three, then
those of rank one, and finally those of rank two.

For simplicity, we state the next two propositions only for groups of adjoint
type, but they also hold without this restriction. The first implies that each element
of Aut(F) permutes the subgroups U5 (as defined in Notation [A1]), and that each
element of Aut(L§(G)) induces an automorphism of the amalgam of parabolics B 7
for J G 11.

PROPOSITION 4.4. Assume Notation EIl For 1 # P < U, the following are
equivalent:

(i) P =Ujs for some j; I0;
(i) P < B, Cy(P)<P,and O,(Outx(P))=1; and
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(ii) P < B, Ca(P) <P, and Op(Ng(P)) = P.
Hence for each ¢ € Aut(F), ¢ permutes the subgroups Uz, and in particular per-
mutes the subgroups Us for @ € 1.

ProOF. (i) = (iii): For each J G II, C4(U;) = Z(U;) by [GLS3, Theorem
2.6.5(e)] (recall that G is of adjoint type). Also, Op(Na(Us)) = Op(B7) = Uz, and
U; is normal in B since Ng(U;z) =B 5 > B.
(iii) = (ii): This holds since Outz(P) = Ng(P)/PCg(P).
(ii) = (i): In this case, P 9 B, so Ng(P) > B, and Ng(P) = B 5 for some j;
II (cf. [Cal Theorem 8.3.2]). Then P < O,(P;) = U;. Also, U;Cq(P)/PCq(P) <
Op(Ng(P)/PCq(P)) = 1, so U < PCg(P). Since Uz < U, this implies that
U; < PCy(P) = P; ie., that P = Uj. So (i) holds.

The last statement follows from the equivalence of (i) and (ii). O

When G has large Lie rank, Theorem [Al now follows from properties of Tits
buildings.

PROPOSITION 4.5. Assume G € Lie(p) is of adjoint type and has Lie rank at
least 3. Fiz U € Syl,(G). Then kg is split surjective.

PROOF. Set £ = L{;(G). By Proposition[d.4] for each a € Aut(L), o permutes
the subgroups U5 for j\; II. For each such J, Ca(U;z) = Z(Uz), so Autp(Uz) =
Ng(Usz) = B3 Thus o induces an automorphism of the amalgam of parabolic
subgroups ‘B ;. Since G is the amalgamated sum of these subgroups by a theorem
of Tits (see [T, Theorem 13.5] or [Sel p. 95, Corollary 3]), o extends to a unique
automorphism « of G.

Thus a — a defines a homomorphism 5: Aut(£) —— Aut(G). If a = ¢, for
v € Autz(U) = Ng(U), then a is conjugation by v € G and hence lies in Inn(G).
Hence 5 factors through s: Out(£) —— Out(G), kg os = Idoyg(c), and thus kg is
split surjective. O

Before we can handle the rank 1 case, two elementary lemmas are needed.

LEMMA 4.6. Let G be a finite group with normal Sylow p-subgroup S < G such
that Cq(S) < S. Fiz subgroups 1 = Sy < S1 < --- < S, = S normal in G such that

(i)  Skp—1 < Fr(S); and

(ii)  for each 1 < i < k —1, S; is characteristic in G, [S,S;] < S;_1, Si/Si—1
has exponent p, and Homg (q/s)(S/Fr(S),Si/Si—1) = 0 (i.e., no irreducible
F,[G/S]-submodule of S;/Si—1 appears as a submodule of S/Fr(S)).

Let o € Aut(Q) be such that [, S] < Sk—1. Then a € Autg(G).

PROOF. For 1 # g € G of order prime to p, the conjugation action of g on S
is nontrivial since Cg(S) < S, and hence the conjugation action on S/Fr(S) is also
nontrivial (see [Gl Theorem 5.3.5]). Thus G/S acts faithfully on S/Fr(S). Since o
induces the identity on S/Fr(S), a also induces the identity on G/S.

Assume first that a|g = Id. Since S is a p-group and G/S has order prime to
p, HY(G/S;Z(S)) = 0. So by [OV] Lemma 1.2], a € Inn(G). If g € G is such
that a = ¢g4, then [g,S] = 1 since a|g = Id, and g € S since C¢(S) < S. Thus
a € Autg(G) in this case.

In particular, this proves the lemma when k£ = 1. So assume k > 2. We can
assume inductively that the lemma holds for G/S;, and hence can arrange (after
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composing by an appropriate element of Autgs(G)) that a induces the identity on
G/ 5.

Let ¢ € Hom(S,S1) be such that a(x) = zp(z) for each x € S (a homo-
morphism since S; < Z(S5)). Then ¢ factors through @ € Hom(S/Fr(S),S1)
since 57 is elementary abelian, and & is a homomorphism of F,[G/S]-modules
since a(g) = g (mod S;) for each g € G (and S; < Z(S)). Thus ¢ = 1 since
Homg /s (Sk/Sk—1,51) = 0 by (ii), so a|s = Id, and we already showed that this
implies a € Autg(G). O

The next lemma will be useful when checking the hypotheses of Lemma

LEMMA 4.7. Fiz a prime p and e > 1, and set ¢ = p® and I' = F;. For each
a € Z, set Vo, =, regarded as an FpI'-module with action A\(x) = A%z for A € T
and x € Fy.
(a) For each a, V, is F,I-irreducible if and only if a/ gcd(a,q — 1) does not divide
pt — 1 for any tle, t < e.

(b) For each a,b € Z, Vo, =V, as F,I'-modules if and only if a = bp' (mod q — 1)
for some i € Z.

PRrOOF. (a) Set d = ged(a,q — 1), and let ¢ be the order of p in (Z/q%dl)x. Thus
tle since %‘(pe —1). If t <e, then \* € Fp for each A€ Fy, 50 0 £ F GV, is a
proper F,I'-submodule, and V is reducible.

Conversely, if V, is reducible, then it contains a proper submodule 0 # W g Va
of dimension 4, some 0 < ¢ < e. All T-orbits in V,\0, hence in W\0, have length
q%dl, SO %‘(pi —1),and t <i<e.

(b) For each a € Z, let V, = F, be the F,[-module where T acts via A(z) = A\,
Then F, ®p, V, = V,® 1_/,11, DD Vapcfl as F,I'-modules. Since V, =V, if and
only if b = a (mod ¢ —1), V;, 2V, if and only if b = ap’ (mod ¢ — 1) for some i. [

In principle, we don’t need to look at the fusion systems of the simple groups of
Lie rank 1 if we only want to prove tameness. Their fusion is controlled by the Borel
subgroup, so their fusion systems are tame by Proposition But the following
proposition is needed when proving Theorem [Al in its stronger form, and will also
be used when working with groups of larger Lie rank.

PROPOSITION 4.8. Fiz a prime p, and a group G € Lie(p) of Lie rank 1.
Assume (G,p) % (S2(2),2). Then each ¢ € Aut(F) extends to an automorphism of
G. Also, if [p,U] < [U,U], then ¢ € Inn(U).

ProoOF. If G is of universal form, then Z(G) is cyclic of order prime to p by
Proposition B8 For each Z < Z(G), Out(G/Z) = Out(G) by [GLS3, Theorem
2.5.14(d)], and Out(Fy(G/Z)) = Out(Fy(G)) since G and G/Z have the same
p-fusion systems. It thus suffices to prove the proposition when G has adjoint form.

Assume first G = PSLy(q). Thus U =2 F, (as an additive group), 7' = C,_1) /e

where € = ged(¢—1,2), and T’ def Autr(U) is the subgroup of index e in F*. If ¢ €

Aut(U) is fusion preserving, then under these identifications, there is o € Aut(T")
such that a(u)p(v) = ¢(uv) for each uw € I' < F and v € F,. After composing
with an appropriate diagonal automorphism (conjugation by a diagonal element of
PGLy(q)), we can assume that ¢(1) = 1. Hence the above formula (with v = 1)
implies that o = ¢|r, and thus that p(uv) = p(u)e(v) for each u,v € F, with
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u € I'. If e =1, then ¢ acts as a field automorphism on U, hence is the restriction
of a field automorphism of GG, and we are done. Otherwise, there is u € I" such that
F, = F,(u), v and o(u) have the same minimal polynomial over F,, and there is
¥ € Aut(F,) (a field automorphism) such that 1 (u) = p(u). Thus ¥ (u’) = ¢(u?)
for each i, so 1) = ¢ since both are additive homomorphisms, and hence ¢ extends
to a field automorphism of G. (Note that this argument also holds when ¢ = 3 and
r=1)
Next assume G = PSUs(q). Following the conventions in [H| Satz I1.10.12(b)],

we identify

U= {[[a,b]] ‘ a,beFp, b4+ b7 = —aq'H} where [a,b] = (é Z {;q);

T={dN|reF;} where  d()\) = diag(A™%, A1 N).

Here, whenever we write a matrix, we mean its class in PSUs(g). Then B =UT =
N¢(U) < G (see [H| Satz 11.10.12(b)]), and

[a,b] - [e,d] = [a+¢,b+d—ac?]  and  “Va,b] = [\ 7276, \"17%].

Set ¢ = ged(2g — 1,¢% — 1) = ged(2g — 1,¢% — 2q) = ged(g + 1,3). Then d()\) = 1
exactly when \° = 1, Cr(U) = 1, and hence |T| = |Autg(U/Z(U))| = (¢*> — 1) /e.
If ¢ > 2, then |T| does not divide p* — 1 for any power 1 < p' < ¢%, and by
LemmalT(a), U/Z(U) and Z(U) are both irreducible as Fp[T]-modules. (Note, in
particular, the cases ¢ = 5 and ¢ = 8, where (U/Z(U), T) is isomorphic to (Fas5, Cs)
and (Fgy, Co1), respectively.)

Fix ¢ € Aut(F), and extend it to o € Aut(B) (Lemma [[I2)). Via the same
argument as that used when G = PSLy(q), we can arrange (without changing the
class of ¢ modulo Im(%¢)) that ¢ = 1Id (mod [U, U]). If ¢ > 2, then the hypotheses
of Lemma [A.6] hold (with [U,U] < U < B in the role of S < S3 = § < G), so
a € Auty(B) and ¢ € Inn(U).

If G = PSU3(2) =2 C% x Qg (cf. [Tal p. 123-124]), then U = Qg and T = 1, so
Out(F) = Out(U) = ¥3. By Theorem B4 (or by direct computation), Out(G) =
Outdiag(G)®¢ has order six, since |Outdiag(G)| = ged(3,¢+1) = 3 and |P¢g| = 2.
Thus k¢ is an isomorphism, since it is injective by Lemma 3]

The proof when G = Sz(q) is similar. Set § = \/2q. We follow the notation in
[HBI, § XI.3], and identify U as the group of all S(a,b) for a,b € F; and T' < B =
Ng(U) as the group of all d(A) for A € FX, with relations

S(a,b)-S(c,d) = S(a+c,b+d+a’c) and “NMS(a,b) = S(\a, A\1 ).
As in the last case, we can arrange that ¢ € Aut(F) is the identity modulo [U, U].
Since ¢ > 8 (¢ # 2 by hypothesis), Z(U) and U/Z(U) are nonisomorphic, irreducible
FyT-modules by Lemma[d.7(a,b) (and since Z(U) = Vi1 and U/Z(U) = V; in the
notation of that lemma). We can thus apply Lemma to show that ¢ € Inn(U).
It remains to handle the Ree groups 2Ga(q), where ¢ = 3™ for some odd

m > 1. Set 6 = \/3q. We use the notation in [HB| Theorem X1.13.2], and identify
U = (F,)® with multiplication given by

(1, Y1, 21) (22, Y2, 22) = (1 + 22, Y1+ Y2 +I1'I3721 +22 —T1Y2 +Y1-T2 —~T1'$§'$2)~

Note that 2" = 2. Let T < B = Ng(U) be the set of all d(\) for \ € Fx, acting
on U via
" z,y,2) = (e, Ay, X0F22).
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Again, we first reduce to the case where ¢ € Aut(F) is such that [p, U] < [U, U],
and extend ¢ to o € Aut(B). If ¢ > 3, then U/[U, U] = V4, [U,U]/Z(U) = Vo411,
and Z(U) = Vpo are irreducible and pairwise nonisomorphic as F3T-modules by
Lemma [£7] (for V, as defined in that lemma), since neither 6 + 1 nor 6 + 2 is a
power of 3. So ¢ € Inn(U) by Lemma [0

If ¢ = 3, then U = (a,b), where |a| = 9, [b| = 3, and [a,b] = a®. Set Q; =
(ab®) = Cy (i = 0,1,2): the three subgroups of U isomorphic to Cy. Let Aut®(U) <
Aut(U) be the group of those @ € Aut(U) which send each Q; to itself. For each such
«, the induced action on U/Z(U) sends each subgroup of order three to itself, hence
is the identity or (g — ¢g~1), and the latter is seen to be impossible using the relation
[a,b] = a®. Thus each o € Aut’(U) induces the identity on U/Z(U) and on Z(U),
and has the form a(g) = ge(g) for some ¢ € Hom(U/Z(U), Z(U)). So Aut’(U) =
Inn(U) since they both have order 9 (and clearly Inn(U) < Aut®(U)). The action
of Aut(U) on {Qo, Q1,Q2} thus defines an embedding of Out(U) into X3, and the
automorphisms (a, b) — (ab, b) and (a,b) — (a~*,b) show that Out(U) = X3. Since
|Out£(U)| = 2 and Aut £(U) < Aut(F), it follows that Out(F) = 1 = Out(G). (See
also [BC| Theorem 2] for more discussion about Aut(U).) O

It remains to show that kg (at the prime p) is surjective when G € Lie(p) has
Lie rank 2, with the one exception when G = SL3(2). Our proof is based on ideas
taken from the article of Delgado and Stellmacher [DS], even though in the end,
we do not actually need to refer to any of their results in our argument. The third
author would like to thank Richard Weiss for explaining many of the details of how
to apply the results in [DS], and also to Andy Chermak and Sergey Shpectorov for
first pointing out the connection.

Fix a prime p, and a finite group G € £Lie(p) of Lie rank two. We assume
Notation and @Il In particular, (G, o) is a o-setup for G, T < G is a maximal
torus, U € Syl,(G) is generated by the positive root subgroups, and B = Ng(U)
is a Borel subgroup. Set = {a1,d2}, and set P = Pa, = (B, X_5,) and
PBo = Pa, = (B, X_g,): the two maximal parabolic subgroups of G' containing B.
Our proofs are based on the following observation:

LEMMA 4.9. Assume, for G € Lie(p) of rank 2 and its amalgam of parabolics
as above, that

(%) each automorphism of the amalgam (P1 > B < Pa) extends to an
automorphism of G.

Then kg s surjective.

Here, by an automorphism of the amalgam, we mean a pair (x1, x2), where
either x; € Aut(;) for i = 1,2 or x; € Iso(P;, Ps—;) for ¢ = 1,2, and also
XilB = X2|B-

PROOF. Set £ = L{(G) and U; = O,(B;). By Proposition [£4] each x €
Aut(L) either sends Uy and U; to themselves or exchanges them. For each ¢ = 1,2,
Cq(U;) < U, so Autp(U;) = Ng(U;) = Bi. Thus x induces an automorphism of
the amalgam (31 > B < Bs). By assumption, this extends to an automorphism y
of G, and kg (X) = ¢&. O

Set & = P x pPo: the amalgamated free product over B. Let p: & —— G be
the natural surjective homomorphism. Since each automorphism of the amalgam
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induces an automorphism of &, (@) holds if for each automorphism of (; > B <
P2), the induced automorphism of & sends Ker(p) to itself.

Let A be the tree corresponding to the amalgam (B; > B < PB3). Thus A
has a vertex [¢B;] for each coset ¢'B; (for all g € & and ¢ = 1,2), and an edge
g(ep) connecting [¢31] to [¢B2] for each coset gB in &. Also, & acts on A via its
canonical action on the cosets, and in particular, it acts on g(ep) with stabilizer
subgroup 9B.

Similarly, let Ag be the graph of G with respect to the same amalgam: the
graph with vertex set (G/%1) U (G/PB2) and edge set G/B. Equivalently, since 1,
P2, and B are self-normalizing, Ag is the graph whose vertices are the maximal
parabolics in G and whose edges are the Borel subgroups. Let p: A —— Ag be the
canonical map which sends a vertex [¢%B;] in A to the vertex in Ag corresponding
to the image of ¢*13; in G.

Fix a subgroup N < G such that (B, N) is a BN-pair for G, and such that
BNN =T and N/T = W, (where T and W, are as defined in Notation 22).
We refer to [Cal, §§8.2, 13.5] for the definition of BN-pairs, and the proof that
G has a BN-pair (B, N) which satisfies these conditions. For ¢ = 1,2, choose
tl‘ S (Nﬂml)\B = (NQ‘BZ)\T Since (NO‘BZ)/T = CQ and N = (Nﬂ&Bl, NO&Bg),
we have N = T(tq,t5), consistent with the notation in [DS]. Note that T can be
the trivial subgroup. We also regard the t; € J3; as elements of &, and T < B as a
subgroup of &, when appropriate.

Let .7 be the union of the edges in the T'(t1,t2)-orbit of eg. Thus  is a path
of infinite length in A of the following form:

titati(e)  tita(es) - tilem) en . ta(eB)  tati(em)

[t102%1] [t1902] %] 2] [t21]

Thus p(.7) is an apartment in the building Ag under Tits’s definition and con-
struction of these structures in [Ti, 3.2.6].
A path in A is always understood not to double back on itself.

LEMMA 4.10. Let G, A, (T,t1,t2), and T be as above, and let n € {3,4,6,8}
be such that Wy = Do,,. Then each path in A of length at most n + 1 is contained
in g(F) for some g € &.

PrOOF. A path of length 1 is an edge, and is in the &-orbit of eg which has
stabilizer group B. If ep is extended to a path of length 2 with the edge t;(ep)
(i =1 or 2), then this path has stabilizer group

BNYB = H X5 T.
aes ~{a;}
(Recall that X5, = X_5,, and X_5, N B = 1 by [Cal Lemma 7.1.2].) Thus the
stabilizer subgroup has index p’ in B, where p/ = |Xg,|. Furthermore, |;/B| =
1+ p?, since by [Cal, Proposition 8.2.2(ii)],
B; = BU (Bt;B) where |Bt;B|=|B|-|B/(BNYB)|=|B|-p’.

Hence there are exactly p’ extensions of e to a path of length 2 containing the
vertex [;] in the interior, and these are permuted transitively by B.

Upon continuing this argument, we see inductively that for all 2 < k <n +1,

the paths of length k starting at eg with endpoint [P3_;] are permuted transitively
by B, and of them, the one contained in .7 has stabilizer subgroup the product of
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T with (n+1—k) root subgroups in U. (Recall that B = TU, and U is the product
of n root subgroups.) Since & acts transitively on the set of edges in A, each path
of length k is in the ®-orbit of one which begins with ep (and with endpoint [J4]
or [B2]), and hence in the B-orbit of a subpath of 7. O

PROPOSITION 4.11. Let G, &, and (T,t1,t2) be as above, and let n € {3,4,6,8}
be such that Wy =2 Do,,. Assume that

M) for each (x1,x2) € Aut(P1 > B < Pa), where x; € Aut(P;) or

Xi € Iso(Pi, Ps_;) fori = 1,2, we have (x1(t1)x2(t2))” € x1(T) < G.
Then (@) holds (each automorphism of (B1 > B < Pa) extends to an automorphism
of G), and hence k¢ is onto.

PROOF. Let = be the equivalence relation on the set of vertices in A generated
by setting x =~ y if = and y are of distance 2n apart in some path in the &-
orbit of 7. Since T'(t1,t2)/T = Ds,, as a subgroup of N¢(T)/T, the natural map
p: A —— Ag sends 7 to a loop of length 2n, and hence sends all apartments
in the G-orbit of .7 to loops of length 2n. Hence p: A —— A factors through
A/~. We will show that p induces an isomorphism (A/~) = Ag of graphs, and
then use that and (f) to prove the proposition.

We claim that

(1) A contains no loops of length strictly less than 2n; and
(2) each pair of points in A/~ is connected by a path of length at most n.

Assume ([J) does not hold: let L be a loop of minimal length 2k (k < n). Fix edges
0; = [z, ;) in L (¢ = 1,2) such that the shortest path from z; to y3—; in L has
length k£ — 1, and let Ly C L be the path of length £+ 1 from x; through y; and z-
to y2. Then Lg lifts to a path of length k¥ + 1 < n in A, this is contained in some
apartment in the ®-orbit of .7 by Lemma [£.10, and hence Ly C X, where ¥ C Ag
is an apartment in the G-orbit of p(.7). By [Ti, Theorem 3.3] or [Br} p. 86], there
is a retraction of Ag onto X. Hence the path from y, to z1 in ¥ has length at most
k — 1, which is impossible since ¥ is a loop of length 2n and Ly is a path of length
k+1<ninX. (See also [Br, §IV.3, Exercise 1|. Point () also follows since Ag
is a generalized n-gon in the sense of Tits [Brl p. 117], and hence any two vertices
are joined by at most one path of length less than n.)

Now assume (2]) does not hold: let z,y be vertices in A such that the shortest
path between their classes in A/a has length & > n+1. Upon replacing « and y by
other vertices in their equivalence classes, if needed, we can assume that the path
[z,y] in A has length k. Let z be the vertex in the path [z, y] of distance n+1 from
x. By Lemma 10 [z, z] is contained in g(.7") for some g € &; let 2’ be the vertex
in g(.7) of distance 2n from z and distance n — 1 from z. Then 2’ = z, and [z’, ]
has length at most (n — 1) + (k —n — 1) = k — 2, a contradiction. This proves (2.

Assume the map (A/~) —— Ag induced by p is not an isomorphism of
graphs, and let  and y be distinct vertices in A/~ whose images are equal in
Ag. By (@), there is a path from z to y of length at most n, and of even length
since the graph is bipartite. This path cannot have length 2 since p: A —— Ag
preserves valence, so its image in Ag is a loop of length at most n, and this con-
tradicts ([{l). We conclude that Ag = A/~.

Let (x1,x2) be an automorphism of the amalgam (1 > B < Po), let x €
Aut(®) be the induced automorphism of the amalgamated free product, and let
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X € Aut(A) be the automorphism which sends a vertex [¢%;] to [x(¢%:)]. By (i),

(a(t)xa(t2))" € xa(T) = x2(T) < Ca(p(x(7)))

where x1(t1)x2(t2) acts on X(7) by translating it by distance 2. Hence p(X(.7))
is a loop of length 2n in Ag. So po X factors through (A/~) = Ag, and since Ag
is a finite graph, the induced map Ag —— A¢ is an automorphism of Ag. So x
sends Ker[® —— G] to itself, and thus induces an automorphism of G. The last
statement (k¢ is onto) now follows from Lemma O

It remains to find conditions under which (f]) holds. The following proposition
handles all but a small number of cases.

PROPOSITION 4.12. Assume N = Ng(T) (and hence Ng(T)/T is dihedral of
order 2n). Then () holds, and hence each automorphism of the amalgam (P; >
B < Bs) extends to an automorphism of G. In particular, ({) and @) hold, and
hence kg is onto, whenever G = "X, (q) € Lie(p) has Lie rank 2 for ¢ > 2 and
G 2 9py(3).

PROOF. Assume that Ng(T) = N = T(t1,t2). Then the choices of the t; are
unique modulo 7T'. Also, any two choices of T are B-conjugate, so each automor-
phism of the amalgam is B-conjugate to one which sends .7 to itself. Thus ()
holds, and so (@) follows from Proposition 1T}

The last statement now follows from Proposition 320 Note that if (f]) holds for
G of universal type, then it also holds for G/Z(QG) of adjoint type. O

What can go wrong, and what does go wrong when G = SL3(2), is that an
automorphism of the amalgam can send t¢1,ts to another pair of elements whose
product (modulo T') has order strictly greater than 2n. This happens when J is
sent to another path not in the &-orbit of Z: one whose image in Ag is a loop of
a different length.

EXAMPLE 4.13. Assume G = SL3(2). In particular, T = 1. Let B be the group
of upper triangular matrices, let t1 and ta be the permutation matrices for (12) and
(23), respectively, and set B; = (B, t;).

Consider the automorphism o of the amalgam which is the identity on B
(hence on B), and which is conjugation by e1s (the involution in Z(B)) on Py. Set

t = a(t;). Thus
Ao (100) wa a=(3D)
001 010

One checks that t|th has order 4, so that (t},t5) = Dg while (t1,t2) = Dg. In other
words, o sends the lifting (from Ag to A) of a loop of length 6 to the lifting of a
loop of length 8, hence is not compatible with the relation =, hence does not extend
to an automorphism of G.

We are left with seven cases: four cases with n = 4, two with n = 6, and one
with n = 8. Those with n = 4 are relatively easy to handle.

PROPOSITION 4.14. Assume G is one of the groups Sp,(2), PSp,y(3), PSU4(2),
or PSUs(2). Then (f)) holds, and hence (@) also holds and k¢ is onto.

PRrROOF. In all cases, we work in the universal groups Sp,(q) and SU,(2), but
the arguments are unchanged if we replace the subgroups described below by their
images in the adjoint group. Recall that p is always the defining characteristic,
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so the second and third cases are distinct, even though PSp,(3) = SU4(2) (see
[Wil §3.12.4] or [Tal Corollary 10.19]).

Let (x1,x2) be an automorphism of (; > B < Ps). Since all subgroups of
B isomorphic to T are conjugate to T by the Schur-Zassenhaus theorem, we can
also assume that x;(7) = T. Set xo = x1|B = X2|B and tI = x;(t;) for short; we
must show that |¢it5| = n = 4. Note that ¢t has order at least 4, since otherwise
Ag would contain a loop of length strictly less than 8 = 2n, which is impossible by
point () in the proof of Proposition ETTl
G = Sp,(2) =2 36 : Set G' = [G,G]: the subgroup of index 2. The elements
x(1) for v € 3 are all Aut(G)-conjugate: the long roots and the short roots are
all W-conjugate and a graph automorphism exchanges them. Since these elements
generate G, none of them are in G’. Hence for ¢ = 1,2, all involutions in

(a, (1), 270, (1)) = GLy(2) = Ty

lie in GN\G’, and in particular, t; € G\NG'.

Each automorphism of the amalgam sends the focal subgroup to itself (as a
subgroup of B), and hence also sends the intersections 3; N G’ to themselves. So
t1,t5 € GNG', and tit5 € G’ = Ag. It follows that [¢7t5] < 5, and |t7t5] = 4 since
every dihedral subgroup of order 10 in Y4 is contained in Ag.

G = Sp,(3) : Inthis case, T = C3, and Ng(T) = SLy(3)1Cs. Hence Ng(T)/T =
A41C5 contains elements of order 2, 3, 4, and 6, but no dihedral subgroups of order
12. Since tit} has order at least 4, |[¢t3| = 4, and condition (] holds.

G = SU,(2) for n =4 or 5: We regard these as matrix groups via

SUL(2) = {M € SL,(4) | M' = M~'}  where  (ayy)’ = (@1 gmiiss) »

and where z = z? for z € F;. We can then take B to be the group of upper
triangular matrices in SU,(2), U the group of strict upper triangular matrices, and
T the group of diagonal matrices. We thus have

T:{diag(x,xil,xfl,x)‘xelﬂl}203 ifn=4
T= {diag(:c,y, Y, Y, T) ’x, y € IF4} >~ (2 if n=>5.
Since N¢(T) must permute the eigenspaces of the action of T on F}, we have
NGUn(Q)(T) = GU2(2) ! CQ (lf n = 4) or (GUQ(Q) ! CQ) X IFZ (lf n = 5) So in both
cases,
N (T)/T = PGU5(2)1Cy 2 %31 Cy =2 O3 x Dg.

Set Q@ = Ng(T)/O3(Ng(T)) = Ds, and let ¢: Ng(T) — @ be the natural
projection. Set Qo = ¥(Cq(T)). Since Cq(T)/T = X3 x X3 (the subgroup of
elements which send each eigenspace to itself), Qo =2 C% and Cg(T) = ¥~ (Qy).

Choose the indexing of the parabolics such that 93; is the subgroup of elements
which fix an isotropic point and Bs of those which fix an isotropic line. Thus

and
{(ﬁ(zgfl)‘AeSLz@)} ifn =4

m2: Av X
{( >‘A6GL2(4)} ifn = 5.
00 (AH~!

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



4. THE EQUICHARACTERISTIC CASE 47

Then ¢(Ng, (T)) < Qo: no matrix in Py can normalize T' and exchange its
eigenspaces. Also, Np(T) contains Cy(T) = (e1,,(1),e2,,-1(1)), where e; ;(u)
denotes the elementary matrix with unique off-diagonal entry u in position (3, j).
Thus Qo > ¢(Ng, (1)) > ¥(Np(T)) = C3, so these inclusions are all equalities.
Also, P contains the permutation matrix for the permutation (12)(n—1n), this
element exchanges the eigenspaces of rank 2 for T', and so ¥(Ng, (T)) = Q.

Since T'(t1,t2)/T = Dsg, (Y(t1),9(t2)) = @, and so (1) € Qo~Z(Q) and
P(tz) € Q~Qo. Since (x1,x2) induces an automorphism of the amalgam (Q >
Qo = Qo), this implies that ¥(t}) € Qo~Z(Q) and ¥(t5) € Q~Qp. But then
((t7),¥(t3)) = @ since these elements generate modulo Z(Q), so |tit5| € 4Z, and
[t3t5] = 4 since Ng(T')/T = X351 Cy contains no elements of order 12. O

It remains to handle the groups Go(2), ®D4(2), and 2Fy(2). In the first two
cases, if ¢ is an arbitrary involution in N, (T)\Np(T) for ¢ = 1,2, then t]t5 can
have order 6, 7, 8, or 12 when G = G3(2), or order 6 or 8 when G = 3D4(2),
and there does not seem to be any way to prove condition (f)) short of analyzing
automorphisms of the amalgam sufficiently to prove (@) directly.

Let {a, 8} be a fundamental system in the root system of Gy where « is the
long root. Let a,a’,a” be the three long positive roots, and S, /', 5" the three
short positive roots, as described in (@) below.

Let v9,71, 72,73 denote the four fundamental roots in the Dy root system,
where g is in the center of the Dynkin diagram, and the other three are permuted
cyclically by the triality automorphism. Set v;; = 7; + ; (when it is a root),
etc. We identify the six classes of positive roots in 3D, with the roots in Gy by
identifying the following two diagrams:

Y00123

o

Y012,
Y023,
7013 Yo123

SFy e {172,738}

G2 3D4 )
- —7

The following list gives all nontrivial commutator relations among root sub-
groups of Ga(q) or 3D4(q) (see [GLS3|, Theorems 1.12.1(b) & 2.4.5(b)]):

(4) [2a(u), z5(v)] = 25 (Fuv)z g (Fuv'T?) (mod Xo Xorr)
() [ (), 25(0)] = 2 (E(w? +uv)) (mod X Xo)
(6) [a(u), 2o (v)] = Zar (Fuv)

(M) [ze(w), 20 (v)] = zar (£Tr(u?))

(8) (25 (), 25(v)] = Tor (£ Tx(ulv)) .

Again, Tr: F;s —— IF, denotes the trace. Note that when G = G2(q), then u,v €
F, in all cases, and hence u? = ul’ = U, wit? = u?, and Tr(u) = 3u. When
G = 3Dy4(q), the notation zz(—), zs(—), and wg(—) is somewhat ambiguous
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(and formula (B)) depends on making the right choice), but this doesn’t affect the
arguments given below.

PROPOSITION 4.15. Assume p = 2 and G = G3(2). Then (&) holds: each
automorphism of the amalgam (P, > B < Pg) extends to an automorphism of G.
(In fact, each automorphism of the amalgam is conjugation by some element of B.)
In particular, kg is onto.

PROOF. In this case, T'=1, and
Pa = (Cy x Cy) x Dy and  Ps = (Qs X, Q) ¥ 3.
Also, B = U has presentation U = A x (r,t), where
A={a,b) 2 CyxCy, (rt)=Cs, "a=a"", b=b"" ‘a=b b=a.

In terms of the generators z, = x,(1) for v € ¥, we have A = (zgxg,xgr25)
and Q;(A4) = <xa/,xa~>, and we can take r = xg/, t = 24, and a = zgxgr (and
then b = a). Note that (B]) takes the more precise form [zg/, 23] = ToTor in this
case. Also,

Ua = A<T> &~ (C4 X 04) X Cg
Ug = <ab_1,a2t> X (a2p2) (ab, a2rt> = Qs xo, Qs
UﬂG/:A<t>§C4ZCQ.

The last formula holds since G’ = [G,G] = SU3(3) has index two in G (see [Wil
§4.4.4] or [Di, pp. 146-150]), since xo, o/, Tor € G’ (note that x, = [x_g, z]),
and since zg, g/, and g~ are all G-conjugate and hence none of them lies in G’.

Fix an automorphism (xq,Xxg) of the amalgam (P, > B < Pps), and set xo =
XaolB = X8|B € Aut(B). Then x( normalizes each of the subgroups U,, Ug, and UN
G'. Also, xo normalizes U, NG’ = A, and since Us NG’ = (ab,ab™1,t) 2 Qs x ¢, Cy
contains a unique quaternion subgroup, xo normalizes each of the two quaternion
subgroups in Ug. After composing by an appropriate element of Auty(Pg), we
can arrange that yo(ab) = ab and xg(ab~!) = ab~!. In particular, yo induces the
identity on €27 (A) and hence also on A/Q;(A).

Let g € P, be an element of order 3, chosen so that 9a?) = b? and 9(b?) = a?b?.
The image of (g) in P,/A = Dis is normal, so xa(g) € Ag. Let x € Q1(4) be
such that x4 (b) = x0(b) = azx. Then % € (ab,b*) < Ca(x0), 50 b = Xa (D) = Y(bx)
implies that % = 1 and hence z = 1. Thus xo|a = Id. Also, xa({g)) € Syl;(Ba) is
conjugate to (g) by an element of A, so we can arrange that x,({g)) = (g) and hence
that Xa|a(gy = Id. But then y, is the identity modulo Cy, (A(g)) = Z(A(g)) =1,
SO Xo = Idg,, .

Since xs|v, = Id, xp induces the identity modulo Cy, (Up) = Z(Up) = Cs. Tt
thus has the form xg(z) = z¢(z) for some ¢ € Hom(Bs, Z(Up)). Hence x5 = 1d,
since it is the identity on U € Syl,(Pg). O

PROPOSITION 4.16. Assume p = 2 and G = 3Dy4(2). Then (&) holds, and kg
18 onto.

PROOF. In this case, T 2 FS = C7, B, /Uy =2 C7 x B3, and P /Up = SLy(8).
Also, by (@) and (@), Ug is extraspecial with center X,~. Fix an automorphism
(Xa, xg) of the amalgam (P, > B < Pg), and set xo = xa|p = xplp. We must
show that x, and xgs are the restrictions of some automorphism of G.
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By Theorem [3.4) and since Outdiag(SL2(8)) = 1 = I'gp,(s), Out(Ps/Us) =
Out(SL2(8)) is generated by field automorphisms, and hence automorphisms which
are restrictions of field automorphisms of G. So we can compose xg and Xo by
restrictions of elements of Autg(G)®s = NAuth(G)(U)CI)G, to arrange that xg

induces the identity on P3/Us. Then, upon composing them by some element of
Auty (G), we can also arrange that xo(7T) = T'. Since Xg and Xg~ are dual to each
other by () and hence nonisomorphic as Fs[T]-modules, x( sends each of them to
itself.

Since xo(T) = T, xo sends Cy(T) = XoXoXor = Dg to itself. It cannot
exchange the two subgroups X, X, and X, X, (the first is not contained in U,
and the second is), so xo|c,, (r) € Inn(Cy(T)). Hence after composing by an element
of Autc,, (7)(G), we can arrange that xo is the identity on this subgroup. Also, by
applying @) with v = 1, and since xo|x, = Id (mod Us) and [X,, Us] < Xor, we
see that xg is the identity on Xg Xg. We conclude that xq is the identity on Ug.

Since x induces the identity on Ug and on PBs/Usg, it has the form xg(z) =
zp(x) (all x € Pg) for some

¥ € Hom(Pg/Us; Z(Up)) = Hom(SLy(8),C2) = 1.

So XB = qugﬁ.

Now, Cy,, (T') = ¥4 x C7, and Out(¥4) = 1. Hence Xalcy,, (1) must be conju-
gation by some element z € Z(Cy(T)) = Xov = Z(Pp). After composing x, and
X by restrictions of c., we can thus assume that x, is the identity on Cy_ (T") (and
still x3 = Idg,). Since x|y = Id and B, = (U, Oy, (T)), we have xo = Idgp,. O

It remains only to handle ?F;(2) and the Tits group.

PROPOSITION 4.17. Assume G = 2Fy(2)" or ?Fy(2). Then kg is an isomor-
phism.

ProOF. By the pullback square in [AOV] Lemma 2.15] (and since Out(L)
is independent of the choice of objects in £ by [AOV] Lemma 1.17]), k¢ is an
isomorphism when G = 2Fy(2) if it is an isomorphism when G is the Tits group.
So from now on, we assume G = 2Fy(2)’.

We adopt the notation for subgroups of G used by Parrott [Pal. Fix T €
Syly(G), and set Z = Z(T) = Cy, H = Cg(Z), and J = O2(H). Let z € Z be a
generator. Then H is the parabolic subgroup of order 2!1 -5, |J| = 2°, and H/J =
Cs x Cy. Set E = [J,J]. By [Pal Lemma 1], E = Z(J) = Fr(J) = C3, and by
the proof of that lemma, the Sylow 5-subgroups of H act irreducibly on J/E = Cj
and on E/Z = C3. Since each element of Auty,;(J/E) sends C;/g(T/J) = C; to
itself,

(9) AutH/J(J/E) = {IdJ/E} and
[Homyp,;(J/E,E/Z)| < [Homp,;(J/E, J/E)| = 2.

Let N > T be the other parabolic, and set K = O2(N). Thus N/K = %3, and
[T:K]=2.

Fix P € Syl;(H) C Syl;(G) (so P = C5). By [Pal p. 674], H/E = (J/E) -
(Ng(P)/Z), where Ng(P)/Z = H/J = C5 x Cy. For each f € Aut(H) such
that B(T) = T, there is 81 = B (mod Aut;(H)) such that 81(P) = P. Since
each automorphism of H/J which sends T/J = Cy to itself is conjugation by
an element of T'/J, there is 8y = B (mod Auty, py(H)) such that 3y induces
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the identity on H/J. By (@), B2 also induces the identity on J/E, and hence on
H/E = (J/E)-(Ng(P)/Z). Thus

(10)  Nauwm)(T) = Auty(H) - {8 € Aut(H) | 5(P) = P, [3,H] < E}.

Now set £ = L5(G) for short, and identify N = Aut,(K) and H = Aut.(J).
For each o € Aut(L), let oy € Aut(H) and any € Aut(N) be the induced auto-
morphisms, and set ar = ag|r = ax|r. Set

Ag = {a € Aut(L) ’ o, H < FE and ag|p = Idp}.

By ([d0), each class in Out(£) contains at least one automorphism in 4.

Fix o € Ag. Since [ay, H] must be normal in H, we have [ay, H] € {E, Z, 1}.
If [ag, H] = Z, then ay|;p = Id, so [ag, K] = [an, K] = Z, which is impossible
since Z is not normal in N by [Pal Lemma 6] (or since z ¢ Z(G) and G = (H, N)).
Thus either ag = 1d, or [ay, H| = E.

If ag = Idy, then ay|r = Id. In this case, ay determines an element of
HY(N/K; Z(K)) whose restriction to H*(T/K; Z(K)) is trivial, and since this re-
striction map for H!(—; Z(K)) is injective (since T/K € Syl,(N/K)), ay € Inn(N)
(see, e.g., [OV] Lemma 1.2]). Hence ay € Autz(N) since ay|r = Id (and
Z =Z(T)). So a € Autz(L) in this case, and [a] = 1 € Out(L).

Set H = H/Z, and similarly for subgroups of H. Let ay € Aut(ﬁ) and
ar € Aut(T) be the automorphisms induced by oy and ar, and set § = ar|7.
Then E = Z(J) since E = Zy(J), so 5(g) = g (g) for some ¢ € HomH/J(J/E,E’).
If ¢ = 1, so that [a, J] < Z, then since a|p = Id, we have [ay, H] < E and so
ag = 1d.

We have now constructed a homomorphism from Ag to Homg,;(J/E, E) with
kernel Autz(L). Thus

|Out(L)| < |Ao/Autz(L)| < [Homp,;(J/E, E)| < 2.
where the last inequality holds by (@). Since |Out(G)| = 2 by [GrLl Theorem 2],
and since kg is injective by Lemma 3] this proves that kg is an isomorphism.
Alternatively, this can be shown using results in [Fn]. Since T/[T,T] = Cy x Cy
by the above description of T/E (where E < [T,T]), Aut(T) and hence Out(L)
are 2-groups. So each automorphism of the amalgam H > T < N determines a

larger amalgam. Since the only extension of this amalgam is to that of 2F}(2) by
[Fnl Theorem 1], |Out(L)| = 2. O
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CHAPTER 5

The cross characteristic case: 1

Throughout this chapter, we will work with groups G = C’é(a) which satisfy
the conditions in Hypotheses B below. In particular, B.II() implies that G is not
a Suzuki or Ree group. We will see in Chapter [l (Proposition [6.8]) that while these
hypotheses are far from including all finite Chevalley and Steinberg groups, their
fusion systems at the prime p do include almost all of those we need to consider.

For any finite abelian group B, we denote its “scalar automorphisms” by

YP € Aut(B),  ¢P(g9)=g¢*  for all k such that (k,|B|) =1
and define the group of its scalar automorphisms
Autye(B) = {vf] | (k,|B|) = 1} < Z(Aut(B)) .

HYPOTHESES 5.1. Assume we are in the situation of Notation 22)(AIBIC).
(I) Let p be a prime distinct from qo such that pHWO|. Assume also that o =

Ygoy="Yoy € End(é), where
® g is a power of the prime qo;

o py € @ is the field automorphism (see Definition B1l(a)); and
e € Aut(a) is an algebraic automorphism of finite order which sends T' to

itself and commutes with g, (so that ¥4 (G) =G).
Also, there is a free (T)-orbit of the form

{aq, ..., a5} or {fa1,*as, ..., tas}
in ¥ such that the set {a1,aa,...,as} is linearly independent in V.

(II) The algebraic group G is of universal type, and Ng(T) contains a Sylow p-
subgroup of G. Set A = O,(T), and fix S € Syl,(Ng(T)) C Syl,(G); thus
A<LS.

(IIT) Assume one of the following holds: either

(II11) ¢ =1 (mod p), ¢ =1 (mod 4) if p =2, |y| <2, and v € ', (thus
p(IT) = T1); or

(IT1.2) p is odd, ¢ = —1 (mod p), G is a Chevalley group (i.e., v € Inn(QG)),
and y(t) =t~ for each t € T; or

(IIL.3) p is odd, |t| = ordy(q) > 2, Ca(Opy(Wy)) = 1, Cs(21(A)) = A,
Autg(A) = Autw, (A),

NAut(A) (Autwo (A)) < AUtsc(A)AUtAut(G) (A)

51
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where Autauy(c)(A) = {0|a |6 € Aut(G), 6(A) = A}, and

Autyy, (A) N Autg(4) < <7|A> if 2|0rdp(q) or —Id ¢ W
i - B <7|A7¢él> otherwise,

Since Wy acts on T' by Lemma 23] it also acts on A = O,(T).

We will see in Lemma [53] that the conditions Cs(21(A4)) = A (or Cg(4) = A
when p = 2) and Autg(A) = Autw, (A), both assumed here in also hold in
cases [(TI1.1)| and [(TIT.2)]

Recall, in the situation of that |7| = |7|7| by Lemma

Note that the above hypotheses eliminate the possibility that G be a Suzuki
or Ree group. Since we always assume the Sylow p-subgroups are nonabelian, the
only such case which needs to be considered here (when go # p) is that of Fy(q)
when p = 3, and this will be handled separately.

By Lemma [B.2] whenever o = 9, 0, and 7 is an algebraic automorphism of G
which normalizes T, there is 7 € Aut(V) such that 7(¥) = ¥ and o(X,) = )_(T(a)
for each @ € . So under Hypotheses[5.] the condition at the beginning of Notation
22((C) holds automatically, and with p = 7|x. To simplify the notation, throughout
this chapter and the next, we write 7 = p to denote this induced permutation of 3.

The following notation will be used throughout this chapter, in addition to
that in Notation Note that II and 3 are defined in Notation ZZ2(C) only when
p(I1) = II, and hence only in case of Hypotheses Bl It will be convenient,
in some of the proofs in this chapter, to extend this definition to case

Recall (Notation 2.2) that for a € 3, w, € W denotes the reflection in the
hyperplane a- C V.

NOTATION 5.2. Assume we are in the situation of Notation and Hypotheses

591}
(D) If [(TIL.2)] holds, then set & =X, Il =11, and Vo = V. Note that Wy = W in

this case.

(B) If [(TIL1)| holds, then for each @ € 5, let wg € Wy be the element in (wy | o €

@) which acts on Vi as the reflection across the hyperplane (&)J', and which
exchanges the positive and negative roots in the set (&) V3. (Such an element
exists and lies in Wy by [Cal, Proposition 13.1.2].)

(F) If [TIL.1)| or [TIL2)] holds, then for each o € ¥ and each @ € &, set

Ko=1(Xo0,X_a) To = ha(F})
K;=(Kq.|ae€a) Tsa=(To|laca).
(G) Set N = Ng(T)/Op(T), and identz'[y A = 0,(T) with T/Oy(T) < N. If
[(TIT.1)] or [(TIT.2)] holds, then for @ € X, set Ag = ANT4.
(H) Set F = Fs(G), and

Aut(A,F) = {B € Aut(A) | 8 = Bla, some 3 € Aut(F)}.

Set Autgiag(F) = Caug(r)(A) = {ﬁ € Aut(F) ’5|A = Id}, and let Outgiag(F)
be the image of Autgiag(F) in Out(F).
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Note that when (G, o) is a standard setup (i.e., in case [TIL.1)), Wy acts faith-
fully on V (see [Cal Lemma 13.1.1]).
Recall that N = Ng(T)/O,(T). We identify A = O,(T') with T/O,(T) < N.

LEMMA 5.3. Assume Hypotheses [5.1] and Notation (.2l
(a) If condition |(IIL1)| or |(IIL.2)] holds, then Cw(A) = 1, Cz(A) = Cx(T) =

T, Cq(A) = T, and Cs(A) = A. If p is odd, then Cyw (1 (A)) = 1 and
Cs(21(A)) = A.

(b) If Cz(A)° = T (in particular, if [TIL1)] or [(TIL2)] holds), then Ng(A) =

Nea(T) < Ng(T), and the inclusion of Na(T') in Ng/(T') induces isomorphisms
Wo =2 Ng(T)/T = NJ/A. Thus Autg(A) = Autw, (A4).

PRrROOF. (a) Assume condition|(III.1)|or|(III.2)/holds. We first prove that Cy (A) =
1, and also that Cy (21(A)) = 1 when p is odd.

If p is odd, set Ag = 0 (A) and p=p. If p =2, set Ag = Q3(A4) and p = 4.
Thus in all cases, Ay is the p-torsion subgroup of A. Set ¢ = 1 if we are in case
or ¢ = —1 in case By assumption, p|(¢ — ). Choose A € Fx (or
AeFy if e = —1) of order p. Set Il = {a1,...,a,}. Fix w € Cw(Ao).

Assume first G = G(q), a Chevalley group. Then T = {t € T ’ t77¢ =1}, and

Ay contains all elements of order pin T. So w = 1 by Lemma 271
Now assume that Id # v € I'5; i.e., G is one of the Steinberg groups 2A,.(q),
°Dn(q), or *Es(q). Then C(y) is a simple algebraic group of type By, Cp, or
Fy (cf. [Cal §13.1-3]) with root system & C Vo = Cy(7), and Ay contains all
p-torsion in Cx(v). By Lemma 27 again, wly, = Id. Since w and 7 are both
orthogonal, w also sends the (—1)-eigenspace for the action of 7 to itself, and thus
w € Cw (1) = Wy. But Wy acts faithfully on Vj (see, e.g., [Cal 13.1.1]), so w = 1.
Thus Cw(Ag) = 1. Hence Cx(Ag) = T by Proposition 25, and the other
statements follow immediately.
(b) If Cx(A) = T, then Ng(T) < Nz(A) < Né(T) (recall that A is the p-power

torsion in T'). If g € Né(l_“) and o(g) = g, then g also normalizes T' = Cz(0).

Thus Ng(T) = Ng(A) < NC—;(T), and hence Ng(T')/T = Wy by Lemma 231 The
identification N/A = N (T)/T is immediate from the definition of N. |

We next look at the centralizer of the Weyl group acting on T or T
LEMMA 5.4. Assume Hypotheses 511, case |(II1.1)|, and Notation B2L

(a) Assume that all classes in S have order 1 or 2. (Equivalently, T(a)) = « or

7(a) L a for each a € X.) Then Cz(Wo) = C(W) = Z(G), and Z(G) =
Cr(Wy).

(b) Assume that S contains classes of order 3. Then G = SLan_1(Fy,) and G =
SUzn-1(q) for some n > 2. Also, C(Wy) = I_quo, and o(t) = t72 for all
t € C(Wo).
PrOOF. (a) Assume that 7(a) = a or 7() L « for each o € ¥. We first
show, for each @ = {, 7(a)} € II, that Cz(wg) = Cf(Was Wr(a)). This is clear if
a=r7(a). lfa L 7(a), then wg = waw;(a), s0if t € Cz(wa), then wa(t) = wr(a)(?)
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and t~wy(t) = t 7w () (t). Also, t 7 wa(t) € To and ¢ 'w,(a)(t) € Tria) by
Lemma ZA(@). Since To N T, (o) = 1 by Lemma ZA[H), ¢ 'wa(t) = 1, and hence
t € Cq(Wa, Wr(a))-

Since W = (wq |a € 1II), this proves that Cz(Wp) = Cz(W). Since G is
universal, Cz(W) = Z(G) by PropositionZHl In particular, Cp(Wy) < GNZ(G) <
Z(@G); while Z(GQ) < Cp(Wy) since Ce(T) =T by Lemma [53)a).

(b) Assume X contains a class of order 3. Then by [GLS3| (2.3.2)], v # Id,
G = SLyp—1, and G = SUs,—1(q) (some n > 2). Also, if we identify

T:{diag()\l,.. )\gn 1 ‘)\ E]F /\1/\2"'/\271—1:1}’

g0’
and identify W = 39,1 with its action on T permuting the coordinates, then

v(diag(A1, - .., Azn—1)) = diag(A5)_1,. .., AT,

and Wy =2 C31%,,_1 is generated by the permutations (i 2n—4) and (¢ j)(2n—i 2n—j)
for i, j < mn. So Cz(Wp) is the group of all matrices diag(A1, ..., A2;,—1) such that
Ai = Ay for all i # n and A, = )\17(2"72), and C’T(WO) = ]1_*’;0. Also, v inverts
C7(Wo), so a(t) =74 for t € C5(Wo). O

Recall (Notation B2|[F])) that when case [(TIL.1)] of Hypotheses BJ] holds (in

A

particular, when p = 2), we set K5 = (Ko |a € @) for @ € %, where K,

(Xa,X_a). The conditions in [[TIL.1)] imply that each class in S is of the form
{a}, {a, ()}, or {a, 7(a), @ + 7(cr) } for some a. This last case occurs only when
G = SU,(q) for some odd n > 3 and some ¢ =1 (mod p or mod 4).

LEMMA 5.5. Assume Hypotheses Bl case and Notation B2l For each
a €Y, K, = 8Ly(F,,). For each @ c S, Kg = SLQ( o), SLa(Fy) x SLa(F qo) or

SL3(F 110) whenever the class & has order 1, 2, or 3, respectively. Also, G N K is
isomorphic to SLa(q), SLa(q?), or SUs(q), respectively, in these three cases.

PROOF. By Lemma [B:I0, each class in 3 is in the Wo-orbit of a class in II. So
it suffices to prove the statements about K, and K5 when a € II, and when a € I
is its equivalence class.

By Lemma ZA(0) (and since G is universal), K, = SLy(F,,) for each o € II.
So when o = 7(a) (when |a| = 1), K5 = K, = SLy(F, o)

When a # 7(«) and they are not orthogonal, then G = SLypy1(F,,) for some
n, and the inclusion of SL3(F,,) is clear. When a L 7(a), then [KQ,KT(Q)] =1,

and Ko N K (@) = 1 by Lemma Z4|[B) and since G is universal, and since the
intersection is contained in the centers of the two factors and hence in the maximal
tori. Hence Kz = (Xta, X 17(a)) = Ko % KT(a) SLy(F, ) x SLa(Fyg,).

In all cases, since G is universal, G N K4 = Cglo) N Kz =Cx (0). fa=
7(c), then ~ acts trivially on Kz, and Cx (0) =2 SLa(q). If a L 7(a) then v
exchanges the two factors and Cy (a) = SLy(¢?). Finally, if a # 7(a) and they

are not orthogonal, then v is the graph automorphism of SL3(F,,), so Cr (0) =
SU3(q). O
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Recall, for @ € 3, that Az = AN Tx, where Tx = (ha(ﬁ_?;o) |a € @). These
subgroups are described in the next lemma.

LEMMA 5.6. Assume that G and (@, o) satisfy Hypotheses Bl case |(IIL.1)| or
(I11.2). Assume also Notation [5.2]

(a) If 7 #1d (hence we are in Case [(IIL1))), then for each @ € <,

W, if a ={a}
Wg = { WaWr(a) ifa={a,7(a)}, a L 7(a)

Watr(a) = WaWr(a)Wo if @ ={a,7(a),a+1(a)},

7o T, if a = {a}
C ) Ta x TT(Q) if a,7() € A, a # 7(a),

and

B = ha(N) ifa={a}, \€F
T PN e @A) if a,m(a) €@, a# T(a), AETF.

(b) In all cases, T = Cz.(¢q7) = [l4en CTa (¥g7) and hence A = [[;.q Aa (direct

products).
(c) Set e =1 if we are in case [(IIL.1), or e = —1 if we are in case |[(111.2)] Set

m =v,(q—c¢). For each @ € I,

g JhaWINEFL, X = A} = G ifa = {a}
T haFR) = O if o, 7() € @, a # 7(a).

In particular,

=1

Az = Cpm if p is odd; Ag {CQ’" if p=2and : =,

|
Com+1 if p=2and |

PROOF. Recall that & and II are defined in Notation ZZ(C) only when p(II) =
II; i.e., in case of Hypotheses 5.1l In case they were defined in
Notation B.2(DI)) by setting S=Yand =1 (and also Wy = W in this case).
(a,c) If we are in case of Hypotheses 5] (where the o-setup is standard),
then by Lemma [3.10, each orbit of W, under its action on S} contains an element
of II. If we are in case then since Wy = W, S = ¥, and M= II, the same
statement follows from [Cal Proposition 2.1.8]. So it suffices to prove these two
points when a € 1l

The formulas for wg, Ty, and /f\La(A), and the description of GNTg = Cz (o),

a

are clear when & = {a}. So assume now that a@ = {«, 7(a)} or {a, 7(a),a + 7(a)},
where o # ().

By the definition in Notation B.2(E), ws € (wa, w,(a)) acts on Vo = Cy (1) as
the reflection across the hyperplane (&>L, and exchanges the positive and negative
roots in (@) N X. If o L 7(a), then [wq,wr (o] = 1, and hence wg is the product of
these reflections. If [a| = 3, then (wq, w,(4)) = X3, and one sees by inspection that
Watr(a) = Walr(a)Wa is the only element which satisfies the above conditions.
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If |a| = 3, then Ta+7(a) < TQTT(Q) by Lemma 2AI[d). Hence Ts = Z_“QTT(Q)
whenever a # 7(«a) € @. We can assume «,7(a) € II, and so Ty N TT(Q) =1by
Lemma 2(b).

By definition (see Notation 2Z2(C), for A € F,,, if ho () is defined, it has the
form hq(A)hr(q) () for some p € Fyy. Since

U(ha()‘)hr(a) (:u)) = ha(ﬂq)hr(a) ()\q) )
this element lies in G if and only if g = A? and 2 = Ajie, A€ IFqXQ.

This proves the formulas for ﬁa()\) in (a), and also the description of GN T in
(c). The last statement in (c) is now immediate, since v,(¢?—1) = m+uv,(g+1) = m
(if pis odd) or m+ 1 (if p = 2).

(b) By Lemma EA[D), T = [[,en To = [lzer Ta (a direct product), the last

equality by (a). The direct product decompositions for 7" and A = O,(T) follow
immediately. O

We would like to know that fusion preserving automorphisms of S (i.e., elements
of Aut(Fs(G))) permute the subgroups Az < S. We next characterize (when
possible) these subgroups in terms of fusion in S. Recall the definition of the focal
subgroup of a saturated fusion system JF over a finite p-group S:

foc(F) = <acy_1 |x,y € S, x is F-conjugate to y).
By the focal subgroup theorem for groups (cf. |Gl Theorem 7.3.4]), if F = Fs(G)
for some finite group G with S € Syl (G), then foc(F) = SN [G, G].
LEMMA 5.7. Assume Hypotheses 5.1, case [(IIL.1)] or [TIL.2)], and Notation 5.2l

(a) If p is odd, then [wg, A] = Ag for each & € 5. If p = 2, then for each a € f],
[wg, A] < Ag with index at most 2, and [wg, A] = Ag with the following
exceptions:

e 7=1d, G Ay, and & = {a}; or

e 7=1d, G=C, forn>2 (or By), and & = {a} where « is a long root; or
o |7|=2,G=D, forn>3 (or Az), and a@ = {a,7(0)} where o L 7(cx); or
o |7|=2,GX Ay, forn>1, and |a] = 3.

(b) For each w € Wy of order 2, w = wg for some & € S if and only if [w, A] is
cyclic.

(¢) If p=2, then for each & € i,
TK; if |a < 2
TKotra) ifa={a7(a),a+71(a)}.
If in addition, |a| < 2, then
Az = AN [Cg(Ca(wa)), Ca(Calwa))] = ANfoc(Cr(Ca(wa)))-

PROOF. As in the proof of Lemma[5.6] we can assume in the proofs of (a) and
(c) that & € II.
(a) Fix o € II, and let @ € II be its class. By Lemma EAl@) and since wg €
(Wa, Wr(ay), Wwe have [wg, A] < AN Ts = Az in all cases. By the same lemma,

(1) Cg(Ca(wa)) = {
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wa(ha(N) = ha(A71) for all X € FX if @] < 2; and wz(ha(N) = ha(A79) for
A€ IF‘qX2 if |a] = 3. So [wg, A] = Ag if p is odd, and (since Aj is cyclic by Lemma
B.6l(c)) [wg, A] has index at most 2 in Agz if p = 2.

Assume now that p = 2, and hence that ¢ = 1 (mod 4). If 7 = Id (and hence
a = {a}), then for each 3 € IT and each \ € F,, Lemma 2.4i@) implies that

hg()\) if 6 1«
wa(hs(N) = { hs(Mha(A)  if B L a, [IB] > [la]
hg(Mha(W¥) if B Lo, ol = VE-[IB], k =1,2,3.

(Note that wo(8Y) = 8Y, BY + ¥, or BY + kaV, respectively, in these three cases.)
Since T' is generated by the hg()) for 3 € Il and A € F¥, it follows that [w,, A] has
index 2 in A, exactly when |II| = 1, or there are roots with two lengths and ratio
V2, a is a long root, and is orthogonal to all other long roots in II. This happens
only when G = A; or C,.

Now assume |7| = 2. In particular, all roots in ¥ have the same length. By
Lemmas[Z4l@) and [58(a), for each 8 € II~\a such that 8 / « and with class 3 € ﬁ,
we have

hs(ANha(X) if [3| =1 and X € F
wa(hs(N) = @;(A)EQ(A) if |§| >2,]a] =2, and A €F,
hg(AN)ho(NTY) if |B] > 2, |a] =1 or 3, and X € F

By these formulas and Lemmal[5.6l(c), [wa, A] = Az exactly when |a] =1, or |a] = 2
and there is some 8 € II such that § Y « and § # 7(8). The only cases where this
does not happen are when G = D,, or As and |a| = 2, and when G = A,, and
la| > 3.

(b) For each @ € &, [wa, A] < Az by (a), and hence is cyclic. It remains to prove
the converse.

Recall (Notation B.2([D))) that when we are in case [(IIL.2)| (and hence the setup
is not standard), we define V5 = V. By assumption, G is always a Chevalley group
in this case.

Let w € Wy be an element of order 2 which is not equal to wg for any a. If G
is a Chevalley group (if Wy = W and Vy = V), then Cy (w) contains no points in
the interior of any Weyl chamber, since W permutes freely the Weyl chambers (see
[Brbl §V.3.2, Théoréme 1(iii)]). Since w is not the reflection in a root hyperplane,
it follows that dim(V/Cy(w)) > 2. If G is a Steinberg group (thus in case
with a standard setup), then Wy acts on Vg as the Weyl group of a certain root
system on Vj (see [Cal §13.3]), so dim(Vy/Cy, (w)) > 2 by a similar argument.

Set e = +1 if we are in case or ¢ = —1 if we are in case Set
m = v,(q — ¢€), and choose X € (F2)* of order p™. Set A = ZX", regarded as the
lattice in V' with Z-basis IIY = {«" | € IT}. Let

Oy A/p"A ——— T

be the Z[W]-linear monomorphism of Lemma [Z6(b) with image the p™-torsion in
T. Thus @) (") = ha()) for each a € 8. Also, a(ha())) = hr(ay(A) for each a € ¥
(A7 = X by assumption), and thus ®) commutes with the actions of 7 on A < V
and of ¢ on T.
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Set Ag = Cy(7) in case [[TILT)] or Ag = A in case [IIL2)] Then Cy /pma(7) =
Ao/p™Ag in case |(IIL.1)| since 7 permutes the basis IV of A. We claim that ®
restricts to a Z[Wy]-linear isomorphism

Bo: Ao/p"" Ag —— Qun(A),

where 2,,(A) is the p™-torsion subgroup of A and hence of 7' = Cx (o). If G is a
Chevalley group (in either case |(IIL.1)| or |(II1.2)]), then Ag = A, so Im(®) is the

p™-torsion subgroup of T and equal to Q,,(A). If G is a Steinberg group, then

£ = +1, each element of order dividing p™ in T is fixed by 49, and hence lies in
Qm(A) if and only if it is fixed by « (thus in ®5(Cp/pma(T)))-
Thus [w, 4] > [w, %n(A)] = [w, Ao/p™Ao]. Set B = Ag/p™Ay for short; we
will show that [w, B] is noncyclic. Set
r =rk(Ag) = dim(Vp) and s =1k(Ch, (w)) = dimg (Cy, (w)) <7 —2.
For each b € Cg(w), and each v € Ag such that b = v + p™Ag, v+ w(v) € Cp,(w)
maps to 2b € Cp(w). Thus B = (Z/p™)", while {2b|b € Cp(w)} is contained in
Cro (W) /p™Cry(w) = (Z/p™)®. Since p™ > 2 by assumption (and r — s > 2), it
follows that B/Cp(w) = [w, B] is not cyclic.
(c¢) Fix a € ¥. We set up our notation as follows.
Case (1): |a| = 1 or 3. Set a* = a if @ = {a} (where 7(a) = @), or a* =
a+71(a)if @ ={a,7(a),a+7(a)}. Set wg = wax, Wa = (wg), and
A ={ta*} C 3.
Case (2): |a] = 2. Thus a = {a,7(a)}, where a L 7(cr). Set wg = WaWr(qa),
Wa = (Wa, Wr(a)), and A = {£a, £7(a)} C X.
In case (1), by Lemma ZZ@m@),

Cf(wa) = Cf(wa*) = Ker(ea*) =Cx (on*) = OT()_(—a*) .

Hence Cz(Ca(wa)) > Cz(Cxr(wa)) = T(X o, X _o+) = TK -. In case (2), by the

same lemma,

Cf(wa) = CT(<wauwr(a)>) = CT(<)_(Q7)_(7¢17)_(T(04)7)_(77'(04)» = CT(I_{a[_{T(a))

so that Cz(Ca(wa)) > TKg. This proves one of the inclusions in (). By Propo-
sition 28] the opposite inclusion will follow once we show that

(2) Cw(CA(wa)) < Ws.
Fix w € Cw(CA(’LUa)).

e Let 3 € XN AL be such that 8 = 7(8). Then hg(A) € Ca(wz) for X € IF‘;O of
order 4, so w(hg(A)) = hg()A), and 8 € Cy (w) by Lemma [Z6(d).

e Let 3 € XN AL be such that 8 # 7(8), and set 3 = 7(3) for short. Let r > 2

be such that ¢ = 1+ 2" (mod 2"+!), and choose A € FX of order 271, Set
a=1—-2",30 A* = A%, Then

ha(Mhe (X), hg(A)hp (X) € Cawa) < Cg(w).

Also, [|8 +ap'l| = [laB + B'|l < (1 = a)lIB] = 5Nl since a < 0 and B # —f
(since 7(X4) = Xy). Thus S+ af',af + 8 € Cy(w) by Lemma 2.6(c), so
B,8" € Cy(w).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



5. THE CROSS CHARACTERISTIC CASE: I 59

e Let B € ¥ be such that 3 = 7(8) and 3 ¢ A+, and set n = 8 + wg(3). Since
waT = Twg in Aut(V), 7(n) = n. Since 8 ¢ At = Oy (wg), we have wg(B3) # 3,
and hence ||n|| < 2||8]|. For A € IE‘QXO of order 4, t = hg(A)hy,5)(A) € Ca(wg),
so w(t) =t, and n = B+ wz(B) € Cy(w) by Lemma [Z0]c).

Consider the set

S =(EnANu{B+wsB)|BEL, T(B)=8, BLA}CV.

We have just shown that w(n) = n for each n € ¥*, and hence that w|x-y = Id.
We next claim that

(3) ynEnt=A except when G = Ay and |7| = 2.

From the description of the root systems in [Brb, Planches I-IX], whenever G
is not of type A,, we get that (X N 3+) is a hyperplane in V for each 8 € ¥. (It
suffices to check this for one root in ¥, or for one short root and one long root.)
In particular, ([B]) holds whenever |&| = 1 or 3 and G is of one of these types. If
|al =2, s0 |7] = 2 and @ = {a,7(«)} where a L 7(«), and G = D,, or Eg, then
a similar check shows that (X N {a,7(a)}*) has codimension 2 in V, and hence
that ([B) holds. For example, when G = Fg, it suffices to check this with the roots
a=ag=¢cg—¢; and 7(a) = a5 = €4 — €3 in the notation of [Brbl, Planche V].

Now assume G = A,, for some n. If n > 3, then (¥ N B+) has codimension
2 for § € X, but the only roots in the orthogonal complement of this space are
+43. Thus @) holds for A, when n > 3 and |@| = 1 or 3, and the cases n = 1,2
are easily checked. If @ = {a,7(c)} where a L 7(«), then n > 3, and we can
take o = e1 — €3 and 7(a) = &, — £,41 in the notation of [Brbl Planche I], where
(21, s Znt1) = (—Zny1,. .., —21). In this case, ¥* contains all roots ¢; — ¢; for
3<i<j<n-—1aswell as (1 —ept1) + (2 — €,), and these elements suffice to
show that +a and +7(a) are the only roots in (X*)1. This finishes the proof of

@).

By @), when G 2 SUs(q), the only reflection hyperplanes which contain (¥*)
are those in the set {31 |3 € A}. Fix a “generic” element v € (£*); i.e., one which
is not contained in any other hyperplane. In case (1), v is contained in only the one
reflection hyperplane o**, and hence is in the closure of exactly two Weyl chambers
for (X,W): chambers which are exchanged by wg. In case (2), v is contained in
the two reflection hyperplanes a* and 7(a)*, and hence in the closure of four Weyl
chambers which are permuted freely and transitively by Wg = (wq, w;(q)). Since W
permutes the Weyl chambers freely and transitively (see [Brbl, §V.3.2, Théoreme
1(iii)]), and since (w, W5) permutes the chambers whose closures contain v, we have
w € Wa.

This proves [2) when G % SUs(q). If G = SUs(q), then ho-(—1) € Ca(wg).
But no element of order 2 in T < SLg (]F‘qo) centralizes the full Weyl group W = X5,
so (@) also holds in this case. This finishes the proof of ().

If |a] < 2, then

Cg(CA(wa)) =GnN C(—;(CA(’U)@)) = T(G n f_{a)

where by Lemma 55, G N K5 = SLy(q) or SLy(¢q?). Hence Cq(Ca(wg)) has com-
mutator subgroup GN Kg, and focal subgroup As. Since Cr(Ca(wgz)) is the fusion
system of Cq(Ca(wg)) (cf. [AKOL Proposition 1.5.4]), this proves the last state-
ment. 0
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Recall (Notation B.2I[H)) that Aut(A, F) is the group of automorphisms of A
which extend to elements of Aut(F). The next result describes the structure of
Aut(A, F) for a group G in the situation of case [(TIL.1)| or [TIL.2)] of Hypothe-
ses Bl Recall that Wy acts faithfully on A by Lemma [B.3(a), and hence that
Wo =2 Auty(A4) = Auty, (1) (A) by Lemma B3(b). It will be convenient to iden-
tify Wy with this subgroup of Aut(A). Since each element of Aut(A, F) is fusion
preserving, this group normalizes and hence acts on Wy, and WyAut(A, F) is a
subgroup of Aut(A).

For convenience, we set Autauy(q)(A4) = {0]a |6 € Aut(G), 6(A) = A}.

LEMMA 5.8. Assume that G and (G, o) satisfy Hypotheses 5.1, case [[TIL1)| or
(TI1.2). Assume also Notation 521

(a) Cwyaut(a,r)(Wo) < WoAuts(A).

(b) Aut(A, F) < Aute.(A)Autay(q)(A), with the exceptions
* (G.p) = (*Es(q),3), or

o (G.p) = (Ga().2) and o #3, or

* (G,p) = (Filq),3) and qo # 2.

(c) In all cases, the index of Aut(A,F) N Autsc(A)Autauyq)(A) in Aut(A, F) is
at most 2 .

I

PROOF. Recall that in Notation 2Z2(C), Vo, 5, and ﬁ are deﬁned when p(II) =
II, and hence in case of Hypotheses 5.1l In case we defined Vp =V,
S = >, and [I=1in Notatlonm(lﬂl) So under the hypotheses of the lemma (and
since G is always a Chevalley group in case , we have Vy =V and 0=1IIif
and only if G is a Chevalley group.

Set ¢ = 1 if we are in case e = —1 if we are in case and
m = Up(q - 6).
Step 1: We first prove that

(4) ¢ € Cwyausa,r)(Wo) = ©(Ag) = Ag foralla € 5.

If p is odd, then A = [wg, A] by Lemma B.7(a), so @) is immediate.
Next assume that p = 2, and also that |a] < 2. Write ¢ = w o g, where
w € Wy and ¢y € Aut(A, F). Then ¢o(Ca(wg)) = w1 (Ca(wgz)) = Ca(wg),

where 3 = w~H(@). By definition of Aut(A,F) (Notation B.2), o = @o|a for
some {pg € Aut(F). Since g is fusion preserving, it sends foc(Cr(Ca(wgz))) onto
foc(Cr(Ca(wg))). Since these focal subgroups are Az and Ag, respectively, by
Lemma[B.7(c), p(Az) = w(Az) = A, = Aa also in this case (the second equality
by Lemma 2. 4@)).

It remains to consider the case where p = 2 and |a| = 3, and thus where
G =2 SUsp41(q) for some n > 1. There is a subgroup (Hy X --- X Hp) x %, < G
of odd index, where H; = GUs(q). Fix S; € Syly(H;); then S; = SDy. where
k=wvy(q?—1)+1> 4. Let A;,Q; < S; denote the cyclic and quaternion subgroups
of index 2 in S;. Then we can take A = Ay x --- x A, = (Cor—1)", N = (51 x - -+ X
Sp) X Xy, and S € Syly(N).

There are exactly n classes ay,...,0, € fhr of order 3, which we label so that
[wa,, A] < A; ([wg,, A] = AN Q;). Equivalently, these are chosen so that wg, acts
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on A via conjugation by an element of S;\A4;. Let ) € 3 be the root in the class
«; which is the sum of the other two.

Write ¢ = w o g, where w € Wy and ¢g € Aut(4,F), and let oo € Aut(F)
be such that ¢g = @gla. For each 1 < i < n, po(Ca(wg,)) = w1 (Cal(wg,)) =
Ca(wa, ), where f € ¥, is such that ay;) = w™'(@;). Since &y is fusion pre-
serving, it sends foc(Cr(Ca(wg,))) onto foc(Cr(Ca(wa,,))). By Lemma B.T7(c),
Ca(Ca(wg,)) =GN (TI_{Q;), its commutator subgroup is G N I_{a; >~ SLs(q), and
hence foc(Cr(Ca(wg,))) = Qi- Thus ¢o(Q:) = Q-

For each i, set QF = (Q;]j # ). Then Cg(Q]) is the product of G N

Ka, = SL3(q) (Lemma B3) with Z(QF). Thus &g sends foc(Cr(QF)) = S to
fﬁC(C}‘(Q?(l))) = Sf(i), and hence gOQ(A,L') = Af(z) So gO(Az) = w(Af(l)) = Az for
each i where A; = Ag,, and this finishes the proof of {@).
Step 2: We next prove point (a): that Cyy,auta,r)(Wo) < WoAuts(A). Let
p € WoAut(A, F) be an element which centralizes Auty(A4) = N/A = W,. By @),
©(Az) = Ag for each @ € 3. Since Ay is cyclic for each @ € 5. by Lemma B.8(c),
©|a, is multiplication by some unique ugs € (Z/qs)*, where gz = |Agz|. We must
show that ug is independent of a.

Assume first that 7 = Id. By Lemma [5.6l(c), |Ay| = p™ for each a € II. Fix
a1, € Il and B € 3} such that +8 = fay + oz, where either

e k=1 and all three roots have the same length; or

o ke {23} and ||B]| = en = V& - oz

The relation between the three roots is chosen so that hg(A) = ha, (A)ha, () for
all A € IF‘;O by Lemma 2AI(d). Hence u,, = ug = u,, (mod p™) by Lemma [(.6(b).
By the connectivity of the Dynkin diagram, the u, for a € II are all equal, and
€ Autg.(4).

Now assume |7| = 2; the argument is similar but slightly more complicated. By
assumption, G is of type A,, D,, or E,; i.e., all roots have the same length. Set
m' =wv,(g? — 1); then m’ = m if p is odd, and m’ = m+ 1 if p=2. Fix ay,az € I
such that a; # 7(2) and 3 def aj + as € X1, Choose X € IE‘;O of order pm/.

If ay # 7(e) and ay # 7(ay), then |Ag, | = |Aa,| = p™ by Lemmal5.6(c), and

ha1 (/\)haz (/\) = hoq ()‘)h'r(ocl)()‘q)haz (/\)hf(az) (/\q)
= hﬁ()\)hT(ﬁ)()\q) = hﬁ()\) € AE
Hence
(o Nhay ()7 = @ (hay (MNhay (V) = hay (A)“31 - o, (V)32
and together with Lemma [5.€(b), this proves that ua, = uz = ug, (mod ).

If 7(a;) = a; for i = 1,2, then a similar argument shows that ug, = ug = ua,

(mod p™). It remains to handle the case where a; # 7(c1) and ay = 7(a2). In this

case, |Ag,| = p™ and |Ag,| = p™ by Lemmal5.6)(c), and these groups are generated
by hay (A) = hay (M) (ay)(A9) and R, (A7), respectively. Then

By (MNhay A7) = oy (Do) A hay (A1) = hs(Vhe(5) (A7) = hs(N) € A,
SO

o~ o~ o~

(s e X)) = 0 (B Ny A1) = ray (A)*25 + hay (AT 02,
and ug, = ug = ug, (mod p™) by Lemma[E.6(b) again.
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Since the Dynkin diagram is connected, and since the subdiagram of nodes in
free orbits in the quotient diagram is also connected, this shows that the ug are
all congruent for a € I (modulo p™ or p™', depending on where they are defined),
and hence that ¢ € Autg.(A).

Step 3: Consider the subset W5 = {wa | @ € II}. We need to study the subgroup
Ny, aut(a,7)(Wg): the group of elements of WoAut(A, ) which permute the set
W5. Note that Wy = (W5) (see, e.g., [Cal, Proposition 13.1.2], and recall that

Wo =W and II = II in case [(TIL.2)). We first show that
(5) AUt(Av]:) S WONWOAut(A,.F)(Wﬁ) .

Write 11 = {@i,...,a}, ordered so that for each 2 < i < k, @; is orthogonal
to all but one of the @; for j < i. Here, @; L @; means orthogonal as vectors in
Vo. Thus wg, commutes with all but one of the wg; for j < i. By inspection of
the Dynkin diagram of G (or the quotient of that diagram by 7), this is always
possible.

Fix ¢ € Aut(4,F). In particular, ¢ normalizes Wy (recall that we identify
Wy = Autyy, (A)) since ¢ is fusion preserving. (Recall that Autg(A) = Auty, (A)
by Lemma B.3|(b).) We must show that some element of Wy normalizes the set
Ws.

HBy definition of Aut(A,F) (Notation B2)), ¢ = |4 for some p € Aut(F).
Since { is fusion preserving, ¢ normalizes Autz(A) = Autg(A), where Autg(A) =
N/A =2 W, since Cn(A) = A by Lemma [53(a). Thus there is a unique automor-
phism @ € Aut(Wj) such that p(w) = pow o~ for each w € W.

For each i, since |p(wg,)| = 2 and [p(wg, ), A] = [wa,, A] is cyclic, $(wa,) = wa:
for some @& € S by Lemma B7(b), where @ is uniquely determined only up to sign.
For i # j,

G La; = [waous)=1 <= [Pus)flus,)] =1 = a 1a,.

So via the assumption about orthogonality, we can choose successively elements
a1y, a, . .., @y such that p(wg,) = wa, for each i, and (aj, @}) < 0 for i # j.

For each i # j, since |wg, wa,| = [wa, wg; |, the angle (in V)) between &; and &;
is equal to that between @ and @’ (by assumption, both angles are between 7/2

and 7). The roots &} for 1 < i < k thus generate ¥ as a root system on V; with
Weyl group Wy, and hence are the fundamental roots for another Weyl chamber for
5. (Recall that £ = X, Vo = V, and Wy = W in case [[TIL2)]) Since Wy permutes
the Weyl chambers transitively [Brbl §VI.1.5, Theorem 2(i)], there is w € Wy
which sends the set {wg,} onto {$(wg,)}. Thus ¢’ o ¢ € Nyyyaua,r)(Wg), so
¢ € WoNw, aut(a,7)(Wg), and this proves (H).

Step 4:  Set Autwyau(a, ) (Wi) = Nwoausa,7)(Wi)/Cwoausca,z)(Wg): the
group of permutations of the set Wy which are induced by elements of WyAut(A, F).
By (a) (Step 2) and (&), and since Wy = (W5), there is a surjection

onto WONWoAut(A,]:) (Wﬁ) _ WoAllt(A, ]:)
WoCw,auna,r)(Wg)  WoAuts(A4)

(6)  Autw,aut(a,r (Wg)
To finish the proof of the lemma, we must show that each element of the group

Autyy, au(a,7) (Wg) is represented by an element of Auty,gq)(A) (i.e., the restric-
tion of an automorphism of G), with the exceptions listed in point (b).
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In the proof of Step 3, we saw that each element of Autyy,auta,r)(Wyg) pre-

serves angles between the corresponding elements of f[, and hence induces an au-
tomorphism of the Coxeter diagram for (Vp, f]) (i.e., the Dynkin diagram without
orientation on the edges).
Case 1: Assume G = G(q) is a Chevalley group. The automorphisms of the
Coxeter diagram of G are well known, and we have
(7)
6 ifG= Dy
}AutWOAut(A7}‘)(Wﬁ)’ S 2 ifG= An (n Z 2), Dn (n Z 5), Eﬁ, Bg, GQ, or F4

1 otherwise.

In case |(IIL.1)| (i.e., when the setup is standard), all of these automorphisms are
realized by restrictions of graph automorphisms in T (see [Cal §§ 12.2-4)), except
possibly when G = Bs(q), Ga(q), or Fy(q). In case with the same three
exceptions, each such automorphism is realized by some graph automorphism ¢ €
I'z, and ¢|7 commutes with o7 € Z(Aut(T)). Hence by Lemma BT ¢|r extends
to an automorphism of G whose restriction to A induces the given symmetry of the
Coxeter diagram. Together with (@), this proves the lemma for Chevalley groups,
with the above exceptions.

If G = Bs(q) or Fy(q) and p # 2, then ’AUtWOAut(A,]-')(Wﬁ)’ = 2, and the
nontrivial element is represented by an element of Autr, (A4) exactly when gy = 2.
This proves the lemma in these cases, and a similar argument holds when G = G5 (q)
and p # 3.

It remains to check the cases where (G, p) = (B2(q), 2), (G2(q), 3), or (Fu(q), 2).
We claim that Autyy,aue(a,7) (Wg) = 1 in these three cases; then the three groups
in @) are trivial, and so Aut(4, F) < WoAuts.(A). If (G,p) = (Bs,2) or (Gs,3),
then with the help of Lemma ZZ)(dIb), one shows that the subgroups Q4(A,) are
all equal for a a short root, and are all distinct for the distinct (positive) long
roots. More precisely, of the p + 1 subgroups of order p in Q;(A) = C’g, one
is equal to A, when « is any of the short roots in ¥, while each of the other
p is equal to A, for one distinct long root a. Since Q1(As) = Q1 ([wa, 4]) for
each a, no element of Ny aug(a, }-)(Wﬁ) can exchange the long and short roots, so
Autyw,aue(a,7) (Wg) = 1.

Now assume (G,p) = (Fy,2). Let «, 8 € II be such that « is long, 8 is short,
and a / 8. Then a and B generate a root system of type By, and by the argument
in the last paragraph, no element of Ny, aut(a,7)(Wg) can exchange them. Thus
no element in Ny, Aug(4, }-)(Wﬁ) can exchange the long and short roots in G, so
again Autyy,aue(a,7)(Wg) = 1.

Case 2: Assume G is a Steinberg group. In particular, we are in case The

~

Coxeter diagram for the root system (Vj, X) has type By, C,, or Fy (recall that we
excluded the triality groups 3D4(q) in Hypotheses [5.1]), and hence has a nontrivial
automorphism only when it has type By or Fy. It thus suffices to consider the
groups G = ?43(q), 244(q), and 2Eg(q).

For these groups, the elements Ba()\) for A € FY, and hence the (¢ — 1)-

torsion in the subgroups Ty for a € §)+, have relations similar to those among
the corresponding subgroups of 7" when G = Bs(q) or Fy(q). This follows from
Lemma Z6(b): if A € F is a generator, then ® restricts to an isomorphism from
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Czsv (7)/(g—1) to the (¢— 1)-torsion in T, and the elements in II can be identified
in a natural way with a basis for Czzv (7). Hence when p = 2, certain subgroups
Q4 (Agz) are equal for distinct & € iJr, proving that no element in Nyy, aut(a,7)(W5)
can exchange the two classes of roots. Thus the same argument as that used in Case
1 when (G, p) = (B2(q),2) or (Fy(q),2) applies to prove that Ny, aueca,7) (Wg) =
Autg.(A) in these cases.

Since p‘ |[Wo| by Hypotheses BIII), we are left only with the case where p =3

and G = ?Fg(q) for some ¢ = 1 (mod 3). Then (Vj, i) is the root system of Fy, so
Aut(A, F) N WoAuts.(A) has index at most 2 in Aut(A, F) by @) and (). Thus
(c) holds in this case. (In fact, the fusion system of G is isomorphic to that of Fy(q)
by [BMO! Example 4.4], and does have an “exotic” graph automorphism.) a

We now look at groups which satisfy any of the cases [(TIL.1)], [(TIL.2)] or [(TI1.3)
in Hypotheses Bl Recall that kg = pg o kg : Out(G) —— Out(F).

LEMMA 5.9. Assume Hypotheses 5.1l and Notation B2l Then each element
© € Autgiag(F) is the restriction of a diagonal automorphism of G. More precisely,
Kq restricts to an epimorphism from Outdiag(G) onto Outgiag(F) whose kernel is
the p'-torsion subgroup. Also, Ca(Wo) = Op(Z(Q)).

PrROOF. In general, whenever H is a group and B < H is a normal abelian
subgroup, we let Autgiag (H, B) be the group of all ¢ € Aut(H) such that ¢|p =Idp
and [¢, H] < B, and let Outgiag(H, B) be the image of Autgiag(H, B) in Out(H).
There is a natural isomorphism Autgiag(H, B)/Autp(H) WTB> HY(H/B; B) (cf.

[Sz1l, 2.8.7]), and hence H'(H/B; B) surjects onto Outgiag(H, B). If B is centric in
H (if Cy(B) = B), then Outging(H, B) = H'(H/B; B) since Autg(H) = Inn(H) N
Autgiag (H, B).

In particular, Outgiag(S, A) is a p-group since H'(S/A; A) is a p-group. Also,
Cs(A) = A by Lemma B.3(a) (or by assumption in case [(II1.3))), and hence we
have Outgiag(S, A) = Autgiag(S, A)/Auta(S). So Autgiag(S, A) is a p-group, and
its subgroup Autgiag(F) is a p-group. It follows that

Autgiag(F) N Aute(S) = Autdiag (F) NInn(S) = Auta(S),
and thus Outgiag(F) = Autgiag(F)/Aut4(S).

Since Outdiag(G) = Out(G) by Proposition3.5(c), we get i (Outdiag(G)) <
Outgiag(F). In particular, K¢ sends all torsion prime to p in Outdiag(G) to the iden-
tity. It remains to show that it sends O, (Outdiag(G)) isomorphically to Outgiag(F).

Consider the following commutative diagram of automorphism groups and co-
homology groups:

Outgiag (F) = Autgiag (F)/Aut4(S) ——— H'(Autg(A); A)

(8) lincl J{pz

Ottt ging (S, A) = Auttging (S, A)/Aut 4(S) — s H'(Autg(A); A).

o

Here, po is induced by restriction, and is injective by [CE|, Theorem XII.10.1]
and since Autg(A) € Syl,(Autg(4)) (since A 4 S € Syl (G)). For each w €
Autgiag (F), since w is fusion preserving, ns a([w]) € H!(Auts(A); A) is stable with
respect to Autg(A)-fusion, and hence by [CElL Theorem XII.10.1] is the restriction
of a unique element x([w]) € H*(Autg(A); A).
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The rest of the proof splits into two parts, depending on which of cases
[(TIT.2)] or [(TIL.3)] in Hypotheses 511 holds. Recall that Autz(A) = Autg(A) =
Autyy, (A): the second equality by Lemma E3(b) in cases [(TIL1)] or [(TIL.2)] or by
assumption in case [(TIL3)]
Cases|(IIL.2)|and [(IIL.3)} We show that in these cases, Outdiag(G), Outgiag(F),
Z(@G), and C4(Wp) all have order prime to p. Recall that p is odd in both cases.

By hypothesis in case and since |7 € Oy (W) inverts T in case
Ca(Op (Wp)) = 1. In particular, C4(Wp) = 1. Since Z(G) < Z(G) by Proposition
BH(a), and Z(G) < T by Lemma Zdl@), Z(G) < G N Cz(W) < Cr(Wo), so
0,(Z(G)) < C4(Wp) = 1. This proves the last statement.

Now, O,(Outdiag(G)) = 1 since Outdiag(G) = Z(G) (see [GLS3l Theorem
2.5.12(c)]) and O,(Z(G)) = 1. Also,

H'(Autg(A); A) = H (Autyy, (A); A)
= H' (Autw, (A)/Auto,, (w,)(A); Ca(Oy (W) = 0
since A is a p-group and C4 (O, (Wp)) = 1. Hence Outgiag(F) = 1 by diagram (g).
Case |(I11.1)| Since Cyw(A) = 1 by Lemma B3la) (and since Autg(A4) =

Autyy, (A)), we can identify H!(Autg(A); A) = H'(Wy; A). Consider the following
commutative diagram of automorphism groups and cohomology groups

NIN(T), T

0, (Outdiag(@)) —=— O, (Outging(Na(T), T)) H' (Wo; T) )

(9) fa ————— 5 HY(Wy; A)
Jpl lpz
incl 1ns,A 1
Outgiag (F) Outdiag (S, A) ————— H'(S/4; 4)

where R is induced by restriction to Ng(T). By Lemma B.3a), T is centric in
N¢g(T) and A is centric in N, so the three n’s are well defined and isomorphisms
(i.e., Outgiag(N, A) = Autqiag (N, A)/Aut4(N), etc.). The maps o; are induced by
dividing out by O, (T'), and are isomorphisms since A = O,(T"). The maps p; are
induced by restriction, and are injective since S/A € Syl,(Wp) (see Theorem
XI1.10.1]).

Consider the short exact sequence

v —

1 T T T 1

where W(t) =t~ - yap,(t) = t 1 (t9) for t € T. Let
(10)
1 — Cr(Wo) —— Ca(Wo) — Cq(Wo) —2 H (Wo; T) —2— H' (W3 T)

be the induced cohomology exact sequence for the Wpy-action, and recall that
H'(Wo; A) =2 HY (Wo; T) () by @. We claim that

(11) |Op(Outdiag(&))| = Im(8) ()| = |0p(Z(G)) = |Ca(Wo)l;

(12) R is injective; and

(13) x(Outgiag(F)) < Ker(h).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



66 5. THE CROSS CHARACTERISTIC CASE: I

These three points will be shown below. It then follows from the commutativity of
diagram (@) (and since Im(d) = Ker(0)) that kg sends O,(Outdiag(G)) isomorphi-
cally onto Outdlag(]:

Proof of |( m )| and Assume first that v # Id and G = SLs,_1 (some
n > 1). Thus G = SUs,— 1(q). By [St1] 3.4], Outdiag(G) and Z(G) are cyclic of
order (¢+1,2n—1), and hence have no p-torsion (recall p|(¢—1)). By LemmalG.4|b),
Cz(Wo) = Fy, and o(u) = u™? for u € Cz(Wp). Thus U, (u) = u™o(u) = u= "9
for u € Cz(W)), so U, is onto, and Im(d) = 1 = Op(Outdiag(G)) in this case. Also,
Cr(Wy) = Ker(¥,) has order ¢ + 1, so Ca(Wy) = O,(Cr(Wy)) =1

Now assume v = Id or G # SLoy,_1. By Lemma [54] in all such cases,

(14) Cz(Wo) = C7(W)=Z(G) and  Cp(Wy) = Z(G) .

In particular, these groups are all finite, and hence |Im(d)| = |Z(G)| by the exact-
ness of (I). By [GLS3| Theorem 2.5.12(c)], Outdiag(G) = Z(G) in all cases, and
hence |Outdiag(G)| = [Im(0)].

If [¢] € Ker(R), then we can assume that it is the class of ¢ € Autz(G).
Thus ¢ = ¢, for some z € Nz (G), and ¢|n, (1) = ¢y for some y € Ng(T') which
centralizes A. Then y € Cg(A) = T by Lemma [(3[a), and upon replacing ¢
by ¢, 15 ¢ and z by y~ 'z (without changing the class [¢]), we can arrange that
¢INg(r) = Id. Then x € C5(Wp) since it centralizes Ng(T') (and since Ng(T')/T =
Wy by Lemma E3(b)), so € Z(G) by (), and hence ¢ = Idg. Thus R is
injective.

Proof of Fix ¢ € Autgiag(F). Choose @ € Autgiag(N, A) such that p|s = ¢
(i.e., such that [p] = xo([¢]) in diagram (@)). Recall that Wy = N/A by Lemma
B3(b). Let c: Wy & N/A —— A be such that ¢(g) = c(gA)-g for each g € N;
thus 7w, 4([¢]) = [c]. We must show that 6([c]) = 1: that this is a consequence of

¢ being fusion preserving.
For each @ € II, setua:g( ). ThusforgeN 0(g) = ugg if g € wy (as a
-1

coset of A in N). Since w% =1, ; 2(9?) = (uag) , and hence wg(ug) = u; .
We claim that ugz € Az = AN K4 for each @ € .
e If p is odd, then uz € Ag, since Az = {a € A|wg(a) =a"'} by Lemma 2Z4(@).
o If p =2 wsz € S/A, and |a] < 2, choose gz € SN K4 such that wg = gaA.
(For example, if we set g = [, na (1) (see Notation 22(B))), then g € Ng(T')
represents the class wg € Wy, and is T-conjugate to an element of SN K a.) By

Lemma [5.7(c), Cq(Ca(ws)) = GNTKg, where G N Kg 2 SLy(q) or SLa(¢?)
by Lemma [5.51 Hence

fUC(C]:(CA(’wa))) = fOC(Cg(CA(’wa))) =5nN [Gﬁ TI_(a,GﬂTI_(a] =5N I_(a

aEQ

(see the remarks before Lemma [57), and g5 lies in this subgroup. Since ¢ is
fusion preserving, ¢(ga) € foc(Cr(Ca(wg))). By Lemma[5.7(c) again,
ua = ¢(9a) - 95" € ANfoc(Cr(Ca(wa))) = Az
o If p=2,wz € S/A, and & = {a, 7(e), a*} where a* = a+7(a), then wg = wyx.
Choose gz € SN K, such that ggA = wg € N/A. (For example, there is
such a gz which is T-conjugate to ny+(1).) By Lemma E(c), Cq(Ca(wg)) =
GNTK -, GN Ky« = SLy(q), and hence gz € foc(Cr(Ca(wg))). So ¢(ga) €
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foc(Cr(Ca(wg))) since ¢|g is fusion preserving. By Lemma [5.7(c),
uz = ¢(g9a) - 95" € ANfoc(Cr(Ca(wa))) = AN Ko < Az
o If p =2 and wsz ¢ S/A € Syl,(Wy), then it is Wy-conjugate to some other
reflection wz € S/A (for B € ¥), c(wz) € Az by the above argument, and
hence ug = c(wg) € Aa.
Consider the homomorphism

O = (Po)aen: T — [[ Ta where ®4(t) =t"'wa(t) VteT, acll
acell

Since W = (wq | € II), we have Ker(®) = C(W) = Z(@) is finite (Proposition
2.5). Thus @ is (isomorphic to) a homomorphism from (Fj )" to itself with finite
kernel (where r = [II|), and any such homomorphism is surjective since Fy has no
subgroups of finite index.

Choose elements v, € T, for o € 1II as follows.

o If @ = {a} where 7(a) = «a, we set v, = ug.

o If & = {a,7()}, where a L 7(c), then Ty = T X TT(Q), and we let vg, Ur(q)
be such that vov;(q) = ua-

o If & = {a,7(r),a*} where o* = a + 7(a), then ug = ho(A)h,(q)(N) for some
AN EFY,

w&(ha(/\)hr(a)(/\/)) = ha(/\lil)hf(a)(/\il)

by Lemma EZi@), and A = X since wa(ug) = uz'. Set vq, = ho()) and
Ur(a) = 1. (This depends on the choice of a € a N1L.)

Let t € T be such that ®(t) = (va)act. We claim that t 'wg(t) = ug for each

& € II. This is clear when |a| < 2. If @ = {a, 7(«), a*} and A are as above, then

wa(t) = Wq* (t) = Wr(a)WaWr(a) (t) = Wr(a) (wa(t)) = Wr(a) (t . ha(A))
=t- wT(a)(ha(A)) =t ho(\) =t-uz.

Thus c(wg) = dt(wg) for each a € II. Since Wy = (wg | @ € ﬁ) (and since
c and dt are both cocycles), this implies that ¢ = dt, and hence that [¢] = 0 in

HY(Wy; T). O

As one consequence of Lemma[5.9] the Z*-theorem holds for these groups. This
is known to hold for all finite groups (see [GLS3| §7.8]), but its proof for odd p
depends on the classification of finite simple groups, which we prefer not to assume
here.

COROLLARY 5.10. Assume that G € Lie(qo), p # qo, and S € Syl (G) satisfy
Hypotheses Bl Then Z(Fs(G)) = Op(Z(G)).

ProoF. By Lemma (9 O,(Z(G)) = Ca(Wp). By Lemma [E3a,b), or by
hypothesis in Case BI(IIL.3)} Cg(A) = A and Autg(A) = Auty,(A). Hence
Z(Fs(Q@)) < 0p(Z(G)), while the other inclusion is clear. O

We now need the following additional hypotheses, in order to be able to compare
Autg.(A) with the group of field automorphisms of G. With the help of Lemma[L[.TT]
we will see in Chapter [0l that we can always arrange for them to hold.
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HYPOTHESES 5.11. Fiz a prime p and a prime power q. Assume that ¢ = qg
where qq is prime, b > 1, qo # p, and

(i)  qo==£3 (mod8) if p=2;
(ii)  the class of qo generates (Z/p*)* if p is odd; and

(iii) o/(p — 1)p* for some £ > 0.
We will also say that “G satisfies Hypotheses BI1” (for a given prime p) if G =
tG(q) for some t and G, and some q which satisfies the above conditions.

By Hypothesis B.I(), 1y,(G) = G, and thus all field endomorphisms of G
normalize G. When G has a standard o-setup, ®¢ was defined to be the group of
restrictions of such endomorphisms e € ® c for @ > 0. Under our Hypotheses[5.1]
this applies only when we are in case (although Proposition describes the
relation between @ and 14, in the other cases). In what follows, it will be useful
to set

b6 = (tg|a) < Aut(G).
By Proposition B8(d), Inndiag(G)®¢ = Inndiag(G)®e. However, d¢ can be
strictly larger than ®4, and </I;G N Inndiag(G) need not be trivial. For exam-
ple, if G = SL,,(¢) where p does not divide ¢ — 1, then there is a o-setup with

0 = cz1)q for some x € N~ (T) that satisfies Hypotheses [0 (see Lemma [6.5]), and

Yela = ;g € Inniiiag(G). Note that since each element of ®¢ acts on T via

(t — t") for some r, @ normalizes T' and each of its subgroups.
Recall that 7 € Aut(V) is the automorphism induced by o, and also denotes
the induced permutation of X.

LEMMA 5.12. Assume Hypotheses Bl and .11l and Notation 5.2l Let
Xo: &g —— Aut(A, F)

be the homomorphism induced by restriction from G to A. Set m = |7| = MT"
Then the following hold.

(a) Fither T has exponent ¢™ — 1; or p is odd, m = ord,(q), m is even, and
(@™ + 1) |expt(T)|(¢™ — 1).

(b) If p is odd, then xo(®g) = Autec(A). If p = 2, then xo(®g) has index 2 in
Auts(A), and Autge(A) = Im(xo)(¥?;).
(¢) If p=2, then xo 1is injective. If p is odd, then

Ker( ) <wq‘G> <’Y|G> R in Case
(($lc)™ = (y"|a) = Be N Autz(G)  in cases [[IL2)] and [TIL3)}

PRrOOF. We first recall some of the assumptions in cases (II1.1-3) of Hypotheses

BTt

case [(IIL.1)| || ord,(q) =1, m=|y|, and m <2
(15) case [(TIT.2)] || ord,(¢) =m =2 p is odd
case [(IIL.3)| || ord,(q) =m p is odd

(Recall that « is a graph automorphsm in case |(IIL.1)| so |y| = |7| = m.) In all of
these cases, p|(¢™ — 1) since ord,(q)|m.
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(a) Foreacht € T = Cn(ypg o), 19 = hy(t) = v~ L(t). Hence t = y~™(t) =
(Yg)™(t) = 7", and t7"~* = 1. Thus expt(T)| (g™ — 1).

By Hypotheses 5|, there is a linearly independent subset Q = {ay, ..., a5} C
Y such that either Q or £Q = {ay,...,+as} is a free (7)-orbit in 3. Assume Q
is a free orbit (this always happens in case . In particular, m = |r| = s. For
each 1 # X\ € I_quo such that A~ = 1, the element

m—1
tA) = [ hrian (A7)
=0

is fixed by o = 14 0y (recall o(hg(A)) = hy(z)(A?) for each § € ¥ by Lemma B3.2)).
Hence t(\) € T, and t(\) # 1 when X # 1 by Lemma 2A|(dIb). Thus T contains the
subgroup {t(\) | A7~ = 1} of order ¢ — 1, this subgroup is cyclic (isomorphic to
a subgroup of ]1_7‘;0), and hence expt(T) = ¢"™ — 1.

Assume now that £ is a free (7)-orbit (thus m = |7| = 2s). In particular,
we are not in case so p is odd and m = ord,(g). Then Ti(a1) = —ay for
some 0 < i < 2s, and i = s since 7% (a;) = ;. For each 1 # \ € IF‘qXO such that

A\CHL — 1,
s—1 )
t(A) = [ hritan A7)
=0

is fixed by o = 1bg oy by LemmaB2 and since i s(q,)(A?) = h_a, (A™1) = ha, (A).
Hence t(A\) € T, and t(\) # 1 when \ # 1 by LemmaZ4again. Thus {¢(\) | A\? 1 =
1} < T is cyclic of order ¢® 4+ 1, and so (¢° + 1)|expt(T).

(b) By definition, Im(yo) = xo(®¢) is generated by X0(¥go) = g, |4, which acts
on A via (a — a®). If p is odd, then by Hypotheses 511L(ii), the class of qo generates
(Z/p?)*, and hence generates (Z/p*)* for each k > 0. So Im(xp) = Auts.(4) in
this case.

If p = 2, then g9 = +3 (mod 8) by Hypotheses BEI1[i). So for each k > 2,
{qo) has index 2 in (Z/2%)* = (go, —1). Hence Im(x0) = (14,|a) has index 2 in
Autse(A) = (g a, ¢f1>- R
(c) Set ¢o = g, |, a generator of ;. Then (¢g)® = ¥ylc = (v|g) ! since G =
C5(¥g07), and so |polz| divides blylz| = bm. Also, (¢0)"™ = (yla)™™ € Autz(G)
by Lemma

By (a), either expt(T) = ¢ — 1; or m is even, p is odd, ord,(¢) = m, and
(g™ + 1) |expt(T)[(g™ —1). In the latter case, vp (™2 4+ 1) = v, (g™ — 1) > 0 since
pt(g™/? —1). Thus

(16) expt(A4) = p° where e =u,(¢™ — 1) = v,(g"™ — 1) > 0.

If p = 2, then we are in case [(IIL.1)] In particular, ¢ = ¢} = 1 (mod 4),
and m < 2. Also, b (and hence bm) is a power of 2 by Hypotheses BITI(iii). If

bm = 1, then ¢ = go = 5 (mod 8), so e = va(¢ — 1) = 2. If bm is even, then
e =1v2(gd™ — 1) = va(q2 — 1) + v2(bm/2) = 3 + v2(bm/2) by Lemma [[T3l Thus in
all cases, e = 2 + va(bm). So Im(xo) < Aute.(A) = (Z/2°) has order 272 = bm.
Since (Yglc)"™ = (Yqgle)™ = (v )™ = Idg (recall m = |y| in case [TIL.1)), xo
is injective.

Now assume p is odd, and set mg = ord,(g). Then b|(p — 1)p’ for some £ > 0
by Hypotheses F.11iii), and ¢ = ¢} where the class of gy generates (Z/p*)* for
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each k > 1. Forr € Z, ¢" = ¢§" = 1 (mod p) if and only if (p — 1)|br. Hence
bmo = b - ord,(q) = (p — 1)p* for some £ > 0. Since v,(gh~" — 1) = 1, and since
m = mg or 2mg, Lemma [[. T3] implies that

e=uvp(¢m —1)= vp(qgm -1)= vp(qgm‘) -1)=1 +vp(p£) =1+7.

Thus £ = e—1, where p¢ = expt(A) by ([{6), so |[Auts.(A)] = (p—1)p°~t = bmy.
Since o sends the generator ¢g of </15G to the generator xo(¢p) of Auts.(A), this
proves that Ker(xo) = (¥7°|a) = (7"°|c¢). The descriptions in the different cases
now follow immediately. Note that in cases [(TI1.2)] and [(TIL.3)| (where m = my),

bm =AM € Autz(G) by Lemma The converse is immediate: O N
Autz(G) < Ker(xo). O

Before applying these results to describe Out(F) and the homomorphism k¢,
we need to know in which cases the subgroup A is characteristic in S.

PROPOSITION 5.13. Assume Hypotheses Bl and Notation B2l

(a) If p =2, then A is characteristic in S, and is the unique abelian subgroup of
S of order |A|, except when ¢ =5 (mod 8) and G = Sp,,,(q) for some n > 1.

(b) If p is odd, then A is characteristic in S, and Q1 (A) is the unique elementary
abelian subgroup of S of mazimal rank, except when p = 3, ¢ = 1 (mod 3),
v3(g—1) =1, and G = SUs(q) or G2(q).

In all cases, each normal subgroup of S isomorphic to A is Ng(S)-conjugate to A.

PRrOOF. If p is odd, then by [GL, 10-2(1,2)], there is a unique elementary p-
subgroup E < S of rank equal to that of A (denoted ry,, in [GL]), except when
p = 3 and G is isomorphic to one of the groups SLs(q) (¢ = 1 (mod 3)), SUs(q)
(¢ = —1 (mod 3)), or Ga(q), D4(q), or Fy(q) (¢ = +1 (mod 3)). When there is a
unique such subgroup E, then A = Cs(F) by Lemma [53(a) (or by assumption in
case , and hence A is characteristic in S.

Among the exceptions, SL3(q) and G2(q) are the only ones which satisfy Hy-
potheses [FIl  In both cases, S is an extension of A = (C3)? by C3, where
£ = v3(q¢ — 1), and where Z(S) = Ca(S) has order 3. If £ > 1, then A is the
unique abelian subgroup of index p in S. If / = 1, then S is extraspecial of order
3% and exponent 3. By Theorem [[8(a), we can assume ¢ = 4 without changing the
isomorphism type of the fusion system, so G contains SUs(2). This is a semidirect
product S x Qg (cf. [Tal, p. 123-124]), and hence the four subgroups of S of order
9 are N¢(S)-conjugate.

It remains to prove the proposition when p = 2. We use [03], § 2] as a reference
for information about best offenders, since this contains what we need in a brief
presentation. Assume A is not the unique abelian subgroup of S of order |A|. Then
there is an abelian subgroup 1 # B < Wy such that |B| - |Ca(B)| > |A]. In other
words, the action of the Weyl group Wy on A has a nontrivial best offender [O3]
Definition 2.1(b)]. Hence by Timmesfeld’s replacement theorem [O3], Theorem 2.5],
there is a quadratic best offender 1 # B < Wy: an offender such that [B, [B, A]] = 1.

We consider three different cases.

Case 1: G =2 G(q) is a Chevalley group, where either ¢ = 1 (mod 8), or
G 2 Sp,,(q) for any n > 1. Set n =r1k(A) = 1k(T): the Lie rank of G (or of
G). Set £ = vy(q—1) > 2. Then A = (Cy)™ is the group of all 2‘-torsion elements
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in T (or in T). Since the result is clear when n = 1 (G 2 SLy(q) = Spy(q), A 2 Cye,
and S & Qyet1), we assume n > 2.

Let A = ZXV be the lattice in V generated by the dual roots. By Lemma
Z6(b), there are Z[W]-linear isomorphisms A =2 A/2¢A and Q(A4) = A/2A.

Assume first that B acts faithfully on €(A). Since B has quadratic action,
it is elementary abelian [O3, Lemma 2.4]. Set k = rk(B); thus B = C& and
|A/Ca(B)| < 2F.

Since the B-action on V is faithful, the characters x € Hom(B,{£1}) which
have nontrivial eigenspace on V' generate the dual group B*. So we can choose
a basis x1,...,x% for B* such that each x; has nontrivial eigenspace. Let b € B
be the unique element such that x;(b) = —1 for each i = 1,...,k. Let Vi, V_ be
the +1-eigenspaces for the b-action on V, and set AL = AN Vy. By construction,
dim(V_) > k.

Let v € A be an element whose class modulo 2¢A is fixed by b, and write v =
vy +v_ where vy € Vi. Then 2v_ = v —b(v) € 2°ANV_ =2A_ sov_ € 27 1A
and Vy = UV — V- S A n V+ = A+. Thus CA/QZA(Z)) = (A+ X 2271[\_)/22]\. Set
r=rk(A_) = dim(V_) > k; then

2 > |A/Ca(B) 2 [A/Cad)] = |A/(Ay x 271 AL) = 27D L |A/(Ay x AL)]
> 250D A /(A4 x A)).

In particular, A = A4y x A_. But then b acts trivially on A/2A, hence on Q4(A),
which contradicts our assumption.

Thus B does not act faithfully on £ (A). Set By = Cp(Q1(A)) =2 Cp(A/2A) #
1. If —Idy € By, then it inverts A, [B,Q1(A)] < [B,[Bo, A]] = 1 since B acts
quadratically, so B = By, and |Bo| > |A/Ca(B)| > |A/Q(A)| = 2¢~" If b € By
is such that b> = —Idy, then b defines a C-vector space structure on V, and hence
does not induce the identity on A/2A, a contradiction.

Thus there is b € By which does not act on V' via +Id. Let Vi # 0 be the

+1-eigenspaces for the b-action on V, and set A = AN Vy. For each v € A,
v — b(v) € 2A since b acts trivially on Q;(A4) = A/2A. Set v = vy + v_, where
vy € Vi. Then 2v_ = v —b(v) € 2ANV_ = 2A_ implies that v_ € A_, and
hence vy € Ay. Thus v € Ay x A_, so by Lemma 28 G = C,,. By assumption,
g =1 (mod 8), so ¢ > 3, and [b,[b, A/2¢A]] > 4A_/2°A_ # 1, contradicting the
assumption that B acts quadratically on A.
Case 2: G = Sp,,,(q) for some n > 1 and some ¢ = 5 (mod 8). Fix
subgroups H; < G (1 < i < n) and K < G such that H; = Spy(q) for each i,
K =3, is the group of permutation matrices (in 2 x 2 blocks), and K normalizes
H = H; x --- x H, and permutes the factors in the obvious way. We can also fix
isomorphisms x;: H; =5 Sp,(g) such that the action of K on the H; commutes
with the x;.

Fix subgroups A< @ < Spy(q), where @ >~ Qs (a Sylow 2-subgroup), and
A =~ (C, is contained in the maximal torus. Set Q; = Xfl(@) and A; = Xfl(ﬁ), and
set Q = @Q1Q2---Q, and A = A1 As--- A,. Thus A = Oy(T) is as in Hypotheses
[BIKTIT): the 2-power torsion in the maximal torus of G. By [CF\ §1], S = QR for
some R € Syl,(K). Also, W 2 QK/A = C51%,, acts on A via signed permutations
of the coordinates.

Let B be any nontrivial best offender in W on A. Consider the action of B
on the set {1,2,...,n}, let X;,..., X} be the set of orbits, and set d; = |X;|. For
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1 <i <k let A; < A be the subgroup of elements whose coordinates vanish
except for those in positions in Xl, thus 4; 2 (C4)% and A = Ay x --- x Ay. Set
B; = B/Cg(A;); then |B| < Hl 1 |Bi|. Since B is abelian, either |B;| = d; and
B; permutes the coordinates freely, or |B;| = 2d; and there is a unique involution
in B; which inverts all coordinates in A;. In the first case, |Cy,(B;)| = 4, and so
|Bi|-|Ca,(B;)| = d; -4 < 4% = | A;| with equality only if d; = 1. In the second case,
|Ca,(B;)| = 2, and again |B;| - |C4,(B;)| = 2d; - 2 < 4% = | A;| with equality only
if d; = 1. Since

k

k k
[114il =141 < |B|-1Ca(B)| = |B|~H|0Ai( H |Bil - 1Ca.(Bi)])

i=1

we conclude that d; = 1 for all 4, and hence that B acts only by changing signs in
certain coordinates.

For each 1 <14 <, let pr;: @ —— @Q; be the projection onto the i-th factor.
If A* < S is abelian of order 4", then A*A/A is a best offender in W on A, and
hence A* < @ by the last paragraph. Also, pr;(A*) is cyclic of order at most 4 for
each i, and since |A*| = 4", pr;(A*) = C4 for each i and A* =[]}, pr;(A*). Thus
there are exactly 3" such subgroups.

Now assume A* < S, and set AF = pr;(4*) < Q; for short. Since A* is
normal, the subgroups x;(A}) < Q < Spy(q) are equal for all ¢ lying in any R-
orbit of the set {1,2,...,n}. Hence we can choose elements x1,xs, ..., z,, where
x; € Np,(Q;) = SLy(3) and *i(A;) = Af for each 4, and such that x;(z;) € Spy(q)
is constant on each R-orbit. Set x = z1xz2 - - x,,; then A = A*, and = € Ng(S).
Case 3: G is a Steinberg group. Assume v € I'zisa graph automorphism of
order 2, and that G = Cg(0) where o = y1h;. Set Go = Cx(7,1,); thus Go < G.
Set £ = va(¢ — 1) > 2. We must again show that the actlon of Wy on A has no
nontrivial best offenders.

If G = 2E4(q) or Sping,(q) (n > 4), then Gy = Fy(q) or Spin,,,_;(q), respec-
tively, and Wy is the Weyl group of Gy. If 1 # B < W} is a best offender in W} on
A, then it is also a best offender on Q,(A) < Gy (see [O3, Lemma 2.2(a)]), which
is impossible by Case 1.

If G =2 SUznt1(q) =2 2%A2,(q), then S =2 (SDyey2)"™ x R for some R € Syly(3,)
[CEl, pp. 143-144]. Thus A = (Cyes1)™, Wy = Co 1 8,, X, < Wy acts on A4
by permuting the coordinates, and the subgroup Wi = (Cs)™ in Wy has a basis
each element of which acts on one coordinate by (a a22*1). If B<W,isa
nontrivial quadratic best offender on A, then it is also a best offender on y(A)
[O3] Lemma 2.2(a)], hence is contained in W7 by the argument in Case 2, which is
impossible since no nontrivial element in this subgroup acts quadratically. Thus A
is characteristic in this case.

It remains to consider the case where G =2 SUs,(q) = 245, _1(q). Since the
case SUs(q) = Spy(q) has already been handled, we can assume n > 2. Set G =
GUa,n(q) > G, set Gy = GUx(q) x -+ x GUz(q) < @, and set G1 = Ng(Go) =
GUz(q) 1 Ey,. Then G; has odd index in G [CFl pp. 143-144], so we can assume
S < G1NG. Fix Hy € Syly(Go); thus Hy = (SDoe+2)™. Since v2(g+ 1) = 1, and
since the Sylow 2-subgroups of SUs(q) are quaternion,

n

GNHy= KeI‘[H() = (SD2£+2)n X C;l s CQ] R
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where x: SDyera —— Cs is the surjection with quaternion kernel. As in the last
case, Wy = C3 1 X, with normal subgroup Wy, = C%¥. If B < W is a nontrivial
quadratic best offender on A, then it is also a best offender on Q,(A) [O3l Lemma
2.2(a)], so B < W by the argument used in Case 2. Since no nontrivial element in
Wy acts quadratically on A, we conclude that A is characteristic in this case. [

The next lemma is needed to deal with the fact that not all restrictions to A
of automorphisms of G lie in Aut(A, F) (since they need not normalize S).

LEMMA 5.14. Let G' be any finite group, fir S € Syl,(G), and let Sp 4 S
be a normal subgroup. Let ¢ € Aut(G) be such that ¢(So) = So and ¢lg, €
Naut(sy)(Auts(So)). Then there is ¢' € Aut(G) such that ¢'|s, = ¢|s,, ¢'(S) =S,
and ¢’ = ¢ (mod Inn(Q)).

PROOF. Since ¢|g, normalizes Autg(Sy), and ¢,y = pcge ! for each g € G,
we have Aut,(g)(So) = PAuts(So) = Auts(So). Hence (S) < Cg(Sp)S. Since
S normalizes C(Sp) and S € Syl,(Ca(S0)S), we have ¢(S) = “S for some = €
Ca(So). Set ¢’ = c;t o € Aut(GQ); then ¢/'(S) =S and ¢'|s, = ¢ls,- O

In the next two propositions, we will be referring to the short exact sequence
(17) 1 —— Autding(F) —— Nawy(r)(A) —— Aut(4, F) — 1.
Here, R is induced by restriction, and Aut(A4,F) = Im(R) and Autgiag(F) =
Ker(R) by definition of these two groups (Notation [E2/(H])). By the last statement
in Proposition [5.13] in all cases, each class in Out(F) is represented by elements of
NAut(]:) (A)

PROPOSITION 5.15. Assume Hypotheses 511 and 5111 and Notation B2l Then

kg 1s surjective, except in the following cases:
* (G.p) = (*Es(q),3), or

b (Gap) = (GQ(Q)’Q) and q0 # 3; or

e (G,p) = (Fu(q),3) and qo # 2.
In the exceptional cases, |Coker(kg)| < 2.

PRrROOF. We first claim that for ¢ € Aut(F),

(18)  p(A)=A4 and ¢[s € Autsc(A)Autam()(4) =[] € Im(kq) .
To see this, fix such a ¢. By Lemma EI2(b), each element of Auts.(A), or of
Autgo(A)/ (A, if p = 2, is the restriction of an element of . If p = 2, then we
are in case the o-setup is standard, and hence the inversion automorphism
14, is the restriction of an inner automorphism of G (if —Idy € W) or an element
of Inn(G)T'g. Thus ¢|a extends to an automorphism of G.

Now, ¢|a normalizes Autg(A) since ¢(S) = S. So by Lemma BEI4] ¢4 is
the restriction of an automorphism of G which normalizes S, and hence is the
restriction of an element ¢ € Aut(F) such that [¢)] € Im(kg). Then oyt €
Ker(R) = Autgiag(F) by the exactness of ([I7), and [¢1~!] € Im(kg) by Lemma
So [¢] € Im(k¢), which proves (IJ).

By Proposition BI3] each class in Out(F) is represented by an element of
Naut(r)(A). Hence by ([I8), |Coker(kg)| is at most the index of Aut(A,F) N
Autge(A)Autpnge) (A4) in Aut(A4,F). So by Lemma (.8 |Coker(kg)| < 2, and
kg is surjective with the exceptions listed above. ([l
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We now want to refine Proposition [5.15] and finish the proof of Theorem [B] by
determining Ker(kq) in each case where [5]] and [E.11] hold and checking whether
it is split. In particular, we still want to show that each of these fusion systems is
tamely realized by some finite group of Lie type (and not just an extension of such
a group by outer automorphisms).

Since O, (Outdiag(G)) < Ker(k¢g) in all cases by Lemma 5.9 kg induces a
quotient homomorphism

kG : Out(@) /O, (Outdiag(G)) ———— Out(F),

and it is simpler to describe Ker(fg) than Ker(ig). The projection of Out(G)
onto the quotient Out(G)/O, (Outdiag(G)) is always split: by Steinberg’s theorem
(Theorem B4, it splits back to O,(Outdiag(G))®cl'¢ as defined with respect to
some choice of standard setup. (Recall that Outdiag(G) is independent of the o-

setup by Propositions B:5(c) and B:6/(a).) Hence ¢ is split surjective if and only if
kg is split surjective.

PROPOSITION 5.16. Assume Hypotheses 5.1l and E.11] and Notation B2 As-
sume also that none of the following hold: neither
L4 (Gap) = (QEﬁ(q)53)7 nor

o (G,p) = (Ga(q),2) and qo # 3, nor
o (G,p) = (Fy(q),3) and qo # 2.

a) If p=2, then ke is an isomorphism, and kg is split surjective.

(
(b) Assume that p is odd, and that we are in the situation of case |(IIL.1)| of Hy-
potheses B.Il Then /g € N, and

<[77/1\/5]>%’C'2 ify=1Id and —Id ¢ W
Ker(kg) = (v ygl) = Cy ify=1d and —1d ¢ W
<W\/§]> >~y if v # Id (G is a Steinberg group)
where in the second case, vy € I'q is a graph automorphism of order 2. Hence
kg and kg are split surjective if and only if either v = Id and —Id ¢ W, or
p=3 (mod4) and G is not Fy.

(¢) Assume that p is odd, and that we are in the situation of case |(I111.2)| or [(IIL.3)|
of Hypotheses 51l Assume also that G is a Chevalley group (v € Inn(G)), and
that ord,(q) is even or —Id ¢ Wy. Let ®¢,I'¢ < Aut(G) be as in Proposition
BBl Then ®¢ NKer(kg) = 1, so |Ker(kg)| < |Tql, and kg and kg are split
surjective.

(d) Assume that p is odd, and that we are in the situation of case |(111.3)| of Hy-

potheses 011 Assume also that G is a Steinberg group (v ¢ Inn(G) ), and that
ord,(q) is even. Then

(Vle]) =2 Cy if y|a € Aut, (A)
1 otherwise.

Ker(kg) = {

Hence kg and kg are split surjective if and only if q is an odd power of qo
or Ker(kg) = Op (Outdiag(G)). If kg is not split surjective, then its kernel
contains a graph automorphism of order 2 in Out(G)/Outdiag(G).
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PRrOOF. In all cases, k¢ is surjective by Proposition (.15 (with the three ex-
ceptions listed above).
By definition and Proposition B.13]

Out(F) = Aut(F)/Autx(S) = Nauer)(A)/Naue-(s)(A) -

Also, Outgiag(F) is the image in Out(F) of Autgiag(F). Since Nayue,(5)(A) is the
group of automorphisms of S induced by conjugation by elements in Ng(S)NNg(A),
the short exact sequence ([IT) induces a quotient exact sequence

(19)

1 —— Outgiag(F) — Out(F) R, Aut(A, F)/Autygs)(4) — 1.
We claim that
(20) Aut g (s)(A) = Aut(A, F) N Autg(A) .

That Auty,(s)(A) is contained in the two other groups is clear. Conversely, as-
sume a € Aut(A,F) N Autg(A). Then o = ¢4la for some g € Ng(A), and
@ € Npuga)(Auts(A)) since it is the restriction of an element of Aut(F). Hence
g normalizes SC(A), and since S € Syl,(SCq(A)), there is h € Cg(A) such that
hg € Na(S). Thus a = cyla = cpgla € Auty, (5)(A), and this finishes the proof of

0).

By Lemmal5.9] k¢ sends Outdiag(G) onto Outgiag (F) with kernel the subgroup
O, (Outdiag(G)). Hence by the exactness of (IJ), restriction to A induces an
isomorphism

(21) Ker(fg) —2 Ker[Out(G)/Outding(G) —— Aut(A, F)/Auty,(s)(4)]
= Ker[Out(G)/Outdiag(G) —— Naug(a)(Autg(A))/Autg(A)],

where the equality holds by (20).

Recall that for each ¢ prime to p, ¥;' € Auts.(A) denotes the automorphism
(a+ at).
(a,b) Under either assumption (a) or (b), we are in case of Hypotheses 5.1
In particular, (é,o) is a standard o-setup for G. Set k = v,(¢ — 1); then k > 1,
and k> 2 if p = 2.

If p is odd, then by Hypotheses E11[(ii), the class of ¢o generates (Z/p)*. Since
¢ = ¢} = 1 (mod p), this implies that (p — 1)|b. In particular, b is even and
Va= qg/ > € N in this case. Also, for arbitrary p, Hypotheses ETTIiii) implies that

(22) b= (p—1)p* for some £ > 0.

Since Out(G)/Outdiag(G) = ' by Theorem B4l where ®¢I'¢ normalizes
T and hence A, and since Autg(A) = Autw, (A) by Lemma B3|(b), [ZI) takes the

form
(23) Ker(kg) = {¢ € ®cl'c | ¢|a € Autw, (4)}.

In fact, when Ker(kg) has order prime to p (which is the case for all exam-
ples considered here), the isomorphism in (23]) is an equality since the quotient
Outdiag(G)/0, (Outdiag(G)) is a p-group.
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Assume first that G = G(g) is a Chevalley group. Thus ¢ = ¢, where ¢ =1
(mod p), and A = {t € T | " = 1}. Set

o, _ I'c¢ if G is not one of By, Fy, or Go
ST )1 G By, Fy, or Gy

and similarly for F%. By Lemmal[Z7 (applied with m = p* > 3), we have Auty (T)N
Autro (T) = 1, the group Auty (T)Autpo (T) acts faithfully on A, and its action
G G

intersects Auty(A) only in (4,). By Lemma [FI2(b,c), restriction to A sends ®¢
isomorphically onto Autg.(A) if p is odd, and with index 2 and ¥4, not in the image
if p=2. So ®¢I'% acts faithfully on A, and

1 ifp=2
(24)  {p € ®al|pla € Autw,(A)} =S (Y q)  ifpisodd and —Id € W
(Yov ) if pis odd and ~Id ¢ W

where in the last case, 7y € ' is a graph automorphism such that the coset vgW
contains —Id. (Recall that b = (p — 1)p* for some ¢ > 0 by @22). Hence /g = —1
modulo p* = expt(A), and ¢ 5la = ¥4;.)

Thus by @3) and (24), if G is not By, Fy, or Go, then k¢ is injective if p = 2, and
|Ker(kq)| = 2 if p is odd. When p is odd, since Ker(k¢) is normal of order prime to
p in Out(G) (hence of order prime to |O,(Outdiag(G))|), Ker(kg) is generated by
[¥ g if =1d € W (i.e., if there is an inner automorphism which inverts T and hence

A), or by 01, q] if —=1d ¢ W and 5 is as above. In the latter case, kq is split since
it sends O,(Outdiag(G))®¢ isomorphically onto Out(F) (note that in this case,
G = A, D, for n odd, or Eg, and hence I'¢ = C5). When Ker(kg) = ([ /q]), the
map is split if and only if 41 |®¢| = b, and since b = (p — 1)p™ for some m by [22)),
this holds exactly when p = 3 (mod 4).

If (va) = (BQ(Q)v 2)a (F4(q)’ 2)7 or (GQ(Q)a 3)7 then since do 7£ 'z I'g=1= F%
So 3) and ([24) again imply that Ker(kg) = 1, 1, or <[wﬁ]> =~ (O, respectively,
and that k¢ is split in all cases.

Next assume G = G5(q), where p = 2, ¢ = 3%, and b is a power of 2. Then
b > 2 since ¢ =1 (mod 4). By ([23) and (24]) again, ®¢ injects into Out(F). Since
Out(G) is cyclic of order 2b, generated by a graph automorphism whose square
generates P (and since 2|b), Out(G) injects into Out(F).

If G = Fy(q), where p = 3, ¢ = 2°, and b = 2 - 3° for some ¢ > 0, then by
@3) and @4), Ker(kclo) = (¥ q) = Co. Fix 1 # v € Tq. If [Ker(kg)| > 2,
then since Auts.(€21(4)) = {£Id} < Autw (21(A4)), we have wy|g,a) = Id for
some w € W. Since W acts faithfully on ©;(A) (Lemma 2.7, this would imply
that [wy, W] =1 in W(v), and hence that v acts on W as an inner automorphism,
which is impossible since the action of « exchanges reflections in W for long and
short roots, unlike any inner automorphism. Thus Ker(kg) = (¢ va) = Ca. Since
Out(G) is cyclic of order 2b = 4 - 3¢, neither rg nor k¢ splits.

It remains to handle the Steinberg groups. Let H be such that Cz(v) = H(F,, ):

a simple algebraic group by [GLS3| Theorem 1.15.2(d)]. In particular, G > H =
H(q). Also, Wy is the Weyl group of H by [GLS3| Theorem 1.15.2(d)] (or by the
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proof of [St3| Theorem 8.2]). For a € A4,
ac€H <= ~(a)=a <= Yia)=a!=a <= aec Q4.

Thus Qx(A) = AN H. So by Lemma 2.7 applied to H(F,,), Wy acts faithfully on
Q1. (A), and intersects Auty.(A) at most in (14,).

If p = 2, then by Lemma [E.I2(b), ¢/*; is not the restriction of an element in
. Also, ®g = Oy is sent injectively into Auts.(A) by Lemma [5.12(c), so kg is
injective by (23)).

If p is odd, then A = Q4 (A) < H since v,(¢> — 1) = v,(q — 1) = k, and W} acts
on A as the Weyl group of B,, or C,, (some m) or of Fy (see [GLS3| Proposition
2.3.2(d)] or [Cal §13.3]). Also, ¥4,|a has order b in Auts.(A) by Lemma [5.T2(c).
Since (thg,)"? = ¥ /g where /g = —1 (mod p) (recall b = (p — 1)p* for some £ by
22)), and since —Idy, € Wy by the above remarks, 1,,|4 has order b/2 modulo
Autyy, (A). So by ([23) and the remark afterwards, and since @ is cyclic of order 2b,
Ker(kg) = ([ \/q]> =~ (4. In particular, r¢ is split only if b/2 is odd; equivalently,
p =3 (mod 4).

(c,d) In both of these cases, p is odd, either ord,(q) is even or —Id ¢ Wy, and we

are in the situation of case[(TIL.2)|or [(TIL.3)|in Hypothesis[EIl Then v|¢ = (¢,4]¢) "
since G < Cz(v1). Also, ¥y, (G) = G by BN, and hence 7(G) = G. Since 1y,

and + both normalize T by assumption or by construction, they also normalize
T =GNT and A = O,(T). By Proposition B8(d), [1h,,] generates the image of ®¢
in Out(G)/Outdiag(G).

We claim that in all cases,
(25) Autg(A) = Auty, (A4) and Autg(A) N Autsc(A) < (v]a) -
This holds by assumption in case and since ord,(q) is even or —Id ¢ Wy. In
case the first statement holds by Lemma [5.3[(b), and the second by Lemma
27 (and since Wy = W and A contains all p*-torsion in T).
(c) Assume in addition that G is a Chevalley group. Thus v € Inn(G), so
7l¢ € Inndiag(G) = Inn(G)Auts(G) by Proposition B.6(b), and hence v[4 €
Autg(A). Also, Y|4 = (Yga)™! = (Pg|a)7? since ¢ = 41, centralizes G >
A. Since 14,4 has order b - ord,(¢q) in Auty(A) by Lemma B.12(c), its class in
Naut(ay(Autg(A))/Autg(A) has order b by (23]).

Thus by &), kg sends O,(Outdiag(G))®¢ injectively into Out(F). Since I'g
is isomorphic to 1, Cy, or X3 (and since kg is onto by Proposition [.15)), k¢ and
kg are split.

(d) Assume G is a Steinberg group and ord,(g) is even. In this case, v ¢ Inn(G),
and Out(G)/Outdiag(G) = ®¢ is cyclic of order 2b, generated by the class of 14, |-

Hence by (1)), Ker(kg) is isomorphic to the subgroup of those ¢ € ®¢ such that
Yla € Autg(A). By @5) and since tgla = 774, Autg(A4) N Autse(A) < (w(;‘>.
Thus |Ker(k¢g)| < 2, and

[Ker(kg)| =2 <= ~v]a € Autg(A) = Auty, (A).
When Ker(kg) # 1, kg is split if and only if 4 1 |®¢| = 2b; i.e., when b is odd. O

In the situation of Proposition E.I6|(c), if —Id ¢ W, then Ker(xkg) = (v /q))
where ¢ is a nontrivial graph automorphism. If —Id € W (hence ord,(q) is even),
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then k¢ is always injective: either because ' = 1, or by the explicit descriptions in
the next chapter of the setups when ord,(¢) = 2 (Lemmal6.4), or when ord,(q) > 2
and G = Ds,, (Lemma [G3]).

The following examples help to illustrate some of the complications in the
statement of Proposition

EXAMPLE 5.17. Set p = 5. If G = Spiny, (31), Spo,(31), or SUL(3%) (k > 5),
then by Proposition BI0I(b), kg is surjective but not split. (These groups satisfy
case of Hypotheses Bl by Lemma [61l.) The fusion systems of the last two
are tamely realized by Spy,(3%) and SL,(3%), respectively (these groups satisfy case
by Lemma [64], hence Proposition B.10|(c) applies). The fusion system of
Spiny, (31) is also realized by Spiny, (3%), but not tamely (Ezample B6I(b)). It is
tamely realized by Spiny,,_,(3%) (see Propositions [LI(c) and BI6(c)).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



CHAPTER 6

The cross characteristic case: 11

In Chapter Bl we established certain conditions on a finite group G of Lie type
in characteristic qp, on a o-setup for G, and on a prime p # ¢qg, and then proved
that the p-fusion system of G is tame whenever those conditions hold. It remains
to prove that for each G of Lie type and each p different from the characteristic,
there is another group G* whose p-fusion system is tame by the results of Chapter
Bl and is isomorphic to that of G.

We first list the groups which satisfy case of Hypotheses G.11

LEMMA 6.1. Fiz a prime p and a prime power ¢ = 1 (mod p), where ¢ = 1
(mod 4) if p = 2. Assume G = G(q) for some simple group scheme G over Z of
universal type, or G = 2G(q) for G = A,,, D,,, or Eg of universal type. Then G

has a o-setup (G, o) such that Hypotheses 5], case holds.

PROOF. Set G = (G(I_Fq), and let ¢, € @ be the field automorphism. Set

o = 7y € End(G), where v = Id if G = G(q), and v € I'z has order 2 if
G = 2G(q).

N¢g(T) contains a Sylow p-subgroup of G. If v =1d, then by [Cal Theorem
9.4.10] (and since G is in universal form), |G| = ¢™ [[;_,(¢% — 1) for some integers
N,dy,...,d. (r = rk(G)), where dyds ---d, = |W| by [Cal, Theorem 9.3.4]. Also,
IT|=(¢g—1)", Na(T)/T =W, and so

vp(|G]) = va(qdi -1)= Z(Up(q -1)+ Up(di))

= 0,(IT)) + v, (|W]) = v,(Na(T))

where the second equality holds by Lemma [[.T3l

If |y] = 2, then by [Cal, §§14.2-3], for N and d; as above, there are ¢;,n; € {£1}
for 1 < i < r such that |G| = ¢" [[_,(¢% —&;) and |T| = [[;_,(¢ — ;). (More
precisely, the 7; are the eigenvalues of the y-action on V', and polynomial generators
Ii,..., I, € Rlxy,...,2,.]" can be chosen such that deg(I;) = d; and 7(I;) = &;1;.)
By [Cal Proposition 14.2.1],

r<1—€itdi> . {i<i<r|le=1}={1<i<r|n =1}

|W0| = lim

t—1 4

=1 1- nlt
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Also, v,(q% +1) = vy(g+1) for all d > 1: they are both 0 if p is odd, and both 1 if
p = 2. Hence

T

up(IG) = up(IT) = Y “P(Qdi__;)

=1 q
e;,=+1
= 3= wpld) = w(IWal) = 0p(ING(T)]) = w,(1T)
s,:zzz%l»l

by Lemma [[T3 again, and so N (T') contains a Sylow p-subgroup of G.

The free (v)-orbit {a} (if v =1d) or {o, 7(a)} (if |7] = 2 and & # 7(«)), for any
a € X, satisfies the hypotheses of this condition.

[V ¥go] = Id since v € I'5. O

We are now ready to describe the reduction, when p = 2, to groups with o-
setups satisfying Hypotheses B.11

PROPOSITION 6.2. Assume G € Lie(qo) is of universal type for some odd prime
qo- Fiz S € Syl,(G), and assume S is nonabelian. Then there is an odd prime qf,
a group G* € Lie(q}) of universal type, and S* € Syly(G*), such that Fs(G) =
Fs+(G*), and G* has a o-setup which satisfies case [(IIL.1)| of Hypotheses B1] and
also Hypotheses 11l Moreover, if G* = G2(q*) where ¢* is a power of g, then we
can arrange that either ¢* =5 or ¢f = 3.

PROOF. Since qo is odd, and since the Sylow 2-subgroups of 2G5 (3%++1) are
abelian for all k > 1 [Reel, Theorem 8.5], G must be a Chevalley or Steinberg group.
If G 223D,(q), then F is also the fusion system of G(q) by Example 4.5].
So we can assume that G = "G(q) for some odd prime power ¢, some G, and some
graph automorphism 7 of order 1 or 2.

Let € € {1} be such that ¢ = € (mod 4). By Lemma [[.TT] there is a prime ¢

and k > 0 such that {q) = (e~ (q(‘j)2k>7 where either ¢f = 5 and £k =0, or ¢} = 3
and k£ > 1.

If ¢ = 1, then set G* = "G((¢)?"), and fix S* € Syl,(G*). Then Fg-(G*) =
Fs(G) by Theorem [[L8(a), G* satisfies case of Hypotheses [5.1] by Lemma
(and since (¢3)2" =1 (mod 4)), and G* also satisfies Hypotheses BTl

Now assume ¢ = —1. If —Id is in the Weyl group of G, then set G* =
TG((qé‘)zk). If —Id is not in the Weyl group, then G = A,, D, for n odd, or
Eg, and we set G* = G((qg‘)Qk) if 7 #1d, and G* = 2G((qg)zk) if G = G(g). In all
cases, for S* € Syl (G*), Fs-(G*) = Fs(G) by Theorem [L8(c,d), G* satisfies case
(IT1.1)| of Hypotheses 5.1l by Lemma again, and also satisfies Hypotheses B.111

By construction, if G = G, then either ¢j = 3 or (qg)Qk =5. O

When G = G5(5) and p = 2, G satisfies Hypotheses 5.1l and [B.1T], but k¢ is not
shown to be surjective in Proposition [5.15] (and in fact, it is not surjective). Hence
this case must be handled separately.

PROPOSITION 6.3. Assume p = 2. Set G = G3(5) and G* = G2(3), and fix
S € Syl,(G) and S* € Syl,(G*). Then Fg«(G*) = Fs(G) as fusion systems, and
Rg+ = lgr o kg 18 an isomorphism from Out(G*) = Cy onto Out(S*, Fs«(G*)).
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PRrOOF. The first statement follows from Theorem [[§(c). Also, |Out(G)| =1
and |Out(G*)| = 2 by Theorem B4l and since G and G* have no field automor-
phisms and all diagonal automorphisms are inner (cf. [Stll 3.4]), and G* = G2(3)
has a nontrivial graph automorphism while G = G2(5) does not [St1l, 3.6]. Since
G satisfies Hypotheses B and 11l |Coker(kg)| < 2 by Proposition BI85 so
Out(Fs(G))) < 2.

By [O5l Proposition 4.2], S* contains a unique subgroup @ = Qg x¢, Qg of
index 2. Let # € Z(Q) = Z(S*) be the central involution. Set G = Gy(F3) >

G*. Then C’é(az) is connected since G is of universal type [St3, Theorem 8.1], so
Cg(x) = SLy (Fs3) x ¢, SLy(F3) by Proposition 25 Furthermore, any outer (graph)
automorphism which centralizes x exchanges the two central factors SLy (F3). Hence
for each o € Aut(G*)~\Inn(G*) which normalizes S*, a exchanges the two factors

Q@s, and in particular, does not centralize S*. Thus kg« is injective, and hence an
isomorphism since |Out(G*)| = 2 and |Out(S*, Fs- (G*))| = |Out(Fs(G))| < 2. O

We now turn to case |[(I11.2)| of Hypotheses [B.11

LEMMA 6.4. Fiz an odd prime p, and an odd prime power q prime to p such
that ¢ = —1 (mod p). Let G be one of the groups Sp,,(q), Spin,, . (q), Sping,,(q)
(n 2 2), Ga(q), Filq), E7(q), or Es(q) (i.e., G = G(q) for some G whose Weyl
group contains —1d), and assume that the Sylow p-subgroups of G are nonabelian.

Then G has a o-setup (G, o) such that Hypotheses 5.1, case [TIL2)| hold.

PROOF. Assume g = g} where ¢ is prime and b > 1. Set G = G(F,,), and let
T < G be a maximal torus. Set r =rk(7T') and k = v,(q + 1).

In all of these cases, —Id € W, so there is a coset wg € Ng(T')/T which inverts
T. Fix go € Ng(T) such that goT = wo and 1g,(go) = go (LemmalZ). Set v = ¢y,
and o = 7y o 1,. We identify G = Oqé(Cé(a)), T=GNT,and A= 0,(T). Since
o(t)=t"9foreacht € T, T = (Cy41)" is the (g + 1)-torsion subgroup of T', and

A= (Cpe).
Ng(T) contains a Sylow p-subgroup of G. In all cases, by [Cal Theo-
rem 9.4.10] (and since G is in universal form), |G| = ¢ []_,(¢% — 1), where

dyds -+ -d, = |W]| by [Cal Theorem 9.3.4]. Also, the d; are all even in the cases con-
sidered here (see [St2| Theorem 25] or [Cal, Corollary 10.2.4 & Proposition 10.2.5]).
Hence by Lemma [[.T3] and since p is odd,

T T T

w(IG) =)o@ = 1) =Y 0 (632 = 1) =Y (vp(a® = 1) +v,(di/2))

i=1 i=1 i=1

=r-v(g+1)+ va(di) = 0p(|T]) + vp(IW]) = vp(|Na(T)]) -
=1

[77 wqo] = Id Since Y= Cgo and wqo (go) = 9o-
A free (v)-orbit in ¥. For each a € 3, {£a} is a free (y)-orbit. O

We now consider case of Hypotheses 5.1l By [GL, 10-1,2], when p is
odd, each finite group of Lie type has a o-setup for which Ng(T') contains a Sylow
p-subgroup of G. Here, we need to construct such setups explicitly enough to be
able to check that the other conditions in Hypotheses [5.1] hold.
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When p is a prime, A is a finite abelian p-group, and Id # & € Aut(A) has
order prime to p, we say that £ is a reflection in A if [A,&] is cyclic. In this case,
there is a direct product decomposition A = [A,&] x C4(§), and we call [A, ] the
reflection subgroup of £. This terminology will be used in the proofs of the next
two lemmas.

LEMMA 6.5. Fiz an odd prime p, and an odd prime power q prime to p such that
q# 1 (modp). Let G be one of the classical groups SLy,(q), Spy,(q), Sping, 1(q),
or SpinQin(q), and assume that the Sylow p-subgroups of G are nonabelian. Then G

has a o-setup (G, o) such that case |(I111.3)| of Hypotheses Bl holds.

PROOF. Set m = ord,(g); m > 1 by assumption. We follow Notation 2.2]
except that we have yet to fix the o-setup for G. Thus, for example, qq is the prime
of which ¢ is a power.

When defining and working with the o-setups for the spinor groups, it is some-
times easier to work with orthogonal groups than with their 2-fold covers. For this
reason, throughout the proof, we set G, = SO, when G = Spin,, set G.= SO@(IE‘QO)
when G = Spin, (Iﬁ‘qo), and let x: G —— G, be the natural surjection. We then set
G. = Céc(a) =~ SOF(q), once o has been chosen so that G = Cg(o) = Spinf (q),
and set T, = x(T) and T, = Cs. (o). Also, in order to prove the lemma without

constantly considering these groups as a separate case, we set E}C = (_?, G. =G,
x = Id, etc. when G is linear or symplectic. Thus G, and G. are classical groups
in all cases. _

Regard G. as a subgroup of Au‘u(l_/7 b), where V is an Fg,-vector space of
dimension n, 2n, or 2n + 1, and b is a bilinear form. Explicitly, b = 0 if G = SL,,,
and b has matrix ( % (1))6% if G = Spy,,, (9 (1))@” if G = Spiny,,, or (9 (1))6% & (1)

if G = Spin,,, ;. Let T. be the group of diagonal matrices in G, and set

diag(A1, ..., An) if G = SL,
Ay An] = S diag( A, ALY o A, ALY if G = Spy,, or Spiny,
diag(A1, A7, ..oy Ay Ant, 1) if G = Spiny,, ;.

In this way, we identify the maximal torus T, < G, with (IF‘qXO)" in the symplectic

and orthogonal cases, and with a subgroup of (I_Fgo)” in the linear case.

Set W* = W (the Weyl group of G and of G.), except when G = Spin,,,, in
which case we let W* < Aut(Tc) be the group of all automorphisms which permute
and invert the coordinates. Thus in this last case, W* = {£1}1%,,, while W is
the group of signed permutations which invert an even number of coordinates (so
[W* : W] = 2). Since W* induces a group of isometries of the root system for
Spin,,, and contains W with index 2, it is generated by W and the restriction to
T, of a graph automorphism of order 2 (see, e.g., [Brbl § VI.1.5, Proposition 16]).

We next introduce some notation in order to identify certain elements in W*.
For each 7, s such that rs < n, let 77 € Aut(T <) be the Weyl group element induced
by the permutation (1---7)(r4+1---2r)---((s—1)r+1---sr); i.e.,

To([A1y. . A]) =
[)‘T7 )‘17 sy )‘7‘717 )‘27‘7 )‘7‘+1> sy )\S’l"7 )\(571)7*4»17 ceey )\ST717 )\ST+17 o ]
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For 1 < i < n, let § € Aut(T ) be the automorphism which inverts the i-th
coordinate. Set 77 . = 77 and 7 _; = 77§,&y, - &, Thus for 6 = +1,
Tro([A, - An]) =
[)‘79"7 >\17 ey >‘7"—15 Agrv >‘7"+17 . Asra )‘ S 1 r4+1ly---> )\sr—la )\87"+17 .. ]
Recall that m = ord,(¢). Define parameters y, 6, k, and « as follows:
if m is odd : pw=m =1 k= [n/p] = [n/m)]
k = [n/m)]
if m is even : pw=m/2 0=-1 k=[n/u] =[2n/m].

We can now define our o-setups for G and G.. Recall that we assume m > 1.
In Table [6.I] we define an element wg € W*, and then describe T, = Cs (wo 0 1q)

and Wi = Cw«(wp) (where Wy = Cw (wp) has index at most 2 in WO) In all

‘ G, ‘ conditions lwo = rYch | T. | Wy ‘
SLn(q) " (Cqm_1)F x Cpomt (Cn 1 Zk) x H
SP2n(9)

S02n41(q) The (Cqn—g)™ x CT ™ (Cop1Xe) x H
e=0"

e# 0%, pin| 7€, |(Con)® x Coy™" 1 x Capa| (CoulSk) x H

§03n(q) e
e A Il RS

(CQH 2 Erz—l) X H

g 0"”‘, n r—1 r—1 1
7;: +l1L| Tho &n | (Car0)""" X Cg2y X Cota

In all cases, T 2 T. has kernel and cokernel of order < 2, and so A = Op(T) =2 Op(Te).

TABLE 6.1

cases, we choose v € Aut(G.) as follows. Write wy = wj o Y|~ for some wj € W

7.,
and 7y € Péc (possibly 79 = Id). Choose gg € N@C (TC) such that goT, = w(, and
Vg0 (90) = go (Lemma 23), and set v = cg4, o 70. Then [y,14,] = Idg , since ¢g,
and o both commute with vg,, and we set o = v oy = 14 0y. When G Spin,,,
or Spiny,, , |, since G is a perfect group and Ker(y) < Z(G), ~ and o lift to unique
endomorphisms of G which we also denote v and o (and still [, 14,] = 1 in Aut(G)).

Thus G = Cg(0) and G, = Cg ( ) in all cases, and we identify these groups.
Set T'= Cx(0), T. = Cx ( ), W§ 7CW*( ), and Wy = Cw (7). If G = Spin,,, |,
or Spin,,,, then x(7") is the kernel of the homomorphism 7T, — Ker(x) which sends
x(t) to t~1o(t), and thus has index at most 2 in T,. Since p is odd, this proves the
statement in the last line of Table

In the description of W in Table[6l H always denotes a direct factor of order
prime to p. The first factor in the description of W acts on the first factor in that
of T, and H acts on the other factors.
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When G. = SL,(q) and m|n, the second factor C’qill in the description of T
doesn’t make sense. It should be interpreted to mean that T is “a subgroup of
index ¢ — 1 in the first factor (Cym_1)*”.

Recall that T, = C7. (voty). When U = ( o )H, then

CU(T}L,ON/’q):{()\,)\q,)\q,...,)\q”_l)‘ AT © — \}
= LA AT A = 1) 2 Oy

This explains the description of T, in the symplectic and orthogonal cases: it is
always the direct product of (Cyu_g)* or (Cyu_g)" ! with a group of order prime
to p. (Note that p|(¢+1) only when m = 2; i.e., when § = —1 and 1 = pu|n.)

Since the cyclic permutation (12 --- 1) generates its own centralizer in X,,, the

centralizer of 7 , in {+1}1%, < Aut((]F‘X) ) is generated by T, , and wT1 It

0 = —1, then (T MQ)“ = 1/1T1, while if § = 1, then TMQ has order p. Since m = p
is odd in the latter case, the centralizer is cychc of order 2y in both cases. This
is why, in the symplectic and orthogonal cases, the first factor in W is always a
wreath product of Cs,, with a symmetric group.

We are now ready to check the conditions in case of Hypotheses 5.1l
Ng(T) contains a Sylow p-subgroup of G. Set

e=uvp(q" = 1) =vp(¢" - 0).

The second equality holds since if 2|m, then pt (¢" — 1) and hence e = v,(¢" + 1).
Recall also that m|(p — 1), so v,(m) = 0. Consider the information listed in Table
[6.2] where the formulas for v,(|T|) = v,(|Te|) and v, (|Wy|) follow from Table 6.1]
and those for |G| are shown in [St2], Theorems 25 & 35] and also in [Cal, Corollary
10.2.4, Proposition 10.2.5 & Theorem 14.3.2].

G cond. up(|G) op(|T]) | vp(|Wol)
SL,(q) S, vp(g = 1) ke vp (k)
S, .
onl) i vl — 1)

Sp1n2n+1(q)
Ke vp(K!)
LA PO
- - pd" —¢
Sp1n2n(Q) € # 0 ) /ﬂ/’ﬂ + El ; Up( _ 1)
405, pln (r—1)e | u((x—1))
TABLE 6.2

For all i > 0, we have

e A

The first case follows from Lemma [[.T3 and the second case since m = ord,(q).
Using this, we check that v,(¢** — 1) = v,(¢* — 1) for all i whenever m is odd, and
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that
vp(q" —€) = e+vp(2n/m) if m|2n and € = (—1)2/m
P ~\o otherwise.

So in all cases, v,(|G|) = v,(|T]) +v,(|Wo|) by the above relations and the formulas
in Table Since Ng(T)/T = Wy by Lemma [53[(b), this proves that v,(|G|) =
vp(|Ng(T)]), and hence that Ng(T) contains a Sylow p-subgroup of G.

"ﬂi“’ = |7| = ordp(q) > 2 and [v,v4,] = Id by construction. Note, when G

is a spinor group, that these relations hold in G if and only if they hold in G..
Cs(21(A)) = A by Table[6.1l and since p { |H|.

Ca(Op (Wy)) = 1. By Table[6]] in all cases, there are r,t > 1 and 1 # s|(p—1)
such that A = (Cp:)", and Auty,;(A) = C 1%, acts on A by acting on and
permuting the cyclic factors. In particular, Autop,(WO)(A) contains a subgroup of
index at most 2 in (Cj)", this subgroup acts nontrivially on each of the cyclic factors
in A, and hence C4(Oy (Wy)) = 1.

A free (v)-orbit in 3. This can be defined as described in Table In each
case, we use the notation of Bourbaki [Brbl, pp. 250-258] for the roots of G. Thus,
for example, the roots of SL, are the *(g; —¢;) for 1 <1i < j < n, and the roots
of SOy, the ¢; = ;. Note that since S is assumed nonabelian, p| |[Wo|, and hence
n > pm in the linear case, and n > pu in the other cases.

G =1 0=-1
SLn(q) {ei —emyill<i<m}
Span(q) {261 <i<pu} {£2ei[1<i<p}
Sping,i1(a) | {eil1<i<p) {Fei]1<i<p}
Sping, () || fei — pri |1 < < p} | {Eei — ) |1 <0 < 1)
TABLE 6.3

Autyy, (A) N Autg.(A) < (v]a) if ord,(q) even or —Id ¢ Wy
° > | (7]a, ¢f1> otherwise.

Set K* = Autys (A)NAuts(A4) and K = Autyy, (A) NAuts.(A) for short. By Table
GBI |[K*| = mif G = SL,(q), and |K*| = 2 otherwise. Also, (y|a) = (1, ']4) has
order ord,(g). Thus K < K* = (vy|4) except when G is symplectic or orthogonal
and m = ord,(q) is odd. In this last case, K = K* (so |K| = 2u = 2m) if Wy
contains an element which inverts A (hence which inverts T and T); and |K* /K| = 2
(|[K| = m) otherwise.

Autg(A) = Auty,(A). Since A= 0,(T) = 0O,(T.) by Table[6]] it suffices to
prove this for G.. Fix g € Ng_(A). Since 9T, is a maximal torus in the algebraic
group Cg (A) (Proposition 25, there is b € Cz. (A) such that T, = 9T.. Set

a=b"lg € Ng (Te); thus ¢, = ¢4 € Aut(A). Set w = aT, € W = Ng (T¢)/Te;
thus w € Ny (A), and w|a = ¢gla.
By the descriptions in TableB.I], we can factor T, = T'; x T, where v and each

element of Ny (A) send each factor to itself, 'y|T2 =1d, A< T, and [Cw(A),T:] =
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1. Since o(g) = g, o(a) = a (mod Cz. (4)), and so 7(w) = w (mod Cw (A)). Thus
7'(w)|T1 = w|:—r1 since Cy(A) acts trivially on this factor, 7(w)]
7|T2 = 1d, and so w € Wy = Cyw (7).
Naut(a)(Auty, (A)) < Autsc(A)Autsu(a)(A). By Table [6.1] for some
rt>1, A= A; x---x A, where A; = C) for each i. Also, for some 1 # s|(p—1),
Autyyy (A) = C1%, acts on A via faithful actions of Cs on each A; and permutations
of the A;.

Let Aut?,vg (A) < Autw; (A) and Aut?,vo (A) < Autyw,(A) be the subgroups of

~

elements which normalize each cyclic subgroup A;. Thus Aut} : (A) = (Cy)", and

7, = w|:—r2 since

contains Auty, (A) with index at most 2.
Case 1: Assume first that Aut%,O (A) is characteristic in Auty, (A4). Fix some
@ € Npyg(a)(Autyy, (A)). We first show that o € Autyys (A)Auts(A).

Since o normalizes Autyy, (A4), it also normalizes Aut%,o (A). For each g €
Autyy, (A), [8, A] is a product of A;’s. Hence the factors A; are characterized as
the minimal nontrivial intersections of such [, A], and are permuted by «. So
after composing with an appropriate element of Autw,(A), we can assume that
a(A;) = A; for each i.

After composing « by an element of Auts.(A), we can assume that a4, = Id.
Fix i #1 (2 <4 <), let u € Z be such that a|a, = ¢} = (a + a*), and choose
w € Autyy, (A) such that w(A;) = A;. Then wlawa™ € Auty,(A) since «
normalizes Autyy, (A4), and (w™'awa™!) |A1 = . Hence u® = 1 (mod p! = |A4]),
and since this holds for each i, a € Auty; (A).

Thus Naug(a)(Autw, (A)) < Autyy (A)Auts(A). By Table BI1 each element

of Auty;(A) extends to some ¢ € Auty- (T') which commutes with olz So
Autys (A) < Autayg(e)(A) by Lemma 37 and this finishes the proof of the claim.
Case 2: Now assume that Aut%VO(A) is not characteristic in Autyy,(A). Then
r <4, and since p < r, we have p = 3 and r = 3,4. Also, s = 2 since s|(p — 1) and
s # 1. Thus r = 4, since Aut%,0 (A) = Oz(Autw, (A)) if r = 3. Thus Auty,(A) =
C3 x ¥4: the Weyl group of Dy. Also, m = 2 since p = 3, so (in the notation used
in the tables) p =1, 0 = —1, and k = n. By Table[6.Il G = SOs(q) for some ¢ = 2
(mod 3) (and Wy = W).

Now, O2(W) 2 Qg X ¢, Qs, and so Out(Oz(W)) = 331 C5. Under the action of
W/Oo(W) 22 X3, the elements of order 3 act on both central factors and those of or-
der 2 exchange the factors. (This is seen by computing their centralizers in O(W).)
It follows that Nout(o2(w))(OutW(OQ(W)))/Outw(OQ(W)) =~ Y3 = I'g, and all
classes in this quotient extend to graph automorphisms of G 2 Sping(q). So for
each o € Nyyg(a)(Auty (A)), after composing with a graph automorphism of G we
can arrange that a commutes with Oy(W), and in particular, normalizes Aut$, (A).
Hence by the same argument as used in Case 1, a € Auts(A)Autayye)(A).

This finishes the proof that this o-setup for G satisfies caseof Hypotheses
591! O

EXAMPLE 6.6. Fiz distinct odd primes p and qo, and a prime power q¢ = g
where b is even and ordy,q is even. Set G = Spiny, (q) for some k > 2. Let (G,0) be

the setup for G of Lemma [60], where o = 17y for v € Aut(G). In the notation of
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Table B0, m = ord,(q), p =m/2, 6 = —1 =¢, n =2k, and k = [2k/p] = [4k/m)].

There are three cases to consider:

(a) If ¢** = —1 (mod p); equivalently, if m|4k and k = 4k/m is odd, then ¢ = 6",
wy = 'y|Tr =T 0 tk(A) = &, and Wi =2 Cp, 1 2. Then W§ acts faithfully
on A while wg € WE~Wy, and so v|a ¢ Autw,(A). Hence by Proposition
bI6l(d), ke is split.

(b) If ¢** = 1 (mod p); equivalently, if m|dk and xk = 4k/m is even, then e #
0", ’y|TC = ‘r;}l, tk(A) = k — 1, and W§ = (Cpy 1 2—1) X H where H =
(C21%,). Then H acts trivially on A and contains elements in Wi~Wy, so
|4 € Autw, (A). Hence kg is not split.

(c) If ¢** # £1 (mod p); equivalently, if m { 4k, then in either case (k even or
odd), the factor H in the last column of Table is montrivial, acts trivially
on A, and contains elements in Wi~Wy. Hence y|a € Auty, (A) in this case,
and kg 1s not split.

We also need the following lemma, which handles the only case of a Chevalley
group of exceptional type which we must show satisfies case |(I11.3)| of Hypotheses
591!

LEMMA 6.7. Set p = 5, let ¢ be an odd prime power such that ¢ = +2 (mod
5), and set G = FEg(q). Then G has a o-setup which satisfies Hypotheses 511 (case

(IL3)).

PRrROOF. We use the notation in 2.2 where ¢ is a power of the odd prime g,
and G = Fg(F,,).

By [Brbl, Planche VII], the of roots of Eg can be given the following form,
where {e1,...,es} denotes the standard orthonormal basis of R5:

8
Zmi even} CR®.
i=1

By the same reference, the Weyl group W is the group of all automorphisms of R®
which permute ¥ (A(R) = W(R) in the notation of [Brb]). Give R® a complex
structure by setting icor—1 = €2r and ieor, = —ear—1, and set ] = egp—1 for
1 < k < 4. Multiplication by i permutes ¥, and hence is the action of an element
wg € W. Upon writing the elements of ¥ with complex coordinates, we get the
following equivalent subset £* C C*:

8
. 1 ma
1§z<]§8}u{§4§ (—1)™ig;

5= {iai te;

S — {(il +i)el

1<k< 4} U {z‘msz +inel

1<k<(<4, m,nEZ}

4
g mp even} .

1
{5 Y

Let ZY C R® be the lattice generated by ¥. By Lemma EZI(d) (and since
(o, ) = 2 for all a € %), we can identify T' = ZX @z Fy by sending hq(A) to a® A
for o € ¥ and \ € ]F‘qxo. Set Ay = ZX. N Z8, a lattice in R® of index 2 in ZY and in
Z8. The inclusions of lattices induce homomorphisms

T ~7Y ®y IF‘;O X Ay @y I_quo — X2 78 @y ]quo = (I_quo)s
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each of which is surjective with kernel of order 2 (since Tory(Z/2, IF‘(IXO) ~7/2). We

can thus identify T = (]1_?;0)8, modulo 2-power torsion, in a way so that
8 —
a= Zkisi EX,AEFS = ha(\) =\, 0.
Under this identification, by the formula in Lemma 2.4l[@),
8
(1) B=> lig;eS = Os(\,...,hs) = At AQ

for A1,...,Ag € ]1_?;0. Also,
wo(A1, -+, As) = (A7 L ALAT L Asy oo A5 A7)
for each (A1, ..., \s).
Choose go € Ng(T T) such that goT = wo and 1y, (g0) = go (Lemma Z), and
set v = ¢q, € Inn(G). Thus 0 = ¢g07 = vo iy, G = Cgz(0), and T = Cz(0).

By the Lang-Steinberg theorem [St3l Theorem 10.1], there is h € G such that
g = hpy(h™1); then o = cpabye;, and G = C(¥q) = Es(q). 1t remains to check

that the setup (G, o) satisfies the list of conditions in Hypotheses (1

We identify Wy = Cw (wp) with the group of C-linear automorphisms of C*
which permute ¥*. The order of Wy is computed in [Ca3l Table 11] (the entry
I' = Dy(a1)?), but since we need to know more about its structure, we describe it
more precisely here. Let W5 < GL4(C) be the group of monomial matrices with
nonzero entries +1 or +4, and with determinant +1. Then Wy < Wy, |[Ws| =

4% .41 = 210.3 and W5 acts on X* with three orbits corresponding to the three
subsets in the above description of ¥*. The (complex) reflection of order 2 in the
hyperplane orthogonal to 11 (] +e5+e5+¢}) sends (1+4)e] to 11 (e —e5—ef—e}),
and it sends (g7 + ie}) to ﬁ(z ey +ies —ef —e}). Thus Wy acts transitively on
DI

Let & C P(C*) be the set of projective points representing elements of *, and
let [a] € ¥ denote the class of & € ¥*. To simplify notation, we also write [x] = [
for z € C* representing the same point, also when = ¢ ¥*. Let ~ denote the relation
on X: [a] ~ [8]if @ = B, or if a L B and the projective line ([a],[8]) C P(C?)
contains four other points in ¥. By inspection, [e5] ~ [ex] for all j, k € {1,2,3,4},
and these are the only elements [a] such that [a] ~ [¢] for some j. Since this
relation is preserved by Wy, and Wy acts transitively on ¥, we see that ~ is an
equivalence relation on X with 15 classes of four elements each. Set A = ¥ /~, and
let [a]a denote the class of [a] in A. Thus |Z| = 12| = 60 and |A| = 15. Since W5
is the stabilizer subgroup of [e]]a under the transitive Wy-action on A, we have
[Wo| = [Wa| - 15 =210.32.5.

Let W7 < Wy be the subgroup of elements which act trivially on A. By
inspection, Wy < Wy, |[Wi| = 26 and W; is generated by wo = diag(i,i,4,1),
diag(1,1,—1,-1), diag(1,—1,1,—1), and the permutation matrices for the permu-
tations (12)(34) and (13)(24). Thus Wy = Cy x¢, Ds x ¢, Ds.

By the above computations, W /Wi | = 24-32.5 = |Sp,(2)|. There is a bijection
from A to the set of maximal isotropic subspaces in Wy /Z (W7 ) which sends a class

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6. THE CROSS CHARACTERISTIC CASE: II 89

[a]a to the subgroup of those elements in W which send each of the four projective
points in [a]a to itself. Hence for each w € Cy,(W7), w acts via the identity on
A, and so w € Wy by definition. Thus Wy /W, injects into Out(W7) = g x Cs,
and injects into the first factor since Z(W1) = Z(Wy) (= Cy4). So by counting,
WQ/W1 = 26- AISO, W1 = OQ(WQ)

Set a = v5(q* — 1) = v5(¢> + 1), and fix u € I_F;D of order 5%. Let A be as in
Notation B.2[G): the subgroup of elements in T of 5-power order. Thus

(2) A= {(ulau§7u27ug7u3augau4au3) |ulau27u37u4 S <u>} = (05‘1)4 .

By @) and (), there is no 8 € ¥ such that A < Ker(fs). Hence Cz(A4)° =T by
Proposition So by Lemma [E3(b),

(3) Ng(A) = Ng(T) and Ne(T)/T =Wy.

We are now ready to check the conditions in Case of Hypotheses 511
Ng(T) contains a Sylow p-subgroup of G. Let S be a Sylow p-subgroup
of Ng(T) which contains A. Since Ng(T)/T = Wy by @), A = (Cs.)*, and
Wo/02(Wy) =2 3, |S| = 5%FL. By [St2l Theorem 25] or [Cal, Corollary 10.2.4 &
Proposition 10.2.5], and since vs(¢* — 1) = 0 when 4 { k and vs(¢* — 1) = a +v5(¢)

(Lemma [TT3]),
os(1G)) = vs((¢** = 1)(¢* = 1)(¢"* = 1)(¢* — 1)) =4a+1.

Thus S € Syl,(G).

"7|,P| = ordy(q) > 2 and [v,%4,] = Id. The first is clear, and the second
holds since v = ¢,4, where ¥4,(g0) = go-

Cs(221(A)) = A by the above description of the action of Wy on A.
CA(OP'(WO)) =1 since wg € 05/(W0) and CA(wo) =1.

A free (v)-orbit in 3.  The subset {£(e1 + €3), (2 + e4)} C ¥ is a free
(7y)-orbit.

Autw,(A) N Autsc(A) < (v|a). Recall that ”y|:—r‘ =4 and |Auty.(A4)| = 4-5*
for some k, and Wy acts faithfully on A. So if this is not true, then there is an
element of order 5 in Z(Wj), which is impossible by the above description of Wj.
Autg(A) = Autw,(A) by @).

NAut(A) (AutWo (A)) < Autsc(A)AutWO (A). For j =1,2,3,4, let Aj < A be
the cyclic subgroup of all elements as in ([2]) where uy, = 1 for k # j. The group Wy
contains as subgroup C3 ¢ ¥4: the group which permutes pairs of coordinates up to
sign. So each of the four subgroups A; is the reflection subgroup of some reflection
in Wo.

For each ¢ € Cpyga)(Autw,(4)), ¢(A4;) = A; for each j, and p(a) = a™
for some n; € (Z/5%)*. Also, ny = ny = n3 = ny4 since the A; are permuted
transitively by elements of Wy, and hence ¢ € Auty.(A).

Now assume ¢ € Nayuga)(Autw,(A)). Since ¢ centralizes Z(W1) = (wo) =
(diag(i,4,1,1)) (since diag(i,s,i,i1) € Z(Aut(A))), cylw, € Inn(Wi), and we can
assume (after composing by an appropriate element of W) that [, W1] = 1. So
¢, € Aut(WWy) has the form c,(g) = gx(g), where g € Wy/W; = Xg is the class
of g € Wy, and where x € Hom(Wy/W1, Z(W1)) = Hom(Xg, Cy) = Cy is some
homomorphism. Since (wp)? inverts the torus T', composition with (wg)? does
not send reflections (in A) to reflections, and so we must have ¢, = Idw,. Thus
@ € Caup(a)(Auty, (A)) = Auts.(A) (modulo Autyy, (A)). O
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The following lemma now reduces the proof of Theorem [Bl to the cases con-
sidered in Chapter Bl together with certain small cases handled at the end of this
chapter. As before, when p is a prime and p { n, ord,(n) denotes the multiplicative
order of n in F.

PROPOSITION 6.8. Fiz an odd prime p, and assume G € Lie(qo) is of universal
type for some prime qo # p. Fir S € Syl,(G), and assume S is nonabelian. Then
there is a prime q; # p, a group G* € £ie(qg) of universal type, and S* € Syl,(G*),
such that Fs(G) = Fs-(G*), and one of the following holds: either
(a) G* has a o-setup which satisfies Hypotheses Bl and BI1, G* = G(q*) or

2G(q*) where ¢* is a power of ¢, and

(a.1) —Id ¢ W and G* is a Chevalley group, or
(a.2) —Id € W and ord,(g*) is even
where W is the Weyl group of G;  or

(b) p=3, ¢4 =2, G=3Dy(q) or?Fy(q) for ¢ some power of qo, and G* = 3Dy(q*)
or 2Fy(q*) for q¢* some power of 2.
Moreover, if p = 3 and G* = Fy4(q*) where ¢* is a power of ¢, then we can assume

g5 = 2. In all cases, we can choose G* to be either one of the groups listed in
Proposition [LI0(a—e), or one of E;(q¢*) or Es(q*) for some ¢* = —1 (mod p).

PROOF. We can assume that G = G(q) is one of the groups listed in one of
the five cases (a)—(e) of Proposition [[T0l In all cases except [[I0(c), we can also
assume that G satisfies Hypotheses[5.11] with gy = 2 if p = 3 and G = F}, and with
o odd in cases (a) and (b) of [LI0L If G = SL,(q) or Spiny,, (q) where p|(q — 1), or
G is in case (d), then G satisfies Hypotheses [ by Lemma If G = SL,(q) or
Spinétn(q) where p { (¢ — 1), then G satisfies Hypotheses [5.1] by Lemma This
leaves only case (c) in Proposition [[.T0] which corresponds to case (b) here, and
case (e) (p =5, G = Es(q), ¢ = 2 (mod 5)) where G* satisfies Hypotheses 5] by
Lemma

We next show, in cases (a,b,d,e) of Proposition [[.I0, that we can arrange for
one of the conditions (a.l) or (a.2) to hold. If —Id ¢ W, then G = A,,, D,, for
n odd, or Fg, and G is a Chevalley group by the assumptions in cases (a,b,d) of
Proposition [LT0l So (a.1) holds. If —Id € W and ord,(q) is even, then (a.2) holds.
If —Id € W, ord,(q) is odd, and G = G(q) is a Chevalley group, then by Theorem
L8(c), G ~, G(g*) for some ¢* = g such that (¢*) = ( — ¢), and ord,(¢*) is even.
So we can replace G by G(¢*) in this last case, and (a.2) holds.

This leaves the case where —Id € W, ord,(¢) is odd, and G is not a Chevalley
group. By inspection, the first and third conditions both hold only when G =
2D,,(q) for n even. So we are in the situation of Proposition [LI0(b), where we also
assume ¢" = —1 (mod p). But then ord,(q) is even, so this case cannot occur. O

We now consider the two families of groups which appear in Proposition [G.8|(b):
those not covered by Hypotheses B.11

PROPOSITION 6.9. Let G be one of the groups *D4(q) where q is a prime power
prime to 3, 2Fy(22™FY) for m > 0, or 2Fy(2)'. Then the 3-fusion system of G is
tame. If G =2 3D4(2") (n > 1), 2F4(22™ %) (m > 0), or 2F4(2), then kg is split
surjective, and Ker(kg) is the subgroup of field automorphisms of order prime to 3.

ProOOF. Fix S € Syl;(G), and set F = Fs(G).
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If G is the Tits group 2F(2)’, then S is extraspecial of order 3% and exponent
3, so Out(S) = GLy(3). Also, Outg(S) = Dg and Outayuye)(S) = SDig, since
the normalizer in 2Fy(2) of an element of order 3 (the element t4 in [Sh]) has
the form SU3(2) : 2 = 3};"2 : 8Dy by [Shl Table IV] or [Mall Proposition 1.2].
Hence Out(F) < Nouy(s)(Outg(S))/Oute(S) has order at most 2, and i sends
Out(G) = Oy ([GrLL Theorem 2]) isomorphically to Out(F). If G = 2F,(2), then
Outg(S) 22 SDsg, so Out(F) = 1 by a similar argument, and k¢ is an isomorphism
between trivial groups.

Assume now that G =2 2F;(2") for odd n > 3 or G = 3Dy4(q) where 3 { q. In
order to describe the Sylow 3-subgroups of these groups, set ¢ = e?™/3, R = Z[¢],
and p = (1—¢)R. Let Sy, be the semidirect product R/p* x Cs3, where the quotient
acts via multiplication by (. Explicitly, set

Sp={(z,i)|z e R/p*, icZ/3} and  Ap = R/p* x {0},

where (z,i)(y,7) = (z + C'y,i + 7). Thus |Sx| = 3k Set s = (0,1), so that
s(z,0)s™! = (¢x,0) for each z € R/p".

Assume k > 3, so that Ay is the unique abelian subgroup of index three in
Sk. Set S = S and A = A for short. We want to describe Out(S). Define
automorphisms &, (a € (R/p*)*), w, n, and p by setting

(4) fa(.’L‘,i) = (a:a,i), n=~E&1, w(a:,i) = (_537 _i)7 p(.’[:,i) = (‘T + A(Z)J)

Here, © +— T means complex conjugation, and A(i) = 1+ ¢ + ...+ ¢*~!. Note,
when checking that p is an automorphism, that A(i) + ¢*A(j) = A(i +j). Note that
p3 € Inn(9): it is (left) conjugation by (1 — ¢2,0).

Let Aut’(S) < Aut(S) be the subgroup of automorphisms which induce the
identity on S/[S, S] = S/[s, A], and set Out®(S) = Aut"(S)/Inn(S). Each element
in s-[s, A] is conjugate to s, and thus each class in Out®(S) is represented by an
automorphism which sends s to itself, which is unique modulo {(c;). If ¢ € Aut(S)
and p(s) = s, then ¢|4 commutes with ¢, thus is R-linear under the identification
A= R/pk, and hence ¢ = &, for some a € 1+ p/p¥. Moreover, since

(L+p/p") = (L+p?/p")* x (¢) = (L+3R/p*)* x (¢)

as multiplicative groups (just compare orders, noting that the groups on the right
have trivial intersection), each class in OutO(S ) is represented by &, for some unique
a €1+ 3R/pr.

Since the images of 7, w, and p generate Aut(S)/Aut’(S) (the group of au-
tomorphisms of S/[s, A] =& C2 which normalize A/[s, A] & Cj3), this shows that
Out(S) is generated by the classes of the automorphisms in ({l). In fact, a straight-
forward check of the relations among them shows that

Out(S) = (OutO(S) . cg) x Sy where Out’(S) = {[&]|a € (1+3R/p")*}.
(] (o], [n]
Also, wéw™t =& for a € (1+3R/pF)*.
For each x € 1+ 3R such that = z (mod p¥), we can write x = r + s¢ with
r,s € Z, and then s(¢ — () € p¥, s0 s € p*~1 and z € r + s+ p¥ C 1+ 3Z + p*.
This proves that

Cout(s)(w) = {[&a] | a € Z} x ([w]) x {[p], [n])-

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



92 6. THE CROSS CHARACTERISTIC CASE: II

For any group G with S € Syl;(G) and S = Sk, Outg(S) has order prime to
3, and hence is a 2-group and conjugate to a subgroup of (w,n) € Syly(Out(S)). If
|Out ()| = 4, then we can identify S with S, in a way so that Out(S) = {[w], [n]).

Then
Out(F) < Nou(s) (([w], [11)) /(] [n])
= Cours) (([w], 1)) /{[w], [n]) = {[&] | a € 2} = ([&2])
where the first equality holds since O3(Out(S)) has index four in Out(S).

We are now ready to look at the individual groups. Assume G = 2Fy(q), where
g =2"and n > 3 is odd. By [St1l 3.2-3.6], Out(G) is cyclic of order n, generated
by the field automorphism 5. By the main theorem in [Mall, there is a subgroup
N (Ts) = (Cyi1)? x GL2(3), the normalizer of a maximal torus, which contains
a Sylow 3-subgroup. Hence if we set k = v3(¢ + 1) = v3(4" — 1) = 1 + v3(n)
(Lemma [LI3), we have S = Sy, = (Csx)? x C3, and Outg(S) = (w,n) up to
conjugacy. So Out(F) is cyclic, generated by & = kg(th2). Since A = (Cyr)?,
and since £_; € Outg(S), |Out(F)| = |[&]] = 3F~! where k — 1 = v3(n). Thus
K¢ is surjective, and is split since the Sylow 3-subgroup of Out(G) = C,, is sent
isomorphically to Out(F).

Next assume G = 3Dy4(q), where ¢ = 2" for n > 1. By [St1] 3.2-3.6], Out(G)
is cyclic of order 3n, generated by the field automorphism 5 (and where the field
automorphism 1,n of order three is also a graph automorphism). Set k = v3(¢* —
1) = v3(22" — 1) = 1 + v3(n) (Lemma [LT3). Then S = Soj1: this follows from
the description of the Sylow structure in G in [GLl 10-1(4)], and also from the
description (based on [KI|) of its fusion system in [O4] Theorem 2.8] (case (a.ii)
of the theorem). Also, Outg(S) = (w,n) up to conjugacy. So Out(F) is cyclic,
generated by & = kg(12). Since A = O3 X Cgit1, and since €1 € Outg(S),
|Out(F)| = |[¢&]| = 3k. Thus kg is surjective, and is split since the Sylow 3-
subgroup of Out(G) = Cj,, is sent isomorphically to Out(F).

By Theorem [[8(b) and Lemma [[L1Tl(a), for each prime power ¢ with 3 1 ¢,
the 3-fusion system of 3D4(q) is isomorphic to that of 3D4(2") for some n. By
[O1] Theorem C], u¢ is injective in all cases. Thus the 3-fusion systems of all of
these groups are tame. (Il
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APPENDIX A

Injectivity of uq
by Bob Oliver

Recall that for any finite group G and any S € Syl,(G),
pe: Out(LE(G)) ———— Out(Fs(G))

is the homomorphism which sends the class of 8 € Aut(L%(G)) to the class of
Bsl|s, where (g is the induced automorphism of Aut e (@) (S) = Ng(5)/O0p (Ca(9)).
We need to develop tools for computing Ker(ue), taking as starting point [AOV]
Proposition 4.2].

As usual, for a finite group G and a prime p, a proper subgroup H < G is
strongly p-embedded in G if p|\H|, and pt |H N9H| for g € GNH. The following
properties of groups with strongly embedded subgroups will be needed.

LEMMA A.1. Fiz a prime p and a finite group G.
(a) If G contains a strongly p-embedded subgroup, then O,(G) = 1.

(b) If H < G is strongly p-embedded, and K < G is a normal subgroup of order
prime to p such that KH < G, then HK/K is strongly p-embedded in G/K.

PRrROOF. (a) See, e.g., JAKO] Proposition A.7(c)].
(b) Assume otherwise. Thus there is ¢ € GNHK such that p||(|HK/K) N
(HK/K)|, and hence z € YHK N HK of order p. Then H N K{(x) and H N K(z)
have order a multiple of p, so there are elements y € H and z € 9H of order p such
that y =« = 2 (mod K).

Since (y), (z) € Syl,(K(x)), there is k € K such that (y) = *(z). Then y €
HN*H, and kg ¢ H since k € K and g ¢ HK. But this is impossible, since H is
strongly p-embedded. O

For the sake of possible future applications, we state the next proposition in
terms of abstract fusion and linking systems. We refer to [AOV], and also to
Chapters 1.2 and II1.4 in [AKOQO], for the basic definitions. Recall that if F is a
fusion system over a finite p-group S, and P < S, then

o Pis F-centric if Cs(Q) < Q for each @ which is F-conjugate to P;

e P is fully normalized in F if |Ng(P)| > |[Ns(Q)| whenever @ is F-conjugate to
P; and

e P is F-essential if P < S, P is F-centric and fully normalized in F, and if
Out z(P) contains a strongly p-embedded subgroup.

93
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For any saturated fusion system F over a finite p-group 5, set

Z(F) = {E < S| E elementary abelian, fully normalized in F,
E =01(Z(Cs(E))), Autz(E) has a strongly p-embedded subgroup} .

The following proposition is our main tool for proving that u, is injective in certain
cases. Point (a) will be used to handle the groups Spinf (¢), point (c) the linear
and symplectic groups, and point (b) the exceptional Chevalley groups.

PROPOSITION A.2. Fiz a saturated fusion system F over a p-group S and an
associated centric linking system L. Let Ey,...,E, € 2(]—') be such that each
E c 2(]—') is F-conjugate to E; for some unique i. For each i, set P; = Cs(E;)
and Z; = Z(P;). Then the following hold.

(a) If k=0 (Z(F) = @), then Ker(pz) = 1.
(b) If k=1, E1 <5, and Autz(Q21(Z(95))) =1, then Ker(uz) = 1.

(c) Assume, for each (g;)¥_, € Hle Cz,(Autg(F;)), that there is an element g €
Cz(s)(Autz(S)) such that g; € g- Cz,(Autz(P;)) for eachi. Then Ker(uc) =
1.

(d) If o € Aut(L) is the identity on Aut,(S), and on Autg(P;) for each 1 <i <k,
then o = Id.

PROOF. We first prove point (d). The other three points then follow quickly
from that together with [AOV] Proposition 4.2].

We will need to refer a few times to the extension aziom for fusion systems,
as stated, e.g., in [AKO| Proposition 1.2.5]. As one special case, this says that
for P < S and PCg(P) < Q < Ng(P), each automorphism in Ny, (p)(Autg(P))
extends to one in Autz(Q) (a consequence of the Sylow theorems when F = Fg(G)
for S € Syl (G)).

(d) Fix a € Aut(L£) such that ag = Idau,(s). By [AOV] Proposition 4.2],
there are elements gp € Cz(p)(Auts(P)), defined for each P € Ob(L) which is
fully normalized, such that

(i)  ap € Aut(Auts(P)) is conjugation by [gp] p; and

(i) ap=1Idif and only if gp € Cz(py(Autz(P)).
Note that if we are in an abstract linking system, [gp]p € Aut.(P) should be
replaced by dp(gp). Furthermore, for each such P and each ¢ € Aut.(P),

(1) ap(¥)=v <<= 7w¥)(9p) =gp,

where m: L —— F denotes the canonical functor (so 7([g]) = ¢, if £ = LG(G)
and F = Fs(@)). By (i) above, ap(tp) = 9 if and only if ¢ commutes with [gp]p
in Autz(P), and this is equivalent to 7(¢)(gp) = gp by axiom (C) in the definition
of a linking system (see, e.g., [AKOl Definition 111.4.1]) and since (g — [g¢]p)
is injective. We leave it as an easy exercise to check this when £ = £§(G) and
1 = [h] p for some h € Ng(P) (note that [h,gp] € Z(P) since gp € Z(P)).

Now assume ap, is the identity on Aut.z(F;) for each 1 < i < k. If a # Idg,
then by Alperin’s fusion theorem for linking systems (see [AOV| Theorem 4.1]),
there is @ < S such that ag # Id, while « is the identity on Mor, (P, P*) for
all P,P* € Ob(L) such that |P|,|P*| > |Q|. Also, for each Q* € @7, there
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is (by Alperin’s fusion theorem again) an isomorphism x € Iso,(Q,Q*) which is
a composite of isomorphisms each of which extends to an isomorphism between
strictly larger subgroups, and hence is such that a(yx) = x. Thus

(2) Q e’ = ag- #1d.

Set E = Q1(Z(Q)). Let ¢ € Homz(Ng(E),S) be such that ¢(E) is fully
normalized (cf. [AKO] Lemma 1.2.6(c)]). Then Ng(Q) < Ng(FE), so [Ns(¢(Q))| >
|INs(Q)], and ¢(Q) is fully normalized since @ is. Since ag- # Id by (@), we can
replace @Q by Q* and E by E*, and arrange that () and E are both fully normalized
in F (and @ is still F-essential).

We will show that Q = Cs(E) and E € Z(F). Then E € (E;)” for some
unique 1 < i < k, and Q € (P;)” by the extension axiom (and since E and E;
are both fully centralized). But then ap, # Id by (), contradicting the original

assumption about o. We conclude that o = Id, finishing the proof of (d).
Set I' = Aut #(Q), and set

Lo =Cr(E) ={p € Autr(Q)|p|p =1dg} <T
Ii=(pel ‘ ¢ = @|q for some ¢ € Homz(R,S), R> Q).

Then Autg(Q) < T'y, since each element of Autg(Q) extends to Ng(Q) and Ng(Q) >
Q (see [Szll, Theorem 2.1.6]). Hence

Tol'y = 07(Ty) - Auts(Q) - Ty = OP(To)T .

For each ¢ € TI'g of order prime to p, ¢|zq) = Idyzg) since ¢ is the identity
on E = M(Z(Q)) (cf. |G, Theorem 5.2.4]). Thus gq € Cz(q)(OP(I'0)). If p €
Aut £(Q) extends to p € Homx (R, S) for some R > @, then by the maximality of Q,
a(z_b) = ¢ for each 1 € Mor, (R, S) such that 7r(171) = ¢, and since a commutes with
restriction (it sends inclusions to themselves), aq is the identity on 4|, o € ﬂél ().
So by @), ¢(90) = 9g- Thus ¢(g9q) = gg for all ¢ € T'1. Since ag # Id by
assumption, there is some ¢ € Autz(Q) such that ¢(g9g) # go (by (1) again), and
we conclude that

(3) gqQ € CZ(Q) (Forl) and I'opI't < T'= Aut].-(Q) .

Set Q* = NCS(E)(Q) > @. Then Ath*(Q) = T N Autg(Q) € Sylp(I‘o)
since Auts(Q) € Syl,(I'), and by the Frattini argument, I' = Nr(Autg-(Q))lo.
If @* > @Q, then for each ¢ € Np(Autg-(Q)), ¢ extends to p € Autz(Q*) by the
extension axiom. Thus Nr(Autg+(Q)) < I'y in this case, so I' = I'1T'y, contradicting
@B). We conclude that Q" = N¢g(g)(Q) = @, and hence that Cs(E) = Q (cf.
[Sz1l Theorem 2.1.6]).

The homomorphism I' = Autz(Q) —— Autz(F) induced by restriction is
surjective by the extension axiom, so Autz(E) = I'/Ty. By [AKOL Proposition
1.3.3(b)], T'1 /Inn(Q) is strongly p-embedded in I'/Inn(Q) = Outx(Q); and T'yI'; <
T by @). Also, p{ |To/Inn(Q)|, since otherwise we would have I'y > Np(T) for
some T' € Syl,(I'g), in which case I'i\I'g > Np(T')['g = T' by the Frattini argument.
Thus I'1T /T is strongly p-embedded in I'/Ty & Autz(F) by Lemma [ATKDb).

Now, 1 (Z(Cs(E))) = 01(Z(Q)) = E, and thus E € £(F). We already showed
that this implies (d).

(c) Now assume that the hypothesis in (c) holds, and fix [o] € Ker(uz). By
[AOV], Proposition 4.2], there is o € Aut(L£) in the class [a] such that ag = Id. For
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each 1 <i <k, let gp, € Cz(p,)(Auts(F;)) be as in the proof of (d). By assumption,
there is g € Cz(s)(Autx(9)) such that gp, = g (mod Cyz(p,)(Autz(F;))) for each i.
Let 8 € Aut(L) be conjugation by [¢]s € Autg(L) and its restrictions (or by
ds(g) if £ is an abstract linking system). Upon replacing a by 87! o & and hence
gp, by g~ 'gp, for each i, we can arrange that gp, € Cz(p,)(Autz(P;)) for each i,
and hence by (ii) that ap, = Id for each i. Then oo = Id by (d), so [@] = 1. Thus
Ker(uz) = 1, proving (c).
(a) This is a special case of (c).
(b) If k=1, By <8, and Autz(Q1(Z(5))) = 1, then the group Outz(S) of
order prime to p acts trivially on ©(Z(S5)), and hence acts trivially on Z(S) (cf.
[GL Theorem 5.2.4]). Also, P, = Cs(Ey) < S, so Cgz, (Auts(Py)) = Z(5) =
Cz(s)(Aut£(S)), and Ker(uz) = 1 by (c). O

A.1. Classical groups of Lie type in odd characteristic

Throughout this section, we fix an odd prime power ¢ and an integer n > 1.
We want to show Ker(ug) = 1 when G is one of the quasisimple classical groups
of universal type over F,. By Theorem [[.8(d), we need not consider the unitary
groups.

PrOPOSITION A.3. Fiz an odd prime power q. Let G be isomorphic to one
of the quasisimple groups SLy(q), Sp,(q) (n = 2m), or Spini(q) (n > 3). Then
Ker(ug) = 1.

PrOOF. Let V, b, and G = Aut(V,b) be such that G = [@,@] if G = Sp,(q)
or G = SL,(q), and G/{z) = [G,G] for some z € Z(G) if G = Spint(g) (where
z € Z(G)). Thus V is a vector space of dimension n over the field K = F,, b is a
trivial, symplectic, or quadratic form, and G is one of the groups GL,(q), Sps,(q),
or OF(q).

Fix S € Syl,(G), and set F = Fs(G). Set Z = Z(F) for short.

Case 1: Assume G = Spin(V, b), where b is nondegenerate and symmetric. Set
Z = Z(G), and let z € Z be such that G/{z) = Q(V,b). We claim that Z—=@in
this case, and hence that Ker(ug) = 1 by Proposition [A2(a).

Fix an elementary abelian 2-subgroup E < G where £ > Z. Let V = @;11 Vi
be the decomposition as a sum of eigenspaces for the action of F on V. Fix
indices j,k € {l,...,m} such that either dim(V;) > 2, or the subspaces have
the same discriminant (modulo squares). (Since dim(V) > 3, this can always be
done.) Then there is an involution v € SO(V,b) such that v(V;) = V; for all
i, ylv, = Id for i # j,k, det(v|v;) = det(y]y;,) = —1, and such that the (—1)-
eigenspace of v has discriminant a square. This last condition ensures that v €
Q(V,b) (cf. [LOL Lemma A.4(a)]), so we can lift it to g € G. Then for each x € E,
¢q(z) = x if = has the same eigenvalues on V; and Vi, and c¢4(z) = zx otherwise
(see, e.g., [LOL Lemma A.4(c)]). Since z is fixed by all elements of Autz(FE),
cg € O2(Autr(FE)), and hence Autz(E) has no strongly 2-embedded subgroups by
Lemma [A1{(a). Thus E ¢ Z.

Case 2: Now assume G is linear or symplectic, and fix S € Syl,(G). For each
V ={V,...,V;} such that V = EBLI Vi, and such that V; L Vj for i # j if G is
symplectic, set

E(V)={p€G|e¢ly, ==+Id for each i}.
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We claim that each subgroup in Z has this form. To see this, fix E € 2,
and let V = {V1,..., V4 } be the eigenspaces for the nonzero characters of E. Then
E<EWV),V= @le V;, and this is an orthogonal decomposition if G is symplectic.
Also, Cz(FE) is the product of the groups Aut(V;,bly;). Since £ = Q(Z(P))
where P = Cg(E), E contains the 2-torsion in the center of Cg(E), and thus
E = E(V). Furthermore, the action of P on each V; must be irreducible (otherwise
N (Z(P)) > E), so dim(V;) is a power of 2 for each i.

Again assume E = E(V) € Z for some V. Then Autz(FE) is a product of
symmetric groups: if V contains n; subspaces of dimension i for each ¢ > 1, then
Autz(E(V)) 2 [[;51 En,. Each such permutation can be realized by a self map of
determinant one (if G is linear), so Autg(E) = Auts(E). Since Autg(E) contains

a strongly 2-embedded subgroup by definition of z (and since a direct product
of groups of even order contains no strongly 2-embedded subgroup), Autg(E) =

Write n = dim(V) = 2k 42k - 4 2Fm where 0 < kg < k1 < -+ < kp.
There is an (orthogonal) decomposition V' = @;10 Vi, where S acts irreducibly on
each V;, and where dim(V;) = 2% (see [CF, Theorem 1]). For each 1 < i < m,
fix an (orthogonal) decomposition W; of V; whose components have dimensions
ki1 ki1 gki—atl  oki—l and set

Vi=A{Vjlj#ifuw;

and F; = E(V;). Thus V; contains exactly three subspaces of dimension oki-1,
and the dimensions of the other subspaces are distinct. Hence Autg(E;) & Xg,
and E; € Z. Conversely, by the above analysis (and since the conjugacy class of
E € Z is determined by the dimensions of its eigenspaces), each subgroup in Zis
G-conjugate to one of the F;.

For each 1 < i <m, set P, = Cs(E;) and Z; = Z(F;) (so E; = Q1(Z;)). Since
each element of Ng(P;) < Ng(FE;) permutes members of V; of equal dimension,
and the elements of Ng(P;) do so only within each of the V;, we have

(4)
Z7{26G|2\X:)\ IdeorallXEVZ,some)\ € Oq(F )}

CZ (Auts {ZGZ ‘)\ Xf}
Oz (Autg(P)) = {2 € Z; | A = 2§ = Ay},

where X;, X/, and V;_; are the three members of the decomposition V; of dimension
2ki—1 (and X“XZ ewW;).

Fix (g;)™, € [1%, Cz (Auts(P;)). Then g; € Cz (Aute(P;)) if and only if
/\%1)1 = /\g? ) G ;-1d for each i, where the n; € O2(F))
are chosen so that 7;/n;—1 = )‘g?;)/)‘%i,)l for each 1 < ¢ < m. If GG is linear, then

det(g) = 62" for some 6 € Oy (Fy), and upon replacing g by g o 92" /r1d,, (recall
ko = v2(n)) we can assume g € G. Then g € Cy(g)(Autg(S)) since it is a multiple
of the identity on each V; and has 2-power order. By construction and (), g = g;
(mod Cz, (Autg(F;))) for each i; so Ker(ug) = 1 by Proposition [AZ2(c). O
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A.2. Exceptional groups of Lie type in odd characteristic

Throughout this section, gg is an odd prime, and ¢ is a power of gy. We show
that Ker(ug) = 1 when G is one of the groups Ga(q), Fu(q), Es(q), E7(q), or Es(q)
and is of universal type.

The following proposition is a special case of [GLS3, Theorem 2.1.5], and is
stated and proven explicitly in [O2] Proposition 8.5]. It describes, in many cases,
the relationship between conjugacy classes and normalizers in a connected algebraic
group and those in the subgroup fixed by a Steinberg endomorphism.

PROPOSITION A.4. Let G be a connected algebraic group over IF‘qO, let o be a
Steinberg endomorphism of G, and set G = C’é(a). Let H < G be any subgroup,
and let H be the set of G-conjugacy classes of subgroups C_?—conjugate to H. Let

Ng(H) act on mo(Cg(H)) by sending g to xgo(z)~t (forz € Ng(H)). Then there

is a bijection

w: H ——— mo(Cg(H))/Ng(H),
defined by setting w([*H]) = [z~ o(z)] whenever *H < Cg(o). Also, for each
z € G such that *“H < G, Autg(*H) is isomorphic to the stabilizer of [z~ o (x)] €
mo(Cg(H))/Cx(H) under the action of Autg(H) on this set.

Since we always assume G is of universal type in this section, the group G =
Cg(0) of Proposition [A] is equal to the group G = 0% (Cg(0)) of Definition 2.1]
and Notation

The following definitions will be useful when applying Proposition [A.4l For
any finite group G, set

SEG)={H <G | H has a strongly 2-embedded subgroup }
5(G) = min{[G : H] ] H e S€(G)} it SE(G) # @
RS if SE(G) = @.
Thus by Proposition A4 if H < G is such that ITo(Cg(H))| > 6(Outy(H)),
then no subgroup H* < Cé(a) which is a—conjugate to H has the property that

Autcc_;([,)(H *) has a strongly 2-embedded subgroup. The next lemma provides
some tools for finding lower bounds for §(G).

LEMMA A.5. (a) For any finite group G, §(G) > |02(G)|- 6(G/O2(G)).
(b) If G = Gy x Gy is finite, and 6(G;) < 0o for i =1,2, then
5(G) = min{8(G1) - n(Ga) . 8(Ga) - n(Gh)}
where n(G;) is the smallest index of any odd order subgroup of G;.
(¢) If 5(G) < o0, and there is a faithful F2[G]-module V' of rank n, then
9v2(IG)=[n/2] | 5(G).

(d) More concretely, §(GL3(2)) = 28, 6(GL4(2)) = 112, §(GL5(2)) = 28 -7 - 31,
and §(SOF(2)) = 2 = §(S0; (2)). Also, 2* < §(SOF(2)) < o and 28 <
5(507(2)) < .
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Proor. (a) If H € SE(G), then H N O2(G) = 1 by Lemma [A|(a). Hence
there is a subgroup H* < G/O2(G) isomorphic to H, and

(G H] = |02(G)] - [G/02(G) : H] = [02(G)] - 6(G/0:(G)) -

(b) If a finite group H has a strongly 2-embedded subgroup, then so does its direct
product with any odd order group. Hence §(G) < 6(G;)n(G3—;) for i = 1,2.

Assume H < G has a strongly 2-embedded subgroup K < H. Set H; = HNG;
for 4 = 1,2. Since all involutions in H are H-conjugate (see [Sz2| 6.4.4]), H; and
H, cannot both have even order. Assume |Hs| is odd. Let pr; be projection onto
the first factor. If pry(K) = pry(H), then there is € (H~K) N Hy, and this
commutes with all Sylow 2-subgroups of H since they lie in 1, contradicting the
assumption that K is strongly 2-embedded in H. Thus pr;(K) < pr;(H). Then
pry(H) has a strongly 2-embedded subgroup by Lemma [AJlb), and hence

(G H] =[G :pry(H)] - [G2: Ha] > 6(G1) -n(Ga).

So §(G) > 6(Gi)n(Gs—;) for i =1 or 2.

(c) This follows from [OV] Lemma 1.7(a)]: if H < G has a strongly 2-embedded
subgroup, T € Syl,(H), and |T| = 2*, then dim(V') > 2k.

(d) The formulas for §(SOT (2)) hold since SO (2) = £31Cy contains a subgroup
isomorphic to C% x Cy and SO (2) = Y5 a subgroup isomorphic to As. Since
4|16(GL3(2)) by (c), and since 7|6(GL3(2)) (there are no subgroups of order 14 or
42), we have 28|6(GL3(2)), with equality since 33 has index 28. The last two (very
coarse) estimates follow from (c), and the 6- and 7-dimensional representations of
these groups.

Fix n = 4,5, and set G,, = GL,,(2). Assume H < G,, has a strongly embedded
subgroup, where 7||H| or 31||H|. By (c), 2*|6(G4) and 28|6(G5), and thus 8  |[H|. If
H is almost simple, then H 2 A5 by Bender’s theorem (see [Sz2, Theorem 6.4.2]),
contradicting the assumption about |H|. So by the main theorem in [AI], H must
be contained in a member of one of the classes C; (1 < ¢ < 8) defined in that paper.
One quickly checks that since (731, |H|) # 1, H is contained in a member of C;.
Thus H is reducible, and since O3(H) = 1, either H is isomorphic to a subgroup
of GL3(2) x GL,_5(2), or n =5 and H < GL4(2). By (b) and since 7||0(GL3(2)),
we must have H = %3 x (C7 x C3), in which case |H| < 180 = |GL2(4)|. Thus
7|6(Gy) for n = 4,5, and 31|§(G5). Since GL4(2) contains a subgroup isomorphic
to GL2(4) = 03 X 1457 we get 5(G4) = 24 -7 and 5(G5) = 28 -7-31. [l

We illustrate the use of the above proposition and lemma by proving the injec-
tivity of pue when G = Ga(q).
PROPOSITION A.6. If G = G2(q) for some odd prime power q, then Ker(ug) =

PROOF. Assume ¢ is a power of the prime qo, set G = GQ(]FqO), and fix a
maximal torus 7. We identify G = CE: (14), where v, is the field automorphism,
and acts via (¢ +— t?) on T. Fix S € Syl,(G), and set Z = Z(Fs(Q)).

Let E =2 C% be the 2-torsion subgroup of T'. By Proposition 2.5] Cx(E) =T(9)
where § € Ng(T) inverts the torus. Thus by Proposition [A.4] there are two G-

conjugacy classes of subgroups é—conjugate to E, represented by E* (Et = F),
where Autg(E*) = Aut(E*) 2 X3 and Cg(E*) = (Cyz1)? x Ca. The subgroups
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in one of these classes have centralizer in S isomorphic to C§, hence are not in 2,
while those in the other class do lie in Z. The latter also have normalizer of order
12(q + 1)? and hence of odd index in G, and thus are normal in some choice of
Sylow 2-subgroup.

By [Grl Table I], for each nontoral elementary abelian 2-subgroup E < G,
tk(E) = 3, C5(E) = E, and Autg(E) = GL3(2). By Proposition [A4] and since
S(Autz(E)) = 28 > |Cx(E)| by Lemma [A5 Autg(E) contains no strongly 2-
embedded subgroup, and thus E ¢ Z.

Thus Z is contained in a unique G-conjugacy class of subgroups of rank 2, and
Ker(pg) = 1 by Proposition [A2(b). O

Throughout the rest of this section, fix an odd prime power ¢, and let G be one
of the groups Fy, Eg, E7, or Eg.

HYPOTHESES A.7. Assume G = G(F,,) and G = G(q), where q is a power of
the odd prime qo,_and_where G = Fy, Fg, E7, or Eg and is of universal type. Fix
a mazximal torus T < G.

(I) SetTy ={te T|t> =1}. Let 2A and 2B denote the two G-conjugacy classes
of noncentral involutions in é, as defined in |Grl Table VI|, except that when

G = Er, they denote the classes labelled 2B and 2C, respectively, in that table.

For each elementary abelian 2-subgroup E < G, define

gg: E —— Ty

by setting q(x) =0 if x € 2B U {1}, and q(z) =1 if x € 2A U (Z(G)\1).
(I1) Assume G = Cé(z/)q), where 1, is the field endomorphism with respect to some

root structure with mazimal torus T. Thus Pe(t) = t9 for all t € T. Fix

S € Syly(G), and set Z = Z(Fs(@Q)).

By [Grl, Lemma 2.16], qr,, is a quadratic form on T\, in all cases, and hence
qe is quadratic for each E < T(5). In general, qg need not be quadratic when E
is not contained in a maximal torus. In fact, Griess showed in [Gr] Theorems 7.3,
8.2, & 9.2] that in many (but not all) cases, E is contained in a torus if and only if
qr is quadratic (cx(F) < 2 in his terminology).

With the above choices of notation for noncentral involutions, all of the in-
clusions Fy < Eg < E; < Ejg restrict to inclusions of the classes 2A and of the

classes 2B. This follows since the forms are quadratic, and also (for E7 < Eg) from
[Grl, Lemma 2.16(iv)].

LEMMA A.8. Assume Hypotheses [A7, and let b be the bilinear form associated
to q. Define

Vo ={v €T |b(,Tz) =0, q(v) =0}

Yo = (v v+ b(v,2)z) € Aut(T(2),q) for x € Ty with q(z) =1, z L T(y)
Then the following hold.
(a) Auté(T(Q)) = Aut(T(2),q).
(b) For each nonisotropic x € T(Q)\T(Jé), Ve 18 the restriction to T(oy of a Weyl

reflection on T. If a € ¥ is such that v, = Wa |1y, , then 04 (v) = (—1)b@w)
for each v € Tiy).
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(¢) IfG=E, (r==6,7,8), then q is nondegenerate (Vo = 0), and the restriction to
T(2) of each Weyl reflection is equal to vy, for some nonisotropic x € T(Q)\T(Ji).

(d) If G = Fy, then dim(Vy) = 2, and q(v) = 1 for all v € T3\ Vj.

PROOF. (a) Since Autg(T(s)) has to preserve G-conjugacy classes, it is con-
tained in Aut(7\(2),q). Equality will be shown while proving (c) and (d).

(¢) fG = E, for r = 6,7,8, then g is nondegenerate by [Gr, Lemma 2.16].
Hence the only orthogonal transvections are of the form -, for nonisotropic z, and
each Weyl reflection restricts to one of them. By a direct count (using the tables
in [Brb]), the number of pairs {£a} of roots in G (hence the number of Weyl
reflections) is equal to 36, 63, or 120, respectively. This is equal to the number of
nonisotropic elements in T(g) T(JQ-) =T\ Z (G) (see the formula in [Tal Theorem
11.5] for the number of isotropic elements). So all transvections are restrictions of
Weyl reflections, and Autz(T(2)) = Aut(T(2),q).

(d) Assume G = Fy. Then dim(Vp) = 2 and q~*(1) = T{2)~V, by [Grl Lemma
2.16]. Thus |[Aut(T(2),q)| = 4% - |GLy(2)]* = 26 - 32 = |W| (see [Brb, Planche
VIII]), so Auty (T(2)) = Aut(T(2),q) since W also contains —Id.

There are three conjugacy classes of transvections v € Aut(T\(2y,q): one of
order 36 containing those where |y, # Id (and hence [y,T(2)] < Vp), and two
of order 12 containing those where 7|y, = Id (one where [y, T(2)] < Vo and one
where [, T(2)] £ Vo). Since there are two W-orbits of roots (long and short), each
containing 12 pairs +a«, the corresponding Weyl reflections must restrict to the last
two classes of transvections, of which one is the set of all v, for x € T(z) \ Vp.

(b) We showed in the proofs of (c¢) and (d) that each orthogonal transvection =, is
the restriction of a Weyl reflection. If v, = wa\T(z) for some root o € ¥, then 0, €

Hom(T,F}) (Lemma ZA(@)), so [T(2) : Ker(fa|1,,)] < 2. Also, Ker(f,) < Cy(wy)
by Lemma 24i@), so Ker(fa|r,,) < Cry (wa) = Cry, (12) = 2+, with equality
since [T(g) : 2] = 2. Since 04 (T(2)) < {£1}, it follows that 6, (v) = (—1)*@) for
each v € T(y). O

We are now ready to list the subgroups in Z(G(g)) in all cases. The proof of
the following lemma will be given at the end of the section.

LEMMA A.9. Let G = G(F,,) and G = G(q) be as in Hypotheses [A. Assume
E € Z(G). Then either G # E7, tk(E) =2, and qg = 0; or G = By, Z = Z(G) =
Cs, and E = Z x Ey where 1k(Ey) =2 and qg, = 0. In all cases, Autg(E) = 3.
PROOF. This will be shown in Lemmas [A.14] and [A.15 O

The next two lemmas will be needed to apply Proposition [A-2(b) to these
groups. The first is very elementary.

LEMMA A.10. LetV be an Fy-vector space of dimension k, and let q: V —— Fy
be a quadratic form on V. For m > 1 such that k > 2m, the number of totally
isotropic subspaces of dimension m in 'V is odd.

Proor. This will be shown by induction on m, starting with the case m = 1.
Since k > 3, there is an orthogonal splitting V' = V; L V5 where V1, V5 # 0. Let
k; be the number of isotropic elements in V; (including 0), and set n; = |V;|. The
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number of isotropic elements in V' is then ki1ke + (n1 — k1)(n2 — k2), and is even
since the n; are even. The number of 1-dimensional isotropic subspaces is thus odd.

Now fix m > 1 (such that k£ > 2m), and assume the lemma holds for subspaces
of dimension m — 1. For each isotropic element x € V, a subspace £ < V of
dimension m containing z is totally isotropic if and only if E < xt and E/(z) is
isotropic in ot /{x) with the induced quadratic form. By the induction hypothesis,
and since

2-dim(E/{(z)) = 2(m — 1) < k — 2 < dim(z* /(z)),

the number of isotropic subspaces of dimension m which contain z is odd. Upon
taking the sum over all x, and noting that each subspace has been counted 2" — 1
times, we see that the number of isotropic subspaces of dimension m is odd. O

LEMMA A.11. Assume Hypotheses [A(I). Let o be a Stemberg endomorphism
of G such that for some e = £1, o(t) = t°¢ for eacht € T. Set G = C= z(0). Fiz
E < Ty of rank 2 such that q(E) = 0. Then the set of subgroups of G which are

é-conjugate to E, and the set of subgroups which are G-conjugate to E, both have
odd order and contain all totally isotropic subgroups of rank 2 in T(3).

PROOF. Let X D X be the sets of subgroups of G which are G-conjugate to
E or G-conjugate to F, respectively. Let Xy be the subset of all totally isotropic
subgroups of T{y) of rank 2. If q is nondegenerate, then by Witt’s theorem (see
[Tal, Theorem 7.4]), Auty (T(2)) = Aut(T(2),q) permutes X, transitively, and hence
all elements in X are G-conjugate to E by Lemmal2Z9l If in addition, dim(7{z)) > 5,
then |Xy| is odd by Lemma [A.10l Otherwise, by Lemma [A.8(c,d), G = F; and
Xp ={FE}. Thus in all cases, Xy C X and |¥p| is odd.

Assume G = FEg. Then Cé(T(Q)) = T by Proposition Consider the con-
jugation action of T(5) on X, and let X1 be its fixed point set. Since T2) < G by
the assumptions on o, this action also normalizes X. For F' € X1, either the action
of Ty fixes F' pointwise, in which case F' € Xo, or there are x,y € F' such that
[z, T(2)) = 1 and [y, T(2)] = (z). In particular, ¢, € Auty(T(2)) = SO(I(g),q). For
each v € T() such that [y,v] = z, q(v) = q(vz) and q(z) = 0 imply = L v, so
x L To since Ty is generated by those elements. This is impossible since ¢ is
nondegenerate by Lemma[A.§(c), and thus X; = X,.

Now assume G = Fy, Er, or Eg. Then —Id € W, so there is 8 € N, (T) which
inverts 7. Then C-x ( 2)) = T<9> By the Lang-Steinberg theorem, there is g € G
such that g~'o(g) € 0T; then o(gtg~!) = gt¥ig~ ! for t € T, and thus o acts on
gTg ! via t — tF4. We can thus assume T was chosen so that GNT = C- 7(0)
contains the 4-torsion subgroup T(4) < T. Let X; C X be the fixed point set of
the conjugation action of T(4) on X. For F € X1, either the action of T(4) fixes
F pointwise, in which case F' € X, or there are z,y € F such that [z, T(4)] =1
and [y,T(4)] (z). But then [F, T2‘4)] = 1 for some T(4) < T(4) of index two,
[F, T3] = 1 implies F' < T(9)(0); and F' < T(s) since no element in T( Tz
commutes with any element of T(9). So X1 = X in this case.

Thus in both cases, X is the fixed point set of an action of a 2-group on X
which normalizes X. Since |Xo| is odd, so are |X| and |X]|. O
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We are now ready to prove:

PRrROPOSITION A.12. Fiz an odd prime power q. Assume G is a quasisimple
group of universal type isomorphic to Ga(q), Fu(q), Es(q), E7(q), or Es(q). Then
Ker(ug) = 1.

PROOF. This holds when G = Gs(q) by Proposition [AX6] so we can assume
Hypotheses [A7l Let X be the set of all elementary abelian 2-subgroups £ < G
such that either G # E7, rk(F) = 2, and qg = 0; or G = E7, tk(E) = 3, and
E = Z(G) x Ey where qg, = 0. By Lemma [A1]] |X| is odd. In all cases, by
Lemma [A.9] ZA‘,’(G) C X. By Proposition [A2[a,b), to prove pg is injective, it
remains to show that if Z(G) # @, then Z(G) has odd order and is contained in a
single G-conjugacy class, and Autg(Z(95)) = 1.

Fix £ € X such that F' < T{3). We first claim that if G = Fy, Eg, or E7, then
C’é(E) is connected, and hence all elements in X are G-conjugate to E by Propo-
sition [Adl If G = E7, then Cg(E) is connected by [Grl Proposition 9.5(iii)(a)].
If G = Fy or Eg, then for x € E, Cg(x) = Sping(F,,) or F,, x¢, Spino(Fy,),
respectively (see |Gr, Table VI]). Since the centralizer of each element in the sim-
ply connected groups Sping(F,,) and Spin;(Fy,) is connected [St3l, Theorem 8.1],
C=(F) is connected in these cases.

G
Now assume G = Eg. We can assume G = Cx(1),), where ¢, is the field

automorphism; in particular, ¢,(t) = t? for ¢ € T. Fix z,y € E such that £ =
(r,y). By [Gr, Lemma 2.16(ii)], (T(2),q) is of positive type (has a 4-dimensional
totally isotropic subspace). Hence EX = E x Vi x Vi, where dim(V;) = 2 and
q(Vis1) =1 fori = 1,2, and Vi L Vo. Thus (qz2)~'(1) = U2, (Vin1) x E), and
by Lemma[A§|(b,c), these are the restrictions to T(2) of Weyl reflections w,, for a €
Y such that E < Ker(6,,). Also, Cw (E) = W (D4)1Cs. By Proposition 25| C’a(E)O
has type Dy x Dy and |m(Cx(E))| = 2. More precisely, C5(E) = (Hy x g Hy)(6),
where H; & SpinS(IF‘qo) and Z(I?Z) = F for i = 1,2, and conjugation by § € Né(l_“)
exchanges V7 and V5 and hence exchanges H 1 and H 2.

By Proposition [A4] the two connected components in the centralizer give rise
to two G-conjugacy classes of subgroups which are é—conjugate to E, represented
by E and gEg~! where g~ 1o(g) lies in the nonidentity component of Cz(E). Then
Cg(E) contains a subgroup Sping (¢) Xcz Sping (¢) with index 8 (the extension
by certain pairs of diagonal automorphisms of the Sping (¢)-factors, as well as an
automorphism which switches the factors). So E = Z(T) for T € Syly(Cq(E)),
and F € ZA(G) Also, gyg~! € Ca(gEg™!) if and only if y € Cz(E) and 7(y) =y
where 7 = ¢;-15(5) o 0. Then 7 switches the central factors in Cx(E), and the
group CC(_;( £)(7) splits as a product of E times the group of elements which are
invariant after lifting 7 to the 4-fold cover Sping (Iﬁ‘qo) 1 Cs. Since gEg~! intersects
trivially with the commutator subgroup of Ca(gEg~1), Q1 (Z(T)) > gEg~* for any
T € Syly(Ca(gEg™")) (since Z(T) N [T, T] # 1); and thus gEg~* ¢ Z(G). Thus
Z (G) is the G-conjugacy class of E, and has odd order by Lemma [AT]]

Thus, in all cases, if z (G) is nonempty, it has odd order and is contained in
one G-conjugacy class. Also, Z(S) < Cg(Auts(E)) < E for E € Z(G), so either
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|Z(9)| = 2, or G = E;, Z(S) = C3, and the three involutions in Z(S) belong to
three different G-conjugacy classes. Hence Autg(Z(S)) = 1. O

It remains to prove Lemma [A.9, which is split into the two Lemmas [A.14] and
[A. 15l The next proposition will be used to show that certain elementary abelian
subgroups are not in Z.

PROPOSITION A.13. Assume Hypotheses [AT. Let E < T(s) and x € Ti))\E
be such that the orbit of x under the Cyw (E)-action on Ty has odd order. Then

no subgroup of S which is G- conjugate to E is in Z. More generally, sz > F is
also elementary abelian, and is such that x is not C5, ( )-conjugate to any element

of E, then for any L < G which contains {grg~1 |g € G} N G, no subgroup of S
which is G- conjugate to E isin Z.

PrOOF. In [O2], an elementary abelian p-subgroup F < G is called pivotal
if Op(Autg(E)) = 1, and £ = Q(Z(P)) for some P € Syl,(Cg(F)). In partic-
ular, by Lemma [A](a), the subgroups in Z are all pivotal. Note that Tip) < G
by Hypotheses [A7l By [O2], Proposition 8.9], no subgroup satisfying the above
conditions can be pivotal, and hence they cannot be in Z. (Il

In the next two lemmas, we show that in all cases, E € Z implies tk(E) = 2
and qp = 0 if G # E7, with a similar result when G = E;. We first handle those
subgroups which are toral (contained in a maximal torus in E}), and then those
which are not toral. By a 2A*-subgroup or subgroup of type 2A* (2Bk—subgroup
or subgroup of type 2Bk) is meant an elementary abelian 2-subgroup of rank & all
of whose nonidentity elements are in class 2A (class 2B).

LEMMA A.14. Assume Hypotheses [A7. Fix some E € Z which is contained in
a mazimal torus of G. Then either G # Fx, tk(E) =2, and qg = 0; or G = Ex,
Z = Z(G) = Cy, and E = Z x Ey where tk(Ey) = 2 and qp, = 0. In all cases,
AutC—;(E) = 23

PROOF. Set Z = 03(Z(G)) < T(2y. Thus |Z] = 2if G = E7, and |Z] =
otherwise. Recall that Autg(T(2)) = Autg(T(2)) = Aut(1{2), q) by Lemmas 2.9 and
[AFa).

The following notation will be used to denote isomorphism types of quadratic
forms over Fy. Let [n]* denote the isomorphism class of a nondegenerate form of
rank n. When n is even, [n]T denotes the hyperbolic form (with maximal Witt
index), and [n]~ the form with nonmaximal Witt index. Finally, a subscript “(k)”
denotes sum with a k-dimensional trivial form. By [Grl Lemma 2.16], q7,, has
type [2](_2), [6]~, [7], or [8]T when G = F}, Es, E7, or Eg, respectively.

Fix £ < T(); we want to determine whether E can be é—conjugate to an
element of Z. Set E; = EN E* (the orthogonal complement taken with respect to
q), and set Fy = Ker(qg, ). Note that F1 > Fy it G = E; (E > Z).

Assume first that Ey = 1. If G = Fy, then T(9) N 2B is a Cyy (E)-orbit of odd
order. If G = E, and E; = 1, then E x E+, E+ is Cy (E)-invariant, and hence
there is 1 # x € E+ whose Cy (E)-orbit has odd order. If G = E,. and tk(E;) = 1,
then E N E+ = E, there is an odd number of involutions in E+~\ E; of each type
(isotropic or not), and again there is 1 # = € E1 whose Cy (E)-orbit has odd
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order. In all cases, x has the property that Cy ((E,x)) has odd index in Cw (E).

So by Proposition [A.T3] no subgroup of G' which is G-conjugate to E can be in Z.
Thus Ey # 1. Set k = rk(Ep). Then

‘ﬂo(CC—;(E))‘ = |[Cw(E)/({wa |a € B, E < Ker(6(a)))| [Proposition 25]
(5) < |Ow(T2)| - |Cso(ra.a)(E) /{70 |v € 2ANEY)| [Lemma A (a,b)]
< [Cw(Ti)| - [Csorre . (B - |Csowmg ) (B)/{w |v € 2ANEL)|.

The first factor is easily described:

1 if-IdeW (lf G = Fy, E7, ES)

6 Cw (T, = 2¢ h —
©  |Cw(Te) where < {O e

We next claim that
k
(7) ’CSO(T@)’q)(EOL)‘ < 2(2) )

with equality except possibly when G = Fj. To see this, let F; < T5) be a subspace
complementary to Ei-. Each a € CAut(T&))(Ed-) has the form a(z) = zi(x) for
some ¢ € Hom(Fy, Ey), and « is orthogonal if and only if x L ¢(x) for each x.
The space of such homomorphisms has dimension at most (g) (corresponding to
symmetric k x k matrices with zeros on the diagonal); with dimension equal to (g)
if dim(F;) = dim(Ey) (which occurs if q is nondegenerate).

Write (Ep)t = E x Fy, where E+ = Fjy x F, and the form qf, is nondegenerate.
By [Ta, Theorem 11.41], SO(Fs, qr,) is generated by transvections unless qp, is of
type [4]T, in which case the reflections generate a subgroup of SO(Fy, qr,) = $31C5
isomorphic to X3 x 3. Also, F5 is generated by nonisotropic elements except when
qr, is of type [2]1, and when this is the case, all automorphisms of (Eg)* which
induce the identity on F and on (Ey)*/FE, are composites of transvections. (Look
at the composites v,z o, for v € Fy and = € Fy.) Hence

|CSO(E0i,q)(E)/<% |ve2ANE)| <27

where n = 1 if qz. has type [4]22)7 n = k if qg. has type [2]22)7 and n = 0
otherwise. Together with (B, (6l), and (@), this proves that

(8) |mo(C4(B))| < 2(2)+=+n where ¢ < 1.

Now, Ng(E) < C’a(E)ONa(T) by the Frattini argument: each maximal torus
which contains E lies in C’é(E)O and hence is Ca(E)O—conjugate to T. So each

element of Autg(F) is represented by a coset of T in Né(T), and can be chosen
to lie in G by Lemma 2.9 Thus the action described in Proposition [A.4] which
determines the automizers Autg(E*) for E* é—conjugate to FE is the conjugation
action of Autg(E) on the set of conjugacy classes in mo(C(E)). In particular, this
action is not transitive, since the identity is fixed.

Set ¢ = tk(E/Ep) — 1 if G = E; and ¢ = rk(E/Ep) otherwise. Every auto-
morphism of F which induces the identity on EyZ and on E/FEjy is orthogonal, and
hence the restriction of an element of Oz(Cw (E)). Thus [O2(Outg(E))| > 2R Tf

E*eZis é—conjugate to F, then since Autg(E*) has a strongly 2-embedded sub-
group, 2M < §(Aut(E)) < ‘FQ(CC—;(E))’ by Proposition [A4] and Lemma [A5](a),

with strict inequality since the action of Ng(E) on mo(Cx(E)) is not transitive.
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Together with (8), and since e < 1, this implies that k¢ < (g) +n< (g) + k. Thus
¢ < B and ¢ < 2L if p = 0. By definition, n = 0 whenever rk(E;/Ep) = 1,
which is the case if G = E7 or £ is odd. Since 2k + £ < 8, we are thus left with the

following possibilities.

o If (k,¢) = (3,2), then G = Ejg, E has form of type [Z]Eg), so B+ = Ej has trivial
form, and n = 0. Thus k¢ £ (g) + 7, so this cannot occur.

o If (k,0) = (3,1), thergG = FEg, E has form of type *+?§’ and rk(E) = rk(E;) = 4.
Sin (G ()| < 16, s e el st

o If (k,¢) = (4,0), then G = Eg and E = Ej is isotropic of rank 4. By Proposition
and Lemma [A§[c), C’é(E)O = T. By [CG), Proposition 3.8(ii)], mo(Cx(E))
is extraspecial of order 27 and Autg(E) = GL4(2). (This is stated for sub-
groups of Fg(C), but the same argument applies in our situation.) In par-
ticular, mo(Cx(E)) has just 65 conjugacy classes. Since §(GL4(2)) = 112 by
Lemma [A5(d), Proposition [A4] implies that Autg(E*) cannot have a strongly
2-embedded subgroup.

o If (k,£) = (3,0), then E = Z x Ey where dim(Ep) = 3, and Autg(E) = GL3(2).
If G = Eg or E7, then E+ = E, and ITo(Cx(E))| < 16 by (&).
If G = Eg, then (E+, qg1) has type [2]?&). By the arguments used to prove

@),
|Cw (B)| = Ow (Ti2))| - 1Cs0(110).0) (Eo )| - [Cso(pg ) ()| = 2-2% - 27 = 21,

Also, E* contains exactly 8 nonisotropic elements, they are pairwise orthogonal,
and hence determine 8 pairwise commuting transvections on T{3). These extend
to 8 Weyl reflections which are pairwise commuting since no two can generate a
dihedral subgroup of order 8 (this would imply two roots of different lengths).
Hence by Proposition 25, C(E)? has type (41)® and |mo(Cg(E))| = 21 /2% =
23. Since §(GL3(2)) = 28 by Lemma[A5|(c), this case cannot occur.

o If (k,¢) = (2,0), then F = Z x Ey where dim(Fy) = 2. Then F is as described
in the statement of the lemma. (]

It remains to handle the nontoral elementary abelian subgroups.

LEMMA A.15. Assume Hypotheses [AD. Let E < G be an elementary abelian
2-group which is not contained in a maximal torus of G. Then E ¢ Z.

PROOF. To simplify notation, we write K = F,,. Set Z = 05(Z(G)) < T(2).
Thus |Z| =2 if G = Er, and |Z| = 1 otherwise. The maximal nontoral subgroups
of G are described in all cases by Griess [Gr].

(A) If G = F; or Eg, then by [Gr, Theorems 7.3 & 8.2], G contains a unique
conjugacy class of maximal nontoral elementary abelian 2-subgroups, repre-
sented by Wy of rank five. There is a subgroup Wo < Wjs of rank two such
that W5 N 2A = W5~ W,. Also, AutC—;(Eg,) = Aut(Es, qp,): the group of all
automorphisms of W5 which normalize W5. A subgroup E < Wy is nontoral
if and only if it contains a 2A3-subgroup.
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When G = Fjy, we can assume W5 = T{)(¢), where § € N5 (T) inverts the
torus.

(B) If G = E7, then by [Gr, Theorem 9.8(i)], G contains a unique maximal
nontoral elementary abelian 2-subgroup Wg, of rank six. For any choice of
Es(K) < G, W5 < Eg(K) (as just described) has rank 5, is nontoral since it
contains a 2A3-subgroup, and so we can take Wi = Z x W.

Each coset of Z of involutions in G\Z contains one element of each class
2A and 2B. Together with the above description of Es, this shows that all
2A % subgroups of Wy are contained in W5. Hence for each nontoral subgroup
E < Ws which contains Z, ENW5 is the subgroup generated by 2A%-subgroups
of E, thus is normalized by Autg(E), and so

Autg(E) 2 Aty (ENW;) = Aut(E N Ws, qpnw,) = Aut(E, qg)
AutC—;(WG) = Aut(Wg, qWe) = 026 X (23 X GL3(2))

For Z < E < Wy, the subgroup E is nontoral exactly when it contains
a 2A°%-subgroup. This is immediate from the analogous statement in (A]) for
Es(K).

(C) If G = Es, then by [Grl Theorem 2.17], G contains two maximal elementary
abelian subgroups Wy and Wy, neither of which is toral [Grl Theorem 9.2].
An elementary abelian 2-subgroup E < G is nontoral if and only if qz is not
quadratic or E has type 2B® [Gr}, Theorem 9.2].
We refer to [Grl, Theorem 2.17] for descriptions of Wg and Wy. There
are subgroups Fy < Fy, Fp < Wg such that rk(Fp) = 2, rk(Fy) = rk(F») = 5,
F1 N FQ = Fo, and Wg N2A = (Fl\Fo) @) (FQ\F()). AISO, Aut@(Wg) is the
group of those automorphisms of Wg which leave Fjy invariant, and either leave
F; and F5 invariant or exchange them.

We can assume that Wy = T(3)(0), where 6 € Né(Y_”) inverts T. Also,
WoNT(2) € 2B. Hence T(3) = (Wy N 2A) is Autz(Wy)-invariant. Each au-
tomorphism of Wy which is the identity on T() is induced by conjugation by
some element of order 4 in T, and thus Aut &(Wo) is the group of all automor-
phisms whose restriction to T\(z) lies in Autg(7(g)).

We next list other properties of elementary abelian subgroups of G , and of their
centralizers and normalizers, which will be needed in the proof.

(D) If G = Es, E < G, E = C}, and |E N 2A| = m, then dim(Cx(E)) =
28=r 4 257" — 8.
This follows from character computations: if g denotes the Lie algebra

of G = Es(K), then dim(Cx(E)) = dim(Cy(E)) = |E|™* Y, cp xg(). By

[Gr| Table VI, x4(1) = dim(G) = 248, and x4(x) = 24 or —8 when = € 2A
or 2B, respectively.

(E) IfG=Es, E< G is an elementary abelian 2-group, and By < E has index 2

and is such that ENE; C 2B, then there is g € G such that 9E < Wo = T(2)(0)
and QEt < T(Q)
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It suffices to prove this when F is maximal among such such pairs Fy; < E.
We can assume that E is contained in Wg or Wj.

If E < Wg, then in the notation of (), Fy < E (since E is maximal), and
either rtk(EN F;) =3 for i = 1,2 and rk(E) =6, or tk(ENF;) =4 fori = 1,2
and rk(F) = 7. These imply that |[E N 2A| = 8 or 24, respectively, and hence

by ([@) that dim(C5(E;)) = 8 (Cz(E:)? = T) and dim(Cx(E)) = 0. Hence in
either case, if g € G is such that 9, < T(2), then IENIE; C 0T, and there is
t € T such that YE < T2y (0) = Wy.

If B <Wy,set By = (EN2A). Then Ey < ENT(y) and Ey < Ey, so there
is nothing to prove unless rk(E/Es) > 2. In this case, from the maximality of
E, we see that E; = E, x Ej, where E, = C2 has type 2ABB, Ej is a 2B3-
group, and E, 1 F} with respect to the form q. Thus rk(E) = 6, |[EN2A| = 8,
and the result follows by the same argument as in the last paragraph.

(F) If G= Eg, and E < G is a nontoral elementary abelian 2-group, then either
E contains a 2A3-subgroup, or E is é-conjugate to a subgroup of Wy.
Assume E < Wy is nontoral and contains no 2A°-subgroup. We use the
notation Fy < Fy, F» < Wy of (). Set E; = ENF; for i = 0,1,2. Then qg, g,
is quadratic: it is the orthogonal direct sum of qg,, qg, /g,, and qg, /g, each of
which is quadratic since rk(E;/FEy) < 2 for ¢ = 1,2 (E has no 2A3-subgr0up).
Hence E > E1Ey; > (E N 2A) since E is nontoral, so E is conjugate to a
subgroup of Wy by (E.

(G) Let E < G be an elementary abelian 2-subgroup, and let By < E be mazximal
among toral subgroups of E. Assume that Ey N\ Ej N 2B = @, and that either

rk(T) —tk(E}) >2 or E,NELX =1. Then E ¢ Z.

To see this, choose F' > F, which is G-conjugate to E > E, and such that
Fy = FN1Ty). By maximality, no element of F'\F; is Cg(F};)-conjugate to an
element of T'. If F, NF = 1, then some Cyy (F})-orbit in F;-\.1 has odd order.
Otherwise, since q is linear on F;NF;-, we have F;NF;- = (y) for some y € 2A,
in which case \q;i (0)| = |F+|/2 is even since rk(Ft) > tk(T) — tk(F;) > 2.
So again, some Cyy (F;)-orbit in F;*\.1 has odd order in this case. Point (G
now follows from Proposition [A.13

(H) Assume G = Eg. Let1 # Ey < E < G be elementary abelian 2-subgroups,
where tk(E) = 3, and EN2A = Eg~\1. Then

Ex Fy(K) i tk(Ep)
Cx(E) = { E x PSpg(K) if rk(Ep)

3
2
1

To see this, fix 1 # y € Ep, and identify Cg(y) = SL2(K) x ¢, £7(K). For

each € Ex(y), since = and xy are G-conjugate, = # (1,b) for b € E(K).
Thus z = (a,b) for some a € SLy(K) and b € E7(K) both of order 4, and (in
the notation of [Grl Table VI]) b is in class 4A or 4H since b? € Z(E;(K)).
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By (D) and [Gr}, Table VI,

din(C () — {80 = dim(Cp, ) (4H)) + 1 if E has type 2AAA

64 = dim(Cp,(x)(4A)) +1 if E has type 2ABB,
and thus ¢ € 2A if b € 4H and « € 2B if b € 4A. Thus if E = (y, 21, x2),
and x; = (a;,b;), then (ar,a2) < SL(K) and (by,bs) < E(K) are both
quaternion of order 8. Point (H) now follows using the description in [Gxl,
Proposition 9.5(i)] of centralizers of certain quaternion subgroups of E7(K).

When combined with the description in [Gr, Table VI] of Cg,_(x)(4A), this
also shows that

(9) F = (C3 of type 2ABB —> Cé(F)O is of type A;T*
(i.e., Ca(F)O >~ (SLg(K) x K*)/Z, for some finite subgroup Z < Z(SLs(K)) x
K*).

(1) If U < G is a 2A®-subgroup, then Cz(U)=U x H, where H is as follows:

G F4 E6 E7 ES
H || SO3(K) | SL3(K) | Spe(K) | Fu(K)

When G = Fg, this is a special case of ([H). For z € 2A N Fy(K),
CES(K) (1‘) = SLQ(K) Xy E7(K) by [GI‘, 214] Since OF4(]K) (I) = SLQ(K) Xy
Spg(K), this shows that Cp, x)(U) = U x Spg(K).

Similarly, Cg, k) (y) = SL3(K) x ¢, Es(K) by [Gr, 2.14] again (where y is
in class 3B in his notation). There is only one class of element of order three
in F4(K) whose centralizer contains a central factor SL3(K) — Cp,x)(y)
SL3(K) x¢, SL3(K) for y of type 3C in Fy(K) — and thus Cggx)(U)
U x SL3(K).

If G = Fy, then by [Gxl 2.14], for y € 3C, Cg(y) = SL3(K) x¢, SL3(K).
Also, the involutions in one factor must all lie in the class 2A and those in
the other in 2B. This, together with Proposition 2.5 shows that for Uy < U
of rank 2, Cz(Uy) = (T? x¢, SL3(K))(0), where 6 inverts a maximal torus.
Thus Cg (U) = U x Csr,(x)(0), where by [Grl Proposition 2.18], Csy,x)(#) =
S03(K). This finishes the proof of ().

For the rest of the proof, we fix a nontoral elementary abelian 2-subgroup E <
G. We must show that E ¢ Z. In almost all cases, we do this either by showing that
the hypotheses of (G) hold, or by showing that d(Autz(E)) > |mo(Cx(E))| (where
d(—) is as in Lemma [A5]), in which case Autg(FE) has no strongly 2-embedded
subgroup by Proposition [A.4], and hence F ¢ Z.
By (@A), ([B), and (F), either E contains a 2A*-subgroup of rank three, or
G = Es and E is G-conjugate to a subgroup of Wy. These two cases will be
handled separately.
Case 1: Assume first that E contains a 2A3-subgroup U < E. From the lists in
(AIBIC) of maximal nontoral subgroups, there are the following possibilities.
G = Fy, Eg, or Ez: By (AlIB), we can write £ = U x Eg X Z, where Ej is a
2B* subgroup (some k < 2) and UE;~Ey C 2A (and where Z = 1 unless
G = E;). If k=0, then E ¢ Z by (@), so assume k > 1. By (I), and since

i1
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each elementary abelian 2-subgroup of SL3(K) and of Spg(K) has connected
centralizer, mo(C~(F)) 2 U if G = Eg or E;. If G = Fy, then by (I) again,

G
and since the centralizer in SO3(K) =& PSLy(K) of any C} has 2¥ components,
[m0(C(E))] = 24+,

By (AIB) again, Aut(E) is the group of all automorphisms which normalize
FEy and UEy and fix Z. Hence

[02(Aut;(E))| =2 and  Aut(E)/Ox(Auts(E)) = GLs(2) x GLk(2).
So §(Autg(E)) > 23543 > |m0(C4(E))| by Lemma A7 and E ¢ Z.

G = Eg: By (), C5(U) = U x H where H = Fy(K). Set E; = EN H, and let
E() = <E2 N 2B> Set k = I'k(Eo) and £ = I'k(EQ/E())
If k = 0, then B, has type 2A*, and E~(U U E5) C 2B. So each maximal
toral subgroup E; < FE has the form E; = Uy xUs, where rk(Uy) = 2, rk(Us) < 2,
and E; N2A = (U; UUy)\1. The hypotheses of (G) thus hold, and so E* ¢ Z.
Thus £ =1,2. If £ < 2, then F» is toral, and

mo(C(E))| = 8- |mo(Cr (Ey))| < 2°TF

by formula (8) in the proof of Lemma [A-T4l (Note that ¢ = 1 and n = 0
in the notation of that formula.) If £ = 3, then |m(Cx(E))| = 26k by the
argument just given for Fy(K). Also, Auty(E) contains all automorphisms of
E which normalize Ejy, and either normalize UE, and Es or (if £ = 3) exchange
them: since in the notation of (), each such automorphism extends to an
automorphism of Wg which normalizes Fy and Fy. So |Oq(Aut~(E))| > 2FG+0]
and Autg (E)/O2(Autg (E)) = GL3(2) x GLg(2) x GLe(2) or (if £ = 3) (GL3(2)1
C2) x GLi(2). In all cases, 6(Autz(E)) > 23k+LkA+3 [mo(Ch(E))], 0 E ¢ 2.

G
f

Case 2: Now assume that G = Ejg, and that E is G-conjugate to a subgroup
of Wy. To simplify the argument, we assume that £ < Wy, and then prove that
no subgroup E* € Z can be G-conjugate to E. Recall that Wy = T\5y(f), where

0 € Ng(T') inverts the torus and 07() C 2B.

If EN2A = &, thentk(E) = 5. In this case, Autg (E) = GLs(2) and |Cx(E)| =
215 [CG], Proposition 3.8]. (Cohen and Griess work in Eg(C), but their argument
also holds in our situation.) Since §(GL5(2)) > 2'® by Lemma [A5(d), no E* € Z
can be é-conjugate to E.

Now assume E has 2A-elements, and set Fy = (EN2A). Then Ey < T(y) (hence
qm, is quadratic) by the above remarks. Set E; = E5 N Ey and Ey = Ker(qg, ). If
Eo =1 and rk(F3) # 7, then by (G)), no subgroup of S which is G-conjugate to F
lies in Z.

It remains to consider the subgroups F for which Ey # 1 or rk(Es) = 7.
Information about |Oz(Autg(E))| and |m(Cx(E))| for such E is summarized in
Table[A 1l By the “type of qz” is meant the type of quadratic form, in the notation
used in the proof of Lemma [A. 14

We first check that the table includes all cases. If tk(E/E3) = 1, then Ey =
E N Ty, and the table lists all types which the form gqg, can have. Note that
since Es is generated by nonisotropic vectors, qg, cannot have type [2]2’;6). If
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—=
- \% /2 E}D_ g\‘
@ = — s = v b
2, s | = | = |tpe| = = =
- = Y B = =
= \2 -
1 1 7 0 [7] <29 27 > 213
2 1 6T 16| <2° 213 > 217
3 1 5 1 | [Bla) | <21 211 >3.213
4 1 4+ 2 [4](3) <210 214 > 216
5 1 4+ 1[4y | <28 29 > 210
6 1 4= 1 ([, | <27 29 > 210
7 1 3 2 | Bl | <2° 2! > 212
8 1 3 1 | Bl | <2° 27 > 27
9 1 2- 2 |2y | £2° 28 > 29
10 1 2” 1|2y | <2 25 > 25
11 2 1 3| M@ | <2t 211 > 24
12 2 1 2 |[Upg | <28 28 > 29
13 2 1 I | Mgy | <28 25 > 25
TABLE A.1

tk(E/Es) = 2, then qg, is linear, and must be one of the three types listed. Since
qENT,, I8 quadratic and qg is not, E5 has index at most 2 in £ N T(y).
We claim that
EF < Wy, ac€ ISO(E,F) such that Oé(E ﬂT(Q)) = FnN T(Q) and
(10) EN2A) = FN2A = «a = ¢, for some t € T and some

g € Na(T) = G N (T).

By () and Witt’s theorem (see [Tal, Theorem 7.4]), there is g € Nz (T') such that
a|EmT(2) = ¢y, and we can assume g € G by Lemma[2Z9l Then -‘7E\9(EHT(2)) < 0T
since 0T € Z(NG(Y_’))/T, 50 a = ¢4, for some t € T. This proves (I0). In particular,
any two subgroups of Wy which have the same data as listed in the first three rows
of Table [A.]] are G-conjugate.

By (d0), together with (E) when rk(E/FE,) = 2, we have Aut(F) = Aut(E, qg)
in all cases. Thus Autg (E) is the group of all automorphisms of E which normalize
Ey and E5 and preserve the induced quadratic form on Es/Ey. This gives the value
for |Oz(Autg(E))| in the table, and the lower bounds for 6(Autg(E)) then follow
from Lemma
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In cases 1-6, the upper bounds for |mo(Cz(E))| given in the table are proven in
[02] p. 78-79]. In all cases, |mo(Cx(E2))| is first computed, using Proposition 2.5lor
the upper bound given in formula (8) in the proof of the last lemma and then [02
Proposition 8.8] is used to compute an upper bound for |my(C5(E))] / |70 (C
There is in fact an error in the table on [O2] p. 79] (the group Cg(EO) in the
third-to-last column should be SLy x SL; up to finite cover), but correcting this
gives in fact a better estimate |mo(Cy (E))| < 29,

Case nr. 11 can be handled in a sumlar way. Set Ey = ENTy) < E, so that
|E/E:| = 2 = |Ey/Es|. The form qg, has type [2]( 3), while E} has type 2B®.
Hence |mo(Cz(Er))| < 2% by (). By [O2] Proposition 8.8], |mo(C (E))| < 2447
where r = dim(T) = 8.

To handle the remaining cases, fix rank 2 subgroups F1, Fo < T(g) < G with

involutions of type AAA and ABB, respectively, and consider the 1nforrnat10n in
Table[A.2l The description of Cg(F;(6)) follows from (). The third through fifth

dim(C5 0 for g as follows:
N . (Co(Fi){6.9)) for g
—I4 S5) I4 —12 D I@ order 4 | 2A | 2B
1 || Fi(0) x PSpg(K) 20 24 16 16 | 20
2 || F»(f) x PSOs(K) 12 16 16 16 | 12

TABLE A.2

columns give dimensions of centralizers of F;(0)(g), for g as described after lifting
to Spg(K) or SOs(K). (Here, I, denotes the m x m identity matrix.) The last
two columns do this for g € 2A or 2B, respectively, when g € T(y) is orthogo-
nal to F; with respect to the form g, and the dimensions follow from (D). Thus
elements of class 2B lift to involutions in Spg(K) or SOs(K) with 4-dimensional
(—1)-eigenspace, while for ¢ = 1 at least, elements of class 2A lift to elements of
order 4 in Spg(K).

Thus in all of the cases nr. 7-13 in Table[A] we can identify E = F;(f) x F*,
where ¢ = 1 in nr. 7-10 or ¢ = 2 in nr. 11-13, and where F* lifts to an abelian
subgroup of Spg(K) or SOs(K) (elementary abelian except for nr. 7-8). This
information, together with the following:

H agroup, Z < Z(H), |Z| = p, Z < P < H a p-subgroup
= |Cuyz(P)/Cu(P)/Z| < |P/Fx(P)]
(applied with H = Spg(K) or SOs(K)), imply the remaining bounds in the last line

of Table [A]
In all but the last case in Table[AT] §(Autg (E)) > [mo(Cg(E))|, so no E* € Z

is G-conjugate to E' by Proposition [A4l In the last case, by the same proposi-
tion, £ can be G-conjugate to some E* € Z only if Aut;(E) acts transitively on
mo(Cg(E)) = C3 with point stabilizers isomorphic to ¥3. By (I0), each class in

O2(Auty(E)) is represented by some element tg € Ng(E), where g € Ne(T)
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and t € T. In particular, (tg)o(tg)™" = to(t)™* € T. So each class in the
O2(Autg(E))-orbit of 1 € mo(Cx(E)) has nonempty intersection with 7. But
by (@), Cé(FQ)O NOT = @, so HCé(E)O NT = @. Thus the action is not transitive

on m(Cx(E)), and hence E* ¢ Z. O
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Introduction

This paper is centered around the comparison of certain outer automorphism
groups associated to a sporadic simple group: outer automorphisms of the group
itself, those of its fusion at different primes, and those of its classifying space com-
pleted at different primes. In most, but not all cases (under conditions made precise
in Theorem [A]), these automorphism groups are all isomorphic. This comparison
is important when studying extensions of fusion systems, and through that plays
a role in Aschbacher’s program (see, e.g., [A5]) for reproving certain parts of the
classification theorem from the point of view of fusion systems.

When G is a finite group, p is a prime, and S € Syl,(G), the p-fusion system
of G is the category Fs(G) whose objects are the subgroups of G, and which has
morphism sets

Mor z, (o) (P, Q) = {np € Hom(P, Q) ’gp = ¢,, some z € G with zPz™1 < Q}.

A p-subgroup P < G is called p-centric in G if Z(P) € Syl(Cg(P)); equivalently,
if Cq(P) = Z(P) x C,(P) for some (unique) subgroup Cf(P) of order prime to p.
The centric linking system of G at p is the category L%(G) whose objects are the
subgroups of S which are p-centric in GG, and where

MOI‘L%(G) (P,Q) =Tc(P,Q)/CL(P) where Tg(P,Q)= {x ed | Pzl < Q}

Note that there is a natural functor 7: £L(G) — Fs(G) which is the inclusion
on objects, and which sends the class of x € T (P, Q) to ¢, € Hom(P, Q). Outer
automorphism groups of these systems were defined in [BLOJ] and later papers (see
below). We say that F = Fg(G) is tamely realized by G if the natural homomor-
phism kg: Out(G) — Out(LE(G)) is surjective and splits. The fusion system F
is tame if it is tamely realized by some finite group.

In terms of homotopy theory, it was shown in [BLOl Theorem B] that for a
finite group G and S € Syl (G), there is a natural isomorphism Out(Lg(G)) =
Out(BGQ). Here, BGQ is the p-completion, in the sense of Bousfield-Kan, of the
classifying space of G, and Out(X) means the group of homotopy classes of self
equivalences of the space X. Thus Fg(G) is tamely realized by G if the natural
map from Out(G) to Out(BGY) is split surjective.

When p = 2, our main result is easily stated: if G is a sporadic simple group,
then the 2-fusion system of G is simple except when G 2 Jp, and is tamely realized
by G except when G = M;;. The 2-fusion system of Mj; is tamely realized by
PSL3(3).

For p odd, information about fusion systems of the sporadic groups at odd
primes is summarized in Table [I.3l In that table, for a given group G and prime p

and S € Syl,(G),

e a dash “—” means that S is abelian or trivial;
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e “constr.” means that Fg(G) is constrained; and

e an almost simple group L in brackets means that Fg(G) is almost simple but
not simple, and is shown in [A4] 16.10] to be isomorphic to the fusion
system of L.
For all other pairs (G, p), F is simple by [A4] 16.10], and we indicate what is known
about the nature of kg : Out(G) — Out(LG(G)). In addition,

e a dagger () marks the pairs (G, p) for which § is extraspecial of order p?.

‘ G ’|Out(G)|H p=3 ‘ p=>5 ‘p=7 ’ p>11
Mo 2 k isom.t — — —
Moy 1 [Mo:2]F — — —

Jo 2 constr.t — — —

J3 2 constr. — — —

Ja 1 [2Fy(2)]1 — — 11: constr.t
Cos 1 K isom. constr.| — —

Cosy 1 K isom. constr.t — —

Coy 1 K isom. [SOs5(5)] — —

HS 2 — constr.| — —
MecL 2 K isom. constr. — —

Suz 2 K isom. — — —

He 2 Out(L) = 11 — K isom.T —

Ly 1 K isom. K isom. — —

Ru 1 PFa2)]" | [Ls(5):2] — —
O’N 2 — — k isom.t —
Fioo 2 K isom. — — —
Fiog 1 K isom. — — —
Fiy, 2 K isom. — % isom. —

Fs 2 K isom. K isom. — —

F3 1 K isom. & isom. T — —

Fy 1 K isom. K isom. — —

Fy 1 K isom. K isom. k isom. | 13: x isom.t

TABLE 0.3. Summary of results for odd p

Here, a fusion system F = Fg(G) is constrained if it contains a normal p-
subgroup @ < F such that Cs(Q) < Q. The fusion system F is simple if it has
no proper nontrivial normal fusion subsystems. It is almost simple if it contains a
proper normal subsystem Fy < F which is simple, and such that Cx(Fp) = 1. We
refer to [AKOL Definitions 1.4.1 & 1.6.1] for the definitions of normal p-subgroups
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and normal fusion subsystems, and to [A4l § 6] for the definition of the centralizer
of a normal subsystem.

Thus when G is a sporadic simple group and p is an odd prime such that the
p-fusion system F of G is simple, we show in all cases that F is tamely realized
by G, and in fact that Out(G) = Out(L%(G)) except when G = He and p = 3
(Theorem [A]).

Before going further, we need to define more precisely the automorphism groups
which we are working with. All of the definitions given here apply to abstract
fusion and linking systems (see, e.g., [AKO] §I11.4.3]), but for simplicity, we always
assume that F = F5(G) and £ = L(G) for some finite group G with S € Syl (G).

Automorphisms of F = Fg(G) are straightforward. An automorphism o €
Aut(S) is fusion preserving if it induces an automorphism of the category F (i.e.,
a functor from F to itself which is bijective on objects and on morphisms). Set

Aut(F) = {o € Aut(S) | v is fusion preserving}
Out(F ) = Aut(F)/Aut £(5).

Here, by definition, Autz(S) = Autg(S): the automorphisms induced by conju-
gation in Ng(S). These groups were denoted Aut(S,F) and Out(S,F) in earlier
papers to emphasize that they are groups of automorphisms of S, but it seems
more appropriate here to regard them as automorphisms of the fusion system F
(as opposed to the category JF).

Now assume £ = L§(G). For each P € Ob(L), set tp = [1] € Morg (P, S) (the
“inclusion” of P in S in the category £), and set [P] = {[g]| g € P} < Aut.(P).
Define

Aut(L) = {B € Autear (L) | Btp) = tg(py, B([P]) = [B(P)], VP € F°}
Out(L) = Aut(L) /{c, | # € Ng(9)).

Here, Autcas (L) is the group of automorphisms of £ as a category, and ¢, € Aut(L)
for x € Ng(S) sends P to *P and [g] to [*g]. There are natural homomorphisms

Out(G) —¢— Out(£) —29— Out(F)  and kg = pg o ka.
=Out(BGY)
Here, k¢ is defined by sending the class of & € Aut(G), chosen so that a(S) = S, to
the class of & € Aut(L), where a(P) = a(P) and a([g]) = [a(g)]. For 8 € Aut(L),
pe sends the class of 5 € Aut(L) to the class of

B=(s = 5] fist , g) oo 5) € Aut(F) < Aut(S).

o o o

Then kg: Out(G) — Out(F) is induced by restriction to S. See [AKOL §1I1.4.3]
or [JAOV1l §1.3] for more details on these definitions.

By recent work of Chermak, Oliver, and Glauberman and Lynd, the nature of
e is now fairly well known in all cases.

ProPOSITION 0.1 ([O2] Theorem C], [GIL|, Theorem 1.1}). For each prime p,
and each finite group G with S € Syl,(G), pg: Out(LG(G)) —— Out(Fs(G)) is
surjective, and is an isomorphism if p is odd.

In fact, [O2] and [GIL] show that the conclusion of Proposition [0.1] holds for
all (abstract) fusion systems and associated linking systems.
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When G is a sporadic simple group and p is odd, a more direct proof that ug
is an isomorphism is given in [O1l Propositions 4.1 & 4.4].

The fusion system F = Fg(G) is tamely realized by G if k¢ is split surjective,
and is tame if it is tamely realized by some finite group G* with S € Syl (G*)
and F = Fgs(G*). We refer to [AOV1], Theorems A & B] or [AKO| §II1.6.1] for
the original motivation for this definition. In practice, it is in many cases easier to
study the homomorphism k¢, which is why we include information about pg here.
The injectivity of kg, when p = 2 and G is a sporadic simple group, follows from a
theorem of Richard Lyons [Ly2, Theorem 1.1] (see the proof of Proposition 2:2)).

Fusion systems of alternating groups were shown to be tame in [AOV1] Propo-
sition 4.8], while those of finite groups of Lie type (including the Tits group) were
shown to be tame in [BMOL Theorems C & D]. So the following theorem com-
pletes the study of tameness for fusion systems of the known finite nonabelian
simple groups.

THEOREM A. Fiz a sporadic simple group G, a prime p which divides |G|, and
S € Syl (G). Set F = Fs(G) and L = LG(G). Then F is tame. Furthermore, kg
and pg are isomorphisms (hence F is tamely realized by G) if p = 2, or if p is odd
and S is nonabelian, with the following two exceptions:
(a) G = My andp = 2, in which case Out(G) = 1 and |Out(F)| = |Out(L)| =
2; and

(b) G = He and p = 3, in which case |Out(G)| = 2 and Out(F) = Out(L) =
1.

ProOF. By Proposition[0.]], ¢ is surjective in all cases, and is an isomorphism
if pis odd. When p = 2, ¢ is injective (hence an isomorphism) by Propositions [2.1]
(when |S| < 29) and 511 (when |S| > 210). Thus in all cases, k¢ is an isomorphism
if and only if Kg = ug o kg is an isomorphism.

When p = 2, kg is an isomorphism, with the one exception G = M, by
Propositions 2] (when |S| < 2%) and (when |S| > 219). When p is odd, S is
nonabelian, and F is not simple, then k¢ is an isomorphism by Proposition Bl
When p is odd and F is simple, kg is an isomorphism except when G =2 He and
p = 3 by Proposition The two exceptional cases are handled in Propositions
21 and O

In the first half of the paper, we compare Out(G) with Out(F): first listing
some general results in Chapter [l and then applying them to determine the nature
of kg in Chapters @I (for p = 2) and Bl (for p odd). We then compare Out(F)
with Out(£) (when p = 2) in the last half of the paper: general techniques for
determining Ker(ug) are listed in Chapter [ and these are applied in Chapter
to finish the proof of the main theorem.

The author plans, in a future paper with Jesper Grodal, to look more closely
at the fundamental groups of geometric realizations of the categories £§(G) when
G is a sporadic group. This should give alternative proofs for several of the cases
covered by Theorem [Al

I would like to thank Michael Aschbacher for explaining to me the potential
importance of these results. Kasper Andersen made some computer computations
several years ago involving the Rudvalis sporadic group at p = 2; while they’re not
used here, they probably gave me hints as to how to proceed in that case (one of the
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hardest). I also thank the referee for his many suggestions which helped simplify
or clarify several arguments. I would especially like to thank Richard Lyons for
the notes |[Ly2] he wrote about automorphisms of sporadic groups, without which
I might not have known how to begin this project.

Notation: We mostly use Atlas notation [Atl, §5.2] for groups, extensions,
extraspecial groups, etc., as well as for names (2A, 2B, 3A, ...) of conjugacy
classes of elements. An elementary abelian 2-group has type 2A"™ if it is 2A-pure
of rank n (similarly for an elementary abelian 3-group of type 3A™); it has type
2A,B; ... if it contains ¢ elements of class 2A, j of class 2B, etc. Also, A, and S,
denote the alternating and symmetric groups on n letters, £, (for p prime) is an
elementary abelian p-group of order p¥, and UT,,(q) (for n > 2 and ¢ a prime power)
is the group of upper triangular matrices in GL,(¢q) with 1’s on the diagonal. As
usual, G# = G\ {1} is the set of nonidentity elements of a group G, and Z»(S) < S
(for a p-group S) is the subgroup such that Z5(S)/Z(S) = Z(S/Z(S)). For groups
H < G and elements g,h € G, % = ghg~! and 9H = gHg~!. For each pair of
groups H < G,

Autg(H) ={(x— %) |g € Ng(H)} < Aut(H)
and
Outg(H) = Autg(H)/Inn(H).
We assume in all cases the known order of Out(G) for sporadic groups G,
without giving references each time.
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CHAPTER 1

Automorphism groups of fusion systems:
Generalities

We give here some techniques which will be used to determine the nature of
kg. We begin with the question of injectivity. Recall that |Out(G)| < 2 for each
sporadic simple group G.

LEMMA 1.1. Fiz a prime p. Let G be a finite group, fiz S € Syl (G), and set
F = Fs(Q).

(a) For each a € Aut(Q), the class [a] € Out(G) lies in Ker(kg) if and only

if there is o/ € [a] such that |S] | |Ca(a)].

(b) Assume |Out(G)| = 2 and p is odd. If there is no a € Aut(G) such that

la| =2 and |S] ’ |Ca(a)|, then kg is injective.

(c) Assume |Out(G)| = 2. If Outpuye)(Q) > Outg(Q) for some Q < S, then

Ka 1S tnjective.

PrROOF. (a) We can assume « is chosen so that «(S) = S. If [a] € Ker(kg),
then als € Autg(S): conjugation by some g € Na(S). Set o = aoc,' € Aut(G);
then [@'] = [@] in Out(G), and Cg(a’) > S.

Conversely, assume |S| | [Ca(a/)]. Then Cg(a’) > 95 for some g € G. Set
o =cgo0a ocy (composing from right to left), where ¢, € Inn(G) and ¢4(S) = 95.
Then [o] = [¢/] = [ in Out(G), o'|s = Ids, and hence k¢ ([a]) = ka([a”]) = 1.
(b) If k¢ is not injective, then by (a), there is a € Aut(G) \ Inn(G) such that
15| | |Ca(a)]. Since |Out(G)| = 2, |a| = 2m for some m > 1. Thus |a™| = 2, and
S| [ ICa(a™)].

(c) If @ €S and Outpyy(g)(Q) > Outg(Q), then there is f € Aut(G) \ Inn(G)
such that 5(Q) = Q and f|q ¢ Autg(Q). Since S € Syl,(Ng(Q)), we can arrange
that 5(S) = S by replacing 8 by ¢, o 8 for some appropriate element € Ng(Q).
We still have g ¢ Aute(Q), so Bls ¢ Aute(S), and kg([f]) # 1. Thus k¢ is
nontrivial, and is injective if |Out(G)| = 2. O

A finite group H will be called strictly p-constrained if Cy(O,(H)) < O,(H);
equivalently, if F*(H) = O,(H).

LEMMA 1.2. Fiz a prime p. Let G be a finite group, fiz S € Syl,(G), and set
F =Fs(GQ). Let H < G be a subgroup which contains S.

(a) If H is strictly p-constrained, then kg and pg are isomorphisms.

(b) Assume H = Ng(Q), where either Q is characteristic in S, or |Q| = p,
Q < Z(S), and Aut(F) sends each G-conjugacy class of elements of or-
der p in Z(S) to itself. Set Fy = Fs(H) for short, and set Aut’(Fg) =

127
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128 1. AUTOMORPHISM GROUPS OF FUSION SYSTEMS: GENERALITIES

Aut(Fr) N Aut(F) and Out’(Fg) = Aut®(Fy)/Auty(S). Then the in-
clusion of Aut’(Fy) in Aut(F) induces a surjection of Out®(Fg) onto
Out(F), and hence |Out(F)| < |Out’(Fg)| < |Out(Fp)|.
If in addition, H 1is strictly p-constrained or kg is onto, and we set
Out’(H) = i (0wt (Fg)), then |Out(F)| < |Out’(H)| < |Out(H)|.
PROOF. (a) See, e.g., [BMO) Proposition 1.6(a)].
(b) We first claim that

(1) At(F) = Auta(S)-Naw(r) (@) < Auta(S)-Aut®(Fi)

as subgroups of Aut(S). If @ is characteristic in S, then the equality is clear. If
Q| = p, @ < Z(S), and each o € Aut(F) sends @ to a subgroup which is G-
conjugate to @, then the equality follows from the Frattini argument (and since
each subgroup of Z(S) which is G-conjugate to @ is Ng(S)-conjugate to Q). If
a € Aut(S) normalizes ) and preserves fusion in G, then it preserves fusion in
H = N¢(Q). Thus Nayyr)(Q) < Aut’(Fp), proving the second relation in ().

Now, Auty(S) < Autg(S) N Aut’(Fg). Together with (), this implies that
the natural homomorphism

Owt’(Fy) = Aut’(Fy) /Aut g (S) —— Aut(F)/Autg(S) = Out(F)

is well defined and surjective. The last statement now follows from (a). O

The next lemma will be useful when determining Out(H) for the subgroups H
which appear when applying Lemma [L2(b).

LEMMA 1.3. Let H be a finite group, and let Q < H be a characteristic subgroup
such that Cy(Q) < Q. Set H* = Outy(Q) = H/Q.

(a) There is an ezact sequence
1 —— HY(H*; Z(Q)) — Out(H) —— Nowyo)(H*)/H",
where R sends the class of a € Aut(H) to the class of aq.

(b) Assume R < Z(Q) and R < H. Let o € Aut(H) be such that a|g = Idg
and [a, H] < R. Then there is ¢ € Hompy(Q/R, R) such that a(g) =
g (gR) for each g € Q, and hence a|g = 1dg if Homy(Q/R,R) = 1. If
alg =1dg, [a, H < R, and H'(H*; R) = 0, then o € Autg(H).
(¢) Fiz a prime p, assume Q is an extraspecial or elementary abelian p-group,
and set Q = Q/Fr(Q). Set H} = or (H*), and X = Nouy)(H*)/H*.
(c.) If@ is absolutely irreducible as an F, H*-module, then there is Y < X

such that Y = (Z/p)* /Z(H*) and XY is isomorphic to a subgroup
of Out(H™*).

(c.ii) If@ is absolutely irreducible as an F, Hi-module, then there is Y < X
such that Y = (Z/p)* | Z(H*) and

| X/Y| < [Out(Hg)|/|Out - (Hg)].

Here, Z(H*) acts on @ via multiplication by scalars, and we regard it as
a subgroup of (Z/p)* in that way.
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Proor. (a) The exact sequence is a special case of [OV], Lemma 1.2].

(b) By assumption, there is a function ¢: Q/R — R such that a(g) = g¥(gR) for
each g € @, and ¢ is a homomorphism since R < Z(Q). For each h € H, a(h) = rh
for some r € R. So for g € Q, since [r,Q] = 1, we get ¥("gR) = ("9)"ta("g) =
("g)~""a(g)) = (g~ a(g)) = "(gR). Thus ¥ € Homp(Q/R, R).

If a|g =1Id and [o, H] < R, then thereis x: H* — R such that a(g) = x(9Q)g

for each g € H. Then x(ghQ) = x(9Q)-9(hQ) for all g,h € H, so x is a 1-cocycle.
If HY(H*; R) = 0, then there is r € R such that x(gQ) = r(9)~! for each g € H,
and « is conjugation by r.
(c) If Q is absolutely irreducible as an F, H*-module, then Cout(q)(H*) = (Z/p)*
consists of multiplication by scalars (see [Al 25.8]), so its image Y in the group X =
Nous(q)(H*)/H* is isomorphic to (Z/p)*/Z(H*). Also, X/Y = Outoyugq)(H*):
a subgroup of Out(H*). This proves (c.i).

If Q is absolutely irreducible as an F, Hj-module, then let ¥ be the image of
Couq)(Hy) in X = Nowo)(H*)/H*. Then Y = (Z/p)*/Z(H*) (by [A] 25.8]
again), and

|X/Y| = [Now)(H")/Cout(q)(Hy)-H*| < [Now)(Hg)|/ICousq)(Hg)-H*|
= [Autouy(q) (H)|/|Auty- (Hp)|
< |Aut(Hg)|/|Aut - (Hg)| = [Out(Hg)|/|Out g+ (Hg)|.

This proves (c.ii). O

The next lemma provides some simple tools for showing that certain represen-
tations are absolutely irreducible.

LEMMA 1.4. Fiz a prime p, a finite group G, and an irreducible F,G-module
V.
(a) The module V' is absolutely irreducible if and only if Endp,c(V) = F,,.

(b) Ifdimg, (Cv(H)) =1 for some H < G, then V is absolutely irreducible.

(c) Assume H < G is a subgroup such that V|g splits as a direct sum of
absolutely irreducible pairwise nonisomorphic IFpH-submodules. Then V
is absolutely irreducible.

PROOF. (a) See, e.g., [Al 25.8].

(b) Set Endg,q(V) = K: a finite extension of . Then V' can be considered as
a KG-module, so [K:F,] divides dimp, (Cy (H)) for each H < G. Since there is H
with dimp, (Cy(H)) = 1, this implies K = ), and so V is absolutely irreducible
by (a).

(c) The hypothesis implies that the ring Endg, g (V) is isomorphic to a direct
product of copies of I}, one for each irreducible summand of V|g. Since Endp, (V)
is a subring of Endr, ('), and is a field since V' is irreducible, it must be isomorphic
to F,. So V is absolutely irreducible by (a). (]

LEMMA 1.5. Let G be a finite group, and let V' be a finite F,G-module.
(a) If Cy(Oy(G)) =0, then HY(G;V) = 0.
(b) If|V|=p, and Gy = C(V), then H*(G; V) = Homg , (Go/[Go, Gol, V).
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PrOOF. (a) Set H = Oy (G) for short. Assume W > V is an F,G-module
such that [G,W] < V. Then [H,W] = [H,V] = V since Cy(H) = 0, and so
W =Cw(H)® [H,W] = Cw(H)& V. Thus H'(G;V) = Extg (F,, V) = 0.

Alternatively, with the help of the obvious spectral sequence, one can show that
HY(G;V) =0 for all i > 0.

(b) This is clear when G acts trivially on V. It follows in the general case since
for Gy < G of index prime to p and any F,G-module V, H'(G;V) is the group of
elements fixed by the action of G/Gy on HY(Go; V). O

We end with a much more specialized lemma, which is needed when working
with the Thompson group F3.

LEMMA 1.6. Set H = Ag. AssumeV is an 8-dimensional Fo H-module such that
for each 3-cycle g € H, Cy(g) = 0. ThenV is absolutely irreducible, dim(Cy (T)) =
1 for T € Syly(H), and Nawevy(H)/H = 1.

ProOF. Consider the following elements in Ag:
a; = (123), as = (456), as = (789),
by = (12)(45), by = (12)(78), by = (12)(47)(58)(69).

Set A = <(11, as, a3) = E27 and B = <b1, b2, b3> = Dg. Set ‘_/ = ]F2®F2 V. Asan I_FQA-
module, V splits as a sum of 1-dimensional submodules, each of which has character
A— ]1_?2X for which none of the a; is in the kernel. There are eight such characters,
they are permuted transitively by B, and so each occurs with multiplicity 1 in
the decomposition of V. Thus V is AB-irreducible, and hence H-irreducible (and
V is absolutely irreducible). Also, dimm(C‘—/(B)) = 1, so dim(Cy(B)) = 1, and
dim(Cy (T')) = 1 since Cy (T') # 0.

In particular, Cayyvy(H) = F5 = 1, and hence Nayyvy(H)/H embeds into
Out(H). So if Nawgvy(H)/H # 1, then the action of H extends to one of H =~ S,.
In that case, if we set © = (12) € H, then Cy (x) has rank 4 since x inverts a; and
Cy(a1) = 0. But the group Cg(z)/x = S;7 acts faithfully on Cy(x), and this is
impossible since GL4(2) 2 Ag contains no Sz-subgroup. (This argument is due to
Richard Lyons [Ly2].) O
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CHAPTER 2

Automorphisms of 2-fusion systems of sporadic
groups

The main result in this chapter is that when G is a sporadic simple group and
p =2, Out(F) = Out(G) in all cases except when G = Mj;. The first proposition
consists mostly of the cases where this was shown in earlier papers.

PROPOSITION 2.1. Let G be a sporadic simple group whose Sylow 2-subgroups
have order at most 2°. Then the 2-fusion system of G is tame. More precisely, kg
and pg are isomorphisms except when G = My, in which case the 2-fusion system
of G is tamely realized by PSL3(3).

Proor. Fix G as above, choose S € Syl,(G), and set F = Fg(G). There are
eleven cases to consider.

If G 22 M1, then Out(G) = 1. Also, F is the unique simple fusion system over
SD16, so by [AOV1l Proposition 4.4], |Out(F)| = 2, and kg~ is an isomorphism
for G* = PSU3(13) (and pg~ is an isomorphism by the proof of that proposition).
Note that we could also take G* = PSL3(3).

If G 22 Jy, then Out(G) = 1. Set H = Ng(S). Since S 2 Ej is abelian, fusion
in G is controlled by H = 23:7:3, and so F = Fs(H) and £ = L$(H). Since H is
strictly 2-constrained, Out(£) = Out(F) = Out(H) = 1 by Lemma [[(a), and so
kg and pg are isomorphisms.

If G =2 Mjyy, Mag, Ja, J3, or McL, then F is tame, and kg is an isomor-
phism, by [AOV1l Proposition 4.5]. Also, ue was shown to be an injective in the
proof of that proposition, and hence is an isomorphism by Proposition [0.1]

If G = M5, Ly, HS, or O’N, then F is tame, and kg and pug are isomor-
phisms, by [AOV3| Lemmas 4.2 & 5.2 and Proposition 6.3]. |

It remains to consider the larger cases.

PROPOSITION 2.2. Let G be a sporadic simple group whose Sylow 2-subgroups
have order at least 2'°. Then kg is an isomorphism.

ProOOF. Fix G as above, choose S € Syly(G), and set F = Fs(G). There are
fifteen groups to consider, listed in Table

We first check that x¢ is injective in all cases. This follows from a theorem of
Richard Lyons [Ly2| Theorem 1.1], which says that if Out(G) # 1, then there is a 2-
subgroup of G whose centralizer in Aut(G) = G.2 is contained in G [Ly2], Theorem
1.1]. Since that paper has not been published, we give a different argument here:
one which is based on Lemma [[.T|(c), together with some well known (but hard-to-
find-referenced) descriptions of certain subgroups of G and of Aut(G).

The groups G under consideration for which |Out(G)| = 2 are listed in Table
211 In each case, Ng(R) has odd index in G (hence R can be assumed to be normal
in S), and Outp ) (R) > Outg(R). So kg is injective by Lemma [L.T]c).
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‘ G H Suz ‘ He ‘ Fligo ‘ Fiy, ‘ Fx ‘
R 21_+6 24+4 25+8 2}‘:_12 2-1|-+8
Outg(R) Qg (2) 53 X Sg Sg X A@ 3U4(3)2 (A5 X A5)2
Outg_g(R) SOg(Q) 32:D8 Sg X 56 3U4(3)22 (A5 X A5).22
Reference || [GL, p.56] | [W7, §5] | [A3] 37.8.2] | W8 Th.E] | [NW| Th.2]
TABLE 2.1

It remains to prove that |Out(F)| < |Out(G)|.

Except when G = Ru, we do
this with the help of Lemmal[l2[(b) applied with H as in Table[Z2l Set Q = O2(H),

Q=Q/Z(Q), and H* = Outy(Q).

L a [ 1s] H | [0ut(#)] | [Out(F)| | [Out(G)] | Reference

Moy || 210 2470.15(2) 2=12 1 1 [A2] Lm. 39.1.1]
Jo || 22| 2it12 30002 2=21 1* 1 KW, §1.2]
Cos || 210 2-Spg(2) 1 1 1 [Fi, Lm. 4.4]
Cos || 218 2178 Spg (2) 1=11 1 1 [W1l, pp.113-14]
Coy | 22! 21 Moy 1=11 1 1 [A2) Lm. 46.12]
Suz || 23 216, U,4(2) 2=12 2 2 W2 §2.4]
He | 210 2470:15(2) 2=12 2 2 [Hel p. 253]

348

2.2416 Gy [AS| Th. J.1.1]
Figg || 27 210 My, 2=12 2 2 [A3] 25.7]
Fiys || 218 2 Mo 1=11 1 1 [A3] 25.7]
Fiy, || 22 21 Moy 2=21 2 2 [A3] 34.8, 34.9]
Fy | 2] 2078 (45 x A5).2 | 4=22 2* 2 [NW, §3.1]
Fy || 2% 2478 Ag 1=11 1 1 [W11l Thm. 2.2]
Fy || 2% 21722 Co, 1=11 1 1 [MS, Thm. 2]
Fy || 26 24724, Co, 1=11 1 1 [MS| Thm. 1]

TABLE 2.2

When G 22 Cos, and H = N¢g(Z(S)) = 2-Sps(2) is quasisimple, Out(H) =1
since Out(H/Z(H)) = 1 by Steinberg’s theorem (see [GLS| Theorem 2.5.1]). Also,
Ku/z(m) is surjective by [BMOL Theorem A], so kg and iy are surjective by
[AOV1] Proposition 2.18]. Hence |Out(F)| < |Out(H)| = 1 by Lemma [[2(b).

If G =2 Co,y, Fizz, Fizz, Or Fi'24, then Q is elementary abelian, H*

(o

M, for

k=24, 22, 23, or 24, respectively, and @ is an absolutely irreducible Fo H*-module
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by [A3, 22.5]. Also, Q = J(S5) (i.e., @ is the unique abelian subgroup of its rank)
in each case: by [A2] Lemma 46.12.1] when G = Co;, and by [A3l Exercise 11.1,
32.3, or 34.5] when G is one of the Fischer groups. By [MSt, Lemma 4.1] (or by
[A3] 22.7-8] when G is a Fischer group), H!(H*; Q) has order 2 when G = Fi),
(and @ is the Todd module for H*), and has order 1 when G is one of the other
Fischer groups (@ is again the Todd module) or Co; (Q is the dual Todd module).
So

[Out(F)| < [Out(H)| < |H' (H"; Q)|-|Out(H")| = |Out(G)| :

the first inequality by Lemma [[2(b), the second by Lemmas [[3(a) and [[3fc.i),
and the equality by a case-by-case check (see Table 2.2]).

In each of the remaining cases covered by Table 221 H = Ng(Z(S)) and
is strictly 2-constrained, and @ is extraspecial. We apply Lemma [[3l(a) to get an
upper bound for [Out(H)|. This upper bound is listed in the fourth column of Table
in the form m = a-b, where |H*(H*; Z(Q))| < a and INOut () (H*)/H*| <'b.
By Lemma [L5(b), H'(H*; Z(Q)) = Hom(H*,C3) = 1 except when G = J, or Fj,
in which cases it has order 2. This explains the first factor in the fourth column.
The second factor will be established case-by-case, as will be the difference between
|Out(F)| and |Out(H)| when there is one (noted by an asterisk).

If G =2 Ms4 or He, then H = 21++6.L3(2), and C_Q splits as a sum of two non-
isomorphic absolutely irreducible Fo H*-modules which differ by an outer automor-
phism of H*. Hence Nou(g)(H*) = L3(2):2, and |Out(H)| < [Nowyq)(H*)/H*| =
2. These two irreducible submodules in @ lift to rank 4 subgroups of Q, of which
exactly one is radical (with automizer SLy(2)) when G = My (see [A2, Lemma
40.5.2]). Since an outer automorphism of H exchanges these two subgroups, it does
not preserve fusion in G when G = Moy, hence is not in Out(H) in the notation
of Lemma [L2(b). So [Out(F)| < |Out’(H)| =1 in this case.

If G &2 Js, then H = 2i+12.3M22:2. The group 3Msy has a 6-dimensional
absolutely irreducible representation over F4, which extends to an irreducible 12-
dimensional representation of 3Mao:2 realized over Fy. (See [KW,, p. 487]: 3Mas <
SUs(2) < SO, (2).) Hence |Out(H)| < 2 by Lemmas[[3(a,c) and [LH(b), generated
by the class of 3 € Aut(H) of order 2 which is the identity on O?(H) and on
H/Z(H).

By [KW| Table 1], there is a four-group of type 2AAB in H, containing
Z(Q) = Z(H) (generated by an element of class 2A), whose image in H/Oq 3(H) =
Moss:2 is generated by an outer involution of class 2B in Aut(Msz). Thus there are
cosets of Z(Q) in H ~ O?(H) which contain 2A- and 2B-elements. Hence 3|5 is
not G-fusion preserving, so |Out(F)| < |Out®(H)| = 1 by Lemma [[L2(b).

If G = Coy, then H = Ng(z) & 2}~_+8.Sp6(2). By [Sm|, Lemma 2.1], the action
of H/Q on C_Q is transitive on isotropic points and on nonisotropic points, and hence
is irreducible. If Q is not absolutely irreducible, then Ende[H/Q](@) > Fy by
Lemma [[4(a), so H/Q = Sps(2) embeds into SL4(4), which is impossible since
Spg(2) contains a subgroup of type 7:6 while SLy(4) does not.

Alternatively, Q is absolutely irreducible by a theorem of Steinberg (see [GLS|

Theorem 2.8.2]), which says roughly that each irreducible FySpg(F2)-module which
is “small enough” is still irreducible over the finite subgroup Spg(2).
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Thus by Lemma [L3(c.i), Nou(g)(H*)/H* is isomorphic to a subgroup of
Out(H*), where Out(H*) = 1 (see [GLS| Theorem 2.5.1]). This confirms the
remaining entries for G in Table

If G = Suz, then H = 2'70.Q,(2), H* has index 2 in Out(Q) = SO, (2), and
|Out(H)| < 2 by Lemmas [[3|(a) and [L5(b).

If G & Fs, then H = Ng(z) = 217.(4512) for z € 2B. As described in
[NW, §3.1] and in [Hal Lemma 2.8], O?(H*) acts on Q as 2 (4) for some Fy-
structure on Q. Also, the 2B-clements in Q ~ Z (Q) are exactly those involutions

which are isotropic under the F4-quadratic form on C_Q ~ T

Now, H* has index 2 in its normalizer SOF (4).2% in Out(Q) = SOF(2), so
|Out(H)| < 4 by Lemmas [[3(a) and [LZ(b). Let § € Aut(H) be the noniden-
tity automorphism which is the identity on O%(H) and on H/Z(H). To see that
|Out(F)| < 2, we must show that 5 does not preserve fusion in S.

By [NW| p. 364], if W = (2,9) 2 E, for z € Z(H) and g € H ~ O?(H), then
W contains an odd number of 2A-elements, and hence g and zg are in different
classes (see also [Hal Lemma 2.9.ii]). Hence § is not fusion preserving since it
doesn’t preserve G-conjugacy classes. By Lemma [L2(b), |Out(F)| < |Out®(H)| <
2 = |Out(G)].

If G & F3, then H = 2%:“8.149. By |[Pal §3], the action of Ay on Q is
not the permutation representation, but rather that representation twisted by the
triality automorphism of SOF (2). By [Pal 3.7], if z € H* = Ag is a 3-cycle, then
C’é(x) = 1. Hence we are in the situation of Lemma [L.6] and Noq)(H*)/H* =1
by that lemma. So Out(H) = 1 by Lemmas [[3((a) and [LT(b), and Out(F) = 1.

If G =2 F5 or Fi, then H = H; & 2_?22.6’02 or 2_?24.001, respectively. Set
Q = O0y(H) and Q = Q/Z(Q). If G = Fy, then Q = A, the mod 2 Leech lattice,
and is Coy-irreducible by [A2] 23.3]. If G = F,, then Q = vi/(vy) where vy € A is
the image of a 2-vector. The orbit lengths for the action of Coy on A/(vs) are listed
in [W1l Table I}, and from this one sees that vs-/(v) is the only proper nontrivial
Coy-linear subspace (the only union of orbits of order 2% for 0 < k < 23), and
hence that Q is Cog-irreducible. The absolute irreducibility of Q (in both cases)
now follows from Lemma [[4(b), applied with H = Coqz or Ug(2):2, respectively.

Since Out(Co;) = Out(Co2) = 1, Nouy)(H*)/H* = 1 by Lemma [[3(c.i),
and so Out(H) =1 in both cases.

In in the remaining case, we need to work with two of the 2-local subgroups of
G.

Assume G = Ru. We refer to [A1l 12.12] and [AS| Theorem J.1.1] for the
following properties. There are two conjugacy classes of involutions in G, of which
the 2A-elements are 2-central. There are subgroups Hy, H3 < G containing S such
that

H, =~ 2246 5, Hy = 2378 [3(2).

Set Q; = Oo(H;) and V; = Z(Q;); Vi = Cy and V3 = Eg, and both are 2A-
pure and normal in S. Also, Q1/V; and Q3 are special of types 2476 and 23+%
respectively, and Z(Q3) and Q3/Z(Q3) are the natural module and the Steinberg
module, respectively, for H3/Q3 = SL3(2).

Let V5 < @1 be such that V5/Vi = Z(Q1/V1). Then V; is of type 2A5,
and Cq,(V5) = Qs x Eig. Also, H1/Q1 = S5, and V5/V; and Q1/Cq, (Vs) are
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both natural modules for O%(H,/Q1) = SLy(4). Also, V3/Vi = Cy, v, ((S/Q1) N
O?(H1/Q1)): thus a 1-dimensional subspace of V5/V; as an F4-vector space.

The homomorphism Q1/Cgq, (Vs) — Hom(V5/V4, V1) which sends g to (x —
[g,x]) is injective and hence an isomorphism. So Qs N Q1 = Cg,(V3) has index 4
in Ql, and hence |Q3Q1/Q3| =4.

Fix f € Aut(F). By Lemma [[2(a), for i = 1,3, Ky, is an isomorphism, so
B extends to an automorphism 8; € Aut(H;). Since V3 is the natural module for
Hs3/Qs = SLs(2), B3|y, = ¢, for some z € Hs, and © € Ny, (S) since f5(5) = S.
Then x € S since N, ,0,(S/Q3) = S/Q3, and upon replacing 3 by c;to B and B
by c; !0 B; (i =1,3), we can arrange that 8|y, = Id.

Since Bly, = Id, B3 also induces the identity on Hs/Qs = L3(2) (since this
acts faithfully on V3), and on Q3/V3 = 28 (since this is the Steinberg module
and hence absolutely irreducible). Since Q3/V3 is H3/Qs-projective (the Steinberg
module), H*(H3/Q3;Q3/V3) = 0, so by Lemma [[3(b) (applied with Q3/V3 in the
role of R = @), the automorphism of H3/V3 induced by B3 is conjugation by some
yV3 € Q3/V3. Upon replacing 3 by c;l o 8 and similarly for the (§;, we can arrange
that [B3, H3] < V3.

Since @Q3/V3 and V3 are irreducible Fo[H3/Qs]-modules and not isomorphic to
each other, Homp, /q,(Q3/V3,V3) = 0. By Lemma [L.3[b) again, applied this time
with @3 > V5 in the role of Q > R, we have S|g, = Id.

Now consider 51 € Aut(H;p). Since 5p is the identity on Q3 = Cgs(V3)
Cs(Vs) = Cu,(Vs), we have 81 = Idy, modulo Z(Cs(V5)) = V5 (since ¢,
c3,(q) € Aut(Cs(Vs)) for each g € Hy). So by Lemma [L3(b), there is ¢ €
Homg, /g, (Q1/Vs, Vs/V1) such that B(g) € g¥(gVs) for each g € Q1. Also, Im(1)) <
V3/V;y since [8,5] < Vi, and hence ¢p = 1 since V5/Vp is irreducible. Thus
[B1, Q1] < V1.

We saw that |Q1Q3/Q3| = 4, so Autg, (V3) is the group of all automorphisms
which send V; to itself and induce the identity on V3/V;. Fix a pair of generators
u@Qs,vQ3 € @Q1Q3/Q3. Then S(u) € uVi and B(v) € vVy, and each of the four
possible automorphisms of @Q3Q1 (i.e., those which induce the identity on @3 and
on 1Q3/V1) is conjugation by some element of V3 (unique modulo V7). So after
conjugation by an appropriate element of V3, we can arrange that 3|g,q, = Id (and
still [Bs, H3] < V3).

Let Vo < V3 be the unique subgroup of rank 2 which is normal in S, and set
Sy = Cs(‘/g) Thus |S/SQ| = 2, and So/Qg ~ By Fixw € (SO n Qng) AN Qg
(thus wQs generates the center of S/Q3 = Dg). Choose g € Ny, (V2) of order 3;
thus g acts on Vo with order 3 and acts trivially on V3/V5. So Vs(g) =2 Ay x Co,
and since |83(g)] = 3, we have B3(g) = rg for some r € Va. Set w' = %w € Sy.
Then Sy = Qz{w,w'), f(w) = w since w € Q1Q3, and B(w') = B(gwg™!) =
rgwg~tr=! ="' = w': the last equality since w’ € Sy = Cs(V5). Since S = SpQ1,
this proves that § = Idg, and hence that Out(F) = 1.

This finishes the proof of Proposition |

v
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CHAPTER 3

Tameness at odd primes

We now turn to fusion systems of sporadic groups at odd primes, and first look
at the groups whose p-fusion systems are not simple.

PROPOSITION 3.1. Let p be an odd prime, and let G be a sporadic simple group
whose Sylow p-subgroups are nonabelian and whose p-fusion system is not simple.
Then kg is an isomorphism.

Proor. Fix S € Syl (G), and set F = Fs(G). By [A4, 16.10], if F is not
simple, then either Ng(S) controls fusion in G (“G is p-Goldschmidt” in the termi-
nology of [A4]), in which case S < F and F is constrained, or F is almost simple
and is realized by an almost simple group L given explicitly in [A4l 16.10] and also
in Table We handle these two cases separately.

Case 1: Assume first that S < F and hence F is constrained. By [A4], Theorem
15.6], there are seven such cases (G,p), also listed in Table By the tables
in [GLS| Table 5.3], in each case where Out(G) # 1, no involution of Aut(G)

centralizes a Sylow p-subgroup. Thus K¢ is injective in all seven cases by Lemma
[LIIb). Set H = Ng(H)/Op (Ng(H)). Since Ng(S) controls p-fusion in G,

(1) Out(F) = Out(H) injects into Noyue(s)(Outge(S))/Outg(S):

the isomorphism by Lemma [[2(a) and the injection by [3|(a).
In the six cases described in Table[31] S is extraspecial of order p* and exponent
p. Note that Out(S) = GLz(p). Using that PGLy(3) = £4, PGLy(5) =2 X5, and ¥y

(G,p) (J2,3) (003,5) (002,5) (HS, 5) (MCL, 5) (J4, 11)

out(@)] || 2 1 1 2 2 1
Outg(S) CS 024 X 02 4'24 CS X CQ 03 D! Cg 5 X 2-24
TABLE 3.1

is maximal in PGLs(11), we see that in all cases, |Out(F)| < |Out(G)| by (). So
kg and kg are isomorphisms since they are injective.

It remains to consider the case (G, p) = (Js,3), where |S| = 35. Set T' = Q4(9)
and Z = Z(S). By [J, Lemma 54], T 2 C3, T > Z = C2, Z < [S, S], and there
are two classes of elements of order 3: those in Z and those in T\ Z. Also, S/Z
is extraspecial of order 33 with center 7/Z, and Ng(S)/S = Cg acts faithfully on
S/T and on Z.

Consider the bilinear map

o:S/TxT/Zz 2L 7

137
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where ®(¢T,hZ) = [g, h]. This is nontrivial (otherwise we would have T' < Z), and
hence is surjective since Ng(5)/S = Cg acts faithfully on Z. Fix z € Ng(S) and
h € T whose cosets generate the quotient groups Ng(S)/S and T/Z, respectively.
Since x acts on S/T = C2 with order 8, it acts via an element of GL2(3) \ SLa(3),
and hence acts on T'/Z by inverting it (recall that S/Z is extraspecial). So if we
let ®: S/T — Z be the isomorphism ®,(gT) = [g, h|, then @, (%T) = [*g, h] =
g, h~ 1] = @ (gT)~1. Thus if \,\3 € Fyg are the eigenvalues for the action of
on S/T (for some X of order 8), then A=1, A=3 are the eigenvalues for the action of
x on Z. So there is no nontrivial homomorphism S/T — Z that commutes with
the actions of x.

Let a € Aut(F) be such that a|z = Id. Since o commutes with ®, it must
either induce the identity on S/T and on T//Z or invert both quotient groups, and
the latter is impossible since S/Z is extraspecial. Since « is the identity on Z and
on T/Z, a|r is conjugation by some element of S, and we can assume (modulo
Inn(S)) that a|r = Id. Thus there is ¢ € Hom(S/T, Z) such that a(g) = gp(gT)
for each g € S, and ¢ commutes with the action of S € Ng(S)/S. We just showed
that this is only possible when ¢ = 1, and conclude that a = Idg.

This shows that Aut(F) is isomorphic to a subgroup of Aut(Z) = GL2(3).
Since Autg(S) =2 Cy acts faithfully on Z, and the Sylow 2-subgroups of GLy(3) are
semidihedral of order 16, this shows that |[Aut(F)| < 16 and |Out(F)| < 2. Since
Kq is injective, it is an isomorphism.

Case 2: We now show that k¢ is an isomorphism when F is almost simple. Let L
be as in Table 03] If L = 2Fy(2) and p = 3, then Out(F) = Out(L) = 1 = Out(G)
since Ky, is an isomorphism by [BMO, Proposition 6.9].

Otherwise, set Lo = O (L) and Fy = Fs(Lo). By [A4l 16.3 & 16.10], Fp is
simple, and hence Z(Fy) = 1, when Ly & My and p = 3, and when Ly = Q5(5)
or PSL3(5) and p = 5. Also, kr, is an isomorphism in these cases by Proposition
B2land [BMO| Theorem A, respectively, and L = Aut(Lg) and |L/Lg| = 2 (hence
Out(L) = 1) by [A4] 16.10]. If Out(F) # 1, then there is a € Aut(F) \ Autz(S)
such that als, = Id, and by the pullback square in [AOV1], Lemma 2.15], this
would lie in the image of a nontrivial element of Out(L) = 1. Thus Out(F) = 1,
Out(G) =1 by Table[@3 and so k¢ and hence k¢ are isomorphisms. (]

It remains to handle the cases (G, p) where the p-fusion system of G is simple.

PROPOSITION 3.2. Let p be an odd prime, and let G be a sporadic simple group
whose p-fusion system is simple. Then kg is an isomorphism, except when p = 3
and G = He, in which case |Out(G)| =2 and |Out(Fs(G))| =1 for S € Syl;(G).

ProoF. Fix G and p, choose S € Syl,(G), set F = Fs(G), and assume F is
simple (see Table [0.3 or [A4), 16.10]). Set £ = LE(G).

The centralizers of all involutions in Aut(G) are listed in, e.g., [GLS], Tables
5.3a-z]. By inspection, for each pair (G, p) in question other than (He, 3) for which
Out(G) # 1 (see Tables and B3)), there is no a € Aut(G) of order 2 for which
|S] divides |Cg(a)|. So by Lemma [[LTI(b), <¢ is injective in all such cases.

To prove that kg is an isomorphism (with the one exception), it remains to
show that |Out(F)| < |Out(G)|.

Assume S is extraspecial of order p3. Set H = Ng(S) and H* =
Outg(S) = H/S. We list in Table all pairs (G, p) which occur, together with
a description of H* and of Noy(s)(H*). To determine |Noy(sy(H*)/H*| in each
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case, just recall that GLy(3) = 2-S4 = Qs:S53, that PGLy(5) = S5, and that when
p = 7 or 13, each subgroup of order prime to p in PGLs(p) is contained in a
subgroup isomorphic to Dy(,+1y or Sy (cf. [Sz1l Theorem 3.6.25]).

(G,p) o* Nout(s)(H*) | |Out(G)| | Reference
(Mya,3) | 22 Ds 2 [GLS), Table 5.3b)
(He, 3) Dsg SD1g 2 [Hel Lemma 3.9]
(F3,5) 4.5, 4.5, 1 [W11], § 3]

(He,7) 3 x S5 6 x S5 2 [Hel Lemma 3.23]
(ON,7) || 3xDs | 3x Dig 2 [GLS, Table 5.35]
(Fiby,7) || 6x Ss Cs1Cy 2 [GLS|, Table 5.3v]
(F1,13) || 3x 4:Sy | 3 x4-Sy 1 W10, §11]

TABLE 3.2

In all cases, we have
[Out(F)| < [Out(Ne(S))[ < [Nowss) (H")/H"|.

The first inequality holds by Lemma [[L22(b). The second holds by Lemma [[3{(a),
applied with H = Ng(S), and since H*(H*; Z(S)) = 0 (Lemma [L5(b)). By Table
B2 |Now(s)(H*)/H*| = |Out(G)] in all cases. Hence [Out(F)| < |Out(G)|, and
SO K¢ is an isomorphism if it is injective.

If G = He and p = 3, then H* = Outg(S) =& Dg permutes the four subgroups
of index 3 in § = 3_?2 in two orbits of two subgroups each. As described in
[Btl, Proposition 10] (see also [GLS| Table 5.3p, note 4]), the subgroups in one of the
orbits are 3 A-pure while those in the other have 3A- and 3B-elements, so no fusion
preserving automorphism of S exchanges them. So while |Noy(g)(H*)/H*| = 2,
we have |Out(F)| < |Out’(H)| = 1 by Lemma [L2(b). Thus &g is split surjective
(and G tamely realizes Fg(G)), but it is not an isomorphism.

Assume |S| > p?. Consider the subgroups H < G described in Table B3l In

all cases, we can assume H > S.
Case 1: If G = Suzor Ly and p = 3, then H = Ng(J(S5)), where J(S) = E3s and
H/J(S) =2 My or My x Cy, respectively, and |Out(F)| < |Out(H)| by Lemma
[2(b). Set V.= O3(H) = J(S) and H* = Auty(V) =2 H/V. Then V is the
Todd module for O?(H*) = M;; (it contains 11 subgroups of type 3A permuted
by H*), so H'(H*;V) = 0 by [MSt, Lemma 4.1]. Also, V is absolutely F3H*-
irreducible since H* > 11:5. So by Lemma [[3c.i) and since Out(My1) = 1,
|Nawvy(H*)/H*| < 2if G = Suz (H* = M), and is trivial if G = Ly. Lemma
[[3(a) now implies that |Out(H)| < 2 or 1 for G = Suz or Ly, respectively, and
hence that |Out(F)| < |Out(G)|.

For each of the remaining pairs (G, p) displayed in Table [33] except when G =
F3 and p = 3 (Case 5), we set Q = O,(H), Q= Q/Z(Q), H* = Outg(Q), Hy =
or' (H), and Hf = Outp,(Q). Then H is strictly p-constrained and (@) is extraspe-
cial, and hence Z(S) = Z(Q) has order p. Also, H = Ng(Z(Q)) = Ng(Z(S)) by the
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o ° |2
G |p|% H = | = K N(—) | Reference
’ =2
Coz |3 4 347,48, 1 1 3A | [Fi 5.12]
Coy | 3| 3b 3irteltt sy 1 1 gl 3A | [W1] §3]
Coy | 3| 3a 347 Sp,(3).2 1 1 | Sp,3) | 3C |[Cu2 p.422]
McL | 3| 2 347285 2 2 2:(5:4) | 3A | [Fi, Lm.5.5]
Suz [ 3| 1 35. My, 2 2 J(S) | W2, Thm.|
Ly [3] 1 35. (M x 2) 1 1 J(S) | [Lyll TbLI]
Figy | 3] 4 3470.23+432.2 2 2 3B | [W5] p.201]
Figs | 3| 4 || 3}t821931225, | 1 | 1 3B | [W8, §1.2]
Fiy, |3] 2 3710.U5(2):2 2 2 |2(11:10) | 3B | [W8| Th.B]
Fy | 3] 4 34445 2 2 3B | [NW] §3.2]
B30 o || % | Pa o
Fy | 3|30 31210505 (2) | 1 1 216 3B | [W9, §2]
F, |3 3a 34712.28uz.2 1 1 | 2:(13:6) | 3B | [W10, §3]
Ly | 5] 4 547,48, 1 1 246 5A | [Lyll TbLI]
Fs |5 3b 5itt2l 54 2 2 gl 5B | [NW] §3.3]
F, |5|3b| 542ttt Azq 1 1 it 5B | [W9 §6]
Fi |5 3a 5470.405.2 1 1 2.(7:6) | 5B | [W10, §9]
Fy |7 3a 7AT13 x 287 1 1 | 2(54) | 7B | [WI10, §10]
TABLE 3.3

above references, so |Out(F)| < |Out(H)| by Lemma[T2(b), and it remains to show
that |[Out(H)| < |Out(G)|. By Lemma [LH(b), H'(H*; Z(Q)) = 0 in each of these
cases, and hence Out(H) is sent injectively into the quotient group Noue(g)(H*)/H*
by Lemma [[3|(a). So it remains to show that |Nou(g)(H*)/H*| < |Out(G)].

Case 2: If G = McL or Fiy, and p = 3, then 62 is an absolutely irreducible
F,K-module for K < H* as given in Table [33] and hence an absolutely irreducible
F, H*-module. So [Nou()(H*)/H*| < 2 by Lemma [L3(c): since [Out(2S5)| = 2
in the first case, and since Out(Us(2).2) = 1 and Z(U5(2).2) = 1 in the second case.
Case 3: If G~ F, and p = 3, then Q splits as a sum of two absolutely irreducible
6-dimensional F3K-modules. Since 5?2 | [Suz| | |Hg| while 5%  |GLg(3)|, Q is H-
irreducible, hence absolutely Hg-irreducible by Lemma [[4[(c). In all other cases
under consideration, C_Q is easily checked to be an absolutely irreducible F, K-module
for K < Hj as given in Table[33] and hence an absolutely irreducible F,, Hj-module.
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Thus [Out(F)| < |Nouwq)(H*)/H*| < n-|Out(Hy)|/|Out g+ (Hf)| by Lemma
[L3(c.ii), where for Y as in the lemma, n = |Y| = 2 when (G,p) = (F5,5) (and
H* % Z(0ut(Q))), and n = |Y| = 1 otherwise.

In Case 3a, we have Out(Hj) = Outgy-(Hg) in all cases, so |Out(F)| =
|Out(H)| = 1.

In Case 3b, we determine Out(H{) by applying Lemma[[3](a) again, this time
with O (H{) in the role of Q. Since Out(2'1%) = S5 and Out(2:7°) = SO; (2), the
lemma implies that Out(Hj) = Outg~(H{) in each case, and hence that |Out(F)| <
7.

Case 4: We show, one pair (G, p) at a time, that |Noyyg)(H*)/H*| < |Out(G)|
in each of these five cases.

If G & Cos and p = 3, then @ = 3, and Out(Q) = Sp,(3):2. Set
Z = Z(0ut(Q)) =2 Cy. Then Out(Q)/Z = PSp,(3):2 = SOs5(3) and H*/Z =
Cy x Sg. Under this identification, the central involution © € Z(H*/Z) acts as
—Idy @ Idw for some orthogonal decomposition V & W of the natural module F3;
and since none of the groups Q3 (3), Q3(3), or QF (3) has order a multiple of 5,
dim(V) = 4 and Cgp,(3)(z) = 01 (3). Since € (3) = PSLy(9) = Ag, this shows
that COut(Q)/Z(x) = H*/Z =~ (Cy x SG~ So |NOut(Q)(H*)/H*| =1.

If G = F5 and p = 3, then Q & 3};"4 and H* = 4A5. By the argument in
the last case, Nowy(q)(Z(H")) = 456, so [Nous(q)(H*)/H*| = |Ns,(As)/As| = 2.

When G = Fiz; and p = 3, the subgroup H & 3£r+6.23+4.32.2 is described in
[W5l p. 201]: H* can be regarded as a subgroup of GL2(3) 1S3 < Spg(3).2. More
precisely, 234 < (Qg)? (recall Oy(GL2(3)) = Qsg) is a subgroup of index 4, one
of the factors C's normalizes each Qg and the other permutes them cyclically, and
the Cy acts by inverting both factors Cs. Then Noyu(q)(H*) < GLa(3) 1S3 since

~

it must permute the three Oy(H*)-irreducible subspaces of @, so Nout(g)(H*) =
2314 (S35 x S3), and |[N(H*)/H*| = 2.

When G 22 Fiz3 and p = 3, the subgroup H is described in [W8|, §1.2]. The
subgroup R* = Os(H*) 2176 has a unique faithful irreducible representation over
[F3, this is 8-dimensional, and Ngp(3)(R*)/R* is sent injectively into Out(R*) =
SOg (2) = SO5(3). Since H*/R* = 317%:28, is a maximal parabolic subgroup in
505(3), we get NOut(Q)(H*)/H* =1.

If G = Ly and p = 5, then Q is F5[2Ag]-irreducible since 32  |GL3(5)|, and
is absolutely irreducible since 24¢ is not a subgroup of SLy(25) (since Ey is not
a subgroup). Thus |Noy ) (H*)/H*| < [Out(Ss)| = 2, with equality only if the
action of 244 on 6_2 extends to 2A44.22. This is impossible, since the two classes of
3-elements in 244 act differently on Q (note the action of a Sylow 3-subgroup on

Q), so Nou(q)(H")/H* = 1.

Case 5: When G = F3 and p = 3, we work with two different 3-local
subgroups. Set V; = Z(S) and V5 = Z5(5), and set H; = Ng(V;) and Q; = O3(H;)
for i = 1,2. By [All 14.1.2 & 14.1.5] and [Pal §4], Vi = C3, Vo = Ey, |Q1] =
‘Q2| = 39, and Hl/Ql = H2/Q2 = GL2(3) Note that S S H1 OHQ, and |S‘ = 310.
Also, the following hold:

(1) Set Vs = Z5(Q2). Then V5 = [Q2,Q2] = Eg5, Q2/Vs = F3a, Vs is the
natural module for G3/Q2 = GL2(3), and V5/Vs is the projective abso-
lutely irreducible PSL(3)-module of rank 3. Also, V5/Va = Z(Q2/V2),
and hence Q2/Vs is special of type 334, See [A1] 14.2].
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(2) By [A1l 14.2.3], the quotient Q)2/V5 is indecomposable as an F3[G2/Q2]-
module, and is an extension of one copy of the natural SLy(3)-module by
another. Let Ry < @ be such that Ry > Vs, and R;/Vs < Q2/V5 is the
unique Hs/Qo-submodule of rank 2 (thus |Ry| = 37).

(3) We claim that Cg,(V5) = V5. Assume otherwise: then Cq,(Vs) > Rz since
it is normal in Hy. So V5 < Z(R7), and |[R7, R7]| < 3 since R7/Vs = Ey.
But [R7, R7] < Vs is normal in Hs, so it must be trivial, and R is abelian.
This is impossible: V5 contains elements of all three classes of elements of
order 3 [A1l 14.2.2], while the centralizer of a 3A-element is isomorphic
to (3 x G2(3)).2 whose Sylow 3-subgroups are nonabelian of order 37.

(4) Set V3 = Z3(Q1); then Vi = Ey7, and V3/V; is the natural module for
G1/Q1 [A1l 14.3.1]. Since V5 9.5 and V5 = Z5(S) = Ey, V3 > V5. Also,
V3/Va < Z(Qa/Va) = V5 /Va since |V3/Va| = 3. Thus Vo < V3 < V.

By [A1l 14.3.2], [Q1,Q1] > V3, and @1/[Q1, Q1] = F3a is indecompos-
able as an F3[G1/Q1]-module and an extension of one copy of the natural
SL3(3)-module by another.

(5) Set W7 = Cg(V3) > Vs: a subgroup of S, hence of Q1 N Q2, of order 37
[A1], 14.3.4]. We claim that W7/Vs = Z(S/V5) = Cq, v, (5/Q2), where
S/Vs & C5 x (C31C3) by [All 14.2.5]. To see this, note that for each
g € Q2 such that gVs € Cq, v, (5/Q2), the map = + [z, g] is S/Qo-linear
from Vi /Va to Va, so Vi/Va = [S,[S,V5/V2]] (see (1)) lies in its kernel.
Thus Z(S/Vs) < Wr/Vs, and they are equal since they both have order 9.

(6) To summarize, we have defined two sequences of subgroups
Vo< Vs < Ry < Q< Hs and Vi< Vi< Wr<@Q < Hy,

those in the first sequence normal in Hy and those in the second normal
in Hy, where V,,, & E3m and |Ry| = [W7| = 37. In addition, V; < V5 <
Vs < Vs < Wy < Q.

Fix 8 € Aut(F). By Lemma [[%(a), kg, is an isomorphism, and hence S
extends to an automorphism Sy € Aut(Hs). Since V5 is the natural module for
Hy/Q2 = GL2(3), B2|v, = ¢, for some x € Hy, and & € Ny, (S) since 3(S) = S.
Upon replacing 3 by c; o 8 and Ba by ¢, ' o B2, we can arrange that 3|y, = Id.

Since Bly, = Id, B2 also induces the identity on Ha/Q2 = GLo(3) (since this
acts faithfully on V3), and induces e-Id on V5/Va = Eo; for e € {£1} since it
is absolutely irreducible. By (3), the homomorphism Q2/Vs — Hom(Vs/V2, V)
which sends g to (z +— [g,x]) is injective. Since § induces the identity on V> and
e-Id on V5/Vs, it also induces e-Id on Q2/Vs. By (1), [Q2/Va, Q2/Va] = V5/V2, so
B acts via the identity on V5/Va. Thus e = +1, and S also induces the identity on
Q2/Vs.

Now, H(H3/Q2; Q2/Vs) = 0 by Lemmal[L5|(a) (and since the central involution
in Hy/Q2 = GL2(3) inverts Q2/Vs). So by Lemma [[33(b), applied with Hz/Vs and
Q2/Vs in the role of H and @ = R, 2 = ¢, modulo V5 for some y € Q2. Upon
replacing 2 by c;l o B2, we can arrange that [3, Ha] < V.

Next, note that V5/Va = Z(Q2/V2) and Hompy, ,q,(Q2/Vs, Vs/V2) = 1 by (1)
and (2), and H'(Hz/Qa; Vs/Va) = 0 since Vi /Va is Hy/Qa-projective. So by Lemma
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L3(b), B = c. (mod V3) for some z € V5. Upon replacing 32 by ¢; ! o B2, we can
now arrange that [3s, Ha] < V5.

By Lemma [[33(b), 8|g, has the form B(u) = ux(uVa) for some homomorphism
X € Homg, /q,(Q2/Va, V). Also, x factors through Q2/Vs since [Q2, Q2] = V5 by
(1). By (2), either x = 1, or x is surjective with kernel R;/V5. In either case,
Blr, = 1d. Also, since W7/V5 = Cq, v, (S/Q2) by (5), x(Wz/V5) < Cv,(S/Q2) =
‘/1. So [ﬁ,Wﬂ S Vl.

By Lemma [[2a) again, kg, is an isomorphism, and hence [ extends to
B1 € Aut(Hp). Let 8 € Aut(S/V1) and 1 € Aut(H;/Vi) be the automor-
phisms induced by § and S;. We have just shown that S|y, = Id, and that
[B1,5/Vi] £ Vo/Vi. By Lemmall3|(b) again, f|q, /v, has the form 8(g) = gy (gWW7)
for some 1 € Hompy, /g, (Q1/Wr, V3/V1) with Im(¢) < Vo/Vy. Since Q1/W7 and
V3/V; are natural modules for SLy(3) by (5) and (4), 1) must be surjective or triv-
ial. Since ¢ is not surjective, 8|q, = Id. Also, H'(H1/Q1;V3/V1) = 0 by Lemma
L), so B1 € Auty, v, (H1/V1) by Lemma [L3(b).

We can thus arrange, upon replacing 31 by ¢! o 31 for some w € V3, that B =
Id, and hence that [81, H1] < Vi. (We can no longer claim that [3s, Ha] < V3, but
this will not be needed.) Set H{ = [Hi, H1]. By (4), H{ > Q1 and H{/Q1 = SL2(3).
Also, Vi = Z(H}), so f1|p; has the form 51(g) = g¢(g) for some ¢ € Hom(H], V1).
But Hj is perfect by (4) again, so ¢ = 1, and 1 = Id. Thus Out(F) = 1, and k¢
is an isomorphism.

This finishes the proof of Proposition (]
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CHAPTER 4

Tools for comparing automorphisms of fusion and
linking systems

Throughout this chapter and the next, we assume p = 2. Many of the defini-
tions and statements given here are well known to hold for arbitrary primes, but
we restrict to this case for simplicity. In particular, a strongly embedded subgroup
H < G always means a strongly 2-embedded subgroup; i.e., one such that 2||H |
while 2 ¢ |H N9H| for g € G\ H.

DEFINITION 4.1. Fiz a finite group G, choose S € Syly(G), and set F = Fg(QG).

(a) A subgroup P < S is fully normalized in F if Ng(P) € Syly(Ng(P)).

(b) A 2-subgroup P < G is essential if P is 2-centric in G (if Z(P) €
Syly(Ca(P))) and Outg(P) has a strongly embedded subgroup. Let Eo(G)
be the set of all essential 2-subgroups of G.

(¢) A subgroup P < S is F-essential if P is fully normalized in F and essential
in G. Let Ex be the set of all F-essential subgroups of G.

(d) Z(F)= {W < S| W elementary abelian, fully normalized in F,
W =Q(Z(Cs(W))), Autz(W) has a strongly embedded subgroup}.

Clearly, in the situation of Definition LT} Ex C E5(G), while each member of
E,(G) is G-conjugate to a member of Ex. If W € Z(F) and P = Cg(W), then by
the following lemma, restriction defines a surjection from Outg(P) onto Autg(W)
with kernel of odd order. Hence Outg(P) also has a strongly embedded subgroup,
and P € Er.

LEMMA 4.2. Fiz a finite group G and S € Syly(G), and set F = Fs(G).
(a) Assume W < P < G are 2-subgroups such that W = Q,(Z(P)) and
P € Syl,(Ce(W)). Then restriction induces a surjection Outg(P) —
Autg(W) with kernel of odd order.
(b) IfW € Z(F) and P = Cs(W), then P € Eg.
ProOF. (a) By the Frattini argument, Ng(W) < Ng(P)Cq(W), with equal-
ity since W is characteristic in P. So the natural homomorphism
Outa(P) = Ng(P)/Ca(P)P ——— Na(W)/Ca(W) = Auta(W),
induced by restriction of automorphisms or by the inclusion Ng(P) < Ng(W) is
surjective with kernel (Ng(P) N Cg(W))/Cqa(P)P of odd order.

(b) If W € Z(F) and P = Cg(W), then P € Syl,(Ce(W)) and W = Q4 (Z(P)) by
definition. So we are in the situation of (a), and Outg(P) has a strongly embedded
subgroup since Autg (W) does. Also, Ng(P) < Ng (W), while Ng(P) = Ng(W) €
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Syly(Ng(W)) since W is fully normalized in F. Hence Ng(P) € Syl,(Ng(P)), so
P is also fully normalized and P € Ex. (]

Our proof that Ker(ug) =1 in all cases is based on the following proposition,
which is a modified version of similar results in [AOV1] and [BMO]. In most cases
handled in the next chapter, point (e) suffices to prove that Ker(ug) = 1.

When o € Aut(L) and P is an object in £, we let ap: Aut,(P) — Autz(a(P))
denote the restriction of « to Aut,(P).

PROPOSITION 4.3. Fiz a finite group G, choose S € Syly(G), and set F =
Fs(GQ) and L = LG(G). Each element in Ker(ug) is represented by some o €
Aut(L) such that as = Idaue,.(s). For each such «, there are elements gp €
Czpy(Auts(P)) = Z(Ns(P)), defined for each fully normalized subgroup P &
Ob(L), for which the following hold:

(a) The automorphism ap € Aut(Aut,(P)) is conjugation by [gp] € Autz(P),

and gp is uniquely determined by o modulo Cz(py(Autz(P)). In partic-
ular, ap = Idaw,(py if and only if gp € Cz(py(Autz(P)).

(b) Assume P,Q € Ob(L) are both fully normalized in F. If Q = *P for some
a € S, then we can choose gg = “gp.

(¢) If Q@ < P are both fully normalized and are objects in L, then gp = go
modulo Czqy(Na(P) N Na(Q)).

(d) Assume, for each W € Z(F) and P = Cs(W), that gp € Czp)(Autz(P))
(equivalently, that ap = Idpy,(py). Then o =1d.

(e) If Z(F) =@, then Ker(pug) = 1. If |Z(F)| =1, and | Z(S)| = 2 or (more
generally) Autz(21(Z(S))) =1, then Ker(ug) = 1.

PrOOF. Points (a)—(c) are part of [AOV1], Proposition 4.2], (d) follows from
[BMO| Proposition A.2(d)], and (e) combines parts (a) and (b) in [BMOI Propo-
sition A.2]. O

The following notation will be useful in the next lemma, and in the next chapter.

DEFINITION 4.4. For each finite group G and each k > 0, let 9, (G) be the set
of subgroups H < G such that [G:H|] = 2*-m for some odd m. Let <i(G) be the
union of the sets Fy(G) for 0 < ¢ < k.

LEMMA 4.5. Let H be a finite group, fit T € Syly,(H), and set F = Fr(H). Set
Q = O5(H), and assume C(Q) < Q. Assume W € Z(F), and set P = Cp(W).
Set V.=01(Z(Q)), and set H* = Autyg(V), P* = Autp(V), T* = Auty(V), and
F* = Fp-(H).
(a) We have W <V, Auty(W) = Autg«(W) has a strongly embedded sub-
group, P* is a radical 2-subgroup of H*, and Ny« (P*)/P* has a strongly
embedded subgroup.

(b) If H* is a Chevalley group (i.e., untwisted) over the field Fa, then P* €
Er. C 7 (H"). If H* = SUs,(2) or Q5,,(2) forn > 2, then P* € Ex» C
F<o(H").

(¢c) If H* = Ag, A7, or May, then P* € Ex« C S (H*). If H* & My or
Mosg, then P* € Ex« C jSQ(H*) ]fH* = S5, then P* € fSQ(H*)
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(d) If H* = Aut(Mass), then
P*€Ez C Io(H*) and  P*NO*(H*) € Eo(O*(H™)).

Proor. Fix W € ZA(]:)7 and set P = Cp(W) as above. Then P € Er by
Lemma £2(b). Also, W = Q4(Z(P)) and P > O2(Cy(V)) = Q, and hence W <
M((ZQ)=V.

(a) Since V < H, each a € Auty (W) extends to & € Auty (V) = H*, and
thus Autg-(W) = Auty(W). Hence

Ny« (P*)/P* = N o(P/Q)/(P/Q) = Nu(P)/P = Outy (P),

so this group has a strongly embedded subgroup. In particular, P* = Os(Ng«(P*))
(see [AKO] Proposition A.7(c)]), so P* is a radical 2-subgroup of H*.

(b) Since W <V, W = Q:(Z(P)) = Cy(P*). By (a), Ny~ (P*)/P* has a strongly
embedded subgroup, and Oy (Ng«(P*)) = P*.

If H* is a group of Lie type over the field Fy, then by the Borel-Tits theorem (see
[GLS| Corollary 3.1.5]), Ny~ (P*) is a parabolic subgroup and P* = Oy (Ng-(P*)).
Hence P* € Ez. in this case. Also, O (Outy-(P)) = O (H/P) is a central
product of groups of Lie type in characteristic 2 (cf. [GLS| Proposition 2.6.5(f,g)]).
Since it has a strongly embedded subgroup, it must be isomorphic to SLs(2) = S5
(hence P € #1(H*)), or possibly to As = SLy(4) = Q, (2) if H* = SUs,(2) or
Q3,,(2) for n > 2 (in which case P € #(H*)). Note that we cannot get SUs(2)
since we only consider even dimensional unitary groups.

(c¢) If H* 2 M, for n = 22,23,24, then by [GL, pp. 42-44], it is of characteristic 2
type, in the sense that all 2-local subgroups are strictly 2-constrained. So Ng-(P*)
is strictly 2-constrained, P* is centric in this group, and hence P* € Ex.. Also,
Er. C A(H*) if H* = My, [OV], Proposition 6.5], while Ez« C J<o(H*) if
H* = M22 or M23 [()‘/v7 Table 52]
The remaining cases (H* = Ag, A7, or S5) are elementary.

(d) The radical 2-subgroups of H* = Aut(Mazs) are listed in [Y), Table VIII].
There are just three classes of such subgroups @ for which N(Q)/Q has a strongly
embedded subgroup, of which the members of two have index 2 in a Sylow 2-
subgroup and those of the third have index 4. Each of them is essential in Aut(Ma2),
and contains with index 2 an essential 2-subgroup of M. O

We will need to identify the elements of Z(F), when F = Fs(G) for a sporadic
group G and S € Syl,(G). In most cases, it will turn out that Z(F) = {Z2(S5)},
which is why we need some tools for identifying this subgroup.

LEMMA 4.6. Let S be a 2-group, and assume W < S is elementary abelian. If
[S:Cs(W)] =2, then W < Z5(S) and rk(W) < 2.1k(Z(S5)).

PROOF. Set Q = Cg(W) for short; @ < S since it has index 2. Then W <
21(Z(Q)), and upon replacing W by Q;(Z(Q)), we can arrange that W < S.

Fix z € S\ Q. Since 2% € Q = Cs(W), we have [W,S] = [W,z] < Cy(z) <
Z(S). So W < Z5(S5), and rk(W) < 2.rk(Z(5)). O

LEMMA 4.7. Fiz a finite group G and a Sylow 2-subgroup S € Syl,(G).
(a) If G is one of the sporadic groups Jy, Coy, Coy, Suz, Ru, Fiy,, F5, F3,
Fy, or Fy, then |Z(S)| = 2 and Z5(S) 2 E4. If G = Coy, then Z5(S) has
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type 2ABB, while in all other cases, the three involutions in Zs(S) lie in
the same G-conjugacy class.

(b) If G = Figo, then Z5(S) =& FEy is of type 2A5 B3 Cy and contains a subgroup
of type 2B?. If G = Figs, then Z(S) = Fy.

(¢) If G= HS, O'N, or Cos, then |Z(S)| =2 and Z3(S) =2 Cy x Cs.

PrOOF. (a) In each of these cases, we choose @ < S and H = Ng(Q) as
follows, where H* = H/Q = Auty (Q):

G COl Suz Ru F5 F3 F2 F1 J4 COQ F’L/24

Q || 247 | 216 | 22446 | 28 [ ol#8 o122 ol 24 Foi | By | Egnn

H* Q;(Q) Qg(?) 55 91(4)2 Ag 002 001 M24 M22Z2 M24

References for all of these subgroups are given in the next chapter.

Assume that |Z(Q)| = 2; i.e., that we are in one of the first seven cases. Then
|Z(S)| =2, and Z5(S) < Q since H* acts faithfully on Q/Z(Q). Set Q = Q/Z(Q),
so that Z(S)/Z(S) = C’Z@)(S/Q). If Q is extraspecial, then rk(Z2(S)) > 2: since

Q has an odd number of isotropic points (cf. [Tal, Theorem 11.5]), at least one is
fixed by S.

When G 2 Co, or Suz, Q is the natural (orthogonal) module for H*, so
\C@(S)| = 2 (see [Cul, Theorem 6.15] or [GLS], Theorem 2.8.9]), and hence Z5(.S) =
FEy.

When G = Ru, Q is special of type 24+, Z5(Q) = Esq, and H/Q acts on
Z5(Q)/Z(Q) via the natural action of X' Ly(4) [W4, §1.4]. So |CZ(@)(S/Q)| =2in
this case, and Z5(S) = Ey.

When G = Fy, a Sylow 2-subgroup of O?(H/Q) = Qf (4) acts on Q = (F,)*
with 1-dimensional fixed subgroup. This subgroup lifts to V3 < @, where V3 = FEg
and Autg(V3) =2 GL3(2) (see [NW], p. 365]). Thus [V5,S] > Z(S), so Z2(S) < Vs,
and ZQ(S) = E4.

When G 2 Fs, Q as an FyAg-module satisfies the hypotheses of Lemma by
[Pal 3.7], and hence |C@(S/Q)| = 2 by that lemma.

Assume G 2 Fy or Fy. Thus H* = Coy or Cos, respectively. Set T = S/Q €
Syly(H*), and let V < T and K = Ny« (V) be such that K =2 211 My, or 219 My,:2
and V = O3(K). By [MStrl Lemmas 3.7.b & 3.8.b], |C’C—2(V)\ = 2, and hence
\C’Q(S/QH = 2. So Z5(S) = E, in both cases.

In the remaining three cases, @ is elementary abelian. When G = Cos, Q =
Es10 is the Golay module (dual Todd module) for H* & Myy:2. Let K < H* be
the hexad subgroup K = 2%:S4, chosen so that K > S* = S/Q, and set R =
O3(K) = E16. Set Q1 = Co(R) and Qs = [R,Q)]. By [MStr, Lemma 3.3.b],
tk(Q1) =1, tk(Q5) = 5, and Q5/Q1 is the natural module for Sg = Sp,(2). Hence
Z(S) = Cq(S*) = Q1, and Z»(S)/Z(S) = Cq/q,(5*) = Cq,/0,(S*) also has rank
1. So Z5(S) = E4. The two elements in Z5(S) \ Z(S) are S-conjugate, and do not
lie in 2C since Cg(z) € H5(G) for x € 2C (see [W1, Table II]). By [W1l Table II]
again, each 2A-element acts on the Leech lattice with character —8, so a subgroup

of type 2A? would act fixing only the zero vector, hence cannot be in Co,. Thus
Z5(S) has type 2ABB.
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Assume G = Fiy, or Jy. In both cases, @ = FEyi1 is the Todd module for
H* = My (see [A3] 34.9] and [J, Theorem A.4]). Let K < H/Q be the sextet
subgroup K = 26:3S5, chosen so that K > S* = S/Q € Syl,(H*), and set R =
02(K) = Eg4. By [MStr, Lemma 3.5.b], there are Fo K-submodules @1 < Q7 < Q
of rank 1 and 7, respectively, where Q1 = Cg(R) and Q2 = [R,Q)], and where
K/R = 35 acts on Q7/Q1 as the dual module to R. Thus Z(S) = @1 and
Z3(8)/Z(S) = Cq./q,(8") = R/[S*,R]. Since S* = UTj5(2) contains only two
subgroups of rank 6, one easily sees that |R/[S*, R]| = 2, and hence Z5(S) = Ej.

In all of the above cases except Cos, S contains a normal elementary abelian
subgroup V of rank at least 2 all of whose involutions lie in the same G-conjugacy
class. We refer to the lists of maximal 2-local subgroups in the next chapter, where
we can take V =V, = Z(03(H;)), for i = 2 (when G = Coy, Suz, Fy, or Fy),
i =3 (when G 2 Jy, Ru, or Fy), or i =5 (for G & Fi,, or F3). Since each normal
subgroup of order at least 4 contains Z5(.S), the involutions in Z5(S) also lie in the
same class.

(b) When G & Figy and S € Syly,(G), Z(S) = (z) has order 2, and H = Cg(z) =
(2% 2178):U4(2):2. Set Q = Oo(H). Then O?(H/Q) acts faithfully on Q = Q/Z(Q)
as a 4-dimensional unitary space over Fy4, so dimM(C@(S N O2(H))) = 1 [Cul
Theorem 6.15]. An involution hQ with h € H~O?(H) acts as a field automorphism
on the unitary space Q, so dimg,(C=(S)) = 1. Since |Z(Q)| = 4, this proves that

Q
Z2(5)] < 8.
To see that Z5(.S) does contain a subgroup of rank 3, consider a hexad group
V 2 E39 normal in S, generated by six transpositions {a, ..., as} (wherea; - - - ag =

1), ordered so that Autgs(V) = ((12)(34),(12)(56),(13)(24)). Then
Z(8)=Cv(9) = (asas) and Z>(S) = (a1a2,azas, as,ae) is of type 2A;B35Cs,

and (a1as2,azaq) < Z2(S) is of type 2B2.

When G 2 Fipg and S € Syl,(G), Z(S) = Ey contains involutions z,y, z in
each of the three classes 2A, 2B, and 2C, respectively. Also, Cg(x) & 2Fis9, so
we can identify S/(x) as a Sylow 2-subgroup of Flis2, whose center lifts to a pair of
elements of class 2B and 2C in G. Thus S/Z(S) = T/Z(T) when T € Syl,(Fliga),
we already saw that |Z(T/Z(T))| = 4, and so | Z3(S)| = 16. All involutions in Fiy
lift to involutions in 2-Fiss < G, so Z3(S) is elementary abelian.

(c) When G = HS or O’N, this follows from the descriptions by Alperin [Alp|
Corollary 1] and O’Nan [O’NL §1] of S as being contained in an extension of the
form 43.L3(2). (In terms of their presentations, Z(S) = (viv3), while Z5(S) =
(v103,v3v3).) When G =2 Cog, it follows from a similar presentation of S < 43.(2 x
LB(Q)) (Seea c.g., [OV, §7]) U
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CHAPTER 5
Injectivity of uq

We are now ready to prove, when p = 2, that Ker(ug) = 1 for each of the
sporadic groups G not handled in Proposition 2.1} This will be done in each case
by determining the set zZ (F) and then applying Proposition @3l One can determine
zZ (F) using the lists of radical 2-subgroups found in [Y] and other papers. However,
we decided to do this instead using lists of maximal 2-local subgroups, to emphasize
that the details needed to prove this result are only a small part of what is needed
to determine the radical subgroups.

PROPOSITION 5.1. Assume p =2, and let G be a sporadic simple group whose
Sylow 2-subgroups have order at least 2'°. Then Ker(ug) = 1.

PROOF. There are fifteen groups to consider, and we go through the list one
or two at a time. In each case, we fix S € Syl,(G) and set F = Fs(G), L = LE(G),
and Z = Z (F). When we list representatives for the conjugacy classes of maximal
2-local subgroups of GG, we always choose them so that each such H satisfies SNH €
Syly(H). In particular, if H has odd index in G, then H > S and hence O3(H) < S
and Z(02(H)) < S (making the choice of H unique in most cases).

In four of the cases, when G =2 My, He, Coa, or Fiag, Z has two members,
and we use Proposition @3|(b,c,d) to prove that pg is injective. In all of the other
cases, |§| = land |Z(S)| = 2, and we can apply Proposition [43|(e). Recall that by
Proposition €3] each class in Ker(ug) contains an element o € Aut(£) which acts
as the identity on Aut,(S).

Note that whenever |Z(S)| = 2 and W 2 Ej is normal in S, [S:Cs(W)] = 2,
and hence W < Z5(S) by Lemma 6l

For convenience, we sometimes write A ~y B to mean that A is H-conjugate
to B, and A <y B to mean that A is H-conjugate to a subgroup of B.

G = My, He: We identify S with UT5(2), the group of (5 x 5) upper triangular
matrices over Fy. Let e;; € S (for i < j) be the matrix with 1’s on the diagonal,
and with unique nonzero off-diagonal entry 1 in position (4, 7). Set W1 = (e15, ea5)
and W, = <614,615>, Q; = Cs(WZ) for i = 1,4, and Q14 = Q1 N Q4. By [()\/v7
Propositions 6.2 & 6.9], Q1 and Q4 are essential in G, and are the only essential
subgroups with noncyclic center. Hence by Lemma B3J, Z = {Wy, Wy}, Also,
Q14 = A1 A, where A1 and Ay are the unique subgroups of S of type Eg4, and
hence Q14 = J(9) is characteristic in S, @1, and Q4.

Fix o € Aut(L£) which is the identity on Aut.(S). By Proposition €3[(a),
there are elements gp € Cy(py(Autg(P)), chosen for each P < S which is fully
normalized in F and 2-centric in G, such that a|ay.(p) is conjugation by [gp].
Then 9o, = 90.. = 99, € Z(S) by point (c) in the proposition, since for i = 1,4,

Cz(0.1)(Na(Qi)) = 1. Set g = go,; upon replacing a by c;l o (v, We can arrange
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152 5. INJECTIVITY OF puqg

that ofaut,(@,) = Id for i = 1,4 without changing a|au¢,(s). Hence Ker(ug) = 1
by Proposition [£.3(d).

G =2 J,: By [KW| §2], there are four conjugacy classes of maximal 2-local
subgroups, represented by:

Hl = 2i+12.3M2212, H3 = 23+12.(E5 X Lg(?)), H10 = 2102L5(2), H11 = 2111M24.

Set Q1 = OQ(HZ) and V; = Z(Qz) = E27 Note that Hyg € jl(G), while H; > S
for i # 10.

Fix W € Z and set P = Cs(W). Then Ng(W) < H; for some ¢, in which case
P >¢ Q; and W <¢ V; by Lemma [£5|a). Thus ¢ > 1 since rk(IW) > 2. By Lemma
EH(b,c), Autp(V;) € Ea(Auty, (V7)) C A (Auty,(V;)), and hence P € . (H;).

Thus either [S:P] = 2, in which case W = Z5(S) = E4 by Lemmas and
[7(a); or ¢ = 10 and [S:P] = 4. In the latter case, since Hyo/Vip = L5(2) acts
on Vi as A%(F3), we have rk(W) = rk(Cv,,(P/V10)) < tk(Cys, ([S*,57])) = 2 for
S* € Syly(H19/Vio). So W 22 E4 in all cases.

By [KW\ Table 1], there are two classes of four-groups in G whose centralizer
has order a multiple of 29, denoted AAA™ and ABBW | with centralizers of order
220.3.5 and 2'9-3-5, respectively. Thus AAAM) ~g Z5(S) (Lemma @8], and W lies
in one of the two classes. Since Autg(ABBW) is a 2-group, W g ABB™"). Hence
Z = {Z(S)}, and pug is injective by Proposition E3(e).

G = Coz : By [OV] Proposition 7.3], there is at most one essential subgroup
with noncyclic center (denoted R;); and R; € Ez since otherwise Ng(Z(S)) would
control fusion in G. Also, Outg(R;) = Ss and Z(R;) € Z by [OV], Propsition 7.5).
So |Zi|\z 1, and Ker(ug) = 1 by Proposition E3((e). (In fact, it is not hard to see
that Z = {Q1(Z2(9))}.)

G = Coy : By [W1 pp. 113-114], each 2-local subgroup of G is contained up

to conjugacy in one of the following subgroups:

Hy 222178 Spg(2), Hy 22%119.(S5 x S), Hs =2 (2% x 2179). Ag, Hyg =2 2'0:M>y:2
Kl = U6(2)22, KQ = ]\ICL7 K3 = M23.

For i = 1,4,5,10, set Q; = O2(H;) and V; = Z(Q;) = Eqi.

Recall (Lemma [|a)) that Z2(S) has type 2ABB. Set Z5(S) = {1, z,y1, 92},
where © € 2A and y1,y2 € 2B. Thus Z(S) = (z), H; = Cg(z), and we can assume
H5 = Cg(yl). N

Fix W € Z, and set P = Cg(W). Then W > Z(S), so WN2A # @. If
k(W) = 2, then W must have type 2A?. Since each 2A-element acts on the Leech
lattice with character —8 [W1l, Table II], W would fix only the zero element, and
hence cannot be contained in Coy. Thus rk(W) > 3. If [S:P] = 2, then W < Z5(S5)
by Lemma .6, which is impossible since rk(Z2(S5)) = 2. So [S:P] > 4.

If Na(W) <g Ko 2 McLor No(W) <g K3 = Mas, then by the list of essential
subgroups in these groups in [OV] Table 5.2], tk(W) = rk(Z(P)) < 2. So these
cases are impossible.

The subgroup K7 = Us(2):2 in Cos is the stabilizer of a triple of 2-vectors in the
Leech lattice [Cull, pp. 561-2], which we can choose to have the form (4,4,0,...),
(0,—4,4,...), and (—4,0,—4,...). Using this, we see that the maximal parabolic
subgroups 247%:U4(2):2, 2°:L3(4):2, and 2*7%:(S5 x S5) in K can be chosen to be
contained in Hy, Hyo, and Hy, respectively. If Ng(W) < K, then it is contained
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5. INJECTIVITY OF puqg 153

in one of the maximal parabolics by the Borel-Tits theorem, and so N (W) is also
conjugate to a subgroup of one of the H;.

Thus in all cases, we can assume that Ng(W) < H; for some i = 1,4,5,10.
Then P > Q; and W = Z(P) <V, 8014 # 1.

Assume ¢ = 5, and recall that Fr(Qs) = (y1). The image of W in V5/(y1) & E16
has rank at least 2 since rk(W) > 3, so Aut ., (w)(Vs/(y1)) is the stabilizer subgroup
of a projective line and plane in Ag = SL4(2) (a line and plane determined by S).
So there is at most one member of Z whose normalizer is in Hy = Cg (y1), and it
has rank 3 if it exists.

Now, V4 > Z5(S) since it is normal in S. Since Z(S5) has type 2ABB, Ss
must act on V4# with orbits of order 5 and 10, and has type 2A5B1g. So if i = 4,
then W is a rank 3 subgroup of the form 2A3B, (the centralizer of a 2-cycle in
Ss). There is exactly one 2B-element in W whose product with each of the other
2B-clements is in class 2A, so Ng(W) <¢ Hs = N¢g(2B): a case which we have
already handled.

Assume ¢ = 10, and set H* = Hyo/Vip = Autp,,(Vio) = Aut(Mae) and P* =
P/Vig. By LemmalE5(d), P*NO?(H*) is an essential 2-subgroup of O%(H*) & Mas.
Since P ¢ .#1(Hyg), P* N O%*(H*) has the form 24:2 < 24:S5 (the duad subgroup)
by [OV], Table 5.2], and this extends to P* = 25:2 < 2°:55 < Aut(Mas). But V3(.2°
has center V; (see [MStr, Lemma 3.3]), and so we are back in the case i = 4.

Thus Z = {Wy, W5}, where tk(W;) = 3 and Ng(W;) < Cq(y;) ~¢ Hs for
i = 1,2. (These also correspond to the two 2-cycles in Autg(Vy) < S5.) Set
P, = Cs(W;). Fix a € Aut(L) which is the identity on Aut,(S), and let g; = gp, €
Cw,(Auts(P;)) = Z2(S) (i = 1,2) be as in Proposition B3l Thus afau,(p,) is
conjugation by g¢;. Since y; € Z(Ng(F;)), we can replace g; by g;y; if necessary and
arrange that g; € Z(5). Then g1 = g2 by Proposition 3[b) and since P; and Py
are S-conjugate. Upon replacing « by c;ll o, we can arrange that ofaue,(g,) = Id
for i = 1,4 without changing a|ayu¢,(s). Hence Ker(ug) = 1 by Proposition {.3(d).

G =2 Coy : There are three conjugacy classes of involutions in G, of which those in

2A are 2-central. By [Cu2l| Theorem 2.1], each 2-local subgroup of G is contained

up to conjugacy in one of the subgroups

H1 = 2}:'_89;_(2)7 H2 = 22+12.(A8 X 83)7 H4 = 24+12.(Sg X 356)7 H11 = 211M24;
K1 = (A4 X G2(4))Z2, K2 = (AG X U3(3))2

Curtis also included Coq in his list, but it is not needed, as explained in [W1 p.

112] Set QZ = OQ(HZ) and V; = Z(Ql) = EQi.

Assume W € Z. Then W > Z(S),so WN2A # o. If WN2C # @, then
Ne(W) < H; for some i = 1,2,4,11 by [Cu2l Lemma 2.2] (where the involution
centralizer in the statement is for an involution of type 2A or 2C). If W contains
no 2C-elements, then by the argument given in [Cu2l p. 417], based on the action
of the elements on the Leech lattice, a product of distinct 2A-elements in W must
be of type 2A.. So in this case, (WN2A) is 2A-pure, and its normalizer is contained
in some H; by [Cu2| Lemma 2.5] (together with Wilson’s remark [W1, p. 112]).

Set P = Cs(W); then P > @, and hence W < V;. Also, i # 1 since rk(W) > 1.
By Lemmas @5(b,c), Autp(V;) € Eo(Auty, (V;)) C A1 (Auty, (V;)). Since H; > S,
we have [S:P]| =2, and W = Q4 (Z(P)) < Z(S) by Lemmad6l with equality since
|Z2(S)| = 4 by Lemma [ It follows that Z = {Z5(9)}, and Ker(ug) = 1 by
Proposition E3|(e).
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G = Suz: By [W2| §2.4], there are three classes of maximal 2-local subgroups
which are normalizers of 2A-pure subgroups, represented by

Hy =216.05(2), Hy 2 2278 (A5 x S3), Hy =276 346.

Fix W € Z, and set P = Cg(W). Since W > Z(9), it contains 2A-elements,

and since (W N 2A) is 2A-pure by [W2, p. 165], Ng(W) < H; for some i €

{1,2,4}. Then P > O5(H;) and W < V; ¥ Z(0,(H;)) by LemmaEH(a), so i # 1

since k(W) > 2. Hence i = 2 or 4, so Autg(V;) = S3 or Ag, and Autp(V;) €
Ez(Autg(V;)) € A1 (Autg(V;i)) by Lemma5(b,c). So [S:P] =2, and W < Z5(S5)
by Lemma[£.6] with equality since |Z2(S)| = 4 by Lemma [l Thus Z= {Z2(9)},
and Ker(ug) = 1 by Proposition [L3)(e).

G =2 Ru : There are two conjugacy classes of involutions, of which the 2A-
elements are 2-central. By [W4, §2.5], the normalizer of each 2A-pure subgroup
is contained up to conjugacy in one of the following subgroups:

Hy =226 65 Hy =258 15(2)  Hg=25.Go(2).

Set Q; = O2(H;) and V; = Z(Q;). For each i = 1, 3,6, V; is elementary abelian of
rank ¢ and 2A-pure.

Fix W € Z, and set P = Cs(W) e Er. Then W > Z(S5), so W contains 2A-
elements. Since the subgroup Wy = (WN2A) is 2A-pure [W4, p. 550], Ng(W) <
Ne(Wy) < H; for ¢ € {1,3,6}. Since H; is 2-constrained, P > @Q; = Oz(H;) and
W <V; by Lemma [.5(a). Hence i # 1, since k(W) > 2.

For i = 3,6, Autg(V;) is a Chevalley group over Fa, so by Lemma [£5|(b),
Autp(V;) € #(Aute(Vi)), and hence P € #1(H;). So |P| = 213 (if i = 3) or 21!
(if i = 6). Also, W is 2A-pure since V; is. By [W4, §2.4], there are four classes
of subgroups of type 2A2, of which only one has centralizer of order a multiple of
211 and that one must be the class of Z5(S) (Lemma 7). So W = Z5(9) if i = 3,
or if i = 6 and k(W) = 2.

As explained in [W4 §2.5], if W < Vg and rk(WW) > 3, then either Ng(W) <g
Hy, or Ng(W) is in the normalizer of a group of the form 2A? which must be
conjugate to Z3(S) by the above remarks, or Cq(W) = V. The first case was
already handled. If Ng(W) < Ng(Z2(S)), then Ng(W) <g Hs by [W4l p. 550],
and this case was already handled. If Cq(W) = Vg, then W = P = Vg, which
is impossible since G2(2) does not have a strongly embedded subgroup. Thus
Z ={Z(9)}, and pug is injective by Proposition E3(e).

G = Fiss, Fizs, or Fi'24 : It will be simplest to handle these three groups
together. Their maximal 2-local subgroups were determined in [W5|, Proposition
4.4], [F1], and [W8| Theorem D], and are listed in Table[5.Il To make it clearer how
2-local subgroups of one Fischer group lift to larger ones, we include the maximal 2-
local subgroups in Fig; = PSUs(2) (the maximal parabolic subgroups by the Borel-
Tits theorem), and give the normalizers in Fiyy of the maximal 2-local subgroups
of Fij,. Also, we include one subgroup which is not maximal: Hy < Figg is
contained in K.

As usual, set Q; = O2(H;) and V; = Z(Q;). For each of the four groups Fi,,
H; > S fori=1,2,3,5. We write Ki("), Hi(n), Qz(»"), or Vi(n) when we need to
distinguish K;, H;, Q;, or V; as a subgroup of Fi,.
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PSUs(2) = Fin Fligy Fligs Figy
K 2-Figy (2 X 2-Fligg).2
K> 2. Fligy 22. Fig;.2 (2 x 22.Fiz).S3
K3 Sy x Spg(2) Si x QF(2):53
H, 21%:U4(2) (2x217%:U4(2)).2 | (2°x217%).(3xU4(2)).2 | (2177%).3U4(3).2
Hy || 2*78:(A5 x S3) | 2°78:(A46 x Ss) 26%8:(A; x S3) 2778 (As x S3)
H; 29: Mo, 219 My, 2 Moy 212 My,
Hy 2°%.5p4(2) [27.Sps(2)] 28:5053 (2)
H; 23T12(515(2) x Se)

TABLE 5.1

Each of the groups Fi, for 21 < n < 24 is generated by a conjugacy class of
3-transpositions. By [A3] 37.4], for 22 < n < 24, Fi, has classes of involutions J,,,
for m = 1,2,3 when n = 22,23 and for 1 < m < 4 when n = 24. Each member
of Jm is a product of m commuting transpositions (its factors): a unique such
product except when n = 22 and m = 3 (in which case each € J3 has exactly
two sets of factors) and when n = 24 and m = 4. Note that J; = 2A, J> = 2B,
and J3 = 2C in Fiyy and Fip3, while Jo = 2A and J; = 2B in Fi,, (and the other
two classes are outer automorphisms).

In all cases, Ki, K5, and H; are normalizers of sets of (n — 22), (n — 21),
and (n — 20) pairwise commuting transpositions. Also, Hj is the normalizer of
the set of all n transpositions in S; these generate Q3 = V3 of rank n — 12, and
form a Steiner system of type (n — 19,n — 16,n). Then H, is the normalizer of
a pentad, hexad, heptad, or octad of transpositions: one of the members in that
Steiner system. From these descriptions, one sees, for example, that a subgroup of
type K; (i = 1,2) or H; (i = 1,2,3) in Fligs lifts to a subgroup of type K; or H;,
respectively, in 2-Figy < Figz and in 2Fige.2 < Fiyy,.

By [W5| Lemma 4.2], each 2B-pure elementary abelian subgroup of Figs (2B =
J2) supports a symplectic form for which (z,y) = 1 exactly when conjugation by y
exchanges the two factors of . Then V;L(QQ) is characterized as a subgroup of type
2B with nonsingular symplectic form. Since each 2B-element in Fiy, lifts to a
2B- and a 2C-element in 2-Fisy < Figg, Hiw) lifts to Hi%) of the form 27.Spg(2).

By [W8, Corollary 3.2.3], each elementary abelian subgroup of G = Fi,, sup-
ports a symplectic form where (z,y) = 1 if and only if y is in the “outer half”
of Ca(x) = 2-Figy.2 or 2i+12.3U4(3):2. By [W&8| Proposition 3.3.3], the form on
1/4(24) = Fys is nonsingular, and V4(24) contains elements in both classes 2A = 7>
and 2B = Jy. If x € V4N 2A, then V; N O?(Cq(z))/{z) has rank 6 with nonsingu-
lar symplectic form in Fiz, and hence (Cp,(x) N O*(Cg(x)))/(x) is conjugate to
Hin). Thus H£24) contains a lifting of Hﬁm) via the inclusion 2-Figy < Fij,.

Fix W € Z, and set P = Cs(W). If N¢(W) < K; for ¢ = 1 or 2, then
since W > Z(S), and O3(K;) does not contain involutions of all classes represented
in Z(S) (note that OQ(KZ-(M)) N Fiy, is 2A-pure for i = 1,2), we have W = (W N
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F*(K;))/O2(K;) # 1. Thus Na(W) is a 2-local subgroup of F*(K;)/Oa(K;) 2 Figy
or Fis;, and hence is contained up to conjugacy in one of its maximal 2-local
subgroups. So (after applying this reduction twice if ¢ = 1), Ng(W) < H; for some
1 <i < 4. We will see below that we can also avoid the case Ng(W) < K3 (when
G = Fig3 or Fiy,), and hence that in all cases, Ng(W) <g H; for some 1 < i < 5.

When G 2 Fipy, we just showed that (up to conjugacy) we can assume
Ne(W) < H; for some i = 1,2,3,4. If ¢ = 4, then by Lemma [L3(b), W =
Cvy,(P/Vy) where P/V, € Eq(Hy/Vy) and Hy/Vy = Spg(2), so W must be totally
isotropic with respect to the symplectic form on Vj described above. But in that
case, by [W5| Lemma 3.1], the subgroup W* > W generated by all factors of
involutions in W is again elementary abelian, and Ng(W) < Ng(W*) < H; for
some 7 =1,2,3.

Thus Ng(W) < H; where i € {1,2,3}, H; is 2-constrained, and so P =
Cs(W) > O2(H;) and W = Q1 (Z(P)) < V;. Also, i # 1 since V; has type 2AAB
(so Autg(V4) is a 2-group). Hence i = 2,3, and H; € % (G). By Lemma [L5)(c),
Autp(V;) € Eq(Auty, (Vi)), and either [S:P] = 2, or ¢ = 3 and [S:P] = 4. In this
last case, P/V3 = 24:2 is contained in a duad subgroup D =2 2*:S5 in Ms,. Also,
02(D) = Ej¢ permutes V3 N 2A in five orbits of length 4, each of which forms a
hexad together with the remaining two transpositions. Hence Cy, (O2(D)) has type
2AAB, and cannot contain W.

Thus [S:P] = 2, and hence rk(W) = 2 and W < Z5(S) by Lemma By
Lemma A7(b), Z2(S) has rank 3 and type 2A3;B3Cs. Since Autg(W) is not a
2-group, W must be the 2B-pure subgroup of rank 2 in Z5(S). (Note that the
factors of the involutions in W form a hexad.) Thus \2| =1, and Ker(ug) =1 by
Proposition @3|(e).

When G 22 Fiyz, W = Q(Z(P)) strictly contains Z(.S). Hence rk(W) > 3,
and W contains involutions of each type 2A, 2B, and 2C. If [W N2A| =1 2,
or 3, then Ng(W) < K, Ko, or Hy, respectively, while if |W N 2A| > 4, then
Ng(W) < Hy or Hs, depending on whether or not the transpositions in W are
contained in a heptad. So by the above remarks, we can assume in all cases that
Ng(W) < H; for some i = 1,2,3,4. Since H; is strictly 2-constrained, P > Q;
and W < V;. If i = 1, then W = V] since it has rank at least 3, and thus W has
type 2A3B3C. The case i = 4 can be eliminated in the same way as it was when
G = Figs.

Assume Ng(W) < Hy and W < V,, where Autg(Va) = A7, Write Vo N
2A = {ai,...,a7}, permuted by Autg(Va) = A; in the canonical way. Then
(up to choice of indexing), Autp(Va) is one of the two essential subgroups Py =
((12)(34),(12)(56)) and P5 = ((12)(34), (13)(24)). Set W; = Cy,(P}) and P; =
Cs(Wj); thus P; = Autp, (V2) and hence [S:P;] = 2. Also, W1 = (a1az, azas, asae)
has type 2AB3C3, and Wy = (a5, ag, ay) has type 2A3B3C (thus Wy ~¢ V7).

If Ne(W) < Hsz and W < Vi, then Autg(V3) = Moz has three essential
subgroups, of which two are contained in the heptad group 2%:A; and one in the
triad group 2%:(3 x As):2. In the first case, the subgroup 2* acts on V3 N 2A fixing
a heptad, and we are back in the case Ng(W) < Hs. In the second case, the
subgroup 2* fixes a rank 3 subgroup in Vs generated by three tranpositions, and so
the essential subgroup 2%:2 fixes only Z(S).

Thus Z = {Wy, W}, where Wy, Wy < Z5(S) by Lemma [8 and Wi, Wy < V5.
Also, 09 = (56 7) normalizes P, and Q2 and permutes the three 2B-elements in W,

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



5. INJECTIVITY OF puqg 157

cyclically, while o1 = (135)(246) normalizes P, and Q)2 and permutes the three
2A-elements in W5 cyclically.

Fix o € Aut(L£) which is the identity on Aut,(S). Let gp € Cz(py(Auts(P)),
for all P € Ob(L) fully normalized in F, be as in Proposition B3l Thus a|aut, (p)
is conjugation by gp. Set g = gg, € Cz(,)(Auts(Q2)) = Z(S). Upon replacing
a by c;l o o, we can arrange that gg, = 1, and hence that o is the identity on
Autz(Q2). Since Z(S) = Z(Ng(9)) (recall Z(S) has type 2ABC), « is still the
identity on Aut,(S).

Set P; = Cs(W;) (j = 1,2). By Proposition £3|(c) and since o; normalizes
P; and Q2, gp, = gg, = 1 modulo (Wi N 2A), and gp, = gg, = 1 modulo
(W2 N 2C). Also, (W1 N2A) < Z(Ng(Py)) and (Wy N2C) < Z(Ng(P2)) (since
Ng(P;) < Ng(W;)). Thus afau,.(p,) = Id for j = 1,2, so a = Id by Proposition
[M3(d). This proves that Ker(ug) = 1.

When G 2 Fi,,, since W > Z(S), it contains at least one 2B-element (recall
2A = 7, and 2B = J;). By Propositions 3.3.1, 3.3.3, 3.4.1, and 3.4.2 in [W8]
(corrected in [LWJ, §2]), the normalizer of every elementary abelian 2-subgroup
of G is contained up to conjugacy in K, Ko, or one of the H; for i < 5, except
when it is 2A-pure and the symplectic form described above is nonsingular. So
we can assume that Ng(W) is contained in one of these groups. Together with
earlier remarks, this means that we can eliminate all of the K;, and assume that
Ng(W) < H; for some 1 < i <5 SoP > Q; and W <V, and i # 1 since
I‘k(Vl) = 1.

By Lemma E5(b,c), W = Cy,(P*), where P* = Autp(V;) is an essential 2-
subgroup of H} = Auty, (V;). If i = 2,3,5, then P* € 4 (H}) by Lemma [L5b,c),
and hence [S:P] = 2 since H; > S. So W = Z5(S) in these cases by Lemmas [.7|(a)
and

If i = 4, then H} = Qg (2), and the conditions P* € Ey(HJ) and rk(Cy (P*)) >
2 imply that Ng(W) = 28.(2376,(S, x 3)) (the stabilizer of an isotropic line and
plane in the projective space of V;). Hence rk(W) = 2 and |P| = 2'°. By [WS8,
Table 15], there are only two classes of four-groups in G with centralizer large
enough, one of type 2AAB (impossible since Aut(W) is not a 2-group), and the
other Z(S) of type 2B%. Thus Z = {Z5(S)}, and Ker(ug) = 1 by Proposition
T3(e).

G = F5: By [NWI §3.1], each 2-local subgroup of G is contained up to conjugacy
in one of the subgroups

Hy =2 2178 (A5 x Aj):2, Hs 232225 (3 x L3(2)),  Hg=2%U,(2),

K = 2-HSZ2, Ky = (A4 X Ag):? < Aqs.

As usual, set Q; = O2(H;) and V; = Z(Q;) for i = 1,3,6. Then V; and V3 are 2B-
pure, and Oz(K7) and Oz(K2) are 2A-pure. By [NW| §3.1], for each elementary
abelian 2-subgroup V' < G, there is a quadratic form q: V' — Fy defined by sending
2A-elements to 1 and 2B-elements to 0.

Fix W € Z, and set P = Cg(W). Then W > Z(S), so WN 2B # @. So either
the quadratic form g on W is nondegenerate and rk(W) > 3, or there is a 2B-pure
subgroup Wy < W such that Ng(W) < Ng(Wy). By [NW/, §3.1], in this last case,
Ne(Wy) < H; fori =1 or 3.
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If Ne(W) < Ng(Wy) < H; for i = 1,3, then P > O2(H;), so W < V;. In
particular, ¢ # 1. If No(W) < Hs, then P has index 2 in S since Autg(V;) = L3(2),
so W = Z5(S) by Lemmas (6] and [L7(a).

Now assume ¢ is nondegenerate as a quadratic form (and rk(WW) > 3). Choose a
2A-pure subgroup W* < W of rank 2, and identify Cq(W*) with (22 x Ag) < A1z <
G. If rk(W) = 3, then we can identify W with ((12)(34),(13)(24), (56)(78)), so
Ca(W) 222 x(22x Ay):2, P = Cs(W) =2 22x (2%:2), Z(P) = 2%, which contradicts
the assumption that W = Q1 (Z(P)). If tk(W) > 4, then it must be conjugate to
one of the subgroups (1), (2), or (3) defined in [NWJ, p. 364] (or contains (2) or
(3) if rk(W) = 5). Then Cg(W) = Egs or E1g X A4, so P =W ~¢g Vg, which is
impossible since Autg(Vs) = Uy(2) does not contain a strongly embedded subgroup.

Thus Z = {Z2(S)}, and p¢ is injective by Proposition E3)e).

G = F3 : By [W11l Theorem 2.2], there are two classes of maximal 2-local
subgroups of G, represented by H; = 2}F+8.A9 and Hs = 2°5.5L5(2). Set Q; =
02( ) and V Z(Ql) Egi (’L = 1,5).

Fix W € Z, set P = Cs(W), and let i = 1,5 be such that Ng(W) < H;. Then
P > Oy(H;) and W <V, so i = 5. By Lemma [5(b), P/Vs € Eo(Hs/Vs) (where
H5/Vs = L5(2)) and [S:P] = 2. Hence W < Z5(S) by Lemma [0l Since |Z(S)| =
4 by Lemma E7) this proves that Z = {Z5(5)}, and hence that Ker(ug) = 1 by
Proposition d3)e).

G = Fy, Fy : If G = Fy, then by [MS| Theorem 1], there are maximal 2-local
subgroups of the form

H1 = 21+24.001, H2 = 22.[233}.(M24 X Sg), H3 = 23.[236].(.[/ (2) X 3'56)7
Hy = 2°.[2%°].(S3 x Ls(2)), Hio = 2'°710-0,(2),

If G = Fy, then by [MS| Theorem 2], there are maximal 2-local subgroups of the
form

Hy 22422 Coy,  Hy =2 22239 (Mop:2 x S3),  Haz = 23.[2%%].(L3(2) x Ss),

Hy = 2°.2%].Ls5(2), Ho=2°70.9pg(2),
As usual, we set Q; = O2(H;), and V; = Z(Q;) = Fqi. In both cases (G = Fy or
Fy), Hy = Cg(z) > S for x € 2B, and H; > S (V; 9 5) for each i.

F1x W € Z, and set P = Cs(W). Then W > Z(S), and hence W con-
tains 2B-elements. By [Mei, Lemma 2.2], W is “of 2-type”, in the sense that
Ca(02(Cq(V))) is a 2-group, since the subgroup generated by a 2B-element is of
2-type. In particular, Cs(P) is a 2-group and hence Cg(P) = Z(P).

A 2B-pure elementary abelian 2-subgroup V' < G is called singular if V' <
O2(Cq(x)) for each x € V#. If G = F, then by [MS| Proposition 9.1], applied
with P in the role of @ and ¢ = 1, there is a subgroup Wy < W such that Ng(W) <
Ne(Wp), and either Wy is 2B-pure and singular or W = Wy ~¢g Vig. Since
Autg(Vip) =2 Qf(2) has no strongly embedded subgroup, W, must be 2B-pure
and singular, and hence Ng(W) < H; for some i = 1,2,3,5 by [MS] Theorem 1].
Thus P > @Q; and W <V, so W is also 2B-pure and singular.

If G = Fy, identify G = Cy(x)/x, where M = F} and x is a 2A-element in M.
Let P < Cw () be such that z € P and P/(x r) = P, and set W = Q4 (Z(P)). Then

z € W and W/< ) < W, and (WN2B) C W/( ) since 2B-elements in G lift to
pairs of involutions of classes 2A and 2B in M (coming from a subgroup of type
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2BAA in Q; < M). By [MS| Prop051t10n 9.1] again, apphed with P in the role of
Q and ¢ = z, there is a subgroup WO < W such that NM(W) < NM(WO) and either

WO is 2B-pure and singular or W = WO ~ N V1(0 In the latter case, W ~qg Vg,
which is impossible since Autg(Vy) = Spg(2) has no strongly embedded subgroup.
Again, we conclude that Ng(W) < H; for some ¢ = 1,2,3,5 [MS| Theorem 2], and
that W < V; by Lemma [I5|(a) and hence is 2B-pure and singular.

By [MS| Lemma 4.2.2], applied with W =1 (if G 2 F}y) or W = (z) (G & Fy),
the automizer of a singular subgroup is its full automorphism group. Since GL,(2)
has no strongly embedded subgroup for n # 2, this implies that rk(W) = 2. By
[MS| Lemma 4.4], if we identify Q1/V7 = Fj24 with the mod 2 Leech lattice,
then 2A-elements correspond to the 2-vectors and 2B-elements to the classes of 4-
vectors, and hence Hy/Q1 = Co; acts transitively on each. So Fj contains a unique
class of singular subgroups of rank 2. A similar argument, using [MS| Corollary
4.6], now shows that F» also contains a unique class of singular subgroup of rank
2. Since Hy > S, each of these classes has a representative normal in .S, so W < .S,
and W = Z5(5) by Lemmas [L7(a) and

To conclude, we have now shown that Z = {Z5(S)} in both cases. Hence
Ker(ug) = 1 by Proposition E3{(e).

This finishes the proof of Proposition Gl O

By inspection in the above proof, in all cases where Z5(S) =& E, and its involu-
tions are G-conjugate, we have Z (F) ={Z2(S)}. A general result of this type could
greatly shorten the proof of Proposition 5.1} but we have been unable to find one.
The following example shows that this is not true without at least some additional
conditions.

Set G = 2411514 = ]Flﬁ X FL1(16) Set £ = OQ(G) = Ew, fix S e Sy12(G), and
let P < S be the subgroup of index 2 containing FE. Then Z5(S) = Z(P) = E4 and
Aute(Z2(8)) 2 S5, while Z(Fs(G)) = {Z2(S), E}.
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