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Abstract

Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type
by Carles Broto, Jesper M. Møller, and Bob Oliver

For a finite group G of Lie type and a prime p, we compare the automorphism
groups of the fusion and linking systems of G at p with the automorphism group of
G itself. When p is the defining characteristic of G, they are all isomorphic, with a
very short list of exceptions. When p is different from the defining characteristic,
the situation is much more complex, but can always be reduced to a case where the
natural map from Out(G) to outer automorphisms of the fusion or linking system
is split surjective. This work is motivated in part by questions involving extending
the local structure of a group by a group of automorphisms, and in part by wanting
to describe self homotopy equivalences of BG∧

p in terms of Out(G).
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Autònoma de Barcelona, E–08193 Bellaterra, Spain. Email: broto@mat.uab.es.

J. Møller is partially supported by the Danish National Research Foundation through the
Centre for Symmetry and Deformation (DNRF92) and by Villum Fonden through the project
Experimental Mathematics in Number Theory, Operator Algebras, and Topology. He is affiliated
with the Matematisk Institut, Universitetsparken 5, DK–2100 København, Denmark. Email:
moller@math.ku.dk.

B. Oliver is partially supported by UMR 7539 of the CNRS, and by project ANR BLAN08-
2 338236, HGRT. He is affiliated with the Université Paris 13, Sorbonne Paris Cité, LAGA, UMR
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vi ABSTRACT

Automorphisms of Fusion Systems of Sporadic Simple Groups
by Bob Oliver

We prove here that with a very small number of exceptions, when G is a
sporadic simple group and p is a prime such that the Sylow p-subgroups of G are
nonabelian, then Out(G) is isomorphic to the outer automorphism groups of the
fusion and linking systems of G. In particular, the p-fusion system of G is tame in
the sense of [AOV1], and is tamely realized by G itself except when G ∼= M11 and
p = 2. From the point of view of homotopy theory, these results also imply that
Out(G) ∼= Out(BG∧

p ) in many (but not all) cases.
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Introduction

When p is a prime, G is a finite group, and S ∈ Sylp(G), the fusion system
of G at S is the category FS(G) whose objects are the subgroups of S, and whose
morphisms are those homomorphisms between subgroups induced by conjugation
in G. In this paper, we are interested in comparing automorphisms of G, when
G is a simple group of Lie type, with those of the fusion system of G at a Sylow
p-subgroup of G (for different primes p).

Rather than work with automorphisms of FS(G) itself, it turns out to be more
natural in many situations to study the group Out(Lc

S(G)) of outer automorphisms
of the centric linking system of G. We refer to Chapter 1 for the definition of Lc

S(G),
and to Definition 1.2 for precise definitions of Out(FS(G)) and Out(Lc

S(G)). These
are defined in such a way that there are natural homomorphisms

Out(G)
κG−−−−−→ Out(Lc

S(G))
μG−−−−−→ Out(FS(G)) and κG = μG ◦ κG .

For example, if S controls fusion in G (i.e., if S has a normal complement), then
Out(FS(G)) = Out(S), and κG is induced by projection to S. The fusion system
FS(G) is tamely realized by G if κG is split surjective, and is tame if it is tamely
realized by some finite group G∗ where S ∈ Sylp(G

∗) and FS(G) = FS(G
∗). Tame-

ness plays an important role in Aschbacher’s program for shortening parts of the
proof of the classification of finite simple groups by classifying simple fusion systems
over finite 2-groups. We say more about this later in the introduction, just before
the statement of Theorem C.

By [BLO1, Theorem B], Out(Lc
S(G)) ∼= Out(BG∧

p ): the group of homotopy
classes of self homotopy equivalences of the p-completed classifying space of G.
Thus one of the motivations for this paper is to compute Out(BG∧

p ) when G is a
finite simple group of Lie type (in characteristic p or in characteristic different from
p), and compare it with Out(G).

Following the notation used in [GLS3], for each prime p, we let Lie(p) denote
the class of finite groups of Lie type in characteristic p, and let Lie denote the union
of the classes Lie(p) for all primes p. (See Definition 2.1 for the precise definition.)
We say that G ∈ Lie(p) is of adjoint type if Z(G) = 1, and is of universal type if
it has no nontrivial central extensions which are in Lie(p). For example, for n ≥ 2
and q a power of p, PSLn(q) is of adjoint type and SLn(q) of universal type.

Our results can be most simply stated in the “equi-characteristic case”: when
working with p-fusion of G ∈ Lie(p).

Theorem A. Let p be a prime. Assume that G ∈ Lie(p) and is of universal
or adjoint type, and also that (G, p) �∼= (Sz(2), 2). Fix S ∈ Sylp(G). Then the
composite homomorphism

κG : Out(G)
κG−−−−−−→ Out(Lc

S(G))
μG−−−−−−→ Out(FS(G))

is an isomorphism, and κG and μG are isomorphisms except when G ∼= PSL3(2).
3
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Proof. Assume G is of adjoint type. WhenG �∼= GL3(2), μG is an isomorphism
by [O1, Proposition 4.3]1 or [O2, Theorems C & 6.2]. The injectivity of κG =
μG ◦ κG (in all cases) is shown in Lemma 4.3. The surjectivity of κG is shown in
Proposition 4.5 when G has Lie rank at least three, and in Proposition 4.8 when
G has Lie rank 1 and G �∼= Sz(2). When G has Lie rank 2, κG is onto (when
G �∼= SL3(2)) by Proposition 4.12, 4.14, 4.15, 4.16, or 4.17. (See Notation 4.1(H)
for the definition of Lie rank used here.)

If G is of universal type, then by Proposition 3.8, G/Z(G) ∈ Lie(p) is of adjoint
type where Z(G) has order prime to p. Also, Out(G) ∼= Out(G/Z(G)) by [GLS3,
Theorem 2.5.14(d)]. Hence FS(G) ∼= FS(G/Z(G)) and Lc

S(G) ∼= Lc
S(G/Z(G)); and

κG and/or κG is an isomorphism if κG/Z(G) and/or κG/Z(G), respectively, is an
isomorphism. �

When G = PSL3(2) and p = 2, Out(G) ∼= Out(FS(G)) ∼= C2 (and κG is an
isomorphism), while Out(Lc

S(G)) ∼= C2
2 . When G = Sz(2) ∼= C5 � C4 and p = 2,

Out(G) = 1, while Out(Lc
S(G)) ∼= Aut(C4) ∼= C2. Thus these groups are exceptions

to Theorem A.
To simplify the statement of the next theorem, for finite groups G and H,

we write G ∼p H to mean that there are Sylow subgroups S ∈ Sylp(G) and T ∈
Sylp(H), together with an isomorphism ϕ : S

∼=−−−→ T which induces an isomorphism
of categories FS(G) ∼= FT (H) (i.e., ϕ is fusion preserving in the sense of Definition
1.2).

Theorem B. Fix a pair of distinct primes p and q0, and a group G ∈ Lie(q0) of
universal or adjoint type. Assume that the Sylow p-subgroups of G are nonabelian.
Then there is a prime q∗0 �= p, and a group G∗ ∈ Lie(q∗0) of universal or adjoint
type, respectively, as described in Tables 2.2–0.3, such that G∗ ∼p G and κG∗ is
split surjective. If, furthermore, p is odd or G∗ has universal type, then μG∗ is an
isomorphism, and hence κG∗ is also split surjective.

Proof. Case 1: Assume p is odd and G is of universal type. Since μG is an
isomorphism by [O1, Theorem C], κG or κG∗ is (split) surjective if and only if κG

or κG∗ is.
By Proposition 6.8, we can choose a prime q∗0 and a group G∗ ∈ Lie(q∗0) such

that either

(1.a) G∗ ∼= G(q∗) or 2G(q∗), for some G with Weyl group W and q∗ a power of
q∗0 , and has a σ-setup which satisfies the conditions in Hypotheses 5.1 and
5.11, and

(1.a.1) −Id /∈ W and G∗ is a Chevalley group, or

(1.a.2) −Id ∈ W and q∗ has even order in F×
p ; or

(1.b) p = 3, q∗0 = 2, G ∼= 3D4(q) or 2F4(q) for q some power of q0, and G∗ ∼=
3D4(q

∗) or 2F4(q
∗) for q∗ some power of 2.

1Steve Smith recently pointed out to the third author an error in the proof of this proposition.
One can get around this problem either via a more direct case-by-case argument (see the remark
in the middle of page 345 in [O1]), or by applying [O3, Theorem C]. The proof of the latter
result uses the classification of finite simple groups, but as described by Glauberman and Lynd
[GLn, § 3], the proof in [O3] (for odd p) can be modified to use an earlier result of Glauberman
[Gl2, Theorem A1.4], and through that avoiding the classification.
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Also (by the same proposition), if p = 3 and G∗ = F4(q
∗), then we can assume

q∗0 = 2.
In case (1.b), κG∗ is split surjective by Proposition 6.9. In case (1.a), it is

surjective by Proposition 5.15. In case (1.a.1), κG∗ is split by Proposition 5.16(b,c).
In case (1.a.2), if G∗ is a Chevalley group, then κG∗ is split by Proposition 5.16(c).

This leaves only case (1.a.2) when G∗ is a twisted group. The only irreducible
root systems which have nontrivial graph automorphisms and for which −Id ∈ W
are those of type Dn for even n. Hence G∗ = Spin−2n(q

∗) for some even n ≥ 4. By
the last statement in Proposition 6.8, G∗ is one of the groups listed in Proposition
1.10, and so qn ≡ −1 (mod p). Hence κG∗ is split surjective by Example 6.6(a),
and we are done also in this case.
Case 2: Now assume p = 2 and G is of universal type. By Proposition 6.2,
there is an odd prime q∗0 , a group G∗ ∈ Lie(q∗0), and S∗ ∈ Sylp(G

∗), such that
FS(G) ∼= FS∗(G∗) and G∗ has a σ-setup which satisfies Hypotheses 5.1 and 5.11.
By the same proposition, if G∗ ∼= G2(q

∗), then we can arrange that q∗ = 5 or
q∗0 = 3. If G∗ ∼= G2(5), then by Propositions 6.3 and A.6, G∗ ∼2 G2(3), κG2(3) is
split surjective, and μG2(3) is injective.

In all remaining cases (i.e., G∗ �∼= G2(q
∗) or q∗0 = 3), κG∗ is split surjective

by Proposition 5.16(a). If G∗ is a linear, symplectic, or orthogonal group, or an
exceptional Chevalley group, then μG∗ is injective by Proposition A.3 or A.12,
respectively. If G∗ ∼= SUn(q

∗) or 2E6(q
∗), then by Theorem 1.8(d), FS∗(G∗) is

isomorphic to the fusion system of SLn(q
∨) or E6(q

∨) for some odd prime power
q∨, and so μG∗ is injective by A.3 or A.12 again. Since neither the triality groups
3D4(q) nor the Suzuki or Ree groups satisfy Hypotheses 5.1, this shows that μG∗ is
injective in all cases, and hence that κG∗ is also split surjective.
Case 3: Now assume G is of adjoint type. Then G ∼= Gu/Z for some Gu ∈ Lie(q0)
of universal type and Z ≤ Z(Gu). By Proposition 3.8, Z = Z(Gu) and has order
prime to q0.

By Case 1 or 2, there is a prime q∗0 �= p and a group G∗
u ∈ Lie(q∗0) of universal

type such that G∗
u ∼p Gu and κG∗

u
is split surjective. Also, G∗

u is p-perfect by

definition of Lie(q∗0) (and since q∗0 �= p), and H2(G∗
u;Z/p) = 0 by Proposition 3.8.

Set G∗ = G∗
u/Z(G∗

u). By Proposition 1.7, with G∗
u/Op′(G∗

u) in the role of G, κG∗

is also split surjective.
It remains to check that G ∼p G∗. Assume first that Gu and G∗

u have σ-
setups which satisfy Hypotheses 5.1. Fix S ∈ Sylp(Gu) and S∗ ∈ Sylp(G

∗
u), and

a fusion preserving isomorphism ϕ : S −−−→ S∗ (Definition 1.2(a)). By Corollary
5.10, Z(FS(Gu)) = Op(Z(Gu)) and Z(FS∗(G∗

u)) = Op(Z(G∗
u)). Since ϕ is fu-

sion preserving, it sends Z(FS(Gu)) onto Z(FS∗(G∗
u)), and thus sends Op(Z(Gu))

onto Op(Z(G∗
u)). Hence ϕ induces a fusion preserving isomorphism between Sylow

subgroups of G = Gu/Z(Gu) and G∗ = G∗
u/Z(G∗

u).
The only cases we considered where G or G∗ does not satisfy Hypotheses 5.1

were those in case (1.b) above. In those cases, G ∼= 2F4(q) or 3D4(q) and G∗ ∼=
2F4(q

∗) or 3D4(q
∗) for some q and q∗, hence G and G∗ are also of universal type

(d = 1 in the notation of [Ca, Lemma 14.1.2(iii)]), and so there is nothing more to
prove. �

Since the strategy for replacing G by G∗ is quite elaborate, we summarize these
replacements in Tables 2.2, 0.2, and 0.3 at the end of the introduction.
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The last statement in Theorem B is not true in general when G∗ is of adjoint
type. For example, if G∗ ∼= PSL2(9), p = 2, and S∗ ∈ Syl2(G

∗), then Out(G∗) ∼=
Out(Lc

S∗(G∗)) ∼= C2
2 , while Out(S∗,FS∗(G∗)) ∼= C2. By comparison, if G̃∗ ∼=

SL2(9) is the universal group, then Out(S̃∗,FS̃∗(G̃
∗)) ∼= C2

2 , and κG̃∗ and μG̃∗ are
isomorphisms.

As noted briefly above, a fusion system FS(G) is called tame if there is a finite
group G∗ such that G∗ ∼p G and κG∗ is split surjective. In this situation, we
say that G∗ tamely realizes the fusion system FS(G). By [AOV, Theorem B], if
FS(G) is not tame, then some extension of it is an “exotic” fusion system; i.e.,
an abstract fusion system not induced by any finite group. (See Chapter 1 for
more details.) The original goal of this paper was to determine whether all fusion
systems of simple groups of Lie type (at all primes) are tame, and this follows as
an immediate consequence of Theorems A and B. Hence this approach cannot be
used to construct new, exotic fusion systems.

Determining which simple fusion systems over finite 2-groups are tame, and
tamely realizable by finite simple groups, plays an important role in Aschbacher’s
program for classifying simple fusion systems over 2-groups (see [AKO, Part II] or
[A3]). Given such a fusion system F over a 2-group S, and an involution x ∈ S,
assume that the centralizer fusion system CF (x) contains a normal quasisimple
subsystem E � CF (x). If E is tamely realized by a finite quasisimple group K,
then under certain additional assumptions, one can show that the entire centralizer
CF(x) is the fusion system of some finite extension of K. (See, e.g., [O6, Corollaries
2.4 & 2.5].) This is part of our motivation for looking at this question, and is also
part of the reason why we try to give as much information as possible as to which
groups tamely realize which fusion systems.

Theorem C. For any prime p and any G ∈ Lie of universal or adjoint type,
the p-fusion system of G is tame. If the Sylow p-subgroups of G are nonabelian, or
if p is the defining characteristic and G �∼= Sz(2), then its fusion system is tamely
realized by some other group in Lie.

Proof. If S ∈ Sylp(G) is abelian, then the p-fusion in G is controlled by
NG(S), and FS(G) is tame by Proposition 1.6. If p = 2 and G ∼= SL3(2), then the
fusion system of G is tamely realized by PSL2(9). In all other cases, the claims
follow from Theorems A and B. �

We have stated the above three theorems only for groups of Lie type, but in
fact, we proved at the same time the corresponding results for the Tits group:

Theorem D. Set G = 2F4(2)
′ (the Tits group). Then for each prime p, the

p-fusion system of G is tame. If p = 2 or p = 3, then κG is an isomorphism.

Proof. The second statement is shown in Proposition 4.17 when p = 2, and in
Proposition 6.9 when p = 3. When p > 3, the Sylow p-subgroups of G are abelian
(|G| = 211 · 33 · 52 · 13), so G is tame by Proposition 1.6(b). �

As one example, if p = 2 and G = PSL2(17), then κG is not surjective, but
G∗ = PSL2(81) (of adjoint type) has the same 2-fusion system and κG∗ is an iso-
morphism [BLO1, Proposition 7.9]. Also, κG∗ is non-split surjective with kernel
generated by the field automorphism of order two by [BLO1, Lemma 7.8]. How-

ever, if we consider the universal group G̃∗ = SL2(81), then κG̃∗ and κG̃∗ are
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both isomorphisms by [BL, Proposition 5.5] (note that Out(F) = Out(S) in this
situation).

As another, more complicated example, consider the case where p = 41 and
G = Spin−4k(9). By [St1, (3.2)–(3.6)], Outdiag(G) ∼= C2, and Out(G) ∼= C2 × C4

is generated by a diagonal element of order 2 and a field automorphism of order 4
(whose square is a graph automorphism of order 2). Also, μG is an isomorphism by
Proposition A.3, so κG is surjective, or split surjective, if and only if κG is. We refer
to the proof of Lemma 6.5, and to Table 6.1 in that proof, for details of a σ-setup
for G in which the normalizer of a maximal torus contains a Sylow p-subgroup S. In
particular, S is nonabelian if k ≥ 41. By Proposition 5.16(d) and Example 6.6(a,b),
when k ≥ 41, κG is surjective, κG is split (with Ker(κG) = Outdiag(G)) when k
is odd, and κG is not split (Ker(κG) ∼= C2 × C2) when k is even. By Proposition
1.9(c), when k is even, G ∼41 G∗ for G∗ = Spin4k−1(9), and κG∗ is split surjective
(with Ker(κG∗) = Outdiag(G∗)) by Proposition 5.16(c). Thus FS(G) is tame in all
cases: tamely realized by G itself when k is odd and by Spin4k−1(9) when k is even.
Note that when k is odd, since the graph automorphism does not act trivially on
any Sylow p-subgroup, the p-fusion system of G (equivalently, of SO−

4k(9)) is not

isomorphic to that of the full orthogonal group O−
4k(9), so by [BMO, Proposition

A.3(b)], it is not isomorphic to that of Spin4k+1(9) either (nor to that of Spin4k−1(9)
since its Sylow p-subgroups are smaller).

Other examples are given in Examples 5.17 and 6.6. For more details, in
the situation of Theorem B, about for which groups G the homomorphism κG is
surjective or split surjective, see Propositions 5.15 and 5.16.

The following theorem was shown while proving Theorem B, and could be of
independent interest. It is closely related to [Ma2, Theorem 5.19]. The case where
p is odd was handled by Gorenstein and Lyons [GL, 10-2(1,2)].

Theorem E. Assume G ∈ Lie(q0) is of universal type for some odd prime q0.
Fix S ∈ Syl2(G). Then S contains a unique abelian subgroup of maximal order,
except when G ∼= Sp2n(q) for some n ≥ 1 and some q ≡ ±3 (mod 8).

Proof. Assume S is nonabelian; otherwise there is nothing to prove. Since
q0 is odd, and since the Sylow 2-subgroups of 2G2(3

2k+1) are abelian for all k ≥ 1
[Ree, Theorem 8.5], G must be a Chevalley or Steinberg group. If G ∼= 3D4(q),
then (up to isomorphism) S ∈ Syl2(G2(q)) by [BMO, Example 4.4]. So we can
assume that G ∼= rG(q) for some odd prime power q, some G, and r = 1 or 2.

If q ≡ 3 (mod 4), then choose another prime power q∗ ≡ 1 (mod 4) such that

v2(q
∗ − 1) = v2(q + 1) (where v2(m) = k if 2k|n and 2k+1 � n). Then 〈q∗〉 = 〈 − q〉

and 〈 − q∗〉 = 〈q〉 as closed subgroups of (Z2)
×. By [BMO, Theorem A] (see also

Theorem 1.8), there is a group G∗ ∼= tG(q∗) (where t ≤ 2) whose 2-fusion system
is equivalent to that of G. We can thus assume that q ≡ 1 (mod 4). So by Lemma
6.1, G has a σ-setup which satisfies Hypotheses 5.1. By Proposition 5.13(a), S
contains a unique abelian subgroup of maximal order, unless q ≡ 5 (mod 8) and
G ∼= Sp2n(q) for some n ≥ 1. �

In fact, when G ∼= Sp2n(q) for q ≡ ±3 (mod 8), then S ∈ Syl2(G) is isomorphic
to (Q8)

n � P for P ∈ Syl2(Σn), S contains 3n abelian subgroups of maximal order
22n, and all of them are conjugate to each other in NG(S).

The main definitions and results about tame and reduced fusion systems are
given in Chapter 1. We then set up our general notation for finite groups of Lie
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type in Chapters 2 and 3, deal with the equicharacteristic case in Chapter 4, and
with the cross characteristic case in Chapters 5 and 6. The kernel of μG, and thus
the relation between automorphism groups of the fusion and linking systems, is
handled in an appendix.

The third author would like to thank Richard Weiss for explaining how to
apply the Delgado-Stellmacher paper [DS] to simplify some of our arguments (see
Chapter 4), and also thank Andy Chermak and Sergei Shpectorov for first pointing
out this connection. All three authors would especially like to thank the referee for
reading the paper very thoroughly and for the many suggestions for improvements.

Notation: In general, when C is a category and x ∈ Ob(C), we let AutC(x)
denote the group of automorphisms of x in C. When F is a fusion system and
P ∈ Ob(F), we set OutF (P ) = AutF (P )/Inn(P ).

For any group G and g ∈ G, cg ∈ Aut(G) denotes the automorphism cg(h) =
ghg−1. Thus for H ≤ G, gH = cg(H) and Hg = c−1

g (H). When G,H,K are all
subgroups of a group Γ, we define

TG(H,K) = {g ∈ G | gH ≤ K}
HomG(H,K) = {cg ∈ Hom(H,K) | g ∈ TG(H,K)} .

We let AutG(H) be the group AutG(H) = HomG(H,H). When H ≤ G (so
AutG(H) ≥ Inn(H)), we also write OutG(H) = AutG(H)/Inn(H).

Tables of substitutions for Theorem B

We now present tables which describe the strategy for replacing G by G∗ in the
context of Theorem B. In all three tables, an entry within the column G∗ means
that the given group is p-locally equivalent to G and tamely realizes its fusion
system, while an entry “G ∼p X” carried over two columns means that the group
X is p-locally equivalent to G but does not tamely realize its fusion system. In
other words, in the latter case, X is one step towards finding the appropriate group
G∗, but one must continue, following the information in the tables for G = X.

Whenever G∗ is listed as satisfying (III.1), (III.2), or (III.3), this holds by
Lemma 6.1, Lemma 6.4, or Lemma 6.5 or 6.7, respectively.
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The following notation is used in Table 2.2 (the case p = 2):

• q∗0 = 3 or 5, and q∗0 = 3 when G = G2;

• q∗ = (q∗0)
2k is such that 〈q〉 = 〈q∗〉; and

• q∨ = (q∗0)
2� is such that 〈 − q〉 = 〈q∨〉 (equivalently, 〈q〉 = 〈 − q∨〉).

In all cases except when G∗ ∼= G2(3), G
∗ satisfies case (III.1) of Hypotheses

5.1 by Lemma 6.1, and κG∗ is split surjective by Proposition 5.16(a). When G∗ ∼=
G2(3), κG∗ is an isomorphism by Proposition 6.3. For all odd q, 3D4(q) ∼2 G2(q)
by [BMO, Example 4.4(a)].

G G q G∗ G ∼2 G∗

An, E6 1 (mod 4) G(q∗) Thm. 1.8(a)

Dn (n odd)
G(q)

3 (mod 4) 2G(q∨) Thm. 1.8(d)

Bn, Cn, D2m, 1 (mod 4) G(q∗)

F4, E7, E8

G(q)
3 (mod 4) G(q∨)

Thm. 1.8(c)

1 (mod 8) G(q∗)
G2(q)

7 (mod 8) G(q∨) Thm. 1.8(c)
3D4(q)

3,5 (mod 8) G2(3)

An, E6
1 (mod 4) 2G(q∗) Thm. 1.8(b)

Dn (n odd)
2G(q)

3 (mod 4) G(q∨) Thm. 1.8(d)

Dn
1 (mod 4) 2Dn(q

∗)

(n even)
2Dn(q)

3 (mod 4) 2Dn(q
∨)

Thm. 1.8(c)

2G2(q) S abelian

Table 0.1. Substitutions in cross-characteristic for p = 2
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The following notation is used in Tables 0.2 and 0.3, where p is always an odd
prime:

• q∗0 is any given odd prime whose class generates (Z/p2)×.

• q∗ = (q∗0)
b is such that 〈q〉 = 〈q∗〉 and b|(p− 1)p� for some � ≥ 0.

• q∨ = (q∗0)
c is such that 〈 − q〉 = 〈q∨〉 and c|(p− 1)p� for some � ≥ 0.

G q, p G∗ Hyp 5.1 κG∗ split surj. G ∼p G∗

SLn(q) all cases SLn(q∗) (III.1,3) Th. 1.8(a)

SUn(q) all cases SLn(q∨) (III.1,3) Th. 1.8(d)

Sp2n(q) or ordp(q) even SL2n(q∗) (III.3)
Prop. 5.16(b,c)

Prop. 1.9(a,b)

Spin2n+1(q) ordp(q) odd SL2n(q∨) (III.3) Prop. 1.9(a,b)
Th. 1.8(c)

qn �≡ ε (mod p) G ∼p Spin2n−1(q) — Prop. 1.9(c)

qn ≡ ε (mod p)
n odd, ε = 1

Spin+
2n(q

∗) (III.1,3) Th. 1.8(a)

Spinε
2n(q)

qn ≡ ε (mod p)
n odd, ε = −1

Spin+
2n(q

∨) (III.1,3)

Prop. 5.16(b,c)

Th. 1.8(d)

qn ≡ ε (mod p)
n, ordp(q) even

Spinε
2n(q

∗) (III.3) Prop. 5.16(c)
Ex. 6.6(a)

Th. 1.8(a,b)

qn ≡ ε (mod p)
n even, ε = 1
ordp(q) odd

Spin+
2n(q

∨) (III.3) Prop. 5.16(c) Th. 1.8(c)

Table 0.2. Substitutions in cross-characteristic for p odd: classi-
cal groups
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G p

o
rd

p (q)

G∗ Hyp 5.1 κG∗ split surj. G ∼p G∗

2B2(q) all cases S abelian

3 1 3D4(q
∗)

3D4(q) 3 2 3D4(q
∗)

(q∗0 = 2) Prop. 6.9 Theorem 1.8(b)

≥ 5 — S abelian

3 1 G2(q
∨)

G2(q) 3 2 G2(q
∗)

(III.2) Prop. 5.16(c) Theorem 1.8(c)

≥ 5 — S abelian

2G2(q) all cases S abelian

3 1 F4(q
∨) (III.2)

F4(q) 3 2 F4(q
∗) (q∗0 = 2)

Prop. 5.16(c) Theorem 1.8(c)

≥ 5 — S abelian

2F4(q) or 3 2 2F4(q
∗) — Prop. 6.9 Prop. 6.8(b)

2F4(2)
′ ≥ 5 S abelian

3,5 1 E6(q
∗) (III.1) Prop. 5.16(b) Theorem 1.8(a)

E6(q) 3 2 G ∼p F4(q
2) — Theorem 1.8(d)

[BMO, Ex. 4.4]

other cases S abelian

2E6(q) all cases G ∼p E6(q
∨) — Theorem 1.8(d)

3,5,7 1 E7(q
∨)

E7(q) 3,5,7 2 E7(q
∗)

(III.2) Prop. 5.16(c) Theorem 1.8(c)

other cases S abelian

3,5,7 1 E8(q
∨)

E8(q) 3,5,7 2 E8(q
∗)

(III.2) Prop. 5.16(c) Theorem 1.8(c)

5 4 E8(q
∗) (III.3) Prop. 5.16(c) Theorem 1.8(a)

other cases S abelian

Table 0.3. Substitutions in cross-characteristic for p odd: excep-
tional groups
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CHAPTER 1

Tame and reduced fusion systems

Throughout this chapter, p always denotes a fixed prime. Before defining tame-
ness of fusion systems more precisely, we first recall the definitions of fusion and
linking systems of finite groups, and of automorphism groups of fusion and linking
systems.

Definition 1.1. Fix a finite group G and a Sylow p-subgroup S ≤ G.

(a) The fusion system of G is the category FS(G) whose objects are the subgroups
of S, and where MorFS(G)(P,Q) = HomG(P,Q) for each P,Q ≤ S.

(b) A subgroup P ≤ S is p-centric in G if Z(P ) ∈ Sylp(CG(P )); equivalently, if
CG(P ) = Z(P )× C ′

G(P ) for a (unique) subgroup C ′
G(P ) of order prime to p.

(c) The centric linking system of G is the category Lc
S(G) whose objects are the p-

centric subgroups of G, and where MorLc
S(G)(P,Q) = TG(P,Q)/C ′

G(P ) for each

pair of objects P,Q. Let π : Lc
S(G) −−−→ FS(G) denote the natural functor:

π is the inclusion on objects, and sends the class of g ∈ TG(P,Q) to cg ∈
MorFS(G)(P,Q).

(d) For P,Q ≤ S p-centric in G and g ∈ TG(P,Q), we let �g�P,Q ∈ MorLc
S(G)(P,Q)

denote the class of g, and set �g�P = �g�P,P if g ∈ NG(P ). For each subgroup
H ≤ NG(P ), �H�P denotes the image of H in AutL(P ) = NG(P )/C ′

G(P ).

The following definitions of automorphism groups are taken from [AOV, Defi-
nition 1.13 & Lemma 1.14], where they are formulated more generally for abstract
fusion and linking systems.

Definition 1.2. Let G be a finite group with S ∈ Sylp(G), and set F = FS(G)
and L = Lc

S(G).

(a) If H is another finite group with T ∈ Sylp(H), then an isomorphism ϕ : S
∼=−→ T

is called fusion preserving (with respect to G and H) if for each P,Q ≤ S,

HomH(ϕ(P ), ϕ(Q)) = ϕ ◦ HomG(P,Q) ◦ ϕ−1 .

(Composition is from right to left.) Equivalently, ϕ is fusion preserving if it

induces an isomorphism of categories FS(G)
∼=−−−→ FT (H).

(b) Let Aut(F) ≤ Aut(S) be the group of fusion preserving automorphisms of S.
Set Out(F) = Aut(F)/AutF (S).

(c) For each pair of objects P ≤ Q in L, set ιP,Q = �1�P,Q ∈ MorL(P,Q), which we
call the inclusion in L of P in Q. For each P , we call �P � = �P �P ≤ AutL(P )
the distinguished subgroup of AutL(P ).

13
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(d) Let Aut(L) be the group of automorphisms α of the category L such that α
sends inclusions to inclusions and distinguished subgroups to distinguished sub-
groups. For γ ∈ AutL(S), let cγ ∈ Aut(L) be the automorphism which sends
an object P to π(γ)(P ), and sends ψ ∈ MorL(P,Q) to γ′ψ(γ′′)−1 where γ′ and
γ′′ are appropriate restrictions of γ. Set

Out(L) = Aut(L)
/
{cγ | γ ∈ AutL(S)} .

(e) Let κG : Out(G) −−−−→ Out(L) be the homomorphism which sends the class
[α], for α ∈ Aut(G) such that α(S) = S, to the class of β ∈ Aut(Lc

S(G)),
where β(P ) = α(P ) for an object P , and β(�g�P,Q) = �α(g)�α(P ),α(Q) for
g ∈ TG(P,Q).

(f) Define μG : Out(L) −−−→ Out(F) by restriction: μG([β]) = [βS |S ] for β ∈
Aut(Lc

S(G)), where βS is the induced automorphism of AutL(S), and βS |S ∈
Aut(S) is its restriction to S when we identify S with its image in AutL(S) =
NG(S)/C

′
G(S).

(g) Set κG = μG ◦κG : Out(G) −−−→ Out(F): the homomorphism which sends the
class of α ∈ NAut(G)(S) to the class of α|S.

By [AOV, Lemma 1.14], the above definition of Out(L) is equivalent to that
in [BLO2], and by [BLO2, Lemma 8.2], both are equivalent to that in [BLO1].
So by [BLO1, Theorem 4.5(a)], Out(Lc

S(G)) ∼= Out(BG∧
p ): the group of homotopy

classes of self homotopy equivalences of the space BG∧
p .

We refer to [AOV, § 2.2] and [AOV, § 1.3] for more details about the definitions
of κG and μG and the proofs that they are well defined. Note that μ is defined
there for an arbitrary linking system, not necessarily one realized by a group.

We are now ready to define tameness. Again, we restrict attention to fusion
systems of finite groups, and refer to [AOV, § 2.2] for the definition in the more
abstract setting.

Definition 1.3. For a finite group G and S ∈ Sylp(G), the fusion system
FS(G) is tame if there is a finite group G∗ which satisfies:

• there is a fusion preserving isomorphism S
∼=−−−→ S∗ for some S∗ ∈ Sylp(G

∗);
and

• the homomorphism κG∗ : Out(G∗) −→ Outtyp(Lc
S(G

∗)) ∼= Out(BG∗∧
p ) is split

surjective.

In this situation, we say that G∗ tamely realizes the fusion system FS(G).

The above definition is complicated by the fact that two finite groups can have
isomorphic fusion systems but different outer automorphism groups. For example,
set G = PSL2(9) ∼= A6 and H = PSL2(7) ∼= GL3(2). The Sylow subgroups of
both groups are dihedral of order 8, and it is not hard to see that any isomorphism
between Sylow subgroups is fusion preserving. But Out(G) ∼= C2

2 while Out(H) ∼=
C2 (see Theorem 3.4 below). Also, κG is an isomorphism, while κH fails to be onto
(see [BLO1, Proposition 7.9]). In conclusion, the 2-fusion system of both groups
is tame, even though κH is not split surjective.

This definition of tameness was motivated in part in [AOV] by an attempt to
construct new, “exotic” fusion systems (abstract fusion systems not realized by any
finite group) as extensions of a known fusion system by an automorphism. Very
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roughly, if α ∈ Aut(Lc
S(G)) is not in the image of κG, and not in the image of

κG∗ for any other finite group G∗ which has the same fusion and linking systems,
then one can construct and extension of FS(G) by α which is not isomorphic to
the fusion system of any finite group. This shows why we are interested in the
surjectivity of κG; to see the importance of its being split, we refer to the proof of
[AOV, Theorem B].

It is usually simpler to work with automorphisms of a p-group which preserve
fusion than with automorphisms of a linking system. So in most cases, we prove
tameness for the fusion system of a group G by first showing that κG = μG ◦ κG

is split surjective, and then showing that μG is injective. The following elementary
lemma will be useful.

Lemma 1.4. Fix a finite group G and S ∈ Sylp(G), and set F = FS(G). Then

(a) κG is surjective if and only if each ϕ ∈ Aut(F) extends to some ϕ ∈ Aut(G),
and

(b) Ker(κG) ∼= CAut(G)(S)/AutCG(S)(G).

Proof. This follows from the following diagram

0 �� AutNG(S)(G) ��

����

NAut(G)(S) ��

restr

��

Out(G) ��

κG

��

0

0 �� AutNG(S)(S) �� Aut(F) �� Out(F) �� 0

with exact rows. �

The next lemma can be useful when κG or κG is surjective but not split.

Lemma 1.5. Fix a prime p, a finite group G, and S ∈ Sylp(G).

(a) Assume Ĝ ≥ G is such that G � Ĝ, p � |Ĝ/G|, and OutĜ(G) ≤ Ker(κG).

Then FS(Ĝ) = FS(G) and Lc
S(Ĝ) ∼= Lc

S(G).

(b) If κG is surjective and Ker(κG) has order prime to p, then there is Ĝ ≥
G/Op′(Z(G)) such that FS(Ĝ) = FS(G) (where we identify S with its image
in G/Op′(G)) and κĜ is split surjective. In particular, FS(G) is tame, and is

tamely realized by Ĝ.

Proof. (a) Since OutĜ(G) ≤ Ker(κG), each coset of G in Ĝ contains an ele-
ment which centralizes S. (Recall that κG is induced by the restriction homomor-

phism from NAut(G)(S) to Aut(F).) Thus FS(Ĝ) = FS(G) and Lc
S(Ĝ) = Lc

S(G).
(b) Since G and G/Op′(Z(G)) have isomorphic fusion systems at p, we can

assume that Z(G) is a p-group. Set K = Ker(κG) ≤ Out(G). Since Hi(K;Z(G)) =
0 for i = 2, 3, by the obstruction theory for group extensions [McL, Theorems

IV.8.7–8], there is an extension Ĝ of G by K such that G � Ĝ and Ĝ/G ∼= K =

OutĜ(G). In particular, CĜ(G) ≤ G. Since K = Ker(κG) ≤ Ker(κG), FS(Ĝ) =

FS(G), and Lc
S(Ĝ) = Lc

S(G) by (a).
By [OV, Lemma 1.2], and since K � Out(G) and Hi(K;Z(G)) = 0 for i =

1, 2, each automorphism of G extends to an automorphism of Ĝ which is unique

modulo inner automorphisms. Thus Out(Ĝ) contains a subgroup isomorphic to
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Out(G)/K, and κĜ sends this subgroup isomorphically onto Out(Lc
S(Ĝ)). So κĜ

is split surjective, and FS(G) is tame. �

The next proposition is really a result about constrained fusion systems (cf.
[AKO, Definition I.4.8]): it says that every constrained fusion system is tame.
Since we are dealing here only with fusion systems of finite groups, we state it
instead in terms of p-constrained groups.

Proposition 1.6. Fix a finite group G and a Sylow subgroup S ∈ Sylp(G).

(a) If CG(Op(G)) ≤ Op(G), then κG and μG are both isomorphisms:

Out(G)
κG−−−−−→∼=

Out(Lc
S(G))

μG−−−−−→∼=
Out(FS(G)) .

(b) If S is abelian, or more generally if NG(S) controls p-fusion in G, then FS(G)
is tame, and is tamely realized by NG(S)/Op′(CG(S)).

Proof. (a) Set Q = Op(G), F = FS(G), and L = Lc
S(G). Then AutL(Q) =

G, so (α �→ αQ) defines a homomorphism

Φ: Aut(L) −−−−−→ Aut(AutL(Q)) = Aut(G)

whose image lies in NAut(G)(S). For each α ∈ Ker(Φ), αQ = IdG and hence
α = IdL. (Here, it is important that α sends inclusions to inclusions.) Thus Φ
is a monomorphism. Also, α = cγ for some γ ∈ AutL(S) if and only if αQ = cg

for some g ∈ NG(S), so Φ factors through a monomorphism Φ from Out(L) to

NAut(G)(S)/AutG(S) ∼= Out(G), and ΦG ◦ κG = IdOut(G). Thus κG is an isomor-
phism.

In the terminology in [AKO, § I.4], G is a model for F = FS(G). By the
uniqueness of models (cf. [AKO, Theorem III.5.10(c)]), each β ∈ Aut(F) extends
to some χ ∈ Aut(G), and χ is unique modulo AutZ(S)(G). Hence κG is an isomor-
phism, and so is μG.
(b) If NG(S) controls p-fusion in G, then NG(S) ∼p G. Also, NG(S) ∼p G∗

where G∗ = NG(S)/Op′(CG(S)), G∗ satisfies the hypotheses of (a), and hence
tamely realizes FS(G). In particular, this holds whenever S is abelian by Burnside’s
theorem. �

When working with groups of Lie type when p is not the defining characteristic,
it is easier to work with the universal groups rather than those in adjoint form (μG

is better behaved in such cases). The next proposition is needed to show that
tameness for fusion systems of groups of universal type implies the corresponding
result for groups of adjoint type.

Proposition 1.7. Let G be a finite p-perfect group such that Op′(G) = 1 and
H2(G;Z/p) = 0 (i.e., such that each central extension of G by a finite p-group
splits). Choose S ∈ Sylp(G), and set Z = Z(G) ≤ S. If FS(G) is tamely realized
by G, then FS/Z(G/Z) is tamely realized by G/Z.

Proof. Let H be the set of all P ≤ S such that P ≥ Z and P/Z is p-centric
in G/Z, and let LH

S (G) ⊆ Lc
S(G) be the full subcategory with object set H. By

[AOV, Lemma 2.17], LH
S (G) is a linking system associated to FS(G) in the sense

of [AOV, Definition 1.9]. Hence the homomorphism

R : Out(Lc
S(G))

∼=−−−−−−→ Out(LH
S (G))

induced by restriction is an isomorphism by [AOV, Lemma 1.17].
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Set F = FS(G), L = LH
S (G), G = G/Z, S = S/Z, F = F

S
(G), and L = Lc

S
(G)

for short. Consider the following square:

(1)

Out(G)
κG ��

μ

��

Out(L)∼= Out(Lc
S(G))

Out(G)
κ
G �� Out(L) .

ν1−1

��

Here, μ sends the class of an automorphism of G to the class of the induced auto-

morphism of G = G/Z(G).
Assume that ν has been defined so that (1) commutes and ν is injective. If κG

is onto, then ν is onto and hence an isomorphism, so κ
G

is also onto. Similarly, if

κG is split surjective, then κ
G
is also split surjective. Thus F is tamely realized by

G if F is tamely realized by G, which is what we needed to show.
It thus remains to construct the monomorphism ν, by sending the class of

α ∈ Aut(L) to the class of a lifting of α to L. So in the rest of the proof, we show
the existence and uniqueness of such a lifting.

Let pr : L −−−→ L denote the projection. Let End(L) be the monoid of functors
from L to itself which send inclusions to inclusions and distinguished subgroups into
distinguished subgroups. (Thus Aut(L) is the group of elements of End(L) which
are invertible.) We will prove the following two statements:

(2) For each α ∈ Aut(L), there is a functor α̃ ∈ End(L) such that pr ◦ α̃ = α ◦ pr.

(3) If β ∈ End(L) is such that pr ◦ β = pr, then β = IdL.

Assume that (2) and (3) hold; we call α̃ a “lifting” of α in the situation of (2).

For each α ∈ Aut(L), there are liftings α̃ of α and α̃∗ of α−1 in End(L), and these
are inverses to each other by (3). Hence α̃ ∈ Aut(L), and is the unique such lifting
of α by (3) again.

Define ν : Out(L) −−−→ Out(L) by setting ν([α]) = [α̃] when α̃ is the unique

lifting of α. This is well defined as a homomorphism on Aut(L) by the existence

and uniqueness of the lifting; and it factors through Out(L) since conjugation by

γ ∈ AutL(S) lifts to conjugation by γ ∈ AutL(S) for any γ ∈ pr−1
S (γ).

Thus ν is a well defined homomorphism, and is clearly injective. The square (1)
commutes since for each β ∈ Aut(G) such that β(S) = S, κG([β]) and νκ

G
μ([β])

are the classes of liftings of the same automorphism of L.
It remains to prove (2) and (3).

Proof of (2): For each α ∈ Aut(L), consider the pullback diagram

(4)

L̃ ρ1 ��

ρ2

��

L

pr
��

L pr
��

α̃

������������ L α
∼=

�� L .

Each functor in (4) is bijective on objects, and the diagram restricts to a pullback

square of morphism sets for each pair of objects in L (and their inverse images in

L and L̃).
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Since the natural projection G −−−→ G is a central extension with kernel Z, the

projection functor pr : L −−−→ L is also a central extension of linking systems in the
sense of [5a2, Definition 6.9] with kernel Z. Since ρ2 is the pullback of a central ex-
tension, it is also a central extension of linking systems by [5a2, Proposition 6.10],

applied with ω = pr∗α∗(ω0) ∈ Z2(L;Z), where ω0 is a 2-cocycle on L which de-
termines the extension pr. By [BLO1, Proposition 1.1], H2(|L|;Fp) ∼= H2(G;Fp),
where the last group is zero by assumption. Hence H2(|L|;Z) = 0, so ω is a
coboundary, and ρ2 is the product extension by [5a2, Theorem 6.13]. In other

words, L̃ ∼= Lc
Z(Z) × L, where Lc

Z(Z) has one object and automorphism group Z,

and there is a subcategory L0 ⊆ L̃ (with the same objects) which is sent isomor-
phically to L by ρ2. Set α̃ = ρ1 ◦ (ρ2|L0

)−1.
We first check that α̃ sends distinguished subgroups to distinguished subgroups.

Let prS : S −−−→ S = S/Z be the projection. Fix an object P in L, and set
Q = α̃(P ). Then Q/Z = α(P/Z), and αP/Z(�P/Z�) = �Q/Z�, so α̃P (�P �) ≤
pr−1

S (�Q/Z�) = �Q�.
For each subgroup P ∈ Ob(L), there is a unique element zP ∈ Z such that

α̃(ιP,S) = ια̃(P ),S ◦ �zP �α̃(P ). Note that zS = 1. Define a new functor β : L −−→ L
by setting β(P ) = α̃(P ) on objects and for each ϕ ∈ MorL(P,Q), β(ϕ) = �zQ�α̃(Q) ◦

α̃(ϕ) ◦ �zP �−1
α̃(P ). Then β is still a lifting of α, and for each P :

β(ιP,S) = �zS�S ◦ α̃(ιP,S) ◦ �zP �−1
α̃(P ) = ια̃(P ),S ◦ �zP �α̃(P ) ◦ �zP �−1

α̃(P ) = ια̃(P ),S .

For arbitrary P ≤ Q, since ια̃(P ),α̃(Q) is the unique morphism whose composite with
ια̃(Q),S is ια̃(P ),S (see [BLO2, Lemma 1.10(a)]), β sends ιP,Q to ια̃(P ),α̃(Q).

Thus, upon replacing α̃ by β, we can assume that α̃ sends inclusions to inclu-
sions. This finishes the proof of (2).

Proof of (3): Assume that β ∈ End(L) is a lift of the identity on L. Let B(Z)
be the category with one object * and with morphism group Z. Define a functor

χ : L −−−→ B(Z) by sending all objects in L to
*
, and by sending a morphism

�g� ∈ MorL(P,Q) to the unique element z ∈ Z such that βP,Q(�g�) = �gz� = �zg�.
(Recall that Z ≤ Z(G).)

Now,

H1(|L|;Fp) ∼= H1(|Lc
S(G)|;Fp) ∼= H1(BG;Fp) ∼= H1(G;Fp) = 0 ,

where the first isomorphism holds by [5a1, Theorem B] and the second by [BLO1,
Proposition 1.1]. Hence Hom(π1(|L|),Fp) ∼= Hom(H1(|L|),Fp) ∼= H1(|L|;Fp) = 0,
where the second isomorphism holds by the universal coefficient theorem (cf. [McL,
Theorem III.4.1]), and so Hom(π1(|L|), Z) = 0. In particular, the homomorphism
χ̂ : π1(|L|) −−−→ π1(|B(Z)|) ∼= Z induced by χ is trivial.

Thus for each ψ ∈ MorL(P,Q), the loop in |L| formed by ψ and the inclusions
ιP,S and ιQ,S is sent to 1 ∈ Z. Since β sends inclusions to inclusions, this proves
that χP,Q(ψ) = 1, and hence that βP,Q(ψ) = ψ. Thus β = IdL. �

By Proposition 1.7, when proving tameness for fusion systems of simple groups
of Lie type, it suffices to look at the universal groups (such as SLn(q), SUn(q)) rather
than the simple groups (PSLn(q), PSUn(q)). However, it is important to note that
the proposition is false if we replace automorphisms of the linking systems by those

of the fusion system. For example, set G = SL2(3
4) and G = PSL2(3

4). Then
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S ∼= Q32 and S ∼= D16, Out(FS(G)) = Out(S) ∼= Out(G) ∼= C4 × C2 (and κG is an

isomorphism), while Out(G) ∼= C4 × C2 and Out(S,F
S
(G)) = Out(S) ∼= C2 × C2.

We already gave one example of two groups which have the same fusion system
but different outer automorphism groups. That is a special case of the main theorem
in our earlier paper, where we construct many examples of different groups of Lie
type with isomorphic fusion systems. Since this plays a crucial role in Chapter 6,
where we handle the cross characteristic case, we restate the theorem here.

As in the introduction, we write G ∼p H to mean that there is a fusion pre-
serving isomorphism from a Sylow p-subgroup of G to one of H.

Theorem 1.8 ([BMO, Theorem A]). Fix a prime p, a connected reductive
group scheme G over Z, and a pair of prime powers q and q∗ both prime to p.
Then the following hold.

(a) G(q) ∼p G(q∗) if 〈q〉 = 〈q∗〉 as subgroups of Z×
p .

(b) If G is of type An, Dn, or E6, and τ is a graph automorphism of G, then
τG(q) ∼p

τG(q∗) if 〈q〉 = 〈q∗〉 as subgroups of Z×
p .

(c) If the Weyl group of G contains an element which acts on the maximal torus
by inverting all elements, then G(q) ∼p G(q∗) (or τG(q) ∼p

τG(q∗) for τ as in

(b)) if 〈 − 1, q〉 = 〈 − 1, q∗〉 as subgroups of Z×
p .

(d) If G is of type An, Dn for n odd, or E6, and τ is a graph automorphism of G
of order two, then τG(q) ∼p G(q∗) if 〈 − q〉 = 〈q∗〉 as subgroups of Z×

p .

The next proposition is of similar type, but much more elementary.

Proposition 1.9. Fix an odd prime p, a prime power q prime to p, n ≥ 2,
and ε ∈ {±1}. Then

(a) Sp2n(q) ∼p SL2n(q) if ordp(q) is even;

(b) Sp2n(q) ∼p Spin2n+1(q); and

(c) Spinε2n(q) ∼p Spin2n−1(q) if q is odd and qn �≡ ε (mod p).

Proof. If we replace Spin±m(q) by SO±
m(q) in (b) and (c), then these three

points are shown in [BMO, Proposition A.3] as points (d), (a), and (c), respectively.
When q is a power of 2, (b) holds because the groups are isomorphic (see [Ta,
Theorem 11.9]). So it remains to show that

Spinεm(q) ∼p Ωε
m(q) ∼p SOε

m(q)

for all m ≥ 3 (even or odd) and q odd. The first equivalence holds since p is odd
and Ωε

m(q) ∼= Spinεm(q)/K where |K| = 2. The second holds by Lemma 1.5(a),
and since OutSOε

m(q)(Ω
ε
m(q)) is generated by the class of a diagonal automorphism

of order 2 (see, e.g., [GLS3, § 2.7]) and hence can be chosen to commute with a
Sylow p-subgroup. This last statement is shown in Lemma 5.9 below, and holds

since for appropriate choices of algebraic group G containing the given group G,

and of maximal torus T ≤ G, a Sylow p-subgroup of G is contained in N
G
(T ) (see

[GLS3, Theorem 4.10.2]) and the diagonal automorphisms of G are induced by
conjugation by elements in N

T
(G) (see Proposition 3.5(c)). �

Theorem 1.8 and Proposition 1.9, together with some other, similar relations in
[BMO], lead to the following proposition, which when p is odd provides a relatively
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short list of “p-local equivalence class representatives” for groups of Lie type in
characteristic different from p.

Proposition 1.10. Fix an odd prime p, and assume G ∈ Lie(q0) is of universal
type for some prime q0 �= p. Assume also that the Sylow p-subgroups of G are
nonabelian. Then there is a group G∗ ∈ Lie(q∗0) of universal type for some q∗0 �= p,
such that G∗ ∼p G and G∗ is one of the groups in the following list:

(a) SLn(q
∗) for some n ≥ p; or

(b) Spinε2n(q
∗), where n ≥ p, ε = ±1, (q∗)n ≡ ε (mod p), and ε = +1 if n is odd;

or

(c) 3D4(q
∗) or 2F4(q

∗), where p = 3 and q∗ is a power of 2; or

(d) G(q∗), where G = G2, F4, E6, E7, or E8, p
∣∣ |W (G)|, and q∗ ≡ 1 (mod p); or

(e) E8(q
∗), where p = 5 and q∗ ≡ ±2 (mod 5).

Furthermore, in all cases except (c), we can take q∗0 to be any given prime whose
class generates (Z/p2)×, and choose G∗ so that q∗ = (q∗0)

b where b|(p − 1)p� for
some �.

Proof. Let q be such that G ∼= τG(q) for some τ and some G. Thus q is
a power of q0. Fix a prime q∗0 as specified above. By Lemma 1.11(a), there are

positive integers b, c, and powers q∗ = (q∗0)
b and q∨ = (q∗0)

c such that 〈q〉 = 〈q∗〉,
〈 − q〉 = 〈q∨〉, and b, c|(p− 1)p� for some � ≥ 0.

(i) Assume G ∼= Sz(q), 2G2(q),
2F4(q), or G ∼= 3D4(q). Since p �= q0, and since

S ∈ Sylp(G) is nonabelian, p divides the order of the Weyl group W of G
by [GL, 10-1(3)]. The Weyl group of B2 is a 2-group, and 2 and 3 are the
only primes which divide the orders of the Weyl groups of G2, F4, and D4.
Hence p = 3, G �∼= 2G2(q) since that is defined only in characteristic 3, and
so G ∼= 2F4(q) or 3D4(q). Set G∗ = 2F4(q

∗) or 3D4(q
∗), respectively, where

q∗0 = 2. Then G∗ ∼p G, and we are in case (c).

(ii) If G = SUn(q) or 2E6(q), then by Theorem 1.8(d), G ∼p G∗ where G∗ ∼=
SLn(q

∨) or E6(q
∨), respectively. So we can replace G by a Chevalley group

in these cases.

(iii) Assume G = Sp2n(q) for some n and q. If ordp(q) is even, then by Proposition
1.9(a), G ∼p SL2n(q). If ordp(q) is odd, then ordp(q

∨) is even since 〈q∨〉 =
〈− q〉 in F×

p , and G ∼p Sp2n(q
∨) by Theorem 1.8(c). So G is always p-locally

equivalent to a linear group in this case.

(iv) Assume G = Spin2n+1(q) for some n and q. Then G ∼p Sp2n(q) by Proposi-
tion 1.9(b). So G is p-locally equivalent to a linear group by (iii).

(v) If G = SLn(q), set G
∗ = SLn(q

∗). Then G∗ ∼p G by Theorem 1.8(a), n ≥ p
since the Sylow p-subgroups of G are nonabelian, and we are in the situation
of (a).

(vi) Assume G = Spinε2n(q) for some n and q, and ε = ±1. If q is a power of 2,
then by using point (a) or (b) of Theorem 1.8, we can arrange that q be odd.
If qn �≡ ε (mod p), then G ∼p Spin2n−1(q) by Proposition 1.9(c), and this
is p-equivalent to a linear group by (iv). So we are left with the case where



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1. TAME AND REDUCED FUSION SYSTEMS 21

qn ≡ ε (mod p). If n is odd and ε = −1, set G∗ = Spin+2n(q
∨) ∼p G (Theorem

1.8(d)). Otherwise, set G∗ = Spinε2n(q
∗) ∼p G (Theorem 1.8(a,b)). In either

case, we are in the situation of (b).

We are left with the cases where G = G(q) for some exceptional Lie group G.
By [GL, 10-1(3)] and since the Sylow p-subgroups of G are nonabelian, p

∣∣ |W (G)|.
If ordp(q) = 1, then G∗ = G(q∗) ∼p G by Theorem 1.8(a). If ordp(q) = 2 and
G �= E6, then G∗ = G(q∨) ∼p G by Theorem 1.8(c), where q∨ ≡ 1 (mod p). In
either case, we are in the situation of (d).

If ordp(q) = 2 and G = E6(q), then 〈q〉 = 〈 − q2〉 as closed subgroups of Z×
p

(note that vp(q
2 − 1) = vp((−q2)2 − 1)). So by Theorem 1.8(d) and Example 4.4 in

[BMO], G = E6(q) ∼p
2E6(q

2) ∼p F4(q
2). So we can choose G∗ satisfying (d) as

in the last paragraph.
Assume ordp(q) > 2. By [GL, 10-1(3)], for S ∈ Sylp(G) to be nonabelian, there

must be some n ≥ 1 such that p · ordp(q)
∣∣ n, and such that qn − 1 appears as a

factor in the formula for |G(q)| (see, e.g., [GL, Table 4-2] or [Ca, Theorem 9.4.10
& Proposition 10.2.5]). Since ordp(q)|(p− 1), this shows that the case ordp(q) > 2
appears only for the group E8(q), and only when p = 5 and ordp(q) = 4. In
particular, q, q∗ ≡ ±2 (mod 5). Set G∗ = E8(q

∗); then G∗ ∼p G by Theorem
1.8(a), and we are in the situation of (e). �

The following lemma was needed in the proof of Proposition 1.10 to reduce still
further the prime powers under consideration.

Lemma 1.11. Fix a prime p, and an integer q prime to p such that q �= ±1.

(a) If p is odd, then for any prime r0 whose class generates (Z/p2)×, there is b ≥ 1

such that 〈q〉 = 〈(r0)b〉, and b|(p− 1)p� for some �.

(b) If p = 2, then either 〈q〉 = 〈3〉, or 〈q〉 = 〈5〉, or there are ε = ±1 and k ≥ 1

such that ε ≡ q (mod 8) and 〈q〉 = 〈ε · 32k〉.

Proof. Since q ∈ Z and |q| > 1, 〈q〉 is infinite.
(a) If p is odd, then for each n ≥ 1, (Z/pn)× ∼= (Z/p)× × (Z/pn−1) is cyclic

and generated by the class of r0. Hence Z×
p

∼= (Z/p)× × (Zp,+), and 〈r0〉 = Z×
p .

Also, 〈q〉 ≥ 1 + p�Zp for some � ≥ 1, since each infinite, closed subgroup of (Zp,+)
contains pkZp for some k.

Set b = [Z×
p : 〈q〉] = [(Z/p�)× : 〈q+p�Z〉]

∣∣(p− 1)p�−1. Then 〈q〉 = 〈(r0)b〉.
(b) If p = 2, then Z×

2 = {±1} × 〈3〉, where 〈3〉 ∼= (Z2,+). Hence the only infinite

closed subgroups of 〈3〉 are those of the form 〈32k〉 for some k ≥ 0. So 〈q〉 = 〈ε · 32k〉
for some k ≥ 0 and some ε = ±1, and the result follows since 〈5〉 = 〈 − 3〉. �

We also note, for use in Chapter 4, the following more technical result.

Lemma 1.12. Let G be a finite group, fix S ∈ Sylp(G), and set F = FS(G).
Let P ≤ S be such that CG(P ) ≤ P and NS(P ) ∈ Sylp(NG(P )). Then for each

ϕ ∈ Aut(F) such that ϕ(P ) = P , ϕ|NS(P ) extends to an automorphism ϕ of NG(P ).

Proof. Since CG(P ) ≤ P and NS(P ) ∈ Sylp(NG(P )), NG(P ) is a model for
the fusion system E = FNS(P )(NG(P )) in the sense of [AKO, Definition I.4.8].
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By the strong uniqueness property for models [AKO, Theorem I.4.9(b)], and since
ϕ|NS(P ) preserves fusion in E , ϕ|NS(P ) extends to an automorphism of the model.

�
The following elementary lemma will be useful in Chapters 5 and 6; for example,

when computing orders of Sylow subgroups of groups of Lie type.

Lemma 1.13. Fix a prime p. Assume q ≡ 1 (mod p), and q ≡ 1 (mod 4) if
p = 2. Then for each n ≥ 1, vp(q

n − 1) = vp(q − 1) + vp(n).

Proof. Set r = vp(q − 1), and let k be such that q = 1 + prk. Then qn =
1 + nprk + ξ, where vp(np

rk) = vp(n) + r, and where each term in ξ has strictly
larger valuation. �
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CHAPTER 2

Background on finite groups of Lie type

In this chapter and the next, we fix the notation to be used for finite groups of
Lie type, and list some of the (mostly standard) results which will be needed later.
We begin by recalling the following concepts used in [GLS3]. We do not repeat
the definitions of maximal tori and Borel subgroups in algebraic groups, but refer
instead to [GLS3, §§ 1.4–1.6].

Definition 2.1 ([GLS3, Definitions 1.7.1, 1.15.1, 2.2.1]). Fix a prime q0.

(a) A connected algebraic group G over Fq0 is simple if [G,G] �= 1, and all proper

closed normal subgroups of G are finite and central. If G is simple, then it is

of universal type if it is simply connected, and of adjoint type if Z(G) = 1.

(b) A Steinberg endomorphism of a connected simple algebraic group G is a sur-

jective algebraic endomorphism σ ∈ End(G) whose fixed subgroup is finite.

(c) A σ-setup for a finite group G is a pair (G, σ), where G is a simple algebraic

group over Fq0 , and where σ is a Steinberg endomorphism of G such that

G = Oq0
′
(C

G
(σ)).

(d) Let Lie(q0) denote the class of finite groups with σ-setup (G, σ) where G is
simple and is defined in characteristic q0, and let Lie be the union of the
classes Lie(q0) for all primes q0. We say that G is of universal (adjoint) type

if G is of universal (adjoint) type.

If G is universal, then C
G
(σ) is generated by elements of q0-power order (see

[St3, Theorem 12.4]), and hence G = C
G
(σ) in (c) above. In general, C

G
(σ) =

G · C
T
(σ) (cf. [GLS3, Theorem 2.2.6]).

A root group in a connected algebraic group G over Fq0 with a given maxi-

mal torus T is a one-parameter closed subgroup (thus isomorphic to Fq0) which is

normalized by T . The roots of G are the characters for the T -actions on the root

groups, and lie in the Z-lattice X(T ) = Hom(T ,F×
q0) of characters of T . (Note that

this is the group of algebraic homomorphisms, and that Hom(F×
q0 ,F

×
q0)

∼= Z.) The

roots are regarded as lying in the R-vector space V = R ⊗Z X(T ). We refer to
[GLS3, § 1.9] for details about roots and root subgroups of algebraic groups, and
to [Brb, Chapitre VI] for a detailed survey of root systems.

The following notation and hypotheses will be used throughout this paper,
when working with a finite group of Lie type defined via a σ-setup.

23
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Notation 2.2. Let (G, σ) be a σ-setup for the finite group G, where G is a

connected, simple algebraic group over Fq0 for a prime q0. When convenient, we

also write G = G(Fq0), where G is a group scheme over Z.

(A) The maximal torus and Weyl group of G. Fix a maximal torus T in G

such that σ(T ) = T . Let W = N
G
(T )/T be the Weyl group of G (and of G).

(B) The root system of G. Let Σ be the set of all roots of G with respect to

T , and let Xα < G denote the root group for the root α ∈ Σ. Thus Xα =

{xα(u) |u ∈ Fq0} with respect to some fixed Chevalley parametrization of G.

Set V = R⊗ZX(T ): a real vector space with inner product (−,−) upon which
the Weyl group W acts orthogonally. Let Π ⊆ Σ be a fundamental system of
roots, and let Σ+ ⊆ Σ be the set of positive roots with respect to Π. For each
α ∈ Σ+, let ht(α) denote the height of α: the number of summands in the
decomposition of α as a sum of fundamental roots.

For each α ∈ Σ, let wα ∈ W be the reflection in the hyperplane α⊥ ⊆ V .

For α ∈ Σ and λ ∈ F×
q0 , let nα(λ) ∈ 〈Xα, X−α〉 and hα(λ) ∈ T ∩

〈Xα, X−α〉 be as defined in [Ca, § 6.4] or [GLS3, Theorem 1.12.1]: the images

of
(

0 λ
−λ−1 0

)
and

(
λ 0
0 λ−1

)
, respectively, under the homomorphism SL2(Fq0) −→

G that sends
(
1 u
0 1

)
to xα(u) and

(
1 0
v 1

)
to x−α(v). Equivalently, nα(λ) =

xα(λ)x−α(−λ−1)xα(λ) and hα(λ) = nα(λ)nα(1)
−1.

(C) The maximal torus, root system and Weyl group of G. Set T = T ∩G.
Let τ ∈ Aut(V ) and ρ ∈ Aut(Σ) be the orthogonal automorphism and permu-

tation, respectively, such that for each α ∈ Σ, σ(Xα) = Xρ(α) and ρ(α) is a
positive multiple of τ (α). Set W0 = CW (τ ).
If ρ(Π) = Π, then set V0 = CV (τ ), and let pr⊥V0

be the orthogonal projection of

V onto V0. Let Σ̂ be the set of equivalence classes in Σ determined by τ , where
α, β ∈ Σ are equivalent if pr⊥V0

(α) is a positive scalar multiple of pr⊥V0
(β) (see

[GLS3, Definition 2.3.1] or [Ca, § 13.2]). Let Π̂ ⊆ Σ̂+ denote the images in Σ̂
of Π ⊆ Σ+.

For each α̂ ∈ Σ̂, set Xα̂ = 〈Xα |α ∈ α̂〉 and Xα̂ = C
Xα̂

(σ). When α ∈ Σ

is of minimal height in its class α̂ ∈ Σ̂, and q′ = |Xab
α̂ |, then for u ∈ Fq′ ,

let x̂α(u) ∈ Xα̂ be an element whose image under projection to Xα is xα(u)
(uniquely determined modulo [Xα̂, Xα̂]).

For α ∈ Π and λ ∈ F×
q0 , let ĥα(λ) ∈ T be an element in G ∩ 〈hβ(F×

q0) |β ∈ α̂〉
whose component in hα(F×

q0) is hα(λ) (if there is such an element).

To see that τ and ρ exist as defined in point (C), recall that the root groups Xα

for α ∈ Σ are the unique closed subgroups of G which are isomorphic to (Fq0 ,+)

and normalized by T (see, e.g., [GLS3, Theorem 1.9.5(a,b)]). Since σ is algebraic
(hence continuous) and bijective, σ−1 sends root subgroups to root subgroups, and
σ permutes the root subgroups (hence the roots) since there are only finitely many
of them. Using Chevalley’s commutator formula, one sees that this permutation
ρ of Σ preserves angles between roots, and hence (up to positive scalar multiple)
extends to an orthogonal automorphism of V .
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These definitions of x̂α(u) ∈ Xα̂ and ĥα(λ) ∈ T are slightly different from the
definitions in [GLS3, § 2.4] of elements xα̂(u) and hα̂(λ). We choose this notation
to emphasize that these elements depend on the choice of α ∈ Σ, not only on its

class α̂ ∈ Σ̂. This will be important in some of the relations we need to use in
Chapter 5.

Lemma 2.3. Under the assumptions of Notation 2.2, the action of W on T

restricts to an action of W0 on T , and the natural isomorphism N
G
(T )/T ∼= W

restricts to an isomorphism(
NG(T ) ∩N

G
(T )
)/

T ∼= CW (τ ) = W0 .

Proof. For each α ∈ Σ, nα(1) = xα(1)x−α(−1)xα(1) represents the reflection

wα ∈ W , and hence σ(nα) ∈ 〈Xρ(α), X−ρ(α)〉 ∩ N
G
(T ) represents the reflection

wρ(α) =
τ(wα). Since W is generated by the wα for α ∈ Σ, we conclude that σ and

τ have the same action on W .
Thus the identification N

G
(T )/T ∼= W restricts to the following inclusions:(

NG(T ) ∩N
G
(T )
)/

T ≤ C
N

G
(T )

(σ)/C
T
(σ) ≤ C

N
G
(T )/T

(σ) ∼= CW (τ ) = W0 .

If w ∈ W0 represents the coset xT ⊆ N
G
(T ), then x−1σ(x) ∈ T . By the Lang-

Steinberg theorem, each element of T has the form t−1σ(t) for some t ∈ T , and
hence we can choose x such that σ(x) = x. Then x ∈ C

G
(σ), and hence x normalizes

G = Oq′0(C
G
(σ)) and T = G ∩ T . Since C

G
(σ) = GC

T
(σ) (see [GLS3, Theorem

2.2.6(g)] or [St3, Corollary 12.3(a)]), some element of xT lies in NG(T ). So the
above inclusions are equalities. �

The roots in G are defined formally as characters of its maximal torus T .
But it will be useful to distinguish the (abstract) root α ∈ Σ from the character

θα ∈ Hom(T ,F×
q0) ⊆ V .

For each root α ∈ Σ ⊆ V , let α∨ ∈ V ∗ be the corresponding co-root (dual
root): the unique element such that (α∨, α) = 2 and wα is reflection in the hy-
perplane Ker(α∨). Since we identify V = V ∗ via a W -invariant inner product,
α∨ = 2α/(α, α). Point (c) of the next lemma says that α∨ = hα, when we regard

hα ∈ Hom(F×
q0 , T ) as an element in V ∗.

Lemma 2.4. Assume we are in the situation of (A) and (B) in Notation 2.2.

(a) We have C
G
(T ) = T . In particular, Z(G) ≤ T , and is finite of order prime to

the defining characteristic q0.

(b) The maximal torus T in G is generated by the elements hα(λ) for α ∈ Π and

λ ∈ F×
q0 . If G is universal, and λα ∈ Fq0 are such that

∏
α∈Π hα(λα) = 1, then

λα = 1 for each α ∈ Π. Thus

T =
∏
α∈Π

hα(F×
q0),

and hα is injective for each α.

(c) For each β ∈ Σ, let θβ ∈ X(T ) = Hom(T ,F×
q0) be the character such that

txβ(u) = xβ(θβ(t)·u)
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for t ∈ T and u ∈ Fq0 . Then

θβ(hα(λ)) = λ(α∨,β) for β, α ∈ Σ, λ ∈ F×
q0 .

The product homomorphism θΠ =
∏

θβ : T −−−−→
∏

β∈Π F×
q0 is surjective, and

Ker(θΠ) = Z(G).

(d) If α, β1, . . . , βk ∈ Σ and n1, . . . , nk ∈ Z are such that α∨ = n1β
∨
1 + . . .+nkβ

∨
k ,

then for each λ ∈ F×
q0 , hα(λ) = hβ1

(λn1) · · ·hβk
(λnk).

(e) For each w ∈ W , α ∈ Σ, and λ ∈ F×
q0 , and each n ∈ N

G
(T ) such that

nT = w ∈ N
G
(T )/T ∼= W , n(Xα) = Xw(α) and n(hα(λ)) = hw(α)(λ). For

each α, β ∈ Σ and each λ ∈ F×
q0 ,

wα(hβ(λ)) = hwα(β)(λ) = hβ(λ)hα(λ
−(β∨,α)) .

Hence wα(t) = t · hα(θα(t))
−1 for each t ∈ T .

Proof. (a) By [Hu, Proposition 24.1.A], the maximal torus T is regular (i.e.,

contained in only finitely many Borel subgroups). So C
G
(T ) = T by [Hu, Corollary

26.2.A]. Hence Z(G) ≤ T , it is finite since G is assumed simple, and so it has order
prime to the defining characteristic q0.

We claim that it suffices to prove the relations in (c)–(e) in the adjoint group

G/Z(G), and hence that we can use the results in [Ca, §§ 7.1–2]. For relations in T ,

this holds since T is infinitely divisible and Z(G) is finite (thus each homomorphism

to T/Z(G) has at most one lifting to T ). For relations in a root group Xα, this

holds since each element of XαZ(G) of order q0 lies in Xα, since |Z(G)| is prime
to q0 by (a).
(b) This is stated without proof in [GLS3, Theorem 1.12.5(b)], and with a brief
sketch of a proof in [St4, p. 122]. We show here how it follows from the classification
of reductive algebraic groups in terms of root data (see, e.g., [Sp, § 10]).

Consider the homomorphism

hΠ : T̃
def
=
∏
α∈Π

F×
q0 −−−−−−−→ T

which sends (λα)α∈Π to
∏

α hα(λα). Then hΠ is surjective with finite kernel (see
[Ca, § 7.1]). It remains to show that it is an isomorphism when G is of universal
type.

We recall some of the notation used in [Sp, § 7]. To G is associated the root

datum
(
X(T ),Σ, X∨(T ),Σ∨), where

X(T ) = Hom(T ,F×
q0), X∨(T ) = Hom(F×

q0 , T ), Σ∨ = {α∨ = hα |α ∈ Σ} ⊆ X∨(T ) .

As noted before, X(T ) and X∨(T ) are groups of algebraic homomorphisms, and

are free abelian groups of finite rank dual to each other. Recall that Σ ⊆ X(T ),
since we identify a root α with the character θα.

Set Y ∨ = ZΣ∨ ⊆ X∨(T ), and let Y ⊇ X(T ) be its dual. Then (Y,Σ, Y ∨,Σ∨)
is still a root datum as defined in [Sp, § 7.4]. By [Sp, Proposition 10.1.3] and its

proof, it is realized by a connected algebraic group G̃ with maximal torus T̃ , which
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lies in a central extension f : G̃ −−−→ G which extends hΠ. Since G is of universal
type, f and hence hΠ are isomorphisms.
(c) Let ZΣ ≤ V be the additive subgroup generated by Σ. In the notation of

[Ca, pp. 97–98], for each α ∈ Σ and λ ∈ F×
q0 , hα(λ) = h(χα,λ) where

χα,λ ∈ Hom(ZΣ,F×
q0
) is defined by χα,λ(v) = λ2(α,v)/(α,α) = λ(α∨,v).

Also, by [Ca, p. 100], for each χ ∈ Hom(ZΣ,F×
q0), β ∈ Σ, and u ∈ Fq0 ,

h(χ)xβ(u) =

xβ(χ(β)·u). Thus there are homomorphisms θβ ∈ Hom(T ,F×
q0), for each β ∈ Σ,

such that txβ(u) = xβ(θβ(t)·u), and θβ(h(χ)) = χ(β) for each χ. For each α ∈ Σ

and λ ∈ F×
q0
,

(1) θβ(hα(λ)) = θβ(h(χα,λ)) = χα,λ(β) = λ(α∨,β) .

Assume t ∈ Ker(θΠ). Thus t ∈ Ker(θα) for all α ∈ Π, and hence for all

α ∈ Σ ⊆ ZΠ. So [t,Xα] = 1 for all α ∈ Σ, these root subgroups generate G

(see [Sp, Corollary 8.2.10]), and this proves that t ∈ Z(G). The converse is clear:

t ∈ Z(G) implies t ∈ T by (a), and hence θβ(t) = 1 for all β ∈ Π by definition of
θβ.

It remains to show that θΠ sends T onto
∏

β∈Π Fq0 . Consider the homomor-
phisms

(2) T̃
def
=
∏
α∈Π

F×
q0

hΠ−−−−−−−→ T
θΠ−−−−−−−→

∏
β∈Π

F×
q0 ,

where hΠ was defined in the proof of (b). We just saw that θΠ ◦ hΠ has matrix(
(α∨, β)

)
α,β∈Π

, which has nonzero determinant since Π ⊆ V and Π∨ ⊆ V ∗ are

bases. Since F×
q0 is divisible and its finite subgroups are cyclic, this implies that

θΠ ◦ hΠ is onto, and hence θΠ is onto.
(d) This follows immediately from (c), where we showed, for α ∈ Σ, that α∨ can

be identified with hα in Hom(F×
q0 , T ) ⊆ V ∗.

(e) The first statement (n(Xα) = Xw(α) and n(hα(λ)) = hw(α)(λ)) is shown in
[Ca, Lemma 7.2.1(ii) & Theorem 7.2.2]. By the usual formula for an orthogo-

nal reflection, wα(β) = β − 2(α,β)
(α,α) α = β − (α∨, β)α. Here, we regard wα as an

automorphism of V (not of T ). Since wα(β) and β have the same norm,

wα(β)
∨ =

2wα(β)

(β, β)
=

2β

(β, β)
− 2(α, β)

(β, β)
· 2α

(α, α)
= β∨ − (β∨, α) · α∨ ,

and by (d),

wα(hβ(λ)) = hwα(β)(λ) = hβ(λ)hα(λ
−(β∨,α)) = hβ(λ)hα(θα(hβ(λ))

−1)

where the last equality follows from (c). Since T is generated by the hβ(λ) by (b),

this implies that wα(t) = t · hα(θα(t))
−1 for all t ∈ T . �

For any algebraic group H, H0 denotes its identity connected component. The
following proposition holds for any connected, reductive group, but we state it

only in the context of Notation 2.2. Recall the homomorphisms θβ ∈ Hom(T ,F×
q0),

defined for β ∈ Σ in Lemma 2.4(c).
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Proposition 2.5. Assume Notation 2.2. For any subgroup H ≤ T , C
G
(H) is

an algebraic group, C
G
(H)0 is reductive, and

C
G
(H)0 = 〈T ,Xα |α ∈ Σ, H ≤ Ker(θα)〉

C
G
(H) = C

G
(H)0 · {g ∈ N

G
(T ) | [g,H] = 1} .

(3)

If, furthermore, G is of universal type, then Z(G) = C
T
(W ).

Proof. The description of C
G
(H)0 is shown in [Ca2, Theorem 3.5.3] when

H is finite and cyclic, and the proof given there also applies in the more general

case. For each g ∈ C
G
(H), cg(T ) is another maximal torus in C

G
(H)0, so gh ∈

C
N

G
(T )

(H) for some h ∈ C
G
(H)0, and thus C

G
(H) = C

G
(H)0 · C

N
G
(T )

(H).

Assume G is of universal type. Since Z(G) ≤ T by Lemma 2.4(a), we have

Z(G) ≤ C
T
(W ). Conversely, by Lemma 2.4(b), for each t ∈ T and each α ∈ Σ,

t(xα(u)) = xα(θα(t)u), and θ−α(t) = θα(t)
−1. Hence also t(nα(1)) = nα(θα(t)) (see

the formula for nα(λ) in Notation 2.2(B)). If t ∈ C
T
(W ), then [t, nα(1)] = 1 for

each α, and since G is of universal type, 〈Xα, X−α〉 ∼= SL2(Fq0). Thus θα(t) = 1

for all α ∈ Σ, t acts trivially on all root subgroups, and so t ∈ Z(G). �

We now look more closely at the lattice ZΣ∨ generated by the dual roots.

Lemma 2.6. Assume Notation 2.2(A,B), and also that G (and hence G) is of
universal type.

(a) There is an isomorphism

Φ: ZΣ∨ ⊗Z F×
q0 −−−−−−→ T

with the property that Φ(α∨ ⊗ λ) = hα(λ) for each α ∈ Σ and each λ ∈ F×
q0
.

Fix some λ ∈ F×
q0 , and set m = |λ|. Set Φλ = Φ(−, λ) : ZΣ∨ −−−→ T .

(b) The map Φλ is Z[W ]-linear, Ker(Φλ) = mZΣ∨, and Im(Φλ) = {t ∈ T | tm =
1}.

(c) Fix t ∈ T and x ∈ ZΣ∨ such that Φλ(x) = t, and also such that

‖x‖ < 1
2m ·min

{
‖α∨‖

∣∣α ∈ Π
}
.

Then CW (t) = CW (x).

(d) If m = |λ| ≥ 4, then for each α ∈ Σ, CW (hα(λ)) = CW (α).

Proof. (a,b) Identify ZΣ∨ as a subgroup of Hom(F×
q0 , T ), and let

Φ: ZΣ∨ × F×
q0 −−−−−−→ T

be the evaluation pairing. This is bilinear, hence induces a homomorphism on the

tensor product, and Φ(α∨, λ) = hα(λ) by Lemma 2.4(c). Since {α∨ |α ∈ Π} is a
Z-basis for ZΣ∨ (since Σ∨ is a root system by [Brb, §VI.1, Proposition 2]), and

since G is of universal type, Φ is an isomorphism by Lemma 2.4(b).

In particular, for fixed λ ∈ F×
q0 of order m, Φ(−, λ) induces an isomorphism

from the quotient group ZΣ∨/mZΣ∨ onto the m-torsion subgroup of T .
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(c) Clearly, CW (x) ≤ CW (t); it remains to prove the opposite inclusion. Fix
w ∈ CW (t). By (a), w(x) ≡ x (mod mZΣ∨).

Set r = min
{
‖α∨‖

∣∣α ∈ Π
}
. For each α ∈ Σ, ‖α∨‖ =

√
k · r for some k =

1, 2, 3, and hence (α∨, α∨) ∈ r2Z. For each α, β ∈ Σ, 2(α∨, β∨)
/
(α∨, α∨) ∈ Z (cf.

[Ca, Definition 2.1.1]), and hence (α∨, β∨) ∈ 1
2r

2Z. Thus (x, x) ∈ r2Z for each

x ∈ ZΣ∨, and in particular, min
{
‖x‖

∣∣ 0 �= x ∈ ZΣ∨} = r.
By assumption, ‖w(x)‖ = ‖x‖ < mr/2, so ‖w(x) − x‖ < mr. Since each

nonzero element in mZΣ∨ has norm at least mr, this proves that w(x) − x = 0,
and hence that w ∈ CW (x).
(d) This is the special case of (c), where x = α∨ and t = hα(λ). �

Lemma 2.7. Assume Notation 2.2, and assume also that G is of universal type.
Let Γ < Aut(V ) be any finite group of isometries of (V,Σ). Then there is an action

of Γ on T , where g(hα(u)) = hg(α)(u) for each g ∈ Γ, α ∈ Σ, and u ∈ F×
q0 . Fix

m ≥ 3 such that q0 � m, and set Tm = {t ∈ T | tm = 1}. Then Γ acts faithfully on
Tm. If 1 �= g ∈ Γ and � ∈ Z are such that g(t) = t� for each t ∈ Tm, then � ≡ −1
(mod m).

Proof. The action of Γ on T is well defined by the relations in Lemma 2.4(d,b).

Now fix m ≥ 3 prime to q0, and let Tm < T be the m-torsion subgroup. It
suffices to prove the rest of the lemma when m = p is an odd prime, or when

m = 4 and p = 2. Fix λ ∈ F×
q0 of order m, and let Φλ : ZΣ∨ −−−−→ T be the

homomorphism of Lemma 2.6(b). By definition of Φλ, it commutes with the actions
of Γ on ZΣ∨ < V and on Tm.

Assume 1 �= g ∈ Γ and � ∈ Z are such that g(t) = t� for each t ∈ Tm. Set
r = dim(V ), and let B ∈ GLr(Z) be the matrix for the action of g on ZΣ∨, with
respect to some Z-basis of ZΣ∨. Then |g| = |B|, and B ≡ �I (mod mMr(Z)). If
p = 2 (m = 4), let μ ∈ {±1} be such that � ≡ μ (mod 4). If p is odd (som = p), then
let μ ∈ (Zp)

× be such that μ ≡ � (mod p) and μp−1 = 1. Set B′ = μ−1B ∈ GLr(Zp).
Thus B′ also has finite order, and B′ ≡ I (mod mMr(Zp)).

The logarithm and exponential maps define inverse bijections

I +mMr(Zp)
ln−−−−−−→←−−−−−−
exp

mMr(Zp) .

They are not homomorphisms, but they do have the property that ln(Mk) =
k ln(M) for each M ∈ I + mMr(Zp) and each k ≥ 1. In particular, the only
element of finite order in I + mMr(Zp) is the identity. Thus B′ = I, so B = μI.
Since μ ∈ Z and B �= I, we have μ = −1 and B = −I. �

The following lemma about the lattice ZΣ∨ will also be useful when working

with the Weyl group action on certain subgroups of T .

Lemma 2.8. Assume Notation 2.2(A,B). Set Λ = ZΣ∨: the lattice in V
generated by the dual roots. Assume that there are b ∈ W of order 2, and a splitting
Λ = Λ+ × Λ−, such that Λ+,Λ− �= 0 and b acts on Λ± via ±Id. Then G ∼= Cn

(= Sp2n) for some n ≥ 2.

Proof. Fix b ∈ W and a splitting Λ = Λ+ × Λ− as above. When considering
individual cases, we use the notation of Bourbaki [Brb, Planches I–IX] to describe
the (dual) roots, lattice, and Weyl group.
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• If G = An (n ≥ 2), then Λ =
{
(a0, . . . , an) ∈ Zn+1

∣∣ a0 + . . . + an = 0
}
, and b

exchanges certain coordinates pairwise. Choose v ∈ Λ with coordinates 1, −1,
and otherwise 0; where the two nonzero entries are in separate orbits of b of
which at least one is nonfixed. Then v /∈ Λ+ × Λ−, a contradiction.

• If G = G2, then as described in [Brb, Planche IX], Λ is generated by the dual
fundamental roots (1,−1, 0) and ( 23 ,−

1
3 ,−

1
3 ), and does not have an orthogonal

basis.

• If G = Bn (n ≥ 3), Dn (n ≥ 4), or F4, then Λ < Zn is the sublattice of n-tuples
the sum of whose coordinates is even. Also, b acts by permuting the coordinates
and changing sign (or we can assume it acts this way in the F4 case). Choose
v with two 1’s and the rest 0, where the 1’s are in separate b-orbits, of which
either at least one is nonfixed, or both are fixed and exactly one is negated.
Then v /∈ Λ+ × Λ−, a contradiction.

• If G = E8, then Λ = Λ(E8) < R8 is generated by 1
2 (1, 1, . . . , 1) and the n-tuples

of integers whose sum is even. We can assume (up to conjugation) that b acts
as a signed permutation. Choose v as in the last case.

• If G = E7, then Λ < R8 is the lattice of all x = (x1, . . . , x8) ∈ Λ(E8) such
that x7 = −x8. Up to conjugation, b can be again be assumed to act on A via
a signed permutation (permuting only the first six coordinates), and v can be
chosen as in the last case.

• If G = E6, then Λ < R8 is the lattice of all x = (x1, . . . , x8) ∈ Λ(E8) such that
x6 = x7 = −x8. Also, W contains a subgroup isomorphic to 24 : S5 with odd
index which acts on the remaining five coordinates via signed permutations. So
b and v can be taken as in the last three cases. �
We finish the chapter with a very elementary lemma.

It will be useful to know, in certain situations, that each coset of T in N
G
(T )

contains elements of G.

Lemma 2.9. Assume that we are in the situation of Notation 2.2(A,B). As-

sume also that σ acts on T via (t �→ tm) for some 1 �= m ∈ Z. Then for each

g ∈ N
G
(T ), gT ∩ C

G
(σ) �= ∅.

Proof. Since σ|
T

∈ Z(Aut(T )), we have g−1σ(g) ∈ C
G
(T ) = T , the last

equality by Lemma 2.4(a). So for each t ∈ T , σ(gt) = gt if and only if g−1σ(g) =

t1−m. Since T ∼= (F×
q0)

r for some r, and Fq0 is algebraically complete (and 1−m �=
0), this always has solutions. �
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CHAPTER 3

Automorphisms of groups of Lie type

Since automorphisms of G play a central role in this paper, we need to fix
our notation (mostly taken from [GLS3]) for certain subgroups and elements of

Aut(G). We begin with automorphisms of the algebraic group G.

Definition 3.1. Let G and its root system Σ be as in Notation 2.2(A,B).

(a) When q is any power of q0 (the defining characteristic of G), let ψq ∈ End(G)
be the field endomorphism defined by ψq(xα(u)) = xα(u

q) for each α ∈ Σ and

each u ∈ Fq0 . Set Φ
G
= {ψqb0

| b ≥ 1}: the monoid of all field endomorphisms

of G.

(b) Let Γ
G

be the group or set of graph automorphisms of G as defined in [GLS3,

Definition 1.15.5(e)]. Thus when (G, q0) �= (B2, 2), (G2, 3), nor (F4, 2), Γ
G

is the group of all γ ∈ Aut(G) of the form γ(xα(u)) = xρ(α)(u) (all α ∈ ±Π

and u ∈ Fq0) for some isometry ρ of Σ such that ρ(Π) = Π. If (G, q0) =
(B2, 2), (G2, 3), or (F4, 2), then Γ

G
= {1, ψ}, where for the angle-preserving

permutation ρ of Σ which exchanges long and short roots and sends Π to itself,
ψ(xα(u)) = xρ(α)(u) when α is a long root and ψ(xα(u)) = xρ(α)(u

q0) when α
is short.

(c) A Steinberg endomorphism σ of G is “standard” if σ = ψq ◦ γ = γ ◦ ψq, where

q is a power of q0 and γ ∈ Γ
G
. A σ-setup (G, σ) for a finite subgroup G < G

is standard if σ is standard.

By [GLS3, Theorem 2.2.3], for any G with σ-setup (G, σ) as in Notation 2.2,

G is G-conjugate to a subgroup G∗ which has a standard σ-setup. This will be
made more precise in Proposition 3.6(a).

Most of the time in this paper, we will be working with standard σ-setups.
But there are a few cases where we will need to work with setups which are not
standard, which is why this condition is not included in Notation 2.2.

Following the usual terminology, we call G a “Chevalley group” if it has a
standard σ-setup where γ = Id in the notation of Definition 3.1; i.e., if G ∼= G(q)
where q is some power of q0. In this case, the root groups Xα̂ are all abelian and
isomorphic to Fq. When G has a standard σ-setup with γ �= Id, we refer to G
as a “twisted group”, and the different possible structures of its root groups are
described in [GLS3, Table 2.4]. We also refer to G as a “Steinberg group” if γ �= Id

and is an algebraic automorphism of G; i.e., if G is a twisted group and not a Suzuki
or Ree group.

The following lemma will be useful in Chapters 5 and 6.

31
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Lemma 3.2. Assume G is as in Notation 2.2(A,B). Then for each algebraic

automorphism γ of G which normalizes T , there is an orthogonal automorphism τ
of V such that τ (Σ) = Σ, and

γ(Xα) = Xτ(α) and γ(hα(λ)) = hτ(α)(λ)

for each α ∈ Σ and each λ ∈ F×
q0 . In particular,

∣∣γ|
T

∣∣ = |τ | < ∞. If, in addition,

γ normalizes each of the root groups Xα (i.e., τ = Id), then γ ∈ Aut
T
(G).

Proof. By [GLS3, Theorem 1.15.2(b)], and since γ is an algebraic automor-

phism of G, γ = cg ◦ γ0 for some g ∈ G and some γ0 ∈ Γ
G
. Furthermore, γ0 has

the form: γ0(xα(u)) = xχ(α)(u) for all α ∈ Σ and u ∈ Fq0 , and some isometry

χ ∈ Aut(V ) such that χ(Π) = Π. Since γ and γ0 both normalize T , we have

g ∈ N
G
(T ).

Thus by Lemma 2.4(e), there is τ ∈ Aut(V ) such that τ (Σ) = Σ, and γ(Xα) =

Xτ(α) and γ(hα(λ)) = hτ(α)(λ) for each α ∈ Σ and λ ∈ F×
q0 . In particular,

∣∣γ|
T

∣∣ =
|τ |.

If τ = Id, then γ0 = Id and g ∈ T . Thus γ ∈ Aut
T
(G). �

We next fix notation for automorphisms of G.

Definition 3.3. Let G and G be as in Notation 2.2(A,B,C), where in addition,
we assume the σ-setup is standard.

(a) Set

Inndiag(G) = Aut
T
(G)Inn(G) and Outdiag(G) = Inndiag(G)/Inn(G) .

(b) Set ΦG =
{
ψq|G

∣∣ q = qb0, b ≥ 1
}
, the group of field automorphisms of G.

(c) If G is a Chevalley group, set ΓG =
{
γ|G

∣∣ γ ∈ Γ
G

}
, the group of graph auto-

morphisms of G. Set ΓG = 1 if G is a twisted group (a Steinberg, Suzuki, or
Ree group).

Note that in [GLS3, Definition 2.5.13], when G has a standard σ-setup (G, σ),
Inndiag(G) is defined to be the group of automorphisms induced by conjugation

by elements of C
G/Z(G)

(σ) (lifted to G). By [GLS3, Lemma 2.5.8], this is equal

to Inndiag(G) as defined above when G is of adjoint form, and hence also in the

general case (since Z(G) ≤ T ).
Steinberg’s theorem on automorphisms of groups of Lie type can now be stated.

Theorem 3.4 ([St1, § 3]). Let G be a finite group of Lie type. Assume that

(G, σ) is a standard σ-setup for G, where G is in adjoint or universal form. Then

Aut(G) = Inndiag(G)ΦGΓG ,

where Inndiag(G) � Aut(G) and Inndiag(G) ∩ (ΦGΓG) = 1.

Proof. See, e.g., [GLS3, Theorem 2.5.12(a)] (together with [GLS3, Theorem
2.5.14(d)]). Most of this follows from the main result in [St1], and from [St2,
Theorems 30 & 36]. �
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We also need the following characterizations of Inndiag(G) which are indepen-
dent of the choice of σ-setup.

Proposition 3.5. Assume the hypotheses and notation in 2.2. Then

(a) C
G
(G) = Z(G);

(b) N
G
(G) = GN

T
(G); and

(c) Inndiag(G) = Aut
T
(G)Inn(G) = Aut

G
(G) and hence Outdiag(G) = Out

T
(G).

In fact, (b) and (c) hold if we replace T by any σ-invariant maximal torus in G.

Proof. (a) Since the statement is independent of the choice of σ-setup, we

can assume that σ is standard. Set U =
∏

α∈Σ+
Xα and U∗ =

∏
α∈Σ+

X−α.

Fix g ∈ C
G
(G). Since G has a BN -pair (see [Ca, Proposition 8.2.1]), it has

a Bruhat decomposition G = BNB = UNU [Ca, Proposition 8.2.2(i)], where

B = TU and N = N
G
(T ). Write g = unv, where u, v ∈ U and n ∈ N . For each

x ∈ U ∩G, gx = u(nvx) ∈ U implies that nvx = n(vx) ∈ U .

Since n ∈ N
G
(T ), conjugation by n permutes the root groups of G, in a way

determined by the class w = nT ∈ W = N
G
(T )/T . Thus w sends each (positive)

root in the decomposition of vx to a positive root. For each α ∈ Σ+, x̂α(1) ∈ G,
v(x̂α(1)) has α in its decomposition, and hence w(α) ∈ Σ+.

Thus w sends all positive roots to positive roots, so w(Π) = Π, and w = 1 by

[Ca, Corollary 2.2.3]. So n ∈ T , and g = unv ∈ TU .

By the same argument applied to the negative root groups, g ∈ TU∗. Hence

g ∈ T .

For each α ∈ Σ, g ∈ T commutes with x̂α(1) ∈ G, and hence g centralizes

Xβ for each β ∈ α̂ (Lemma 2.4(c)). Thus g centralizes all root groups in G, so

g ∈ Z(G).

(b) Let T ∗ be any σ-invariant maximal torus in G. Fix g ∈ N
G
(G). Then

g−1 · σ(g) ∈ C
G
(G) = Z(G) ≤ T ∗ by (a). By Lang’s theorem [GLS3, Theorem

2.1.1], there is t ∈ T ∗ such that g−1 · σ(g) = t−1 · σ(t). Hence gt−1 ∈ C
G
(σ) =

G·C
T∗(σ), where the last equality holds by [GLS3, Theorem 2.2.6(g)]. So g ∈ GT ∗,

and g ∈ GN
T∗(G) since g normalizes G.

(c) By (b), Aut
G
(G) = Aut

T∗(G)Inn(G) for each σ-invariant maximal torus T ∗.

By definition, Inndiag(G) = Aut
T∗(G)Inn(G) when T ∗ is the maximal torus in a

standard σ-setup for G. Hence Inndiag(G) = Aut
G
(G) = Aut

T∗(G)Inn(G) for all

such T ∗. �
We refer to [GLS3, Definitions 1.15.5(a,e) & 2.5.10] for more details about the

definitions of ΦG and ΓG. The next proposition describes how to identify these
subgroups when working in a nonstandard setup.

Proposition 3.6. Assume G, T , and the root system of G, are as in Notation

2.2(A,B). Let σ be any Steinberg endomorphism of G, and set G = Oq′0(C
G
(σ)).

(a) There is a standard Steinberg endomorphism σ∗ of G such that if we set G∗ =

Oq′0(C
G
(σ∗)), then there is x ∈ G such that G = x(G∗).
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Fix G∗, σ∗, and x as in (a). Let Inndiag(G∗), ΦG∗ , and ΓG∗ be as in Definition

3.3 (with respect to the σ-setup (G, σ∗)). Set Inndiag(G) = cxInndiag(G
∗)c−1

x ,
ΦG = cxΦG∗c−1

x , and ΓG = cxΓG∗c−1
x , all as subgroups of Aut(G). Then the

following hold.

(b) Inndiag(G) = Aut
G
(G).

(c) For each α ∈ Φ
G
Γ
G

such that α|G∗ ∈ ΦG∗ΓG∗ , and each β ∈ α · Inn(G) such

that β(G) = G, β|G ≡ cx(α)c
−1
x (mod Inndiag(G)).

(d) If ψq0 normalizes G, then Inndiag(G)ΦG = Inndiag(G)〈ψq0 |G〉.
Thus the subgroups ΦG and ΓG are well defined modulo Inndiag(G), independently
of the choice of standard σ-setup for G.

Proof. (a) See, e.g., [GLS3, Theorem 2.2.3]: for any given choice of maximal
torus, positive roots, and parametrizations of the root groups, each Steinberg auto-

morphism of G is conjugate, by an element of Inn(G), to a Steinberg automorphism
of standard type.
(b) This follows immediately from Proposition 3.5(c).

(c) By assumption, β ≡ α ≡ cxαc
−1
x (mod Inn(G)). Since β and cxαc

−1
x both

normalize G, β|G ≡ cxα
∗c−1

x modulo Aut
G
(G) = Inndiag(G).

(d) If ψq0 normalizes G, then (c), applied with α = β = ψq0 , implies that as
elements of Aut(G)/Inndiag(G), [ψq0 |G] = [cx(ψq0 |G∗)c−1

x ] generates the image of
ΦG. �

Lemma 3.7. Assume G, T , σ, G = Oq′0(C
G
(σ)), and the root system of G,

are as in Notation 2.2(A,B). Assume that ϕ ∈ Aut(T ) is the restriction of an

algebraic automorphism of G such that [ϕ, σ|
T
] = 1. Then there is an algebraic

automorphism ϕ ∈ Aut(G) such that ϕ|
T
= ϕ, [ϕ, σ] = 1, and ϕ(G) = G.

Proof. By assumption, there is ϕ ∈ Aut(G) such that ϕ|
T
= ϕ. Also, [ϕ, σ] is

an algebraic automorphism of G by [GLS3, Theorem 1.15.7(a)], it is the identity on

T , and hence [ϕ, σ] = ct for some t ∈ T by Lemma 3.2. Using the Lang-Steinberg

theorem, upon replacing ϕ by cuϕ for appropriate u ∈ T , we can arrange that
[ϕ, σ] = 1. In particular, ϕ(G) = G. �

The following proposition is well known, but it seems to be difficult to find
references where it is proven.

Proposition 3.8. Fix a prime q0, and a group G ∈ Lie(q0) of universal type.
Then Z(G) has order prime to q0, G/Z(G) ∈ Lie(q0) and is of adjoint type, and
Z(G/Z(G)) = 1. If G/Z(G) is simple, then each central extension of G by a group
of order prime to q0 splits (equivalently, H2(G;Z/p) = 0 for all primes p �= q0).

Proof. Let (G, σ) be a σ-setup for G, and choose a maximal torus and positive

roots in G. We can thus assume Notation 2.2. By Lemma 2.4(a), Z(G) is finite of

order prime to q0. Since Z(G) ≤ C
G
(G) = Z(G) by Proposition 3.5(a), Z(G) also

has order prime to q0.

Set Ga = G/Z(G) and let Ga < Ga be the image of G under projection. Thus

Ga is an algebraic group of adjoint type, and Ga = Oq0
′
(C

Ga
(σa)) ∈ Lie(q0) where
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σa ∈ End(Ga) is induced by σ. Also, Z(Ga) ≤ Z(Ga) = 1 by Proposition 3.5(a)
again.

It remains to prove the statement about central extensions. When G is a
Chevalley group, this was shown in [St4, Théorème 4.5]. It was shown in [St6,
Corollary 6.2] when G ∼= 2An(q) for n even, and in [AG] when G ∼= 2G2(q) or Sz(q).
The remaining cases follow by similar arguments (see [St5, 9.4 & 12.4]). (See also
[Cu, § 1], as well as Theorem 6.1.4 and Tables 6.1.2 and 6.1.3 in [GLS3].) �

The next proposition shows that in most cases, C
G
(T ) = T . In Chapter 5,

we will see some conditions which imply that C
G
(Op(T )) = T when p is a prime

different from the defining characteristic.

Proposition 3.9. Let (G, σ) be a σ-setup for G, where G and G are of uni-
versal type. Assume Notation 2.2, and in particular, that we have fixed a maximal

torus T and a root system Σ in G.

(a) Assume that C
G
(T )0 � T , where (−)0 denotes the connected component of

the identity. Then there is α ∈ Σ+ such that θα(T ) = 1. Also, there is

β ∈ Hom(T ,F×
q0) such that θα = β−1σ∗(β); i.e., θα(t) = β(t−1σ(t)) for each

t ∈ T .

(b) If the σ-setup is standard, then C
G
(T )0 = T except possibly when G ∼= rG(2)

for some G and some r ≤ 3, or when G ∼= A1(3), Cn(3) for n ≥ 2, or 2G2(3).

(c) If C
G
(T )0 = T , then NG(T )/T ∼= W0.

Proof. (a) By Proposition 2.5, and since C
G
(T )0 > T , there is α ∈ Σ such

that T ≤ Ker(θα) (equivalently, [T,Xα] = 1). Since Ker(θ−α) = Ker(θα), we can
assume that α ∈ Σ+.

Since G is of universal type, G = C
G
(σ) and T = C

T
(σ). Hence there is a short

exact sequence

1 −−−→ T −−−−−→ T
t�→t−1σ(t)−−−−−−−−−→ T ,

where the last map is onto by the Lang-Steinberg theorem. Upon dualizing, and

regarding Hom(T ,F×
q0) additively, we get an exact sequence

0 −−−→ Hom(T ,F×
q0)

σ∗−Id−−−−−−→ Hom(T ,F×
q0)

restr−−−−−→ Hom(T,F×
q0)

(see also [Ca2, Proposition 3.2.3]), where Hom(T ,F×
q0) is the group of algebraic

homomorphisms. Since θα is in the kernel of the restriction map, by assumption,

it has the form β−1σ∗(β) for some β ∈ Hom(T ,F×
q0).

(b) Let P (Σ) and Q(Σ) be as in [Brb, §VI.1.9] (but with Σ in place of R to denote
the root system). Thus Q(Σ) = ZΣ, the integral lattice generated by Σ, and

P (Σ) = {v ∈ V | (v, α∨) ∈ Z for all α ∈ Σ} ≥ Q(Σ) .

For each v ∈ P (Σ), define θv ∈ X(T ) = Hom(T ,F×
q0) by setting θv(hα(λ)) =

λ(v,α∨) for α ∈ Π and λ ∈ Fq0 . Since G is of universal type, this is a well defined
homomorphism by Lemma 2.4(b), and the same formula holds for all α ∈ Σ by
Lemma 2.4(d). By Lemma 2.4(c), this extends our definition of θβ for β ∈ Σ ⊆
P (Σ).
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Recall that Hom(F×
q0 ,F

×
q0)

∼= Z. For each θ ∈ X(T ) and each α ∈ Σ, let nθ,α ∈ Z

be such that θ(hα(λ)) = λnθ,α for all λ ∈ F×
q0 . For given θ, there is v ∈ P (Σ) such

that (v, α∨) = nθ,α for all α ∈ Π, and hence (by Lemma 2.4(d)) for all α ∈ Σ. Then

θ = θv as defined above. In this way, we identify P (Σ) with the lattice X(T ) of

characters for T , while identifying Q(Σ) with ZΣ.
From the appendix to Chapter VI in [Brb] (Planches I–IX), we obtain the

following table:

root system Σ An Cn Bn, Dn G2 F4 E6 E7 E8

min{‖v‖ | v ∈ P (Σ)}
√

n/(n+1) 1 min{
√

n/4, 1}
√
2 1

√
4/3

√
2

√
2

max{‖α‖ |α ∈ Σ}
√
2 2

√
2

√
6

√
2

√
2

√
2

√
2

Here, the norms are given with respect to the descriptions of these lattices in [Brb]
as subgroups of Euclidean spaces.

Assume C
G
(T )0 � T . By (a), there are α ∈ Σ+ and β ∈ Hom(T ,F×

q0) such

that α = β−1σ∗(β). If we regard α and β as elements in the normed vector space
V , then ‖α‖ = ‖σ∗(β) − β‖ ≥ ‖σ∗(β)‖ − ‖β‖. If G = rG(q) (and σ is a standard
setup), then ‖σ∗(β)‖ = q‖β‖, except when G is a Suzuki or Ree group in which
case ‖σ∗(β)‖ =

√
q‖β‖. Thus

‖α‖
‖β‖ + 1 ≥

{
q if G is a Chevalley or Steinberg group
√
q if G is a Suzuki or Ree group.

By the above table, this is possible only if q = 2, or if G is isomorphic to one of the
groups A1(3), B2(3), Cn(3) (n ≥ 3), 2G2(3), or

2B2(8).
Assume G ∼= 2B2(8) ∼= Sz(8). It is most convenient to use the root system for

C2 constructed in [Brb]: P (Σ) = Z2, and Σ = {(±2, 0), (0,±2), (±1,±1)}. Then

α and β satisfy the above inequality only if ‖α‖ = 2, ‖β‖ = 1, and ‖α + β‖ =
√
8.

So (α, β) = 3
2 , which is impossible for α, β ∈ Z2. Hence C

G
(T )0 = T in this case.

(c) If C
G
(T )0 = T , then N

G
(T ) ≤ N

G
(T ), and so NG(T )/T ∼= W0 by Lemma

2.3. �
The following, more technical lemma will be needed in Chapter 6.

Lemma 3.10. Assume the hypotheses and notation in 2.2, and also that the

σ-setup (G, σ) is standard. Then under the action of W0 on Σ̂, each orbit contains

elements of Π̂.

Proof. When ρ = Id, this is [Ca, Proposition 2.1.8]. When ρ �= Id, it follows

from the descriptions of W0 and Σ̂ in [Ca, §§ 13.2–13.3]. �
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CHAPTER 4

The equicharacteristic case

The following notation will be used in this chapter.

Notation 4.1. Assume the notation in 2.2, and also that ρ(Π) = Π, q0 = p,

and Z(G) = 1. Thus G = G(Fp) is a connected, simple group over Fp in adjoint

form, σ is a Steinberg endomorphism of G of standard form, and G = Op′
(C

G
(σ)).

(D) Set U =
〈
Xα

∣∣α ∈ Σ+

〉
and B

def
= N

G
(U) = UT (the Borel subgroup of G).

Set

U = C
U
(σ) = 〈Xα̂ | α̂ ∈ Σ̂+〉 , B = NG(U) , and T = T ∩G.

Thus U =
∏

α̂∈Σ̂+
Xα̂ ∈ Sylp(G), and B = UT . (See, e.g., [GLS3, Theorems

2.3.4(d) & 2.3.7], or [Ca, Theorems 5.3.3(ii) & 9.4.10] in the case of Chevalley

groups.) When Ĵ � Π̂ is the image in Σ̂+ of a τ -invariant subset J � Π, let
UĴ ≤ U be the subgroup generated by root groups for positive roots in Σ+�〈J〉
(the unipotent radical subgroup associated to Ĵ), and set PĴ = NG(UĴ) =

B
〈
X−α̂

∣∣α ∈ 〈J〉
〉
(the parabolic subgroup associated to Ĵ). Thus U = U∅

and B = P∅. We also write Uα̂ = U{α̂} and Pα̂ = P{α̂} for each α̂ ∈ Π̂.

(E) The height of a positive root α =
∑

γ∈Π nγγ ∈ Σ+ (nγ ≥ 0) is defined by

ht(α) =
∑

γ∈Π nγ . The height ht(α̂) of a class of roots α̂ ∈ Σ̂+ is the minimum

of the heights of roots in the class α̂.

(F) Set F = FU (G) and L = Lc
U (G).

(G) Set U0 = 〈Xα̂ | α̂ ∈ Σ̂+, α̂ ∩Π = ∅〉 = 〈Xα̂ | ht(α̂) ≥ 2〉.

(H) The Lie rank of G is equal to |Π̂|; equivalently, to the number of maximal
parabolic subgroups containing B.

For example, assume σ = ψq ◦ γ, where γ ∈ Aut(G) is a graph automorphism
which induces ρ ∈ Aut(Σ+), and ψq is the field automorphism induced by t �→ tq.

Then for α̂ ∈ Σ̂, Xα̂
∼= Fq when α̂ = {α} contains only one root, Xα̂

∼= Fqa if
α̂ = {ρi(α)} is the ρ-orbit of α with length a, and Xα̂ is nonabelian if α̂ contains a
root α and sums of roots in its ρ-orbit.

We need the following, stronger version of Theorem 3.4.

Theorem 4.2 ([St1, § 3]). Assume G is as in Notation 2.2 and 4.1. If α ∈
Aut(G) is such that α(U) = U , then α = cudfg for unique automorphisms cu ∈
AutU (G), d ∈ Inndiag(G) = Aut

T
(G), f ∈ ΦG, and g ∈ ΓG.

Proof. Let NAut(G)(U) ≤ Aut(G) and NInndiag(G)(U) ≤ Inndiag(G) be the
subgroups of those automorphisms that send U to itself. Since ΦGΓG ≤ NAut(G)(U)

37
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by definition, Theorem 3.4 implies that NAut(G)(U) = NInndiag(G)(U) · (ΦGΓG), a
semidirect product. Since ΦG ∩ ΓG = 1, it remains to show that NInndiag(G)(U) =
AutU (G)Aut

T
(G) and AutU (G) ∩ Aut

T
(G) = 1. The first is immediate: since

Aut
T
(G) ≤ NAut(G)(U) and NG(U) = TU ,

NInndiag(G)(U) =
(
Inn(G)Aut

T
(G)
)
∩NAut(G)(U)

= AutNG(U)(G)Aut
T
(G) = AutU (G)Aut

T
(G) .

Finally, if cu = ct ∈ Aut(G) where u ∈ U and t ∈ T , then cu = IdG, since u has
p-power order and t has order prime to p. �

Lemma 4.3. Assume G ∈ Lie(p). Then for U ∈ Sylp(G), κG sends Out(G)
injectively into Out(F).

Proof. Assume that κG/Z(G) is injective. We claim that Aut(G) injects into
Aut(G/Z(G)), and hence that κG is also injective. To see this, fix α ∈ Aut(G)
such that [α,G] ≤ Z(G). Recall that Z(G) has order prime to p (Proposition 3.8).
For each g ∈ G of p-power order, α(g) = gz for some z ∈ Z(G), and z = 1 since
otherwise |zg| > |g|. Since G is generated by such elements by definition of Lie(p),
α = IdG, proving the claim. It thus suffices to prove the lemma when G is in adjoint
form.

We can thus assume Notation 4.1. By Lemma 1.4, it will suffice to prove that
CAut(G)(U) ≤ Inn(G). Fix β ∈ Aut(G) such that β|U = IdU . By Theorem 4.2,
there are unique automorphisms cu ∈ AutU (G), d ∈ Aut

T
(G), f ∈ ΦG, and g ∈ ΓG

such that β = cudfg.
If g �= Id, then it permutes the fundamental root groups nontrivially, while

cudf |U sends each such group to itself modulo higher root groups and commutators.
Hence g = Id. Similarly, f = Id, since otherwise β would act on the fundamental
root groups (modulo higher root groups) via some automorphism other than a
translation.

Thus β = cud, where d = ct for some t ∈ N
T
(G). Then u has p-power

order while t has order prime to p, so d|U = ct|U = Id. By Lemma 2.4(c), ct
sends each root group in U to itself via xα(u) �→ xα(θα(t)·u) for some character

θα ∈ Hom(T ,F×
p ) which is linear in α. For each α̂ ∈ Σ̂+, ct|Xα̂

= Id implies
that θα(t) = 1 for all α ∈ α̂. Thus θα(t) = 1 for all α ∈ Σ+, so ct = Id

G
, and

β = cu ∈ Inn(G). �
It now remains, when proving Theorem A, to show the surjectivity of κG. This

will be done case-by-case. We first handle groups of Lie rank at least three, then
those of rank one, and finally those of rank two.

For simplicity, we state the next two propositions only for groups of adjoint
type, but they also hold without this restriction. The first implies that each element
of Aut(F) permutes the subgroups UĴ (as defined in Notation 4.1), and that each
element of Aut(Lc

S(G)) induces an automorphism of the amalgam of parabolics PĴ

for Ĵ � Π̂.

Proposition 4.4. Assume Notation 4.1. For 1 �= P ≤ U , the following are
equivalent:

(i) P = UĴ for some Ĵ � Π̂;

(ii) P � B, CU (P ) ≤ P , and Op(OutF (P )) = 1; and
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(iii) P � B, CG(P ) ≤ P , and Op(NG(P )) = P .

Hence for each ϕ ∈ Aut(F), ϕ permutes the subgroups UĴ , and in particular per-

mutes the subgroups Uα̂ for α̂ ∈ Π̂.

Proof. (i) =⇒ (iii): For each Ĵ � Π̂, CG(UĴ ) = Z(UĴ ) by [GLS3, Theorem
2.6.5(e)] (recall that G is of adjoint type). Also, Op(NG(UĴ )) = Op(PĴ) = UĴ , and
UĴ is normal in B since NG(UĴ ) = PĴ ≥ B.
(iii) =⇒ (ii): This holds since OutF (P ) ∼= NG(P )/PCG(P ).

(ii) =⇒ (i): In this case, P � B, so NG(P ) ≥ B, and NG(P ) = PĴ for some Ĵ �
Π̂ (cf. [Ca, Theorem 8.3.2]). Then P ≤ Op(PĴ ) = UĴ . Also, UĴCG(P )

/
PCG(P ) ≤

Op(NG(P )/PCG(P )) = 1, so UĴ ≤ PCG(P ). Since UĴ ≤ U , this implies that
UĴ ≤ PCU (P ) = P ; i.e., that P = UĴ . So (i) holds.

The last statement follows from the equivalence of (i) and (ii). �
When G has large Lie rank, Theorem A now follows from properties of Tits

buildings.

Proposition 4.5. Assume G ∈ Lie(p) is of adjoint type and has Lie rank at
least 3. Fix U ∈ Sylp(G). Then κG is split surjective.

Proof. Set L = Lc
U (G). By Proposition 4.4, for each α ∈ Aut(L), α permutes

the subgroups UĴ for Ĵ � Π̂. For each such Ĵ , CG(UĴ ) = Z(UĴ ), so AutL(UĴ ) =
NG(UĴ) = PĴ . Thus α induces an automorphism of the amalgam of parabolic
subgroups PĴ . Since G is the amalgamated sum of these subgroups by a theorem
of Tits (see [Ti, Theorem 13.5] or [Se, p. 95, Corollary 3]), α extends to a unique
automorphism α of G.

Thus α �→ α defines a homomorphism ŝ : Aut(L) −−−→ Aut(G). If α = cγ for
γ ∈ AutL(U) = NG(U), then α is conjugation by γ ∈ G and hence lies in Inn(G).
Hence ŝ factors through s : Out(L) −−−→ Out(G), κG ◦ s = IdOut(L), and thus κG is
split surjective. �

Before we can handle the rank 1 case, two elementary lemmas are needed.

Lemma 4.6. Let G be a finite group with normal Sylow p-subgroup S � G such
that CG(S) ≤ S. Fix subgroups 1 = S0 < S1 < · · · < Sk = S normal in G such that

(i) Sk−1 ≤ Fr(S); and

(ii) for each 1 ≤ i ≤ k − 1, Si is characteristic in G, [S, Si] ≤ Si−1, Si/Si−1

has exponent p, and HomFp[G/S](S/Fr(S), Si/Si−1) = 0 (i.e., no irreducible
Fp[G/S]-submodule of Si/Si−1 appears as a submodule of S/Fr(S)).

Let α ∈ Aut(G) be such that [α, S] ≤ Sk−1. Then α ∈ AutS(G).

Proof. For 1 �= g ∈ G of order prime to p, the conjugation action of g on S
is nontrivial since CG(S) ≤ S, and hence the conjugation action on S/Fr(S) is also
nontrivial (see [G, Theorem 5.3.5]). Thus G/S acts faithfully on S/Fr(S). Since α
induces the identity on S/Fr(S), α also induces the identity on G/S.

Assume first that α|S = Id. Since S is a p-group and G/S has order prime to
p, H1(G/S;Z(S)) = 0. So by [OV, Lemma 1.2], α ∈ Inn(G). If g ∈ G is such
that α = cg, then [g, S] = 1 since α|S = Id, and g ∈ S since CG(S) ≤ S. Thus
α ∈ AutS(G) in this case.

In particular, this proves the lemma when k = 1. So assume k ≥ 2. We can
assume inductively that the lemma holds for G/S1, and hence can arrange (after
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composing by an appropriate element of AutS(G)) that α induces the identity on
G/S1.

Let ϕ ∈ Hom(S, S1) be such that α(x) = xϕ(x) for each x ∈ S (a homo-
morphism since S1 ≤ Z(S)). Then ϕ factors through ϕ ∈ Hom(S/Fr(S), S1)
since S1 is elementary abelian, and ϕ is a homomorphism of Fp[G/S]-modules
since α(g) ≡ g (mod S1) for each g ∈ G (and S1 ≤ Z(S)). Thus ϕ = 1 since
HomG/S(Sk/Sk−1, S1) = 0 by (ii), so α|S = Id, and we already showed that this
implies α ∈ AutS(G). �

The next lemma will be useful when checking the hypotheses of Lemma 4.6.

Lemma 4.7. Fix a prime p and e ≥ 1, and set q = pe and Γ = F×
q . For each

a ∈ Z, set Va = Fq, regarded as an FpΓ-module with action λ(x) = λax for λ ∈ Γ
and x ∈ Fq.

(a) For each a, Va is FpΓ-irreducible if and only if a/ gcd(a, q− 1) does not divide
pt − 1 for any t|e, t < e.

(b) For each a, b ∈ Z, Va
∼= Vb as FpΓ-modules if and only if a ≡ bpi (mod q − 1)

for some i ∈ Z.

Proof. (a) Set d = gcd(a, q − 1), and let t be the order of p in (Z/ q−1
d )×. Thus

t|e since q−1
d

∣∣(pe − 1). If t < e, then λa ∈ Fpt for each λ ∈ Fq, so 0 �= Fpt � Va is a
proper FpΓ-submodule, and Va is reducible.

Conversely, if Va is reducible, then it contains a proper submodule 0 �= W � Va

of dimension i, some 0 < i < e. All Γ-orbits in Va�0, hence in W�0, have length
q−1
d , so q−1

d

∣∣(pi − 1), and t ≤ i < e.

(b) For each a ∈ Z, let V a
∼= Fq be the FqΓ-module where Γ acts via λ(x) = λax.

Then Fq ⊗Fp
Va

∼= V a ⊕ V ap ⊕ · · · ⊕ V ape−1 as FqΓ-modules. Since V b
∼= V a if and

only if b ≡ a (mod q− 1), Vb
∼= Va if and only if b ≡ api (mod q− 1) for some i. �

In principle, we don’t need to look at the fusion systems of the simple groups of
Lie rank 1 if we only want to prove tameness. Their fusion is controlled by the Borel
subgroup, so their fusion systems are tame by Proposition 1.6. But the following
proposition is needed when proving Theorem A in its stronger form, and will also
be used when working with groups of larger Lie rank.

Proposition 4.8. Fix a prime p, and a group G ∈ Lie(p) of Lie rank 1.
Assume (G, p) �∼= (Sz(2), 2). Then each ϕ ∈ Aut(F) extends to an automorphism of
G. Also, if [ϕ,U ] ≤ [U,U ], then ϕ ∈ Inn(U).

Proof. If G is of universal form, then Z(G) is cyclic of order prime to p by
Proposition 3.8. For each Z ≤ Z(G), Out(G/Z) ∼= Out(G) by [GLS3, Theorem
2.5.14(d)], and Out(FU (G/Z)) ∼= Out(FU (G)) since G and G/Z have the same
p-fusion systems. It thus suffices to prove the proposition when G has adjoint form.

Assume first G = PSL2(q). Thus U ∼= Fq (as an additive group), T ∼= C(q−1)/ε

where ε = gcd(q−1, 2), and Γ
def
= AutT (U) is the subgroup of index ε in F×

q . If ϕ ∈
Aut(U) is fusion preserving, then under these identifications, there is α ∈ Aut(Γ)
such that α(u)ϕ(v) = ϕ(uv) for each u ∈ Γ ≤ F×

q and v ∈ Fq. After composing
with an appropriate diagonal automorphism (conjugation by a diagonal element of
PGL2(q)), we can assume that ϕ(1) = 1. Hence the above formula (with v = 1)
implies that α = ϕ|Γ, and thus that ϕ(uv) = ϕ(u)ϕ(v) for each u, v ∈ Fq with
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u ∈ Γ. If ε = 1, then ϕ acts as a field automorphism on U , hence is the restriction
of a field automorphism of G, and we are done. Otherwise, there is u ∈ Γ such that
Fq = Fp(u), u and ϕ(u) have the same minimal polynomial over Fp, and there is
ψ ∈ Aut(Fq) (a field automorphism) such that ψ(u) = ϕ(u). Thus ψ(ui) = ϕ(ui)
for each i, so ψ = ϕ since both are additive homomorphisms, and hence ϕ extends
to a field automorphism of G. (Note that this argument also holds when q = 3 and
Γ = 1.)

Next assume G = PSU3(q). Following the conventions in [H, Satz II.10.12(b)],
we identify

U =
{
�a, b�

∣∣ a, b ∈ Fq2 , b+ bq = −aq+1
}

where �a, b� =
(

1 a b
0 1 −aq

0 0 1

)
;

T =
{
d(λ)

∣∣λ ∈ F×
q2

}
where d(λ) = diag(λ−q, λq−1, λ).

Here, whenever we write a matrix, we mean its class in PSU3(q). Then B = UT =
NG(U) ≤ G (see [H, Satz II.10.12(b)]), and

�a, b� · �c, d� = �a+ c, b+ d− acq� and d(λ)�a, b� = �λ1−2qa, λ−1−qb� .

Set ε = gcd(2q − 1, q2 − 1) = gcd(2q − 1, q2 − 2q) = gcd(q + 1, 3). Then d(λ) = 1
exactly when λε = 1, CT (U) = 1, and hence |T | = |AutB(U/Z(U))| = (q2 − 1)/ε.
If q > 2, then |T | does not divide pi − 1 for any power 1 < pi < q2, and by
Lemma 4.7(a), U/Z(U) and Z(U) are both irreducible as Fp[T ]-modules. (Note, in
particular, the cases q = 5 and q = 8, where (U/Z(U), T ) is isomorphic to (F25, C8)
and (F64, C21), respectively.)

Fix ϕ ∈ Aut(F), and extend it to α ∈ Aut(B) (Lemma 1.12). Via the same
argument as that used when G = PSL2(q), we can arrange (without changing the
class of ϕ modulo Im(κG)) that ϕ ≡ Id (mod [U,U ]). If q > 2, then the hypotheses
of Lemma 4.6 hold (with [U,U ] < U < B in the role of S1 < S2 = S < G), so
α ∈ AutU (B) and ϕ ∈ Inn(U).

If G ∼= PSU3(2) ∼= C2
3 �Q8 (cf. [Ta, p. 123–124]), then U ∼= Q8 and T = 1, so

Out(F) = Out(U) ∼= Σ3. By Theorem 3.4 (or by direct computation), Out(G) =
Outdiag(G)ΦG has order six, since |Outdiag(G)| = gcd(3, q + 1) = 3 and |ΦG| = 2.
Thus κG is an isomorphism, since it is injective by Lemma 4.3.

The proof when G = Sz(q) is similar. Set θ =
√
2q. We follow the notation in

[HB, §XI.3], and identify U as the group of all S(a, b) for a, b ∈ Fq and T < B =
NG(U) as the group of all d(λ) for λ ∈ F×

q , with relations

S(a, b) · S(c, d) = S(a+ c, b+ d+ aθc) and d(λ)S(a, b) = S(λa, λ1+θb) .

As in the last case, we can arrange that ϕ ∈ Aut(F) is the identity modulo [U,U ].
Since q ≥ 8 (q �= 2 by hypothesis), Z(U) and U/Z(U) are nonisomorphic, irreducible
F2T -modules by Lemma 4.7(a,b) (and since Z(U) ∼= V1+θ and U/Z(U) ∼= V1 in the
notation of that lemma). We can thus apply Lemma 4.6 to show that ϕ ∈ Inn(U).

It remains to handle the Ree groups 2G2(q), where q = 3m for some odd
m ≥ 1. Set θ =

√
3q. We use the notation in [HB, Theorem XI.13.2], and identify

U = (Fq)
3 with multiplication given by

(x1, y1, z1)·(x2, y2, z2) = (x1+x2, y1+y2+x1·xθ
2, z1+z2−x1·y2+y1·x2−x1·xθ

1·x2) .

Note that xθ2

= x3. Let T ≤ B = NG(U) be the set of all d(λ) for λ ∈ F×
q , acting

on U via
d(λ)(x, y, z) = (λx, λθ+1y, λθ+2z).
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Again, we first reduce to the case where ϕ ∈ Aut(F) is such that [ϕ,U ] ≤ [U,U ],
and extend ϕ to α ∈ Aut(B). If q > 3, then U/[U,U ] ∼= V1, [U,U ]/Z(U) ∼= Vθ+1,
and Z(U) ∼= Vθ+2 are irreducible and pairwise nonisomorphic as F3T -modules by
Lemma 4.7 (for Va as defined in that lemma), since neither θ + 1 nor θ + 2 is a
power of 3. So ϕ ∈ Inn(U) by Lemma 4.6.

If q = 3, then U = 〈a, b〉, where |a| = 9, |b| = 3, and [a, b] = a3. Set Qi =
〈abi〉 ∼= C9 (i = 0, 1, 2): the three subgroups of U isomorphic to C9. Let Aut0(U) ≤
Aut(U) be the group of those α ∈ Aut(U) which send eachQi to itself. For each such
α, the induced action on U/Z(U) sends each subgroup of order three to itself, hence
is the identity or (g �→ g−1), and the latter is seen to be impossible using the relation
[a, b] = a3. Thus each α ∈ Aut0(U) induces the identity on U/Z(U) and on Z(U),
and has the form α(g) = gϕ(g) for some ϕ ∈ Hom(U/Z(U), Z(U)). So Aut0(U) =
Inn(U) since they both have order 9 (and clearly Inn(U) ≤ Aut0(U)). The action
of Aut(U) on {Q0, Q1, Q2} thus defines an embedding of Out(U) into Σ3, and the
automorphisms (a, b) �→ (ab, b) and (a, b) �→ (a−1, b) show that Out(U) ∼= Σ3. Since
|OutF (U)| = 2 and AutF (U) � Aut(F), it follows that Out(F) = 1 = Out(G). (See
also [BC, Theorem 2] for more discussion about Aut(U).) �

It remains to show that κG (at the prime p) is surjective when G ∈ Lie(p) has
Lie rank 2, with the one exception when G ∼= SL3(2). Our proof is based on ideas
taken from the article of Delgado and Stellmacher [DS], even though in the end,
we do not actually need to refer to any of their results in our argument. The third
author would like to thank Richard Weiss for explaining many of the details of how
to apply the results in [DS], and also to Andy Chermak and Sergey Shpectorov for
first pointing out the connection.

Fix a prime p, and a finite group G ∈ Lie(p) of Lie rank two. We assume

Notation 2.2 and 4.1. In particular, (G, σ) is a σ-setup for G, T ≤ G is a maximal
torus, U ∈ Sylp(G) is generated by the positive root subgroups, and B = NG(U)

is a Borel subgroup. Set Π̂ = {α̂1, α̂2}, and set P1 = Pα̂1
= 〈B,X−α̂1

〉 and
P2 = Pα̂2

= 〈B,X−α̂2
〉: the two maximal parabolic subgroups of G containing B.

Our proofs are based on the following observation:

Lemma 4.9. Assume, for G ∈ Lie(p) of rank 2 and its amalgam of parabolics
as above, that

(∗) each automorphism of the amalgam (P1 > B < P2) extends to an
automorphism of G.

Then κG is surjective.

Here, by an automorphism of the amalgam, we mean a pair (χ1, χ2), where
either χi ∈ Aut(Pi) for i = 1, 2 or χi ∈ Iso(Pi,P3−i) for i = 1, 2, and also
χ1|B = χ2|B .

Proof. Set L = Lc
U (G) and Ui = Op(Pi). By Proposition 4.4, each χ ∈

Aut(L) either sends U1 and U2 to themselves or exchanges them. For each i = 1, 2,
CG(Ui) ≤ Ui, so AutL(Ui) = NG(Ui) = Pi. Thus χ induces an automorphism of
the amalgam (P1 > B < P2). By assumption, this extends to an automorphism χ
of G, and κG(χ) = ξ. �

Set G = P1 *BP2: the amalgamated free product over B. Let ρ : G −−−→ G be

the natural surjective homomorphism. Since each automorphism of the amalgam
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induces an automorphism of G, (∗) holds if for each automorphism of (P1 > B <
P2), the induced automorphism of G sends Ker(ρ) to itself.

Let Δ be the tree corresponding to the amalgam (P1 > B < P2). Thus Δ
has a vertex [gPi] for each coset gPi (for all g ∈ G and i = 1, 2), and an edge
g(eB) connecting [gP1] to [gP2] for each coset gB in G. Also, G acts on Δ via its
canonical action on the cosets, and in particular, it acts on g(eB) with stabilizer
subgroup gB.

Similarly, let ΔG be the graph of G with respect to the same amalgam: the
graph with vertex set (G/P1)∪ (G/P2) and edge set G/B. Equivalently, since P1,
P2, and B are self-normalizing, ΔG is the graph whose vertices are the maximal
parabolics in G and whose edges are the Borel subgroups. Let ρ̂ : Δ −−−→ ΔG be the
canonical map which sends a vertex [gPi] in Δ to the vertex in ΔG corresponding
to the image of gPi in G.

Fix a subgroup N ≤ G such that (B,N) is a BN -pair for G, and such that
B ∩ N = T and N/T ∼= W0 (where T and W0 are as defined in Notation 2.2).
We refer to [Ca, §§ 8.2, 13.5] for the definition of BN -pairs, and the proof that
G has a BN -pair (B,N) which satisfies these conditions. For i = 1, 2, choose
ti ∈ (N∩Pi)�B = (N∩Pi)�T . Since (N∩Pi)/T ∼= C2 and N = 〈N∩P1, N∩P2〉,
we have N = T 〈t1, t2〉, consistent with the notation in [DS]. Note that T can be
the trivial subgroup. We also regard the ti ∈ Pi as elements of G, and T ≤ B as a
subgroup of G, when appropriate.

Let T be the union of the edges in the T 〈t1, t2〉-orbit of eB . Thus T is a path
of infinite length in Δ of the following form:

· · · • • • • •
[t1t2P1] [t1P2] [P1] [P2] [t2P1]

t1t2t1(eB) t1t2(eB) t1(eB) eB t2(eB) t2t1(eB) · · ·

Thus ρ̂(T ) is an apartment in the building ΔG under Tits’s definition and con-
struction of these structures in [Ti, 3.2.6].

A path in Δ is always understood not to double back on itself.

Lemma 4.10. Let G, Δ, (T, t1, t2), and T be as above, and let n ∈ {3, 4, 6, 8}
be such that W0

∼= D2n. Then each path in Δ of length at most n+ 1 is contained
in g(T ) for some g ∈ G.

Proof. A path of length 1 is an edge, and is in the G-orbit of eB which has
stabilizer group B. If eB is extended to a path of length 2 with the edge ti(eB)
(i = 1 or 2), then this path has stabilizer group

B ∩ tiB =
∏

α̂∈Σ̂+�{α̂i}

Xα̂ · T .

(Recall that tiXα̂i
= X−α̂i

, and X−α̂i
∩ B = 1 by [Ca, Lemma 7.1.2].) Thus the

stabilizer subgroup has index pj in B, where pj = |Xα̂i
|. Furthermore, |Pi/B| =

1 + pj , since by [Ca, Proposition 8.2.2(ii)],

Pi = B ∪ (BtiB) where |BtiB| = |B| · |B/(B ∩ tiB)| = |B| · pj .
Hence there are exactly pj extensions of eB to a path of length 2 containing the
vertex [Pi] in the interior, and these are permuted transitively by B.

Upon continuing this argument, we see inductively that for all 2 ≤ k ≤ n+ 1,
the paths of length k starting at eB with endpoint [P3−i] are permuted transitively
by B, and of them, the one contained in T has stabilizer subgroup the product of
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T with (n+1−k) root subgroups in U . (Recall that B = TU , and U is the product
of n root subgroups.) Since G acts transitively on the set of edges in Δ, each path
of length k is in the G-orbit of one which begins with eB (and with endpoint [P1]
or [P2]), and hence in the G-orbit of a subpath of T . �

Proposition 4.11. Let G, G, and (T, t1, t2) be as above, and let n ∈ {3, 4, 6, 8}
be such that W0

∼= D2n. Assume that

(†) for each (χ1, χ2) ∈ Aut
(
P1 > B < P2

)
, where χi ∈ Aut(Pi) or

χi ∈ Iso(Pi,P3−i) for i = 1, 2, we have (χ1(t1)χ2(t2))
n ∈ χ1(T ) ≤ G.

Then (∗) holds (each automorphism of (P1 > B < P2) extends to an automorphism
of G), and hence κG is onto.

Proof. Let ≈ be the equivalence relation on the set of vertices in Δ generated
by setting x ≈ y if x and y are of distance 2n apart in some path in the G-
orbit of T . Since T 〈t1, t2〉/T ∼= D2n as a subgroup of NG(T )/T , the natural map
ρ̂ : Δ −−−→ ΔG sends T to a loop of length 2n, and hence sends all apartments
in the G-orbit of T to loops of length 2n. Hence ρ̂ : Δ −−−→ ΔG factors through
Δ/≈. We will show that ρ̂ induces an isomorphism (Δ/≈) ∼= ΔG of graphs, and
then use that and (†) to prove the proposition.

We claim that

ΔG contains no loops of length strictly less than 2n; and(1)

each pair of points in Δ/≈ is connected by a path of length at most n.(2)

Assume (1) does not hold: let L be a loop of minimal length 2k (k < n). Fix edges
σi = [xi, yi] in L (i = 1, 2) such that the shortest path from xi to y3−i in L has
length k− 1, and let L0 ⊆ L be the path of length k+1 from x1 through y1 and x2

to y2. Then L0 lifts to a path of length k + 1 ≤ n in Δ, this is contained in some
apartment in the G-orbit of T by Lemma 4.10, and hence L0 ⊆ Σ, where Σ ⊆ ΔG

is an apartment in the G-orbit of ρ̂(T ). By [Ti, Theorem 3.3] or [Br, p. 86], there
is a retraction of ΔG onto Σ. Hence the path from y2 to x1 in Σ has length at most
k− 1, which is impossible since Σ is a loop of length 2n and L0 is a path of length
k + 1 ≤ n in Σ. (See also [Br, § IV.3, Exercise 1]. Point (1) also follows since ΔG

is a generalized n-gon in the sense of Tits [Br, p. 117], and hence any two vertices
are joined by at most one path of length less than n.)

Now assume (2) does not hold: let x, y be vertices in Δ such that the shortest
path between their classes in Δ/≈ has length k ≥ n+1. Upon replacing x and y by
other vertices in their equivalence classes, if needed, we can assume that the path
[x, y] in Δ has length k. Let z be the vertex in the path [x, y] of distance n+1 from
x. By Lemma 4.10, [x, z] is contained in g(T ) for some g ∈ G; let x′ be the vertex
in g(T ) of distance 2n from x and distance n− 1 from z. Then x′ ≈ x, and [x′, y]
has length at most (n− 1) + (k − n− 1) = k − 2, a contradiction. This proves (2).

Assume the map (Δ/≈) −−−→ ΔG induced by ρ̂ is not an isomorphism of
graphs, and let x and y be distinct vertices in Δ/≈ whose images are equal in
ΔG. By (2), there is a path from x to y of length at most n, and of even length
since the graph is bipartite. This path cannot have length 2 since ρ̂ : Δ −−−→ ΔG

preserves valence, so its image in ΔG is a loop of length at most n, and this con-
tradicts (1). We conclude that ΔG

∼= Δ/≈.
Let (χ1, χ2) be an automorphism of the amalgam (P1 > B < P2), let χ ∈

Aut(G) be the induced automorphism of the amalgamated free product, and let
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χ̂ ∈ Aut(Δ) be the automorphism which sends a vertex [gPi] to [χ(gPi)]. By (†),
(χ1(t1)χ2(t2))

n ∈ χ1(T ) = χ2(T ) ≤ CG(ρ̂(χ̂(T )))

where χ1(t1)χ2(t2) acts on χ̂(T ) by translating it by distance 2. Hence ρ̂(χ̂(T ))
is a loop of length 2n in ΔG. So ρ̂ ◦ χ̂ factors through (Δ/≈) ∼= ΔG, and since ΔG

is a finite graph, the induced map ΔG −−−→ ΔG is an automorphism of ΔG. So χ

sends Ker[G
ρ−−−→ G] to itself, and thus induces an automorphism of G. The last

statement (κG is onto) now follows from Lemma 4.9. �

It remains to find conditions under which (†) holds. The following proposition
handles all but a small number of cases.

Proposition 4.12. Assume N = NG(T ) (and hence NG(T )/T is dihedral of
order 2n). Then (†) holds, and hence each automorphism of the amalgam (P1 >
B < P2) extends to an automorphism of G. In particular, (†) and (∗) hold, and
hence κG is onto, whenever G = rXn(q) ∈ Lie(p) has Lie rank 2 for q > 2 and
G �∼= Sp4(3).

Proof. Assume that NG(T ) = N = T 〈t1, t2〉. Then the choices of the ti are
unique modulo T . Also, any two choices of T are B-conjugate, so each automor-
phism of the amalgam is B-conjugate to one which sends T to itself. Thus (†)
holds, and so (∗) follows from Proposition 4.11.

The last statement now follows from Proposition 3.9. Note that if (†) holds for
G of universal type, then it also holds for G/Z(G) of adjoint type. �

What can go wrong, and what does go wrong when G = SL3(2), is that an
automorphism of the amalgam can send t1, t2 to another pair of elements whose
product (modulo T ) has order strictly greater than 2n. This happens when T is
sent to another path not in the G-orbit of T : one whose image in ΔG is a loop of
a different length.

Example 4.13. Assume G = SL3(2). In particular, T = 1. Let B be the group
of upper triangular matrices, let t1 and t2 be the permutation matrices for (1 2) and
(2 3), respectively, and set Pi = 〈B, ti〉.

Consider the automorphism α of the amalgam which is the identity on P1

(hence on B), and which is conjugation by e13 (the involution in Z(B)) on P2. Set
t′i = α(ti). Thus

t′1 =
(

0 1 0
1 0 0
0 0 1

)
and t′2 =

(
1 1 1
0 0 1
0 1 0

)
.

One checks that t′1t
′
2 has order 4, so that 〈t′1, t′2〉 ∼= D8 while 〈t1, t2〉 ∼= D6. In other

words, α sends the lifting (from ΔG to Δ) of a loop of length 6 to the lifting of a
loop of length 8, hence is not compatible with the relation ≈, hence does not extend
to an automorphism of G.

We are left with seven cases: four cases with n = 4, two with n = 6, and one
with n = 8. Those with n = 4 are relatively easy to handle.

Proposition 4.14. Assume G is one of the groups Sp4(2), PSp4(3), PSU4(2),
or PSU5(2). Then (†) holds, and hence (∗) also holds and κG is onto.

Proof. In all cases, we work in the universal groups Sp4(q) and SUn(2), but
the arguments are unchanged if we replace the subgroups described below by their
images in the adjoint group. Recall that p is always the defining characteristic,
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so the second and third cases are distinct, even though PSp4(3)
∼= SU4(2) (see

[Wi, § 3.12.4] or [Ta, Corollary 10.19]).
Let (χ1, χ2) be an automorphism of (P1 > B < P2). Since all subgroups of

B isomorphic to T are conjugate to T by the Schur-Zassenhaus theorem, we can
also assume that χi(T ) = T . Set χ0 = χ1|B = χ2|B and t∗i = χi(ti) for short; we
must show that |t∗1t∗2| = n = 4. Note that t∗1t

∗
2 has order at least 4, since otherwise

ΔG would contain a loop of length strictly less than 8 = 2n, which is impossible by
point (1) in the proof of Proposition 4.11.
G = Sp4(2)

∼= Σ6 : Set G′ = [G,G]: the subgroup of index 2. The elements
xγ(1) for γ ∈ Σ are all Aut(G)-conjugate: the long roots and the short roots are
all W -conjugate and a graph automorphism exchanges them. Since these elements
generate G, none of them are in G′. Hence for i = 1, 2, all involutions in〈

xαi
(1), x−αi

(1)
〉 ∼= GL2(2) ∼= Σ3

lie in G�G′, and in particular, ti ∈ G�G′.
Each automorphism of the amalgam sends the focal subgroup to itself (as a

subgroup of B), and hence also sends the intersections Pi ∩ G′ to themselves. So
t∗1, t

∗
2 ∈ G�G′, and t∗1t

∗
2 ∈ G′ ∼= A6. It follows that |t∗1t∗2| ≤ 5, and |t∗1t∗2| = 4 since

every dihedral subgroup of order 10 in Σ6 is contained in A6.
G = Sp4(3) : In this case, T ∼= C2

2 , and NG(T ) ∼= SL2(3) �C2. Hence NG(T )/T ∼=
A4 �C2 contains elements of order 2, 3, 4, and 6, but no dihedral subgroups of order
12. Since t∗1t

∗
2 has order at least 4, |t∗1t∗2| = 4, and condition (†) holds.

G = SUn(2) for n = 4 or 5 : We regard these as matrix groups via

SUn(2) =
{
M ∈ SLn(4)

∣∣M t = M−1
}

where
(
aij
)
t =

(
an+1−j,n+1−i

)
,

and where x = x2 for x ∈ F4. We can then take B to be the group of upper
triangular matrices in SUn(2), U the group of strict upper triangular matrices, and
T the group of diagonal matrices. We thus have

T =
{
diag(x, x−1, x−1, x)

∣∣x ∈ F4

} ∼= C3 if n = 4

T =
{
diag(x, y, xy, y, x)

∣∣x, y ∈ F4

} ∼= C2
3 if n = 5.

Since NG(T ) must permute the eigenspaces of the action of T on Fn
4 , we have

NGUn(2)(T )
∼= GU2(2) � C2 (if n = 4) or (GU2(2) � C2)× F×

4 (if n = 5). So in both
cases,

NG(T )/T ∼= PGU2(2) � C2
∼= Σ3 � C2

∼= C2
3 �D8 .

Set Q = NG(T )/O3(NG(T )) ∼= D8, and let ψ : NG(T ) −−−→ Q be the natural
projection. Set Q0 = ψ(CG(T )). Since CG(T )/T ∼= Σ3 × Σ3 (the subgroup of
elements which send each eigenspace to itself), Q0

∼= C2
2 and CG(T ) = ψ−1(Q0).

Choose the indexing of the parabolics such that P1 is the subgroup of elements
which fix an isotropic point and P2 of those which fix an isotropic line. Thus

P1 =
{(

u v x
0 A w
0 0 u

)∣∣∣ A ∈ GUn−2(2)
}

and

P2 =

⎧⎪⎪⎨⎪⎪⎩
{(A X

0 (At)−1

)∣∣∣ A ∈ SL2(4)
}

if n = 4{(
A v X
0 u w

0 0 (At)−1

)∣∣∣∣ A ∈ GL2(4)

}
if n = 5.
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Then ψ(NP1
(T )) ≤ Q0: no matrix in P1 can normalize T and exchange its

eigenspaces. Also, NB(T ) contains CU (T ) = 〈e1,n(1), e2,n−1(1)〉, where ei,j(u)
denotes the elementary matrix with unique off-diagonal entry u in position (i, j).
Thus Q0 ≥ ψ(NP1

(T )) ≥ ψ(NB(T )) ∼= C2
2 , so these inclusions are all equalities.

Also, P2 contains the permutation matrix for the permutation (1 2)(n−1n), this
element exchanges the eigenspaces of rank 2 for T , and so ψ(NP2

(T )) = Q.
Since T 〈t1, t2〉/T ∼= D8, 〈ψ(t1), ψ(t2)〉 = Q, and so ψ(t1) ∈ Q0�Z(Q) and

ψ(t2) ∈ Q�Q0. Since (χ1, χ2) induces an automorphism of the amalgam (Q >
Q0 = Q0), this implies that ψ(t∗1) ∈ Q0�Z(Q) and ψ(t∗2) ∈ Q�Q0. But then
〈ψ(t∗1), ψ(t∗2)〉 = Q since these elements generate modulo Z(Q), so |t∗1t∗2| ∈ 4Z, and
|t∗1t∗2| = 4 since NG(T )/T ∼= Σ3 � C2 contains no elements of order 12. �

It remains to handle the groups G2(2),
3D4(2), and

2F4(2). In the first two
cases, if t∗i is an arbitrary involution in NPi

(T )�NB(T ) for i = 1, 2, then t∗1t
∗
2 can

have order 6, 7, 8, or 12 when G = G2(2), or order 6 or 8 when G = 3D4(2),
and there does not seem to be any way to prove condition (†) short of analyzing
automorphisms of the amalgam sufficiently to prove (∗) directly.

Let {α, β} be a fundamental system in the root system of G2 where α is the
long root. Let α, α′, α′′ be the three long positive roots, and β, β′, β′′ the three
short positive roots, as described in (3) below.

Let γ0, γ1, γ2, γ3 denote the four fundamental roots in the D4 root system,
where γ0 is in the center of the Dynkin diagram, and the other three are permuted
cyclically by the triality automorphism. Set γij = γi + γj (when it is a root),
etc. We identify the six classes of positive roots in 3D4 with the roots in G2 by
identifying the following two diagrams:

(3) β

α′β′′β′α

α′′

−β

−α

G2

��

���������������

����������

����������

		�������������

��





��

{γ1,γ2,γ3}

γ0123

{ γ012,
γ023,
γ013

}{ γ01,
γ02,
γ03

}
γ0

γ00123

−γ̂1

−γ0

3D4

��

���������������

����������

����������

		�������������

��





��

The following list gives all nontrivial commutator relations among root sub-
groups of G2(q) or

3D4(q) (see [GLS3, Theorems 1.12.1(b) & 2.4.5(b)]):

[xα(u), xβ(v)] ≡ xβ′(±uv)xβ′′(±uv1+q) (mod Xα′Xα′′)(4)

[xβ′(u), xβ(v)] ≡ xβ′′(±(uvq + uqv)) (mod Xα′Xα′′)(5)

[xα(u), xα′(v)] = xα′′(±uv)(6)

[xβ′(u), xβ′′(v)] = xα′′(±Tr(uvq))(7)

[xβ′′(u), xβ(v)] = xα′(±Tr(uqv)) .(8)

Again, Tr: Fq3 −−−→ Fq denotes the trace. Note that when G = G2(q), then u, v ∈
Fq in all cases, and hence uq = uq2 = u, uq+q2 = u2, and Tr(u) = 3u. When
G = 3D4(q), the notation xβ(−), xβ′(−), and xβ′′(−) is somewhat ambiguous
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(and formula (5) depends on making the right choice), but this doesn’t affect the
arguments given below.

Proposition 4.15. Assume p = 2 and G = G2(2). Then (∗) holds: each
automorphism of the amalgam (Pα > B < Pβ) extends to an automorphism of G.
(In fact, each automorphism of the amalgam is conjugation by some element of B.)
In particular, κG is onto.

Proof. In this case, T = 1, and

Pα
∼= (C4 × C4)�D12 and Pβ

∼= (Q8 ×C2
Q8)� Σ3 .

Also, B = U has presentation U = A� 〈r, t〉, where
A = 〈a, b〉 ∼= C4 × C4, 〈r, t〉 ∼= C2

2 ,
ra = a−1, rb = b−1, ta = b, tb = a .

In terms of the generators xγ = xγ(1) for γ ∈ Σ+, we have A =
〈
xβ′xβ, xβ′′xβ

〉
and Ω1(A) =

〈
xα′ , xα′′

〉
, and we can take r = xβ′′ , t = xα, and a = xβxβ′′ (and

then b = ta). Note that (5) takes the more precise form [xβ′ , xβ] = xα′xα′′ in this
case. Also,

Uα = A〈r〉 ∼= (C4 × C4)� C2

Uβ = 〈ab−1, a2t〉 ×〈a2b2〉 〈ab, a2rt〉 ∼= Q8 ×C2
Q8

U ∩G′ = A〈t〉 ∼= C4 � C2 .

The last formula holds since G′ = [G,G] ∼= SU3(3) has index two in G (see [Wi,
§ 4.4.4] or [Di, pp. 146–150]), since xα, xα′ , xα′′ ∈ G′ (note that xα = [x−β, xβ′ ]),
and since xβ , xβ′ , and xβ′′ are all G-conjugate and hence none of them lies in G′.

Fix an automorphism (χα, χβ) of the amalgam (Pα > B < Pβ), and set χ0 =
χα|B = χβ|B ∈ Aut(B). Then χ0 normalizes each of the subgroups Uα, Uβ , and U∩
G′. Also, χ0 normalizes Uα∩G′ = A, and since Uβ ∩G′ = 〈ab, ab−1, t〉 ∼= Q8×C2

C4

contains a unique quaternion subgroup, χ0 normalizes each of the two quaternion
subgroups in Uβ . After composing by an appropriate element of AutU (Pβ), we
can arrange that χ0(ab) = ab and χ0(ab

−1) = ab−1. In particular, χ0 induces the
identity on Ω1(A) and hence also on A/Ω1(A).

Let g ∈ Pα be an element of order 3, chosen so that g(a2) = b2 and g(b2) = a2b2.
The image of 〈g〉 in Pα/A ∼= D12 is normal, so χα(g) ∈ Ag. Let x ∈ Ω1(A) be
such that χα(b) = χ0(b) = ax. Then gb ∈ 〈ab, b2〉 ≤ CA(χ0), so

gb = χα(
gb) = g(bx)

implies that gx = 1 and hence x = 1. Thus χ0|A = Id. Also, χα(〈g〉) ∈ Syl3(Pα) is
conjugate to 〈g〉 by an element of A, so we can arrange that χα(〈g〉) = 〈g〉 and hence
that χα|A〈g〉 = Id. But then χα is the identity modulo CPα

(A〈g〉) = Z(A〈g〉) = 1,
so χα = IdPα

.
Since χβ|Uβ

= Id, χβ induces the identity modulo CPβ
(Uβ) = Z(Uβ) ∼= C2. It

thus has the form χβ(x) = xψ(x) for some ψ ∈ Hom(Pβ , Z(Uβ)). Hence χβ = Id,
since it is the identity on U ∈ Syl2(Pβ). �

Proposition 4.16. Assume p = 2 and G = 3D4(2). Then (∗) holds, and κG

is onto.

Proof. In this case, T ∼= F×
8
∼= C7, Pα/Uα

∼= C7 × Σ3, and Pβ/Uβ
∼= SL2(8).

Also, by (6) and (7), Uβ is extraspecial with center Xα′′ . Fix an automorphism
(χα, χβ) of the amalgam (Pα > B < Pβ), and set χ0 = χα|B = χβ |B. We must
show that χα and χβ are the restrictions of some automorphism of G.
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By Theorem 3.4, and since Outdiag(SL2(8)) = 1 = ΓSL2(8), Out(Pβ/Uβ) ∼=
Out(SL2(8)) is generated by field automorphisms, and hence automorphisms which
are restrictions of field automorphisms of G. So we can compose χβ and χα by
restrictions of elements of AutB(G)ΦG = NAutPβ

(G)(U)ΦG, to arrange that χβ

induces the identity on Pβ/Uβ . Then, upon composing them by some element of
AutU (G), we can also arrange that χ0(T ) = T . Since Xβ′ and Xβ′′ are dual to each
other by (7) and hence nonisomorphic as F2[T ]-modules, χ0 sends each of them to
itself.

Since χ0(T ) = T , χ0 sends CU (T ) = XαXα′Xα′′ ∼= D8 to itself. It cannot
exchange the two subgroups XαXα′′ and Xα′Xα′′ (the first is not contained in Uα

and the second is), so χ0|CU (T ) ∈ Inn(CU (T )). Hence after composing by an element
of AutCU (T )(G), we can arrange that χ0 is the identity on this subgroup. Also, by
applying (4) with u = 1, and since χ0|Xβ

≡ Id (mod Uβ) and [Xα, Uβ ] ≤ Xα′′ , we
see that χ0 is the identity on Xβ′Xβ′′ . We conclude that χ0 is the identity on Uβ .

Since χβ induces the identity on Uβ and on Pβ/Uβ , it has the form χβ(x) =
xψ(x) (all x ∈ Pβ) for some

ψ ∈ Hom(Pβ/Uβ ;Z(Uβ)) ∼= Hom(SL2(8), C2) = 1 .

So χβ = IdPβ
.

Now, CPα
(T ) ∼= Σ4 × C7, and Out(Σ4) = 1. Hence χα|CPα (T ) must be conju-

gation by some element z ∈ Z(CU (T )) = Xα′′ = Z(Pβ). After composing χα and
χβ by restrictions of cz, we can thus assume that χα is the identity on CPα

(T ) (and
still χβ = IdPβ

). Since χα|U = Id and Pα = 〈U,CPα
(T )〉, we have χα = IdPα

. �

It remains only to handle 2F4(2) and the Tits group.

Proposition 4.17. Assume G = 2F4(2)
′ or 2F4(2). Then κG is an isomor-

phism.

Proof. By the pullback square in [AOV, Lemma 2.15] (and since Out(L)
is independent of the choice of objects in L by [AOV, Lemma 1.17]), κG is an
isomorphism when G = 2F4(2) if it is an isomorphism when G is the Tits group.
So from now on, we assume G = 2F4(2)

′.
We adopt the notation for subgroups of G used by Parrott [Pa]. Fix T ∈

Syl2(G), and set Z = Z(T ) ∼= C2, H = CG(Z), and J = O2(H). Let z ∈ Z be a
generator. Then H is the parabolic subgroup of order 211 · 5, |J | = 29, and H/J ∼=
C5 � C4. Set E = [J, J ]. By [Pa, Lemma 1], E = Z2(J) = Fr(J) ∼= C5

2 , and by
the proof of that lemma, the Sylow 5-subgroups of H act irreducibly on J/E ∼= C4

2

and on E/Z ∼= C4
2 . Since each element of AutH/J (J/E) sends CJ/E(T/J) ∼= C2 to

itself,

(9) AutH/J(J/E) = {IdJ/E} and

|HomH/J(J/E,E/Z)| ≤ |HomH/J(J/E, J/E)| = 2 .

Let N > T be the other parabolic, and set K = O2(N). Thus N/K ∼= Σ3, and
[T : K] = 2.

Fix P ∈ Syl5(H) ⊆ Syl5(G) (so P ∼= C5). By [Pa, p. 674], H/E = (J/E) ·
(NG(P )/Z), where NG(P )/Z ∼= H/J ∼= C5 � C4. For each β ∈ Aut(H) such
that β(T ) = T , there is β1 ≡ β (mod AutJ (H)) such that β1(P ) = P . Since
each automorphism of H/J which sends T/J ∼= C4 to itself is conjugation by
an element of T/J , there is β2 ≡ β1 (mod AutNT (P )(H)) such that β2 induces
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the identity on H/J . By (9), β2 also induces the identity on J/E, and hence on
H/E = (J/E) · (NG(P )/Z). Thus

(10) NAut(H)(T ) = AutT (H) · {β ∈ Aut(H) |β(P ) = P, [β,H] ≤ E} .
Now set L = Lc

T (G) for short, and identify N = AutL(K) and H = AutL(J).
For each α ∈ Aut(L), let αH ∈ Aut(H) and αN ∈ Aut(N) be the induced auto-
morphisms, and set αT = αH |T = αN |T . Set

A0 =
{
α ∈ Aut(L)

∣∣ [αH , H] ≤ E and αH |P = IdP
}
.

By (10), each class in Out(L) contains at least one automorphism in A0.
Fix α ∈ A0. Since [αH , H] must be normal in H, we have [αH , H] ∈ {E,Z, 1}.

If [αH , H] = Z, then αH |JP = Id, so [αH ,K] = [αN ,K] = Z, which is impossible
since Z is not normal in N by [Pa, Lemma 6] (or since z /∈ Z(G) and G = 〈H,N〉).
Thus either αH = Id, or [αH , H] = E.

If αH = IdH , then αN |T = Id. In this case, αN determines an element of
H1(N/K;Z(K)) whose restriction to H1(T/K;Z(K)) is trivial, and since this re-
striction map for H1(−;Z(K)) is injective (since T/K ∈ Syl2(N/K)), αN ∈ Inn(N)
(see, e.g., [OV, Lemma 1.2]). Hence αN ∈ AutZ(N) since αN |T = Id (and
Z = Z(T )). So α ∈ AutZ(L) in this case, and [α] = 1 ∈ Out(L).

Set H = H/Z, and similarly for subgroups of H. Let αH ∈ Aut(H) and

αT ∈ Aut(T ) be the automorphisms induced by αH and αT , and set β = αT |J .
Then E = Z(J) since E = Z2(J), so β(g) = gϕ(ĝ) for some ϕ ∈ HomH/J(J/E,E).
If ϕ = 1, so that [α, J ] ≤ Z, then since α|P = Id, we have [αH , H] < E and so
αH = Id.

We have now constructed a homomorphism from A0 to HomH/J(J/E,E) with
kernel AutZ(L). Thus

|Out(L)| ≤ |A0/AutZ(L)| ≤ |HomH/J(J/E,E)| ≤ 2 .

where the last inequality holds by (9). Since |Out(G)| = 2 by [GrL, Theorem 2],
and since κG is injective by Lemma 4.3, this proves that κG is an isomorphism.

Alternatively, this can be shown using results in [Fn]. Since T/[T, T ] ∼= C2×C4

by the above description of T/E (where E ≤ [T, T ]), Aut(T ) and hence Out(L)
are 2-groups. So each automorphism of the amalgam H > T < N determines a
larger amalgam. Since the only extension of this amalgam is to that of 2F4(2) by
[Fn, Theorem 1], |Out(L)| = 2. �
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CHAPTER 5

The cross characteristic case: I

Throughout this chapter, we will work with groups G = C
G
(σ) which satisfy

the conditions in Hypotheses 5.1 below. In particular, 5.1(I) implies that G is not
a Suzuki or Ree group. We will see in Chapter 6 (Proposition 6.8) that while these
hypotheses are far from including all finite Chevalley and Steinberg groups, their
fusion systems at the prime p do include almost all of those we need to consider.

For any finite abelian group B, we denote its “scalar automorphisms” by

ψB
k ∈ Aut(B), ψB

k (g) = gk for all k such that (k, |B|) = 1

and define the group of its scalar automorphisms

Autsc(B) =
{
ψB
k

∣∣ (k, |B|) = 1
}
≤ Z(Aut(B)) .

Hypotheses 5.1. Assume we are in the situation of Notation 2.2(A,B,C).

(I) Let p be a prime distinct from q0 such that p
∣∣|W0|. Assume also that σ =

ψq ◦ γ = γ ◦ ψq ∈ End(G), where
• q is a power of the prime q0;

• ψq ∈ Φ
G

is the field automorphism (see Definition 3.1(a)); and

• γ ∈ Aut(G) is an algebraic automorphism of finite order which sends T to
itself and commutes with ψq0 (so that ψq0(G) = G).

Also, there is a free 〈τ 〉-orbit of the form

{α1, α2, . . . , αs} or {±α1,±α2, . . . ,±αs}

in Σ such that the set {α1, α2, . . . , αs} is linearly independent in V .

(II) The algebraic group G is of universal type, and NG(T ) contains a Sylow p-
subgroup of G. Set A = Op(T ), and fix S ∈ Sylp(NG(T )) ⊆ Sylp(G); thus
A ≤ S.

(III) Assume one of the following holds: either

(III.1) q ≡ 1 (mod p), q ≡ 1 (mod 4) if p = 2, |γ| ≤ 2, and γ ∈ Γ
G

(thus

ρ(Π) = Π); or

(III.2) p is odd, q ≡ −1 (mod p), G is a Chevalley group (i.e., γ ∈ Inn(G)),

and γ(t) = t−1 for each t ∈ T ; or

(III.3) p is odd, |τ | = ordp(q) ≥ 2, CA(Op′(W0)) = 1, CS(Ω1(A)) = A,
AutG(A) = AutW0

(A),

NAut(A)(AutW0
(A)) ≤ Autsc(A)AutAut(G)(A)

51
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where AutAut(G)(A) =
{
δ|A
∣∣ δ ∈ Aut(G), δ(A) = A

}
, and

AutW0
(A) ∩ Autsc(A) ≤

{〈
γ|A
〉

if 2
∣∣ordp(q) or −Id /∈ W〈

γ|A, ψA
−1

〉
otherwise,

Since W0 acts on T by Lemma 2.3, it also acts on A = Op(T ).
We will see in Lemma 5.3 that the conditions CS(Ω1(A)) = A (or CS(A) = A

when p = 2) and AutG(A) = AutW0
(A), both assumed here in (III.3), also hold in

cases (III.1) and (III.2).
Recall, in the situation of (III.3), that |τ | = |γ|

T
| by Lemma 3.2.

Note that the above hypotheses eliminate the possibility that G be a Suzuki
or Ree group. Since we always assume the Sylow p-subgroups are nonabelian, the
only such case which needs to be considered here (when q0 �= p) is that of 2F4(q)
when p = 3, and this will be handled separately.

By Lemma 3.2, whenever σ = ψq ◦ γ, and γ is an algebraic automorphism of G

which normalizes T , there is τ ∈ Aut(V ) such that τ (Σ) = Σ and σ(Xα) = Xτ(α)

for each α ∈ Σ. So under Hypotheses 5.1, the condition at the beginning of Notation
2.2(C) holds automatically, and with ρ = τ |Σ. To simplify the notation, throughout
this chapter and the next, we write τ = ρ to denote this induced permutation of Σ.

The following notation will be used throughout this chapter, in addition to

that in Notation 2.2. Note that Π̂ and Σ̂ are defined in Notation 2.2(C) only when
ρ(Π) = Π, and hence only in case (III.1) of Hypotheses 5.1. It will be convenient,
in some of the proofs in this chapter, to extend this definition to case (III.2).

Recall (Notation 2.2) that for α ∈ Σ, wα ∈ W denotes the reflection in the
hyperplane α⊥ ⊆ V .

Notation 5.2. Assume we are in the situation of Notation 2.2 and Hypotheses
5.1.

(D) If (III.2) holds, then set Σ̂ = Σ, Π̂ = Π, and V0 = V . Note that W0 = W in
this case.

(E) If (III.1) holds, then for each α̂ ∈ Σ̂, let wα̂ ∈ W0 be the element in 〈wα |α ∈
α̂〉 which acts on V0 as the reflection across the hyperplane 〈α̂〉⊥, and which
exchanges the positive and negative roots in the set 〈α̂〉 ∩Σ. (Such an element
exists and lies in W0 by [Ca, Proposition 13.1.2].)

(F) If (III.1) or (III.2) holds, then for each α ∈ Σ and each α̂ ∈ Σ̂, set

Kα = 〈Xα, X−α〉 Tα = hα(F×
q0)

Kα̂ = 〈Kα |α ∈ α̂〉 T α̂ = 〈Tα |α ∈ α̂〉 .

(G) Set N = NG(T )/Op′(T ), and identify A = Op(T ) with T/Op′(T ) � N . If

(III.1) or (III.2) holds, then for α̂ ∈ Σ̂, set Aα̂ = A ∩ T α̂.

(H) Set F = FS(G), and

Aut(A,F) =
{
β ∈ Aut(A)

∣∣β = β|A, some β ∈ Aut(F)
}
.

Set Autdiag(F) = CAut(F)(A) =
{
β ∈ Aut(F)

∣∣β|A = Id
}
, and let Outdiag(F)

be the image of Autdiag(F) in Out(F).
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Note that when (G, σ) is a standard setup (i.e., in case (III.1)), W0 acts faith-
fully on V0 (see [Ca, Lemma 13.1.1]).

Recall that N = NG(T )/Op′(T ). We identify A = Op(T ) with T/Op′(T ) � N .

Lemma 5.3. Assume Hypotheses 5.1 and Notation 5.2.

(a) If condition (III.1) or (III.2) holds, then CW (A) = 1, C
G
(A) = C

G
(T ) =

T , CG(A) = T , and CS(A) = A. If p is odd, then CW (Ω1(A)) = 1 and
CS(Ω1(A)) = A.

(b) If C
G
(A)0 = T (in particular, if (III.1) or (III.2) holds), then NG(A) =

NG(T ) ≤ N
G
(T ), and the inclusion of NG(T ) in N

G
(T ) induces isomorphisms

W0
∼= NG(T )/T ∼= N/A. Thus AutG(A) = AutW0

(A).

Proof. (a) Assume condition (III.1) or (III.2) holds. We first prove that CW (A) =
1, and also that CW (Ω1(A)) = 1 when p is odd.

If p is odd, set A0 = Ω1(A) and p̂ = p. If p = 2, set A0 = Ω2(A) and p̂ = 4.
Thus in all cases, A0 is the p̂-torsion subgroup of A. Set ε = 1 if we are in case
(III.1), or ε = −1 in case (III.2). By assumption, p̂|(q − ε). Choose λ ∈ F×

q (or

λ ∈ F×
q2 if ε = −1) of order p̂. Set Π = {α1, . . . , αr}. Fix w ∈ CW (A0).

Assume first G = G(q), a Chevalley group. Then T =
{
t ∈ T

∣∣ tq−ε = 1
}
, and

A0 contains all elements of order p̂ in T . So w = 1 by Lemma 2.7.
Now assume that Id �= γ ∈ Γ

G
; i.e., G is one of the Steinberg groups 2An(q),

2Dn(q), or
2E6(q). Then C

G
(γ) is a simple algebraic group of type Bm, Cm, or

F4 (cf. [Ca, § 13.1–3]) with root system Σ̂ ⊆ V0 = CV (τ ), and A0 contains all
p̂-torsion in C

T
(γ). By Lemma 2.7 again, w|V0

= Id. Since w and τ are both

orthogonal, w also sends the (−1)-eigenspace for the action of τ to itself, and thus
w ∈ CW (τ ) = W0. But W0 acts faithfully on V0 (see, e.g., [Ca, 13.1.1]), so w = 1.

Thus CW (A0) = 1. Hence C
G
(A0) = T by Proposition 2.5, and the other

statements follow immediately.

(b) If C
G
(A)0 = T , then N

G
(T ) ≤ N

G
(A) ≤ N

G
(T ) (recall that A is the p-power

torsion in T ). If g ∈ N
G
(T ) and σ(g) = g, then g also normalizes T = C

T
(σ).

Thus NG(T ) = NG(A) ≤ N
G
(T ), and hence NG(T )/T ∼= W0 by Lemma 2.3. The

identification N/A ∼= NG(T )/T is immediate from the definition of N . �

We next look at the centralizer of the Weyl group acting on T or T .

Lemma 5.4. Assume Hypotheses 5.1, case (III.1), and Notation 5.2.

(a) Assume that all classes in Σ̂ have order 1 or 2. (Equivalently, τ (α) = α or

τ (α) ⊥ α for each α ∈ Σ.) Then C
T
(W0) = C

T
(W ) = Z(G), and Z(G) =

CT (W0).

(b) Assume that Σ̂ contains classes of order 3. Then G ∼= SL2n−1(Fq0) and G ∼=
SU2n−1(q) for some n ≥ 2. Also, C

T
(W0) ∼= F×

q0 , and σ(t) = t−q for all

t ∈ C
T
(W0).

Proof. (a) Assume that τ (α) = α or τ (α) ⊥ α for each α ∈ Σ. We first

show, for each α̂ = {α, τ (α)} ∈ Π̂, that C
T
(wα̂) = C

T
(wα, wτ(α)). This is clear if

α = τ (α). If α ⊥ τ (α), then wα̂ = wαwτ(α), so if t ∈ C
T
(wα̂), then wα(t) = wτ(α)(t)
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and t−1wα(t) = t−1wτ(α)(t). Also, t−1wα(t) ∈ Tα and t−1wτ(α)(t) ∈ T τ(α) by

Lemma 2.4(e). Since Tα ∩ T τ(α) = 1 by Lemma 2.4(b), t−1wα(t) = 1, and hence
t ∈ C

T
(wα, wτ(α)).

Since W = 〈wα |α ∈ Π〉, this proves that C
T
(W0) = C

T
(W ). Since G is

universal, C
T
(W ) = Z(G) by Proposition 2.5. In particular, CT (W0) ≤ G∩Z(G) ≤

Z(G); while Z(G) ≤ CT (W0) since CG(T ) = T by Lemma 5.3(a).

(b) Assume Σ̂ contains a class of order 3. Then by [GLS3, (2.3.2)], γ �= Id,
G ∼= SL2n−1, and G ∼= SU2n−1(q) (some n ≥ 2). Also, if we identify

T =
{
diag(λ1, . . . , λ2n−1)

∣∣λi ∈ F×
q0 , λ1λ2 · · ·λ2n−1 = 1

}
,

and identify W = Σ2n−1 with its action on T permuting the coordinates, then

γ
(
diag(λ1, . . . , λ2n−1)

)
= diag(λ−1

2n−1, . . . , λ
−1
1 ),

and W0
∼= C2 �Σn−1 is generated by the permutations (i 2n−i) and (i j)(2n−i 2n−j)

for i, j < n. So C
T
(W0) is the group of all matrices diag(λ1, . . . , λ2n−1) such that

λi = λ1 for all i �= n and λn = λ
−(2n−2)
1 , and C

T
(W0) ∼= F×

q0 . Also, γ inverts

C
T
(W0), so σ(t) = t−q for t ∈ C

T
(W0). �

Recall (Notation 5.2(F)) that when case (III.1) of Hypotheses 5.1 holds (in

particular, when p = 2), we set Kα̂ = 〈Kα |α ∈ α̂〉 for α̂ ∈ Σ̂, where Kα =

〈Xα, X−α〉. The conditions in (III.1) imply that each class in Σ̂ is of the form
{α}, {α, τ (α)}, or {α, τ (α), α+ τ (α)} for some α. This last case occurs only when
G ∼= SUn(q) for some odd n ≥ 3 and some q ≡ 1 (mod p or mod 4).

Lemma 5.5. Assume Hypotheses 5.1, case (III.1), and Notation 5.2. For each

α ∈ Σ, Kα
∼= SL2(Fq0). For each α̂ ∈ Σ̂, Kα̂

∼= SL2(Fq0), SL2(Fq0)× SL2(Fq0), or

SL3(Fq0) whenever the class α̂ has order 1, 2, or 3, respectively. Also, G ∩Kα̂ is
isomorphic to SL2(q), SL2(q

2), or SU3(q), respectively, in these three cases.

Proof. By Lemma 3.10, each class in Σ̂ is in the W0-orbit of a class in Π̂. So

it suffices to prove the statements about Kα and Kα̂ when α ∈ Π, and when α̂ ∈ Π̂
is its equivalence class.

By Lemma 2.4(b) (and since G is universal), Kα
∼= SL2(Fq0) for each α ∈ Π.

So when α = τ (α) (when |α̂| = 1), Kα̂ = Kα
∼= SL2(Fq0).

When α �= τ (α) and they are not orthogonal, then G ∼= SL2n+1(Fq0) for some

n, and the inclusion of SL3(Fq0) is clear. When α ⊥ τ (α), then [Kα,Kτ(α)] = 1,

and Kα ∩ Kτ(α) = 1 by Lemma 2.4(b) and since G is universal, and since the
intersection is contained in the centers of the two factors and hence in the maximal
tori. Hence K̄α̂ = 〈X̄±α, X̄±τ(α)〉 ∼= Kα ×Kτ(α)

∼= SL2(Fq0)× SL2(Fq0).

In all cases, since G is universal, G ∩ Kα̂ = C
G
(σ) ∩ Kα̂ = C

Kα̂
(σ). If α =

τ (α), then γ acts trivially on Kα̂, and C
Kα̂

(σ) ∼= SL2(q). If α ⊥ τ (α) then γ

exchanges the two factors and C
Kα̂

(σ) ∼= SL2(q
2). Finally, if α �= τ (α) and they

are not orthogonal, then γ is the graph automorphism of SL3(Fq0), so C
Kα̂

(σ) ∼=
SU3(q). �
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Recall, for α̂ ∈ Σ̂, that Aα̂ = A ∩ T α̂, where T α̂ = 〈hα(F×
q0) |α ∈ α̂〉. These

subgroups are described in the next lemma.

Lemma 5.6. Assume that G and (G, σ) satisfy Hypotheses 5.1, case (III.1) or
(III.2). Assume also Notation 5.2.

(a) If τ �= Id (hence we are in Case (III.1)), then for each α̂ ∈ Σ̂,

wα̂ =

⎧⎪⎨⎪⎩
wα if α̂ = {α}
wαwτ(α) if α̂ = {α, τ (α)}, α ⊥ τ (α)

wα+τ(α) = wαwτ(α)wα if α̂ = {α, τ (α), α+ τ (α)},

T α̂ =

{
Tα if α̂ = {α}
Tα × T τ(α) if α, τ (α) ∈ α̂, α �= τ (α),

and

ĥα(λ) =

{
hα(λ) if α̂ = {α}, λ ∈ F×

q

hα(λ)hτ(α)(λ
q) if α, τ (α) ∈ α̂, α �= τ (α), λ ∈ F×

q2 .

(b) In all cases, T = C
T
(ψqγ) =

∏
α̂∈Π̂ C

T α̂
(ψqγ) and hence A =

∏
α̂∈Π̂ Aα̂ (direct

products).

(c) Set ε = 1 if we are in case (III.1), or ε = −1 if we are in case (III.2). Set

m = vp(q − ε). For each α̂ ∈ Σ̂,

G ∩ T α̂ =

{
{hα(λ) |λ ∈ F×

q2 , λεq = λ} ∼= Cq−ε if α̂ = {α}
ĥα(F×

q2)
∼= Cq2−1 if α, τ (α) ∈ α̂, α �= τ (α).

In particular,

Aα̂
∼= Cpm if p is odd; Aα̂

∼=
{
C2m if p = 2 and |α̂| = 1

C2m+1 if p = 2 and |α̂| ≥ 2.

Proof. Recall that Σ̂ and Π̂ are defined in Notation 2.2(C) only when ρ(Π) =
Π; i.e., in case (III.1) of Hypotheses 5.1. In case (III.2), they were defined in

Notation 5.2(D) by setting Σ̂ = Σ and Π̂ = Π (and also W0 = W in this case).
(a,c) If we are in case (III.1) of Hypotheses 5.1 (where the σ-setup is standard),

then by Lemma 3.10, each orbit of W0 under its action on Σ̂ contains an element

of Π̂. If we are in case (III.2), then since W0 = W , Σ̂ = Σ, and Π̂ = Π, the same
statement follows from [Ca, Proposition 2.1.8]. So it suffices to prove these two

points when α̂ ∈ Π̂.

The formulas for wα̂, T α̂, and ĥα(λ), and the description of G∩ T α̂ = C
T α̂

(σ),

are clear when α̂ = {α}. So assume now that α̂ = {α, τ (α)} or {α, τ (α), α+ τ (α)},
where α �= τ (α).

By the definition in Notation 5.2(E), wα̂ ∈ 〈wα, wτ(α)〉 acts on V0 = CV (τ ) as

the reflection across the hyperplane 〈α̂〉⊥, and exchanges the positive and negative
roots in 〈α̂〉 ∩Σ. If α ⊥ τ (α), then [wα, wτ(α)] = 1, and hence wα̂ is the product of
these reflections. If |α̂| = 3, then 〈wα, wτ(α)〉 ∼= Σ3, and one sees by inspection that
wα+τ(α) = wαwτ(α)wα is the only element which satisfies the above conditions.
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If |α̂| = 3, then Tα+τ(α) ≤ TαT τ(α) by Lemma 2.4(d). Hence T α̂ = TαT τ(α)

whenever α �= τ (α) ∈ α̂. We can assume α, τ (α) ∈ Π, and so Tα ∩ T τ(α) = 1 by
Lemma 2.4(b).

By definition (see Notation 2.2(C)), for λ ∈ Fq0 , if ĥα(λ) is defined, it has the

form hα(λ)hτ(α)(μ) for some μ ∈ Fq0 . Since

σ(hα(λ)hτ(α)(μ)) = hα(μ
q)hτ(α)(λ

q) ,

this element lies in G if and only if μ = λq and λq2 = λ; i.e., λ ∈ F×
q2 .

This proves the formulas for ĥα(λ) in (a), and also the description of G∩T α̂ in
(c). The last statement in (c) is now immediate, since vp(q

2−1) = m+vp(q+1) = m
(if p is odd) or m+ 1 (if p = 2).

(b) By Lemma 2.4(b), T =
∏

α∈Π Tα =
∏

α̂∈Π̂ T α̂ (a direct product), the last
equality by (a). The direct product decompositions for T and A = Op(T ) follow
immediately. �

We would like to know that fusion preserving automorphisms of S (i.e., elements
of Aut(FS(G))) permute the subgroups Aα̂ ≤ S. We next characterize (when
possible) these subgroups in terms of fusion in S. Recall the definition of the focal
subgroup of a saturated fusion system F over a finite p-group S:

foc(F) =
〈
xy−1

∣∣x, y ∈ S, x is F-conjugate to y
〉
.

By the focal subgroup theorem for groups (cf. [G, Theorem 7.3.4]), if F = FS(G)
for some finite group G with S ∈ Sylp(G), then foc(F) = S ∩ [G,G].

Lemma 5.7. Assume Hypotheses 5.1, case (III.1) or (III.2), and Notation 5.2.

(a) If p is odd, then [wα̂, A] = Aα̂ for each α̂ ∈ Σ̂. If p = 2, then for each α̂ ∈ Σ̂,
[wα̂, A] ≤ Aα̂ with index at most 2, and [wα̂, A] = Aα̂ with the following
exceptions:
• τ = Id, G ∼= A1, and α̂ = {α}; or
• τ = Id, G ∼= Cn for n ≥ 2 (or B2), and α̂ = {α} where α is a long root; or

• |τ | = 2, G ∼= Dn for n ≥ 3 (or A3), and α̂ = {α, τ (α)} where α ⊥ τ (α); or

• |τ | = 2, G ∼= A2n for n ≥ 1, and |α̂| = 3.

(b) For each w ∈ W0 of order 2, w = wα̂ for some α̂ ∈ Σ̂ if and only if [w,A] is
cyclic.

(c) If p = 2, then for each α̂ ∈ Σ̂,

(1) C
G
(CA(wα̂)) =

{
TKα̂ if |α̂| ≤ 2

TKα+τ(α) if α̂ = {α, τ (α), α+ τ (α)}.

If in addition, |α̂| ≤ 2, then

Aα̂ = A ∩
[
CG(CA(wα̂)), CG(CA(wα̂))

]
= A ∩ foc(CF(CA(wα̂))).

Proof. As in the proof of Lemma 5.6, we can assume in the proofs of (a) and

(c) that α̂ ∈ Π̂.

(a) Fix α ∈ Π, and let α̂ ∈ Π̂ be its class. By Lemma 2.4(e) and since wα̂ ∈
〈wα, wτ(α)〉, we have [wα̂, A] ≤ A ∩ T α̂ = Aα̂ in all cases. By the same lemma,
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wα̂(ĥα(λ)) = ĥα(λ
−1) for all λ ∈ F×

q0 if |α̂| ≤ 2; and wα̂(ĥα(λ)) = ĥα(λ
−q) for

λ ∈ F×
q2 if |α̂| = 3. So [wα̂, A] = Aα̂ if p is odd, and (since Aα̂ is cyclic by Lemma

5.6(c)) [wα̂, A] has index at most 2 in Aα̂ if p = 2.
Assume now that p = 2, and hence that q ≡ 1 (mod 4). If τ = Id (and hence

α̂ = {α}), then for each β ∈ Π and each λ ∈ F×
q , Lemma 2.4(e) implies that

wα(hβ(λ)) =

⎧⎪⎨⎪⎩
hβ(λ) if β ⊥ α

hβ(λ)hα(λ) if β �⊥ α, ‖β‖ ≥ ‖α‖
hβ(λ)hα(λ

k) if β �⊥ α, ‖α‖ =
√
k · ‖β‖, k = 1, 2, 3.

(Note that wα(β
∨) = β∨, β∨ +α∨, or β∨ + kα∨, respectively, in these three cases.)

Since T is generated by the hβ(λ) for β ∈ Π and λ ∈ F×
q , it follows that [wα, A] has

index 2 in Aα exactly when |Π| = 1, or there are roots with two lengths and ratio√
2, α is a long root, and is orthogonal to all other long roots in Π. This happens

only when G ∼= A1 or Cn.
Now assume |τ | = 2. In particular, all roots in Σ have the same length. By

Lemmas 2.4(e) and 5.6(a), for each β ∈ Π�α̂ such that β �⊥ α and with class β̂ ∈ Π̂,
we have

wα̂(ĥβ(λ)) =

⎧⎪⎨⎪⎩
ĥβ(λ)ĥα(λ) if |β̂| = 1 and λ ∈ F×

q

ĥβ(λ)ĥα(λ) if |β̂| ≥ 2, |α̂| = 2, and λ ∈ F×
q2

ĥβ(λ)ĥα(λ
q+1) if |β̂| ≥ 2, |α̂| = 1 or 3, and λ ∈ F×

q2

By these formulas and Lemma 5.6(c), [wα̂, A] = Aα̂ exactly when |α̂| = 1, or |α̂| = 2
and there is some β ∈ Π such that β �⊥ α and β �= τ (β). The only cases where this
does not happen are when G ∼= Dn or A3 and |α̂| = 2, and when G ∼= A2n and
|α̂| ≥ 3.

(b) For each α̂ ∈ Σ̂, [wα̂, A] ≤ Aα̂ by (a), and hence is cyclic. It remains to prove
the converse.

Recall (Notation 5.2(D)) that when we are in case (III.2) (and hence the setup
is not standard), we define V0 = V . By assumption, G is always a Chevalley group
in this case.

Let w ∈ W0 be an element of order 2 which is not equal to wα̂ for any α̂. If G
is a Chevalley group (if W0 = W and V0 = V ), then CV (w) contains no points in
the interior of any Weyl chamber, since W permutes freely the Weyl chambers (see
[Brb, §V.3.2, Théorème 1(iii)]). Since w is not the reflection in a root hyperplane,
it follows that dim(V/CV (w)) ≥ 2. If G is a Steinberg group (thus in case (III.1)
with a standard setup), then W0 acts on V0 as the Weyl group of a certain root
system on V0 (see [Ca, § 13.3]), so dim(V0/CV0

(w)) ≥ 2 by a similar argument.
Set ε = +1 if we are in case (III.1), or ε = −1 if we are in case (III.2). Set

m = vp(q − ε), and choose λ ∈ (Fq2)
× of order pm. Set Λ = ZΣ∨, regarded as the

lattice in V with Z-basis Π∨ = {α∨ |α ∈ Π}. Let

Φλ : Λ/p
mΛ −−−−−−→ T

be the Z[W ]-linear monomorphism of Lemma 2.6(b) with image the pm-torsion in

T . Thus Φλ(α
∨) = hα(λ) for each α ∈ Σ. Also, σ(hα(λ)) = hτ(α)(λ) for each α ∈ Σ

(λq = λ by assumption), and thus Φλ commutes with the actions of τ on Λ < V

and of σ on T .
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Set Λ0 = CΛ(τ ) in case (III.1), or Λ0 = Λ in case (III.2). Then CΛ/pmΛ(τ ) =
Λ0/p

mΛ0 in case (III.1), since τ permutes the basis Π∨ of Λ. We claim that Φλ

restricts to a Z[W0]-linear isomorphism

Φ0 : Λ0/p
mΛ0

∼=−−−−−−→ Ωm(A) ,

where Ωm(A) is the pm-torsion subgroup of A and hence of T = C
T
(σ). If G is a

Chevalley group (in either case (III.1) or (III.2)), then Λ0 = Λ, so Im(Φ0) is the

pm-torsion subgroup of T and equal to Ωm(A). If G is a Steinberg group, then

ε = +1, each element of order dividing pm in T is fixed by ψq, and hence lies in
Ωm(A) if and only if it is fixed by γ (thus in Φλ(CΛ/pmΛ(τ ))).

Thus [w,A] ≥ [w,Ωm(A)] ∼= [w,Λ0/p
mΛ0]. Set B = Λ0/p

mΛ0 for short; we
will show that [w,B] is noncyclic. Set

r = rk(Λ0) = dim(V0) and s = rk(CΛ0
(w)) = dimR(CV0

(w)) ≤ r − 2 .

For each b ∈ CB(w), and each v ∈ Λ0 such that b = v + pmΛ0, v + w(v) ∈ CΛ0
(w)

maps to 2b ∈ CB(w). Thus B ∼= (Z/pm)r, while {2b | b ∈ CB(w)} is contained in
CΛ0

(w)/pmCΛ0
(w) ∼= (Z/pm)s. Since pm > 2 by assumption (and r − s ≥ 2), it

follows that B/CB(w) ∼= [w,B] is not cyclic.

(c) Fix α̂ ∈ Σ̂. We set up our notation as follows.

Case (1): |α̂| = 1 or 3. Set α∗ = α if α̂ = {α} (where τ (α) = α), or α∗ =
α+ τ (α) if α̂ = {α, τ (α), α+ τ (α)}. Set wα̂ = wα∗ , Wα̂ = 〈wα̂〉, and
Δ = {±α∗} ⊆ Σ.

Case (2): |α̂| = 2. Thus α̂ = {α, τ (α)}, where α ⊥ τ (α). Set wα̂ = wαwτ(α),
Wα̂ = 〈wα, wτ(α)〉, and Δ = {±α,±τ (α)} ⊆ Σ.

In case (1), by Lemma 2.4(c,e),

C
T
(wα̂) = C

T
(wα∗) = Ker(θα∗) = C

T
(Xα∗) = C

T
(X−α∗) .

Hence C
G
(CA(wα̂)) ≥ C

G
(C

T
(wα̂)) ≥ T 〈Xα∗ , X−α∗〉 = TKα∗ . In case (2), by the

same lemma,

C
T
(wα̂) = C

T
(〈wα, wτ(α)〉) = C

T
(〈Xα, X−α, Xτ(α), X−τ(α)〉) = C

T
(KαKτ(α))

so that C
G
(CA(wα̂)) ≥ TKα̂. This proves one of the inclusions in (1). By Propo-

sition 2.5, the opposite inclusion will follow once we show that

(2) CW (CA(wα̂)) ≤ Wα̂ .

Fix w ∈ CW (CA(wα̂)).

• Let β ∈ Σ ∩Δ⊥ be such that β = τ (β). Then hβ(λ) ∈ CA(wα̂) for λ ∈ F×
q0 of

order 4, so w(hβ(λ)) = hβ(λ), and β ∈ CV (w) by Lemma 2.6(d).

• Let β ∈ Σ ∩Δ⊥ be such that β �= τ (β), and set β′ = τ (β) for short. Let r ≥ 2

be such that q ≡ 1 + 2r (mod 2r+1), and choose λ ∈ F×
q0 of order 2r+1. Set

a = 1− 2r, so λa = λq. Then

hβ(λ)hβ′(λa), hβ(λ
a)hβ′(λ) ∈ CA(wα̂) ≤ C

T
(w) .

Also, ‖β + aβ′‖ = ‖aβ + β′‖ < (1− a)‖β‖ = 1
2 |λ|‖β‖ since a < 0 and β′ �= −β

(since τ (Σ+) = Σ+). Thus β + aβ′, aβ + β′ ∈ CV (w) by Lemma 2.6(c), so
β, β′ ∈ CV (w).
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• Let β ∈ Σ be such that β = τ (β) and β /∈ Δ⊥, and set η = β + wα̂(β). Since
wα̂τ = τwα̂ in Aut(V ), τ (η) = η. Since β /∈ Δ⊥ = CV (wα̂), we have wα̂(β) �= β,

and hence ‖η‖ < 2‖β‖. For λ ∈ F×
q0 of order 4, t = hβ(λ)hwα̂(β)(λ) ∈ CA(wα̂),

so w(t) = t, and η = β + wα̂(β) ∈ CV (w) by Lemma 2.6(c).

Consider the set

Σ∗ =
(
Σ ∩Δ⊥) ∪ {β + wα̂(β)

∣∣β ∈ Σ, τ (β) = β, β �⊥ Δ
}
⊆ V .

We have just shown that w(η) = η for each η ∈ Σ∗, and hence that w|〈Σ∗〉 = Id.
We next claim that

(3) Σ ∩ (Σ∗)⊥ = Δ except when G ∼= A2 and |τ | = 2.

From the description of the root systems in [Brb, Planches I–IX], whenever G
is not of type An, we get that 〈Σ ∩ β⊥〉 is a hyperplane in V for each β ∈ Σ. (It
suffices to check this for one root in Σ, or for one short root and one long root.)
In particular, (3) holds whenever |α̂| = 1 or 3 and G is of one of these types. If
|α̂| = 2, so |τ | = 2 and α̂ = {α, τ (α)} where α ⊥ τ (α), and G = Dn or E6, then
a similar check shows that 〈Σ ∩ {α, τ (α)}⊥〉 has codimension 2 in V , and hence
that (3) holds. For example, when G = E6, it suffices to check this with the roots
α = α3 = ε2 − ε1 and τ (α) = α5 = ε4 − ε3 in the notation of [Brb, Planche V].

Now assume G ∼= An for some n. If n ≥ 3, then 〈Σ ∩ β⊥〉 has codimension
2 for β ∈ Σ, but the only roots in the orthogonal complement of this space are
±β. Thus (3) holds for An when n ≥ 3 and |α̂| = 1 or 3, and the cases n = 1, 2
are easily checked. If α̂ = {α, τ (α)} where α ⊥ τ (α), then n ≥ 3, and we can
take α = ε1 − ε2 and τ (α) = εn − εn+1 in the notation of [Brb, Planche I], where
τ (x1, . . . , xn+1) = (−xn+1, . . . ,−x1). In this case, Σ∗ contains all roots εi − εj for
3 ≤ i < j ≤ n− 1 as well as (ε1 − εn+1) + (ε2 − εn), and these elements suffice to
show that ±α and ±τ (α) are the only roots in (Σ∗)⊥. This finishes the proof of
(3).

By (3), when G �∼= SU3(q), the only reflection hyperplanes which contain 〈Σ∗〉
are those in the set {β⊥ |β ∈ Δ}. Fix a “generic” element v ∈ 〈Σ∗〉; i.e., one which
is not contained in any other hyperplane. In case (1), v is contained in only the one
reflection hyperplane α∗⊥, and hence is in the closure of exactly two Weyl chambers
for (Σ,W ): chambers which are exchanged by wα̂. In case (2), v is contained in
the two reflection hyperplanes α⊥ and τ (α)⊥, and hence in the closure of four Weyl
chambers which are permuted freely and transitively byWα̂ = 〈wα, wτ(α)〉. SinceW
permutes the Weyl chambers freely and transitively (see [Brb, §V.3.2, Théorème
1(iii)]), and since 〈w,Wα̂〉 permutes the chambers whose closures contain v, we have
w ∈ Wα̂.

This proves (2) when G �∼= SU3(q). If G ∼= SU3(q), then hα∗(−1) ∈ CA(wα̂).

But no element of order 2 in T < SL3(Fq0) centralizes the full Weyl group W ∼= Σ3,
so (2) also holds in this case. This finishes the proof of (1).

If |α̂| ≤ 2, then

CG(CA(wα̂)) = G ∩ C
G
(CA(wα̂)) = T (G ∩Kα̂)

where by Lemma 5.5, G ∩Kα̂
∼= SL2(q) or SL2(q

2). Hence CG(CA(wα̂)) has com-

mutator subgroup G∩Kα̂, and focal subgroup Aα̂. Since CF (CA(wα̂)) is the fusion
system of CG(CA(wα̂)) (cf. [AKO, Proposition I.5.4]), this proves the last state-
ment. �
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Recall (Notation 5.2(H)) that Aut(A,F) is the group of automorphisms of A
which extend to elements of Aut(F). The next result describes the structure of
Aut(A,F) for a group G in the situation of case (III.1) or (III.2) of Hypothe-
ses 5.1. Recall that W0 acts faithfully on A by Lemma 5.3(a), and hence that
W0

∼= AutN (A) = AutNG(T )(A) by Lemma 5.3(b). It will be convenient to iden-
tify W0 with this subgroup of Aut(A). Since each element of Aut(A,F) is fusion
preserving, this group normalizes and hence acts on W0, and W0Aut(A,F) is a
subgroup of Aut(A).

For convenience, we set AutAut(G)(A) =
{
δ|A
∣∣ δ ∈ Aut(G), δ(A) = A

}
.

Lemma 5.8. Assume that G and (G, σ) satisfy Hypotheses 5.1, case (III.1) or
(III.2). Assume also Notation 5.2.

(a) CW0Aut(A,F)(W0) ≤ W0Autsc(A).

(b) Aut(A,F) ≤ Autsc(A)AutAut(G)(A), with the exceptions

• (G, p) ∼= (2E6(q), 3), or

• (G, p) ∼= (G2(q), 2) and q0 �= 3, or

• (G, p) ∼= (F4(q), 3) and q0 �= 2.

(c) In all cases, the index of Aut(A,F) ∩ Autsc(A)AutAut(G)(A) in Aut(A,F) is
at most 2 .

Proof. Recall that in Notation 2.2(C), V0, Σ̂, and Π̂ are defined when ρ(Π) =
Π, and hence in case (III.1) of Hypotheses 5.1. In case (III.2), we defined V0 = V ,

Σ̂ = Σ, and Π̂ = Π in Notation 5.2(D). So under the hypotheses of the lemma (and

since G is always a Chevalley group in case (III.2)), we have V0 = V and Π̂ = Π if
and only if G is a Chevalley group.

Set ε = 1 if we are in case (III.1), ε = −1 if we are in case (III.2), and
m = vp(q − ε).
Step 1: We first prove that

(4) ϕ ∈ CW0Aut(A,F)(W0) =⇒ ϕ(Aα̂) = Aα̂ for all α̂ ∈ Σ̂.

If p is odd, then Aα̂ = [wα̂, A] by Lemma 5.7(a), so (4) is immediate.
Next assume that p = 2, and also that |α̂| ≤ 2. Write ϕ = w ◦ ϕ0, where

w ∈ W0 and ϕ0 ∈ Aut(A,F). Then ϕ0(CA(wα̂)) = w−1(CA(wα̂)) = CA(wβ̂),

where β̂ = w−1(α̂). By definition of Aut(A,F) (Notation 5.2), ϕ0 = ϕ0|A for
some ϕ0 ∈ Aut(F). Since ϕ0 is fusion preserving, it sends foc(CF(CA(wα̂))) onto
foc(CF(CA(wβ̂))). Since these focal subgroups are Aα̂ and Aβ̂, respectively, by

Lemma 5.7(c), ϕ(Aα̂) = w(Aβ̂) = Aw(β̂) = Aα̂ also in this case (the second equality

by Lemma 2.4(e)).
It remains to consider the case where p = 2 and |α̂| = 3, and thus where

G ∼= SU2n+1(q) for some n ≥ 1. There is a subgroup (H1 × · · · × Hn) � Σn < G
of odd index, where Hi

∼= GU2(q). Fix Si ∈ Syl2(Hi); then Si
∼= SD2k where

k = v2(q
2−1)+1 ≥ 4. Let Ai, Qi < Si denote the cyclic and quaternion subgroups

of index 2 in Si. Then we can take A = A1 × · · ·×An
∼= (C2k−1)n, N = (S1 × · · · ×

Sn)� Σn, and S ∈ Syl2(N).

There are exactly n classes α̂1, . . . , α̂n ∈ Σ̂+ of order 3, which we label so that
[wα̂i

, A] ≤ Ai ([wα̂i
, A] = A ∩Qi). Equivalently, these are chosen so that wα̂i

acts
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on A via conjugation by an element of Si�Ai. Let α
∗
i ∈ Σ+ be the root in the class

α̂i which is the sum of the other two.
Write ϕ = w ◦ ϕ0, where w ∈ W0 and ϕ0 ∈ Aut(A,F), and let ϕ0 ∈ Aut(F)

be such that ϕ0 = ϕ0|A. For each 1 ≤ i ≤ n, ϕ0(CA(wα̂i
)) = w−1(CA(wα̂i

)) =
CA(wα̂f(i)

), where f ∈ Σn is such that α̂f(i) = w−1(α̂i). Since ϕ0 is fusion pre-

serving, it sends foc(CF(CA(wα̂i
))) onto foc(CF (CA(wα̂f(i)

))). By Lemma 5.7(c),

CG(CA(wα̂i
)) = G ∩ (TKα∗

i
), its commutator subgroup is G ∩Kα∗

i

∼= SL2(q), and

hence foc(CF(CA(wα̂i
))) = Qi. Thus ϕ0(Qi) = Qf(i).

For each i, set Q∗
i = 〈Qj | j �= i〉. Then CG(Q

∗
i ) is the product of G ∩

Kα̂i
∼= SL3(q) (Lemma 5.5) with Z(Q∗

i ). Thus ϕ0 sends foc(CF(Q
∗
i )) = Si to

foc(CF(Q
∗
f(i))) = Sf(i), and hence ϕ0(Ai) = Af(i). So ϕ(Ai) = w(Af(i)) = Ai for

each i where Ai = Aα̂i
, and this finishes the proof of (4).

Step 2: We next prove point (a): that CW0Aut(A,F)(W0) ≤ W0Autsc(A). Let
ϕ ∈ W0Aut(A,F) be an element which centralizes AutN (A) ∼= N/A ∼= W0. By (4),

ϕ(Aα̂) = Aα̂ for each α̂ ∈ Σ̂. Since Aα̂ is cyclic for each α̂ ∈ Σ̂+ by Lemma 5.6(c),
ϕ|Aα̂

is multiplication by some unique uα̂ ∈ (Z/qα̂)×, where qα̂ = |Aα̂|. We must
show that uα̂ is independent of α̂.

Assume first that τ = Id. By Lemma 5.6(c), |Aα| = pm for each α ∈ Π. Fix
α1, α2 ∈ Π and β ∈ Σ+ such that 1

kβ = 1
kα1 + α2, where either

• k = 1 and all three roots have the same length; or

• k ∈ {2, 3} and ‖β‖ = ‖α1‖ =
√
k · ‖α2‖.

The relation between the three roots is chosen so that hβ(λ) = hα1
(λ)hα2

(λ) for

all λ ∈ F×
q0 by Lemma 2.4(d). Hence uα1

≡ uβ ≡ uα2
(mod pm) by Lemma 5.6(b).

By the connectivity of the Dynkin diagram, the uα for α ∈ Π are all equal, and
ϕ ∈ Autsc(A).

Now assume |τ | = 2; the argument is similar but slightly more complicated. By
assumption, G is of type An, Dn, or En; i.e., all roots have the same length. Set
m′ = vp(q

2 − 1); then m′ = m if p is odd, and m′ = m+ 1 if p = 2. Fix α1, α2 ∈ Π

such that α1 �= τ (α2) and β
def
= α1 + α2 ∈ Σ+. Choose λ ∈ F×

q0 of order pm
′
.

If α1 �= τ (α1) and α2 �= τ (α2), then |Aα̂1
| = |Aα̂2

| = pm
′
by Lemma 5.6(c), and

ĥα1
(λ)ĥα2

(λ) = hα1
(λ)hτ(α1)(λ

q)hα2
(λ)hτ(α2)(λ

q)

= hβ(λ)hτ(β)(λ
q) = ĥβ(λ) ∈ Aβ̂ .

Hence (
ĥα1

(λ)ĥα2
(λ)
)u

β̂ = ϕ
(
ĥα1

(λ)ĥα2
(λ)
)
= ĥα1

(λ)uα̂1 · ĥα2
(λ)uα̂2 ,

and together with Lemma 5.6(b), this proves that uα̂1
≡ uβ̂ ≡ uα̂2

(mod pm
′
).

If τ (αi) = αi for i = 1, 2, then a similar argument shows that uα̂1
≡ uβ̂ ≡ uα̂2

(mod pm). It remains to handle the case where α1 �= τ (α1) and α2 = τ (α2). In this

case, |Aα̂1
| = pm

′
and |Aα̂2

| = pm by Lemma 5.6(c), and these groups are generated

by ĥα1
(λ) = hα1

(λ)hτ(α1)(λ
q) and hα2

(λq+1), respectively. Then

ĥα1
(λ)ĥα2

(λq+1) = hα1
(λ)hτ(α1)(λ

q)hα2
(λq+1) = hβ(λ)hτ(β)(λ

q) = ĥβ(λ) ∈ Aβ̂ ,

so (
ĥα1

(λ)ĥα2
(λq+1)

)u
β̂ = ϕ

(
ĥα1

(λ)ĥα2
(λq+1)

)
= ĥα1

(λ)uα̂1 · hα2
(λq+1)uα̂2 ,

and uα̂1
≡ uβ̂ ≡ uα̂2

(mod pm) by Lemma 5.6(b) again.
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Since the Dynkin diagram is connected, and since the subdiagram of nodes in
free orbits in the quotient diagram is also connected, this shows that the uα̂ are

all congruent for α̂ ∈ Π̂ (modulo pm or pm
′
, depending on where they are defined),

and hence that ϕ ∈ Autsc(A).

Step 3: Consider the subset WΠ̂ = {wα̂ | α̂ ∈ Π̂}. We need to study the subgroup
NW0Aut(A,F)(WΠ̂): the group of elements of W0Aut(A,F) which permute the set
WΠ̂. Note that W0 = 〈WΠ̂〉 (see, e.g., [Ca, Proposition 13.1.2], and recall that

W0 = W and Π̂ = Π in case (III.2)). We first show that

(5) Aut(A,F) ≤ W0NW0Aut(A,F)(WΠ̂) .

Write Π̂ = {α̂1, . . . , α̂k}, ordered so that for each 2 ≤ i ≤ k, α̂i is orthogonal
to all but one of the α̂j for j < i. Here, α̂i ⊥ α̂j means orthogonal as vectors in
V0. Thus wα̂i

commutes with all but one of the wα̂j
for j < i. By inspection of

the Dynkin diagram of G (or the quotient of that diagram by τ ), this is always
possible.

Fix ϕ ∈ Aut(A,F). In particular, ϕ normalizes W0 (recall that we identify
W0 = AutW0

(A)) since ϕ is fusion preserving. (Recall that AutG(A) = AutW0
(A)

by Lemma 5.3(b).) We must show that some element of ϕW0 normalizes the set
WΠ̂.

By definition of Aut(A,F) (Notation 5.2), ϕ = ϕ|A for some ϕ ∈ Aut(F).
Since ϕ is fusion preserving, ϕ normalizes AutF (A) = AutG(A), where AutG(A) ∼=
N/A ∼= W0 since CN (A) = A by Lemma 5.3(a). Thus there is a unique automor-
phism ϕ̂ ∈ Aut(W0) such that ϕ̂(w) = ϕ ◦ w ◦ ϕ−1 for each w ∈ W0.

For each i, since |ϕ̂(wα̂i
)| = 2 and [ϕ̂(wα̂i

), A] ∼= [wα̂i
, A] is cyclic, ϕ̂(wα̂i

) = wα̂′
i

for some α̂′
i ∈ Σ̂ by Lemma 5.7(b), where α̂′

i is uniquely determined only up to sign.
For i �= j,

α̂i ⊥ α̂j ⇐⇒ [wα̂i
, wα̂j

] = 1 ⇐⇒ [ϕ̂(wα̂i
), ϕ̂(wα̂j

)] = 1 ⇐⇒ α̂′
i ⊥ α̂′

j .

So via the assumption about orthogonality, we can choose successively elements
α̂′
1, α̂

′
2, . . . , α̂

′
k such that ϕ̂(wα̂i

) = wα̂′
i
for each i, and 〈α̂′

i, α̂
′
j〉 ≤ 0 for i �= j.

For each i �= j, since |wα̂i
wα̂j

| = |wα̂′
i
wα̂′

j
|, the angle (in V0) between α̂i and α̂j

is equal to that between α̂′
i and α̂′

j (by assumption, both angles are between π/2

and π). The roots α̂′
i for 1 ≤ i ≤ k thus generate Σ̂ as a root system on V0 with

Weyl group W0, and hence are the fundamental roots for another Weyl chamber for

Σ̂. (Recall that Σ̂ = Σ, V0 = V , and W0 = W in case (III.2).) Since W0 permutes
the Weyl chambers transitively [Brb, §VI.1.5, Theorem 2(i)], there is w ∈ W0

which sends the set {wα̂i
} onto {ϕ̂(wα̂i

)}. Thus c−1
w ◦ ϕ ∈ NW0Aut(A,F)(WΠ̂), so

ϕ ∈ W0NW0Aut(A,F)(WΠ̂), and this proves (5).

Step 4: Set AutW0Aut(A,F)(WΠ̂) = NW0Aut(A,F)(WΠ̂)
/
CW0Aut(A,F)(WΠ̂): the

group of permutations of the setWΠ̂ which are induced by elements ofW0Aut(A,F).
By (a) (Step 2) and (5), and since W0 = 〈WΠ̂〉, there is a surjection

(6) AutW0Aut(A,F)(WΠ̂)
onto−−−−−�

W0NW0Aut(A,F)(WΠ̂)

W0CW0Aut(A,F)(WΠ̂)
=

W0Aut(A,F)

W0Autsc(A)
.

To finish the proof of the lemma, we must show that each element of the group
AutW0Aut(A,F)(WΠ̂) is represented by an element of AutAut(G)(A) (i.e., the restric-
tion of an automorphism of G), with the exceptions listed in point (b).
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In the proof of Step 3, we saw that each element of AutW0Aut(A,F)(WΠ̂) pre-

serves angles between the corresponding elements of Π̂, and hence induces an au-

tomorphism of the Coxeter diagram for (V0, Σ̂) (i.e., the Dynkin diagram without
orientation on the edges).
Case 1: Assume G = G(q) is a Chevalley group. The automorphisms of the
Coxeter diagram of G are well known, and we have
(7)

∣∣AutW0Aut(A,F)(WΠ̂)
∣∣ ≤
⎧⎪⎨⎪⎩
6 if G ∼= D4

2 if G ∼= An (n ≥ 2), Dn (n ≥ 5), E6, B2, G2, or F4

1 otherwise.

In case (III.1) (i.e., when the setup is standard), all of these automorphisms are
realized by restrictions of graph automorphisms in ΓG (see [Ca, §§ 12.2–4]), except
possibly when G ∼= B2(q), G2(q), or F4(q). In case (III.2), with the same three
exceptions, each such automorphism is realized by some graph automorphism ϕ ∈
Γ
G
, and ϕ|

T
commutes with σ|

T
∈ Z(Aut(T )). Hence by Lemma 3.7, ϕ|T extends

to an automorphism of G whose restriction to A induces the given symmetry of the
Coxeter diagram. Together with (6), this proves the lemma for Chevalley groups,
with the above exceptions.

If G ∼= B2(q) or F4(q) and p �= 2, then
∣∣AutW0Aut(A,F)(WΠ̂)

∣∣ = 2, and the
nontrivial element is represented by an element of AutΓG

(A) exactly when q0 = 2.
This proves the lemma in these cases, and a similar argument holds when G ∼= G2(q)
and p �= 3.

It remains to check the cases where (G, p) ∼= (B2(q), 2), (G2(q), 3), or (F4(q), 2).
We claim that AutW0Aut(A,F)(WΠ̂) = 1 in these three cases; then the three groups
in (6) are trivial, and so Aut(A,F) ≤ W0Autsc(A). If (G, p) = (B2, 2) or (G2, 3),
then with the help of Lemma 2.4(d,b), one shows that the subgroups Ω1(Aα) are
all equal for α a short root, and are all distinct for the distinct (positive) long
roots. More precisely, of the p + 1 subgroups of order p in Ω1(A) ∼= C2

p , one
is equal to Aα when α is any of the short roots in Σ+, while each of the other
p is equal to Aα for one distinct long root α. Since Ω1(Aα) = Ω1([wα, A]) for
each α, no element of NW0Aut(A,F)(WΠ̂) can exchange the long and short roots, so
AutW0Aut(A,F)(WΠ̂) = 1.

Now assume (G, p) = (F4, 2). Let α, β ∈ Π be such that α is long, β is short,
and α �⊥ β. Then α and β generate a root system of type B2, and by the argument
in the last paragraph, no element of NW0Aut(A,F)(WΠ̂) can exchange them. Thus
no element in NW0Aut(A,F)(WΠ̂) can exchange the long and short roots in G, so
again AutW0Aut(A,F)(WΠ̂) = 1.
Case 2: Assume G is a Steinberg group. In particular, we are in case (III.1). The

Coxeter diagram for the root system (V0, Σ̂) has type Bn, Cn, or F4 (recall that we
excluded the triality groups 3D4(q) in Hypotheses 5.1), and hence has a nontrivial
automorphism only when it has type B2 or F4. It thus suffices to consider the
groups G = 2A3(q),

2A4(q), and
2E6(q).

For these groups, the elements ĥα(λ) for λ ∈ F×
q , and hence the (q − 1)-

torsion in the subgroups Tα̂ for α̂ ∈ Σ̂+, have relations similar to those among
the corresponding subgroups of T when G = B2(q) or F4(q). This follows from
Lemma 2.6(b): if λ ∈ F×

q is a generator, then Φλ restricts to an isomorphism from
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CZΣ∨(τ )/(q−1) to the (q−1)-torsion in T , and the elements in Π̂ can be identified
in a natural way with a basis for CZΣ∨(τ ). Hence when p = 2, certain subgroups

Ω1(Aα̂) are equal for distinct α̂ ∈ Σ̂+, proving that no element in NW0Aut(A,F)(WΠ̂)
can exchange the two classes of roots. Thus the same argument as that used in Case
1 when (G, p) = (B2(q), 2) or (F4(q), 2) applies to prove that NW0Aut(A,F)(WΠ̂) =
Autsc(A) in these cases.

Since p
∣∣|W0| by Hypotheses 5.1(I), we are left only with the case where p = 3

and G = 2E6(q) for some q ≡ 1 (mod 3). Then (V0, Σ̂) is the root system of F4, so
Aut(A,F) ∩W0Autsc(A) has index at most 2 in Aut(A,F) by (6) and (7). Thus
(c) holds in this case. (In fact, the fusion system of G is isomorphic to that of F4(q)
by [BMO, Example 4.4], and does have an “exotic” graph automorphism.) �

We now look at groups which satisfy any of the cases (III.1), (III.2), or (III.3)
in Hypotheses 5.1. Recall that κG = μG ◦ κG : Out(G) −−−→ Out(F).

Lemma 5.9. Assume Hypotheses 5.1 and Notation 5.2. Then each element
ϕ ∈ Autdiag(F) is the restriction of a diagonal automorphism of G. More precisely,
κG restricts to an epimorphism from Outdiag(G) onto Outdiag(F) whose kernel is
the p′-torsion subgroup. Also, CA(W0) = Op(Z(G)).

Proof. In general, whenever H is a group and B � H is a normal abelian
subgroup, we let Autdiag(H,B) be the group of all ϕ ∈ Aut(H) such that ϕ|B = IdB
and [ϕ,H] ≤ B, and let Outdiag(H,B) be the image of Autdiag(H,B) in Out(H).

There is a natural isomorphism Autdiag(H,B)/AutB(H)
ηH,B−−−→∼= H1(H/B;B) (cf.

[Sz1, 2.8.7]), and hence H1(H/B;B) surjects onto Outdiag(H,B). If B is centric in
H (if CH(B) = B), then Outdiag(H,B) ∼= H1(H/B;B) since AutB(H) = Inn(H)∩
Autdiag(H,B).

In particular, Outdiag(S,A) is a p-group since H1(S/A;A) is a p-group. Also,
CS(A) = A by Lemma 5.3(a) (or by assumption in case (III.3)), and hence we
have Outdiag(S,A) ∼= Autdiag(S,A)/AutA(S). So Autdiag(S,A) is a p-group, and
its subgroup Autdiag(F) is a p-group. It follows that

Autdiag(F) ∩ AutG(S) = Autdiag(F) ∩ Inn(S) = AutA(S) ,

and thus Outdiag(F) ∼= Autdiag(F)/AutA(S).
Since Outdiag(G) = Out

T
(G) by Proposition 3.5(c), we get κG(Outdiag(G)) ≤

Outdiag(F). In particular, κG sends all torsion prime to p in Outdiag(G) to the iden-
tity. It remains to show that it sends Op(Outdiag(G)) isomorphically to Outdiag(F).

Consider the following commutative diagram of automorphism groups and co-
homology groups:

(8)

Outdiag(F) ∼= Autdiag(F)/AutA(S)
χ

��

incl

��

H1(AutG(A);A)

ρ2

��

Outdiag(S,A) ∼= Autdiag(S,A)/AutA(S)
ηS,A

∼=
�� H1(AutS(A);A) .

Here, ρ2 is induced by restriction, and is injective by [CE, Theorem XII.10.1]
and since AutS(A) ∈ Sylp(AutG(A)) (since A � S ∈ Sylp(G)). For each ω ∈
Autdiag(F), since ω is fusion preserving, ηS,A([ω]) ∈ H1(AutS(A);A) is stable with
respect to AutG(A)-fusion, and hence by [CE, Theorem XII.10.1] is the restriction
of a unique element χ([ω]) ∈ H1(AutG(A);A).
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The rest of the proof splits into two parts, depending on which of cases (III.1),
(III.2), or (III.3) in Hypotheses 5.1 holds. Recall that AutF (A) = AutG(A) =
AutW0

(A): the second equality by Lemma 5.3(b) in cases (III.1) or (III.2), or by
assumption in case (III.3).
Cases (III.2) and (III.3): We show that in these cases, Outdiag(G), Outdiag(F),
Z(G), and CA(W0) all have order prime to p. Recall that p is odd in both cases.

By hypothesis in case (III.3), and since γ|
T

∈ Op′(W0) inverts T in case (III.2),

CA(Op′(W0)) = 1. In particular, CA(W0) = 1. Since Z(G) ≤ Z(G) by Proposition

3.5(a), and Z(G) ≤ T by Lemma 2.4(a), Z(G) ≤ G ∩ C
T
(W ) ≤ CT (W0), so

Op(Z(G)) ≤ CA(W0) = 1. This proves the last statement.
Now, Op(Outdiag(G)) = 1 since Outdiag(G) ∼= Z(G) (see [GLS3, Theorem

2.5.12(c)]) and Op(Z(G)) = 1. Also,

H1(AutG(A);A) = H1(AutW0
(A);A)

∼= H1(AutW0
(A)/AutOp′ (W0)(A);CA(Op′(W0))) = 0

since A is a p-group and CA(Op′(W0)) = 1. Hence Outdiag(F) = 1 by diagram (8).
Case (III.1): Since CW (A) = 1 by Lemma 5.3(a) (and since AutG(A) =
AutW0

(A)), we can identify H1(AutG(A);A) = H1(W0;A). Consider the following
commutative diagram of automorphism groups and cohomology groups

(9)

Op(Outdiag(G))
R ��

κG

��

Op(Outdiag(NG(T ), T ))
ηN(T ),T

∼=
��

∼= σ1

��

H1(W0;T )(p)

∼= σ2

��

Outdiag(N,A)
ηN,A

∼=
��

ρ1

��

H1(W0;A)

ρ2

��

Outdiag(F)
incl ��

χ0

�������������������

χ 



Outdiag(S,A)
ηS,A

∼=
�� H1(S/A;A)

where R is induced by restriction to NG(T ). By Lemma 5.3(a), T is centric in
NG(T ) and A is centric in N , so the three η’s are well defined and isomorphisms
(i.e., Outdiag(N,A) = Autdiag(N,A)/AutA(N), etc.). The maps σi are induced by
dividing out by Op′(T ), and are isomorphisms since A = Op(T ). The maps ρi are
induced by restriction, and are injective since S/A ∈ Sylp(W0) (see [CE, Theorem
XII.10.1]).

Consider the short exact sequence

1 −−−→ T −−−−−→ T
Ψ−−−−−→ T −−−→ 1,

where Ψ(t) = t−1 · γψq(t) = t−1γ(tq) for t ∈ T . Let
(10)

1 −→ CT (W0) −−−→ C
T
(W0)

Ψ∗−−−→ C
T
(W0)

δ−−−→ H1(W0;T )
θ−−−→ H1(W0;T )

be the induced cohomology exact sequence for the W0-action, and recall that
H1(W0;A) ∼= H1(W0;T )(p) by (9). We claim that

(11) |Op(Outdiag(G))| = |Im(δ)(p)| = |Op(Z(G))| = |CA(W0)|;

(12) R is injective; and

(13) χ(Outdiag(F)) ≤ Ker(θ).
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These three points will be shown below. It then follows from the commutativity of
diagram (9) (and since Im(δ) = Ker(θ)) that κG sends Op(Outdiag(G)) isomorphi-
cally onto Outdiag(F).
Proof of (11) and (12): Assume first that γ �= Id and G ∼= SL2n−1 (some
n ≥ 1). Thus G ∼= SU2n−1(q). By [St1, 3.4], Outdiag(G) and Z(G) are cyclic of
order (q+1, 2n−1), and hence have no p-torsion (recall p|(q−1)). By Lemma 5.4(b),

C
T
(W0) ∼= F×

q0 , and σ(u) = u−q for u ∈ C
T
(W0). Thus Ψ∗(u) = u−1σ(u) = u−1−q

for u ∈ C
T
(W0), so Ψ∗ is onto, and Im(δ) = 1 ∼= Op(Outdiag(G)) in this case. Also,

CT (W0) = Ker(Ψ∗) has order q + 1, so CA(W0) = Op(CT (W0)) = 1.
Now assume γ = Id or G �= SL2n−1. By Lemma 5.4, in all such cases,

(14) C
T
(W0) = C

T
(W ) = Z(G) and CT (W0) = Z(G) .

In particular, these groups are all finite, and hence |Im(δ)| = |Z(G)| by the exact-
ness of (10). By [GLS3, Theorem 2.5.12(c)], Outdiag(G) ∼= Z(G) in all cases, and
hence |Outdiag(G)| = |Im(δ)|.

If [ϕ] ∈ Ker(R), then we can assume that it is the class of ϕ ∈ Aut
T
(G).

Thus ϕ = cx for some x ∈ N
T
(G), and ϕ|NG(T ) = cy for some y ∈ NG(T ) which

centralizes A. Then y ∈ CG(A) = T by Lemma 5.3(a), and upon replacing ϕ
by c−1

y ◦ ϕ and x by y−1x (without changing the class [ϕ]), we can arrange that
ϕ|NG(T ) = Id. Then x ∈ C

T
(W0) since it centralizes NG(T ) (and since NG(T )/T ∼=

W0 by Lemma 5.3(b)), so x ∈ Z(G) by (14), and hence ϕ = IdG. Thus R is
injective.
Proof of (13): Fix ϕ ∈ Autdiag(F). Choose ϕ ∈ Autdiag(N,A) such that ϕ|S = ϕ
(i.e., such that [ϕ] = χ0([ϕ]) in diagram (9)). Recall that W0

∼= N/A by Lemma
5.3(b). Let c : W0

∼= N/A −−−→ A be such that ϕ(g) = c(gA)·g for each g ∈ N ;
thus ηN,A([ϕ]) = [c]. We must show that θ([c]) = 1: that this is a consequence of
ϕ being fusion preserving.

For each α̂ ∈ Π̂, set uα̂ = c(wα̂). Thus for g ∈ N , ϕ(g) = uα̂g if g ∈ wα̂ (as a
coset of A in N). Since w2

α̂ = 1, g2 = ϕ(g2) = (uα̂g)
2, and hence wα̂(uα̂) = u−1

α̂ .

We claim that uα̂ ∈ Aα̂ = A ∩Kα̂ for each α̂ ∈ Π̂.

• If p is odd, then uα̂ ∈ Aα̂, since Aα̂ = {a ∈ A |wα̂(a) = a−1} by Lemma 2.4(e).

• If p = 2, wα̂ ∈ S/A, and |α̂| ≤ 2, choose gα̂ ∈ S ∩ Kα̂ such that wα̂ = gα̂A.
(For example, if we set g =

∏
α∈α̂ nα(1) (see Notation 2.2(B)), then g ∈ NG(T )

represents the class wα̂ ∈ W0, and is T -conjugate to an element of S ∩Kα̂.) By

Lemma 5.7(c), CG(CA(wα̂)) = G ∩ TKα̂, where G ∩ Kα̂
∼= SL2(q) or SL2(q

2)
by Lemma 5.5. Hence

foc(CF (CA(wα̂))) = foc(CG(CA(wα̂))) = S ∩ [G ∩ TKα̂, G ∩ TKα̂] = S ∩Kα̂

(see the remarks before Lemma 5.7), and gα̂ lies in this subgroup. Since ϕ is
fusion preserving, ϕ(gα̂) ∈ foc(CF (CA(wα̂))). By Lemma 5.7(c) again,

uα̂ = ϕ(gα̂) · g−1
α̂ ∈ A ∩ foc(CF (CA(wα̂))) = Aα̂ .

• If p = 2, wα̂ ∈ S/A, and α̂ = {α, τ (α), α∗} where α∗ = α+τ (α), then wα̂ = wα∗ .

Choose gα̂ ∈ S ∩ Kα∗ such that gα̂A = wα̂ ∈ N/A. (For example, there is
such a gα̂ which is T -conjugate to nα∗(1).) By Lemma 5.7(c), CG(CA(wα̂)) =

G ∩ TKα∗ , G ∩Kα∗ ∼= SL2(q), and hence gα̂ ∈ foc(CF(CA(wα̂))). So ϕ(gα̂) ∈
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foc(CF(CA(wα̂))) since ϕ|S is fusion preserving. By Lemma 5.7(c),

uα̂ = ϕ(gα̂) · g−1
α̂ ∈ A ∩ foc(CF(CA(wα̂))) = A ∩Kα∗ ≤ Aα̂ .

• If p = 2 and wα̂ /∈ S/A ∈ Syl2(W0), then it is W0-conjugate to some other

reflection wβ̂ ∈ S/A (for β̂ ∈ Σ̂+), c(wβ̂) ∈ Aβ̂ by the above argument, and

hence uα̂ = c(wα̂) ∈ Aα̂.

Consider the homomorphism

Φ = (Φα)α∈Π : T −−−−−−→
∏
α∈Π

Tα where Φα(t) = t−1wα(t) ∀ t ∈ T , α ∈ Π.

Since W = 〈wα |α ∈ Π〉, we have Ker(Φ) = C
T
(W ) = Z(G) is finite (Proposition

2.5). Thus Φ is (isomorphic to) a homomorphism from (F×
q0)

r to itself with finite

kernel (where r = |Π|), and any such homomorphism is surjective since F×
q0 has no

subgroups of finite index.

Choose elements vα ∈ Tα for α ∈ Π as follows.

• If α̂ = {α} where τ (α) = α, we set vα = uα̂.

• If α̂ = {α, τ (α)}, where α ⊥ τ (α), then T α̂ = Tα × T τ(α), and we let vα, vτ(α)
be such that vαvτ(α) = uα̂.

• If α̂ = {α, τ (α), α∗} where α∗ = α + τ (α), then uα̂ = hα(λ)hτ(α)(λ
′) for some

λ, λ′ ∈ F×
q0 ,

wα̂(hα(λ)hτ(α)(λ
′)) = hα(λ

′−1)hτ(α)(λ
−1)

by Lemma 2.4(e), and λ = λ′ since wα̂(uα̂) = u−1
α̂ . Set vα = hα(λ) and

vτ(α) = 1. (This depends on the choice of α ∈ α̂ ∩ Π.)

Let t ∈ T be such that Φ(t) = (vα)α∈Π. We claim that t−1wα̂(t) = uα̂ for each

α̂ ∈ Π̂. This is clear when |α̂| ≤ 2. If α̂ = {α, τ (α), α∗} and λ are as above, then

wα̂(t) = wα∗(t) = wτ(α)wαwτ(α)(t) = wτ(α)(wα(t)) = wτ(α)

(
t · hα(λ)

)
= t · wτ(α)(hα(λ)) = t · hα∗(λ) = t · uα̂.

Thus c(wα̂) = dt(wα̂) for each α̂ ∈ Π̂. Since W0 = 〈wα̂ | α̂ ∈ Π̂〉 (and since
c and dt are both cocycles), this implies that c = dt, and hence that [c] = 0 in

H1(W0;T ). �
As one consequence of Lemma 5.9, the Z∗-theorem holds for these groups. This

is known to hold for all finite groups (see [GLS3, § 7.8]), but its proof for odd p
depends on the classification of finite simple groups, which we prefer not to assume
here.

Corollary 5.10. Assume that G ∈ Lie(q0), p �= q0, and S ∈ Sylp(G) satisfy
Hypotheses 5.1. Then Z(FS(G)) = Op(Z(G)).

Proof. By Lemma 5.9, Op(Z(G)) = CA(W0). By Lemma 5.3(a,b), or by
hypothesis in Case 5.1(III.3), CS(A) = A and AutG(A) = AutW0

(A). Hence
Z(FS(G)) ≤ Op(Z(G)), while the other inclusion is clear. �

We now need the following additional hypotheses, in order to be able to compare
Autsc(A) with the group of field automorphisms ofG. With the help of Lemma 1.11,
we will see in Chapter 6 that we can always arrange for them to hold.
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Hypotheses 5.11. Fix a prime p and a prime power q. Assume that q = qb0
where q0 is prime, b ≥ 1, q0 �= p, and

(i) q0 ≡ ±3 (mod 8) if p = 2;

(ii) the class of q0 generates (Z/p2)× if p is odd; and

(iii) b|(p− 1)p� for some � ≥ 0.

We will also say that “G satisfies Hypotheses 5.11” (for a given prime p) if G ∼=
tG(q) for some t and G, and some q which satisfies the above conditions.

By Hypothesis 5.1(I), ψq0(G) = G, and thus all field endomorphisms of G
normalize G. When G has a standard σ-setup, ΦG was defined to be the group of
restrictions of such endomorphisms ψqa0

∈ Φ
G
for a ≥ 0. Under our Hypotheses 5.1,

this applies only when we are in case (III.1) (although Proposition 3.6 describes the
relation between ΦG and ψq0 in the other cases). In what follows, it will be useful
to set

Φ̂G = 〈ψq0 |G〉 ≤ Aut(G).

By Proposition 3.6(d), Inndiag(G)Φ̂G = Inndiag(G)ΦG. However, Φ̂G can be

strictly larger than ΦG, and Φ̂G ∩ Inndiag(G) need not be trivial. For exam-
ple, if G = SLn(q) where p does not divide q − 1, then there is a σ-setup with

σ = cxψq for some x ∈ N
G
(T ) that satisfies Hypotheses 5.1 (see Lemma 6.5), and

ψq|G = c−1
x |G ∈ Inndiag(G). Note that since each element of Φ̂G acts on T via

(t �→ tr) for some r, Φ̂G normalizes T and each of its subgroups.
Recall that τ ∈ Aut(V ) is the automorphism induced by σ, and also denotes

the induced permutation of Σ.

Lemma 5.12. Assume Hypotheses 5.1 and 5.11 and Notation 5.2. Let

χ0 : Φ̂G −−−−−−−→ Aut(A,F)

be the homomorphism induced by restriction from G to A. Set m = |τ | =
∣∣γ|

T

∣∣.
Then the following hold.

(a) Either T has exponent qm − 1; or p is odd, m = ordp(q), m is even, and

(qm/2 + 1)
∣∣expt(T )∣∣(qm − 1).

(b) If p is odd, then χ0(Φ̂G) = Autsc(A). If p = 2, then χ0(Φ̂G) has index 2 in
Autsc(A), and Autsc(A) = Im(χ0)〈ψA

−1〉.
(c) If p = 2, then χ0 is injective. If p is odd, then

Ker(χ0) =

{
〈ψq|G〉 = 〈γ|G〉 in case (III.1)

〈(ψq|G)m〉 = 〈γm|G〉 = Φ̂G ∩ Aut
T
(G) in cases (III.2) and (III.3).

Proof. We first recall some of the assumptions in cases (III.1–3) of Hypotheses
5.1:

(15)

case (III.1) ordp(q) = 1, m = |γ|, and m ≤ 2

case (III.2) ordp(q) = m = 2 p is odd

case (III.3) ordp(q) = m p is odd

(Recall that γ is a graph automorphsm in case (III.1), so |γ| = |τ | = m.) In all of
these cases, p|(qm − 1) since ordp(q)|m.
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(a) For each t ∈ T = C
T
(ψq ◦ γ), tq = ψq(t) = γ−1(t). Hence t = γ−m(t) =

(ψq)
m(t) = tq

m

, and tq
m−1 = 1. Thus expt(T )

∣∣(qm − 1).
By Hypotheses 5.1(I), there is a linearly independent subset Ω = {α1, . . . , αs} ⊆

Σ such that either Ω or ±Ω = {±α1, . . . ,±αs} is a free 〈τ 〉-orbit in Σ. Assume Ω
is a free orbit (this always happens in case (III.1)). In particular, m = |τ | = s. For

each 1 �= λ ∈ F×
q0 such that λqs−1 = 1, the element

t(λ) =

m−1∏
i=0

hτi(α1)(λ
qi)

is fixed by σ = ψq ◦ γ (recall σ(hβ(λ)) = hτ(β)(λ
q) for each β ∈ Σ by Lemma 3.2).

Hence t(λ) ∈ T , and t(λ) �= 1 when λ �= 1 by Lemma 2.4(d,b). Thus T contains the
subgroup {t(λ) |λqm−1 = 1} of order qm − 1, this subgroup is cyclic (isomorphic to

a subgroup of F×
q0), and hence expt(T ) = qm − 1.

Assume now that ±Ω is a free 〈τ 〉-orbit (thus m = |τ | = 2s). In particular,
we are not in case (III.1), so p is odd and m = ordp(q). Then τ i(α1) = −α1 for

some 0 < i < 2s, and i = s since τ2i(α1) = α1. For each 1 �= λ ∈ F×
q0 such that

λqs+1 = 1,

t(λ) =
s−1∏
i=0

hτi(α1)(λ
qi)

is fixed by σ = ψq ◦ γ by Lemma 3.2 and since hτs(α1)(λ
qs) = h−α1

(λ−1) = hα1
(λ).

Hence t(λ) ∈ T , and t(λ) �= 1 when λ �= 1 by Lemma 2.4 again. Thus {t(λ) |λqe+1 =
1} ≤ T is cyclic of order qs + 1, and so (qs + 1)

∣∣expt(T ).
(b) By definition, Im(χ0) = χ0(Φ̂G) is generated by χ0(ψq0) = ψq0 |A, which acts
on A via (a �→ aq0). If p is odd, then by Hypotheses 5.11(ii), the class of q0 generates
(Z/p2)×, and hence generates (Z/pk)× for each k > 0. So Im(χ0) = Autsc(A) in
this case.

If p = 2, then q0 ≡ ±3 (mod 8) by Hypotheses 5.11(i). So for each k ≥ 2,
〈q0〉 has index 2 in (Z/2k)× = 〈q0,−1〉. Hence Im(χ0) = 〈ψq0 |A〉 has index 2 in
Autsc(A) = 〈ψq0 |A, ψA

−1〉.
(c) Set φ0 = ψq0 |G, a generator of Φ̂G. Then (φ0)

b = ψq|G = (γ|G)−1 since G =
C

G
(ψq ◦ γ), and so

∣∣φ0|T
∣∣ divides b|γ|

T
| = bm. Also, (φ0)

bm = (γ|G)−m ∈ Aut
T
(G)

by Lemma 3.2.
By (a), either expt(T ) = qm − 1; or m is even, p is odd, ordp(q) = m, and

(qm/2+1)
∣∣expt(T )∣∣(qm−1). In the latter case, vp(q

m/2+1) = vp(q
m−1) > 0 since

p � (qm/2 − 1). Thus

(16) expt(A) = pe where e = vp(q
m − 1) = vp(q0

bm − 1) > 0 .

If p = 2, then we are in case (III.1). In particular, q = qb0 ≡ 1 (mod 4),
and m ≤ 2. Also, b (and hence bm) is a power of 2 by Hypotheses 5.11(iii). If
bm = 1, then q = q0 ≡ 5 (mod 8), so e = v2(q − 1) = 2. If bm is even, then
e = v2(q

bm
0 − 1) = v2(q

2
0 − 1) + v2(bm/2) = 3 + v2(bm/2) by Lemma 1.13. Thus in

all cases, e = 2 + v2(bm). So Im(χ0) ≤ Autsc(A) ∼= (Z/2e)× has order 2e−2 = bm.
Since (ψq0 |G)bm = (ψq|G)m = (γ−1|G)m = IdG (recall m = |γ| in case (III.1)), χ0

is injective.
Now assume p is odd, and set m0 = ordp(q). Then b|(p− 1)p� for some � ≥ 0

by Hypotheses 5.11(iii), and q = qb0 where the class of q0 generates (Z/pk)× for
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each k ≥ 1. For r ∈ Z, qr = qbr0 ≡ 1 (mod p) if and only if (p − 1)|br. Hence

bm0 = b · ordp(q) = (p − 1)p� for some � ≥ 0. Since vp(q
p−1
0 − 1) = 1, and since

m = m0 or 2m0, Lemma 1.13 implies that

e = vp(q
m − 1) = vp(q

bm
0 − 1) = vp(q

bm0
0 − 1) = 1 + vp(p

�) = 1 + � .

Thus � = e−1, where pe = expt(A) by (16), so |Autsc(A)| = (p−1)pe−1 = bm0.

Since χ0 sends the generator φ0 of Φ̂G to the generator χ0(φ0) of Autsc(A), this
proves that Ker(χ0) = 〈ψm0

q |G〉 = 〈γm0 |G〉. The descriptions in the different cases
now follow immediately. Note that in cases (III.2) and (III.3) (where m = m0),

φbm
0 = γ−m|G ∈ Aut

T
(G) by Lemma 3.2. The converse is immediate: Φ̂G ∩

Aut
T
(G) ≤ Ker(χ0). �

Before applying these results to describe Out(F) and the homomorphism κG,
we need to know in which cases the subgroup A is characteristic in S.

Proposition 5.13. Assume Hypotheses 5.1 and Notation 5.2.

(a) If p = 2, then A is characteristic in S, and is the unique abelian subgroup of
S of order |A|, except when q ≡ 5 (mod 8) and G ∼= Sp2n(q) for some n ≥ 1.

(b) If p is odd, then A is characteristic in S, and Ω1(A) is the unique elementary
abelian subgroup of S of maximal rank, except when p = 3, q ≡ 1 (mod 3),
v3(q − 1) = 1, and G ∼= SU3(q) or G2(q).

In all cases, each normal subgroup of S isomorphic to A is NG(S)-conjugate to A.

Proof. If p is odd, then by [GL, 10-2(1,2)], there is a unique elementary p-
subgroup E ≤ S of rank equal to that of A (denoted rm0

in [GL]), except when
p = 3 and G is isomorphic to one of the groups SL3(q) (q ≡ 1 (mod 3)), SU3(q)
(q ≡ −1 (mod 3)), or G2(q),

3D4(q), or
2F4(q) (q ≡ ±1 (mod 3)). When there is a

unique such subgroup E, then A = CS(E) by Lemma 5.3(a) (or by assumption in
case (III.3)), and hence A is characteristic in S.

Among the exceptions, SL3(q) and G2(q) are the only ones which satisfy Hy-
potheses 5.1. In both cases, S is an extension of A ∼= (C3�)

2 by C3, where
� = v3(q − 1), and where Z(S) = CA(S) has order 3. If � > 1, then A is the
unique abelian subgroup of index p in S. If � = 1, then S is extraspecial of order
33 and exponent 3. By Theorem 1.8(a), we can assume q = 4 without changing the
isomorphism type of the fusion system, so G contains SU3(2). This is a semidirect
product S �Q8 (cf. [Ta, p. 123–124]), and hence the four subgroups of S of order
9 are NG(S)-conjugate.

It remains to prove the proposition when p = 2. We use [O3, § 2] as a reference
for information about best offenders, since this contains what we need in a brief
presentation. Assume A is not the unique abelian subgroup of S of order |A|. Then
there is an abelian subgroup 1 �= B ≤ W0 such that |B| · |CA(B)| ≥ |A|. In other
words, the action of the Weyl group W0 on A has a nontrivial best offender [O3,
Definition 2.1(b)]. Hence by Timmesfeld’s replacement theorem [O3, Theorem 2.5],
there is a quadratic best offender 1 �= B ≤ W0: an offender such that [B, [B,A]] = 1.

We consider three different cases.
Case 1: G ∼= G(q) is a Chevalley group, where either q ≡ 1 (mod 8), or
G �∼= Sp2n(q) for any n ≥ 1. Set n = rk(A) = rk(T ): the Lie rank of G (or of
G). Set � = v2(q − 1) ≥ 2. Then A ∼= (C2�)

n is the group of all 2�-torsion elements
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in T (or in T ). Since the result is clear when n = 1 (G ∼= SL2(q) ∼= Sp2(q), A
∼= C2� ,

and S ∼= Q2�+1), we assume n ≥ 2.
Let Λ = ZΣ∨ be the lattice in V generated by the dual roots. By Lemma

2.6(b), there are Z[W ]-linear isomorphisms A ∼= Λ/2�Λ and Ω1(A) ∼= Λ/2Λ.
Assume first that B acts faithfully on Ω1(A). Since B has quadratic action,

it is elementary abelian [O3, Lemma 2.4]. Set k = rk(B); thus B ∼= Ck
2 and

|A/CA(B)| ≤ 2k.
Since the B-action on V is faithful, the characters χ ∈ Hom(B, {±1}) which

have nontrivial eigenspace on V generate the dual group B∗. So we can choose
a basis χ1, . . . , χk for B∗ such that each χi has nontrivial eigenspace. Let b ∈ B
be the unique element such that χi(b) = −1 for each i = 1, . . . , k. Let V+, V− be
the ±1-eigenspaces for the b-action on V , and set Λ± = Λ ∩ V±. By construction,
dim(V−) ≥ k.

Let v ∈ Λ be an element whose class modulo 2�Λ is fixed by b, and write v =
v+ + v− where v± ∈ V±. Then 2v− = v− b(v) ∈ 2�Λ∩V− = 2�Λ−, so v− ∈ 2�−1Λ−
and v+ = v − v− ∈ Λ ∩ V+ = Λ+. Thus CΛ/2�Λ(b) = (Λ+ × 2�−1Λ−)/2

�Λ. Set
r = rk(Λ−) = dim(V−) ≥ k; then

2k ≥ |A/CA(B)| ≥ |A/CA(b)| = |Λ/(Λ+ × 2�−1Λ−)| = 2r(�−1) · |Λ/(Λ+ × Λ−)|
≥ 2k(�−1) · |Λ/(Λ+ × Λ−)|.

In particular, Λ = Λ+ × Λ−. But then b acts trivially on Λ/2Λ, hence on Ω1(A),
which contradicts our assumption.

Thus B does not act faithfully on Ω1(A). Set B0 = CB(Ω1(A)) ∼= CB(Λ/2Λ) �=
1. If −IdV ∈ B0, then it inverts A, [B,Ω1(A)] ≤ [B, [B0, A]] = 1 since B acts
quadratically, so B = B0, and |B0| ≥ |A/CA(B)| ≥ |A/Ω1(A)| = 2(�−1)n. If b ∈ B0

is such that b2 = −IdV , then b defines a C-vector space structure on V , and hence
does not induce the identity on Λ/2Λ, a contradiction.

Thus there is b ∈ B0 which does not act on V via ±Id. Let V± �= 0 be the
±1-eigenspaces for the b-action on V , and set Λ± = Λ ∩ V±. For each v ∈ Λ,
v − b(v) ∈ 2Λ since b acts trivially on Ω1(A) ∼= Λ/2Λ. Set v = v+ + v−, where
v± ∈ V±. Then 2v− = v − b(v) ∈ 2Λ ∩ V− = 2Λ− implies that v− ∈ Λ−, and
hence v+ ∈ Λ+. Thus v ∈ Λ+ × Λ−, so by Lemma 2.8, G ∼= Cn. By assumption,
q ≡ 1 (mod 8), so � ≥ 3, and [b, [b,Λ/2�Λ]] ≥ 4Λ−/2

�Λ− �= 1, contradicting the
assumption that B acts quadratically on A.
Case 2: G ∼= Sp2n(q) for some n ≥ 1 and some q ≡ 5 (mod 8). Fix
subgroups Hi ≤ G (1 ≤ i ≤ n) and K < G such that Hi

∼= Sp2(q) for each i,
K ∼= Σn is the group of permutation matrices (in 2× 2 blocks), and K normalizes
H = H1 × · · · ×Hn and permutes the factors in the obvious way. We can also fix

isomorphisms χi : Hi

∼=−−−→ Sp2(q) such that the action of K on the Hi commutes
with the χi.

Fix subgroups Â < Q̂ < Sp2(q), where Q̂ ∼= Q8 (a Sylow 2-subgroup), and

Â ∼= C4 is contained in the maximal torus. Set Qi = χ−1
i (Q̂) and Ai = χ−1

i (Â), and
set Q = Q1Q2 · · ·Qn and A = A1A2 · · ·An. Thus A = O2(T ) is as in Hypotheses
5.1(III): the 2-power torsion in the maximal torus of G. By [CF, § I], S = QR for
some R ∈ Syl2(K). Also, W ∼= QK/A ∼= C2 �Σn acts on A via signed permutations
of the coordinates.

Let B be any nontrivial best offender in W on A. Consider the action of B
on the set {1, 2, . . . , n}, let X1, . . . , Xk be the set of orbits, and set di = |Xi|. For
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1 ≤ i ≤ k, let Ai ≤ A be the subgroup of elements whose coordinates vanish
except for those in positions in Xi; thus Ai

∼= (C4)
di and A = A1 × · · · × Ak. Set

Bi = B/CB(Ai); then |B| ≤
∏k

i=1 |Bi|. Since B is abelian, either |Bi| = di and
Bi permutes the coordinates freely, or |Bi| = 2di and there is a unique involution
in Bi which inverts all coordinates in Ai. In the first case, |CAi

(Bi)| = 4, and so
|Bi| · |CAi

(Bi)| = di ·4 ≤ 4di = |Ai| with equality only if di = 1. In the second case,
|CAi

(Bi)| = 2, and again |Bi| · |CAi
(Bi)| = 2di · 2 ≤ 4di = |Ai| with equality only

if di = 1. Since

k∏
i=1

|Ai| = |A| ≤ |B| · |CA(B)| = |B| ·
k∏

i=1

|CAi
(Bi)| ≤

k∏
i=1

(
|Bi| · |CAi

(Bi)|
)
,

we conclude that di = 1 for all i, and hence that B acts only by changing signs in
certain coordinates.

For each 1 ≤ i ≤ n, let pri : Q −−−→ Qi be the projection onto the i-th factor.
If A∗ ≤ S is abelian of order 4n, then A∗A/A is a best offender in W on A, and
hence A∗ ≤ Q by the last paragraph. Also, pri(A

∗) is cyclic of order at most 4 for
each i, and since |A∗| = 4n, pri(A

∗) ∼= C4 for each i and A∗ =
∏n

i=1 pri(A
∗). Thus

there are exactly 3n such subgroups.
Now assume A∗ � S, and set A∗

i = pri(A
∗) ≤ Qi for short. Since A∗ is

normal, the subgroups χi(A
∗
i ) ≤ Q̂ < Sp2(q) are equal for all i lying in any R-

orbit of the set {1, 2, . . . , n}. Hence we can choose elements x1, x2, . . . , xn, where
xi ∈ NHi

(Qi) ∼= SL2(3) and
xi(Ai) = A∗

i for each i, and such that χi(xi) ∈ Sp2(q)
is constant on each R-orbit. Set x = x1x2 · · ·xn; then

xA = A∗, and x ∈ NG(S).
Case 3: G is a Steinberg group. Assume γ ∈ Γ

G
is a graph automorphism of

order 2, and that G = C
G
(σ) where σ = γψq. Set G0 = C

G
(γ, ψq); thus G0 ≤ G.

Set � = v2(q − 1) ≥ 2. We must again show that the action of W0 on A has no
nontrivial best offenders.

If G ∼= 2E6(q) or Spin−2n(q) (n ≥ 4), then G0
∼= F4(q) or Spin2n−1(q), respec-

tively, and W0 is the Weyl group of G0. If 1 �= B ≤ W0 is a best offender in W0 on
A, then it is also a best offender on Ω�(A) ≤ G0 (see [O3, Lemma 2.2(a)]), which
is impossible by Case 1.

If G ∼= SU2n+1(q) ∼= 2A2n(q), then S ∼= (SD2�+2)n � R for some R ∈ Syl2(Σn)
[CF, pp. 143–144]. Thus A ∼= (C2�+1)n, W0

∼= C2 � Σn, Σn < W0 acts on A
by permuting the coordinates, and the subgroup W1

∼= (C2)
n in W0 has a basis

each element of which acts on one coordinate by (a �→ a2
�−1). If B ≤ W0 is a

nontrivial quadratic best offender on A, then it is also a best offender on Ω�(A)
[O3, Lemma 2.2(a)], hence is contained in W1 by the argument in Case 2, which is
impossible since no nontrivial element in this subgroup acts quadratically. Thus A
is characteristic in this case.

It remains to consider the case where G ∼= SU2n(q) ∼= 2A2n−1(q). Since the

case SU2(q) ∼= Sp2(q) has already been handled, we can assume n ≥ 2. Set Ĝ =

GU2n(q) > G, set G0 = GU2(q) × · · · × GU2(q) ≤ Ĝ, and set G1 = NĜ(G0) ∼=
GU2(q) � Σn. Then G1 has odd index in Ĝ [CF, pp. 143–144], so we can assume
S ≤ G1 ∩ G. Fix H0 ∈ Syl2(G0); thus H0

∼= (SD2�+2)n. Since v2(q + 1) = 1, and
since the Sylow 2-subgroups of SU2(q) are quaternion,

G ∩H0 = Ker
[
H0

∼= (SD2�+2)n
χn

−−−−→ Cn
2

sum−−−−→ C2

]
,
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where χ : SD2�+2 −−−→ C2 is the surjection with quaternion kernel. As in the last
case, W0

∼= C2 � Σn with normal subgroup W1
∼= Cn

2 . If B ≤ W0 is a nontrivial
quadratic best offender on A, then it is also a best offender on Ω�(A) [O3, Lemma
2.2(a)], so B ≤ W1 by the argument used in Case 2. Since no nontrivial element in
W1 acts quadratically on A, we conclude that A is characteristic in this case. �

The next lemma is needed to deal with the fact that not all restrictions to A
of automorphisms of G lie in Aut(A,F) (since they need not normalize S).

Lemma 5.14. Let G be any finite group, fix S ∈ Sylp(G), and let S0 � S
be a normal subgroup. Let ϕ ∈ Aut(G) be such that ϕ(S0) = S0 and ϕ|S0

∈
NAut(S0)(AutS(S0)). Then there is ϕ′ ∈ Aut(G) such that ϕ′|S0

= ϕ|S0
, ϕ′(S) = S,

and ϕ′ ≡ ϕ (mod Inn(G)).

Proof. Since ϕ|S0
normalizes AutS(S0), and cϕ(g) = ϕcgϕ

−1 for each g ∈ G,
we have Autϕ(S)(S0) = ϕAutS(S0) = AutS(S0). Hence ϕ(S) ≤ CG(S0)S. Since
S normalizes CG(S0) and S ∈ Sylp(CG(S0)S), we have ϕ(S) = xS for some x ∈
CG(S0). Set ϕ

′ = c−1
x ◦ ϕ ∈ Aut(G); then ϕ′(S) = S and ϕ′|S0

= ϕ|S0
. �

In the next two propositions, we will be referring to the short exact sequence

(17) 1 −−−→ Autdiag(F) −−−−−−→ NAut(F)(A)
R−−−−−−→ Aut(A,F) −−−→ 1 .

Here, R is induced by restriction, and Aut(A,F) = Im(R) and Autdiag(F) =
Ker(R) by definition of these two groups (Notation 5.2(H)). By the last statement
in Proposition 5.13, in all cases, each class in Out(F) is represented by elements of
NAut(F)(A).

Proposition 5.15. Assume Hypotheses 5.1 and 5.11 and Notation 5.2. Then
κG is surjective, except in the following cases:

• (G, p) ∼= (2E6(q), 3), or

• (G, p) ∼= (G2(q), 2) and q0 �= 3, or

• (G, p) ∼= (F4(q), 3) and q0 �= 2.

In the exceptional cases, |Coker(κG)| ≤ 2.

Proof. We first claim that for ϕ ∈ Aut(F),

(18) ϕ(A) = A and ϕ|A ∈ Autsc(A)AutAut(G)(A) =⇒ [ϕ] ∈ Im(κG) .

To see this, fix such a ϕ. By Lemma 5.12(b), each element of Autsc(A), or of

Autsc(A)/〈ψA
−1〉 if p = 2, is the restriction of an element of Φ̂G. If p = 2, then we

are in case (III.1), the σ-setup is standard, and hence the inversion automorphism
ψA
−1 is the restriction of an inner automorphism of G (if −IdV ∈ W ) or an element

of Inn(G)ΓG. Thus ϕ|A extends to an automorphism of G.
Now, ϕ|A normalizes AutS(A) since ϕ(S) = S. So by Lemma 5.14, ϕ|A is

the restriction of an automorphism of G which normalizes S, and hence is the
restriction of an element ψ ∈ Aut(F) such that [ψ] ∈ Im(κG). Then ϕψ−1 ∈
Ker(R) = Autdiag(F) by the exactness of (17), and [ϕψ−1] ∈ Im(κG) by Lemma
5.9. So [ϕ] ∈ Im(κG), which proves (18).

By Proposition 5.13, each class in Out(F) is represented by an element of
NAut(F)(A). Hence by (18), |Coker(κG)| is at most the index of Aut(A,F) ∩
Autsc(A)AutAut(G)(A) in Aut(A,F). So by Lemma 5.8, |Coker(κG)| ≤ 2, and
κG is surjective with the exceptions listed above. �
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We now want to refine Proposition 5.15, and finish the proof of Theorem B, by
determining Ker(κG) in each case where 5.1 and 5.11 hold and checking whether
it is split. In particular, we still want to show that each of these fusion systems is
tamely realized by some finite group of Lie type (and not just an extension of such
a group by outer automorphisms).

Since Op′(Outdiag(G)) ≤ Ker(κG) in all cases by Lemma 5.9, κG induces a
quotient homomorphism

◦
κG : Out(G)/Op′(Outdiag(G)) −−−−−−→ Out(F) ,

and it is simpler to describe Ker(
◦
κG) than Ker(κG). The projection of Out(G)

onto the quotient Out(G)/Op′(Outdiag(G)) is always split: by Steinberg’s theorem
(Theorem 3.4), it splits back to Op(Outdiag(G))ΦGΓG as defined with respect to
some choice of standard setup. (Recall that Outdiag(G) is independent of the σ-

setup by Propositions 3.5(c) and 3.6(a).) Hence
◦
κG is split surjective if and only if

κG is split surjective.

Proposition 5.16. Assume Hypotheses 5.1 and 5.11 and Notation 5.2. As-
sume also that none of the following hold: neither

• (G, p) ∼= (2E6(q), 3), nor

• (G, p) ∼= (G2(q), 2) and q0 �= 3, nor

• (G, p) ∼= (F4(q), 3) and q0 �= 2.

(a) If p = 2, then
◦
κG is an isomorphism, and κG is split surjective.

(b) Assume that p is odd, and that we are in the situation of case (III.1) of Hy-
potheses 5.1. Then

√
q ∈ N, and

Ker(
◦
κG) =

⎧⎪⎨⎪⎩
〈
[ψ√

q]
〉 ∼= C2 if γ = Id and −Id ∈ W〈

[γ0ψ√
q]
〉 ∼= C2 if γ = Id and −Id /∈ W〈

[ψ√
q]
〉 ∼= C4 if γ �= Id (G is a Steinberg group)

where in the second case, γ0 ∈ ΓG is a graph automorphism of order 2. Hence

κG and
◦
κG are split surjective if and only if either γ = Id and −Id /∈ W , or

p ≡ 3 (mod 4) and G is not F4.

(c) Assume that p is odd, and that we are in the situation of case (III.2) or (III.3)

of Hypotheses 5.1. Assume also that G is a Chevalley group (γ ∈ Inn(G)), and
that ordp(q) is even or −Id /∈ W0. Let ΦG,ΓG ≤ Aut(G) be as in Proposition

3.6. Then ΦG ∩ Ker(
◦
κG) = 1, so |Ker(

◦
κG)| ≤ |ΓG|, and κG and

◦
κG are split

surjective.

(d) Assume that p is odd, and that we are in the situation of case (III.3) of Hy-

potheses 5.1. Assume also that G is a Steinberg group (γ /∈ Inn(G)), and that
ordp(q) is even. Then

Ker(
◦
κG) =

{〈
[γ|G]

〉 ∼= C2 if γ|A ∈ AutW0
(A)

1 otherwise.

Hence κG and
◦
κG are split surjective if and only if q is an odd power of q0

or Ker(κG) = Op′(Outdiag(G)). If κG is not split surjective, then its kernel
contains a graph automorphism of order 2 in Out(G)/Outdiag(G).
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Proof. In all cases, κG is surjective by Proposition 5.15 (with the three ex-
ceptions listed above).

By definition and Proposition 5.13,

Out(F) = Aut(F)/AutF (S) ∼= NAut(F)(A)
/
NAutF (S)(A) .

Also, Outdiag(F) is the image in Out(F) of Autdiag(F). Since NAutF (S)(A) is the
group of automorphisms of S induced by conjugation by elements inNG(S)∩NG(A),
the short exact sequence (17) induces a quotient exact sequence
(19)

1 −−−→ Outdiag(F) −−−−−−→ Out(F)
R−−−−−−→ Aut(A,F)

/
AutNG(S)(A) −−−→ 1 .

We claim that

(20) AutNG(S)(A) = Aut(A,F) ∩ AutG(A) .

That AutNG(S)(A) is contained in the two other groups is clear. Conversely, as-
sume α ∈ Aut(A,F) ∩ AutG(A). Then α = cg|A for some g ∈ NG(A), and
α ∈ NAut(A)(AutS(A)) since it is the restriction of an element of Aut(F). Hence
g normalizes SCG(A), and since S ∈ Sylp(SCG(A)), there is h ∈ CG(A) such that
hg ∈ NG(S). Thus α = cg|A = chg|A ∈ AutNG(S)(A), and this finishes the proof of
(20).

By Lemma 5.9, κG sends Outdiag(G) onto Outdiag(F) with kernel the subgroup
Op′(Outdiag(G)). Hence by the exactness of (19), restriction to A induces an
isomorphism

(21) Ker(
◦
κG)

R0−−−−→∼=
Ker
[
Out(G)/Outdiag(G) −−−−→ Aut(A,F)/AutNG(S)(A)

]
= Ker

[
Out(G)/Outdiag(G) −−−−→ NAut(A)(AutG(A))/AutG(A)

]
,

where the equality holds by (20).
Recall that for each � prime to p, ψA

� ∈ Autsc(A) denotes the automorphism
(a �→ a�).
(a,b) Under either assumption (a) or (b), we are in case (III.1) of Hypotheses 5.1.

In particular, (G, σ) is a standard σ-setup for G. Set k = vp(q − 1); then k ≥ 1,
and k ≥ 2 if p = 2.

If p is odd, then by Hypotheses 5.11(ii), the class of q0 generates (Z/p)×. Since
q = qb0 ≡ 1 (mod p), this implies that (p − 1)|b. In particular, b is even and
√
q = q

b/2
0 ∈ N in this case. Also, for arbitrary p, Hypotheses 5.11(iii) implies that

(22) b = (p− 1)p� for some � ≥ 0.

Since Out(G)/Outdiag(G) ∼= ΦGΓG by Theorem 3.4, where ΦGΓG normalizes
T and hence A, and since AutG(A) = AutW0

(A) by Lemma 5.3(b), (21) takes the
form

(23) Ker(
◦
κG) ∼=

{
ϕ ∈ ΦGΓG

∣∣ϕ|A ∈ AutW0
(A)
}
.

In fact, when Ker(
◦
κG) has order prime to p (which is the case for all exam-

ples considered here), the isomorphism in (23) is an equality since the quotient
Outdiag(G)/Op′(Outdiag(G)) is a p-group.
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Assume first that G = G(q) is a Chevalley group. Thus σ = ψq where q ≡ 1

(mod p), and A =
{
t ∈ T

∣∣ tpk

= 1
}
. Set

Γ0
G =

{
ΓG if G is not one of B2, F4, or G2

1 if G ∼= B2, F4, or G2

and similarly for Γ0

G
. By Lemma 2.7 (applied withm = pk ≥ 3), we have AutW (T )∩

AutΓ0

G

(T ) = 1, the group AutW (T )AutΓ0

G

(T ) acts faithfully on A, and its action

intersects Autsc(A) only in 〈ψA
−1〉. By Lemma 5.12(b,c), restriction to A sends Φ̂G

isomorphically onto Autsc(A) if p is odd, and with index 2 and ψA
−1 not in the image

if p = 2. So ΦGΓ
0
G acts faithfully on A, and

(24)
{
ϕ ∈ ΦGΓ

0
G

∣∣ϕ|A ∈ AutW0
(A)
}
=

⎧⎪⎨⎪⎩
1 if p = 2

〈ψ√
q〉 if p is odd and −Id ∈ W

〈γ0ψ√
q〉 if p is odd and −Id /∈ W

where in the last case, γ0 ∈ ΓG is a graph automorphism such that the coset γ0W
contains −Id. (Recall that b = (p − 1)p� for some � ≥ 0 by (22). Hence

√
q ≡ −1

modulo pk = expt(A), and ψ√
q|A = ψA

−1.)

Thus by (23) and (24), ifG is not B2, F4, orG2, then
◦
κG is injective if p = 2, and

|Ker(
◦
κG)| = 2 if p is odd. When p is odd, since Ker(

◦
κG) is normal of order prime to

p in Out(G) (hence of order prime to |Op(Outdiag(G))|), Ker(
◦
κG) is generated by

[ψ√
q] if −Id ∈ W (i.e., if there is an inner automorphism which inverts T and hence

A), or by [γ0ψ√
q] if −Id /∈ W and γ0 is as above. In the latter case,

◦
κG is split since

it sends Op(Outdiag(G))ΦG isomorphically onto Out(F) (note that in this case,

G ∼= An, Dn for n odd, or E6, and hence ΓG
∼= C2). When Ker(

◦
κG) =

〈
[ψ√

q]
〉
, the

map is split if and only if 4 � |ΦG| = b, and since b = (p− 1)pm for some m by (22),
this holds exactly when p ≡ 3 (mod 4).

If (G, p) ∼= (B2(q), 2), (F4(q), 2), or (G2(q), 3), then since q0 �= p, ΓG = 1 = Γ0
G.

So (23) and (24) again imply that Ker(
◦
κG) = 1, 1, or

〈
[ψ√

q]
〉 ∼= C2, respectively,

and that
◦
κG is split in all cases.

Next assume G = G2(q), where p = 2, q = 3b, and b is a power of 2. Then
b ≥ 2 since q ≡ 1 (mod 4). By (23) and (24) again, ΦG injects into Out(F). Since
Out(G) is cyclic of order 2b, generated by a graph automorphism whose square
generates ΦG (and since 2|b), Out(G) injects into Out(F).

If G = F4(q), where p = 3, q = 2b, and b = 2 · 3� for some � ≥ 0, then by

(23) and (24), Ker(
◦
κG|Φ(G)) = 〈ψ√

q〉 ∼= C2. Fix 1 �= γ ∈ ΓG. If |Ker(
◦
κG)| > 2,

then since Autsc(Ω1(A)) = {±Id} ≤ AutW (Ω1(A)), we have wγ|Ω1(A) = Id for
some w ∈ W . Since W acts faithfully on Ω1(A) (Lemma 2.7), this would imply
that [wγ,W ] = 1 in W 〈γ〉, and hence that γ acts on W as an inner automorphism,
which is impossible since the action of γ exchanges reflections in W for long and

short roots, unlike any inner automorphism. Thus Ker(
◦
κG) = 〈ψ√

q〉 ∼= C2. Since

Out(G) is cyclic of order 2b = 4 · 3�, neither ◦
κG nor κG splits.

It remains to handle the Steinberg groups. Let H be such that C
G
(γ) = H(Fq0):

a simple algebraic group by [GLS3, Theorem 1.15.2(d)]. In particular, G ≥ H =
H(q). Also, W0 is the Weyl group of H by [GLS3, Theorem 1.15.2(d)] (or by the
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proof of [St3, Theorem 8.2]). For a ∈ A,

a ∈ H ⇐⇒ γ(a) = a ⇐⇒ ψq(a) = aq = a ⇐⇒ a ∈ Ωk(A).

Thus Ωk(A) = A ∩H. So by Lemma 2.7 applied to H(Fq0), W0 acts faithfully on
Ωk(A), and intersects Autsc(A) at most in 〈ψA

−1〉.
If p = 2, then by Lemma 5.12(b), ψA

−1 is not the restriction of an element in

ΦG. Also, ΦG
∼= C2b is sent injectively into Autsc(A) by Lemma 5.12(c), so

◦
κG is

injective by (23).
If p is odd, then A = Ωk(A) ≤ H since vp(q

2− 1) = vp(q− 1) = k, and W0 acts
on A as the Weyl group of Bm or Cm (some m) or of F4 (see [GLS3, Proposition
2.3.2(d)] or [Ca, § 13.3]). Also, ψq0 |A has order b in Autsc(A) by Lemma 5.12(c).

Since (ψq0)
b/2 = ψ√

q where
√
q ≡ −1 (mod p) (recall b = (p − 1)p� for some � by

(22)), and since −IdV0
∈ W0 by the above remarks, ψq0 |A has order b/2 modulo

AutW0
(A). So by (23) and the remark afterwards, and since ΦG is cyclic of order 2b,

Ker(
◦
κG) =

〈
[ψ√

q]
〉 ∼= C4. In particular,

◦
κG is split only if b/2 is odd; equivalently,

p ≡ 3 (mod 4).
(c,d) In both of these cases, p is odd, either ordp(q) is even or −Id /∈ W0, and we
are in the situation of case (III.2) or (III.3) in Hypothesis 5.1. Then γ|G = (ψq|G)−1

since G ≤ C
G
(γψq). Also, ψq0(G) = G by 5.1(I), and hence γ(G) = G. Since ψq0

and γ both normalize T by assumption or by construction, they also normalize

T = G∩T and A = Op(T ). By Proposition 3.6(d), [ψq0 ] generates the image of ΦG

in Out(G)/Outdiag(G).
We claim that in all cases,

(25) AutG(A) = AutW0
(A) and AutG(A) ∩ Autsc(A) ≤ 〈γ|A〉 .

This holds by assumption in case (III.3), and since ordp(q) is even or −Id /∈ W0. In
case (III.2), the first statement holds by Lemma 5.3(b), and the second by Lemma

2.7 (and since W0 = W and A contains all pk-torsion in T ).

(c) Assume in addition that G is a Chevalley group. Thus γ ∈ Inn(G), so
γ|G ∈ Inndiag(G) = Inn(G)Aut

T
(G) by Proposition 3.6(b), and hence γ|A ∈

AutG(A). Also, γ|A = (ψq|A)−1 = (ψq0 |A)−b since σ = γψq centralizes G ≥
A. Since ψq0 |A has order b · ordp(q) in Autsc(A) by Lemma 5.12(c), its class in
NAut(A)(AutG(A))/AutG(A) has order b by (25).

Thus by (21),
◦
κG sends Op(Outdiag(G))ΦG injectively into Out(F). Since ΓG

is isomorphic to 1, C2, or Σ3 (and since
◦
κG is onto by Proposition 5.15),

◦
κG and

κG are split.

(d) Assume G is a Steinberg group and ordp(q) is even. In this case, γ /∈ Inn(G),
and Out(G)/Outdiag(G) ∼= ΦG is cyclic of order 2b, generated by the class of ψq0 |G.
Hence by (21), Ker(

◦
κG) is isomorphic to the subgroup of those ψ ∈ ΦG such that

ψ|A ∈ AutG(A). By (25) and since ψq|A = γ−1|A, AutG(A) ∩ Autsc(A) ≤ 〈ψA
q 〉.

Thus |Ker(
◦
κG)| ≤ 2, and

|Ker(
◦
κG)| = 2 ⇐⇒ γ|A ∈ AutG(A) = AutW0

(A) .

When Ker(
◦
κG) �= 1,

◦
κG is split if and only if 4 � |ΦG| = 2b; i.e., when b is odd. �

In the situation of Proposition 5.16(c), if −Id /∈ W , then Ker(
◦
κG) =

〈
[γ0ψ√

q]
〉

where γ0 is a nontrivial graph automorphism. If −Id ∈ W (hence ordp(q) is even),
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then
◦
κG is always injective: either because ΓG = 1, or by the explicit descriptions in

the next chapter of the setups when ordp(q) = 2 (Lemma 6.4), or when ordp(q) > 2
and G ∼= D2n (Lemma 6.5).

The following examples help to illustrate some of the complications in the
statement of Proposition 5.16.

Example 5.17. Set p = 5. If G = Spin−4k(3
4), Sp2k(3

4), or SUk(3
4) (k ≥ 5),

then by Proposition 5.16(b), κG is surjective but not split. (These groups satisfy
case (III.1) of Hypotheses 5.1 by Lemma 6.1.) The fusion systems of the last two
are tamely realized by Sp2�(3

2) and SLn(3
2), respectively (these groups satisfy case

(III.2) by Lemma 6.4, hence Proposition 5.16(c) applies). The fusion system of
Spin−4k(3

4) is also realized by Spin−4k(3
2), but not tamely (Example 6.6(b)). It is

tamely realized by Spin4k−1(3
2) (see Propositions 1.9(c) and 5.16(c)).
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CHAPTER 6

The cross characteristic case: II

In Chapter 5, we established certain conditions on a finite group G of Lie type
in characteristic q0, on a σ-setup for G, and on a prime p �= q0, and then proved
that the p-fusion system of G is tame whenever those conditions hold. It remains
to prove that for each G of Lie type and each p different from the characteristic,
there is another group G∗ whose p-fusion system is tame by the results of Chapter
5, and is isomorphic to that of G.

We first list the groups which satisfy case (III.1) of Hypotheses 5.1.

Lemma 6.1. Fix a prime p and a prime power q ≡ 1 (mod p), where q ≡ 1
(mod 4) if p = 2. Assume G ∼= G(q) for some simple group scheme G over Z of
universal type, or G ∼= 2G(q) for G ∼= An, Dn, or E6 of universal type. Then G

has a σ-setup (G, σ) such that Hypotheses 5.1, case (III.1) holds.

Proof. Set G = G(Fq), and let ψq ∈ Φ
G

be the field automorphism. Set

σ = γψq ∈ End(G), where γ = Id if G ∼= G(q), and γ ∈ Γ
G

has order 2 if

G ∼= 2G(q).
NG(T ) contains a Sylow p-subgroup of G. If γ = Id, then by [Ca, Theorem
9.4.10] (and since G is in universal form), |G| = qN

∏r
i=1(q

di − 1) for some integers
N, d1, . . . , dr (r = rk(G)), where d1d2 · · · dr = |W | by [Ca, Theorem 9.3.4]. Also,
|T | = (q − 1)r, NG(T )/T ∼= W , and so

vp(|G|) =
r∑

i=1

vp(q
di − 1) =

r∑
i=1

(
vp(q − 1) + vp(di)

)
= vp(|T |) + vp(|W |) = vp(NG(T )) ,

where the second equality holds by Lemma 1.13.
If |γ| = 2, then by [Ca, §§ 14.2–3], for N and di as above, there are εi, ηi ∈ {±1}

for 1 ≤ i ≤ r such that |G| = qN
∏r

i=1(q
di − εi) and |T | =

∏r
i=1(q − ηi). (More

precisely, the ηi are the eigenvalues of the γ-action on V , and polynomial generators
I1, . . . , Ir ∈ R[x1, . . . , xr]

W can be chosen such that deg(Ii) = di and τ (Ii) = εiIi.)
By [Ca, Proposition 14.2.1],

|W0| = lim
t→1

r∏
i=1

(1− εit
di

1− ηit

)
=⇒

∣∣{1 ≤ i ≤ r | εi = 1}
∣∣ = ∣∣{1 ≤ i ≤ r | ηi = 1}

∣∣
and |W0| =

∏
{di | εi = +1}.

79
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Also, vp(q
d + 1) = vp(q+ 1) for all d ≥ 1: they are both 0 if p is odd, and both 1 if

p = 2. Hence

vp(|G|)− vp(|T |) =
r∑

i=1
εi=+1

vp

(qdi − 1

q − 1

)

=

r∑
i=1

εi=+1

vp(di) = vp(|W0|) = vp(|NG(T )|)− vp(|T |)

by Lemma 1.13 again, and so NG(T ) contains a Sylow p-subgroup of G.
The free 〈γ〉-orbit {α} (if γ = Id) or {α, τ (α)} (if |γ| = 2 and α �= τ (α)), for any
α ∈ Σ, satisfies the hypotheses of this condition.
[γ, ψq0

] = Id since γ ∈ Γ
G
. �

We are now ready to describe the reduction, when p = 2, to groups with σ-
setups satisfying Hypotheses 5.1.

Proposition 6.2. Assume G ∈ Lie(q0) is of universal type for some odd prime
q0. Fix S ∈ Syl2(G), and assume S is nonabelian. Then there is an odd prime q∗0 ,
a group G∗ ∈ Lie(q∗0) of universal type, and S∗ ∈ Syl2(G

∗), such that FS(G) ∼=
FS∗(G∗), and G∗ has a σ-setup which satisfies case (III.1) of Hypotheses 5.1 and
also Hypotheses 5.11. Moreover, if G∗ ∼= G2(q

∗) where q∗ is a power of q∗0 , then we
can arrange that either q∗ = 5 or q∗0 = 3.

Proof. Since q0 is odd, and since the Sylow 2-subgroups of 2G2(3
2k+1) are

abelian for all k ≥ 1 [Ree, Theorem 8.5], G must be a Chevalley or Steinberg group.
If G ∼= 3D4(q), then F is also the fusion system of G2(q) by [BMO, Example 4.5].
So we can assume that G ∼= τG(q) for some odd prime power q, some G, and some
graph automorphism τ of order 1 or 2.

Let ε ∈ {±1} be such that q ≡ ε (mod 4). By Lemma 1.11, there is a prime q∗0

and k ≥ 0 such that 〈q〉 = 〈ε · (q∗0)2
k〉, where either q∗0 = 5 and k = 0, or q∗0 = 3

and k ≥ 1.

If ε = 1, then set G∗ = τG((q∗0)
2k), and fix S∗ ∈ Syl2(G

∗). Then FS∗(G∗) ∼=
FS(G) by Theorem 1.8(a), G∗ satisfies case (III.1) of Hypotheses 5.1 by Lemma

6.1 (and since (q∗0)
2k ≡ 1 (mod 4)), and G∗ also satisfies Hypotheses 5.11.

Now assume ε = −1. If −Id is in the Weyl group of G, then set G∗ =
τG((q∗0)

2k). If −Id is not in the Weyl group, then G ∼= An, Dn for n odd, or

E6, and we set G∗ = G((q∗0)
2k) if τ �= Id, and G∗ = 2G((q∗0)

2k) if G = G(q). In all
cases, for S∗ ∈ Sylp(G

∗), FS∗(G∗) ∼= FS(G) by Theorem 1.8(c,d), G∗ satisfies case
(III.1) of Hypotheses 5.1 by Lemma 6.1 again, and also satisfies Hypotheses 5.11.

By construction, if G ∼= G2, then either q∗0 = 3 or (q∗0)
2k = 5. �

When G ∼= G2(5) and p = 2, G satisfies Hypotheses 5.1 and 5.11, but κG is not
shown to be surjective in Proposition 5.15 (and in fact, it is not surjective). Hence
this case must be handled separately.

Proposition 6.3. Assume p = 2. Set G = G2(5) and G∗ = G2(3), and fix
S ∈ Syl2(G) and S∗ ∈ Syl2(G

∗). Then FS∗(G∗) ∼= FS(G) as fusion systems, and
κG∗ = μG∗ ◦ κG∗ is an isomorphism from Out(G∗) ∼= C2 onto Out(S∗,FS∗(G∗)).
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Proof. The first statement follows from Theorem 1.8(c). Also, |Out(G)| = 1
and |Out(G∗)| = 2 by Theorem 3.4, and since G and G∗ have no field automor-
phisms and all diagonal automorphisms are inner (cf. [St1, 3.4]), and G∗ = G2(3)
has a nontrivial graph automorphism while G = G2(5) does not [St1, 3.6]. Since
G satisfies Hypotheses 5.1 and 5.11, |Coker(κG)| ≤ 2 by Proposition 5.15, so
|Out(FS(G))| ≤ 2.

By [O5, Proposition 4.2], S∗ contains a unique subgroup Q ∼= Q8 ×C2
Q8 of

index 2. Let x ∈ Z(Q) = Z(S∗) be the central involution. Set G = G2(F3) >

G∗. Then C
G
(x) is connected since G is of universal type [St3, Theorem 8.1], so

C
G
(x) ∼= SL2(F3)×C2

SL2(F3) by Proposition 2.5. Furthermore, any outer (graph)

automorphism which centralizes x exchanges the two central factors SL2(F3). Hence
for each α ∈ Aut(G∗)�Inn(G∗) which normalizes S∗, α exchanges the two factors
Q8, and in particular, does not centralize S∗. Thus κG∗ is injective, and hence an
isomorphism since |Out(G∗)| = 2 and |Out(S∗,FS∗(G∗))| = |Out(FS(G))| ≤ 2. �

We now turn to case (III.2) of Hypotheses 5.1.

Lemma 6.4. Fix an odd prime p, and an odd prime power q prime to p such
that q ≡ −1 (mod p). Let G be one of the groups Sp2n(q), Spin2n+1(q), Spin

+
4n(q)

(n ≥ 2), G2(q), F4(q), E7(q), or E8(q) (i.e., G = G(q) for some G whose Weyl
group contains −Id), and assume that the Sylow p-subgroups of G are nonabelian.

Then G has a σ-setup (G, σ) such that Hypotheses 5.1, case (III.2), hold.

Proof. Assume q = qb0 where q0 is prime and b ≥ 1. Set G = G(Fq0), and let

T < G be a maximal torus. Set r = rk(T ) and k = vp(q + 1).

In all of these cases, −Id ∈ W , so there is a coset w0 ∈ N
G
(T )/T which inverts

T . Fix g0 ∈ N
G
(T ) such that g0T = w0 and ψq0(g0) = g0 (Lemma 2.9). Set γ = cg0

and σ = γ ◦ ψq. We identify G = Oq′0(C
G
(σ)), T = G ∩ T , and A = Op(T ). Since

σ(t) = t−q for each t ∈ T , T ∼= (Cq+1)
r is the (q + 1)-torsion subgroup of T , and

A ∼= (Cpk)r.
NG(T ) contains a Sylow p-subgroup of G. In all cases, by [Ca, Theo-
rem 9.4.10] (and since G is in universal form), |G| = qN

∏r
i=1(q

di − 1), where
d1d2 · · · dr = |W | by [Ca, Theorem 9.3.4]. Also, the di are all even in the cases con-
sidered here (see [St2, Theorem 25] or [Ca, Corollary 10.2.4 & Proposition 10.2.5]).
Hence by Lemma 1.13 and since p is odd,

vp(|G|) =
r∑

i=1

vp(q
di − 1) =

r∑
i=1

vp
(
(q2)di/2 − 1

)
=

r∑
i=1

(
vp(q

2 − 1) + vp(di/2)
)

= r · vp(q + 1) +

r∑
i=1

vp(di) = vp(|T |) + vp(|W |) = vp(|NG(T )|) .

[γ, ψq0
] = Id since γ = cg0 and ψq0(g0) = g0.

A free 〈γ〉-orbit in Σ. For each α ∈ Σ, {±α} is a free 〈γ〉-orbit. �

We now consider case (III.3) of Hypotheses 5.1. By [GL, 10-1,2], when p is
odd, each finite group of Lie type has a σ-setup for which NG(T ) contains a Sylow
p-subgroup of G. Here, we need to construct such setups explicitly enough to be
able to check that the other conditions in Hypotheses 5.1 hold.
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When p is a prime, A is a finite abelian p-group, and Id �= ξ ∈ Aut(A) has
order prime to p, we say that ξ is a reflection in A if [A, ξ] is cyclic. In this case,
there is a direct product decomposition A = [A, ξ] × CA(ξ), and we call [A, ξ] the
reflection subgroup of ξ. This terminology will be used in the proofs of the next
two lemmas.

Lemma 6.5. Fix an odd prime p, and an odd prime power q prime to p such that
q �≡ 1 (mod p). Let G be one of the classical groups SLn(q), Sp2n(q), Spin2n+1(q),

or Spin±2n(q), and assume that the Sylow p-subgroups of G are nonabelian. Then G

has a σ-setup (G, σ) such that case (III.3) of Hypotheses 5.1 holds.

Proof. Set m = ordp(q); m > 1 by assumption. We follow Notation 2.2,
except that we have yet to fix the σ-setup for G. Thus, for example, q0 is the prime
of which q is a power.

When defining and working with the σ-setups for the spinor groups, it is some-
times easier to work with orthogonal groups than with their 2-fold covers. For this

reason, throughout the proof, we set Gc = SO� when G = Spin�, set Gc = SO�(Fq0)

when G = Spin�(Fq0), and let χ : G −−−→ Gc be the natural surjection. We then set

Gc = C
Gc

(σ) ∼= SO±
� (q), once σ has been chosen so that G = C

G
(σ) ∼= Spin±� (q),

and set T c = χ(T ) and Tc = C
T c
(σ). Also, in order to prove the lemma without

constantly considering these groups as a separate case, we set Gc = G, Gc = G,

χ = Id, etc. when G is linear or symplectic. Thus Gc and Gc are classical groups
in all cases.

Regard Gc as a subgroup of Aut(V , b), where V is an Fq0-vector space of
dimension n, 2n, or 2n+ 1, and b is a bilinear form. Explicitly, b = 0 if G = SLn,

and b has matrix
(

0 1
−1 0

)⊕n
if G = Sp2n,

(
0 1
1 0

)⊕n
if G = Spin2n, or

(
0 1
1 0

)⊕n ⊕ (1)

if G = Spin2n+1. Let T c be the group of diagonal matrices in Gc, and set

[λ1, . . . , λn] =

⎧⎪⎨⎪⎩
diag(λ1, . . . , λn) if G = SLn

diag(λ1, λ
−1
1 , . . . , λn, λ

−1
n ) if G = Sp2n or Spin2n

diag(λ1, λ
−1
1 , . . . , λn, λ

−1
n , 1) if G = Spin2n+1.

In this way, we identify the maximal torus T c < Gc with (F×
q0)

n in the symplectic

and orthogonal cases, and with a subgroup of (F×
q0)

n in the linear case.
Set W ∗ = W (the Weyl group of G and of Gc), except when G = Spin2n, in

which case we let W ∗ < Aut(T c) be the group of all automorphisms which permute
and invert the coordinates. Thus in this last case, W ∗ ∼= {±1} � Σn, while W is
the group of signed permutations which invert an even number of coordinates (so
[W ∗ : W ] = 2). Since W ∗ induces a group of isometries of the root system for
Spin2n and contains W with index 2, it is generated by W and the restriction to

T c of a graph automorphism of order 2 (see, e.g., [Brb, §VI.1.5, Proposition 16]).
We next introduce some notation in order to identify certain elements in W ∗.

For each r, s such that rs ≤ n, let τ s
r ∈ Aut(T c) be the Weyl group element induced

by the permutation (1 · · · r)(r+1 · · · 2r) · · · ((s−1)r + 1 · · · sr); i.e.,

τ s
r([λ1, . . . , λn]) =

[λr, λ1, . . . , λr−1, λ2r, λr+1, . . . , λsr, λ(s−1)r+1, . . . , λsr−1, λsr+1, . . .].
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For 1 ≤ i ≤ n, let ξi ∈ Aut(T ) be the automorphism which inverts the i-th
coordinate. Set τ s

r,+1 = τ s
r and τ s

r,−1 = τ s
rξrξ2r · · · ξsr. Thus for θ = ±1,

τ s
r,θ([λ1, . . . , λn]) =

[λθ
r, λ1, . . . , λr−1, λ

θ
2r, λr+1, . . . λ

θ
sr, λ(s−1)r+1, . . . , λsr−1, λsr+1, . . .].

Recall that m = ordp(q). Define parameters μ, θ, k, and κ as follows:

if m is odd : μ = m θ = 1 κ = [n/μ] = [n/m]

if m is even : μ = m/2 θ = −1
k = [n/m]

κ = [n/μ] = [2n/m] .

We can now define our σ-setups for G and Gc. Recall that we assume m > 1.
In Table 6.1, we define an element w0 ∈ W ∗, and then describe Tc = C

T c
(w0 ◦ ψq)

and W ∗
0 = CW∗(w0) (where W0 = CW (w0) has index at most 2 in W ∗

0 ). In all

Gc conditions w0 = γ|
Tc

Tc W ∗
0

SLn(q) τ k
m (Cqm−1)

k × Cn−mk−1
q−1 (Cm � Σk)×H

Sp2n(q)

SO2n+1(q) τκ
μ,θ (Cqμ−θ)

κ × Cn−κμ
q−1 (C2μ � Σκ)×H

ε = θκ

ε �= θκ, μ�n τκ
μ,θ ξn (Cqμ−θ)

κ × Cn−κμ−1
q−1 × Cq+1 (C2μ � Σκ)×H

SOε
2n(q) ε �= θκ, μ|n

θ = −1
τκ−1

μ,θ (Cqμ−θ)
κ−1 × Cμ

q−1

ε �= θκ, μ|n
θ = +1

τκ−1
μ,θ ξn (Cqμ−θ)

κ−1 × Cμ−1
q−1 × Cq+1

(C2μ � Σκ−1)×H

In all cases, T
χ−→ Tc has kernel and cokernel of order ≤ 2, and so A = Op(T ) ∼= Op(Tc).

Table 6.1

cases, we choose γ ∈ Aut(Gc) as follows. Write w0 = w′
0 ◦ γ0|T c

for some w′
0 ∈ W

and γ0 ∈ Γ
Gc

(possibly γ0 = Id). Choose g0 ∈ N
Gc

(T c) such that g0T c = w′
0 and

ψq0(g0) = g0 (Lemma 2.9), and set γ = cg0 ◦ γ0. Then [γ, ψq0 ] = Id
Gc

, since cg0
and γ0 both commute with ψq0 , and we set σ = γ ◦ ψq = ψq ◦ γ. When G = Spin2n
or Spin2n+1, since G is a perfect group and Ker(χ) ≤ Z(G), γ and σ lift to unique

endomorphisms of G which we also denote γ and σ (and still [γ, ψq0 ] = 1 in Aut(G)).
Thus G ∼= C

G
(σ) and Gc

∼= C
Gc

(σ) in all cases, and we identify these groups.

Set T = C
T
(σ), Tc = C

T c
(σ), W ∗

0 = CW∗(γ), and W0 = CW (γ). If G = Spin2n+1

or Spin2n, then χ(T ) is the kernel of the homomorphism Tc → Ker(χ) which sends
χ(t) to t−1σ(t), and thus has index at most 2 in Tc. Since p is odd, this proves the
statement in the last line of Table 6.1.

In the description of W ∗
0 in Table 6.1, H always denotes a direct factor of order

prime to p. The first factor in the description of W ∗
0 acts on the first factor in that

of T , and H acts on the other factors.
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When Gc = SLn(q) and m|n, the second factor C−1
q−1 in the description of T

doesn’t make sense. It should be interpreted to mean that T is “a subgroup of
index q − 1 in the first factor (Cqm−1)

k”.

Recall that Tc = C
T c
(γ ◦ ψq). When U = (F×

q0)
μ, then

CU (τ
1
μ,θ ◦ ψq) =

{
(λ, λq, λq2 , . . . , λqμ−1

)
∣∣ (λqμ−1

)qθ = λ
}

=
{
(λ, λq, λq2 , . . . , λqμ−1

)
∣∣λqμ−θ = 1

} ∼= Cqμ−θ .

This explains the description of Tc in the symplectic and orthogonal cases: it is
always the direct product of (Cqμ−θ)

κ or (Cqμ−θ)
κ−1 with a group of order prime

to p. (Note that p|(q+1) only when m = 2; i.e., when θ = −1 and 1 = μ|n.)
Since the cyclic permutation (1 2 · · · μ) generates its own centralizer in Σμ, the

centralizer of τ 1
μ,θ in {±1} � Σμ < Aut((F×

q0)
μ) is generated by τ 1

μ,θ and ψT
−1. If

θ = −1, then (τ 1
μ,θ)

μ = ψT
−1, while if θ = 1, then τ 1

μ,θ has order μ. Since m = μ
is odd in the latter case, the centralizer is cyclic of order 2μ in both cases. This
is why, in the symplectic and orthogonal cases, the first factor in W ∗

0 is always a
wreath product of C2μ with a symmetric group.

We are now ready to check the conditions in case (III.3) of Hypotheses 5.1.
NG(T ) contains a Sylow p-subgroup of G. Set

e = vp(q
m − 1) = vp(q

μ − θ) .

The second equality holds since if 2|m, then p � (qμ − 1) and hence e = vp(q
μ + 1).

Recall also that m|(p− 1), so vp(m) = 0. Consider the information listed in Table
6.2, where the formulas for vp(|T |) = vp(|Tc|) and vp(|W0|) follow from Table 6.1,
and those for |G| are shown in [St2, Theorems 25 & 35] and also in [Ca, Corollary
10.2.4, Proposition 10.2.5 & Theorem 14.3.2].

G cond. vp(|G|) vp(|T |) vp(|W0|)

SLn(q)
∑n

i=2 vp(q
i − 1) ke vp(k!)

Sp2n(q)

Spin2n+1(q)

∑n
i=1 vp(q

2i − 1)

ε = θκ
κe vp(κ!)

Spinε2n(q) ε �= θκ, μ�n
vp(q

n − ε)

ε �= θκ, μ|n
+
∑n−1

i=1 vp(q
2i − 1)

(κ−1)e vp((κ−1)!)

Table 6.2

For all i > 0, we have

vp(q
i − 1) =

{
e+ vp(i/m) if m|i
0 if m�i.

The first case follows from Lemma 1.13, and the second case since m = ordp(q).
Using this, we check that vp(q

2i − 1) = vp(q
i − 1) for all i whenever m is odd, and
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that

vp(q
n − ε) =

{
e+ vp(2n/m) if m|2n and ε = (−1)2n/m

0 otherwise.

So in all cases, vp(|G|) = vp(|T |)+vp(|W0|) by the above relations and the formulas
in Table 6.2. Since NG(T )/T ∼= W0 by Lemma 5.3(b), this proves that vp(|G|) =
vp(|NG(T )|), and hence that NG(T ) contains a Sylow p-subgroup of G.∣∣γ|

T

∣∣ = |τ | = ordp(q) ≥ 2 and [γ, ψq0
] = Id by construction. Note, when G

is a spinor group, that these relations hold in G if and only if they hold in Gc.
CS(Ω1(A)) = A by Table 6.1 and since p � |H|.
CA(Op′(W0)) = 1. By Table 6.1, in all cases, there are r, t ≥ 1 and 1 �= s|(p−1)
such that A ∼= (Cpt)r, and AutW∗

0
(A) ∼= Cs � Σr acts on A by acting on and

permuting the cyclic factors. In particular, AutOp′ (W0)(A) contains a subgroup of

index at most 2 in (Cs)
r, this subgroup acts nontrivially on each of the cyclic factors

in A, and hence CA(Op′(W0)) = 1.
A free 〈γ〉-orbit in Σ. This can be defined as described in Table 6.3. In each
case, we use the notation of Bourbaki [Brb, pp. 250–258] for the roots of G. Thus,
for example, the roots of SLn are the ±(εi − εj) for 1 ≤ i < j ≤ n, and the roots
of SO2n the ±εi ± εj . Note that since S is assumed nonabelian, p

∣∣|W0|, and hence
n ≥ pm in the linear case, and n ≥ pμ in the other cases.

G θ = 1 θ = −1

SLn(q) {εi − εm+i | 1 ≤ i ≤ m}

Sp2n(q) {2εi | 1 ≤ i ≤ μ} {±2εi | 1 ≤ i ≤ μ}

Spin2n+1(q) {εi | 1 ≤ i ≤ μ} {±εi | 1 ≤ i ≤ μ}

Spinε2n(q) {εi − εμ+i | 1 ≤ i ≤ μ} {±(εi − εμ+i) | 1 ≤ i ≤ μ}
Table 6.3

AutW0
(A) ∩ Autsc(A) ≤

{
〈γ|A〉 if ordp(q) even or −Id /∈ W0

〈γ|A, ψA
−1〉 otherwise.

Set K∗ = AutW∗
0
(A)∩Autsc(A) and K = AutW0

(A)∩Autsc(A) for short. By Table

6.1, |K∗| = m if G ∼= SLn(q), and |K∗| = 2μ otherwise. Also, 〈γ|A〉 = 〈ψ−1
q |A〉 has

order ordp(q). Thus K ≤ K∗ = 〈γ|A〉 except when G is symplectic or orthogonal
and m = ordp(q) is odd. In this last case, K = K∗ (so |K| = 2μ = 2m) if W0

contains an element which inverts A (hence which inverts T and T ); and |K∗/K| = 2
(|K| = m) otherwise.
AutG(A) = AutW0

(A). Since A = Op(T ) ∼= Op(Tc) by Table 6.1, it suffices to

prove this for Gc. Fix g ∈ NGc
(A). Since gT c is a maximal torus in the algebraic

group C
Gc

(A) (Proposition 2.5), there is b ∈ C
Gc

(A) such that bT c = gT c. Set

a = b−1g ∈ N
Gc

(T c); thus ca = cg ∈ Aut(A). Set w = aT c ∈ W = N
Gc

(T c)/T c;

thus w ∈ NW (A), and w|A = cg|A.
By the descriptions in Table 6.1, we can factor T c = T 1×T 2, where γ and each

element of NW (A) send each factor to itself, γ|
T 2

= Id, A ≤ T 1, and [CW (A), T 1] =
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1. Since σ(g) = g, σ(a) ≡ a (mod C
Gc

(A)), and so τ (w) ≡ w (mod CW (A)). Thus

τ (w)|
T1

= w|
T 1

since CW (A) acts trivially on this factor, τ (w)|
T2

= w|
T 2

since

γ|
T 2

= Id, and so w ∈ W0 = CW (τ ).

NAut(A)(AutW0
(A)) ≤ Autsc(A)AutAut(G)(A). By Table 6.1, for some

r, t ≥ 1, A = A1×· · ·×Ar, where Ai
∼= Cpt for each i. Also, for some 1 �= s|(p−1),

AutW∗
0
(A) ∼= Cs�Σr acts on A via faithful actions of Cs on each Ai and permutations

of the Ai.
Let Aut0W∗

0
(A) � AutW∗

0
(A) and Aut0W0

(A) � AutW0
(A) be the subgroups of

elements which normalize each cyclic subgroup Ai. Thus Aut0W∗
0
(A) ∼= (Cs)

r, and

contains Aut0W0
(A) with index at most 2.

Case 1: Assume first that Aut0W0
(A) is characteristic in AutW0

(A). Fix some
α ∈ NAut(A)(AutW0

(A)). We first show that α ∈ AutW∗
0
(A)Autsc(A).

Since α normalizes AutW0
(A), it also normalizes Aut0W0

(A). For each β ∈
Aut0W0

(A), [β,A] is a product of Ai’s. Hence the factors Ai are characterized as
the minimal nontrivial intersections of such [β,A], and are permuted by α. So
after composing with an appropriate element of AutW∗

0
(A), we can assume that

α(Ai) = Ai for each i.
After composing α by an element of Autsc(A), we can assume that α|A1

= Id.
Fix i �= 1 (2 ≤ i ≤ r), let u ∈ Z be such that α|Ai

= ψAi
u = (a �→ au), and choose

w ∈ AutW0
(A) such that w(A1) = Ai. Then w−1αwα−1 ∈ AutW0

(A) since α
normalizes AutW0

(A), and
(
w−1αwα−1

)∣∣
A1

= ψA1
u . Hence us ≡ 1 (mod pt = |A1|),

and since this holds for each i, α ∈ AutW∗
0
(A).

Thus NAut(A)(AutW0
(A)) ≤ AutW∗

0
(A)Autsc(A). By Table 6.1, each element

of AutW∗
0
(A) extends to some ϕ ∈ AutW∗(T ) which commutes with σ|

T
. So

AutW∗
0
(A) ≤ AutAut(G)(A) by Lemma 3.7, and this finishes the proof of the claim.

Case 2: Now assume that Aut0W0
(A) is not characteristic in AutW0

(A). Then
r ≤ 4, and since p ≤ r, we have p = 3 and r = 3, 4. Also, s = 2 since s|(p− 1) and
s �= 1. Thus r = 4, since Aut0W0

(A) = O2(AutW0
(A)) if r = 3. Thus AutW0

(A) ∼=
C3

2 � Σ4: the Weyl group of D4. Also, m = 2 since p = 3, so (in the notation used
in the tables) μ = 1, θ = −1, and κ = n. By Table 6.1, G ∼= SO8(q) for some q ≡ 2
(mod 3) (and W0 = W ).

Now, O2(W ) ∼= Q8×C2
Q8, and so Out(O2(W )) ∼= Σ3 �C2. Under the action of

W/O2(W ) ∼= Σ3, the elements of order 3 act on both central factors and those of or-
der 2 exchange the factors. (This is seen by computing their centralizers in O2(W ).)
It follows that NOut(O2(W ))(OutW (O2(W )))/OutW (O2(W )) ∼= Σ3

∼= ΓG, and all
classes in this quotient extend to graph automorphisms of G ∼= Spin8(q). So for
each α ∈ NAut(A)(AutW (A)), after composing with a graph automorphism of G we

can arrange that α commutes with O2(W ), and in particular, normalizes Aut0W (A).
Hence by the same argument as used in Case 1, α ∈ Autsc(A)AutAut(G)(A).

This finishes the proof that this σ-setup forG satisfies case (III.3) of Hypotheses
5.1. �

Example 6.6. Fix distinct odd primes p and q0, and a prime power q = qb0
where b is even and ordpq is even. Set G = Spin−4k(q) for some k ≥ 2. Let (G, σ) be

the setup for G of Lemma 6.5, where σ = ψqγ for γ ∈ Aut(G). In the notation of
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Table 6.1, m = ordp(q), μ = m/2, θ = −1 = ε, n = 2k, and κ = [2k/μ] = [4k/m].
There are three cases to consider:

(a) If q2k ≡ −1 (mod p); equivalently, if m|4k and κ = 4k/m is odd, then ε = θκ,
w0 = γ|

T c
= τκ

μ,θ, rk(A) = κ, and W ∗
0
∼= Cm � Σκ. Then W ∗

0 acts faithfully

on A while w0 ∈ W ∗
0�W0, and so γ|A /∈ AutW0

(A). Hence by Proposition
5.16(d), κG is split.

(b) If q2k ≡ 1 (mod p); equivalently, if m|4k and κ = 4k/m is even, then ε �=
θκ, γ|

T c
= τκ−1

μ,θ , rk(A) = κ − 1, and W ∗
0

∼= (Cm � Σκ−1) × H where H ∼=
(C2 � Σμ). Then H acts trivially on A and contains elements in W ∗

0�W0, so
γ|A ∈ AutW0

(A). Hence κG is not split.

(c) If q2k �≡ ±1 (mod p); equivalently, if m � 4k, then in either case (κ even or
odd), the factor H in the last column of Table 6.1 is nontrivial, acts trivially
on A, and contains elements in W ∗

0�W0. Hence γ|A ∈ AutW0
(A) in this case,

and κG is not split.

We also need the following lemma, which handles the only case of a Chevalley
group of exceptional type which we must show satisfies case (III.3) of Hypotheses
5.1.

Lemma 6.7. Set p = 5, let q be an odd prime power such that q ≡ ±2 (mod
5), and set G = E8(q). Then G has a σ-setup which satisfies Hypotheses 5.1 (case
(III.3)).

Proof. We use the notation in 2.2, where q is a power of the odd prime q0,

and G = E8(Fq0).
By [Brb, Planche VII], the of roots of E8 can be given the following form,

where {ε1, . . . , ε8} denotes the standard orthonormal basis of R8:

Σ =
{
±εi ± εj

∣∣∣ 1 ≤ i < j ≤ 8
}
∪
{1
2

8∑
i=1

(−1)miεi

∣∣∣ 8∑
i=1

mi even
}
⊆ R8 .

By the same reference, the Weyl group W is the group of all automorphisms of R8

which permute Σ (A(R) = W (R) in the notation of [Brb]). Give R8 a complex
structure by setting iε2k−1 = ε2k and iε2k = −ε2k−1, and set ε∗k = ε2k−1 for
1 ≤ k ≤ 4. Multiplication by i permutes Σ, and hence is the action of an element
w0 ∈ W . Upon writing the elements of Σ with complex coordinates, we get the
following equivalent subset Σ∗ ⊆ C4:

Σ∗ =
{
(±1± i)ε∗k

∣∣∣ 1 ≤ k ≤ 4
}
∪
{
imε∗k + inε∗�

∣∣∣ 1 ≤ k < � ≤ 4, m, n ∈ Z
}

∪
{1 + i

2

4∑
k=1

imkε∗k

∣∣∣ ∑mk even
}
.

Let ZΣ ⊆ R8 be the lattice generated by Σ. By Lemma 2.4(d) (and since

(α, α) = 2 for all α ∈ Σ), we can identify T ∼= ZΣ⊗Z F×
q0 by sending hα(λ) to α⊗λ

for α ∈ Σ and λ ∈ F×
q0 . Set Λ0 = ZΣ ∩ Z8, a lattice in R8 of index 2 in ZΣ and in

Z8. The inclusions of lattices induce homomorphisms

T ∼= ZΣ⊗Z F×
q0

χ1←−−−−−− Λ0 ⊗Z F×
q0

χ2−−−−−−→ Z8 ⊗Z F×
q0

∼= (F×
q0)

8
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each of which is surjective with kernel of order 2 (since Tor1
Z
(Z/2,F×

q0)
∼= Z/2). We

can thus identify T = (F×
q0)

8, modulo 2-power torsion, in a way so that

α =

8∑
i=1

kiεi ∈ Σ, λ ∈ F×
q0 =⇒ hα(λ) = (λk1 , . . . , λk8) .

Under this identification, by the formula in Lemma 2.4(c),

(1) β =

8∑
i=1

�iεi ∈ Σ =⇒ θβ(λ1, . . . , λ8) = λ�1
1 · · ·λ�8

8

for λ1, . . . , λ8 ∈ F×
q0 . Also,

w0(λ1, . . . , λ8) = (λ−1
2 , λ1, λ

−1
4 , λ3, . . . , λ

−1
8 , λ7)

for each (λ1, . . . , λ8).

Choose g0 ∈ N
G
(T ) such that g0T = w0 and ψq0(g0) = g0 (Lemma 2.9), and

set γ = cg0 ∈ Inn(G). Thus σ = ψq ◦ γ = γ ◦ ψq, G = C
G
(σ), and T = C

T
(σ).

By the Lang-Steinberg theorem [St3, Theorem 10.1], there is h ∈ G such that
g = hψq(h

−1); then σ = chψqc
−1
h and G ∼= C

G
(ψq) = E8(q). It remains to check

that the setup (G, σ) satisfies the list of conditions in Hypotheses 5.1.
We identify W0 = CW (w0) with the group of C-linear automorphisms of C4

which permute Σ∗. The order of W0 is computed in [Ca3, Table 11] (the entry
Γ = D4(a1)

2), but since we need to know more about its structure, we describe it
more precisely here. Let W2 ≤ GL4(C) be the group of monomial matrices with
nonzero entries ±1 or ±i, and with determinant ±1. Then W2 ≤ W0, |W2| =
1
2 · 44 · 4! = 210 · 3, and W2 acts on Σ∗ with three orbits corresponding to the three
subsets in the above description of Σ∗. The (complex) reflection of order 2 in the
hyperplane orthogonal to 1+i

2 (ε∗1+ε∗2+ε∗3+ε∗4) sends (1+i)ε∗1 to
1+i
2 (ε∗1−ε∗2−ε∗3−ε∗4),

and it sends (ε∗1 + iε∗2) to
1+i
2 (i3ε∗1 + iε∗2 − ε∗3 − ε∗4). Thus W0 acts transitively on

Σ∗.
Let Σ ⊆ P (C4) be the set of projective points representing elements of Σ∗, and

let [α] ∈ Σ denote the class of α ∈ Σ∗. To simplify notation, we also write [x] = [α]
for x ∈ C4 representing the same point, also when x /∈ Σ∗. Let ∼ denote the relation

on Σ: [α] ∼ [β] if α = β, or if α ⊥ β and the projective line
〈
[α], [β]

〉
⊆ P (C4)

contains four other points in Σ. By inspection, [ε∗j ] ∼ [ε∗k] for all j, k ∈ {1, 2, 3, 4},
and these are the only elements [α] such that [α] ∼ [ε∗j ] for some j. Since this

relation is preserved by W0, and W0 acts transitively on Σ, we see that ∼ is an

equivalence relation on Σ with 15 classes of four elements each. Set Δ = Σ/∼, and

let [α]Δ denote the class of [α] in Δ. Thus |Σ| = 1
4 |Σ| = 60 and |Δ| = 15. Since W2

is the stabilizer subgroup of [ε∗1]Δ under the transitive W0-action on Δ, we have
|W0| = |W2| · 15 = 210 · 32 · 5.

Let W1 � W0 be the subgroup of elements which act trivially on Δ. By
inspection, W1 ≤ W2, |W1| = 26, and W1 is generated by w0 = diag(i, i, i, i),
diag(1, 1,−1,−1), diag(1,−1, 1,−1), and the permutation matrices for the permu-
tations (1 2)(3 4) and (1 3)(2 4). Thus W1

∼= C4 ×C2
D8 ×C2

D8.
By the above computations, |W0/W1| = 24 ·32 ·5 = |Sp4(2)|. There is a bijection

from Δ to the set of maximal isotropic subspaces in W1/Z(W1) which sends a class
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[α]Δ to the subgroup of those elements in W1 which send each of the four projective
points in [α]Δ to itself. Hence for each w ∈ CW0

(W1), w acts via the identity on
Δ, and so w ∈ W1 by definition. Thus W0/W1 injects into Out(W1) ∼= Σ6 × C2,
and injects into the first factor since Z(W1) = Z(W0) (∼= C4). So by counting,
W0/W1

∼= Σ6. Also, W1 = O2(W0).

Set a = v5(q
4 − 1) = v5(q

2 + 1), and fix u ∈ F×
q0 of order 5a. Let A be as in

Notation 5.2(G): the subgroup of elements in T of 5-power order. Thus

(2) A =
{
(u1, u

q
1, u2, u

q
2, u3, u

q
3, u4, u

q
4)
∣∣u1, u2, u3, u4 ∈ 〈u〉

} ∼= (C5a)
4 .

By (2) and (1), there is no β ∈ Σ such that A ≤ Ker(θβ). Hence C
G
(A)0 = T by

Proposition 2.5. So by Lemma 5.3(b),

(3) NG(A) = NG(T ) and NG(T )/T = W0 .

We are now ready to check the conditions in Case (III.3) of Hypotheses 5.1.
NG(T ) contains a Sylow p-subgroup of G. Let S be a Sylow p-subgroup
of NG(T ) which contains A. Since NG(T )/T = W0 by (3), A ∼= (C5a)

4, and
W0/O2(W0) ∼= Σ6, |S| = 54a+1. By [St2, Theorem 25] or [Ca, Corollary 10.2.4 &
Proposition 10.2.5], and since v5(q

k − 1) = 0 when 4 � k and v5(q
4� − 1) = a+ v5(�)

(Lemma 1.13),

v5(|G|) = v5
(
(q24 − 1)(q20 − 1)(q12 − 1)(q8 − 1)

)
= 4a+ 1 .

Thus S ∈ Sylp(G).∣∣γ|
T

∣∣ = ordp(q) ≥ 2 and [γ, ψq0
] = Id. The first is clear, and the second

holds since γ = cg0 where ψq0(g0) = g0.
CS(Ω1(A)) = A by the above description of the action of W0 on A.
CA(Op′(W0)) = 1 since w0 ∈ O5′(W0) and CA(w0) = 1.
A free 〈γ〉-orbit in Σ. The subset {±(ε1 + ε3),±(ε2 + ε4)} ⊆ Σ is a free
〈γ〉-orbit.
AutW0

(A) ∩ Autsc(A) ≤ 〈γ|A〉. Recall that
∣∣γ|

T

∣∣ = 4 and |Autsc(A)| = 4 · 5k
for some k, and W0 acts faithfully on A. So if this is not true, then there is an
element of order 5 in Z(W0), which is impossible by the above description of W0.
AutG(A) = AutW0

(A) by (3).
NAut(A)(AutW0

(A)) ≤ Autsc(A)AutW0
(A). For j = 1, 2, 3, 4, let Aj < A be

the cyclic subgroup of all elements as in (2) where uk = 1 for k �= j. The group W0

contains as subgroup C2 �Σ4: the group which permutes pairs of coordinates up to
sign. So each of the four subgroups Aj is the reflection subgroup of some reflection
in W0.

For each ϕ ∈ CAut(A)(AutW0
(A)), ϕ(Aj) = Aj for each j, and ϕ(a) = anj

for some nj ∈ (Z/5a)×. Also, n1 = n2 = n3 = n4 since the Aj are permuted
transitively by elements of W0, and hence ϕ ∈ Autsc(A).

Now assume ϕ ∈ NAut(A)(AutW0
(A)). Since ϕ centralizes Z(W1) = 〈w0〉 =

〈diag(i, i, i, i)〉 (since diag(i, i, i, i) ∈ Z(Aut(A))), cϕ|W1
∈ Inn(W1), and we can

assume (after composing by an appropriate element of W1) that [ϕ,W1] = 1. So
cϕ ∈ Aut(W0) has the form cϕ(g) = gχ(g), where g ∈ W0/W1

∼= Σ6 is the class
of g ∈ W0, and where χ ∈ Hom(W0/W1, Z(W1)) ∼= Hom(Σ6, C4) ∼= C2 is some
homomorphism. Since (w0)

2 inverts the torus T , composition with (w0)
2 does

not send reflections (in A) to reflections, and so we must have cϕ = IdW0
. Thus

ϕ ∈ CAut(A)(AutW0
(A)) = Autsc(A) (modulo AutW0

(A)). �
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The following lemma now reduces the proof of Theorem B to the cases con-
sidered in Chapter 5, together with certain small cases handled at the end of this
chapter. As before, when p is a prime and p � n, ordp(n) denotes the multiplicative
order of n in F×

p .

Proposition 6.8. Fix an odd prime p, and assume G ∈ Lie(q0) is of universal
type for some prime q0 �= p. Fix S ∈ Sylp(G), and assume S is nonabelian. Then
there is a prime q∗0 �= p, a group G∗ ∈ Lie(q∗0) of universal type, and S∗ ∈ Sylp(G

∗),
such that FS(G) ∼= FS∗(G∗), and one of the following holds: either

(a) G∗ has a σ-setup which satisfies Hypotheses 5.1 and 5.11, G∗ ∼= G(q∗) or
2G(q∗) where q∗ is a power of q∗0 , and
(a.1) −Id /∈ W and G∗ is a Chevalley group, or
(a.2) −Id ∈ W and ordp(q

∗) is even
where W is the Weyl group of G; or

(b) p = 3, q∗0 = 2, G ∼= 3D4(q) or
2F4(q) for q some power of q0, and G∗ ∼= 3D4(q

∗)
or 2F4(q

∗) for q∗ some power of 2.

Moreover, if p = 3 and G∗ = F4(q
∗) where q∗ is a power of q∗0 , then we can assume

q∗0 = 2. In all cases, we can choose G∗ to be either one of the groups listed in
Proposition 1.10(a–e), or one of E7(q

∗) or E8(q
∗) for some q∗ ≡ −1 (mod p).

Proof. We can assume that G = G(q) is one of the groups listed in one of
the five cases (a)–(e) of Proposition 1.10. In all cases except 1.10(c), we can also
assume that G satisfies Hypotheses 5.11, with q0 = 2 if p = 3 and G = F4, and with
q0 odd in cases (a) and (b) of 1.10. If G = SLn(q) or Spin

±
2n(q) where p|(q − 1), or

G is in case (d), then G satisfies Hypotheses 5.1 by Lemma 6.1. If G ∼= SLn(q) or
Spin±2n(q) where p � (q − 1), then G satisfies Hypotheses 5.1 by Lemma 6.5. This
leaves only case (c) in Proposition 1.10, which corresponds to case (b) here, and
case (e) (p = 5, G = E8(q), q ≡ ±2 (mod 5)) where G∗ satisfies Hypotheses 5.1 by
Lemma 6.7.

We next show, in cases (a,b,d,e) of Proposition 1.10, that we can arrange for
one of the conditions (a.1) or (a.2) to hold. If −Id /∈ W , then G = An, Dn for
n odd, or E6, and G is a Chevalley group by the assumptions in cases (a,b,d) of
Proposition 1.10. So (a.1) holds. If −Id ∈ W and ordp(q) is even, then (a.2) holds.
If −Id ∈ W , ordp(q) is odd, and G = G(q) is a Chevalley group, then by Theorem

1.8(c), G ∼p G(q∗) for some q∗ = qc0 such that 〈q∗〉 = 〈 − q〉, and ordp(q
∗) is even.

So we can replace G by G(q∗) in this last case, and (a.2) holds.
This leaves the case where −Id ∈ W , ordp(q) is odd, and G is not a Chevalley

group. By inspection, the first and third conditions both hold only when G =
2Dn(q) for n even. So we are in the situation of Proposition 1.10(b), where we also
assume qn ≡ −1 (mod p). But then ordp(q) is even, so this case cannot occur. �

We now consider the two families of groups which appear in Proposition 6.8(b):
those not covered by Hypotheses 5.1.

Proposition 6.9. Let G be one of the groups 3D4(q) where q is a prime power
prime to 3, 2F4(2

2m+1) for m ≥ 0, or 2F4(2)
′. Then the 3-fusion system of G is

tame. If G ∼= 3D4(2
n) (n ≥ 1), 2F4(2

2m+1) (m ≥ 0), or 2F4(2)
′, then κG is split

surjective, and Ker(κG) is the subgroup of field automorphisms of order prime to 3.

Proof. Fix S ∈ Syl3(G), and set F = FS(G).
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If G is the Tits group 2F4(2)
′, then S is extraspecial of order 33 and exponent

3, so Out(S) ∼= GL2(3). Also, OutG(S) ∼= D8 and OutAut(G)(S) ∼= SD16, since

the normalizer in 2F4(2) of an element of order 3 (the element t4 in [Sh]) has
the form SU3(2) : 2 ∼= 31+2

+ : SD16 by [Sh, Table IV] or [Ma1, Proposition 1.2].
Hence Out(F) ≤ NOut(S)(OutG(S))/OutG(S) has order at most 2, and κG sends

Out(G) ∼= C2 ([GrL, Theorem 2]) isomorphically to Out(F). If G = 2F4(2), then
OutG(S) ∼= SD16, so Out(F) = 1 by a similar argument, and κG is an isomorphism
between trivial groups.

Assume now that G ∼= 2F4(2
n) for odd n ≥ 3 or G ∼= 3D4(q) where 3 � q. In

order to describe the Sylow 3-subgroups of these groups, set ζ = e2πi/3, R = Z[ζ],
and p = (1− ζ)R. Let Sk be the semidirect product R/pk �C3, where the quotient
acts via multiplication by ζ. Explicitly, set

Sk = {(x, i) |x ∈ R/pk, i ∈ Z/3} and Ak = R/pk × {0},

where (x, i)(y, j) = (x + ζiy, i + j). Thus |Sk| = 3k+1. Set s = (0, 1), so that
s(x, 0)s−1 = (ζx, 0) for each x ∈ R/pk.

Assume k ≥ 3, so that Ak is the unique abelian subgroup of index three in
Sk. Set S = Sk and A = Ak for short. We want to describe Out(S). Define
automorphisms ξa (a ∈ (R/pk)×), ω, η, and ρ by setting

(4) ξa(x, i) = (xa, i), η = ξ−1, ω(x, i) = (−x,−i), ρ(x, i) = (x+ λ(i), i).

Here, x �→ x means complex conjugation, and λ(i) = 1 + ζ + . . . + ζi−1. Note,
when checking that ρ is an automorphism, that λ(i)+ ζiλ(j) = λ(i+ j). Note that
ρ3 ∈ Inn(S): it is (left) conjugation by (1− ζ2, 0).

Let Aut0(S) � Aut(S) be the subgroup of automorphisms which induce the
identity on S/[S, S] = S/[s, A], and set Out0(S) = Aut0(S)/Inn(S). Each element
in s·[s, A] is conjugate to s, and thus each class in Out0(S) is represented by an
automorphism which sends s to itself, which is unique modulo 〈cs〉. If ϕ ∈ Aut(S)
and ϕ(s) = s, then ϕ|A commutes with cs, thus is R-linear under the identification
A ∼= R/pk, and hence ϕ = ξa for some a ∈ 1 + p/pk. Moreover, since

(1 + p/pk)× = (1 + p
2/pk)× × 〈ζ〉 = (1 + 3R/pk)× × 〈ζ〉

as multiplicative groups (just compare orders, noting that the groups on the right
have trivial intersection), each class in Out0(S) is represented by ξa for some unique
a ∈ 1 + 3R/pk.

Since the images of η, ω, and ρ generate Aut(S)/Aut0(S) (the group of au-
tomorphisms of S/[s, A] ∼= C2

3 which normalize A/[s, A] ∼= C3), this shows that
Out(S) is generated by the classes of the automorphisms in (4). In fact, a straight-
forward check of the relations among them shows that

Out(S) ∼=
(
Out0(S)� C2

[ω]

)
× Σ3

[ρ],[η]
where Out0(S) =

{
[ξa]
∣∣ a ∈ (1 + 3R/pk)×

}
.

Also, ωξaω
−1 = ξā for a ∈ (1 + 3R/pk)×.

For each x ∈ 1 + 3R such that x ≡ x (mod pk), we can write x = r + sζ with
r, s ∈ Z, and then s(ζ − ζ) ∈ pk, so s ∈ pk−1, and x ∈ r + s + pk ⊆ 1 + 3Z + pk.
This proves that

COut(S)(ω) =
{
[ξa]
∣∣ a ∈ Z

}
×
〈
[ω]
〉
×
〈
[ρ], [η]

〉
.
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For any group G with S ∈ Syl3(G) and S ∼= Sk, OutG(S) has order prime to
3, and hence is a 2-group and conjugate to a subgroup of 〈ω, η〉 ∈ Syl2(Out(S)). If
|OutG(S)| = 4, then we can identify S with Sk in a way so that OutG(S) =

〈
[ω], [η]

〉
.

Then

Out(F) ≤ NOut(S)

(〈
[ω], [η]

〉)
/
〈
[ω], [η]

〉
= COut(S)

(〈
[ω], [η]

〉)
/
〈
[ω], [η]

〉
=
{
[ξa]
∣∣ a ∈ Z

}
=
〈
[ξ2]
〉
,

where the first equality holds since O3(Out(S)) has index four in Out(S).
We are now ready to look at the individual groups. Assume G = 2F4(q), where

q = 2n and n ≥ 3 is odd. By [St1, 3.2–3.6], Out(G) is cyclic of order n, generated
by the field automorphism ψ2. By the main theorem in [Ma1], there is a subgroup
NG(T8) ∼= (Cq+1)

2 � GL2(3), the normalizer of a maximal torus, which contains
a Sylow 3-subgroup. Hence if we set k = v3(q + 1) = v3(4

n − 1) = 1 + v3(n)
(Lemma 1.13), we have S ∼= S2k

∼= (C3k)
2 � C3, and OutG(S) = 〈ω, η〉 up to

conjugacy. So Out(F) is cyclic, generated by ξ2 = κG(ψ2). Since A ∼= (C3k)
2,

and since ξ−1 ∈ OutG(S), |Out(F)| = |[ξ2]| = 3k−1 where k − 1 = v3(n). Thus
κG is surjective, and is split since the Sylow 3-subgroup of Out(G) ∼= Cn is sent
isomorphically to Out(F).

Next assume G = 3D4(q), where q = 2n for n ≥ 1. By [St1, 3.2–3.6], Out(G)
is cyclic of order 3n, generated by the field automorphism ψ2 (and where the field
automorphism ψ2n of order three is also a graph automorphism). Set k = v3(q

2 −
1) = v3(2

2n − 1) = 1 + v3(n) (Lemma 1.13). Then S ∼= S2k+1: this follows from
the description of the Sylow structure in G in [GL, 10-1(4)], and also from the
description (based on [Kl]) of its fusion system in [O4, Theorem 2.8] (case (a.ii)
of the theorem). Also, OutG(S) = 〈ω, η〉 up to conjugacy. So Out(F) is cyclic,
generated by ξ2 = κG(ψ2). Since A ∼= C3k × C3k+1 , and since ξ−1 ∈ OutG(S),
|Out(F)| = |[ξ2]| = 3k. Thus κG is surjective, and is split since the Sylow 3-
subgroup of Out(G) ∼= C3n is sent isomorphically to Out(F).

By Theorem 1.8(b) and Lemma 1.11(a), for each prime power q with 3 � q,
the 3-fusion system of 3D4(q) is isomorphic to that of 3D4(2

n) for some n. By
[O1, Theorem C], μG is injective in all cases. Thus the 3-fusion systems of all of
these groups are tame. �
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APPENDIX A

Injectivity of μG

by Bob Oliver

Recall that for any finite group G and any S ∈ Sylp(G),

μG : Out(Lc
S(G)) −−−−−−−→ Out(FS(G))

is the homomorphism which sends the class of β ∈ Aut(Lc
S(G)) to the class of

βS |S , where βS is the induced automorphism of AutLc
S(G)(S) = NG(S)/Op′(CG(S)).

We need to develop tools for computing Ker(μG), taking as starting point [AOV,
Proposition 4.2].

As usual, for a finite group G and a prime p, a proper subgroup H < G is
strongly p-embedded in G if p

∣∣|H|, and p � |H ∩ gH| for g ∈ G�H. The following
properties of groups with strongly embedded subgroups will be needed.

Lemma A.1. Fix a prime p and a finite group G.

(a) If G contains a strongly p-embedded subgroup, then Op(G) = 1.

(b) If H < G is strongly p-embedded, and K � G is a normal subgroup of order
prime to p such that KH < G, then HK/K is strongly p-embedded in G/K.

Proof. (a) See, e.g., [AKO, Proposition A.7(c)].
(b) Assume otherwise. Thus there is g ∈ G�HK such that p

∣∣|(gHK/K) ∩
(HK/K)|, and hence x ∈ gHK ∩HK of order p. Then H ∩K〈x〉 and gH ∩K〈x〉
have order a multiple of p, so there are elements y ∈ H and z ∈ gH of order p such
that y ≡ x ≡ z (mod K).

Since 〈y〉, 〈z〉 ∈ Sylp(K〈x〉), there is k ∈ K such that 〈y〉 = k〈z〉. Then y ∈
H ∩ kgH, and kg /∈ H since k ∈ K and g /∈ HK. But this is impossible, since H is
strongly p-embedded. �

For the sake of possible future applications, we state the next proposition in
terms of abstract fusion and linking systems. We refer to [AOV], and also to
Chapters I.2 and III.4 in [AKO], for the basic definitions. Recall that if F is a
fusion system over a finite p-group S, and P ≤ S, then

• P is F-centric if CS(Q) ≤ Q for each Q which is F-conjugate to P ;

• P is fully normalized in F if |NS(P )| ≥ |NS(Q)| whenever Q is F-conjugate to
P ; and

• P is F-essential if P < S, P is F-centric and fully normalized in F , and if
OutF (P ) contains a strongly p-embedded subgroup.

93
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For any saturated fusion system F over a finite p-group S, set

Ẑ(F) =
{
E ≤ S

∣∣E elementary abelian, fully normalized in F ,

E = Ω1(Z(CS(E))), AutF (E) has a strongly p-embedded subgroup
}
.

The following proposition is our main tool for proving that μL is injective in certain
cases. Point (a) will be used to handle the groups Spin±n (q), point (c) the linear
and symplectic groups, and point (b) the exceptional Chevalley groups.

Proposition A.2. Fix a saturated fusion system F over a p-group S and an

associated centric linking system L. Let E1, . . . , Ek ∈ Ẑ(F) be such that each

E ∈ Ẑ(F) is F-conjugate to Ei for some unique i. For each i, set Pi = CS(Ei)
and Zi = Z(Pi). Then the following hold.

(a) If k = 0 (Ẑ(F) = ∅), then Ker(μL) = 1.

(b) If k = 1, E1 � S, and AutF (Ω1(Z(S))) = 1, then Ker(μL) = 1.

(c) Assume, for each (gi)
k
i=1 ∈

∏k
i=1 CZi

(AutS(Pi)), that there is an element g ∈
CZ(S)(AutF (S)) such that gi ∈ g ·CZi

(AutF (Pi)) for each i. Then Ker(μL) =
1.

(d) If α ∈ Aut(L) is the identity on AutL(S), and on AutL(Pi) for each 1 ≤ i ≤ k,
then α = IdL.

Proof. We first prove point (d). The other three points then follow quickly
from that together with [AOV, Proposition 4.2].

We will need to refer a few times to the extension axiom for fusion systems,
as stated, e.g., in [AKO, Proposition I.2.5]. As one special case, this says that
for P ≤ S and PCS(P ) ≤ Q ≤ NS(P ), each automorphism in NAutF (P )(AutQ(P ))
extends to one in AutF (Q) (a consequence of the Sylow theorems when F = FS(G)
for S ∈ Sylp(G)).

(d) Fix α ∈ Aut(L) such that αS = IdAutL(S). By [AOV, Proposition 4.2],
there are elements gP ∈ CZ(P )(AutS(P )), defined for each P ∈ Ob(L) which is
fully normalized, such that

(i) αP ∈ Aut(AutL(P )) is conjugation by �gP �P ; and

(ii) αP = Id if and only if gP ∈ CZ(P )(AutF (P )).

Note that if we are in an abstract linking system, �gP �P ∈ AutL(P ) should be
replaced by δP (gP ). Furthermore, for each such P and each ψ ∈ AutL(P ),

(1) αP (ψ) = ψ ⇐⇒ π(ψ)(gP ) = gP ,

where π : L −−−→ F denotes the canonical functor (so π(�g�) = cg if L = Lc
S(G)

and F = FS(G)). By (i) above, αP (ψ) = ψ if and only if ψ commutes with �gP �P
in AutL(P ), and this is equivalent to π(ψ)(gP ) = gP by axiom (C) in the definition
of a linking system (see, e.g., [AKO, Definition III.4.1]) and since (g �→ �g�P )
is injective. We leave it as an easy exercise to check this when L = Lc

S(G) and
ψ = �h�P for some h ∈ NG(P ) (note that [h, gP ] ∈ Z(P ) since gP ∈ Z(P )).

Now assume αPi
is the identity on AutL(Pi) for each 1 ≤ i ≤ k. If α �= IdL,

then by Alperin’s fusion theorem for linking systems (see [AOV, Theorem 4.1]),
there is Q < S such that αQ �= Id, while α is the identity on MorL(P, P

∗) for
all P, P ∗ ∈ Ob(L) such that |P |, |P ∗| > |Q|. Also, for each Q∗ ∈ QF , there
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is (by Alperin’s fusion theorem again) an isomorphism χ ∈ IsoL(Q,Q∗) which is
a composite of isomorphisms each of which extends to an isomorphism between
strictly larger subgroups, and hence is such that α(χ) = χ. Thus

(2) Q∗ ∈ QF =⇒ αQ∗ �= Id .

Set E = Ω1(Z(Q)). Let ϕ ∈ HomF (NS(E), S) be such that ϕ(E) is fully
normalized (cf. [AKO, Lemma I.2.6(c)]). Then NS(Q) ≤ NS(E), so |NS(ϕ(Q))| ≥
|NS(Q)|, and ϕ(Q) is fully normalized since Q is. Since αQ∗ �= Id by (2), we can
replace Q by Q∗ and E by E∗, and arrange that Q and E are both fully normalized
in F (and Q is still F-essential).

We will show that Q = CS(E) and E ∈ Ẑ(F). Then E ∈ (Ei)
F for some

unique 1 ≤ i ≤ k, and Q ∈ (Pi)
F by the extension axiom (and since E and Ei

are both fully centralized). But then αPi
�= Id by (2), contradicting the original

assumption about α. We conclude that α = Id, finishing the proof of (d).
Set Γ = AutF (Q), and set

Γ0 = CΓ(E) =
{
ϕ ∈ AutF (Q)

∣∣ϕ|E = IdE
}

� Γ

Γ1 =
〈
ϕ ∈ Γ

∣∣ϕ = ϕ|Q for some ϕ ∈ HomF (R,S), R > Q
〉
.

Then AutS(Q) ≤ Γ1, since each element of AutS(Q) extends toNS(Q) andNS(Q) >
Q (see [Sz1, Theorem 2.1.6]). Hence

Γ0Γ1 = Op(Γ0) ·AutS(Q) · Γ1 = Op(Γ0)Γ1 .

For each ϕ ∈ Γ0 of order prime to p, ϕ|Z(Q) = IdZ(Q) since ϕ is the identity
on E = Ω1(Z(Q)) (cf. [G, Theorem 5.2.4]). Thus gQ ∈ CZ(Q)(O

p(Γ0)). If ϕ ∈
AutF (Q) extends to ϕ ∈ HomF (R,S) for some R > Q, then by the maximality of Q,

α(ψ) = ψ for each ψ ∈ MorL(R,S) such that π(ψ) = ϕ, and since α commutes with

restriction (it sends inclusions to themselves), αQ is the identity on ψ|Q,Q ∈ π−1
Q (ϕ).

So by (1), ϕ(gQ) = gQ. Thus ϕ(gQ) = gQ for all ϕ ∈ Γ1. Since αQ �= Id by
assumption, there is some ϕ ∈ AutF (Q) such that ϕ(gQ) �= gQ (by (1) again), and
we conclude that

(3) gQ ∈ CZ(Q)(Γ0Γ1) and Γ0Γ1 < Γ = AutF (Q) .

Set Q∗ = NCS(E)(Q) ≥ Q. Then AutQ∗(Q) = Γ0 ∩ AutS(Q) ∈ Sylp(Γ0)
since AutS(Q) ∈ Sylp(Γ), and by the Frattini argument, Γ = NΓ(AutQ∗(Q))Γ0.

If Q∗ > Q, then for each ϕ ∈ NΓ(AutQ∗(Q)), ϕ extends to ϕ ∈ AutF (Q
∗) by the

extension axiom. Thus NΓ(AutQ∗(Q)) ≤ Γ1 in this case, so Γ = Γ1Γ0, contradicting
(3). We conclude that Q∗ = NCS(E)(Q) = Q, and hence that CS(E) = Q (cf.
[Sz1, Theorem 2.1.6]).

The homomorphism Γ = AutF (Q) −−−→ AutF (E) induced by restriction is
surjective by the extension axiom, so AutF (E) ∼= Γ/Γ0. By [AKO, Proposition
I.3.3(b)], Γ1/Inn(Q) is strongly p-embedded in Γ/Inn(Q) = OutF (Q); and Γ0Γ1 <
Γ by (3). Also, p � |Γ0/Inn(Q)|, since otherwise we would have Γ1 ≥ NΓ(T ) for
some T ∈ Sylp(Γ0), in which case Γ1Γ0 ≥ NΓ(T )Γ0 = Γ by the Frattini argument.
Thus Γ1Γ0/Γ0 is strongly p-embedded in Γ/Γ0

∼= AutF (E) by Lemma A.1(b).

Now, Ω1(Z(CS(E))) = Ω1(Z(Q)) = E, and thus E ∈ Ê(F). We already showed
that this implies (d).
(c) Now assume that the hypothesis in (c) holds, and fix [α] ∈ Ker(μL). By
[AOV, Proposition 4.2], there is α ∈ Aut(L) in the class [α] such that αS = Id. For
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each 1 ≤ i ≤ k, let gPi
∈ CZ(Pi)(AutS(Pi)) be as in the proof of (d). By assumption,

there is g ∈ CZ(S)(AutF (S)) such that gPi
≡ g (mod CZ(Pi)(AutF (Pi))) for each i.

Let β ∈ Aut(L) be conjugation by �g�S ∈ AutS(L) and its restrictions (or by
δS(g) if L is an abstract linking system). Upon replacing α by β−1 ◦ α and hence
gPi

by g−1gPi
for each i, we can arrange that gPi

∈ CZ(Pi)(AutF (Pi)) for each i,
and hence by (ii) that αPi

= Id for each i. Then α = Id by (d), so [α] = 1. Thus
Ker(μL) = 1, proving (c).
(a) This is a special case of (c).
(b) If k = 1, E1 � S, and AutF (Ω1(Z(S))) = 1, then the group OutF (S) of
order prime to p acts trivially on Ω1(Z(S)), and hence acts trivially on Z(S) (cf.
[G, Theorem 5.2.4]). Also, P1 = CS(E1) � S, so CZ1

(AutS(P1)) = Z(S) =
CZ(S)(AutF (S)), and Ker(μL) = 1 by (c). �

A.1. Classical groups of Lie type in odd characteristic

Throughout this section, we fix an odd prime power q and an integer n ≥ 1.
We want to show Ker(μG) = 1 when G is one of the quasisimple classical groups
of universal type over Fq. By Theorem 1.8(d), we need not consider the unitary
groups.

Proposition A.3. Fix an odd prime power q. Let G be isomorphic to one
of the quasisimple groups SLn(q), Spn(q) (n = 2m), or Spin±n (q) (n ≥ 3). Then
Ker(μG) = 1.

Proof. Let V , b, and Ĝ = Aut(V, b) be such that G = [Ĝ, Ĝ] if G ∼= Spn(q)

or G ∼= SLn(q), and G/〈z〉 = [Ĝ, Ĝ] for some z ∈ Z(Ĝ) if G ∼= Spin±n (q) (where
z ∈ Z(G)). Thus V is a vector space of dimension n over the field K = Fq, b is a

trivial, symplectic, or quadratic form, and Ĝ is one of the groups GLn(q), Sp2n(q),
or O±

n (q).

Fix S ∈ Syl2(G), and set F = FS(G). Set Ẑ = Ẑ(F) for short.
Case 1: Assume G = Spin(V, b), where b is nondegenerate and symmetric. Set

Z = Z(G), and let z ∈ Z be such that G/〈z〉 = Ω(V, b). We claim that Ẑ = ∅ in
this case, and hence that Ker(μG) = 1 by Proposition A.2(a).

Fix an elementary abelian 2-subgroup E ≤ G where E ≥ Z. Let V =
⊕m

i=1 Vi

be the decomposition as a sum of eigenspaces for the action of E on V . Fix
indices j, k ∈ {1, . . . ,m} such that either dim(Vj) ≥ 2, or the subspaces have
the same discriminant (modulo squares). (Since dim(V ) ≥ 3, this can always be
done.) Then there is an involution γ ∈ SO(V, b) such that γ(Vi) = Vi for all
i, γ|Vi

= Id for i �= j, k, det(γ|Vj
) = det(γ|Vk

) = −1, and such that the (−1)-
eigenspace of γ has discriminant a square. This last condition ensures that γ ∈
Ω(V, b) (cf. [LO, Lemma A.4(a)]), so we can lift it to g ∈ G. Then for each x ∈ E,
cg(x) = x if x has the same eigenvalues on Vj and Vk, and cg(x) = zx otherwise
(see, e.g., [LO, Lemma A.4(c)]). Since z is fixed by all elements of AutF (E),
cg ∈ O2(AutF (E)), and hence AutF (E) has no strongly 2-embedded subgroups by

Lemma A.1(a). Thus E /∈ Ẑ.
Case 2: Now assume G is linear or symplectic, and fix S ∈ Syl2(G). For each

V = {V1, . . . , Vk} such that V =
⊕k

i=1 Vi, and such that Vi ⊥ Vj for i �= j if G is
symplectic, set

E(V) =
{
ϕ ∈ G

∣∣ϕ|Vi
= ±Id for each i

}
.
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We claim that each subgroup in Ẑ has this form. To see this, fix E ∈ Ẑ,
and let V = {V1, . . . , Vk} be the eigenspaces for the nonzero characters of E. Then

E ≤ E(V), V =
⊕k

i=1 Vi, and this is an orthogonal decomposition ifG is symplectic.
Also, CĜ(E) is the product of the groups Aut(Vi, b|Vi

). Since E = Ω1(Z(P ))
where P = CS(E), E contains the 2-torsion in the center of CG(E), and thus
E = E(V). Furthermore, the action of P on each Vi must be irreducible (otherwise
Ω1(Z(P )) > E), so dim(Vi) is a power of 2 for each i.

Again assume E = E(V) ∈ Ẑ for some V . Then AutĜ(E) is a product of
symmetric groups: if V contains ni subspaces of dimension i for each i ≥ 1, then
AutĜ(E(V)) ∼=

∏
i≥1Σni

. Each such permutation can be realized by a self map of

determinant one (if G is linear), so AutG(E) = AutĜ(E). Since AutG(E) contains

a strongly 2-embedded subgroup by definition of Ẑ (and since a direct product
of groups of even order contains no strongly 2-embedded subgroup), AutG(E) =
AutĜ(E) ∼= Σ3.

Write n = dim(V ) = 2k0 + 2k1 + . . . + 2km , where 0 ≤ k0 < k1 < · · · < km.
There is an (orthogonal) decomposition V =

⊕m
i=0 Vi, where S acts irreducibly on

each Vi, and where dim(Vi) = 2ki (see [CF, Theorem 1]). For each 1 ≤ i ≤ m,
fix an (orthogonal) decomposition Wi of Vi whose components have dimensions
2ki−1 , 2ki−1 , 2ki−1+1, . . . , 2ki−1, and set

Vi = {Vj | j �= i} ∪Wi

and Ei = E(Vi). Thus Vi contains exactly three subspaces of dimension 2ki−1 ,
and the dimensions of the other subspaces are distinct. Hence AutG(Ei) ∼= Σ3,

and Ei ∈ Ẑ. Conversely, by the above analysis (and since the conjugacy class of

E ∈ Ẑ is determined by the dimensions of its eigenspaces), each subgroup in Ẑ is
G-conjugate to one of the Ei.

For each 1 ≤ i ≤ m, set Pi = CS(Ei) and Zi = Z(Pi) (so Ei = Ω1(Zi)). Since
each element of NG(Pi) ≤ NG(Ei) permutes members of Vi of equal dimension,
and the elements of NS(Pi) do so only within each of the Vj , we have

Zi =
{
z ∈ G

∣∣ z|X = λ
(z)
X IdX for all X ∈ Vi, some λ

(z)
X ∈ O2(F×

q )
}

CZi
(AutS(Pi)) =

{
z ∈ Zi

∣∣λ(z)
Xi

= λ
(z)
X′

i

}
CZi

(AutG(Pi)) =
{
z ∈ Zi

∣∣λ(z)
Xi

= λ
(z)
X′

i
= λ

(z)
Vi−1

}
,

(4)

where Xi, X
′
i, and Vi−1 are the three members of the decomposition Vi of dimension

2ki−1 (and Xi, X
′
i ∈ Wi).

Fix (gi)
m
i=1 ∈

∏m
i=1 CZi

(AutS(Pi)). Then gi ∈ CZi
(AutG(Pi)) if and only if

λ
(gi)
Vi−1

= λ
(gi)
Xi

. Choose g ∈ Ĝ such that g|Vi
= ηi·Id for each i, where the ηi ∈ O2(F×

q )

are chosen so that ηi/ηi−1 = λ
(gi)
Xi

/λ
(gi)
Vi−1

for each 1 ≤ i ≤ m. If G is linear, then

det(g) = θ2
k0

for some θ ∈ O2(F×
q ), and upon replacing g by g ◦ θ−2k0/nIdV (recall

k0 = v2(n)) we can assume g ∈ G. Then g ∈ CZ(S)(AutG(S)) since it is a multiple
of the identity on each Vi and has 2-power order. By construction and (4), g ≡ gi
(mod CZi

(AutG(Pi))) for each i; so Ker(μG) = 1 by Proposition A.2(c). �
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A.2. Exceptional groups of Lie type in odd characteristic

Throughout this section, q0 is an odd prime, and q is a power of q0. We show
that Ker(μG) = 1 when G is one of the groups G2(q), F4(q), E6(q), E7(q), or E8(q)
and is of universal type.

The following proposition is a special case of [GLS3, Theorem 2.1.5], and is
stated and proven explicitly in [O2, Proposition 8.5]. It describes, in many cases,
the relationship between conjugacy classes and normalizers in a connected algebraic
group and those in the subgroup fixed by a Steinberg endomorphism.

Proposition A.4. Let G be a connected algebraic group over Fq0 , let σ be a

Steinberg endomorphism of G, and set G = C
G
(σ). Let H ≤ G be any subgroup,

and let H be the set of G-conjugacy classes of subgroups G-conjugate to H. Let
N

G
(H) act on π0(CG

(H)) by sending g to xgσ(x)−1 (for x ∈ N
G
(H)). Then there

is a bijection

ω : H
∼=−−−−−−−→ π0(CG

(H))/N
G
(H),

defined by setting ω([xH]) = [x−1σ(x)] whenever xH ≤ C
G
(σ). Also, for each

x ∈ G such that xH ≤ G, AutG(
xH) is isomorphic to the stabilizer of [x−1σ(x)] ∈

π0(CG
(H))/C

G
(H) under the action of Aut

G
(H) on this set.

Since we always assume G is of universal type in this section, the group G =
C

G
(σ) of Proposition A.4 is equal to the group G = Oq′0(C

G
(σ)) of Definition 2.1

and Notation 2.2.
The following definitions will be useful when applying Proposition A.4. For

any finite group G, set

SE(G) =
{
H ≤ G

∣∣H has a strongly 2-embedded subgroup
}

δ(G) =

{
min
{
[G : H]

∣∣H ∈ SE(G)
}

if SE(G) �= ∅
∞ if SE(G) = ∅.

Thus by Proposition A.4, if H < G is such that |π0(CG
(H))| > δ(Out

G
(H)),

then no subgroup H∗ ≤ C
G
(σ) which is G-conjugate to H has the property that

AutC
G
(σ)(H

∗) has a strongly 2-embedded subgroup. The next lemma provides

some tools for finding lower bounds for δ(G).

Lemma A.5. (a) For any finite group G, δ(G) ≥ |O2(G)| · δ(G/O2(G)).

(b) If G = G1 ×G2 is finite, and δ(Gi) < ∞ for i = 1, 2, then

δ(G) = min
{
δ(G1) · η(G2) , δ(G2) · η(G1)

}
,

where η(Gi) is the smallest index of any odd order subgroup of Gi.

(c) If δ(G) < ∞, and there is a faithful F2[G]-module V of rank n, then

2v2(|G|)−[n/2]
∣∣ δ(G).

(d) More concretely, δ(GL3(2)) = 28, δ(GL4(2)) = 112, δ(GL5(2)) = 28 · 7 · 31,
and δ(SO+

4 (2)) = 2 = δ(SO−
4 (2)). Also, 24 ≤ δ(SO+

6 (2)) < ∞ and 26 ≤
δ(SO7(2)) < ∞.
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Proof. (a) If H ∈ SE(G), then H ∩ O2(G) = 1 by Lemma A.1(a). Hence
there is a subgroup H∗ ≤ G/O2(G) isomorphic to H, and

[G : H] = |O2(G)| · [G/O2(G) : H∗] ≥ |O2(G)| · δ(G/O2(G)) .

(b) If a finite group H has a strongly 2-embedded subgroup, then so does its direct
product with any odd order group. Hence δ(G) ≤ δ(Gi)η(G3−i) for i = 1, 2.

Assume H ≤ G has a strongly 2-embedded subgroup K < H. Set Hi = H ∩Gi

for i = 1, 2. Since all involutions in H are H-conjugate (see [Sz2, 6.4.4]), H1 and
H2 cannot both have even order. Assume |H2| is odd. Let pr1 be projection onto
the first factor. If pr1(K) = pr1(H), then there is x ∈ (H�K) ∩ H2, and this
commutes with all Sylow 2-subgroups of H since they lie in G1, contradicting the
assumption that K is strongly 2-embedded in H. Thus pr1(K) < pr1(H). Then
pr1(H) has a strongly 2-embedded subgroup by Lemma A.1(b), and hence

[G : H] = [G1 : pr1(H)] · [G2 : H2] ≥ δ(G1) · η(G2) .

So δ(G) ≥ δ(Gi)η(G3−i) for i = 1 or 2.
(c) This follows from [OV, Lemma 1.7(a)]: if H < G has a strongly 2-embedded
subgroup, T ∈ Syl2(H), and |T | = 2k, then dim(V ) ≥ 2k.
(d) The formulas for δ(SO±

4 (2)) hold since SO+
4 (2)

∼= Σ3 �C2 contains a subgroup
isomorphic to C2

3 � C4 and SO−
4 (2)

∼= Σ5 a subgroup isomorphic to A5. Since
4|δ(GL3(2)) by (c), and since 7|δ(GL3(2)) (there are no subgroups of order 14 or
42), we have 28|δ(GL3(2)), with equality since Σ3 has index 28. The last two (very
coarse) estimates follow from (c), and the 6- and 7-dimensional representations of
these groups.

Fix n = 4, 5, and set Gn = GLn(2). Assume H ≤ Gn has a strongly embedded
subgroup, where 7

∣∣|H| or 31
∣∣|H|. By (c), 24|δ(G4) and 28|δ(G5), and thus 8 � |H|. If

H is almost simple, then H ∼= A5 by Bender’s theorem (see [Sz2, Theorem 6.4.2]),
contradicting the assumption about |H|. So by the main theorem in [A1], H must
be contained in a member of one of the classes Ci (1 ≤ i ≤ 8) defined in that paper.
One quickly checks that since (7 · 31, |H|) �= 1, H is contained in a member of C1.
Thus H is reducible, and since O2(H) = 1, either H is isomorphic to a subgroup
of GL3(2)×GLn−3(2), or n = 5 and H < GL4(2). By (b) and since 7

∣∣|δ(GL3(2)),

we must have H ∼= Σ3 × (C7 � C3), in which case |H| < 180 = |GL2(4)|. Thus
7|δ(Gn) for n = 4, 5, and 31|δ(G5). Since GL4(2) contains a subgroup isomorphic
to GL2(4) ∼= C3 ×A5, we get δ(G4) = 24 · 7 and δ(G5) = 28 · 7 · 31. �

We illustrate the use of the above proposition and lemma by proving the injec-
tivity of μG when G = G2(q).

Proposition A.6. If G = G2(q) for some odd prime power q, then Ker(μG) =
1.

Proof. Assume q is a power of the prime q0, set G = G2(Fq0), and fix a

maximal torus T . We identify G = C
G
(ψq), where ψq is the field automorphism,

and acts via (t �→ tq) on T . Fix S ∈ Syl2(G), and set Ẑ = Ẑ(FS(G)).

Let E ∼= C2
2 be the 2-torsion subgroup of T . By Proposition 2.5, C

G
(E) = T 〈θ〉

where θ ∈ N
G
(T ) inverts the torus. Thus by Proposition A.4, there are two G-

conjugacy classes of subgroups G-conjugate to E, represented by E± (E+ = E),
where AutG(E

±) = Aut(E±) ∼= Σ3 and CG(E
±) = (Cq∓1)

2 � C2. The subgroups
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in one of these classes have centralizer in S isomorphic to C3
2 , hence are not in Ẑ,

while those in the other class do lie in Ẑ. The latter also have normalizer of order
12(q ± 1)2 and hence of odd index in G, and thus are normal in some choice of
Sylow 2-subgroup.

By [Gr, Table I], for each nontoral elementary abelian 2-subgroup E ≤ G,
rk(E) = 3, C

G
(E) = E, and Aut

G
(E) ∼= GL3(2). By Proposition A.4, and since

δ(Aut
G
(E)) = 28 > |C

G
(E)| by Lemma A.5, AutG(E) contains no strongly 2-

embedded subgroup, and thus E /∈ Ẑ.

Thus Ẑ is contained in a unique G-conjugacy class of subgroups of rank 2, and
Ker(μG) = 1 by Proposition A.2(b). �

Throughout the rest of this section, fix an odd prime power q, and let G be one
of the groups F4, E6, E7, or E8.

Hypotheses A.7. Assume G = G(Fq0) and G ∼= G(q), where q is a power of
the odd prime q0, and where G = F4, E6, E7, or E8 and is of universal type. Fix

a maximal torus T < G.

(I) Set T(2) = {t ∈ T | t2 = 1}. Let 2A and 2B denote the two G-conjugacy classes

of noncentral involutions in G, as defined in [Gr, Table VI], except that when
G = E7, they denote the classes labelled 2B and 2C, respectively, in that table.

For each elementary abelian 2-subgroup E < G, define

qE : E −−−−−−→ F2

by setting q(x) = 0 if x ∈ 2B ∪ {1}, and q(x) = 1 if x ∈ 2A ∪ (Z(G)�1).

(II) Assume G = C
G
(ψq), where ψq is the field endomorphism with respect to some

root structure with maximal torus T . Thus ψq(t) = tq for all t ∈ T . Fix

S ∈ Syl2(G), and set Ẑ = Ẑ(FS(G)).

By [Gr, Lemma 2.16], qT(2)
is a quadratic form on T(2) in all cases, and hence

qE is quadratic for each E ≤ T(2). In general, qE need not be quadratic when E
is not contained in a maximal torus. In fact, Griess showed in [Gr, Theorems 7.3,
8.2, & 9.2] that in many (but not all) cases, E is contained in a torus if and only if
qE is quadratic (cx(E) ≤ 2 in his terminology).

With the above choices of notation for noncentral involutions, all of the in-
clusions F4 ≤ E6 ≤ E7 ≤ E8 restrict to inclusions of the classes 2A and of the
classes 2B. This follows since the forms are quadratic, and also (for E7 < E8) from
[Gr, Lemma 2.16(iv)].

Lemma A.8. Assume Hypotheses A.7, and let b be the bilinear form associated
to q. Define

V0 =
{
v ∈ T(2)

∣∣ b(v, T(2)) = 0, q(v) = 0
}

γx =
(
v �→ v + b(v, x)x

)
∈ Aut(T(2), q) for x ∈ T(2) with q(x) = 1, x �⊥ T(2)

Then the following hold.

(a) Aut
G
(T(2)) = Aut(T(2), q).

(b) For each nonisotropic x ∈ T(2)�T⊥
(2), γx is the restriction to T(2) of a Weyl

reflection on T . If α ∈ Σ is such that γx = wα|T(2)
, then θα(v) = (−1)b(x,v)

for each v ∈ T(2).
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(c) If G = Er (r = 6, 7, 8), then q is nondegenerate (V0 = 0), and the restriction to
T(2) of each Weyl reflection is equal to γx for some nonisotropic x ∈ T(2)�T⊥

(2).

(d) If G = F4, then dim(V0) = 2, and q(v) = 1 for all v ∈ T(2)�V0.

Proof. (a) Since Aut
G
(T(2)) has to preserve G-conjugacy classes, it is con-

tained in Aut(T(2), q). Equality will be shown while proving (c) and (d).
(c) If G = Er for r = 6, 7, 8, then q is nondegenerate by [Gr, Lemma 2.16].
Hence the only orthogonal transvections are of the form γx for nonisotropic x, and
each Weyl reflection restricts to one of them. By a direct count (using the tables
in [Brb]), the number of pairs {±α} of roots in G (hence the number of Weyl
reflections) is equal to 36, 63, or 120, respectively. This is equal to the number of

nonisotropic elements in T(2)�T⊥
(2) = T(2)�Z(G) (see the formula in [Ta, Theorem

11.5] for the number of isotropic elements). So all transvections are restrictions of
Weyl reflections, and Aut

G
(T(2)) = Aut(T(2), q).

(d) Assume G = F4. Then dim(V0) = 2 and q−1(1) = T(2)�V0 by [Gr, Lemma

2.16]. Thus |Aut(T(2), q)| = 42 · |GL2(2)|2 = 26 · 32 = 1
2 |W | (see [Brb, Planche

VIII]), so AutW (T(2)) = Aut(T(2), q) since W also contains −Id.
There are three conjugacy classes of transvections γ ∈ Aut(T(2), q): one of

order 36 containing those where γ|V0
�= Id (and hence [γ, T(2)] ≤ V0), and two

of order 12 containing those where γ|V0
= Id (one where [γ, T(2)] ≤ V0 and one

where [γ, T(2)] � V0). Since there are two W -orbits of roots (long and short), each
containing 12 pairs ±α, the corresponding Weyl reflections must restrict to the last
two classes of transvections, of which one is the set of all γx for x ∈ T(2) � V0.
(b) We showed in the proofs of (c) and (d) that each orthogonal transvection γx is
the restriction of a Weyl reflection. If γx = wα|T(2)

for some root α ∈ Σ, then θα ∈
Hom(T ,F×

q0) (Lemma 2.4(c)), so [T(2) : Ker(θα|T(2)
)] ≤ 2. Also, Ker(θα) ≤ C

T
(wα)

by Lemma 2.4(e), so Ker(θα|T(2)
) ≤ CT(2)

(wα) = CT(2)
(γx) = x⊥, with equality

since [T(2) : x
⊥] = 2. Since θα(T(2)) ≤ {±1}, it follows that θα(v) = (−1)b(x,v) for

each v ∈ T(2). �

We are now ready to list the subgroups in Ẑ(G(q)) in all cases. The proof of
the following lemma will be given at the end of the section.

Lemma A.9. Let G = G(Fq0) and G = G(q) be as in Hypotheses A.7. Assume

E ∈ Ẑ(G). Then either G �= E7, rk(E) = 2, and qE = 0; or G = E7, Z = Z(G) ∼=
C2, and E = Z × E0 where rk(E0) = 2 and qE0

= 0. In all cases, Aut
G
(E) ∼= Σ3.

Proof. This will be shown in Lemmas A.14 and A.15. �

The next two lemmas will be needed to apply Proposition A.2(b) to these
groups. The first is very elementary.

Lemma A.10. Let V be an F2-vector space of dimension k, and let q : V −−−→ F2

be a quadratic form on V . For m ≥ 1 such that k > 2m, the number of totally
isotropic subspaces of dimension m in V is odd.

Proof. This will be shown by induction on m, starting with the case m = 1.
Since k ≥ 3, there is an orthogonal splitting V = V1 ⊥ V2 where V1, V2 �= 0. Let
ki be the number of isotropic elements in Vi (including 0), and set ni = |Vi|. The
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number of isotropic elements in V is then k1k2 + (n1 − k1)(n2 − k2), and is even
since the ni are even. The number of 1-dimensional isotropic subspaces is thus odd.

Now fix m > 1 (such that k > 2m), and assume the lemma holds for subspaces
of dimension m − 1. For each isotropic element x ∈ V , a subspace E ≤ V of
dimension m containing x is totally isotropic if and only if E ≤ x⊥ and E/〈x〉 is
isotropic in x⊥/〈x〉 with the induced quadratic form. By the induction hypothesis,
and since

2 · dim(E/〈x〉) = 2(m− 1) < k − 2 ≤ dim(x⊥/〈x〉),
the number of isotropic subspaces of dimension m which contain x is odd. Upon
taking the sum over all x, and noting that each subspace has been counted 2m − 1
times, we see that the number of isotropic subspaces of dimension m is odd. �

Lemma A.11. Assume Hypotheses A.7(I). Let σ be a Steinberg endomorphism

of G such that for some ε = ±1, σ(t) = tεq for each t ∈ T . Set G = C
G
(σ). Fix

E ≤ T(2) of rank 2 such that q(E) = 0. Then the set of subgroups of G which are

G-conjugate to E, and the set of subgroups which are G-conjugate to E, both have
odd order and contain all totally isotropic subgroups of rank 2 in T(2).

Proof. Let X ⊇ X be the sets of subgroups of G which are G-conjugate to
E or G-conjugate to E, respectively. Let X0 be the subset of all totally isotropic
subgroups of T(2) of rank 2. If q is nondegenerate, then by Witt’s theorem (see
[Ta, Theorem 7.4]), AutW (T(2)) = Aut(T(2), q) permutes X0 transitively, and hence
all elements in X0 areG-conjugate to E by Lemma 2.9. If in addition, dim(T(2)) ≥ 5,
then |X0| is odd by Lemma A.10. Otherwise, by Lemma A.8(c,d), G = F4 and
X0 = {E}. Thus in all cases, X0 ⊆ X and |X0| is odd.

Assume G = E6. Then C
G
(T(2)) = T by Proposition 2.5. Consider the con-

jugation action of T(2) on X, and let X1 be its fixed point set. Since T(2) ≤ G by
the assumptions on σ, this action also normalizes X. For F ∈ X1, either the action
of T(2) fixes F pointwise, in which case F ∈ X0, or there are x, y ∈ F such that
[x, T(2)] = 1 and [y, T(2)] = 〈x〉. In particular, cy ∈ Aut

G
(T(2)) = SO(T(2), q). For

each v ∈ T(2) such that [y, v] = x, q(v) = q(vx) and q(x) = 0 imply x ⊥ v, so
x ⊥ T(2) since T(2) is generated by those elements. This is impossible since q is
nondegenerate by Lemma A.8(c), and thus X1 = X0.

Now assume G = F4, E7, or E8. Then −Id ∈ W , so there is θ ∈ N
G
(T ) which

inverts T . Then C
G
(T(2)) = T 〈θ〉. By the Lang-Steinberg theorem, there is g ∈ G

such that g−1σ(g) ∈ θT ; then σ(gtg−1) = gt∓qg−1 for t ∈ T , and thus σ acts on

gTg−1 via t �→ t∓q. We can thus assume T was chosen so that G ∩ T = C
T
(σ)

contains the 4-torsion subgroup T (4) ≤ T . Let X1 ⊆ X be the fixed point set of

the conjugation action of T (4) on X. For F ∈ X1, either the action of T (4) fixes

F pointwise, in which case F ∈ X0, or there are x, y ∈ F such that [x, T (4)] = 1

and [y, T (4)] = 〈x〉. But then [F, T ∗
(4)] = 1 for some T ∗

(4) < T (4) of index two,

[F, T(2)] = 1 implies F ≤ T(2)〈θ〉; and F ≤ T(2) since no element in T (4)�T(2)

commutes with any element of T(2)θ. So X1 = X0 in this case.

Thus in both cases, X0 is the fixed point set of an action of a 2-group on X

which normalizes X. Since |X0| is odd, so are |X| and |X|. �
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We are now ready to prove:

Proposition A.12. Fix an odd prime power q. Assume G is a quasisimple
group of universal type isomorphic to G2(q), F4(q), E6(q), E7(q), or E8(q). Then
Ker(μG) = 1.

Proof. This holds when G ∼= G2(q) by Proposition A.6, so we can assume
Hypotheses A.7. Let X be the set of all elementary abelian 2-subgroups E ≤ G
such that either G �= E7, rk(E) = 2, and qE = 0; or G = E7, rk(E) = 3, and
E = Z(G) × E0 where qE0

= 0. By Lemma A.11, |X| is odd. In all cases, by

Lemma A.9, Ẑ(G) ⊆ X. By Proposition A.2(a,b), to prove μG is injective, it

remains to show that if Ẑ(G) �= ∅, then Ẑ(G) has odd order and is contained in a
single G-conjugacy class, and AutG(Z(S)) = 1.

Fix E ∈ X such that E ≤ T(2). We first claim that if G = F4, E6, or E7, then
C

G
(E) is connected, and hence all elements in X are G-conjugate to E by Propo-

sition A.4. If G = E7, then C
G
(E) is connected by [Gr, Proposition 9.5(iii)(a)].

If G = F4 or E6, then for x ∈ E, C
G
(x) ∼= Spin9(Fq0) or Fq0 ×C4

Spin10(Fq0),

respectively (see [Gr, Table VI]). Since the centralizer of each element in the sim-

ply connected groups Spin9(Fq0) and Spin10(Fq0) is connected [St3, Theorem 8.1],
C

G
(E) is connected in these cases.

Now assume G = E8. We can assume G = C
G
(ψq), where ψq is the field

automorphism; in particular, ψq(t) = tq for t ∈ T . Fix x, y ∈ E such that E =
〈x, y〉. By [Gr, Lemma 2.16(ii)], (T(2), q) is of positive type (has a 4-dimensional

totally isotropic subspace). Hence E⊥ = E × V1 × V2, where dim(Vi) = 2 and

q(Vi�1) = 1 for i = 1, 2, and V1 ⊥ V2. Thus (qE⊥)−1(1) =
⋃2

i=1

(
(Vi�1)×E

)
, and

by Lemma A.8(b,c), these are the restrictions to T(2) of Weyl reflections wα for α ∈
Σ such that E ≤ Ker(θα). Also, CW (E) ∼= W (D4)�C2. By Proposition 2.5, C

G
(E)0

has type D4 ×D4 and |π0(CG
(E))| = 2. More precisely, C

G
(E) = (H1 ×E H2)〈δ〉,

where Hi
∼= Spin8(Fq0) and Z(Hi) = E for i = 1, 2, and conjugation by δ ∈ N

G
(T )

exchanges V1 and V2 and hence exchanges H1 and H2.
By Proposition A.4, the two connected components in the centralizer give rise

to two G-conjugacy classes of subgroups which are G-conjugate to E, represented
by E and gEg−1 where g−1σ(g) lies in the nonidentity component of C

G
(E). Then

CG(E) contains a subgroup Spin+8 (q) ×C2
2
Spin+8 (q) with index 8 (the extension

by certain pairs of diagonal automorphisms of the Spin+8 (q)-factors, as well as an
automorphism which switches the factors). So E = Z(T ) for T ∈ Syl2(CG(E)),

and E ∈ Ẑ(G). Also, gyg−1 ∈ CG(gEg−1) if and only if y ∈ C
G
(E) and τ̃(y) = y

where τ̃ = cg−1σ(g) ◦ σ. Then τ̃ switches the central factors in C
G
(E), and the

group CC
G
(E)(τ̃) splits as a product of E times the group of elements which are

invariant after lifting τ̃ to the 4-fold cover Spin8(Fq0) � C2. Since gEg−1 intersects
trivially with the commutator subgroup of CG(gEg−1), Ω1(Z(T )) > gEg−1 for any

T ∈ Syl2(CG(gEg−1)) (since Z(T ) ∩ [T, T ] �= 1); and thus gEg−1 /∈ Ẑ(G). Thus

Ẑ(G) is the G-conjugacy class of E, and has odd order by Lemma A.11.

Thus, in all cases, if Ẑ(G) is nonempty, it has odd order and is contained in

one G-conjugacy class. Also, Z(S) ≤ CE(AutS(E)) < E for E ∈ Ẑ(G), so either
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|Z(S)| = 2, or G = E7, Z(S) ∼= C2
2 , and the three involutions in Z(S) belong to

three different G-conjugacy classes. Hence AutG(Z(S)) = 1. �
It remains to prove Lemma A.9, which is split into the two Lemmas A.14 and

A.15. The next proposition will be used to show that certain elementary abelian

subgroups are not in Ẑ.

Proposition A.13. Assume Hypotheses A.7. Let E ≤ T(2) and x ∈ T(2)�E
be such that the orbit of x under the CW (E)-action on T(2) has odd order. Then

no subgroup of S which is G-conjugate to E is in Ẑ. More generally, if E ≥ E is
also elementary abelian, and is such that x is not C

G
(E)-conjugate to any element

of E, then for any L � G which contains {gxg−1 | g ∈ G} ∩ G, no subgroup of S

which is G-conjugate to E is in Ẑ.

Proof. In [O2], an elementary abelian p-subgroup E < G is called pivotal
if Op(AutG(E)) = 1, and E = Ω1(Z(P )) for some P ∈ Sylp(CG(E)). In partic-

ular, by Lemma A.1(a), the subgroups in Ẑ are all pivotal. Note that T(2) ≤ G
by Hypotheses A.7. By [O2, Proposition 8.9], no subgroup satisfying the above

conditions can be pivotal, and hence they cannot be in Ẑ. �

In the next two lemmas, we show that in all cases, E ∈ Ẑ implies rk(E) = 2
and qE = 0 if G �= E7, with a similar result when G = E7. We first handle those

subgroups which are toral (contained in a maximal torus in G), and then those

which are not toral. By a 2Ak-subgroup or subgroup of type 2Ak (2Bk-subgroup

or subgroup of type 2Bk) is meant an elementary abelian 2-subgroup of rank k all
of whose nonidentity elements are in class 2A (class 2B).

Lemma A.14. Assume Hypotheses A.7. Fix some E ∈ Ẑ which is contained in

a maximal torus of G. Then either G �= E7, rk(E) = 2, and qE = 0; or G = E7,

Z = Z(G) ∼= C2, and E = Z × E0 where rk(E0) = 2 and qE0
= 0. In all cases,

Aut
G
(E) ∼= Σ3.

Proof. Set Z = O2(Z(G)) ≤ T(2). Thus |Z| = 2 if G = E7, and |Z| = 1
otherwise. Recall that AutG(T(2)) = Aut

G
(T(2)) = Aut(T(2), q) by Lemmas 2.9 and

A.8(a).
The following notation will be used to denote isomorphism types of quadratic

forms over F2. Let [n]± denote the isomorphism class of a nondegenerate form of
rank n. When n is even, [n]+ denotes the hyperbolic form (with maximal Witt
index), and [n]− the form with nonmaximal Witt index. Finally, a subscript “(k)”
denotes sum with a k-dimensional trivial form. By [Gr, Lemma 2.16], qT(2)

has

type [2]−(2), [6]
−, [7], or [8]+ when G = F4, E6, E7, or E8, respectively.

Fix E ≤ T(2); we want to determine whether E can be G-conjugate to an

element of Ẑ. Set E1 = E ∩E⊥ (the orthogonal complement taken with respect to
q), and set E0 = Ker(qE1

). Note that E1 > E0 if G = E7 (E ≥ Z).
Assume first that E0 = 1. If G = F4, then T(2) ∩ 2B is a CW (E)-orbit of odd

order. If G = Er and E1 = 1, then E × E⊥, E⊥ is CW (E)-invariant, and hence
there is 1 �= x ∈ E⊥ whose CW (E)-orbit has odd order. If G = Er and rk(E1) = 1,
then E ∩ E⊥ = E1, there is an odd number of involutions in E⊥�E1 of each type
(isotropic or not), and again there is 1 �= x ∈ E⊥ whose CW (E)-orbit has odd
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order. In all cases, x has the property that CW (〈E, x〉) has odd index in CW (E).

So by Proposition A.13, no subgroup of G which is G-conjugate to E can be in Ẑ.
Thus E0 �= 1. Set k = rk(E0). Then∣∣π0(CG

(E))
∣∣ = ∣∣CW (E)

/〈
wα

∣∣α ∈ Σ, E ≤ Ker(θ(α))
〉∣∣ [Proposition 2.5]

≤
∣∣CW (T(2))

∣∣ · ∣∣CSO(T(2),q)(E)
/〈

γv
∣∣ v ∈ 2A ∩E⊥〉∣∣ [Lemma A.8 (a,b)]

≤
∣∣CW (T(2))

∣∣ · ∣∣CSO(T(2),q)(E
⊥
0 )
∣∣ · ∣∣CSO(E⊥

0 ,q)(E)
/〈

γv
∣∣ v ∈ 2A ∩ E⊥〉∣∣ .(5)

The first factor is easily described:

(6)
∣∣CW (T(2))

∣∣ = 2ε where ε =

{
1 if −Id ∈ W (if G = F4, E7, E8)

0 if −Id /∈ W (if G = E6).

We next claim that

(7)
∣∣CSO(T(2),q)(E

⊥
0 )
∣∣ ≤ 2(

k
2) ,

with equality except possibly when G = F4. To see this, let F1 < T(2) be a subspace

complementary to E⊥
0 . Each α ∈ CAut(T(2))(E

⊥
0 ) has the form α(x) = xψ(x) for

some ψ ∈ Hom(F1, E0), and α is orthogonal if and only if x ⊥ ψ(x) for each x.

The space of such homomorphisms has dimension at most
(
k
2

)
(corresponding to

symmetric k× k matrices with zeros on the diagonal); with dimension equal to
(
k
2

)
if dim(F1) = dim(E0) (which occurs if q is nondegenerate).

Write (E0)
⊥ = E×F2, where E

⊥ = E0×F2 and the form qF2
is nondegenerate.

By [Ta, Theorem 11.41], SO(F2, qF2
) is generated by transvections unless qF2

is of
type [4]+, in which case the reflections generate a subgroup of SO(F2, qF2

) ∼= Σ3 �C2

isomorphic to Σ3×Σ3. Also, F2 is generated by nonisotropic elements except when
qF2

is of type [2]+, and when this is the case, all automorphisms of (E0)
⊥ which

induce the identity on E and on (E0)
⊥/E0 are composites of transvections. (Look

at the composites γvx ◦ γv for v ∈ F2 and x ∈ E0.) Hence∣∣CSO(E⊥
0 ,q)(E)

/〈
γv
∣∣ v ∈ 2A ∩ E⊥〉∣∣ ≤ 2η

where η = 1 if qE⊥ has type [4]+(k), η = k if qE⊥ has type [2]+(k), and η = 0

otherwise. Together with (5), (6), and (7), this proves that

(8) |π0(CG
(E))| ≤ 2(

k
2)+ε+η where ε ≤ 1.

Now, N
G
(E) ≤ C

G
(E)0N

G
(T ) by the Frattini argument: each maximal torus

which contains E lies in C
G
(E)0 and hence is C

G
(E)0-conjugate to T . So each

element of Aut
G
(E) is represented by a coset of T in N

G
(T ), and can be chosen

to lie in G by Lemma 2.9. Thus the action described in Proposition A.4 which

determines the automizers AutG(E
∗) for E∗ G-conjugate to E is the conjugation

action of Aut
G
(E) on the set of conjugacy classes in π0(CG

(E)). In particular, this
action is not transitive, since the identity is fixed.

Set � = rk(E/E0) − 1 if G = E7 and � = rk(E/E0) otherwise. Every auto-
morphism of E which induces the identity on E0Z and on E/E0 is orthogonal, and
hence the restriction of an element of O2(CW (E)). Thus |O2(Out

G
(E))| ≥ 2k�. If

E∗ ∈ Z is G-conjugate to E, then since AutG(E
∗) has a strongly 2-embedded sub-

group, 2k� ≤ δ(Aut
G
(E)) <

∣∣π0(CG
(E))

∣∣ by Proposition A.4 and Lemma A.5(a),

with strict inequality since the action of N
G
(E) on π0(CG

(E)) is not transitive.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

106 APPENDIX A: INJECTIVITY OF μG

Together with (8), and since ε ≤ 1, this implies that k� ≤
(
k
2

)
+ η ≤

(
k
2

)
+ k. Thus

� ≤ k+1
2 , and � ≤ k−1

2 if η = 0. By definition, η = 0 whenever rk(E1/E0) = 1,
which is the case if G = E7 or � is odd. Since 2k + � ≤ 8, we are thus left with the
following possibilities.

• If (k, �) = (3, 2), then G = E8, E has form of type [2]+(3), so E⊥ = E0 has trivial

form, and η = 0. Thus k� �
(
k
2

)
+ η, so this cannot occur.

• If (k, �) = (3, 1), then G = E8, E has form of type ∗+3, and rk(E) = rk(E1) = 4.
Then Aut

G
(E) ∼= C3

2 � GL3(2), so δ(Aut
G
(E)) ≥ 23 · 28 by Lemma A.5(a,d).

Since |π0(CG
(E))| ≤ 16, this case is also impossible.

• If (k, �) = (4, 0), then G = E8 and E = E0 is isotropic of rank 4. By Proposition

2.5 and Lemma A.8(c), C
G
(E)0 = T . By [CG, Proposition 3.8(ii)], π0(CG

(E))

is extraspecial of order 27 and Aut
G
(E) ∼= GL4(2). (This is stated for sub-

groups of E8(C), but the same argument applies in our situation.) In par-
ticular, π0(CG

(E)) has just 65 conjugacy classes. Since δ(GL4(2)) = 112 by

Lemma A.5(d), Proposition A.4 implies that AutG(E
∗) cannot have a strongly

2-embedded subgroup.

• If (k, �) = (3, 0), then E = Z ×E0 where dim(E0) = 3, and Aut
G
(E) ∼= GL3(2).

If G = E6 or E7, then E⊥ = E, and |π0(CG
(E))| ≤ 16 by (8).

If G = E8, then (E⊥, qE⊥) has type [2]+(3). By the arguments used to prove

(8),

|CW (E)| = |CW (T(2))| · |CSO(T(2),q)(E
⊥
0 )| · |CSO(E⊥

0 ,q)(E)| = 2 · 23 · 27 = 211.

Also, E⊥ contains exactly 8 nonisotropic elements, they are pairwise orthogonal,
and hence determine 8 pairwise commuting transvections on T(2). These extend
to 8 Weyl reflections which are pairwise commuting since no two can generate a
dihedral subgroup of order 8 (this would imply two roots of different lengths).
Hence by Proposition 2.5, C

G
(E)0 has type (A1)

8 and |π0(CG
(E))| = 211/28 =

23. Since δ(GL3(2)) = 28 by Lemma A.5(c), this case cannot occur.

• If (k, �) = (2, 0), then E = Z × E0 where dim(E0) = 2. Then E is as described
in the statement of the lemma. �

It remains to handle the nontoral elementary abelian subgroups.

Lemma A.15. Assume Hypotheses A.7. Let E ≤ G be an elementary abelian

2-group which is not contained in a maximal torus of G. Then E /∈ Ẑ.

Proof. To simplify notation, we write K = Fq0 . Set Z = O2(Z(G)) ≤ T(2).
Thus |Z| = 2 if G = E7, and |Z| = 1 otherwise. The maximal nontoral subgroups

of G are described in all cases by Griess [Gr].

(A) If G = F4 or E6, then by [Gr, Theorems 7.3 & 8.2], G contains a unique
conjugacy class of maximal nontoral elementary abelian 2-subgroups, repre-
sented by W5 of rank five. There is a subgroup W2 ≤ W5 of rank two such
that W5 ∩ 2A = W5�W2. Also, Aut

G
(E5) = Aut(E5, qE5

): the group of all
automorphisms of W5 which normalize W2. A subgroup E ≤ W5 is nontoral
if and only if it contains a 2A3-subgroup.
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When G = F4, we can assume W5 = T(2)〈θ〉, where θ ∈ N
G
(T ) inverts the

torus.

(B) If G = E7, then by [Gr, Theorem 9.8(i)], G contains a unique maximal
nontoral elementary abelian 2-subgroup W6, of rank six. For any choice of
E6(K) < G, W5 < E6(K) (as just described) has rank 5, is nontoral since it
contains a 2A3-subgroup, and so we can take W6 = Z ×W5.

Each coset of Z of involutions in G�Z contains one element of each class
2A and 2B. Together with the above description of E5, this shows that all
2A2-subgroups of W6 are contained in W5. Hence for each nontoral subgroup
E ≤ W6 which contains Z, E∩W5 is the subgroup generated by 2A2-subgroups
of E, thus is normalized by Aut

G
(E), and so

Aut
G
(E) ∼= Aut

G
(E ∩W5) = Aut(E ∩W5, qE∩W5

) ∼= Aut(E, qE)

Aut
G
(W6) ∼= Aut(W6, qW6

) ∼= C6
2 � (Σ3 ×GL3(2))

For Z ≤ E ≤ W6, the subgroup E is nontoral exactly when it contains
a 2A3-subgroup. This is immediate from the analogous statement in (A) for
E6(K).

(C) If G = E8, then by [Gr, Theorem 2.17], G contains two maximal elementary
abelian subgroups W8 and W9, neither of which is toral [Gr, Theorem 9.2].

An elementary abelian 2-subgroup E ≤ G is nontoral if and only if qE is not
quadratic or E has type 2B5 [Gr, Theorem 9.2].

We refer to [Gr, Theorem 2.17] for descriptions of W8 and W9. There
are subgroups F0 ≤ F1, F2 ≤ W8 such that rk(F0) = 2, rk(F1) = rk(F2) = 5,
F1 ∩ F2 = F0, and W8 ∩ 2A = (F1�F0) ∪ (F2�F0). Also, Aut

G
(W8) is the

group of those automorphisms of W8 which leave F0 invariant, and either leave
F1 and F2 invariant or exchange them.

We can assume that W9 = T(2)〈θ〉, where θ ∈ N
G
(T ) inverts T . Also,

W9�T(2) ⊆ 2B. Hence T(2) = 〈W9 ∩ 2A〉 is Aut
G
(W9)-invariant. Each au-

tomorphism of W9 which is the identity on T(2) is induced by conjugation by

some element of order 4 in T , and thus Aut
G
(W9) is the group of all automor-

phisms whose restriction to T(2) lies in Aut
G
(T(2)).

We next list other properties of elementary abelian subgroups of G, and of their
centralizers and normalizers, which will be needed in the proof.

(D) If G = E8, E ≤ G, E ∼= Cr
2 , and |E ∩ 2A| = m, then dim(C

G
(E)) =

28−r + 25−rm− 8.

This follows from character computations: if g denotes the Lie algebra

of G = E8(K), then dim(C
G
(E)) = dim(Cg(E)) = |E|−1

∑
x∈E χg(x). By

[Gr, Table VI], χg(1) = dim(G) = 248, and χg(x) = 24 or −8 when x ∈ 2A
or 2B, respectively.

(E) If G = E8, E ≤ G is an elementary abelian 2-group, and Et < E has index 2

and is such that E�Et ⊆ 2B, then there is g ∈ G such that gE ≤ W9 = T(2)〈θ〉
and gEt ≤ T(2).
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It suffices to prove this when E is maximal among such such pairs Et < E.
We can assume that E is contained in W8 or W9.

If E ≤ W8, then in the notation of (C), F0 ≤ E (since E is maximal), and
either rk(E ∩Fi) = 3 for i = 1, 2 and rk(E) = 6, or rk(E ∩ Fi) = 4 for i = 1, 2
and rk(E) = 7. These imply that |E ∩ 2A| = 8 or 24, respectively, and hence

by (D) that dim(C
G
(Et)) = 8 (C

G
(Et)

0 = T ) and dim(C
G
(E)) = 0. Hence in

either case, if g ∈ G is such that gEt ≤ T(2), then
gE�gEt ⊆ θT , and there is

t ∈ T such that tgE ≤ T(2)〈θ〉 = W9.

If E ≤ W9, set E2 = 〈E∩2A〉. Then E2 ≤ E∩T(2) and E2 ≤ Et, so there
is nothing to prove unless rk(E/E2) ≥ 2. In this case, from the maximality of
E, we see that Et = Ea × Eb, where Ea

∼= C2
2 has type 2ABB, Eb is a 2B3-

group, and Ea ⊥ Eb with respect to the form q. Thus rk(E) = 6, |E∩2A| = 8,
and the result follows by the same argument as in the last paragraph.

(F) If G = E8, and E ≤ G is a nontoral elementary abelian 2-group, then either

E contains a 2A3-subgroup, or E is G-conjugate to a subgroup of W9.

Assume E ≤ W8 is nontoral and contains no 2A3-subgroup. We use the
notation F0 < F1, F2 < W8 of (C). Set Ei = E∩Fi for i = 0, 1, 2. Then qE1E2

is quadratic: it is the orthogonal direct sum of qE0
, qE1/E0

, and qE2/E0
, each of

which is quadratic since rk(Ei/E0) ≤ 2 for i = 1, 2 (E has no 2A3-subgroup).
Hence E > E1E2 ≥ 〈E ∩ 2A〉 since E is nontoral, so E is conjugate to a
subgroup of W9 by (E).

(G) Let E ≤ G be an elementary abelian 2-subgroup, and let Et ≤ E be maximal
among toral subgroups of E. Assume that Et ∩E⊥

t ∩ 2B = ∅, and that either

rk(T )− rk(Et) ≥ 2 or Et ∩E⊥
t = 1. Then E /∈ Ẑ.

To see this, choose F ≥ Ft which is G-conjugate to E ≥ Et and such that
Ft = F ∩ T(2). By maximality, no element of F�Ft is CG

(Ft)-conjugate to an

element of T . If Ft∩F⊥
t = 1, then some CW (Ft)-orbit in F⊥

t �1 has odd order.
Otherwise, since q is linear on Ft∩F⊥

t , we have Ft∩F⊥
t = 〈y〉 for some y ∈ 2A,

in which case |q−1
F⊥

t
(0)| = |F⊥

t |/2 is even since rk(F⊥
t ) ≥ rk(T ) − rk(Ft) ≥ 2.

So again, some CW (Ft)-orbit in F⊥
t �1 has odd order in this case. Point (G)

now follows from Proposition A.13.

(H) Assume G = E8. Let 1 �= E0 ≤ E ≤ G be elementary abelian 2-subgroups,
where rk(E) = 3, and E ∩ 2A = E0�1. Then

C
G
(E) ∼=

⎧⎪⎨⎪⎩
E × F4(K) if rk(E0) = 3

E × PSp8(K) if rk(E0) = 2

E × PSO8(K) if rk(E0) = 1.

To see this, fix 1 �= y ∈ E0, and identify C
G
(y) ∼= SL2(K)×C2

E7(K). For

each x ∈ E�〈y〉, since x and xy are G-conjugate, x �= (1, b) for b ∈ E7(K).
Thus x = (a, b) for some a ∈ SL2(K) and b ∈ E7(K) both of order 4, and (in
the notation of [Gr, Table VI]) b is in class 4A or 4H since b2 ∈ Z(E7(K)).
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By (D) and [Gr, Table VI],

dim(C
G
(E)) =

{
80 = dim(CE7(K)(4H)) + 1 if E has type 2AAA

64 = dim(CE7(K)(4A)) + 1 if E has type 2ABB,

and thus x ∈ 2A if b ∈ 4H and x ∈ 2B if b ∈ 4A. Thus if E = 〈y, x1, x2〉,
and xi = (ai, bi), then 〈a1, a2〉 ≤ SL2(K) and 〈b1, b2〉 ≤ E7(K) are both
quaternion of order 8. Point (H) now follows using the description in [Gr,
Proposition 9.5(i)] of centralizers of certain quaternion subgroups of E7(K).
When combined with the description in [Gr, Table VI] of CE7(K)(4A), this
also shows that

(9) F ∼= C2
2 of type 2ABB =⇒ C

G
(F )0 is of type A7T

1

(i.e., C
G
(F )0 ∼= (SL8(K)×K×)/Z, for some finite subgroup Z ≤ Z(SL8(K))×

K×).

(I) If U < G is a 2A3-subgroup, then C
G
(U) = U ×H, where H is as follows:

G F4 E6 E7 E8

H SO3(K) SL3(K) Sp6(K) F4(K)

When G = E8, this is a special case of (H). For x ∈ 2A ∩ F4(K),
CE8(K)(x) ∼= SL2(K)×C2

E7(K) by [Gr, 2.14]. Since CF4(K)(x) ∼= SL2(K)×C2

Sp6(K), this shows that CE7(K)(U) ∼= U × Sp6(K).

Similarly, CE8(K)(y) ∼= SL3(K)×C3
E6(K) by [Gr, 2.14] again (where y is

in class 3B in his notation). There is only one class of element of order three
in F4(K) whose centralizer contains a central factor SL3(K) — CF4(K)(y) ∼=
SL3(K) ×C3

SL3(K) for y of type 3C in F4(K) — and thus CE6(K)(U) ∼=
U × SL3(K).

If G = F4, then by [Gr, 2.14], for y ∈ 3C, C
G
(y) ∼= SL3(K)×C3

SL3(K).
Also, the involutions in one factor must all lie in the class 2A and those in
the other in 2B. This, together with Proposition 2.5, shows that for U2 < U
of rank 2, C

G
(U2) ∼= (T 2 ×C3

SL3(K))〈θ〉, where θ inverts a maximal torus.

Thus C
G
(U) = U ×CSL3(K)(θ), where by [Gr, Proposition 2.18], CSL3(K)(θ) ∼=

SO3(K). This finishes the proof of (I).

For the rest of the proof, we fix a nontoral elementary abelian 2-subgroup E <

G. We must show that E /∈ Ẑ. In almost all cases, we do this either by showing that
the hypotheses of (G) hold, or by showing that δ(Aut

G
(E)) > |π0(CG

(E))| (where
δ(−) is as in Lemma A.5), in which case AutG(E) has no strongly 2-embedded

subgroup by Proposition A.4, and hence E /∈ Ẑ.
By (A), (B), and (F), either E contains a 2A3-subgroup of rank three, or

G = E8 and E is G-conjugate to a subgroup of W9. These two cases will be
handled separately.
Case 1: Assume first that E contains a 2A3-subgroup U ≤ E. From the lists in
(A,B,C) of maximal nontoral subgroups, there are the following possibilities.

G = F4, E6, or E7: By (A,B), we can write E = U × E0 × Z, where E0 is a

2Bk subgroup (some k ≤ 2) and UE0�E0 ⊆ 2A (and where Z = 1 unless

G = E7). If k = 0, then E /∈ Ẑ by (G), so assume k ≥ 1. By (I), and since
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each elementary abelian 2-subgroup of SL3(K) and of Sp6(K) has connected
centralizer, π0(CG

(E)) ∼= U if G = E6 or E7. If G = F4, then by (I) again,

and since the centralizer in SO3(K) ∼= PSL2(K) of any Ck
2 has 2k components,

|π0(CG
(E))| = 23+k.

By (A,B) again, Aut
G
(E) is the group of all automorphisms which normalize

E0 and UE0 and fix Z. Hence

|O2(Aut
G
(E))| = 23k and Aut

G
(E)/O2(Aut

G
(E)) ∼= GL3(2)×GLk(2) .

So δ(Aut
G
(E)) ≥ 23k+3 > |π0(CG

(E))| by Lemma A.5, and E /∈ Ẑ.

G = E8: By (I), C
G
(U) = U × H where H ∼= F4(K). Set E2 = E ∩ H, and let

E0 = 〈E2 ∩ 2B〉. Set k = rk(E0) and � = rk(E2/E0).

If k = 0, then E2 has type 2A�, and E�(U ∪ E2) ⊆ 2B. So each maximal
toral subgroup Et < E has the form Et = U1×U2, where rk(U1) = 2, rk(U2) ≤ 2,

and Et ∩ 2A = (U1 ∪U2)�1. The hypotheses of (G) thus hold, and so E∗ /∈ Ẑ.

Thus k = 1, 2. If � ≤ 2, then E2 is toral, and

|π0(CG
(E))| = 8 · |π0(CH(E2))| ≤ 23+k

by formula (8) in the proof of Lemma A.14. (Note that ε = 1 and η = 0
in the notation of that formula.) If � = 3, then |π0(CG

(E))| = 26+k by the

argument just given for F4(K). Also, Aut
G
(E) contains all automorphisms of

E which normalize E0, and either normalize UE0 and E2 or (if � = 3) exchange
them: since in the notation of (C), each such automorphism extends to an
automorphism of W8 which normalizes F1 and F2. So |O2(Aut

G
(E))| ≥ 2k(3+�),

and Aut
G
(E)/O2(Aut

G
(E)) ∼= GL3(2)×GLk(2)×GL�(2) or (if � = 3) (GL3(2) �

C2)×GLk(2). In all cases, δ(Aut
G
(E)) ≥ 23k+�k+3 > |π0(CG

(E))|, so E /∈ Z.

Case 2: Now assume that G = E8, and that E is G-conjugate to a subgroup
of W9. To simplify the argument, we assume that E ≤ W9, and then prove that

no subgroup E∗ ∈ Ẑ can be G-conjugate to E. Recall that W9 = T(2)〈θ〉, where
θ ∈ N

G
(T ) inverts the torus and θT(2) ⊆ 2B.

If E∩2A = ∅, then rk(E) = 5. In this case, Aut
G
(E) ∼= GL5(2) and |C

G
(E)| =

215 [CG, Proposition 3.8]. (Cohen and Griess work in E8(C), but their argument

also holds in our situation.) Since δ(GL5(2)) > 215 by Lemma A.5(d), no E∗ ∈ Ẑ
can be G-conjugate to E.

Now assume E has 2A-elements, and set E2 = 〈E∩2A〉. Then E2 ≤ T(2) (hence

qE2
is quadratic) by the above remarks. Set E1 = E⊥

2 ∩E2 and E0 = Ker(qE1
). If

E0 = 1 and rk(E2) �= 7, then by (G), no subgroup of S which is G-conjugate to E

lies in Ẑ.
It remains to consider the subgroups E for which E0 �= 1 or rk(E2) = 7.

Information about |O2(Aut
G
(E))| and |π0(CG

(E))| for such E is summarized in
Table A.1. By the “type of qE” is meant the type of quadratic form, in the notation
used in the proof of Lemma A.14.

We first check that the table includes all cases. If rk(E/E2) = 1, then E2 =
E ∩ T(2), and the table lists all types which the form qE2

can have. Note that

since E2 is generated by nonisotropic vectors, qE2
cannot have type [2]+(k). If
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C
ase

n
r.

rk(E
/E

2 )

rk(E
2 /E

0 )

rk(E
0 )

qE2

type

|π
0 (C

G (E
∗
))|

|O
2 (A

u
t
G (E

∗
))|

δ(A
u
t
G (E

∗
))

1 1 7 0 [7] ≤ 29 27 ≥ 213

2 1 6+ 1 [6]+(1) ≤ 29 213 ≥ 217

3 1 5 1 [5](1) ≤ 210 211 ≥ 3 · 213

4 1 4+ 2 [4]+(2) ≤ 210 214 ≥ 216

5 1 4+ 1 [4]+(1) ≤ 28 29 ≥ 210

6 1 4− 1 [4]−(1) ≤ 27 29 ≥ 210

7 1 3 2 [3](2) ≤ 26 211 ≥ 212

8 1 3 1 [3](1) ≤ 25 27 ≥ 27

9 1 2− 2 [2]−(2) ≤ 25 28 ≥ 29

10 1 2− 1 [2]−(1) ≤ 24 25 ≥ 25

11 2 1 3 [1](3) ≤ 212 211 ≥ 214

12 2 1 2 [1](2) ≤ 28 28 ≥ 29

13 2 1 1 [1](1) ≤ 25 25 ≥ 25

Table A.1

rk(E/E2) = 2, then qE2
is linear, and must be one of the three types listed. Since

qE∩T(2)
is quadratic and qE is not, E2 has index at most 2 in E ∩ T(2).

We claim that

(10)

E,F < W9, α ∈ Iso(E,F ) such that α(E ∩ T(2)) = F ∩ T(2) and

α(E ∩ 2A) = F ∩ 2A =⇒ α = ctg for some t ∈ T and some

g ∈ NG(T ) = G ∩N
G
(T ).

By (C) and Witt’s theorem (see [Ta, Theorem 7.4]), there is g ∈ N
G
(T ) such that

α|E∩T(2)
= cg, and we can assume g ∈ G by Lemma 2.9. Then gE�g(E∩T(2)) ≤ θT

since θT ∈ Z(N
G
(T ))/T , so α = ctg for some t ∈ T . This proves (10). In particular,

any two subgroups of W9 which have the same data as listed in the first three rows

of Table A.1 are G-conjugate.
By (10), together with (E) when rk(E/E2) = 2, we have Aut

G
(E) = Aut(E, qE)

in all cases. Thus Aut
G
(E) is the group of all automorphisms of E which normalize

E0 and E2 and preserve the induced quadratic form on E2/E0. This gives the value
for |O2(Aut

G
(E))| in the table, and the lower bounds for δ(Aut

G
(E)) then follow

from Lemma A.5.
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In cases 1–6, the upper bounds for |π0(CG
(E))| given in the table are proven in

[O2, p. 78–79]. In all cases, |π0(CG
(E2))| is first computed, using Proposition 2.5 or

the upper bound given in formula (8) in the proof of the last lemma, and then [O2,
Proposition 8.8] is used to compute an upper bound for |π0(CG

(E))|
/
|π0(CG

(E2))|.
There is in fact an error in the table on [O2, p. 79] (the group CG(E0)

0
s in the

third-to-last column should be SL2 × SL2 up to finite cover), but correcting this
gives in fact a better estimate |π0(CG

(E))| ≤ 29.
Case nr. 11 can be handled in a similar way. Set Et = E ∩ T(2) < E, so that

|E/Et| = 2 = |Et/E2|. The form qEt
has type [2]+(3), while E⊥

t has type 2B3.

Hence |π0(CG
(Et))| ≤ 24 by (8). By [O2, Proposition 8.8], |π0(CG

(E))| ≤ 24+r,

where r = dim(T ) = 8.

To handle the remaining cases, fix rank 2 subgroups F1, F2 ≤ T(2) < G with
involutions of type AAA and ABB, respectively, and consider the information in
Table A.2. The description of C

G
(Fi〈θ〉) follows from (H). The third through fifth

dim(C
G
(Fi)〈θ, g〉) for g as follows:

i C
G
(Fi〈θ〉)

−I4 ⊕ I4 −I2 ⊕ I6 order 4 2A 2B

1 F1〈θ〉 × PSp8(K) 20 24 16 16 20

2 F2〈θ〉 × PSO8(K) 12 16 16 16 12

Table A.2

columns give dimensions of centralizers of Fi〈θ〉〈g〉, for g as described after lifting
to Sp8(K) or SO8(K). (Here, Im denotes the m × m identity matrix.) The last
two columns do this for g ∈ 2A or 2B, respectively, when g ∈ T(2) is orthogo-
nal to Fi with respect to the form q, and the dimensions follow from (D). Thus
elements of class 2B lift to involutions in Sp8(K) or SO8(K) with 4-dimensional
(−1)-eigenspace, while for i = 1 at least, elements of class 2A lift to elements of
order 4 in Sp8(K).

Thus in all of the cases nr. 7–13 in Table A.1, we can identify E = Fi〈θ〉×F ∗,
where i = 1 in nr. 7–10 or i = 2 in nr. 11–13, and where F ∗ lifts to an abelian
subgroup of Sp8(K) or SO8(K) (elementary abelian except for nr. 7–8). This
information, together with the following:

H a group, Z ≤ Z(H), |Z| = p, Z ≤ P ≤ H a p-subgroup

=⇒
∣∣CH/Z(P )

/
CH(P )/Z

∣∣ ≤ |P/Fr(P )|

(applied with H = Sp8(K) or SO8(K)), imply the remaining bounds in the last line
of Table A.1.

In all but the last case in Table A.1, δ(Aut
G
(E)) > |π0(CG

(E))|, so no E∗ ∈ Ẑ
is G-conjugate to E by Proposition A.4. In the last case, by the same proposi-

tion, E can be G-conjugate to some E∗ ∈ Ẑ only if Aut
G
(E) acts transitively on

π0(CG
(E)) ∼= C5

2 with point stabilizers isomorphic to Σ3. By (10), each class in

O2(Aut
G
(E)) is represented by some element tg ∈ N

G
(E), where g ∈ NG(T )
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and t ∈ T . In particular, (tg)σ(tg)−1 = tσ(t)−1 ∈ T . So each class in the

O2(Aut
G
(E))-orbit of 1 ∈ π0(CG

(E)) has nonempty intersection with T . But

by (9), C
G
(F2)

0 ∩ θT = ∅, so θC
G
(E)0 ∩ T = ∅. Thus the action is not transitive

on π0(CG
(E)), and hence E∗ /∈ Ẑ. �
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Introduction

This paper is centered around the comparison of certain outer automorphism
groups associated to a sporadic simple group: outer automorphisms of the group
itself, those of its fusion at different primes, and those of its classifying space com-
pleted at different primes. In most, but not all cases (under conditions made precise
in Theorem A), these automorphism groups are all isomorphic. This comparison
is important when studying extensions of fusion systems, and through that plays
a role in Aschbacher’s program (see, e.g., [A5]) for reproving certain parts of the
classification theorem from the point of view of fusion systems.

When G is a finite group, p is a prime, and S ∈ Sylp(G), the p-fusion system
of G is the category FS(G) whose objects are the subgroups of G, and which has
morphism sets

MorFS(G)(P,Q) =
{
ϕ ∈ Hom(P,Q)

∣∣ϕ = cx, some x ∈ G with xPx−1 ≤ Q
}
.

A p-subgroup P ≤ G is called p-centric in G if Z(P ) ∈ Sylp(CG(P )); equivalently,
if CG(P ) = Z(P )×C ′

G(P ) for some (unique) subgroup C ′
G(P ) of order prime to p.

The centric linking system of G at p is the category Lc
S(G) whose objects are the

subgroups of S which are p-centric in G, and where

MorLc
S(G)(P,Q) = TG(P,Q)/C ′

G(P ) where TG(P,Q) =
{
x ∈ G

∣∣xPx−1 ≤ Q
}
.

Note that there is a natural functor π : Lc
S(G) −→ FS(G) which is the inclusion

on objects, and which sends the class of x ∈ TG(P,Q) to cx ∈ Hom(P,Q). Outer
automorphism groups of these systems were defined in [BLO] and later papers (see
below). We say that F = FS(G) is tamely realized by G if the natural homomor-
phism κG : Out(G) −→ Out(Lc

S(G)) is surjective and splits. The fusion system F
is tame if it is tamely realized by some finite group.

In terms of homotopy theory, it was shown in [BLO, Theorem B] that for a
finite group G and S ∈ Sylp(G), there is a natural isomorphism Out(Lc

S(G)) ∼=
Out(BG∧

p ). Here, BG∧
p is the p-completion, in the sense of Bousfield-Kan, of the

classifying space of G, and Out(X) means the group of homotopy classes of self
equivalences of the space X. Thus FS(G) is tamely realized by G if the natural
map from Out(G) to Out(BG∧

p ) is split surjective.
When p = 2, our main result is easily stated: if G is a sporadic simple group,

then the 2-fusion system of G is simple except when G ∼= J1, and is tamely realized
by G except when G ∼= M11. The 2-fusion system of M11 is tamely realized by
PSL3(3).

For p odd, information about fusion systems of the sporadic groups at odd
primes is summarized in Table 0.3. In that table, for a given group G and prime p
and S ∈ Sylp(G),

• a dash “—” means that S is abelian or trivial;
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• “constr.” means that FS(G) is constrained; and

• an almost simple group L in brackets means that FS(G) is almost simple but
not simple, and is shown in [A4, 16.10] to be isomorphic to the fusion
system of L.

For all other pairs (G, p), F is simple by [A4, 16.10], and we indicate what is known
about the nature of κG : Out(G) −→ Out(Lc

S(G)). In addition,

• a dagger (†) marks the pairs (G, p) for which S is extraspecial of order p3.

G |Out(G)| p = 3 p = 5 p = 7 p ≥ 11

M12 2 κ isom.† — — —

M24 1 [M12:2]
† — — —

J2 2 constr.† — — —

J3 2 constr. — — —

J4 1 [2F4(2)]
† — — 11: constr.†

Co3 1 κ isom. constr.† — —

Co2 1 κ isom. constr.† — —

Co1 1 κ isom. [SO5(5)] — —

HS 2 — constr.† — —

McL 2 κ isom. constr.† — —

Suz 2 κ isom. — — —

He 2 Out(L) = 1† — κ isom.† —

Ly 1 κ isom. κ isom. — —

Ru 1 [2F4(2)]
† [L3(5):2]

† — —

O’N 2 — — κ isom.† —

Fi22 2 κ isom. — — —

Fi23 1 κ isom. — — —

Fi′24 2 κ isom. — κ isom.† —

F5 2 κ isom. κ isom. — —

F3 1 κ isom. κ isom.† — —

F2 1 κ isom. κ isom. — —

F1 1 κ isom. κ isom. κ isom. 13: κ isom.†

Table 0.3. Summary of results for odd p

Here, a fusion system F = FS(G) is constrained if it contains a normal p-
subgroup Q � F such that CS(Q) ≤ Q. The fusion system F is simple if it has
no proper nontrivial normal fusion subsystems. It is almost simple if it contains a
proper normal subsystem F0 � F which is simple, and such that CF (F0) = 1. We
refer to [AKO, Definitions I.4.1 & I.6.1] for the definitions of normal p-subgroups
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and normal fusion subsystems, and to [A4, § 6] for the definition of the centralizer
of a normal subsystem.

Thus when G is a sporadic simple group and p is an odd prime such that the
p-fusion system F of G is simple, we show in all cases that F is tamely realized
by G, and in fact that Out(G) ∼= Out(Lc

S(G)) except when G ∼= He and p = 3
(Theorem A).

Before going further, we need to define more precisely the automorphism groups
which we are working with. All of the definitions given here apply to abstract
fusion and linking systems (see, e.g., [AKO, § III.4.3]), but for simplicity, we always
assume that F = FS(G) and L = Lc

S(G) for some finite group G with S ∈ Sylp(G).
Automorphisms of F = FS(G) are straightforward. An automorphism α ∈

Aut(S) is fusion preserving if it induces an automorphism of the category F (i.e.,
a functor from F to itself which is bijective on objects and on morphisms). Set

Aut(F) =
{
α ∈ Aut(S)

∣∣α is fusion preserving
}

Out(F) = Aut(F)/AutF (S).

Here, by definition, AutF (S) = AutG(S): the automorphisms induced by conju-
gation in NG(S). These groups were denoted Aut(S,F) and Out(S,F) in earlier
papers to emphasize that they are groups of automorphisms of S, but it seems
more appropriate here to regard them as automorphisms of the fusion system F
(as opposed to the category F).

Now assume L = Lc
S(G). For each P ∈ Ob(L), set ιP = [1] ∈ MorL(P, S) (the

“inclusion” of P in S in the category L), and set [[P ]] =
{
[g]
∣∣ g ∈ P

}
≤ AutL(P ).

Define

Aut(L) =
{
β ∈ Autcat(L)

∣∣β(ιP ) = ιβ(P ), β([[P ]]) = [[β(P )]], ∀P ∈ Fc
}

Out(L) = Aut(L)
/
〈cx |x ∈ NG(S)〉.

Here, Autcat(L) is the group of automorphisms of L as a category, and cx ∈ Aut(L)
for x ∈ NG(S) sends P to xP and [g] to [xg]. There are natural homomorphisms

Out(G)
κG−−−−−→ Out(L) μG−−−−−→

∼=Out(BG∧
p )

Out(F) and κG = μG ◦ κG.

Here, κG is defined by sending the class of α ∈ Aut(G), chosen so that α(S) = S, to
the class of α̂ ∈ Aut(L), where α̂(P ) = α(P ) and α̂([g]) = [α(g)]. For β ∈ Aut(L),
μG sends the class of β ∈ Aut(L) to the class of

β̂ =
(
S

g �→[g]−−−−−−→∼=
[[S]]

β|[[S]]−−−−−−→∼=
[[S]]

[g] �→g−−−−−−→∼=
S
)
∈ Aut(F) ≤ Aut(S).

Then κG : Out(G) −→ Out(F) is induced by restriction to S. See [AKO, § III.4.3]
or [AOV1, § 1.3] for more details on these definitions.

By recent work of Chermak, Oliver, and Glauberman and Lynd, the nature of
μG is now fairly well known in all cases.

Proposition 0.1 ([O2, Theorem C], [GlL, Theorem 1.1]). For each prime p,
and each finite group G with S ∈ Sylp(G), μG : Out(Lc

S(G)) −−−→ Out(FS(G)) is
surjective, and is an isomorphism if p is odd.

In fact, [O2] and [GlL] show that the conclusion of Proposition 0.1 holds for
all (abstract) fusion systems and associated linking systems.
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When G is a sporadic simple group and p is odd, a more direct proof that μG

is an isomorphism is given in [O1, Propositions 4.1 & 4.4].
The fusion system F = FS(G) is tamely realized by G if κG is split surjective,

and is tame if it is tamely realized by some finite group G∗ with S ∈ Sylp(G
∗)

and F = FS(G
∗). We refer to [AOV1, Theorems A & B] or [AKO, § III.6.1] for

the original motivation for this definition. In practice, it is in many cases easier to
study the homomorphism κG, which is why we include information about μG here.
The injectivity of κG, when p = 2 and G is a sporadic simple group, follows from a
theorem of Richard Lyons [Ly2, Theorem 1.1] (see the proof of Proposition 2.2).

Fusion systems of alternating groups were shown to be tame in [AOV1, Propo-
sition 4.8], while those of finite groups of Lie type (including the Tits group) were
shown to be tame in [BMO, Theorems C & D]. So the following theorem com-
pletes the study of tameness for fusion systems of the known finite nonabelian
simple groups.

Theorem A. Fix a sporadic simple group G, a prime p which divides |G|, and
S ∈ Sylp(G). Set F = FS(G) and L = Lc

S(G). Then F is tame. Furthermore, κG

and μG are isomorphisms (hence F is tamely realized by G) if p = 2, or if p is odd
and S is nonabelian, with the following two exceptions:

(a) G ∼= M11 and p = 2, in which case Out(G) = 1 and |Out(F)| = |Out(L)| =
2; and

(b) G ∼= He and p = 3, in which case |Out(G)| = 2 and Out(F) = Out(L) =
1.

Proof. By Proposition 0.1, μG is surjective in all cases, and is an isomorphism
if p is odd. When p = 2, μG is injective (hence an isomorphism) by Propositions 2.1
(when |S| ≤ 29) and 5.1 (when |S| ≥ 210). Thus in all cases, κG is an isomorphism
if and only if κG = μG ◦ κG is an isomorphism.

When p = 2, κG is an isomorphism, with the one exception G ∼= M11, by
Propositions 2.1 (when |S| ≤ 29) and 2.2 (when |S| ≥ 210). When p is odd, S is
nonabelian, and F is not simple, then κG is an isomorphism by Proposition 3.1.
When p is odd and F is simple, κG is an isomorphism except when G ∼= He and
p = 3 by Proposition 3.2. The two exceptional cases are handled in Propositions
2.1 and 3.2. �

In the first half of the paper, we compare Out(G) with Out(F): first listing
some general results in Chapter 1, and then applying them to determine the nature
of κG in Chapters 2 (for p = 2) and 3 (for p odd). We then compare Out(F)
with Out(L) (when p = 2) in the last half of the paper: general techniques for
determining Ker(μG) are listed in Chapter 4, and these are applied in Chapter 5
to finish the proof of the main theorem.

The author plans, in a future paper with Jesper Grodal, to look more closely
at the fundamental groups of geometric realizations of the categories Lc

S(G) when
G is a sporadic group. This should give alternative proofs for several of the cases
covered by Theorem A.

I would like to thank Michael Aschbacher for explaining to me the potential
importance of these results. Kasper Andersen made some computer computations
several years ago involving the Rudvalis sporadic group at p = 2; while they’re not
used here, they probably gave me hints as to how to proceed in that case (one of the



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

INTRODUCTION 125

hardest). I also thank the referee for his many suggestions which helped simplify
or clarify several arguments. I would especially like to thank Richard Lyons for
the notes [Ly2] he wrote about automorphisms of sporadic groups, without which
I might not have known how to begin this project.

Notation: We mostly use Atlas notation [Atl, § 5.2] for groups, extensions,
extraspecial groups, etc., as well as for names (2A, 2B, 3A, . . . ) of conjugacy
classes of elements. An elementary abelian 2-group has type 2An if it is 2A-pure
of rank n (similarly for an elementary abelian 3-group of type 3An); it has type
2AiBj . . . if it contains i elements of class 2A, j of class 2B, etc. Also, An and Sn

denote the alternating and symmetric groups on n letters, Epk (for p prime) is an

elementary abelian p-group of order pk, and UTn(q) (for n ≥ 2 and q a prime power)
is the group of upper triangular matrices in GLn(q) with 1’s on the diagonal. As
usual, G# = G�{1} is the set of nonidentity elements of a group G, and Z2(S) ≤ S
(for a p-group S) is the subgroup such that Z2(S)/Z(S) = Z(S/Z(S)). For groups
H ≤ G and elements g, h ∈ G, gh = ghg−1 and gH = gHg−1. For each pair of
groups H ≤ G,

AutG(H) = {(x �→ gx) | g ∈ NG(H)} ≤ Aut(H)

and
OutG(H) = AutG(H)/Inn(H).

We assume in all cases the known order of Out(G) for sporadic groups G,
without giving references each time.
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CHAPTER 1

Automorphism groups of fusion systems:
Generalities

We give here some techniques which will be used to determine the nature of
κG. We begin with the question of injectivity. Recall that |Out(G)| ≤ 2 for each
sporadic simple group G.

Lemma 1.1. Fix a prime p. Let G be a finite group, fix S ∈ Sylp(G), and set
F = FS(G).

(a) For each α ∈ Aut(G), the class [α] ∈ Out(G) lies in Ker(κG) if and only
if there is α′ ∈ [α] such that |S|

∣∣ |CG(α
′)|.

(b) Assume |Out(G)| = 2 and p is odd. If there is no α ∈ Aut(G) such that
|α| = 2 and |S|

∣∣ |CG(α)|, then κG is injective.

(c) Assume |Out(G)| = 2. If OutAut(G)(Q) > OutG(Q) for some Q � S, then
κG is injective.

Proof. (a) We can assume α is chosen so that α(S) = S. If [α] ∈ Ker(κG),
then α|S ∈ AutG(S): conjugation by some g ∈ NG(S). Set α

′ = α ◦ c−1
g ∈ Aut(G);

then [α′] = [α] in Out(G), and CG(α
′) ≥ S.

Conversely, assume |S|
∣∣ |CG(α

′)|. Then CG(α
′) ≥ gS for some g ∈ G. Set

α′′ = cg ◦ α′ ◦ cg (composing from right to left), where cg ∈ Inn(G) and cg(S) =
gS.

Then [α′′] = [α′] = [α] in Out(G), α′′|S = IdS , and hence κG([α]) = κG([α
′′]) = 1.

(b) If κG is not injective, then by (a), there is α ∈ Aut(G) � Inn(G) such that
|S|
∣∣ |CG(α)|. Since |Out(G)| = 2, |α| = 2m for some m ≥ 1. Thus |αm| = 2, and

|S|
∣∣ |CG(α

m)|.
(c) If Q � S and OutAut(G)(Q) > OutG(Q), then there is β ∈ Aut(G) � Inn(G)
such that β(Q) = Q and β|Q /∈ AutG(Q). Since S ∈ Sylp(NG(Q)), we can arrange
that β(S) = S by replacing β by cx ◦ β for some appropriate element x ∈ NG(Q).
We still have β|Q /∈ AutG(Q), so β|S /∈ AutG(S), and κG([β]) �= 1. Thus κG is
nontrivial, and is injective if |Out(G)| = 2. �

A finite group H will be called strictly p-constrained if CH(Op(H)) ≤ Op(H);
equivalently, if F ∗(H) = Op(H).

Lemma 1.2. Fix a prime p. Let G be a finite group, fix S ∈ Sylp(G), and set
F = FS(G). Let H < G be a subgroup which contains S.

(a) If H is strictly p-constrained, then κH and μH are isomorphisms.

(b) Assume H = NG(Q), where either Q is characteristic in S, or |Q| = p,
Q ≤ Z(S), and Aut(F) sends each G-conjugacy class of elements of or-
der p in Z(S) to itself. Set FH = FS(H) for short, and set Aut0(FH) =
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Aut(FH) ∩ Aut(F) and Out0(FH) = Aut0(FH)/AutH(S). Then the in-
clusion of Aut0(FH) in Aut(F) induces a surjection of Out0(FH) onto
Out(F), and hence |Out(F)| ≤ |Out0(FH)| ≤ |Out(FH)|.

If in addition, H is strictly p-constrained or κH is onto, and we set
Out0(H) = κ−1

H (Out0(FH)), then |Out(F)| ≤ |Out0(H)| ≤ |Out(H)|.

Proof. (a) See, e.g., [BMO, Proposition 1.6(a)].

(b) We first claim that

(1) Aut(F) = AutG(S)·NAut(F)(Q) ≤ AutG(S)·Aut0(FH)

as subgroups of Aut(S). If Q is characteristic in S, then the equality is clear. If
|Q| = p, Q ≤ Z(S), and each α ∈ Aut(F) sends Q to a subgroup which is G-
conjugate to Q, then the equality follows from the Frattini argument (and since
each subgroup of Z(S) which is G-conjugate to Q is NG(S)-conjugate to Q). If
α ∈ Aut(S) normalizes Q and preserves fusion in G, then it preserves fusion in
H = NG(Q). Thus NAut(F)(Q) ≤ Aut0(FH), proving the second relation in (1).

Now, AutH(S) ≤ AutG(S) ∩ Aut0(FH). Together with (1), this implies that
the natural homomorphism

Out0(FH) = Aut0(FH)
/
AutH(S) −−−−−−→ Aut(F)

/
AutG(S) = Out(F)

is well defined and surjective. The last statement now follows from (a). �

The next lemma will be useful when determining Out(H) for the subgroups H
which appear when applying Lemma 1.2(b).

Lemma 1.3. Let H be a finite group, and let Q � H be a characteristic subgroup
such that CH(Q) ≤ Q. Set H∗ = OutH(Q) ∼= H/Q.

(a) There is an exact sequence

1 −−−→ H1(H∗;Z(Q)) −−−−−→ Out(H)
R−−−−−→ NOut(Q)(H

∗)
/
H∗,

where R sends the class of α ∈ Aut(H) to the class of α|Q.
(b) Assume R ≤ Z(Q) and R � H. Let α ∈ Aut(H) be such that α|R = IdR

and [α,H] ≤ R. Then there is ψ ∈ HomH(Q/R,R) such that α(g) =
gψ(gR) for each g ∈ Q, and hence α|Q = IdQ if HomH(Q/R,R) = 1. If
α|Q = IdQ, [α,H] ≤ R, and H1(H∗;R) = 0, then α ∈ AutR(H).

(c) Fix a prime p, assume Q is an extraspecial or elementary abelian p-group,

and set Q = Q/Fr(Q). Set H∗
0 = Op′

(H∗), and X = NOut(Q)(H
∗)/H∗.

(c.i) If Q is absolutely irreducible as an FpH
∗-module, then there is Y � X

such that Y ∼= (Z/p)×
/
Z(H∗) and X/Y is isomorphic to a subgroup

of Out(H∗).

(c.ii) If Q is absolutely irreducible as an FpH
∗
0 -module, then there is Y � X

such that Y ∼= (Z/p)×
/
Z(H∗) and

|X/Y | ≤ |Out(H∗
0 )|
/
|OutH∗(H∗

0 )|.

Here, Z(H∗) acts on Q via multiplication by scalars, and we regard it as
a subgroup of (Z/p)× in that way.
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Proof. (a) The exact sequence is a special case of [OV, Lemma 1.2].
(b) By assumption, there is a function ψ : Q/R −→ R such that α(g) = gψ(gR) for
each g ∈ Q, and ψ is a homomorphism since R ≤ Z(Q). For each h ∈ H, α(h) = rh
for some r ∈ R. So for g ∈ Q, since [r,Q] = 1, we get ψ(hgR) = (hg)−1α(hg) =
(hg)−1rh(α(g)) = h(g−1α(g)) = hψ(gR). Thus ψ ∈ HomH(Q/R,R).

If α|Q = Id and [α,H] ≤ R, then there is χ : H∗ −→ R such that α(g) = χ(gQ)g
for each g ∈ H. Then χ(ghQ) = χ(gQ)·gχ(hQ) for all g, h ∈ H, so χ is a 1-cocycle.
If H1(H∗;R) = 0, then there is r ∈ R such that χ(gQ) = r(gr)−1 for each g ∈ H,
and α is conjugation by r.

(c) If Q is absolutely irreducible as an FpH
∗-module, then COut(Q)(H

∗) ∼= (Z/p)×

consists of multiplication by scalars (see [A, 25.8]), so its image Y in the group X =
NOut(Q)(H

∗)/H∗ is isomorphic to (Z/p)×
/
Z(H∗). Also, X/Y ∼= OutOut(Q)(H

∗):
a subgroup of Out(H∗). This proves (c.i).

If Q is absolutely irreducible as an FpH
∗
0 -module, then let Y be the image of

COut(Q)(H
∗
0 ) in X = NOut(Q)(H

∗)/H∗. Then Y ∼= (Z/p)×
/
Z(H∗) (by [A, 25.8]

again), and

|X/Y | = |NOut(Q)(H
∗)
/
COut(Q)(H

∗
0 )·H∗| ≤ |NOut(Q)(H

∗
0 )|
/
|COut(Q)(H

∗
0 )·H∗|

= |AutOut(Q)(H
∗
0 )|
/
|AutH∗(H∗

0 )|
≤ |Aut(H∗

0 )|
/
|AutH∗(H∗

0 )| = |Out(H∗
0 )|
/
|OutH∗(H∗

0 )|.

This proves (c.ii). �

The next lemma provides some simple tools for showing that certain represen-
tations are absolutely irreducible.

Lemma 1.4. Fix a prime p, a finite group G, and an irreducible FpG-module
V .

(a) The module V is absolutely irreducible if and only if EndFpG(V ) ∼= Fp.

(b) If dimFp
(CV (H)) = 1 for some H ≤ G, then V is absolutely irreducible.

(c) Assume H ≤ G is a subgroup such that V |H splits as a direct sum of
absolutely irreducible pairwise nonisomorphic FpH-submodules. Then V
is absolutely irreducible.

Proof. (a) See, e.g., [A, 25.8].

(b) Set EndFpG(V ) = K: a finite extension of Fp. Then V can be considered as
a KG-module, so [K:Fp] divides dimFp

(CV (H)) for each H ≤ G. Since there is H
with dimFp

(CV (H)) = 1, this implies K = Fp, and so V is absolutely irreducible
by (a).

(c) The hypothesis implies that the ring EndFpH(V ) is isomorphic to a direct
product of copies of Fp, one for each irreducible summand of V |H . Since EndFpG(V )
is a subring of EndFpH(V ), and is a field since V is irreducible, it must be isomorphic
to Fp. So V is absolutely irreducible by (a). �

Lemma 1.5. Let G be a finite group, and let V be a finite FpG-module.

(a) If CV (Op′(G)) = 0, then H1(G;V ) = 0.

(b) If |V | = p, and G0 = CG(V ), then H1(G;V ) ∼= HomG/G0

(
G0/[G0, G0], V

)
.
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Proof. (a) Set H = Op′(G) for short. Assume W ≥ V is an FpG-module
such that [G,W ] ≤ V . Then [H,W ] = [H,V ] = V since CV (H) = 0, and so
W = CW (H)⊕ [H,W ] = CW (H)⊕ V . Thus H1(G;V ) ∼= Ext1

FpG(Fp, V ) = 0.
Alternatively, with the help of the obvious spectral sequence, one can show that

Hi(G;V ) = 0 for all i ≥ 0.

(b) This is clear when G acts trivially on V . It follows in the general case since
for G0 � G of index prime to p and any FpG-module V , H1(G;V ) is the group of
elements fixed by the action of G/G0 on H1(G0;V ). �

We end with a much more specialized lemma, which is needed when working
with the Thompson group F3.

Lemma 1.6. Set H = A9. Assume V is an 8-dimensional F2H-module such that
for each 3-cycle g ∈ H, CV (g) = 0. Then V is absolutely irreducible, dim(CV (T )) =
1 for T ∈ Syl2(H), and NAut(V )(H)/H = 1.

Proof. Consider the following elements in A9:

a1 = (1 2 3), a2 = (4 5 6), a3 = (7 8 9),

b1 = (1 2)(4 5), b2 = (1 2)(7 8), b3 = (1 2)(4 7)(5 8)(6 9).

Set A = 〈a1, a2, a3〉 ∼= E27 and B = 〈b1, b2, b3〉 ∼= D8. Set V = F2⊗F2
V . As an F2A-

module, V splits as a sum of 1-dimensional submodules, each of which has character

A −→ F×
2 for which none of the ai is in the kernel. There are eight such characters,

they are permuted transitively by B, and so each occurs with multiplicity 1 in

the decomposition of V . Thus V is AB-irreducible, and hence H-irreducible (and
V is absolutely irreducible). Also, dim

F2
(C

V
(B)) = 1, so dim(CV (B)) = 1, and

dim(CV (T )) = 1 since CV (T ) �= 0.
In particular, CAut(V )(H) ∼= F×

2 = 1, and hence NAut(V )(H)/H embeds into

Out(H). So if NAut(V )(H)/H �= 1, then the action of H extends to one of Ĥ ∼= S9.

In that case, if we set x = (1 2) ∈ Ĥ, then CV (x) has rank 4 since x inverts a1 and
CV (a1) = 0. But the group CĤ(x)/x ∼= S7 acts faithfully on CV (x), and this is
impossible since GL4(2) ∼= A8 contains no S7-subgroup. (This argument is due to
Richard Lyons [Ly2].) �
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CHAPTER 2

Automorphisms of 2-fusion systems of sporadic
groups

The main result in this chapter is that when G is a sporadic simple group and
p = 2, Out(F) ∼= Out(G) in all cases except when G ∼= M11. The first proposition
consists mostly of the cases where this was shown in earlier papers.

Proposition 2.1. Let G be a sporadic simple group whose Sylow 2-subgroups
have order at most 29. Then the 2-fusion system of G is tame. More precisely, κG

and μG are isomorphisms except when G ∼= M11, in which case the 2-fusion system
of G is tamely realized by PSL3(3).

Proof. Fix G as above, choose S ∈ Syl2(G), and set F = FS(G). There are
eleven cases to consider.

If G ∼= M11, then Out(G) = 1. Also, F is the unique simple fusion system over
SD16, so by [AOV1, Proposition 4.4], |Out(F)| = 2, and κG∗ is an isomorphism
for G∗ = PSU3(13) (and μG∗ is an isomorphism by the proof of that proposition).
Note that we could also take G∗ = PSL3(3).

If G ∼= J1, then Out(G) = 1. Set H = NG(S). Since S ∼= E8 is abelian, fusion
in G is controlled by H ∼= 23:7:3, and so F = FS(H) and L ∼= Lc

S(H). Since H is
strictly 2-constrained, Out(L) ∼= Out(F) ∼= Out(H) = 1 by Lemma 1.2(a), and so
κG and μG are isomorphisms.

If G ∼= M22, M23, J2, J3, or McL, then F is tame, and κG is an isomor-
phism, by [AOV1, Proposition 4.5]. Also, μG was shown to be an injective in the
proof of that proposition, and hence is an isomorphism by Proposition 0.1.

If G ∼= M12, Ly, HS, or O’N, then F is tame, and κG and μG are isomor-
phisms, by [AOV3, Lemmas 4.2 & 5.2 and Proposition 6.3]. �

It remains to consider the larger cases.

Proposition 2.2. Let G be a sporadic simple group whose Sylow 2-subgroups
have order at least 210. Then κG is an isomorphism.

Proof. Fix G as above, choose S ∈ Syl2(G), and set F = FS(G). There are
fifteen groups to consider, listed in Table 2.2.

We first check that κG is injective in all cases. This follows from a theorem of
Richard Lyons [Ly2, Theorem 1.1], which says that if Out(G) �= 1, then there is a 2-
subgroup of G whose centralizer in Aut(G) = G.2 is contained in G [Ly2, Theorem
1.1]. Since that paper has not been published, we give a different argument here:
one which is based on Lemma 1.1(c), together with some well known (but hard-to-
find-referenced) descriptions of certain subgroups of G and of Aut(G).

The groups G under consideration for which |Out(G)| = 2 are listed in Table
2.1. In each case, NG(R) has odd index in G (hence R can be assumed to be normal
in S), and OutAut(G)(R) > OutG(R). So κG is injective by Lemma 1.1(c).

131
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G Suz He Fi22 Fi′24 F5

R 21+6
− 24+4 25+8 21+12

+ 21+8
+

OutG(R) Ω−
6 (2) S3 × S3 S3 ×A6 3·U4(3).2 (A5 ×A5).2

OutG.2(R) SO−
6 (2) 32:D8 S3 × S6 3·U4(3).2

2 (A5 ×A5).2
2

Reference [GL, p.56] [W7, § 5] [A3, 37.8.2] [W8, Th.E] [NW, Th.2]

Table 2.1

It remains to prove that |Out(F)| ≤ |Out(G)|. Except when G ∼= Ru, we do
this with the help of Lemma 1.2(b) applied with H as in Table 2.2. Set Q = O2(H),

Q = Q/Z(Q), and H∗ = OutH(Q).

G |S| H |Out(H)| |Out(F)| |Out(G)| Reference

M24 210 21+6
+ .L3(2) 2 = 1·2 1∗ 1 [A2, Lm. 39.1.1]

J4 221 21+12
+ .3M22:2 2 = 2·1 1∗ 1 [KW, § 1.2]

Co3 210 2·Sp6(2) 1 1 1 [Fi, Lm. 4.4]

Co2 218 21+8
+ .Sp6(2) 1 = 1·1 1 1 [W1, pp.113–14]

Co1 221 211.M24 1 = 1·1 1 1 [A2, Lm. 46.12]

Suz 213 21+6
− .U4(2) 2 = 1·2 2 2 [W2, § 2.4]

He 210 21+6
+ :L3(2) 2 = 1·2 2 2 [He, p. 253]

Ru 214 23+8.L3(2)
2.24+6.S5

1∗ 1 [A1, 12.12]
[AS, Th. J.1.1]

Fi22 217 210.M22 2 = 1·2 2 2 [A3, 25.7]

Fi23 218 211.M23 1 = 1·1 1 1 [A3, 25.7]

Fi′24 221 211.M24 2 = 2·1 2 2 [A3, 34.8, 34.9]

F5 214 21+8
+ .(A5 ×A5).2 4 = 2·2 2∗ 2 [NW, § 3.1]

F3 215 21+8
+ .A9 1 = 1·1 1 1 [W11, Thm. 2.2]

F2 241 21+22
+ .Co2 1 = 1·1 1 1 [MS, Thm. 2]

F1 246 21+24
+ .Co1 1 = 1·1 1 1 [MS, Thm. 1]

Table 2.2

When G ∼= Co3, and H = NG(Z(S)) ∼= 2·Sp6(2) is quasisimple, Out(H) = 1
since Out(H/Z(H)) = 1 by Steinberg’s theorem (see [GLS, Theorem 2.5.1]). Also,
κH/Z(H) is surjective by [BMO, Theorem A], so κH and κH are surjective by
[AOV1, Proposition 2.18]. Hence |Out(F)| ≤ |Out(H)| = 1 by Lemma 1.2(b).

If G ∼= Co1, Fi22, Fi23, or Fi′24, then Q is elementary abelian, H∗ ∼= Mk for
k = 24, 22, 23, or 24, respectively, and Q is an absolutely irreducible F2H

∗-module
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by [A3, 22.5]. Also, Q = J(S) (i.e., Q is the unique abelian subgroup of its rank)
in each case: by [A2, Lemma 46.12.1] when G ∼= Co1, and by [A3, Exercise 11.1,
32.3, or 34.5] when G is one of the Fischer groups. By [MSt, Lemma 4.1] (or by
[A3, 22.7–8] when G is a Fischer group), H1(H∗;Q) has order 2 when G ∼= Fi′24
(and Q is the Todd module for H∗), and has order 1 when G is one of the other
Fischer groups (Q is again the Todd module) or Co1 (Q is the dual Todd module).
So

|Out(F)| ≤ |Out(H)| ≤ |H1(H∗;Q)|·|Out(H∗)| = |Out(G)| :

the first inequality by Lemma 1.2(b), the second by Lemmas 1.3(a) and 1.3(c.i),
and the equality by a case-by-case check (see Table 2.2).

In each of the remaining cases covered by Table 2.2, H = NG(Z(S)) and
is strictly 2-constrained, and Q is extraspecial. We apply Lemma 1.3(a) to get an
upper bound for |Out(H)|. This upper bound is listed in the fourth column of Table
2.2 in the form m = a·b, where |H1(H∗;Z(Q))| ≤ a and |NOut(Q)(H

∗)/H∗| ≤ b.

By Lemma 1.5(b), H1(H∗;Z(Q)) ∼= Hom(H∗, C2) = 1 except when G ∼= J4 or F5,
in which cases it has order 2. This explains the first factor in the fourth column.
The second factor will be established case-by-case, as will be the difference between
|Out(F)| and |Out(H)| when there is one (noted by an asterisk).

If G ∼= M24 or He, then H ∼= 21+6
+ .L3(2), and Q splits as a sum of two non-

isomorphic absolutely irreducible F2H
∗-modules which differ by an outer automor-

phism of H∗. Hence NOut(Q)(H
∗) ∼= L3(2):2, and |Out(H)| ≤ |NOut(Q)(H

∗)/H∗| =
2. These two irreducible submodules in Q lift to rank 4 subgroups of Q, of which
exactly one is radical (with automizer SL4(2)) when G ∼= M24 (see [A2, Lemma
40.5.2]). Since an outer automorphism of H exchanges these two subgroups, it does
not preserve fusion in G when G ∼= M24, hence is not in Out0(H) in the notation
of Lemma 1.2(b). So |Out(F)| ≤ |Out0(H)| = 1 in this case.

If G ∼= J4, then H ∼= 21+12
+ .3M22:2. The group 3M22 has a 6-dimensional

absolutely irreducible representation over F4, which extends to an irreducible 12-
dimensional representation of 3M22:2 realized over F2. (See [KW, p. 487]: 3M22 <
SU6(2) < SO+

12(2).) Hence |Out(H)| ≤ 2 by Lemmas 1.3(a,c) and 1.5(b), generated
by the class of β ∈ Aut(H) of order 2 which is the identity on O2(H) and on
H/Z(H).

By [KW, Table 1], there is a four-group of type 2AAB in H, containing
Z(Q) = Z(H) (generated by an element of class 2A), whose image in H/O2,3(H) ∼=
M22:2 is generated by an outer involution of class 2B in Aut(M22). Thus there are
cosets of Z(Q) in H � O2(H) which contain 2A- and 2B-elements. Hence β|S is
not G-fusion preserving, so |Out(F)| ≤ |Out0(H)| = 1 by Lemma 1.2(b).

If G ∼= Co2, then H = NG(z) ∼= 21+8
+ .Sp6(2). By [Sm, Lemma 2.1], the action

of H/Q on Q is transitive on isotropic points and on nonisotropic points, and hence

is irreducible. If Q is not absolutely irreducible, then EndFp[H/Q](Q) ≥ F4 by
Lemma 1.4(a), so H/Q ∼= Sp6(2) embeds into SL4(4), which is impossible since
Sp6(2) contains a subgroup of type 7:6 while SL4(4) does not.

Alternatively, Q is absolutely irreducible by a theorem of Steinberg (see [GLS,

Theorem 2.8.2]), which says roughly that each irreducible F2Sp6(F2)-module which
is “small enough” is still irreducible over the finite subgroup Sp6(2).
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Thus by Lemma 1.3(c.i), NOut(Q)(H
∗)/H∗ is isomorphic to a subgroup of

Out(H∗), where Out(H∗) = 1 (see [GLS, Theorem 2.5.1]). This confirms the
remaining entries for G in Table 2.2.

If G ∼= Suz, then H ∼= 21+6
− .Ω−

6 (2), H
∗ has index 2 in Out(Q) ∼= SO−

6 (2), and
|Out(H)| ≤ 2 by Lemmas 1.3(a) and 1.5(b).

If G ∼= F5, then H = NG(z) ∼= 21+8
+ .(A5 � 2) for z ∈ 2B. As described in

[NW, § 3.1] and in [Ha, Lemma 2.8], O2(H∗) acts on Q as Ω+
4 (4) for some F4-

structure on Q. Also, the 2B-elements in Q � Z(Q) are exactly those involutions

which are isotropic under the F4-quadratic form on Q ∼= F4
4.

Now, H∗ has index 2 in its normalizer SO+
4 (4).2

2 in Out(Q) ∼= SO+
8 (2), so

|Out(H)| ≤ 4 by Lemmas 1.3(a) and 1.5(b). Let β ∈ Aut(H) be the noniden-
tity automorphism which is the identity on O2(H) and on H/Z(H). To see that
|Out(F)| ≤ 2, we must show that β does not preserve fusion in S.

By [NW, p. 364], if W = 〈z, g〉 ∼= E4 for z ∈ Z(H) and g ∈ H � O2(H), then
W contains an odd number of 2A-elements, and hence g and zg are in different
classes (see also [Ha, Lemma 2.9.ii]). Hence β is not fusion preserving since it
doesn’t preserve G-conjugacy classes. By Lemma 1.2(b), |Out(F)| ≤ |Out0(H)| ≤
2 = |Out(G)|.

If G ∼= F3, then H ∼= 21+8
+ .A9. By [Pa, § 3], the action of A9 on Q is

not the permutation representation, but rather that representation twisted by the
triality automorphism of SO+

8 (2). By [Pa, 3.7], if x ∈ H∗ ∼= A9 is a 3-cycle, then
C

Q
(x) = 1. Hence we are in the situation of Lemma 1.6, and NOut(Q)(H

∗)/H∗ = 1

by that lemma. So Out(H) = 1 by Lemmas 1.3(a) and 1.5(b), and Out(F) = 1.
If G ∼= F2 or F1, then H = H1

∼= 21+22
+ .Co2 or 21+24

+ .Co1, respectively. Set

Q = O2(H) and Q = Q/Z(Q). If G ∼= F1, then Q ∼= Λ̃, the mod 2 Leech lattice,

and is Co1-irreducible by [A2, 23.3]. If G ∼= F2, then Q ∼= v⊥2 /〈v2〉 where v2 ∈ Λ̃ is

the image of a 2-vector. The orbit lengths for the action of Co2 on Λ̃/〈v2〉 are listed
in [W1, Table I], and from this one sees that v⊥2 /〈v2〉 is the only proper nontrivial
Co2-linear subspace (the only union of orbits of order 2k for 0 < k < 23), and

hence that Q is Co2-irreducible. The absolute irreducibility of Q (in both cases)
now follows from Lemma 1.4(b), applied with H = Co2 or U6(2):2, respectively.

Since Out(Co1) ∼= Out(Co2) = 1, NOut(Q)(H
∗)/H∗ = 1 by Lemma 1.3(c.i),

and so Out(H) = 1 in both cases.

In in the remaining case, we need to work with two of the 2-local subgroups of
G.

Assume G ∼= Ru. We refer to [A1, 12.12] and [AS, Theorem J.1.1] for the
following properties. There are two conjugacy classes of involutions in G, of which
the 2A-elements are 2-central. There are subgroups H1, H3 < G containing S such
that

H1
∼= 2.24+6.S5 H3

∼= 23+8.L3(2).

Set Qi = O2(Hi) and Vi = Z(Qi); V1
∼= C2 and V3

∼= E8, and both are 2A-
pure and normal in S. Also, Q1/V1 and Q3 are special of types 24+6 and 23+8,
respectively, and Z(Q3) and Q3/Z(Q3) are the natural module and the Steinberg
module, respectively, for H3/Q3

∼= SL3(2).
Let V5 < Q1 be such that V5/V1 = Z(Q1/V1). Then V5 is of type 2A5,

and CQ1
(V5) ∼= Q8 × E16. Also, H1/Q1

∼= S5, and V5/V1 and Q1/CQ1
(V5) are
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both natural modules for O2(H1/Q1) ∼= SL2(4). Also, V3/V1 = CV5/V1
((S/Q1) ∩

O2(H1/Q1)): thus a 1-dimensional subspace of V5/V1 as an F4-vector space.
The homomorphism Q1/CQ1

(V5) −→ Hom(V5/V1, V1) which sends g to (x �→
[g, x]) is injective and hence an isomorphism. So Q3 ∩ Q1 = CQ1

(V3) has index 4
in Q1, and hence |Q3Q1/Q3| = 4.

Fix β ∈ Aut(F). By Lemma 1.2(a), for i = 1, 3, κHi
is an isomorphism, so

β extends to an automorphism βi ∈ Aut(Hi). Since V3 is the natural module for
H3/Q3

∼= SL3(2), β3|V3
= cx for some x ∈ H3, and x ∈ NH3

(S) since β3(S) = S.
Then x ∈ S since NH3/Q3

(S/Q3) = S/Q3, and upon replacing β by c−1
x ◦ β and βi

by c−1
x ◦ βi (i = 1, 3), we can arrange that β|V3

= Id.
Since β|V3

= Id, β3 also induces the identity on H3/Q3
∼= L3(2) (since this

acts faithfully on V3), and on Q3/V3
∼= 28 (since this is the Steinberg module

and hence absolutely irreducible). Since Q3/V3 is H3/Q3-projective (the Steinberg
module), H1(H3/Q3;Q3/V3) = 0, so by Lemma 1.3(b) (applied with Q3/V3 in the
role of R = Q), the automorphism of H3/V3 induced by β3 is conjugation by some
yV3 ∈ Q3/V3. Upon replacing β by c−1

y ◦ β and similarly for the βi, we can arrange
that [β3, H3] ≤ V3.

Since Q3/V3 and V3 are irreducible F2[H3/Q3]-modules and not isomorphic to
each other, HomH3/Q3

(Q3/V3, V3) = 0. By Lemma 1.3(b) again, applied this time
with Q3 ≥ V3 in the role of Q ≥ R, we have β|Q3

= Id.
Now consider β1 ∈ Aut(H1). Since β1 is the identity on Q3 = CS(V3) ≥

CS(V5) = CH1
(V5), we have β1 ≡ IdH1

modulo Z(CS(V5)) = V5 (since cg =
cβ1(g) ∈ Aut(CS(V5)) for each g ∈ H1). So by Lemma 1.3(b), there is ψ ∈
HomH1/Q1

(Q1/V5, V5/V1) such that β(g) ∈ gψ(gV5) for each g ∈ Q1. Also, Im(ψ) ≤
V3/V1 since [β, S] ≤ V3, and hence ψ = 1 since V5/V1 is irreducible. Thus
[β1, Q1] ≤ V1.

We saw that |Q1Q3/Q3| = 4, so AutQ1
(V3) is the group of all automorphisms

which send V1 to itself and induce the identity on V3/V1. Fix a pair of generators
uQ3, vQ3 ∈ Q1Q3/Q3. Then β(u) ∈ uV1 and β(v) ∈ vV1, and each of the four
possible automorphisms of Q3Q1 (i.e., those which induce the identity on Q3 and
on Q1Q3/V1) is conjugation by some element of V3 (unique modulo V1). So after
conjugation by an appropriate element of V3, we can arrange that β|Q1Q3

= Id (and
still [β3, H3] ≤ V3).

Let V2 < V3 be the unique subgroup of rank 2 which is normal in S, and set
S0 = CS(V2). Thus |S/S0| = 2, and S0/Q3

∼= E4. Fix w ∈ (S0 ∩ Q1Q3) � Q3

(thus wQ3 generates the center of S/Q3
∼= D8). Choose g ∈ NH3

(V2) of order 3;
thus g acts on V2 with order 3 and acts trivially on V3/V2. So V3〈g〉 ∼= A4 × C2,
and since |β3(g)| = 3, we have β3(g) = rg for some r ∈ V2. Set w′ = gw ∈ S0.
Then S0 = Q3〈w,w′〉, β(w) = w since w ∈ Q1Q3, and β(w′) = β(gwg−1) =
rgwg−1r−1 = rw′ = w′: the last equality since w′ ∈ S0 = CS(V2). Since S = S0Q1,
this proves that β = IdS , and hence that Out(F) = 1.

This finishes the proof of Proposition 2.2. �
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CHAPTER 3

Tameness at odd primes

We now turn to fusion systems of sporadic groups at odd primes, and first look
at the groups whose p-fusion systems are not simple.

Proposition 3.1. Let p be an odd prime, and let G be a sporadic simple group
whose Sylow p-subgroups are nonabelian and whose p-fusion system is not simple.
Then κG is an isomorphism.

Proof. Fix S ∈ Sylp(G), and set F = FS(G). By [A4, 16.10], if F is not
simple, then either NG(S) controls fusion in G (“G is p-Goldschmidt” in the termi-
nology of [A4]), in which case S � F and F is constrained, or F is almost simple
and is realized by an almost simple group L given explicitly in [A4, 16.10] and also
in Table 0.3. We handle these two cases separately.

Case 1: Assume first that S � F and hence F is constrained. By [A4, Theorem
15.6], there are seven such cases (G, p), also listed in Table 0.3. By the tables
in [GLS, Table 5.3], in each case where Out(G) �= 1, no involution of Aut(G)
centralizes a Sylow p-subgroup. Thus κG is injective in all seven cases by Lemma
1.1(b). Set H = NG(H)/Op′(NG(H)). Since NG(S) controls p-fusion in G,

(1) Out(F) ∼= Out(H) injects into NOut(S)(OutG(S))/OutG(S) :

the isomorphism by Lemma 1.2(a) and the injection by 1.3(a).
In the six cases described in Table 3.1, S is extraspecial of order p3 and exponent

p. Note that Out(S) ∼= GL2(p). Using that PGL2(3) ∼= Σ4, PGL2(5) ∼= Σ5, and Σ4

(G, p) (J2, 3) (Co3, 5) (Co2, 5) (HS, 5) (McL, 5) (J4, 11)

|Out(G)| 2 1 1 2 2 1

OutG(S) C8 C24 � C2 4·Σ4 C8 � C2 C3 � C8 5× 2·Σ4

Table 3.1

is maximal in PGL2(11), we see that in all cases, |Out(F)| ≤ |Out(G)| by (1). So
κG and κG are isomorphisms since they are injective.

It remains to consider the case (G, p) = (J3, 3), where |S| = 35. Set T = Ω1(S)
and Z = Z(S). By [J, Lemma 5.4], T ∼= C3

3 , T > Z ∼= C2
3 , Z ≤ [S, S], and there

are two classes of elements of order 3: those in Z and those in T � Z. Also, S/Z
is extraspecial of order 33 with center T/Z, and NG(S)/S ∼= C8 acts faithfully on
S/T and on Z.

Consider the bilinear map

Φ: S/T × T/Z
[−,−]−−−−−→ Z

137
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where Φ(gT, hZ) = [g, h]. This is nontrivial (otherwise we would have T ≤ Z), and
hence is surjective since NG(S)/S ∼= C8 acts faithfully on Z. Fix x ∈ NG(S) and
h ∈ T whose cosets generate the quotient groups NG(S)/S and T/Z, respectively.
Since x acts on S/T ∼= C2

3 with order 8, it acts via an element of GL2(3)� SL2(3),
and hence acts on T/Z by inverting it (recall that S/Z is extraspecial). So if we
let Φh : S/T −→ Z be the isomorphism Φh(gT ) = [g, h], then Φh(

xgT ) = [xg, h] =
x[g, h−1] = xΦh(gT )

−1. Thus if λ, λ3 ∈ F9 are the eigenvalues for the action of x
on S/T (for some λ of order 8), then λ−1, λ−3 are the eigenvalues for the action of
x on Z. So there is no nontrivial homomorphism S/T −→ Z that commutes with
the actions of x.

Let α ∈ Aut(F) be such that α|Z = Id. Since α commutes with Φ, it must
either induce the identity on S/T and on T/Z or invert both quotient groups, and
the latter is impossible since S/Z is extraspecial. Since α is the identity on Z and
on T/Z, α|T is conjugation by some element of S, and we can assume (modulo
Inn(S)) that α|T = Id. Thus there is ϕ ∈ Hom(S/T, Z) such that α(g) = gϕ(gT )
for each g ∈ S, and ϕ commutes with the action of xS ∈ NG(S)/S. We just showed
that this is only possible when ϕ = 1, and conclude that α = IdS .

This shows that Aut(F) is isomorphic to a subgroup of Aut(Z) ∼= GL2(3).
Since AutG(S) ∼= C8 acts faithfully on Z, and the Sylow 2-subgroups of GL2(3) are
semidihedral of order 16, this shows that |Aut(F)| ≤ 16 and |Out(F)| ≤ 2. Since
κG is injective, it is an isomorphism.

Case 2: We now show that κG is an isomorphism when F is almost simple. Let L
be as in Table 0.3. If L ∼= 2F4(2) and p = 3, then Out(F) ∼= Out(L) = 1 = Out(G)
since κL is an isomorphism by [BMO, Proposition 6.9].

Otherwise, set L0 = Op′
(L) and F0 = FS(L0). By [A4, 16.3 & 16.10], F0 is

simple, and hence Z(F0) = 1, when L0
∼= M12 and p = 3, and when L0

∼= Ω5(5)
or PSL3(5) and p = 5. Also, κL0

is an isomorphism in these cases by Proposition
3.2 and [BMO, Theorem A], respectively, and L ∼= Aut(L0) and |L/L0| = 2 (hence
Out(L) = 1) by [A4, 16.10]. If Out(F) �= 1, then there is α ∈ Aut(F) � AutF (S)
such that α|S0

= Id, and by the pullback square in [AOV1, Lemma 2.15], this
would lie in the image of a nontrivial element of Out(L) = 1. Thus Out(F) = 1,
Out(G) = 1 by Table 0.3, and so κG and hence κG are isomorphisms. �

It remains to handle the cases (G, p) where the p-fusion system of G is simple.

Proposition 3.2. Let p be an odd prime, and let G be a sporadic simple group
whose p-fusion system is simple. Then κG is an isomorphism, except when p = 3
and G ∼= He, in which case |Out(G)| = 2 and |Out(FS(G))| = 1 for S ∈ Syl3(G).

Proof. Fix G and p, choose S ∈ Sylp(G), set F = FS(G), and assume F is
simple (see Table 0.3 or [A4, 16.10]). Set L = Lc

S(G).
The centralizers of all involutions in Aut(G) are listed in, e.g., [GLS, Tables

5.3a–z]. By inspection, for each pair (G, p) in question other than (He, 3) for which
Out(G) �= 1 (see Tables 3.2 and 3.3), there is no α ∈ Aut(G) of order 2 for which
|S| divides |CG(α)|. So by Lemma 1.1(b), κG is injective in all such cases.

To prove that κG is an isomorphism (with the one exception), it remains to
show that |Out(F)| ≤ |Out(G)|.

Assume S is extraspecial of order p3. Set H = NG(S) and H∗ =
OutG(S) ∼= H/S. We list in Table 3.2 all pairs (G, p) which occur, together with
a description of H∗ and of NOut(S)(H

∗). To determine |NOut(S)(H
∗)/H∗| in each
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case, just recall that GL2(3) ∼= 2·S4
∼= Q8:S3, that PGL2(5) ∼= S5, and that when

p = 7 or 13, each subgroup of order prime to p in PGL2(p) is contained in a
subgroup isomorphic to D2(p±1) or S4 (cf. [Sz1, Theorem 3.6.25]).

(G, p) H∗ NOut(S)(H
∗) |Out(G)| Reference

(M12, 3) 22 D8 2 [GLS, Table 5.3b]

(He, 3) D8 SD16 2 [He, Lemma 3.9]

(F3, 5) 4·S4 4·S4 1 [W11, § 3]

(He, 7) 3× S3 6× S3 2 [He, Lemma 3.23]

(O’N, 7) 3×D8 3×D16 2 [GLS, Table 5.3s]

(Fi′24, 7) 6× S3 C6 � C2 2 [GLS, Table 5.3v]

(F1, 13) 3× 4·S4 3× 4·S4 1 [W10, § 11]
Table 3.2

In all cases, we have

|Out(F)| ≤ |Out(NG(S))| ≤ |NOut(S)(H
∗)/H∗|.

The first inequality holds by Lemma 1.2(b). The second holds by Lemma 1.3(a),
applied with H = NG(S), and since H1(H∗;Z(S)) = 0 (Lemma 1.5(b)). By Table
3.2, |NOut(S)(H

∗)/H∗| = |Out(G)| in all cases. Hence |Out(F)| ≤ |Out(G)|, and
so κG is an isomorphism if it is injective.

If G ∼= He and p = 3, then H∗ = OutG(S) ∼= D8 permutes the four subgroups
of index 3 in S ∼= 31+2

+ in two orbits of two subgroups each. As described in
[Bt, Proposition 10] (see also [GLS, Table 5.3p, note 4]), the subgroups in one of the
orbits are 3A-pure while those in the other have 3A- and 3B-elements, so no fusion
preserving automorphism of S exchanges them. So while |NOut(S)(H

∗)/H∗| = 2,

we have |Out(F)| ≤ |Out0(H)| = 1 by Lemma 1.2(b). Thus κG is split surjective
(and G tamely realizes FS(G)), but it is not an isomorphism.

Assume |S| ≥ p4. Consider the subgroups H < G described in Table 3.3. In
all cases, we can assume H ≥ S.
Case 1: If G ∼= Suz or Ly and p = 3, then H = NG(J(S)), where J(S) ∼= E35 and
H/J(S) ∼= M11 or M11 × C2, respectively, and |Out(F)| ≤ |Out(H)| by Lemma
1.2(b). Set V = O3(H) = J(S) and H∗ = AutH(V ) ∼= H/V . Then V is the
Todd module for O2(H∗) ∼= M11 (it contains 11 subgroups of type 3A permuted
by H∗), so H1(H∗;V ) = 0 by [MSt, Lemma 4.1]. Also, V is absolutely F3H

∗-
irreducible since H∗ > 11:5. So by Lemma 1.3(c.i) and since Out(M11) = 1,
|NAut(V )(H

∗)/H∗| ≤ 2 if G ∼= Suz (H∗ ∼= M11), and is trivial if G ∼= Ly. Lemma
1.3(a) now implies that |Out(H)| ≤ 2 or 1 for G ∼= Suz or Ly, respectively, and
hence that |Out(F)| ≤ |Out(G)|.

For each of the remaining pairs (G, p) displayed in Table 3.3, except when G ∼=
F3 and p = 3 (Case 5), we set Q = Op(H), Q = Q/Z(Q), H∗ = OutH(Q), H0 =

Op′
(H), and H∗

0 = OutH0
(Q). Then H is strictly p-constrained and Q is extraspe-

cial, and hence Z(S) = Z(Q) has order p. Also, H = NG(Z(Q)) = NG(Z(S)) by the
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G p

C
ase H

|O
u
t(H

)|

|O
u
t(G

)|

K N(−) Reference

Co3 3 4 31+4
+ .4S6 1 1 3A [Fi, 5.12]

Co2 3 3b 31+4
+ .21+4

− .S5 1 1 21+4
− 3A [W1, § 3]

Co1 3 3a 31+4
+ .Sp4(3).2 1 1 Sp4(3) 3C [Cu2, p.422]

McL 3 2 31+4
+ .2S5 2 2 2·(5:4) 3A [Fi, Lm.5.5]

Suz 3 1 35.M11 2 2 J(S) [W2, Thm.]

Ly 3 1 35.(M11 × 2) 1 1 J(S) [Ly1, Tbl.I]

Fi22 3 4 31+6
+ .23+4.32.2 2 2 3B [W5, p.201]

Fi23 3 4 31+8
+ .21+6

− .31+2
+ .2S4 1 1 3B [W8, § 1.2]

Fi′24 3 2 31+10
+ .U5(2):2 2 2 2·(11:10) 3B [W8, Th.B]

F5 3 4 31+4
+ .4A5 2 2 3B [NW, § 3.2]

F3 3 5 32.33+4.GL2(3)
3.[38].GL2(3)

1 3B2

3B
[A1, 14.1–3]
[Pa, §§ 2,4]

F2 3 3b 31+8
+ .21+6

− .SO−
6 (2) 1 1 21+6

− 3B [W9, § 2]
F1 3 3a 31+12

+ .2Suz.2 1 1 2·(13:6) 3B [W10, § 3]
Ly 5 4 51+4

+ .4S6 1 1 2A6 5A [Ly1, Tbl.I]

F5 5 3b 51+4
+ .21+4

− :5:4 2 2 21+4
− 5B [NW, § 3.3]

F2 5 3b 51+4
+ .21+4

− .A5.4 1 1 21+4
− 5B [W9, § 6]

F1 5 3a 51+6
+ .4J2.2 1 1 2·(7:6) 5B [W10, § 9]

F1 7 3a 71+4
+ .3× 2S7 1 1 2·(5:4) 7B [W10, § 10]

Table 3.3

above references, so |Out(F)| ≤ |Out(H)| by Lemma 1.2(b), and it remains to show
that |Out(H)| ≤ |Out(G)|. By Lemma 1.5(b), H1(H∗;Z(Q)) = 0 in each of these
cases, and hence Out(H) is sent injectively into the quotient groupNOut(Q)(H

∗)/H∗

by Lemma 1.3(a). So it remains to show that |NOut(Q)(H
∗)/H∗| ≤ |Out(G)|.

Case 2: If G ∼= McL or Fi′24 and p = 3, then Q is an absolutely irreducible
FpK-module for K ≤ H∗ as given in Table 3.3, and hence an absolutely irreducible
FpH

∗-module. So |NOut(Q)(H
∗)/H∗| ≤ 2 by Lemma 1.3(c): since |Out(2S5)| = 2

in the first case, and since Out(U5(2).2) = 1 and Z(U5(2).2) = 1 in the second case.

Case 3: If G ∼= F1 and p = 3, then Q splits as a sum of two absolutely irreducible

6-dimensional F3K-modules. Since 52
∣∣ |Suz| ∣∣ |H∗

0 | while 52 � |GL6(3)|, Q is H∗
0 -

irreducible, hence absolutely H∗
0 -irreducible by Lemma 1.4(c). In all other cases

under consideration, Q is easily checked to be an absolutely irreducible FpK-module
forK ≤ H∗

0 as given in Table 3.3, and hence an absolutely irreducible FpH
∗
0 -module.
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Thus |Out(F)| ≤ |NOut(Q)(H
∗)/H∗| ≤ η·|Out(H∗

0 )|
/
|OutH∗(H∗

0 )| by Lemma
1.3(c.ii), where for Y as in the lemma, η = |Y | = 2 when (G, p) = (F5, 5) (and
H∗ 	 Z(Out(Q))), and η = |Y | = 1 otherwise.

In Case 3a, we have Out(H∗
0 ) = OutH∗(H∗

0 ) in all cases, so |Out(F)| =
|Out(H)| = 1.

In Case 3b, we determine Out(H∗
0 ) by applying Lemma 1.3(a) again, this time

with O2(H
∗
0 ) in the role of Q. Since Out(21+4

− ) ∼= S5 and Out(21+6
− ) ∼= SO−

6 (2), the
lemma implies that Out(H∗

0 ) = OutH∗(H∗
0 ) in each case, and hence that |Out(F)| ≤

η.
Case 4: We show, one pair (G, p) at a time, that |NOut(Q)(H

∗)/H∗| ≤ |Out(G)|
in each of these five cases.

If G ∼= Co3 and p = 3, then Q ∼= 31+4
+ and Out(Q) ∼= Sp4(3):2. Set

Z = Z(Out(Q)) ∼= C2. Then Out(Q)/Z ∼= PSp4(3):2
∼= SO5(3) and H∗/Z ∼=

C2 × S6. Under this identification, the central involution x ∈ Z(H∗/Z) acts as
−IdV ⊕ IdW for some orthogonal decomposition V ⊕W of the natural module F5

3;
and since none of the groups Ω±

2 (3), Ω3(3), or Ω+
4 (3) has order a multiple of 5,

dim(V ) = 4 and CSO5(3)(x)
∼= O−

4 (3). Since Ω−
4 (3)

∼= PSL2(9) ∼= A6, this shows
that COut(Q)/Z(x) = H∗/Z ∼= C2 × S6. So |NOut(Q)(H

∗)/H∗| = 1.

If G ∼= F5 and p = 3, then Q ∼= 31+4
+ and H∗ ∼= 4A5. By the argument in

the last case, NOut(Q)(Z(H∗)) ∼= 4S6, so |NOut(Q)(H
∗)/H∗| = |NS6

(A5)/A5| = 2.

When G ∼= Fi22 and p = 3, the subgroup H ∼= 31+6
+ .23+4.32.2 is described in

[W5, p. 201]: H∗ can be regarded as a subgroup of GL2(3) � S3 < Sp6(3).2. More
precisely, 23+4 < (Q8)

3 (recall O2(GL2(3)) ∼= Q8) is a subgroup of index 4, one
of the factors C3 normalizes each Q8 and the other permutes them cyclically, and
the C2 acts by inverting both factors C3. Then NOut(Q)(H

∗) ≤ GL2(3) � S3 since

it must permute the three O2(H
∗)-irreducible subspaces of Q, so NOut(Q)(H

∗) ∼=
23+4.(S3 × S3), and |N(H∗)/H∗| = 2.

When G ∼= Fi23 and p = 3, the subgroup H is described in [W8, § 1.2]. The
subgroup R∗ = O2(H

∗) ∼= 21+6
− has a unique faithful irreducible representation over

F3, this is 8-dimensional, and NSL8(3)(R
∗)/R∗ is sent injectively into Out(R∗) ∼=

SO−
6 (2)

∼= SO5(3). Since H∗/R∗ ∼= 31+2
+ :2S4 is a maximal parabolic subgroup in

SO5(3), we get NOut(Q)(H
∗)/H∗ = 1.

If G ∼= Ly and p = 5, then Q is F5[2A6]-irreducible since 32 � |GL3(5)|, and
is absolutely irreducible since 2A6 is not a subgroup of SL2(25) (since E9 is not
a subgroup). Thus |NOut(Q)(H

∗)/H∗| ≤ |Out(S6)| = 2, with equality only if the

action of 2A6 on Q extends to 2A6.2
2. This is impossible, since the two classes of

3-elements in 2A6 act differently on Q (note the action of a Sylow 3-subgroup on

Q), so NOut(Q)(H
∗)/H∗ = 1.

Case 5: When G ∼= F3 and p = 3, we work with two different 3-local
subgroups. Set V1 = Z(S) and V2 = Z2(S), and set Hi = NG(Vi) and Qi = O3(Hi)
for i = 1, 2. By [A1, 14.1.2 & 14.1.5] and [Pa, § 4], V1

∼= C3, V2
∼= E9, |Q1| =

|Q2| = 39, and H1/Q1
∼= H2/Q2

∼= GL2(3). Note that S ≤ H1 ∩H2, and |S| = 310.
Also, the following hold:

(1) Set V5 = Z2(Q2). Then V5 = [Q2, Q2] ∼= E35 , Q2/V5
∼= E34 , V2 is the

natural module for G2/Q2
∼= GL2(3), and V5/V2 is the projective abso-

lutely irreducible PSL2(3)-module of rank 3. Also, V5/V2 = Z(Q2/V2),
and hence Q2/V2 is special of type 33+4. See [A1, 14.2].
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(2) By [A1, 14.2.3], the quotient Q2/V5 is indecomposable as an F3[G2/Q2]-
module, and is an extension of one copy of the natural SL2(3)-module by
another. Let R7 < Q2 be such that R7 > V5, and R7/V5 < Q2/V5 is the
unique H2/Q2-submodule of rank 2 (thus |R7| = 37).

(3) We claim that CQ2
(V5) = V5. Assume otherwise: then CQ2

(V5) ≥ R7 since
it is normal in H2. So V5 ≤ Z(R7), and |[R7, R7]| ≤ 3 since R7/V5

∼= E9.
But [R7, R7] < V5 is normal in H2, so it must be trivial, and R7 is abelian.
This is impossible: V5 contains elements of all three classes of elements of
order 3 [A1, 14.2.2], while the centralizer of a 3A-element is isomorphic
to (3×G2(3)).2 whose Sylow 3-subgroups are nonabelian of order 37.

(4) Set V3 = Z2(Q1); then V3
∼= E27, and V3/V1 is the natural module for

G1/Q1 [A1, 14.3.1]. Since V3 � S and V2 = Z2(S) ∼= E9, V3 > V2. Also,
V3/V2 ≤ Z(Q2/V2) = V5/V2 since |V3/V2| = 3. Thus V2 < V3 < V5.

By [A1, 14.3.2], [Q1, Q1] > V3, and Q1/[Q1, Q1] ∼= E34 is indecompos-
able as an F3[G1/Q1]-module and an extension of one copy of the natural
SL2(3)-module by another.

(5) Set W7 = CG(V3) ≥ V5: a subgroup of S, hence of Q1 ∩ Q2, of order 37

[A1, 14.3.4]. We claim that W7/V5 = Z(S/V5) = CQ2/V5
(S/Q2), where

S/V5
∼= C3 × (C3 � C3) by [A1, 14.2.5]. To see this, note that for each

g ∈ Q2 such that gV5 ∈ CQ2/V5
(S/Q2), the map x �→ [x, g] is S/Q2-linear

from V5/V2 to V2, so V3/V2 = [S, [S, V5/V2]] (see (1)) lies in its kernel.
Thus Z(S/V5) ≤ W7/V5, and they are equal since they both have order 9.

(6) To summarize, we have defined two sequences of subgroups

V2 < V5 < R7 < Q2 < H2 and V1 < V3 < W7 < Q1 < H1,

those in the first sequence normal in H2 and those in the second normal
in H1, where Vm

∼= E3m and |R7| = |W7| = 37. In addition, V1 < V2 <
V3 < V5 < W7 < Q2.

Fix β ∈ Aut(F). By Lemma 1.2(a), κH2
is an isomorphism, and hence β

extends to an automorphism β2 ∈ Aut(H2). Since V2 is the natural module for
H2/Q2

∼= GL2(3), β2|V2
= cx for some x ∈ H2, and x ∈ NH2

(S) since β2(S) = S.
Upon replacing β by c−1

x ◦ β and β2 by c−1
x ◦ β2, we can arrange that β|V2

= Id.
Since β|V2

= Id, β2 also induces the identity on H2/Q2
∼= GL2(3) (since this

acts faithfully on V2), and induces ε·Id on V5/V2
∼= E27 for ε ∈ {±1} since it

is absolutely irreducible. By (3), the homomorphism Q2/V5 −→ Hom(V5/V2, V2)
which sends g to (x �→ [g, x]) is injective. Since β induces the identity on V2 and
ε·Id on V5/V2, it also induces ε·Id on Q2/V5. By (1), [Q2/V2, Q2/V2] = V5/V2, so
β acts via the identity on V5/V2. Thus ε = +1, and β also induces the identity on
Q2/V5.

Now, H1(H2/Q2;Q2/V5) = 0 by Lemma 1.5(a) (and since the central involution
in H2/Q2

∼= GL2(3) inverts Q2/V5). So by Lemma 1.3(b), applied with H2/V5 and
Q2/V5 in the role of H and Q = R, β2 ≡ cy modulo V5 for some y ∈ Q2. Upon
replacing β2 by c−1

y ◦ β2, we can arrange that [β,H2] ≤ V5.
Next, note that V5/V2 = Z(Q2/V2) and HomH2/Q2

(Q2/V5, V5/V2) = 1 by (1)

and (2), andH1(H2/Q2;V5/V2) = 0 since V5/V2 isH2/Q2-projective. So by Lemma
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1.3(b), β ≡ cz (mod V2) for some z ∈ V5. Upon replacing β2 by c−1
z ◦ β2, we can

now arrange that [β2, H2] ≤ V2.
By Lemma 1.3(b), β|Q2

has the form β(u) = uχ(uV2) for some homomorphism
χ ∈ HomH2/Q2

(Q2/V2, V2). Also, χ factors through Q2/V5 since [Q2, Q2] = V5 by
(1). By (2), either χ = 1, or χ is surjective with kernel R7/V2. In either case,
β|R7

= Id. Also, since W7/V5 = CQ2/V5
(S/Q2) by (5), χ(W7/V5) ≤ CV2

(S/Q2) =
V1. So [β,W7] ≤ V1.

By Lemma 1.2(a) again, κH1
is an isomorphism, and hence β extends to

β1 ∈ Aut(H1). Let β ∈ Aut(S/V1) and β1 ∈ Aut(H1/V1) be the automor-

phisms induced by β and β1. We have just shown that β|W7
= Id, and that

[β1, S/V1] ≤ V2/V1. By Lemma 1.3(b) again, β|Q1/V1
has the form β(g) = gψ(gW7)

for some ψ ∈ HomH1/Q1
(Q1/W7, V3/V1) with Im(ψ) ≤ V2/V1. Since Q1/W7 and

V3/V1 are natural modules for SL2(3) by (5) and (4), ψ must be surjective or triv-

ial. Since ψ is not surjective, β|Q1
= Id. Also, H1(H1/Q1;V3/V1) = 0 by Lemma

1.5(a), so β1 ∈ AutV3/V1
(H1/V1) by Lemma 1.3(b).

We can thus arrange, upon replacing β1 by c−1
w ◦β1 for some w ∈ V3, that β1 =

Id, and hence that [β1, H1] ≤ V1. (We can no longer claim that [β2, H2] ≤ V2, but
this will not be needed.) SetH ′

1 = [H1, H1]. By (4), H ′
1 ≥ Q1 andH ′

1/Q1
∼= SL2(3).

Also, V1 = Z(H ′
1), so β1|H′

1
has the form β1(g) = gφ(g) for some φ ∈ Hom(H ′

1, V1).

But H ′
1 is perfect by (4) again, so φ = 1, and β1 = Id. Thus Out(F) = 1, and κG

is an isomorphism.
This finishes the proof of Proposition 3.2. �
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CHAPTER 4

Tools for comparing automorphisms of fusion and
linking systems

Throughout this chapter and the next, we assume p = 2. Many of the defini-
tions and statements given here are well known to hold for arbitrary primes, but
we restrict to this case for simplicity. In particular, a strongly embedded subgroup
H < G always means a strongly 2-embedded subgroup; i.e., one such that 2

∣∣|H|
while 2 � |H ∩ gH| for g ∈ G�H.

Definition 4.1. Fix a finite group G, choose S ∈ Syl2(G), and set F = FS(G).

(a) A subgroup P ≤ S is fully normalized in F if NS(P ) ∈ Syl2(NG(P )).

(b) A 2-subgroup P ≤ G is essential if P is 2-centric in G (if Z(P ) ∈
Syl2(CG(P ))) and OutG(P ) has a strongly embedded subgroup. Let E2(G)
be the set of all essential 2-subgroups of G.

(c) A subgroup P ≤ S is F-essential if P is fully normalized in F and essential
in G. Let EF be the set of all F-essential subgroups of G.

(d) Ẑ(F) =
{
W ≤ S

∣∣W elementary abelian, fully normalized in F ,

W = Ω1(Z(CS(W ))), AutF (W ) has a strongly embedded subgroup
}
.

Clearly, in the situation of Definition 4.1, EF ⊆ E2(G), while each member of

E2(G) is G-conjugate to a member of EF . If W ∈ Ẑ(F) and P = CS(W ), then by
the following lemma, restriction defines a surjection from OutG(P ) onto AutG(W )
with kernel of odd order. Hence OutG(P ) also has a strongly embedded subgroup,
and P ∈ EF .

Lemma 4.2. Fix a finite group G and S ∈ Syl2(G), and set F = FS(G).

(a) Assume W ≤ P ≤ G are 2-subgroups such that W = Ω1(Z(P )) and
P ∈ Syl2(CG(W )). Then restriction induces a surjection OutG(P ) −→
AutG(W ) with kernel of odd order.

(b) If W ∈ Ẑ(F) and P = CS(W ), then P ∈ EF .

Proof. (a) By the Frattini argument, NG(W ) ≤ NG(P )CG(W ), with equal-
ity since W is characteristic in P . So the natural homomorphism

OutG(P ) ∼= NG(P )/CG(P )P −−−−−−−→ NG(W )/CG(W ) ∼= AutG(W ),

induced by restriction of automorphisms or by the inclusion NG(P ) ≤ NG(W ) is
surjective with kernel (NG(P ) ∩ CG(W ))/CG(P )P of odd order.

(b) If W ∈ Ẑ(F) and P = CS(W ), then P ∈ Syl2(CG(W )) and W = Ω1(Z(P )) by
definition. So we are in the situation of (a), and OutG(P ) has a strongly embedded
subgroup since AutG(W ) does. Also, NG(P ) ≤ NG(W ), while NS(P ) = NS(W ) ∈
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Syl2(NG(W )) since W is fully normalized in F . Hence NS(P ) ∈ Syl2(NG(P )), so
P is also fully normalized and P ∈ EF . �

Our proof that Ker(μG) = 1 in all cases is based on the following proposition,
which is a modified version of similar results in [AOV1] and [BMO]. In most cases
handled in the next chapter, point (e) suffices to prove that Ker(μG) = 1.

When α ∈ Aut(L) and P is an object in L, we let αP : AutL(P ) −→ AutL(α(P ))
denote the restriction of α to AutL(P ).

Proposition 4.3. Fix a finite group G, choose S ∈ Syl2(G), and set F =
FS(G) and L = Lc

S(G). Each element in Ker(μG) is represented by some α ∈
Aut(L) such that αS = IdAutL(S). For each such α, there are elements gP ∈
CZ(P )(AutS(P )) = Z(NS(P )), defined for each fully normalized subgroup P ∈
Ob(L), for which the following hold:

(a) The automorphism αP ∈ Aut(AutL(P )) is conjugation by [gP ] ∈ AutL(P ),
and gP is uniquely determined by α modulo CZ(P )(AutF (P )). In partic-
ular, αP = IdAutL(P ) if and only if gP ∈ CZ(P )(AutF (P )).

(b) Assume P,Q ∈ Ob(L) are both fully normalized in F . If Q = aP for some
a ∈ S, then we can choose gQ = agP .

(c) If Q ≤ P are both fully normalized and are objects in L, then gP ≡ gQ
modulo CZ(Q)(NG(P ) ∩NG(Q)).

(d) Assume, for each W ∈ Ẑ(F) and P = CS(W ), that gP ∈ CZ(P )(AutF (P ))
(equivalently, that αP = IdAutL(P )). Then α = Id.

(e) If Ẑ(F) = ∅, then Ker(μG) = 1. If |Ẑ(F)| = 1, and |Z(S)| = 2 or (more
generally) AutF (Ω1(Z(S))) = 1, then Ker(μG) = 1.

Proof. Points (a)–(c) are part of [AOV1, Proposition 4.2], (d) follows from
[BMO, Proposition A.2(d)], and (e) combines parts (a) and (b) in [BMO, Propo-
sition A.2]. �

The following notation will be useful in the next lemma, and in the next chapter.

Definition 4.4. For each finite group G and each k ≥ 0, let Ik(G) be the set
of subgroups H ≤ G such that [G:H] = 2k·m for some odd m. Let I≤k(G) be the
union of the sets I�(G) for 0 ≤ � ≤ k.

Lemma 4.5. Let H be a finite group, fix T ∈ Syl2(H), and set F = FT (H). Set

Q = O2(H), and assume CH(Q) ≤ Q. Assume W ∈ Ẑ(F), and set P = CT (W ).
Set V = Ω1(Z(Q)), and set H∗ = AutH(V ), P ∗ = AutP (V ), T ∗ = AutT (V ), and
F∗ = FT∗(H∗).

(a) We have W ≤ V , AutH(W ) = AutH∗(W ) has a strongly embedded sub-
group, P ∗ is a radical 2-subgroup of H∗, and NH∗(P ∗)/P ∗ has a strongly
embedded subgroup.

(b) If H∗ is a Chevalley group (i.e., untwisted) over the field F2, then P ∗ ∈
EF∗ ⊆ I1(H

∗). If H∗ ∼= SU2n(2) or Ω−
2n(2) for n ≥ 2, then P ∗ ∈ EF∗ ⊆

I≤2(H
∗).

(c) If H∗ ∼= A6, A7, or M24, then P ∗ ∈ EF∗ ⊆ I1(H
∗). If H∗ ∼= M22 or

M23, then P ∗ ∈ EF∗ ⊆ I≤2(H
∗). If H∗ ∼= S5, then P ∗ ∈ I≤2(H

∗).
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(d) If H∗ ∼= Aut(M22), then

P ∗ ∈ EF∗ ⊆ I≤2(H
∗) and P ∗ ∩O2(H∗) ∈ E2(O

2(H∗)).

Proof. Fix W ∈ Ẑ(F), and set P = CT (W ) as above. Then P ∈ EF by
Lemma 4.2(b). Also, W = Ω1(Z(P )) and P ≥ O2(CH(V )) = Q, and hence W ≤
Ω1(Z(Q)) = V .

(a) Since V � H, each α ∈ AutH(W ) extends to α ∈ AutH(V ) = H∗, and
thus AutH∗(W ) = AutH(W ). Hence

NH∗(P ∗)/P ∗ ∼= NH/Q(P/Q)
/
(P/Q) ∼= NH(P )/P ∼= OutH(P ),

so this group has a strongly embedded subgroup. In particular, P ∗ = O2(NH∗(P ∗))
(see [AKO, Proposition A.7(c)]), so P ∗ is a radical 2-subgroup of H∗.

(b) Since W ≤ V , W = Ω1(Z(P )) = CV (P
∗). By (a), NH∗(P ∗)/P ∗ has a strongly

embedded subgroup, and O2(NH∗(P ∗)) = P ∗.
IfH∗ is a group of Lie type over the field F2, then by the Borel-Tits theorem (see

[GLS, Corollary 3.1.5]), NH∗(P ∗) is a parabolic subgroup and P ∗ = O2(NH∗(P ∗)).

Hence P ∗ ∈ EF∗ in this case. Also, O2′(OutH∗(P )) ∼= O2′(H/P ) is a central
product of groups of Lie type in characteristic 2 (cf. [GLS, Proposition 2.6.5(f,g)]).
Since it has a strongly embedded subgroup, it must be isomorphic to SL2(2) ∼= S3

(hence P ∈ I1(H
∗)), or possibly to A5

∼= SL2(4) ∼= Ω−
4 (2) if H∗ ∼= SU2n(2) or

Ω−
2n(2) for n ≥ 2 (in which case P ∈ I2(H

∗)). Note that we cannot get SU3(2)
since we only consider even dimensional unitary groups.

(c) If H∗ ∼= Mn for n = 22, 23, 24, then by [GL, pp. 42–44], it is of characteristic 2
type, in the sense that all 2-local subgroups are strictly 2-constrained. So NH∗(P ∗)
is strictly 2-constrained, P ∗ is centric in this group, and hence P ∗ ∈ EF∗ . Also,
EF∗ ⊆ I1(H

∗) if H∗ ∼= M24 [OV, Proposition 6.5], while EF∗ ⊆ I≤2(H
∗) if

H∗ ∼= M22 or M23 [OV, Table 5.2].
The remaining cases (H∗ ∼= A6, A7, or S5) are elementary.

(d) The radical 2-subgroups of H∗ ∼= Aut(M22) are listed in [Y, Table VIII].
There are just three classes of such subgroups Q for which N(Q)/Q has a strongly
embedded subgroup, of which the members of two have index 2 in a Sylow 2-
subgroup and those of the third have index 4. Each of them is essential in Aut(M22),
and contains with index 2 an essential 2-subgroup of M22. �

We will need to identify the elements of Ẑ(F), when F = FS(G) for a sporadic

group G and S ∈ Syl2(G). In most cases, it will turn out that Ẑ(F) = {Z2(S)},
which is why we need some tools for identifying this subgroup.

Lemma 4.6. Let S be a 2-group, and assume W ≤ S is elementary abelian. If
[S:CS(W )] = 2, then W ≤ Z2(S) and rk(W ) ≤ 2·rk(Z(S)).

Proof. Set Q = CS(W ) for short; Q � S since it has index 2. Then W ≤
Ω1(Z(Q)), and upon replacing W by Ω1(Z(Q)), we can arrange that W � S.

Fix x ∈ S � Q. Since x2 ∈ Q = CS(W ), we have [W,S] = [W,x] ≤ CW (x) ≤
Z(S). So W ≤ Z2(S), and rk(W ) ≤ 2·rk(Z(S)). �

Lemma 4.7. Fix a finite group G and a Sylow 2-subgroup S ∈ Syl2(G).

(a) If G is one of the sporadic groups J4, Co2, Co1, Suz, Ru, Fi
′
24, F5, F3,

F2, or F1, then |Z(S)| = 2 and Z2(S) ∼= E4. If G ∼= Co2, then Z2(S) has
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type 2ABB, while in all other cases, the three involutions in Z2(S) lie in
the same G-conjugacy class.

(b) If G ∼= Fi22, then Z2(S) ∼= E8 is of type 2A2B3C2 and contains a subgroup
of type 2B2. If G ∼= Fi23, then Z2(S) ∼= E16.

(c) If G ∼= HS, O’N, or Co3, then |Z(S)| = 2 and Z2(S) ∼= C4 × C2.

Proof. (a) In each of these cases, we choose Q � S and H = NG(Q) as
follows, where H∗ = H/Q ∼= AutH(Q):

G Co1 Suz Ru F5 F3 F2 F1 J4 Co2 Fi′24

Q 21+8
+ 21+6

− 2.24+6 21+8
+ 21+8

+ 21+22
+ 21+24

+ E211 E210 E211

H∗ Ω+
8 (2) Ω−

6 (2) S5 Ω+
4 (4):2 A9 Co2 Co1 M24 M22:2 M24

References for all of these subgroups are given in the next chapter.
Assume that |Z(Q)| = 2; i.e., that we are in one of the first seven cases. Then

|Z(S)| = 2, and Z2(S) ≤ Q since H∗ acts faithfully on Q/Z(Q). Set Q = Q/Z(Q),
so that Z2(S)/Z(S) = C

Z(Q)
(S/Q). If Q is extraspecial, then rk(Z2(S)) ≥ 2: since

Q has an odd number of isotropic points (cf. [Ta, Theorem 11.5]), at least one is
fixed by S.

When G ∼= Co1 or Suz, Q is the natural (orthogonal) module for H∗, so
|C

Q
(S)| = 2 (see [Cu, Theorem 6.15] or [GLS, Theorem 2.8.9]), and hence Z2(S) ∼=

E4.

When G ∼= Ru, Q is special of type 24+6, Z2(Q) ∼= E32, and H/Q acts on
Z2(Q)/Z(Q) via the natural action of ΣL2(4) [W4, § 1.4]. So |C

Z(Q)
(S/Q)| = 2 in

this case, and Z2(S) ∼= E4.

When G ∼= F5, a Sylow 2-subgroup of O2(H/Q) ∼= Ω+
4 (4) acts on Q ∼= (F4)

4

with 1-dimensional fixed subgroup. This subgroup lifts to V3 < Q, where V3
∼= E8

and AutG(V3) ∼= GL3(2) (see [NW, p. 365]). Thus [V3, S] > Z(S), so Z2(S) < V3,
and Z2(S) ∼= E4.

When G ∼= F3, Q as an F2A9-module satisfies the hypotheses of Lemma 1.6 by
[Pa, 3.7], and hence |C

Q
(S/Q)| = 2 by that lemma.

Assume G ∼= F1 or F2. Thus H∗ ∼= Co1 or Co2, respectively. Set T = S/Q ∈
Syl2(H

∗), and let V � T and K = NH∗(V ) be such that K ∼= 211.M24 or 210.M22:2
and V = O2(K). By [MStr, Lemmas 3.7.b & 3.8.b], |C

Q
(V )| = 2, and hence

|C
Q
(S/Q)| = 2. So Z2(S) ∼= E4 in both cases.

In the remaining three cases, Q is elementary abelian. When G ∼= Co2, Q ∼=
E210 is the Golay module (dual Todd module) for H∗ ∼= M22:2. Let K < H∗ be
the hexad subgroup K ∼= 24:S6, chosen so that K > S∗ = S/Q, and set R =
O2(K) ∼= E16. Set Q1 = CQ(R) and Q5 = [R,Q]. By [MStr, Lemma 3.3.b],
rk(Q1) = 1, rk(Q5) = 5, and Q5/Q1 is the natural module for S6

∼= Sp4(2). Hence
Z(S) = CQ(S

∗) = Q1, and Z2(S)/Z(S) = CQ/Q1
(S∗) = CQ5/Q1

(S∗) also has rank
1. So Z2(S) ∼= E4. The two elements in Z2(S)�Z(S) are S-conjugate, and do not
lie in 2C since CG(x) ∈ I3(G) for x ∈ 2C (see [W1, Table II]). By [W1, Table II]
again, each 2A-element acts on the Leech lattice with character −8, so a subgroup
of type 2A2 would act fixing only the zero vector, hence cannot be in Co2. Thus
Z2(S) has type 2ABB.
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Assume G ∼= Fi′24 or J4. In both cases, Q ∼= E211 is the Todd module for
H∗ ∼= M24 (see [A3, 34.9] and [J, Theorem A.4]). Let K < H/Q be the sextet
subgroup K ∼= 26:3S6, chosen so that K > S∗ = S/Q ∈ Syl2(H

∗), and set R =
O2(K) ∼= E64. By [MStr, Lemma 3.5.b], there are F2K-submodules Q1 < Q7 < Q
of rank 1 and 7, respectively, where Q1 = CQ(R) and Q2 = [R,Q], and where
K/R ∼= 3S6 acts on Q7/Q1 as the dual module to R. Thus Z(S) = Q1 and
Z2(S)/Z(S) = CQ7/Q1

(S∗) ∼= R/[S∗, R]. Since S∗ ∼= UT5(2) contains only two
subgroups of rank 6, one easily sees that |R/[S∗, R]| = 2, and hence Z2(S) ∼= E4.

In all of the above cases except Co2, S contains a normal elementary abelian
subgroup V of rank at least 2 all of whose involutions lie in the same G-conjugacy
class. We refer to the lists of maximal 2-local subgroups in the next chapter, where
we can take V = Vi = Z(O2(Hi)), for i = 2 (when G ∼= Co1, Suz, F2, or F1),
i = 3 (when G ∼= J4, Ru, or F5), or i = 5 (for G ∼= Fi′24 or F3). Since each normal
subgroup of order at least 4 contains Z2(S), the involutions in Z2(S) also lie in the
same class.

(b) When G ∼= Fi22 and S ∈ Syl2(G), Z(S) = 〈z〉 has order 2, and H = CG(z) ∼=
(2×21+8

+ ):U4(2):2. Set Q = O2(H). Then O2(H/Q) acts faithfully on Q = Q/Z(Q)
as a 4-dimensional unitary space over F4, so dimF4

(C
Q
(S ∩ O2(H))) = 1 [Cu,

Theorem 6.15]. An involution hQ with h ∈ H�O2(H) acts as a field automorphism

on the unitary space Q, so dimF2
(C

Q
(S)) = 1. Since |Z(Q)| = 4, this proves that

|Z2(S)| ≤ 8.
To see that Z2(S) does contain a subgroup of rank 3, consider a hexad group

V ∼= E32 normal in S, generated by six transpositions {a1, . . . , a6} (where a1 · · · a6 =
1), ordered so that AutS(V ) = 〈(1 2)(3 4), (1 2)(5 6), (1 3)(2 4)〉. Then
Z(S) = CV (S) = 〈a5a6〉 and Z2(S) = 〈a1a2, a3a4, a5, a6〉 is of type 2A2B3C2,

and 〈a1a2, a3a4〉 < Z2(S) is of type 2B2.
When G ∼= Fi23 and S ∈ Syl2(G), Z(S) ∼= E4 contains involutions x, y, z in

each of the three classes 2A, 2B, and 2C, respectively. Also, CG(x) ∼= 2Fi22, so
we can identify S/〈x〉 as a Sylow 2-subgroup of Fi22, whose center lifts to a pair of
elements of class 2B and 2C in G. Thus S/Z(S) ∼= T/Z(T ) when T ∈ Syl2(Fi22),
we already saw that |Z(T/Z(T ))| = 4, and so |Z2(S)| = 16. All involutions in Fi22
lift to involutions in 2·Fi22 < G, so Z2(S) is elementary abelian.

(c) When G ∼= HS or O’N, this follows from the descriptions by Alperin [Alp,
Corollary 1] and O’Nan [O’N, § 1] of S as being contained in an extension of the
form 43.L3(2). (In terms of their presentations, Z(S) = 〈v21v23〉, while Z2(S) =
〈v1v3, v21v22〉.) When G ∼= Co3, it follows from a similar presentation of S ≤ 43.(2×
L3(2)) (see, e.g., [OV, § 7]). �
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CHAPTER 5

Injectivity of μG

We are now ready to prove, when p = 2, that Ker(μG) = 1 for each of the
sporadic groups G not handled in Proposition 2.1. This will be done in each case

by determining the set Ẑ(F) and then applying Proposition 4.3. One can determine

Ẑ(F) using the lists of radical 2-subgroups found in [Y] and other papers. However,
we decided to do this instead using lists of maximal 2-local subgroups, to emphasize
that the details needed to prove this result are only a small part of what is needed
to determine the radical subgroups.

Proposition 5.1. Assume p = 2, and let G be a sporadic simple group whose
Sylow 2-subgroups have order at least 210. Then Ker(μG) = 1.

Proof. There are fifteen groups to consider, and we go through the list one
or two at a time. In each case, we fix S ∈ Syl2(G) and set F = FS(G), L = Lc

S(G),

and Ẑ = Ẑ(F). When we list representatives for the conjugacy classes of maximal
2-local subgroups of G, we always choose them so that each such H satisfies S∩H ∈
Syl2(H). In particular, if H has odd index in G, then H ≥ S and hence O2(H) � S
and Z(O2(H)) � S (making the choice of H unique in most cases).

In four of the cases, when G ∼= M24, He, Co2, or Fi23, Ẑ has two members,
and we use Proposition 4.3(b,c,d) to prove that μG is injective. In all of the other

cases, |Ẑ| = 1 and |Z(S)| = 2, and we can apply Proposition 4.3(e). Recall that by
Proposition 4.3, each class in Ker(μG) contains an element α ∈ Aut(L) which acts
as the identity on AutL(S).

Note that whenever |Z(S)| = 2 and W ∼= E4 is normal in S, [S:CS(W )] = 2,
and hence W ≤ Z2(S) by Lemma 4.6.

For convenience, we sometimes write A ∼H B to mean that A is H-conjugate
to B, and A ≤H B to mean that A is H-conjugate to a subgroup of B.

G ∼= M24, He : We identify S with UT5(2), the group of (5×5) upper triangular
matrices over F2. Let eij ∈ S (for i < j) be the matrix with 1’s on the diagonal,
and with unique nonzero off-diagonal entry 1 in position (i, j). Set W1 = 〈e15, e25〉
and W4 = 〈e14, e15〉, Qi = CS(Wi) for i = 1, 4, and Q14 = Q1 ∩ Q4. By [OV,
Propositions 6.2 & 6.9], Q1 and Q4 are essential in G, and are the only essential

subgroups with noncyclic center. Hence by Lemma 4.2, Ẑ = {W1,W4}. Also,
Q14 = A1A2, where A1 and A2 are the unique subgroups of S of type E64, and
hence Q14 = J(S) is characteristic in S, Q1, and Q4.

Fix α ∈ Aut(L) which is the identity on AutL(S). By Proposition 4.3(a),
there are elements gP ∈ CZ(P )(AutS(P )), chosen for each P ≤ S which is fully
normalized in F and 2-centric in G, such that α|AutL(P ) is conjugation by [gP ].
Then gQ1

= gQ14
= gQ4

∈ Z(S) by point (c) in the proposition, since for i = 1, 4,
CZ(Q14)(NG(Qi)) = 1. Set g = gQ1

; upon replacing α by c−1
g ◦ α, we can arrange
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that α|AutL(Qi) = Id for i = 1, 4 without changing α|AutL(S). Hence Ker(μG) = 1
by Proposition 4.3(d).

G ∼= J4 : By [KW, § 2], there are four conjugacy classes of maximal 2-local
subgroups, represented by:

H1
∼= 21+12

+ .3M22:2, H3
∼= 23+12.(Σ5 × L3(2)), H10

∼= 210:L5(2), H11
∼= 211:M24.

Set Qi = O2(Hi) and Vi = Z(Qi) ∼= E2i . Note that H10 ∈ I1(G), while Hi ≥ S
for i �= 10.

Fix W ∈ Ẑ and set P = CS(W ). Then NG(W ) ≤G Hi for some i, in which case
P ≥G Qi and W ≤G Vi by Lemma 4.5(a). Thus i > 1 since rk(W ) ≥ 2. By Lemma
4.5(b,c), AutP (Vi) ∈ E2(AutHi

(Vi)) ⊆ I1(AutHi
(Vi)), and hence P ∈ I1(Hi).

Thus either [S:P ] = 2, in which case W = Z2(S) ∼= E4 by Lemmas 4.6 and
4.7(a); or i = 10 and [S:P ] = 4. In the latter case, since H10/V10

∼= L5(2) acts
on V10 as Λ2(F5

2), we have rk(W ) = rk(CV10
(P/V10)) ≤ rk

(
CV10

([S∗, S∗])
)
= 2 for

S∗ ∈ Syl2(H10/V10). So W ∼= E4 in all cases.
By [KW, Table 1], there are two classes of four-groups in G whose centralizer

has order a multiple of 219, denoted AAA(1) and ABB(1), with centralizers of order
220·3·5 and 219·3·5, respectively. Thus AAA(1) ∼G Z2(S) (Lemma 4.6), and W lies
in one of the two classes. Since AutG(ABB(1)) is a 2-group, W �∼G ABB(1). Hence

Ẑ = {Z2(S)}, and μG is injective by Proposition 4.3(e).

G ∼= Co3 : By [OV, Proposition 7.3], there is at most one essential subgroup
with noncyclic center (denoted R1); and R1 ∈ EF since otherwise NG(Z(S)) would

control fusion in G. Also, OutG(R1) ∼= S3 and Z(R1) ∈ Ẑ by [OV, Propsition 7.5].

So |Ẑ| = 1, and Ker(μG) = 1 by Proposition 4.3(e). (In fact, it is not hard to see

that Ẑ = {Ω1(Z2(S))}.)
G ∼= Co2 : By [W1, pp. 113–114], each 2-local subgroup of G is contained up
to conjugacy in one of the following subgroups:

H1
∼= 21+8

+ .Sp6(2), H4
∼= 24+10.(S3 × S5), H5

∼= (24 × 21+6
+ ).A8, H10

∼= 210:M22:2

K1
∼= U6(2):2, K2

∼= McL, K3
∼= M23.

For i = 1, 4, 5, 10, set Qi = O2(Hi) and Vi = Z(Qi) ∼= E2i .
Recall (Lemma 4.7(a)) that Z2(S) has type 2ABB. Set Z2(S) = {1, x, y1, y2},

where x ∈ 2A and y1, y2 ∈ 2B. Thus Z(S) = 〈x〉, H1 = CG(x), and we can assume
H5 = CG(y1).

Fix W ∈ Ẑ, and set P = CS(W ). Then W ≥ Z(S), so W ∩ 2A �= ∅. If
rk(W ) = 2, then W must have type 2A2. Since each 2A-element acts on the Leech
lattice with character −8 [W1, Table II], W would fix only the zero element, and
hence cannot be contained in Co2. Thus rk(W ) ≥ 3. If [S:P ] = 2, then W ≤ Z2(S)
by Lemma 4.6, which is impossible since rk(Z2(S)) = 2. So [S:P ] ≥ 4.

If NG(W ) ≤G K2
∼= McL or NG(W ) ≤G K3

∼= M23, then by the list of essential
subgroups in these groups in [OV, Table 5.2], rk(W ) = rk(Z(P )) ≤ 2. So these
cases are impossible.

The subgroup K1
∼= U6(2):2 in Co2 is the stabilizer of a triple of 2-vectors in the

Leech lattice [Cu1, pp. 561–2], which we can choose to have the form (4, 4, 0, . . . ),
(0,−4, 4, . . . ), and (−4, 0,−4, . . . ). Using this, we see that the maximal parabolic
subgroups 21+8

+ :U4(2):2, 2
9:L3(4):2, and 24+8:(S3 × S5) in K1 can be chosen to be

contained in H1, H10, and H4, respectively. If NG(W ) ≤G K1, then it is contained
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in one of the maximal parabolics by the Borel-Tits theorem, and so NG(W ) is also
conjugate to a subgroup of one of the Hi.

Thus in all cases, we can assume that NG(W ) ≤ Hi for some i = 1, 4, 5, 10.
Then P ≥ Qi and W = Z(P ) ≤ Vi, so i �= 1.

Assume i = 5, and recall that Fr(Q5) = 〈y1〉. The image of W in V5/〈y1〉 ∼= E16

has rank at least 2 since rk(W ) ≥ 3, so AutNG(W )(V5/〈y1〉) is the stabilizer subgroup
of a projective line and plane in A8

∼= SL4(2) (a line and plane determined by S).

So there is at most one member of Ẑ whose normalizer is in H5 = CG(y1), and it
has rank 3 if it exists.

Now, V4 ≥ Z2(S) since it is normal in S. Since Z2(S) has type 2ABB, S5

must act on V #
4 with orbits of order 5 and 10, and has type 2A5B10. So if i = 4,

then W is a rank 3 subgroup of the form 2A3B4 (the centralizer of a 2-cycle in
S5). There is exactly one 2B-element in W whose product with each of the other
2B-elements is in class 2A, so NG(W ) ≤G H5 = NG(2B): a case which we have
already handled.

Assume i = 10, and set H∗ = H10/V10
∼= AutH10

(V10) ∼= Aut(M22) and P ∗ =
P/V10. By Lemma 4.5(d), P ∗∩O2(H∗) is an essential 2-subgroup of O2(H∗) ∼= M22.
Since P /∈ I1(H10), P

∗ ∩ O2(H∗) has the form 24:2 < 24:S5 (the duad subgroup)
by [OV, Table 5.2], and this extends to P ∗ ∼= 25:2 < 25:S5 < Aut(M22). But V10.2

5

has center V4 (see [MStr, Lemma 3.3]), and so we are back in the case i = 4.

Thus Ẑ = {W1,W2}, where rk(Wi) = 3 and NG(Wi) ≤ CG(yi) ∼G H5 for
i = 1, 2. (These also correspond to the two 2-cycles in AutS(V4) < S5.) Set
Pi = CS(Wi). Fix α ∈ Aut(L) which is the identity on AutL(S), and let gi = gPi

∈
CWi

(AutS(Pi)) = Z2(S) (i = 1, 2) be as in Proposition 4.3. Thus α|AutL(Pi) is
conjugation by gi. Since yi ∈ Z(NG(Pi)), we can replace gi by giyi if necessary and
arrange that gi ∈ Z(S). Then g1 = g2 by Proposition 4.3(b) and since P1 and P2

are S-conjugate. Upon replacing α by c−1
g1 ◦α, we can arrange that α|AutL(Qi) = Id

for i = 1, 4 without changing α|AutL(S). Hence Ker(μG) = 1 by Proposition 4.3(d).

G ∼= Co1 : There are three conjugacy classes of involutions in G, of which those in
2A are 2-central. By [Cu2, Theorem 2.1], each 2-local subgroup of G is contained
up to conjugacy in one of the subgroups

H1
∼= 21+8

+ .Ω+
8 (2), H2

∼= 22+12.(A8 × S3), H4
∼= 24+12.(S3 × 3S6), H11

∼= 211M24;

K1
∼= (A4 ×G2(4)):2, K2

∼= (A6 × U3(3)):2.

Curtis also included Co2 in his list, but it is not needed, as explained in [W1, p.
112]. Set Qi = O2(Hi) and Vi = Z(Qi) ∼= E2i .

Assume W ∈ Ẑ. Then W ≥ Z(S), so W ∩ 2A �= ∅. If W ∩ 2C �= ∅, then
NG(W ) ≤ Hi for some i = 1, 2, 4, 11 by [Cu2, Lemma 2.2] (where the involution
centralizer in the statement is for an involution of type 2A or 2C). If W contains
no 2C-elements, then by the argument given in [Cu2, p. 417], based on the action
of the elements on the Leech lattice, a product of distinct 2A-elements in W must
be of type 2A. So in this case, 〈W ∩2A〉 is 2A-pure, and its normalizer is contained
in some Hi by [Cu2, Lemma 2.5] (together with Wilson’s remark [W1, p. 112]).

Set P = CS(W ); then P ≥ Qi and hence W ≤ Vi. Also, i �= 1 since rk(W ) > 1.
By Lemmas 4.5(b,c), AutP (Vi) ∈ E2(AutHi

(Vi)) ⊆ I1(AutHi
(Vi)). Since Hi ≥ S,

we have [S:P ] = 2, and W = Ω1(Z(P )) ≤ Z2(S) by Lemma 4.6, with equality since

|Z2(S)| = 4 by Lemma 4.7. It follows that Ẑ = {Z2(S)}, and Ker(μG) = 1 by
Proposition 4.3(e).
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G ∼= Suz : By [W2, § 2.4], there are three classes of maximal 2-local subgroups
which are normalizers of 2A-pure subgroups, represented by

H1
∼= 21+6

− .Ω−
6 (2), H2

∼= 22+8.(A5 × S3), H4
∼= 24+6.3A6.

Fix W ∈ Ẑ, and set P = CS(W ). Since W ≥ Z(S), it contains 2A-elements,
and since 〈W ∩ 2A〉 is 2A-pure by [W2, p. 165], NG(W ) ≤ Hi for some i ∈
{1, 2, 4}. Then P ≥ O2(Hi) and W ≤ Vi

def
= Z(O2(Hi)) by Lemma 4.5(a), so i �= 1

since rk(W ) ≥ 2. Hence i = 2 or 4, so AutG(Vi) ∼= S3 or A6, and AutP (Vi) ∈
E2(AutG(Vi)) ⊆ I1(AutG(Vi)) by Lemma 4.5(b,c). So [S:P ] = 2, and W ≤ Z2(S)

by Lemma 4.6, with equality since |Z2(S)| = 4 by Lemma 4.7. Thus Ẑ = {Z2(S)},
and Ker(μG) = 1 by Proposition 4.3(e).

G ∼= Ru : There are two conjugacy classes of involutions, of which the 2A-
elements are 2-central. By [W4, § 2.5], the normalizer of each 2A-pure subgroup
is contained up to conjugacy in one of the following subgroups:

H1
∼= 2.24+6.S5 H3

∼= 23+8.L3(2) H6
∼= 26.G2(2).

Set Qi = O2(Hi) and Vi = Z(Qi). For each i = 1, 3, 6, Vi is elementary abelian of
rank i and 2A-pure.

Fix W ∈ Ẑ, and set P = CS(W ) ∈ EF . Then W ≥ Z(S), so W contains 2A-
elements. Since the subgroup W0 = 〈W ∩2A〉 is 2A-pure [W4, p. 550], NG(W ) ≤
NG(W0) ≤ Hi for i ∈ {1, 3, 6}. Since Hi is 2-constrained, P ≥ Qi = O2(Hi) and
W ≤ Vi by Lemma 4.5(a). Hence i �= 1, since rk(W ) ≥ 2.

For i = 3, 6, AutG(Vi) is a Chevalley group over F2, so by Lemma 4.5(b),
AutP (Vi) ∈ I1(AutG(Vi)), and hence P ∈ I1(Hi). So |P | = 213 (if i = 3) or 211

(if i = 6). Also, W is 2A-pure since Vi is. By [W4, § 2.4], there are four classes
of subgroups of type 2A2, of which only one has centralizer of order a multiple of
211, and that one must be the class of Z2(S) (Lemma 4.7). So W = Z2(S) if i = 3,
or if i = 6 and rk(W ) = 2.

As explained in [W4, § 2.5], if W ≤ V6 and rk(W ) ≥ 3, then either NG(W ) ≤G

H1, or NG(W ) is in the normalizer of a group of the form 2A2 which must be
conjugate to Z2(S) by the above remarks, or CG(W ) = V6. The first case was
already handled. If NG(W ) ≤G NG(Z2(S)), then NG(W ) ≤G H3 by [W4, p. 550],
and this case was already handled. If CG(W ) = V6, then W = P = V6, which
is impossible since G2(2) does not have a strongly embedded subgroup. Thus

Ẑ = {Z2(S)}, and μG is injective by Proposition 4.3(e).

G ∼= Fi22, Fi23, or Fi′24 : It will be simplest to handle these three groups
together. Their maximal 2-local subgroups were determined in [W5, Proposition
4.4], [Fl], and [W8, Theorem D], and are listed in Table 5.1. To make it clearer how
2-local subgroups of one Fischer group lift to larger ones, we include the maximal 2-
local subgroups in Fi21 ∼= PSU6(2) (the maximal parabolic subgroups by the Borel-
Tits theorem), and give the normalizers in Fi24 of the maximal 2-local subgroups
of Fi′24. Also, we include one subgroup which is not maximal: H4 ≤ Fi23 is
contained in K1.

As usual, set Qi = O2(Hi) and Vi = Z(Qi). For each of the four groups Fin,

Hi ≥ S for i = 1, 2, 3, 5. We write K
(n)
i , H

(n)
i , Q

(n)
i , or V

(n)
i when we need to

distinguish Ki, Hi, Qi, or Vi as a subgroup of Fin.
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PSU6(2) = Fi21 Fi22 Fi23 Fi24

K1 2·Fi22 (2× 2·Fi22).2

K2 2·Fi21 22·Fi21.2 (2× 22·Fi21).S3

K3 S4 × Sp6(2) S4 × Ω+
8 (2):S3

H1 21+8
+ :U4(2) (2×21+8

+ :U4(2)).2 (22×21+8
+ ).(3×U4(2)).2 (21+12

+ ).3U4(3).2
2

H2 24+8:(A5 × S3) 25+8:(A6 × S3) 26+8:(A7 × S3) 27+8:(A8 × S3)

H3 29:M21 210.M22 211.M23 212.M24

H4 26.Sp6(2) [27.Sp6(2)] 28:SO−
8 (2)

H5 23+12(SL3(2)×S6)

Table 5.1

Each of the groups Fin for 21 ≤ n ≤ 24 is generated by a conjugacy class of
3-transpositions. By [A3, 37.4], for 22 ≤ n ≤ 24, Fin has classes of involutions Jm,
for m = 1, 2, 3 when n = 22, 23 and for 1 ≤ m ≤ 4 when n = 24. Each member
of Jm is a product of m commuting transpositions (its factors): a unique such
product except when n = 22 and m = 3 (in which case each x ∈ J3 has exactly
two sets of factors) and when n = 24 and m = 4. Note that J1 = 2A, J2 = 2B,
and J3 = 2C in Fi22 and Fi23, while J2 = 2A and J4 = 2B in Fi′24 (and the other
two classes are outer automorphisms).

In all cases, K1, K2, and H1 are normalizers of sets of (n − 22), (n − 21),
and (n − 20) pairwise commuting transpositions. Also, H3 is the normalizer of
the set of all n transpositions in S; these generate Q3 = V3 of rank n − 12, and
form a Steiner system of type (n − 19, n − 16, n). Then H2 is the normalizer of
a pentad, hexad, heptad, or octad of transpositions: one of the members in that
Steiner system. From these descriptions, one sees, for example, that a subgroup of
type Ki (i = 1, 2) or Hi (i = 1, 2, 3) in Fi22 lifts to a subgroup of type Ki or Hi,
respectively, in 2·Fi22 < Fi23 and in 2Fi22.2 < Fi′24.

By [W5, Lemma 4.2], each 2B-pure elementary abelian subgroup of Fi22 (2B =
J2) supports a symplectic form for which (x, y) = 1 exactly when conjugation by y

exchanges the two factors of x. Then V
(22)
4 is characterized as a subgroup of type

2B6 with nonsingular symplectic form. Since each 2B-element in Fi22 lifts to a

2B- and a 2C-element in 2·Fi22 < Fi23, H
(22)
4 lifts to H

(23)
4 of the form 27.Sp6(2).

By [W8, Corollary 3.2.3], each elementary abelian subgroup of G ∼= Fi′24 sup-
ports a symplectic form where (x, y) = 1 if and only if y is in the “outer half”
of CG(x) ∼= 2·Fi22.2 or 21+12

+ .3U4(3):2. By [W8, Proposition 3.3.3], the form on

V
(24)
4

∼= E28 is nonsingular, and V
(24)
4 contains elements in both classes 2A = J2

and 2B = J4. If x ∈ V4 ∩ 2A, then V4 ∩O2(CG(x))/〈x〉 has rank 6 with nonsingu-
lar symplectic form in Fi22, and hence

(
CH4

(x) ∩ O2(CG(x))
)/

〈x〉 is conjugate to

H
(22)
4 . Thus H

(24)
4 contains a lifting of H

(22)
4 via the inclusion 2·Fi22 < Fi′24.

Fix W ∈ Ẑ, and set P = CS(W ). If NG(W ) ≤ Ki for i = 1 or 2, then
since W ≥ Z(S), and O2(Ki) does not contain involutions of all classes represented

in Z(S) (note that O2(K
(24)
i ) ∩ Fi′24 is 2A-pure for i = 1, 2), we have W = (W ∩
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F ∗(Ki))
/
O2(Ki) �= 1. Thus NG(W ) is a 2-local subgroup of F ∗(Ki)/O2(Ki) ∼= Fi22

or Fi21, and hence is contained up to conjugacy in one of its maximal 2-local
subgroups. So (after applying this reduction twice if i = 1), NG(W ) ≤ Hi for some
1 ≤ i ≤ 4. We will see below that we can also avoid the case NG(W ) ≤ K3 (when
G ∼= Fi23 or Fi′24), and hence that in all cases, NG(W ) ≤G Hi for some 1 ≤ i ≤ 5.

When G ∼= Fi22, we just showed that (up to conjugacy) we can assume
NG(W ) ≤ Hi for some i = 1, 2, 3, 4. If i = 4, then by Lemma 4.5(b), W =
CV4

(P/V4) where P/V4 ∈ E2(H4/V4) and H4/V4
∼= Sp6(2), so W must be totally

isotropic with respect to the symplectic form on V4 described above. But in that
case, by [W5, Lemma 3.1], the subgroup W ∗ > W generated by all factors of
involutions in W is again elementary abelian, and NG(W ) ≤ NG(W

∗) ≤ Hj for
some j = 1, 2, 3.

Thus NG(W ) ≤ Hi where i ∈ {1, 2, 3}, Hi is 2-constrained, and so P =
CS(W ) ≥ O2(Hi) and W = Ω1(Z(P )) ≤ Vi. Also, i �= 1 since V1 has type 2AAB
(so AutG(V1) is a 2-group). Hence i = 2, 3, and Hi ∈ I0(G). By Lemma 4.5(c),
AutP (Vi) ∈ E2(AutHi

(Vi)), and either [S:P ] = 2, or i = 3 and [S:P ] = 4. In this
last case, P/V3

∼= 24:2 is contained in a duad subgroup D ∼= 24:S5 in M22. Also,
O2(D) ∼= E16 permutes V3 ∩ 2A in five orbits of length 4, each of which forms a
hexad together with the remaining two transpositions. Hence CV3

(O2(D)) has type
2AAB, and cannot contain W .

Thus [S:P ] = 2, and hence rk(W ) = 2 and W ≤ Z2(S) by Lemma 4.6. By
Lemma 4.7(b), Z2(S) has rank 3 and type 2A2B3C2. Since AutG(W ) is not a
2-group, W must be the 2B-pure subgroup of rank 2 in Z2(S). (Note that the

factors of the involutions in W form a hexad.) Thus |Ẑ| = 1, and Ker(μG) = 1 by
Proposition 4.3(e).

When G ∼= Fi23, W = Ω1(Z(P )) strictly contains Z(S). Hence rk(W ) ≥ 3,
and W contains involutions of each type 2A, 2B, and 2C. If |W ∩ 2A| = 1 2,
or 3, then NG(W ) ≤ K1, K2, or H1, respectively, while if |W ∩ 2A| ≥ 4, then
NG(W ) ≤ H2 or H3, depending on whether or not the transpositions in W are
contained in a heptad. So by the above remarks, we can assume in all cases that
NG(W ) ≤ Hi for some i = 1, 2, 3, 4. Since Hi is strictly 2-constrained, P ≥ Qi

and W ≤ Vi. If i = 1, then W = V1 since it has rank at least 3, and thus W has
type 2A3B3C. The case i = 4 can be eliminated in the same way as it was when
G ∼= Fi22.

Assume NG(W ) ≤ H2 and W ≤ V2, where AutG(V2) ∼= A7. Write V2 ∩
2A = {a1, . . . , a7}, permuted by AutG(V2) ∼= A7 in the canonical way. Then
(up to choice of indexing), AutP (V2) is one of the two essential subgroups P ∗

1 =
〈(1 2)(3 4), (1 2)(5 6)〉 and P ∗

2 = 〈(1 2)(3 4), (1 3)(2 4)〉. Set Wj = CV2
(P ∗

j ) and Pj =
CS(Wj); thus P

∗
j = AutPj

(V2) and hence [S:Pj ] = 2. Also, W1 = 〈a1a2, a3a4, a5a6〉
has type 2AB3C3, and W2 = 〈a5, a6, a7〉 has type 2A3B3C (thus W2 ∼G V1).

If NG(W ) ≤ H3 and W ≤ V3, then AutG(V3) ∼= M23 has three essential
subgroups, of which two are contained in the heptad group 24:A7 and one in the
triad group 24:(3×A5):2. In the first case, the subgroup 24 acts on V3 ∩ 2A fixing
a heptad, and we are back in the case NG(W ) ≤ H2. In the second case, the
subgroup 24 fixes a rank 3 subgroup in V3 generated by three tranpositions, and so
the essential subgroup 24:2 fixes only Z(S).

Thus Ẑ = {W1,W2}, where W1,W2 ≤ Z2(S) by Lemma 4.6, and W1,W2 < V2.
Also, σ2 = (5 6 7) normalizes P2 and Q2 and permutes the three 2B-elements in W1
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cyclically, while σ1 = (1 3 5)(2 4 6) normalizes P1 and Q2 and permutes the three
2A-elements in W2 cyclically.

Fix α ∈ Aut(L) which is the identity on AutL(S). Let gP ∈ CZ(P )(AutS(P )),
for all P ∈ Ob(L) fully normalized in F , be as in Proposition 4.3. Thus α|AutL(P )

is conjugation by gP . Set g = gQ2
∈ CZ(Q2)(AutS(Q2)) = Z(S). Upon replacing

α by c−1
g ◦ α, we can arrange that gQ2

= 1, and hence that α is the identity on
AutL(Q2). Since Z(S) = Z(NG(S)) (recall Z(S) has type 2ABC), α is still the
identity on AutL(S).

Set Pj = CS(Wj) (j = 1, 2). By Proposition 4.3(c) and since σj normalizes
Pj and Q2, gP1

≡ gQ2
= 1 modulo 〈W1 ∩ 2A〉, and gP2

≡ gQ2
= 1 modulo

〈W2 ∩ 2C〉. Also, 〈W1 ∩ 2A〉 ≤ Z(NG(P1)) and 〈W2 ∩ 2C〉 ≤ Z(NG(P2)) (since
NG(Pi) ≤ NG(Wi)). Thus α|AutL(Pj) = Id for j = 1, 2, so α = Id by Proposition
4.3(d). This proves that Ker(μG) = 1.

When G ∼= Fi′24, since W ≥ Z(S), it contains at least one 2B-element (recall
2A = J2 and 2B = J4). By Propositions 3.3.1, 3.3.3, 3.4.1, and 3.4.2 in [W8]
(corrected in [LW, § 2]), the normalizer of every elementary abelian 2-subgroup
of G is contained up to conjugacy in K1, K2, or one of the Hi for i ≤ 5, except
when it is 2A-pure and the symplectic form described above is nonsingular. So
we can assume that NG(W ) is contained in one of these groups. Together with
earlier remarks, this means that we can eliminate all of the Ki, and assume that
NG(W ) ≤ Hi for some 1 ≤ i ≤ 5. So P ≥ Qi and W ≤ Vi, and i �= 1 since
rk(V1) = 1.

By Lemma 4.5(b,c), W = CVi
(P ∗), where P ∗ = AutP (Vi) is an essential 2-

subgroup of H∗
i = AutHi

(Vi). If i = 2, 3, 5, then P ∗ ∈ I1(H
∗
i ) by Lemma 4.5(b,c),

and hence [S:P ] = 2 since Hi ≥ S. So W = Z2(S) in these cases by Lemmas 4.7(a)
and 4.6.

If i = 4, then H∗
i
∼= Ω−

8 (2), and the conditions P ∗ ∈ E2(H
∗
4 ) and rk(CV (P

∗)) ≥
2 imply that NG(W ) ∼= 28.(23+6.(S4 × 3)) (the stabilizer of an isotropic line and
plane in the projective space of V4). Hence rk(W ) = 2 and |P | = 219. By [W8,
Table 15], there are only two classes of four-groups in G with centralizer large
enough, one of type 2AAB (impossible since Aut(W ) is not a 2-group), and the

other Z2(S) of type 2B2. Thus Ẑ = {Z2(S)}, and Ker(μG) = 1 by Proposition
4.3(e).

G ∼= F5 : By [NW, § 3.1], each 2-local subgroup of G is contained up to conjugacy
in one of the subgroups

H1
∼= 21+8

+ .(A5 ×A5):2, H3
∼= 23.22.26.(3× L3(2)), H6

∼= 26·U4(2),

K1
∼= 2·HS:2, K2

∼= (A4 ×A8):2 < A12.

As usual, set Qi = O2(Hi) and Vi = Z(Qi) for i = 1, 3, 6. Then V1 and V3 are 2B-
pure, and O2(K1) and O2(K2) are 2A-pure. By [NW, § 3.1], for each elementary
abelian 2-subgroup V ≤ G, there is a quadratic form q : V → F2 defined by sending
2A-elements to 1 and 2B-elements to 0.

Fix W ∈ Ẑ, and set P = CS(W ). Then W ≥ Z(S), so W ∩ 2B �= ∅. So either
the quadratic form q on W is nondegenerate and rk(W ) ≥ 3, or there is a 2B-pure
subgroup W0 ≤ W such that NG(W ) ≤ NG(W0). By [NW, § 3.1], in this last case,
NG(W0) ≤ Hi for i = 1 or 3.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

158 5. INJECTIVITY OF μG

If NG(W ) ≤ NG(W0) ≤ Hi for i = 1, 3, then P ≥ O2(Hi), so W ≤ Vi. In
particular, i �= 1. If NG(W ) ≤ H3, then P has index 2 in S since AutG(Vi) ∼= L3(2),
so W = Z2(S) by Lemmas 4.6 and 4.7(a).

Now assume q is nondegenerate as a quadratic form (and rk(W ) ≥ 3). Choose a
2A-pure subgroupW ∗ < W of rank 2, and identify CG(W

∗) with (22×A8) < A12 <
G. If rk(W ) = 3, then we can identify W with 〈(1 2)(3 4), (1 3)(2 4), (5 6)(7 8)〉, so
CG(W ) ∼= 22×(22×A4):2, P = CS(W ) ∼= 22×(24:2), Z(P ) ∼= 24, which contradicts
the assumption that W = Ω1(Z(P )). If rk(W ) ≥ 4, then it must be conjugate to
one of the subgroups (1), (2), or (3) defined in [NW, p. 364] (or contains (2) or
(3) if rk(W ) = 5). Then CG(W ) ∼= E26 or E16 × A4, so P = W ∼G V6, which is
impossible since AutG(V6) ∼= U4(2) does not contain a strongly embedded subgroup.

Thus Ẑ = {Z2(S)}, and μG is injective by Proposition 4.3(e).

G ∼= F3 : By [W11, Theorem 2.2], there are two classes of maximal 2-local
subgroups of G, represented by H1

∼= 21+8
+ .A9 and H5

∼= 25.SL5(2). Set Qi =
O2(Hi) and Vi = Z(Qi) ∼= E2i (i = 1, 5).

Fix W ∈ Ẑ, set P = CS(W ), and let i = 1, 5 be such that NG(W ) ≤ Hi. Then
P ≥ O2(Hi) and W ≤ Vi, so i = 5. By Lemma 4.5(b), P/V5 ∈ E2(H5/V5) (where
H5/V5

∼= L5(2)) and [S:P ] = 2. Hence W ≤ Z2(S) by Lemma 4.6. Since |Z2(S)| =
4 by Lemma 4.7, this proves that Ẑ = {Z2(S)}, and hence that Ker(μG) = 1 by
Proposition 4.3(e).

G ∼= F2, F1 : If G ∼= F1, then by [MS, Theorem 1], there are maximal 2-local
subgroups of the form

H1
∼= 21+24.Co1, H2

∼= 22.[233].(M24 × S3), H3
∼= 23.[236].(L3(2)× 3·S6),

H5
∼= 25.[230].(S3 × L5(2)), H10

∼= 210+16·Ω+
10(2),

If G ∼= F2, then by [MS, Theorem 2], there are maximal 2-local subgroups of the
form

H1
∼= 21+22.Co2, H2

∼= 22.[230].(M22:2× S3), H3
∼= 23.[232].(L3(2)× S5),

H5
∼= 25.[225].L5(2), H9

∼= 29+16·Sp8(2),
As usual, we set Qi = O2(Hi), and Vi = Z(Qi) ∼= E2i . In both cases (G ∼= F1 or
F2), H1 = CG(x) ≥ S for x ∈ 2B, and Hi > S (Vi � S) for each i.

Fix W ∈ Ẑ, and set P = CS(W ). Then W ≥ Z(S), and hence W con-
tains 2B-elements. By [Mei, Lemma 2.2], W is “of 2-type”, in the sense that
CG(O2(CG(W ))) is a 2-group, since the subgroup generated by a 2B-element is of
2-type. In particular, CG(P ) is a 2-group and hence CG(P ) = Z(P ).

A 2B-pure elementary abelian 2-subgroup V ≤ G is called singular if V ≤
O2(CG(x)) for each x ∈ V #. If G ∼= F1, then by [MS, Proposition 9.1], applied
with P in the role of Q and t = 1, there is a subgroup W0 ≤ W such that NG(W ) ≤
NG(W0), and either W0 is 2B-pure and singular or W = W0 ∼G V10. Since
AutG(V10) ∼= Ω+

10(2) has no strongly embedded subgroup, W0 must be 2B-pure
and singular, and hence NG(W ) ≤ Hi for some i = 1, 2, 3, 5 by [MS, Theorem 1].
Thus P ≥ Qi and W ≤ Vi, so W is also 2B-pure and singular.

If G ∼= F2, identify G = CM (x)/x, where M ∼= F1 and x is a 2A-element in M .

Let P̃ ≤ CM (x) be such that x ∈ P̃ and P̃ /〈x〉 = P , and set W̃ = Ω1(Z(P̃ )). Then

x ∈ W̃ and W̃/〈x〉 ≤ W , and (W ∩ 2B) ⊆ W̃/〈x〉 since 2B-elements in G lift to
pairs of involutions of classes 2A and 2B in M (coming from a subgroup of type
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2BAA in Q1 < M). By [MS, Proposition 9.1] again, applied with P̃ in the role of

Q and t = x, there is a subgroup W̃0 ≤ W̃ such that NM (W̃ ) ≤ NM (W̃0), and either

W̃0 is 2B-pure and singular or W̃ = W̃0 ∼M V
(M)
10 . In the latter case, W ∼G V9,

which is impossible since AutG(V9) ∼= Sp8(2) has no strongly embedded subgroup.
Again, we conclude that NG(W ) ≤ Hi for some i = 1, 2, 3, 5 [MS, Theorem 2], and
that W ≤ Vi by Lemma 4.5(a) and hence is 2B-pure and singular.

By [MS, Lemma 4.2.2], applied with W = 1 (if G ∼= F1) or W = 〈x〉 (G ∼= F2),
the automizer of a singular subgroup is its full automorphism group. Since GLn(2)
has no strongly embedded subgroup for n �= 2, this implies that rk(W ) = 2. By
[MS, Lemma 4.4], if we identify Q1/V1

∼= E224 with the mod 2 Leech lattice,
then 2A-elements correspond to the 2-vectors and 2B-elements to the classes of 4-
vectors, and hence H1/Q1

∼= Co1 acts transitively on each. So F1 contains a unique
class of singular subgroups of rank 2. A similar argument, using [MS, Corollary
4.6], now shows that F2 also contains a unique class of singular subgroup of rank
2. Since H2 > S, each of these classes has a representative normal in S, so W � S,
and W = Z2(S) by Lemmas 4.7(a) and 4.6.

To conclude, we have now shown that Ẑ = {Z2(S)} in both cases. Hence
Ker(μG) = 1 by Proposition 4.3(e).

This finishes the proof of Proposition 5.1. �
By inspection in the above proof, in all cases where Z2(S) ∼= E4 and its involu-

tions are G-conjugate, we have Ẑ(F) = {Z2(S)}. A general result of this type could
greatly shorten the proof of Proposition 5.1, but we have been unable to find one.
The following example shows that this is not true without at least some additional
conditions.

Set G = 24:15:4 ∼= F16 � ΓL1(16). Set E = O2(G) ∼= E16, fix S ∈ Syl2(G), and
let P � S be the subgroup of index 2 containing E. Then Z2(S) = Z(P ) ∼= E4 and

AutG(Z2(S)) ∼= S3, while Ẑ(FS(G)) = {Z2(S), E}.
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