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1. Introduction

A finite loop space X is a triple (X, BX, e), in which e: X — QBX is an equivalence
from the space X into the loop space QBX of the pointed space BX. The loop space X is
called finite if X is homotopy equivalent to a finite C W-complex or if the integral homology
H,(X; Z) is finitely generated as a graded abelian group. The latter condition is a little
weaker, but sufficient for proving most of the nice results about finite loop spaces.

Finite loop spaces are considered to be the homotopy theoretic generalisation of
compact Lie groups. For a compact Lie group G the triple (G, BG, ¢), consisting of the
compact Lie group, the classifying space BG and the natural equivalence e: G —» £BG,
is a finite loop space. Following an old idea of Rector [R ], namely passing from a group to
the associated classifying space, one would like to develop Lie group theory in terms of
classifying spaces. This would give the chance to extend all the beautiful results about Lie
groups to the bigger class of finite loop spaces.

The maximal torus is one of the fundamental notions one has to define for finite loop
spaces. A maximal torus of a finite loop space X is a map f: BT, — BX from the classifying
space BTy of a torus T into BX such that the homotopy fiber X/ 7y of fis equivalent to a
finite CW-complex (or H, (X/T; Z) is a finitely generated graded abelian group) and such
that 7y and X have the same rank. The rank of X is defined to be the number of generators
of the exterior algebra H*(X; Q).

Let T; — G be a maximal torus of a compact Lie group G. Then, this definition is made
up by extracting the basic properties of the associated fibration G/T; - B1; — BG. Later
we will change our point of view and reformulate the definition of a maximal torus (see
Section 2).
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By work of Rector [R,], with help from McGibbon [McG] at the prime 2, it turned
out that there exist finite loop spaces which do not have a maximal torus. There even exists a
conjecture that every finite loop space with maximal torus comes from a compact Lie group

WD

As usual completion makes life a lot easier. This also turns out to be true in the study of
finite loop spaces. In a recent paper, Dwyer and Wilkerson [D-W] defined a p-compact group
to be a loop space (X, BX, e) such that BX is p-complete and such that X is F,-finite, i.e. that
H*(X; F,)is a finite dimensional graded F,-vector space. They studied p-compact groups in
great detail.

Hereis a warning: In general you don’t get a p-compact group just by the completion of
the classifying space of a finite loop space. For a p-compact group X, the fundamental group
7 (BX) is a finite p-group, i.e. the group of the components of X is also a finite p-group. This
is a restriction which comes into play. On the other hand the completion of the classifying
space B2, of the symmetric group X, at an odd prime gives a highly connected space whose
loop space is not F,-finite. The 3-adic completion (BX,)4 is 2-connected but not 3-connected
as an easy calculation of the mod-3 cohomology via the Serre spectral sequence for the
fibration BZ/3 — BX, — BZ/2 shows. But, by a theorem of Browder [B,], the classifying
space of a simply connected p-compact group is always 3-connected. Thus, Q((B2,)}) is
not F-finite. Nevertheless p-compact groups are the right object to study finite loop spaces.
Let L be a finite loop space. The completion of the classifying space BL, of the components
L, lying over the p-Sylow subgroup of , (L) gives a p-compact group. Moreover BL, — BL
is a finite covering. The existence of a transfer allows to carry over a lot of the cohomological
properties of BL, to BL (e.g. see [D-W], Section 2).

The results of Dwyer and Wilkerson [D-W] as well as our experience show that
p-compact groups enjoy much of the rich internal structure of compact Lie groups. In
particular, they showed that every p-compact group has a maximal torus and a Weyl group
and that, for a connected p-compact group, the rational cohomology of the classifying space
is given by the invariants of the Weyl group acting on the cohomology of the classifying space
of the maximal torus. We will give an explicit formulation of their result in Section 2.

Following the spirit of that influential paper we are here concerned with the center of
p-compact group and finite coverings of p-compact groups. To formulate our results we first
have to translate some of the basic notions of group theory in terms of p-compact groups. In
Section 2 we will recall the dictionary of [D-W] and add some more translations.

1.1. Definition. In this definition X denotes a p-compact group.

(1) A p-compact torus of rank n is a p-compact group (T, BT, e) such that BT is
homotopy equivalent to an Eilenberg-MacLane space K(Z,"2).

(2) A p-compact group X is called finite if BX is equivalent to an Eilenberg-MacLane
space K(n,1) of a finite p-group of degree 1.

(3) A homomorphismg: Y — X of p-compact groups is a pointed map Bg: BY —» BX.
Two homorphisms g,, g, : ¥ — X are conjugate if the associated maps Bg,, Bg,: BY - BX
are freely homotopic.
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(4) A homomorphism g: Y — X is a monomorphism or equivalently Y is a subgroup
of X if the homotopy fiber X/ Y of Bg is [, -finite.

(§) Fori=1,2,letg;: Y, » X be subgroups of the p-compact group X. Then, ¥, is
subconjugate to Y, if there exists a homomorphism 4 : ¥, — Y, such that g,/ and g, are
conjugate.

(6) Asubgroup g:Z — Xis central if the evaluation ev : map(BZ, BX),, — BXis an
equivalence.

(7) A central subgroup Z(X) — X is called the center of X if every central subgroup
Z ~ X is subconjugate to Z(X).

Before we state our first result we explain the motivation of some of these definitions.
The third says that every homomorphism of groups is a loop map and that two conjugated
homomorphisms induce homotopic maps between the associated classifying spaces. Every
inclusion H — G of compact Lie groups establishes a fibration G/H — BH — BG.

Analogously to the above definition of a maximal torus, the fourth part reflects the
fundamental properties of this fibration.

The sixth definition goes back to a theorem of Dwyer and Zabrodsky [D-Z] on the
one hand and the second author [N, ] on the other hand. For any homomorphismg : P —» G
of a p-toral group P, i.e. a finite extension of a torus by a finite p-group, into a compact Lie
group G, there exists a map BCg () — map (BP, BG)g, which becomes an equivalence after
completion. Here, Cg(g) denotes the centralizer of ¢ in G.

The definition of a center might not be something the reader expects. In the classical
case conjugation acts trivially on the center. This also turns out to be true for p-compact
groups (see Proposition 4.5 and 4.7).

1.2. Proposition. Every p-compact group has a center.

1.3. Theorem. Let X be a connected p-compact group. Then the center Z(X) —» Xis a
Jinite subgroup of X if and only if the fundamental group n,(X) is finite.

This theorem is the generalization of the analogous well known result about semi-
simple Lie groups. We can use this statement for the following definition. A connected
p-compact group X is called semisimple if 7, (X) is finite or, equivalently, if the center
Z(X) is a finite p-compact group.

In the classification of compact connected Lie groups, one first passes to a finite
covering G — G of a compact connected Lie group G, such that G is a product of a simply
connected Lie group and a torus. Then one splits the simply connected Lie group into a
product of simple simply connected Lie groups. Our next statement says that for p-compact
groups at least the first step can always be carried out.
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1.4, Theorem. Let X be a connected p-compact group. Then there exist a simply
connected p-compact group X, a p-compact torus T and a homomorphism X x T — X which
establishes a fibration

BK — BX, X BT — BX.
Moreover, K is a finite p-compact group and K — X, X T — X, is a central monomorphism.

As mentioned earlier p-compact groups together with arithmetic square arguments will
give you integral or global information. Our last statement is Theorem 1.4 in the global case.

1.5. Theorem. Let L be a finite loop space. Then there exist a simply connected finite
loop space Ly, an integral torus T and a finite covering L, X T — L which establishes a fibration

BK — BL,Xx BT — BL.
Moreover, K is a finite abelian group.

These are the main results we can offer. On the way of proving these statements we have
to formulate and to prove several well known results about compact Lie groups in the
category of p-compact groups. Some of these are a triviality for Lie groups, but definitely not
for p-compact groups (e.g. see Section 2, 3 and 4).

The paper is organized as follows: As already mentioned we recall the necessary basic
notions and the dictionary of [D-W] in Section 2. A collection of well known results about
compact Lie groups translated in terms of p-compact groups is the content of Section 3.
Section 4 is devoted to the notion of the center and the proof of Proposition 1.2. In Section 5
we prove Theorems 1.3 and 1.4, and the last section contains a proof of Theorem 1.5.

Completion is always meant in the sense of Bousfield and Kan [B-K] and denoted by
U, for a space U.

We denote by Hg,( )=H*(; Z,)® Q the cohomology with p-adic coefficients
tensored over the intergers with the rationals.

2. The dictionary

In this section we recall the dictionary and some of the basic notion of [D-W]. The
dictionary tells us how we have to translate notions of group theory and Lie group theory in
terms of finite loop spaces or p-compact groups. This provides us also with an appropriate
language to formulate our results and proofs. Most of the notions are motivated by passing
from groups to classifying spaces and extracting the basic properties in a similar way as in the
definitions of Section 1.

2.1. Homotopy fixed-points and proxy actions. Let G be a group acting on a space X.
The homotopy fixed-point set X"%:= map,(EG, X) is defined to be the mapping space of
G-equivariant maps from a contractible CW-complex EG with a free G-action into X. The
homotopy fixed point set can also be interpreted as the space of sections in the fiber bundle
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X — X, — BG, where X,;:= EG X; X is the homotopy orbit given by the Borel con-
struction. The G-equivariant projection EG — * induces a map X ¢ = mapg(x, X) — X",

A homotopy equivalence f: ¥ — X of G-spaces, which is also G-equivariant, induces
a homotopy equivalence Y"9 — X" between the homotopy fixed-point sets. This follows
from the description as section spaces. This motivates the definition of proxy actions. A
proxy action of G on a space X is a G-space Y together with a homotopy equivalence ¥ ~ X.
By X"S we denote the homotopy fixed point set Y,

Proxy actions very often come up in homotopy theory. For example, let G be a finite
group and F — E — BG a fibration. We can think of £ — BG as the classifying map of a
G-principal bundle G — F' — E. Then, we have F' =~ F and the G-action on F' realizes the
proxy action of G on F.

For a fibration F — E — X and every map BG -+ X the pull back diagram

F —> F, — BG

b

F— FE — X

establishes a proxy action on F. We think of £, as the “Borel construction” of this proxy
action. The homotopy fixed-point set ¢ is then given by the section space of the fibration
F - F; —» BG.

2.2. p-compact groups. There is an equivalent definition of a p-compact group
([D-W], Lemma 2.1, Remark): A finite loop space (X, BX, ¢) is a p-compact group, if X is
F,-finite and p-complete and if 7, (X) is a finite p-group. The rational rank of a p-compact
group X is defined to be the number of exterior generators of Hgs (X).

2.3. Isomorphisms and exact sequences. A homomorphism Y — X of p-compact

groups is an isomorphism if Bf : BY — BX is an equivalence. A sequence X SEAN y-2 .7
of finite loop spaces or p-compact groups is exact if the associated sequence

B B . . . .
BX SN BY "% BZisafibration up to homotopy. In this case g is called an epimorphism

and Y——f—> X a normal subgroup.

2.4. p-compact toral groups. We already defined what we understand by a p-compact
torus and by a finite p-compact group. A p-compact toral group P is a p-compact group which
fits into an exact sequence 7' — P — 7 of p-compact groups, where T is a p-compact torus
and = a finite p-compact group.

2.5. Elements of p-compact groups. An element of order p" of a p-compact group X
is a monomorphism Z/p" — X. A p-th root of an element f:Z/p" — X is an element
f'1Z[p"*' - X such that for the canonical homomorphism j:Z/p" — Z/p"*! the
composition f”j is conjugate to f. By [D-W], 2.5, any nontrivial p-compact group contains
an element of order p.
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2.6. Conjugation and subconjugation. Let /: ¥ — X be a monomorphism of p-com-
pact groups and i: P — X a p-compact toral subgroup. In Section 1 we said that P is
subconjugated to- Y if there exists a homomorphism j: P — Y such that fj and i are
conjugated. If we think of BY — BX as being a fibration, the induced map Bi: BP — BX
establishes a proxy action on X/ Y. The homotopy fixed-point set (X/Y)** describes the lifts
BP — BYover Bi: BP — BX. Let L denote the set of homotopy classes of subconjugation of
P into Y; i.e. we ask for homotopy classes of lifts BP — BY. There exists a fibration

(X/Y)"" > map(BP, BY), » map(BP, BX)y; ~ BCy(P)
which establishes an exact sequences of sets
n, (BCy(P)) — mo((X/Y)") - L.

The last map is onto, the first set is a group which acts on the middle set. That is to say that L
is given by the set of orbits of the action of 7, (BCy(P)) on n, ((X/Y)*).

2.7. Discrete approximations and closures. Let T = (S!)" be a classical torus and let
T:={te T: 1" =1 for some k}. Then T'is a discrete group, isomorphic to (Z/p®)", and the
natural inclusion 7 — Tinduces an [,-equivalence B T — BT. This is the generic example of a
discrete approximation we have in our mind. Therefore in [D-W] a p-discrete torus of rank n
is defined to be a discrete group isomorphic to (Z/p*)" and a p-discrete toral group to be an
extension of a p-discrete torus by a finite p-group.

A homomorphism f: P — P from a p-discrete toral group into a p-compact toral group
is a discrete approximation if Bf:BP - BPisan [,-equivalence. The p-compact toral group
P is called the closure of P. Every p-compact toral group has a p-discrete approximation
([D-W1], 6.8), and every p-discrete toral group has a functorial closure ([D-W], 6.9 and
6.10).

Suppose that P and Q are p-compact toral groups with p-discrete approximations
P — Pand Q — Q. For any homomorphism f: P — Q there exists ((D-W], Remark 6.11)
a group homomorphism f: P — O such that the diagram

X

N o— M

RN,
12
—— @
commutes up to conjugacy; in this situation we call f a discrete approximation to /. Note
that the free homotopy set [BP, BQ] of conjugacy classes of homomorphisms from P to Q is

in a natural bijective correspondence with the set Rep (P, Q) of conjugacy classes of
homomorphisms from P to 0.

2.8. Centralizers. Leto: P — G bea homomorphism from a classical p-toral group P
into a compact Lie group G. By results of [D-Z] and [N,] there exists an [, -equivalence
BC;(0) —» map(BP, BG)y,. If n,(G) is a finite p-group, using a result of [B-NJ, this can
be translated to an equivalence BCy;(g), — map(BP, BGPA)BQQ (see also [J-M-O]).
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Therefore, for a homomorphism f: Y — X between p-compact groups, we define the
centralizer Cy(f(Y)) to be the loop space given by the triple

Cyx(f(Y))=(2map(BY, BX)y,, map(BY, BX)y/, id).
The evaluation ev: BY x map(BY, BX),, — BX establishes a homomorphism
Yx Cy(f(Y) - X

of loop spaces. If Yis a p-compact toral group the centralizer Cy (f(Y )) is again a p-compact
group and the evaluation Cy(f(Y)) — X is a monomorphism ([D-W], 5.1, 5.2 and 6.1).

2.9. Abelian p-compact groups. A p-compact group A is called abelian if the
evaluation induces an isomorphism C, (id) — 4. In particular, the adjoint of the evaluation
gives a multiplication : 4 X 4 — A which also is a homomorphism. Let 4 — X be a homo-
morphism from an abelian p-compact group into a p-compact group. Taking adjoints this
multiplication establishes a natural homomorphism 4 — Cy(A) which shows that 4 — X
is subconjugated to Cy (A). An easy argument shows that every abelian p-toral group gives
rise to an abelian p-compact toral group.

2.10. Maximal tori. The maximal torus of a p-compact group X is a monomorphism
Ty — X of a p-compact torus into X such that the centralizer Cy(7y) is a p-compact toral
group and such that Cy (Ty)/Ty is homotopically discrete. The motivation of this definition
comes from the fact that, for a compact connected Lie group G the maximal torus is self
centralizing, and that therefore the centralizer of the maximal torus of a nonconnected
compact Lie group is always a p-toral group whose component of the unit is given by the
maximal torus.

2.11. Theorem ([D-W], 8.11, 8.13 and 9.1). Let X be a p-compact group.
(1) The p-compact group X has a maximal torus Ty — X.

(2) Any subtorus T — X of X is subconjugated to the maximal torus Ty — X.
(3) Any two maximal tori of X are conjugated.

(4) If X is connected then T, — Cy(1y) is an isomorphism.

2.12. Weyl spaces and Weyl groups. Let T, — X be a maximal torus of a p-compact
group. We think of BTy — BX as being a fibration. The Weyl space %7 (X) is defined to be the
mapping space of all fiber maps over the identity on BX. Then each component of #7.(X) is
contractible and the Weyl group Wi (X):=n,(#4(X)) is a finite group under composition
([D-W], 9.5).

The fibration X/T, — BT, — BX establishes a proxy action of T, on the homogeneous
space X/Ty via BT, — BX. Every element of the Weyl space can be interpreted as a homotopy
fixed-point of this proxy action. That is to say that %4.(X) = (X/Ty)""™.
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Because all maximal tori of X are conjugated, the Weyl space as well as the Weyl group
does not depend essentially on the chosen maximal torus. If 7} is understood we denote the
Weyl space by #; and the Weyl group by W.

2.13. Theorem ([D-W],9.5and 9.7). Let Ty — X be the maximal torus of a connected
p-compact group X.

(1) The rank n of Ty is equal to the rank of X.

(2) The order of the Weyl group Wy is equal to the Euler characteristic y(X/ Ty) of the
homotopy fiber of BT, — BX.

(3) The action of Wy on BTy induces a representation
Wy — Aut(H% (BTy)) = Gl(n, @)
which is a monomorphism whose image is generated by pseudoreflections.
(4) The map HE(BX) — HE (BT)"* is an isomorphism.

This is the natural generalization of the well known results about compact connected
Lie groups. One cannot expect that the Weyl group is always generated by honest reflections
as examples of Clark and Ewing [C-E] show.

2.14. Normalizers and p-normalizers of maximal tori. Let i: 7, — X be a maximal
torus of a p-compact group X. Again we think of BT, — BX as being a fibration. The
Weyl space #4 acts on BTy via fiber maps. This establishes a monoid homomorphism
Wy — aut(BTy) where aut(BTy) denotes the monoid of all self equivalences of BT}. Passing
to classifying spaces establishes a map B#; — B aut(BT,) which we can be thought of as
being a classifying map of fibration BTy — BN(Ty) — B;. The total space gives the
classifying space of the normalizer N(7}) of T. This construction is nothing but the Borel
construction.

Let #, be the union of those components of %4 corresponding to a p-Sylow subgroup
W, of Wy. The restriction of the above construction to W, gives the classifying space of the
p-normalizer N,(T).

Since the action of #4 respects the map BTy — BX, the monomorphism 7, — X extends
to a loop map N(7y) — X. The restriction N,(Iy) — X is a monomorphism ([D-W], 9.9).

There is a slightly different way to construct the normalizer for a connected
p-compact group X. The Weyl group Wj acts only up to homotopy on BT;. But because
BT is an Eilenberg-MacLane space we can replace this “homotopy action” by a “real”
action of Wy on BTy. Moreover, we can assume that BT, has a fixed-point which we
choose as basepoint. Then the evaluation ev : map (BT, BX)y — BX is a fibration and a
Wy-equivariant map where W acts on the mapping space via the action on the source
and on BX trivially. The equivalence BTy ~ map(BTy, BX),, is another realisation of the
homotopy action of W, as a real action. Obviously the evaluation extends to a map
BN(Iy) = EWy «w, map (BT, BX)p, — BX. Analogously, we can define the p-normalizer
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using the action of W, on BTy. For a nonconnected p-compact group one has to consider the
action of W, on the component of the unit of Cy(7y) or on the universal cover of BC (T)
and then to carry out his construction,

Warning: The Borel construction EWj .. BTy does not give the normalizer. This
always establishes a splitting fibration BTy — EWy .y, BTy — BW; whichis not true for the
normalizer in general. The point is that one first has to turn the map BT, — BX into a’
fibration.

The p-normalizer fits into an exact sequence Ty — N, (Ty) — W, and is therefore a
p-compact toral group.

2.15. Kernels and monomorphisms. Let /: Y — X be a homomorphism of p-compact
groups, let P:= N, (Ty) be the p-normalizer of some maximal torus 7, — ¥ and P I
the p-discrete approximation of P which is a “real” discrete group. Every element a e P
generates a cyclic subgroup {a) < P of finite order and induces a sequence of homomorph-
isms Z/p* - P — P —» Y — X of p-compact groups (don’t mind that P is not a p-compact
group). Then we define the prekernel by preker (f):={ae P: Bf|, ¢as = %}. This definition
goes back to [I] and is denoted in [D-W] as the kernel of /. The set preker (f) is a normal
subgroup of P ([N,] or [D-W]). We define the kernel ker(f) of f to be the closure of
preker(f) which is then a “normal” p-compact toral subgroup of P, i.e. there exist a
p-compact toral group P and an exact sequence ker (f) — P — P of p-compact toral groups.
This is proved in [D-W], 7.2. But there is only treated the case of the p-discrete
approximations. Passing to closures establishes the described result. For details see also
[N,], where only the case of Y being a compact Lie group is handled, but all the arguments
also apply in our situation. The definition of ker(f) does not depend essentially on the
chosen maximal torus and p-normalizer, because all p-normalizers are conjugated. In
[D-W], 8.11, this is proved for maximal tori, but similar arguments also apply to
p-normalizers.

We say the ker (f) is trivial if Bker(f) is contractible. In Section 1 we defined f'to be a
monomorphism, if the homotopy fiber X/Y of Bfis F -finite.

In classical group theory every homomorphism can be made into a monomorphism by
dividing out the kernel, A similar statement is true in the category of p-compact groups.

2.16. Proposition. Let P be a p-compact toral group or a p-discrete toral group and
[P — X be a homomorphism into a p-compact group. Let K:=ker(f) be the kernel and
O = P/K be the quotient. Then f factors over a homomorphism f: Q — X with trivial kernel.
Moreover, map(BQ, BX)z; — map(BP, BX)g, is a homotopy equivalence.

Proof. For the case of a p-discrete toral group see [D-W], Lemma 7.5, and for the
case of a p-compact toral group this follows by [N, ] or by using p-discrete approximations
and taking closures. O

2.17. Theorem. For a homomorphismf: Y — X of p-compact groups the following three
conditions are equivalent:
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(1) f'is a monomorphism.
(2) H*(BY; V) is a finitely generated H*(BX; F,)-module.
(3) The kernel ker(f) is trivial.

Proof. The equivalence of (1) and (2) is proved in [D-W7], 9.11. Let P —» Y be a
p-normalizer of a maximal torus of Y. By [D-W], 7.3, the restriction f|, is a mono-
morphism if and only if ker(f) is trivial. This shows that (1) implies (3). Now let ker(f)
be trivial. Then, by what is already said, H*(BP;F,) is a finitely generated H*(BX; F,)
module. The algebra H* (BX; [,) is noetherian ([D- W] 2.3). Therefore, the submodule
H*(BY,F,) = H*(BP; F,)) ([D W] proof of Theorem 2.3) is also finitely generated over
H*(BX; le) which is condition (2). This completes a circle of implications. ©

For a different proof of the equivalence of (2) and (3), which is not that much in the
spirit of [D-W], see [N, ], Theorem 1.2. There is only treated the case of ¥ being a compact
Lie group. The major tool is a theorem of Quillen which says that, for a compact Lie
group G, the cohomology H*(BG; [F,) is detected up to nilpotent elements by elementary
abelian subgroups. Because H*(BY; F,) is noetherian there is a similar result in our case
[R;]. All the other arguments of [N, ] can be carried over to the case of p-compact groups.

In particular, Theorem 2.17 implies that the composition of two monomorphisms is
always a monomorphism and that the first is a monomorphism if the composition is one.

For later purpose we will mention a slightly more general situation, where the kernel
of a map BX — U of a map into a space U can be defined. A space U is called BZ/p-local
if the evaluation ev:map(BX, U) — V is an equivalence, and almost BZ/p-local if the
evaluation induces an equivalence map(BZ/p, U),,, =~ U between the component of the
constant map and U. Then U is almost BZ/p-local if and only if the loop space QU is
BZ[p-local. In [N, ] the definition of a kernel is given for maps BG — U where G is a compact
Lie group and U a p-complete almost BZ/p-local space. But all the arguments and all
constructions also work for maps BX — U where X is a p-compact group and U is a
p-complete almost BZ/p-local space. In particular the kernel is a normal subgroup of
N,(Iy).

2.18. Cohomological dimension. For an [F,-finite space X, Dwyer and WilNkerson define
the mod-p cohomological dimension cdy, (X) as the largest integer i such that H (X, F,) does
not vanish. If the total reduced cohomology of X is zero, then cdg, (X) = —

Analogously we define the rational cohomological dimension cdg, » using the cohomo-
logy theory Hg (). For a p-compact group X we get cdg +(X) = cd; (X ) (see Lemma 3.2).

3. Lie theory for p-compact groups

This section contains a collection of basic results to be used later. All of these results
have Lie group analogues that are well-known if not blatantly obvious. We begin by
investigating abelian p-compact groups and covering spaces of p-compact groups, then turn
to monomorphisms into p-compact toral groups, modp dimension, Weyl groups of
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nonconnected p-compact groups and finish by showing that the centralizer of a p-compact
torus in a connected p-compact group is connected.

3.1. Proposition. Any abelian p-compact group is isomorphic to a product of a p-com-
pact torus and a finite abelian group.

Proof. Let Abeanabelian p-compact groupandi: T'— 4 a maximal torus. It suffices
to show that A is a p-compact toral group for, by [D-W], Remark 8.5, 4 will then have the
desired form. The centralizer C,(T') is a p-compact toral group by the definition of maximal
torus; in fact the canonical lift (see 2.9) j : T — C,(T) of i takes T isomorphically to the
identity component of C, (7). Denoting precomposition with Bi by Bi, we have a diagram

BC,(4) —21 BC,(T)
Be, l ~ 7 T Bj
BA — BT

Bi

where e; and e, are evaluation homomorphisms. Both triangles in the diagram are
commutative, i.e. Be, o Bi = Be, and Be, > Bj = Bi. This implies that n, (Be,) maps
7, (BC,(T)) onto n, (BA) and that n,(Bi): n,(BT) — n,(BA) is an epimorphism with a
right inverse. Hence 7, (B4) is a free Z,'-module and 4 a p-compact toral group. 0O

The completed odd sphere (S*"~*), n| p — 1, is homotopy commutative as an H-space
but nonabelian as a p-compact group (when n > 1).

For later reference we record a lemma that can be extracted from Kane [K], §3-§4
(who credits Browder [B,] with the original idea).

3.2. Lemma. Let X be a connected H-space such that n,(X), i 2 1, is afinitely generated
2, -module and H*(X; F,) is finite. Then:

(1) Any connected covering space of X has the same properties.
(2) H§ (X) is finite dimensional, H&p (X)=Q, and ng"(X) = 0 where d = cd; (X).

3.3. Corollary. Suppose that X is a connected p-compact group, that Y is a connected
space, and that Y — X is a covering map. Then Y is a p-compact group.

Remark. In this corollary the p-adic integers are also allowed as fiber.
Proof. The given data amounts to a fibration
Y- X > BQ

where Q is a quotient of the finitely generated Z, -module 7, (X). The projection map in
this fibration is a loop map, for [BX, B>Q] = [X, BQ], and therefore Y is a loop space.
Lemma 3.2 shows that Y is in fact a p-compact group (see 2.2). O

8 Journal fiir Mathematik. Band 456
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In Section 2 we explained what we mean by the p-discrete approximationf: X — G ofa
homomorphism f/: X — G of p-compact toral groups.

3.4. Proposition. Suppose thatf: X — G is a homomorphism of p-compact toral groups
and that f is a discrete approximation to f. Then:

(1) [ is a monomorphism < f is a monomorphism.
(2) fis an isomorphism <> f is an isomorphism.
(3) fis central < {'is central.

Proof. (1) isaconsequence of Theorem 2.15. The key observation is that preker (/) is
the usual algebraic kernel of /.

Statement (2) follows easily from the commutative diagram

sy Y, B¢

Bxl lBg

where the vertical maps become homotopy equivalences after completion at p.

£3) Let Cg(X) denote the algebraic centralizer in G of f(X). The homotopy fibre
of BG - BG being K(n,(G) ® Q,1) implies that the homotopy fibre of

BC4(X) = BC4(X) = map(BX, BG)y, ;) — map (BX, BG),, = BCs(X)
is K(H°(BX; n,(G) ® @),1); in particular, Cz(X) is a discrete approximation to C(X).
Hence BC,;(X) — BG is a homotopy equivalence if and only if BCz(X) — BG is a homotopy
equivalence if and only if Cg(X)=G. O

3.5. Proposition. Let X be a p-compact group, G a p-compact toral group, andf : X - G
a monomorphism. Then;

(1) X is a p-compact toral group.

(2) If f is central, X is an abelian p-compact group.

(3) If G is a p-compact torus and X is connected, X is a p-compact torus.

@) If G is a p-compact torus, so is G/ X.

Proof. Wefirst prove (3). Under the assumptions in (3), the homogeneous space G/ X
is connected and the fundamental group is a finitely generated Z-module. Let BY denote
the universal covering space of G/ X. The loop space ¥ = Q BY is equivalent to a component

of Q(G/X) which is a covering space of the connected p-compact group X; hence Y is
also a connected p-compact group by Corollary 3.3. Moreover, because BY is a covering
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of an F,-finite space, the Sullivan conjecture ((M]) shows that all homomorphisms Z/p — Y
are trivial. Thus Y is itself trivial (see 2.5). Consequently G/X = K(n,(G/X),1) is, by
F,-finiteness, a p-compact torus and so is X by the exact homotopy sequence.

(1) Let f,: X, — G, be the restriction of f to the identity components. It suffices,
by (3), to show that also f, is a monomorphism. But that follows from the fact that
ker(f,) — ker(f) is a monomorphism.

Now that we know X is a p-compact toral group, (2) follows from Proposition 3.4,
because, with notation from that proposition, /(X¥) =~ X is abelian if f is a central
monomorphism. In this case, G/X is easily seen to be a discrete approximation to the
p-compact group G/ X. As any quotient of a p-discrete torus is again a p-discrete torus ([F],
Theorem 23.1), this proves (4). O

The combination of Proposition 3.1 and Proposition 3.5 shows that if f: X — A4
is a monomorphism and A4 is an abelian p-compact group, so is X.

Specializing to the case of p-compact tori we obtain
3.6. Proposition. Let S and T be p-compact tori and f: S — T a homomorphism.

(1) f is a monomorphism < T[S is a p-compact torus < n,(f) is a split injective
homomorphism.

(2) If cdi, (S) = cdg, (T), then f'is a monomorphism if and only if f'is an isomorphism.

(3) If n (f) is injective, then there exist a finite abelian p-group K and a factorization
[ S/K — T of fwhich is a monomorphism.

Proof. (1) The proof of Proposition 3.5 shows that if /: S — T'is a monomorphism
then T'/S is a p-compact torus; the converse is clear. The other biimplication is a direct
consequence of the exact homotopy sequence.

(2) follows immediately from Proposition 3.4.

(3) Denoting by K:=ker(f) the kernel of f we get (2.15) a commutative diagram

s L7
Ny

S/K

of homomorphisms between p-compact torus groups where f’ is a monomorphism. As
7, (f) is assumed to be injective, the fundamental group functor shows that 7, (K) = 0, i.e.
that K is a finite abelian p-group. 0

3.7. Proposition. Letf: X — Y be a monomorphism between two connected p-compact
groups such that H (f): Hg (Y) — Hg (X) is an isomorphism. Then f is a homotopy
equivalence.
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Proof.  Lemma 3.2 shows that cd; (X) = cdg, (Y) and therefore any monomorphism
from X to Y is a homotopy equivalence ([D-W], Proposition 6.14, Remark 6.15). O

We are next aiming at the homotopy theoretic equivalent of the statement that
connected abelian subgroups of compact connected Lie groups have connected centralizers.

In 3.8-3 11 below, X denotes a p-compact group.

3.8. Proposition. Suppose that i:T — X, is a maximal torus for the connected
component Xy of X. Then T — X, — X is a maximal torus for X and there exists a short exact
sequence

1o WeXo) > Wo(X) 5 mo(X) - 1

relating the Weyl groups.
Proof. Mapping BT into the universal covering map BX, — BX produces another
covering map BCy (T) - BCy(T') showing that Cy(T) is a p-compact toral group with

T = Cy, (T) as its identity component.

Let w: BT — BT be an element in the Weyl space of 7' — X. As both Bi and Biow
are lifts in the diagram

. BX,

e
R
BT —— BX

there exists by covering space theory a unique covering translation A(w) € o (X) such that

BT -2 BT
Bil lBi

Alw
Bx, -~ px,

N e
BX

commutes. Clearly, A: W, (X) — ny(X) is a homomorphism with W,(X,) as kernel.
Surjectivity of 4 follows from the fact that any morphism from any p-compact torus into X,
factors through the maximal torus 7 (Theorem 2.11). O

So, for a p-compact toral group, the Weyl group agrees with the group of components.

In the following corollary, N,(T') — X denotes the p-normalizer of a maximal torus
T — X.

3.9. Corollary. The homomorphism ny(N,(T)) — no(X) is surjective.
Proof. The p-normalizer is a p-compact toral group with T as its identity component

and its group of components is a p-Sylow subgroup W, of the Weyl group W;.(X). When
viewing 7, (Np(T)) = W, as the group of covering translations of BX, over BX, the
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homomorphism 7, (N p(T)) — 75 (X) becomes the restriction of A to W,. Since 7y (X) is a
finite p-group, the restriction of the epimorphism A to W, remains an epimorphism. O

The next lemma can be viewed as a converse to [D-W], Proposition 5.5.

3.10. Lemma. Suppose that, for any integer n 2 1, any homomorphism Z[p" — X
can be extended to Z|p"*. Then X is connected.

Proof. Assume X is not connected. Any discrete approximation N to the p-
normalizer N,(T') is an extension of a discrete approximation 7'to the maximal torus of X by
7o (N, (T)). Since 74 (N,(T)) maps onto m,(X) by Corollary 3.9, N contains some cyclic
subgroup Z/p" such that the homomorphism

ZIp" o N = no(N,(T)) - mo(X)
is nontrivial. The corresponding homomorphism of p-compact groups
Z[p" = N,(T) - X

is then nontrivial on 7. This homomorphism can not be extended to the p-discrete torus
Z/p® for then it would factor through T (Theorem 2.11). O

The proof of the final of the auxiliary results is very much in the spirit of the proofs of
[D-W], Proposition 5.4, Proposition 5.5.

3.11. Proposition. Let S be a p-compact torus and S — X a homomorphism. If X is
connected, so is the centralizer Cyx(S) of S in X.

Proof. Let n be an arbitrary natural number and Z/p" — C4(S) a homomorphism.
It suffices to show (Lemma 3.10) that this homomorphism extends to Z/p"*!, or,
equivalently, that the adjoint f: Z/p"x S — X extends to Z/p"*'x S. Consider the

commutative diagram
map(B(Z/p"*") x BS, BX) —— map(B(Z/p") x BS, BX)

| l

map (B(Z/p"*"), BX) ——  map(B(Z/p"), BX)

of restriction fibrations. The homotopy fibre over Bf|B(Z/p") of the bottom map can
([D-W], Lemma 10.6, Lemma 10.7) be identified to the homotopy fixed point
set (X?~1)*@P"" for some proxy action of Z/p"** on X?**. This homotopy fibre is F,-finite
([D-W1], Theorem 4.5, Proposition 5.7) with Euler characteristic ([D-W], Lemma 5.11)
equal to p” (here we use that X is connected) where r is the rational rank of X. Similarly, the
homotopy fibre over Bf of the top map is homotopy equivalent to the homotopy fixed point
set ((XP~1)r@P"*O)S where S is a discrete approximation to S. We have just seen that
(Xp~1yme/r" Y ig F -finite with nonzero Euler characteristic so by [D-W], Theorem 4.7, and
[D-W], Proposition 5.7, in order to handle the F -completeness problem, the homotopy fibre
of the top map is nonempty. 0O
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In [D-W] the Buler characteristic of a homogeneous space X/ Y turns out to be a quite
usefulinvariant in the study of p-compact groups. In classical Lie group theory this invariant
is not that much used. The next statement has a straightforward proof'in classical Lie group
theory using the associated Lie algebras.

3.12. Proposition. Let f: Y — X be a monomorphism of p-compact groups such that f
induces an isomorphism ny(Y) — ny(X) between the components and such that the Euler
characteristic y(X|Y) = 1. Then f is an isomorphism.

The proof is based on two lemmas.

3.13. Lemma. Let Y — X be a monomorphism of p-compact groups. If the Euler
characteristic y(X/Y) % 0 modp then every p-compact toral subgroup P — X of X is
subconjugate to Y.

Proof.  The homomorphism P — X establishes a proxy action on X/Y. If the
homotopy fixed-point set X/ Y"* is non empty, i.e. if for example y(X/Y"") = 0, then P is
subconjugated to Y. Let P = () P, — P be a p-discrete approximation written as the

K
union of finite p-groups. Then y (X/Y ") = y(X/Y) % 0 for every k ([D-W], Theorem 4.6
and Proposition 5.7). This implies that P, is subconjugated to Y, and so is P. Passing to the
closure proves that P also is subconjugated to Y. 0O

3.14. Lemma. Letf:Y — X be a monomorphism of p-compact groups. Then f induces
an isomorphism N(Ty) = N(Ty) if and only if y(X]Y) = 1.

Proof. By Lemma 3.13 the condition x(X/Y) =1 implies that N,(Ty) = N, (Ty).
In particular, T:= Ty = Ty, and Wy — Wy is a monomorphism because the Weyl groups act
effectively on the maximal tori. The maps 7 — Y — X define a proxy action of 7 on the
fibration Y/T — X/T — X/Y. In the associated fibration

Y/ThT___) X/ThT___) X/YhT

the first two terms are homotopically discrete. We have Y/T"T ~ W, and X/T"T ~ W,.
Therefore X/Y"" is also homotopically discrete and 1 = y(X/Y"T) = | W,/ W,|. This implies
that Wy, = Wy and that N(Ty) = N(Ty).

An isomorphism N:= N(Ty) = N(Ty) of loop spaces establishes the diagram

Y/N — X/N —— XY

| |

BN ——— BN

! |

XY —— BY —— BX.

The fibration Y/N - BN — BY is oriented because n, (BN) — n, (BY) is an epimorphism.
Thus, the top horizontal fibration is also oriented. Now the multiplicativity of the Euler
characteristic shows that 1= y(X/N) = y(Y/N)x(X/Y) = x(X/Y), which proves the
second half of the statement. O
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Proof of 3.12.  The monomorphism f: ¥ — X establishes a diagram of fibrations

Xo/Yy —— X]Y ——— x

| | |

BY, —— BY —— Bmny(Y)
leo le l:’

BX, —— BX —— Bn,(X).

Here, Y, and X, denote the components of the unit. The right lower vertical arrow is an
equivalence by assumption. Thus, the upper left arrow is also an equivalence. Hence ¥ — X
is an isomorphism if and only if ¥, — X, is an isomorphism. For the latter map the Euler
characteristic condition is also satisfied. By Lemma 3.14, the monomorphism f; induces an
isomorphism Wy, = Wy, between the Weyl groups. Moreover, Y, and X, are connected.
Hence, by Theorem 2.11, Hg(BX,) = HE: (B Y,). By Proposition 3.7 this implies that
fo: Y, = X, is an isomorphism and sois /: ¥ — X. D

This finishes the collection of assorted basic facts about p-compact groups extending

the astonishing similarity with compact Lie groups.

4. The center of a p-compact group

In this section we define the center of a p-compact group and show that any central
monomorphism factors through this center.

Throughout this section, X and Z denote p-compact groups. Leti: T — X be a maximal
torus for X; its centralizer C, (T')is a p-compact toral group with T'as its identity component.

4.1. Lemma. Letf:Z — X be a central monomorphism.

(1) There exists a central monomorphism g:Z — Cy(T) such that

Cx(T)
P
Zz — X

S

commutes up to conjugacy; in particular, Z is abelian.

(2) The composition U — Z 1, Xisacentral monomorphism for any p-compact group U
and any monomorphism U — Z.

Proof. (1) Choose, as in [D-W], Lemma 8.6, a homomorphism h:ZxX — Xwith
f=h{(Zx#) and h|(xx X) equal to the identity map on X. Let g: Z — Cy(T) and
j: T = Cy(Z) be the adjoints of ZXT — Zx X k¥ Note that g is a lift of f and j
is a lift of /; in particular, both g and j are monomorphisms so Z is a p-compact toral group
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by Proposition 3.5. Centrality of g is now a consequence ([D-W], Lemma 8.6) of the
commutative diagram

BZ
l \
BZ x map (BT, BCx(Z))y; — map (BT, BX)y —— BCy(T)

f

map (BT; BCX(Z))Bj

~

where the horizontal arrow takes (z, v), ze BZ and v : BT — BCy(T) = map(BZ, BX)y,,
to the map BTst — v(£)(z). The upward slanting arrow is induced by the homotopy
equivalence BCy(Z) — BX. The central subgroup Z is abelian by Proposition 3.5.

(2) Note first that also U is abelian, in particular a p-compact toral group, by
Proposition 3.1 and Proposition 3.5. The commutative diagram

BCy(Z) —————— BCy(U)

BX

of restriction homomorphisms, shows that the right evaluation fibration admits a section. By
[D-W], Lemma 8.6, this implies that U — X is central. O

Let now Z —» Z and € — Cx(T) be discrete approximations. For any subgroup
A<= Z(C),let 4 > X denote the homomorphism of loop spaces defined as the composite
Ao Z(C)» € - Cx(T) - X. As usual, if also B< Z(C), AB denotes the subgroup
generated by 4 and B.

4.2. Lemma. Suppose that A and B are subgroups of Z(C) such that the homo-
morphisms A — X and B — X are central. Then also AB — X is central.

Proof.  The abelian group structure on the p-discrete toral group Z(C) can be used to
define an epimorphism 4 X B — 4 B. We have Cy(4 X B) = Cy(AB) by [D-W], Lemma 7.5.
Furthermore, Cy(4 x B) = Cepy(B) = Cy(B) = X by adjointness and centrality. O

4.3. Definition. The p-discrete center of X is the set

ZX)={te Z(O)t> » Xis central},
where {¢) stands for the finite cyclic subgroup of Z (C) generated by . By Lemma 4.2, Z(X)
is actually a subgroup of Z(C); in particular Z (X) is an abelian p-discrete toral group. The
center of X, denoted Z(X), is defined as the closure of Z (X).

The center Z(X) of X enjoys a pleasant universal property.

4.4. Theorem. Let X be a p-compact group.
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(1) The center Z(X) is an abelian p-compact group and Z(X) — X is a central
monomorphism.

(2) For any central monomorphism f:Z — X there exists a monomorphism
g: 72 — Z(X) such that

Z(X)
P

L ——> X
S

commutes up to conjugacy.

Proof. The center Z(X) is abelian by its very definition and the homomorphism
Z(X) —» Cx(T) — X is, as the composition of two monomorphisms, a monomorphism.
To see that this homomorphism is central, choose ([D-W], Proposition 6.7, Proposition
6.21) a finite subgroup 4 < Z(X)< Z(C) such that the restriction homomorphism
Cy(Z (X)) = Cx(Z(X)) = Cyx(A) is an isomorphism. As A4 is finite and for each element
te A, {t) — Xis central, a finite induction using Lemma 4.2, shows that 4 — X is central.
Hence Cyx(Z(X)) = Cy(4) = X, i.e. Z(X) — X is central.

Any discrete approximation §: Z — C to g: Z — C,(7T) factors through the center
Z(C) of C by Proposition 3.4. By Lemma 4.1, the homomorphism

g

(2> Z ¢ X
is central for any z € Z, i.e. §(z) € Z(X) for all z € Z. This means that ¢ factors through Z(X)
so g factors through CI(Z(X)) = Z(X). O

Let, for example G be a p-compact toral group. Since the evaluation homomorphism
Cs(G) — Gis a central monomorphism ([D-W], Proposition 5.1, Proposition 5.2, Theorem
6.1), it factors through the center Z(G). On the other hand, as Z(G) is a p-compact toral
group (even abelian), the central monomorphism Z(G) — G admits a factorization through
Cs(G) (see 2.9). It follows (use e.g. Proposition 3.6) that the abelian p-compact groups Z(G)
and C;(G) are isomorphic. (It is a tempting conjecture that such an isomorphism exists for
any p-compact group. In the case of compact connected Lie groups this is proved by
[J-M-O].)

Let G be a connected compact Lie group with Lie group theoretic center Z(G).
The central monomorphism Z(G,) - G, factors ([D-W], Lemma 8.6) through the
centralizer BCg,(G,') = map (BG,, BG,)g, which is homotopy equivalent ([J-M-O]) to
BZ(G), . On the other hand Z(G); — G is obviously a central subgroup ([D-W], Lemma
8.6). By the universal property of the center (Theorem 4.4) it follows that Z G =Z(G)).

Letj: Z — X be a p-compact toral subgroup. The pull back diagram

(X/Z),; — BZ
() | L&

Bz 2., By

establishes a proxy action of Z on X/Z.
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4.5, Proposition. Let j: Z — X be an abelian p-compact toral subgroup. Then Z is
central if and only if the fibration X |Z — (X|Z),; — BZ is fiber homotopically trivial.
Moreover, if this is the case, we have (X|Z)'* ~ X|Z.

Proof. Theidentityid : Z — Z subconjugates Z into Z. This implies that there exists
anatural section s : BZ — (X/Z),, of the fibration (X/Z),, — BZ. We can apply the functor
map(BZ, ) to the pull back diagram (*) which yields another pullback diagram

M —————— map(BZ,BZ),

map(BZ, BZ),y —— map(BZ, BX);.

The space M < map (BZ, (X/Z),,) consists of some components and contains at least the
component of s. The mapping spaces map (BZ, BZ),, are homotopy equivalent to BZ via
the evaluation.

Ifj: Z — Xis central we have map (BZ, BX)y; ~ BX which implies that M ~ (X/Z),,
and that map (BZ, (XZ),,), = M is one component of (X/Z),,. Using this fact and taking
the adjoint we can construct the middle arrow in the diagram of fibrations

X|Z —— X|ZXBZ —— BZ

| | 9!

X|Z —> (X|Z); — BZ.
By construction the diagram commutes and gives the desired trivialization.

If the fibration X/Z — (X/Z),, — BZ is fiber homotopically trivial, there exists a
unique section s, : BZ — (X/Z),, for every element ¢ € n,(X/Z) = n,((X/Z),,), and the
mapping space | [ map (BZ, (X /Z),z)s, is equivalent to (X/Z),,. Hence, in the pull back

diagram (xx) we have M ~ (X/Z),,. This implies that map (BZ, BX)g; ~ BX and that Zisa
central subgroup.

The last statement of the proposition follows from the Sullivan conjecture ({M7). This
finishes the proof. 0

The homotopy fixed point set (X/Z)"* measures the different ways you can subcon-
jugate Z into Z. Because Z — X is central, the fundamental group =, (BCx(Z)) = =, (BX)
acts transitively on 7, (X/Z"*) = =y, (X/Z). The last statement and the remarks of 2.6 say
that, up to homotopy there is only one way to do it. That is that “‘conjugation by elements”
of X acts trivially on the center.

Assume from now on that X is connected. Then the maximal torus i: 7 — X is
self-centralizing,i.e. T = Cx(T) (Theorem 2.11). Thus any central monomorphismf: Z — X
will (Lemma 4.1) factor through a monomorphism g:Z — 7. These monomorphisms
extend ([D-W1, Proposition 8.3) to a commutative diagram
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z T T/Z
[ Lz
z 1, x X/Z

where the rows are exact sequences of p-compact groups.

4.6. Proposition. Let [ : Z — X be a central monomorphism into a connected p-com-
pact group X. Then:

) i|Z:T]Z - X|Z is a maximal torus for X|Z.
Xz :
) X/T and -YT/—Z, are homotopy equivalent homogeneous spaces.
(3) Wi (X) and Wy, ,(X[|Z) are isomorphic groups.
(4) The center of X|Z is Z(X)|Z.

Going to extremes, we take the central monomorphism Z(X) — X and form the p-
compact group PX = X/Z(X) with the maximal torus Pi : PT=T/Z(X) - X|Z(X) = PX.

4.7. Corollary. The center of PX is trivial.

For the proof of Proposition 4.6 we need some lemmas. For a central monomorphism
Z — X into a p-compact group X the composition BT — BX — BX/Z establishes a proxy
action of T on BZ. The homotopy fixed-point set for proxy action is defined in 2.1.

4.8. Lemma. Let Z — X be a central monomorphism into a connected p-compact
group X. Then

(1) BZ,; = BZx BT and BZ"" = map (BT, BZ).
(@) (X/T),z = X|T* BZ and (X|T)** = X/|T.
Proof. (1) This follows immediately from the commutative diagram

BZ X BT BT BX

) l l

BT ———> B(T|Z) — B(X/|Z)

where the left square is induced from the commutative square

ZxT — 5 T
| |
T —T/Z

with the top homomorphism given by group multiplication. The expression for the
homotopy fixed point set now follows from the Sullivan conjecture ([M]).
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(2) Evaluation yields a commutative diagram

map(BZ, BT )y, x BZ —— BT

l |

map(BZ, BX)p, X BZ —— BX
equivalent to a commutative diagram

BTx BZ —— BT

| |

BXxBZ —— BX
of classifying spaces. Restrict to the fibre of the fibration to the left and obtain a trivialization

X/TxBZ —— BT

) |

BZ — BX
Bf

of (X/T),,. The expression for the homotopy fixed point set now follows from the Sullivan
conjecture [M]. O

Recall from Proposition 1.6, that 7, (g) : n,(Z) — =, (T) is a (split) monomorphism.
Let n; (T)" denote the set of invariant elements for the action of the Weyl group W:= W,.(X)
on 7, (BT) = n,(T).

4.9. Lemma. 7,(Z) < n, (T)".
Proof. For any element w of the Weyl space, i.e. for any map w: BT — BT over BX,

the two maps Bg, w o Bg : BZ — BT are both lifts of Bf : BZ — BX. Since the space of lifts,
(X/TY* = X/T, is connected, Bg and wo Bg are homotopic over BX. In particular,

7, (Bg) = my(wo Bg) = m,(w) o m,(Bg). O

Proof'of4.6. (1)—(3). First note that T/Z is a p-compact torus by Proposition 1.5 and
that the centralizer Cy,,(T/Z) = Cy,,(T) is connected by Proposition 1.11. Next map BT
into the fibration BX — B(X/Z) to obtain ([D-W], Lemma 10.6) the fibration

BZ"T — map (BT, BX) — map (BT, B(X/Z))
containing the subfibration (the base space here is 1-connected)
BZ — BCy(T) — BCy,(T)

with connected total space; here we used Lemma 4.8 to identify the fibre. A comparison of

fibrations now shows that Cy,(T) = Cx(T)/Z = T/Z and thus T/Z is a maximal torus
for X/Z.
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The commutative diagram immediately above Proposition 4.6 induces a homotopy

equivalence
X/Z

X/T ——
/ T/Z
of homogeneous spaces and shows that

BT —— B(T|Z)

Bi| | Bz

BX —— B(X/Z)
is a pull back. Naturality of pull backs now determines a homomorphism
Wiz (X|Z) — Wr(X) of Weyl groups. This map is injective for W, (X) acts (Lemma 4.9)
on n,(T)/n(Z) = n,(TZ) where Wy,,(X/Z) is faithfully presented (Theorem 2.13). But

Xz
as | Wr (X Z)| = x <§:;~Z—> = y(X/T) = | Wy (X)| by (Theorem 2.13) it is in fact a group

isomorphism. O

In the above proof of 4.6 and elsewhere in this paper, we need to restrict fibration maps
to connected components of the total spaces. To that end, we make a general remark: Let

H F—->E—-B

ceno(F)

be a fibration of based spaces; the fibre F is written as the disjoint union of its connected
components F.. Let E, and B, be the base point components of E and B and let

017y (B) = mo(F)
be the boundary map in the exact homotopy sequence. Then
Il E-E - B
cedny(F)

is again a fibration.

Yet two more lemmas, not without independent interest, however, are needed before
the proof of the final assertion of Proposition 4.6.

4.10. Lemma. Let Z — X be a central monomorphism into a connected p-compact
group X. Then the induced map of (based or free) homotopy sets

[BG, BZ] - [BG, BX]
is injective for any p-compact toral group G.

Proof. Because BX is simply connected, and because n, (BZ) acts trivially on the
homotopy classes of pointed maps BG — BZ, it suffices to consider the case of based maps.
The fibres of [BG, BZ] — [BG, BX] are the orbits of a group action

[BG, QB(X/Z)] % [BG, BZ] — [BG, BZ]
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associated to the fibration BZ — BX — B(X/Z). But the group
[BG,QB(X/Z)] =BG, X|Z]

is trivial by the Sullivan conjecture ((M]). o

4.11. Lemma. Let Z — X a central monomorphism into a connected p-compact
group X. Then the homomorphism

Z - X - X/A
is also central for any central monomorphism A — X.

Proof.  Both monomorphisms 4 — X and Z — X factor through the center Z(X)

by Theorem 4.4. Exactly as in the proof of Lemma 4.8, consider the trivialization of BA4,,

BZx B4 —2 Bz(x) — %, Bx

o} ! l

BZ —— B(Z(X)/A) —— B(X/A4)
where z: Z(X) — X is the canonical monomorphism and y is the restriction
ZXxA - Z(X)XxZ(X) - Z(X)
to Z x A of the abelian structure on Z(X).

For any ¢ € [BZ, BA], define 1+ ¢ € [BZ, BZ(X)] to be the composite map

A 1x¢ i By
BZ —— BZXBZ —— BZXBA —— BZ(X)

where 4 is the diagonal. Identifying the homotopy sets involved with the corresponding
sets of homomorphisms of discrete approximations, one sees that ¢ — 1 + ¢ is injective.

Using the above trivialization of BA,, to describe the fibre BA"? as map (BZ, BA)
we obtain the fibration

map(BZ, BA) - map(BZ, BX) — map(BZ, B(X/A4))
by mapping BZ into the fibration defining B(X/A4). The homotopy sequence ends with the
exact sequence
?
n,(map(BZ, B(X/A))) —— [BZ, BA] — [BZ, BX]
of sets. The last map, given by ¢ — Bz o (1 + ¢), is an injection by the above remarks and

Lemma 4.10. Thus the boundary map 0 is constant so the above fibration contains the
subfibration

BA — BCy(Z) - BCy,((Z)
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of connected spaces. Since BCy(Z) =~ BX by centrality, comparison shows that
BCy 4(Z) ~ B(X/4), i.e.. that Z is central X/A. O

(The connectedness condition in Lemma 4.10 and Lemma 4.11 can be relaxed a little.
In 4.10 (4.11) it suffices to require that 1y (Z) — 7o (X) (no (Z (X)) — 7, (X)) be surjective.)

We are now ready for the proof of the final statement of Proposition 4.6.

Proof of 4.6(4). The p-discrete center of X/Z is a subgroup of the discrete
approximation T/Z to T/Z. Suppose teT is such tZeZ(X/Z) meaning that the
homomorphism {tZ> — T/Z — X|Z is central. So is then {t) —» X — X/Z by [D-W],
Lemma 7.5. Mapping B({t)) into the fibration BX — B(X/Z) yields the fibration

BZ"™® — map (B({t)), BX) — map (B({t)), B(X|Z)).

This time the base space component BCy,,({t)) is simply connected being homotopy
equivalent to B(X/Z) by centrality. Thus this fibration contains the subfibration

BZ — BC,({t>) » B(X/Z)

showing, by comparison, that BCy (<)) =~ BX or, equivalently, that ¢ is in Z(X). Hence
Z(X]Z) < Z(X)]Z.

Conversely, if t € Z(X), then {t) - T — X is central. So is then {t) —» X — X/Z by
Lemma4.11 and (tZ> — T/Z — X/ Z by [D-W], Lemma 7.5. Thus Z(X)/Z < Z(X/Z). O

Next we will generalize another basic property of compact Lie groups, namely that any
finite normal subgroup of a compact connected Lie group is central.

4.12. Proposition. Let K - X — Y be an exact sequence of p-compact groups, where K
is finite and X is connected, i.e. 1 : K — X is a normal subgroup. Then, 1: K — X is a central.

Proof. We apply the functor map (BK, ) to the fibration BK — BX — BY. This yields
a diagram of fibrations

F M = BK

H | |

F —— map(BK, BX);, —— BX

| l |

% —— map(BK, BY) oy — BY.

The space M consists of some, but a finite number, components of map (BK, BK) and
contains at least the component of the identity. Because K is a finite group, the fiber F of the
top row is homotopically discrete given by a disjoint union of a finite number of quotients of
K. The homogeneous space X/ Cy (1(K)) =~ Fis connected because X is connected. Therefore
X/Cx(1(K)) =~ * which implies that K — X is central. O
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Finally we will look at the center from two more points of view, which also could be
used for the definition.

The first views the center as a maximal central subgroup. We say the center Z (X)) of Xis
a central subgroup which satisfies the condition of Theorem 4.4 (2). For the construction of
the center one considers the set of all conjugacy classes of central subgroups. This is partially
ordered by the relation given by subconjugation. All central subgroups are subconjugated to
Cx(T') which is a p-compact toral group. We can choose a maximal element Z (X) in the
poset of all central subgroups. If there exists a central subgroup Z of X which is not
subconjugated to Z(X), we can construct a proper extension of Z (X) which is also central by
using the arguments of the proof of Lemma 4.2. This contradicts the maximality of Z(X).
The universal property of the center ensures that both definitions give the same.

The second views the center as the kernel of an adjoint representation. For a compact
Lie group G the center Z(G) is also given as the kernel of the adjoint representation
G — Aut(G) of G into the automorphisms of G given by conjugation. Similarly one can
proceed for p-compact groups.

The free loop space fibration
X~ QBX - ABX:=map(S!, BX) - BX

of a p-compact group X has a classifying map 1: BX — Baut(X) which is called the
classifying map of the adjoint representation of X. Fora compact Lie group this construction
gives the induced map BG — BAut(G) — Baut(G).

To speak about kernel it is necessary that the target Baut(X) of the map A is p-complete
and is almost BZ/p-local. The latter condition means that the evaluation induces an
equivalence map (BZ/p, Baut(X Neonst = Baut(X) (see Section 2).

4.13. Proposition. Let Y be a p-complete F,-finite space. Then the following holds:
(1) Baut(Y) is almost BZ |p-local.
(2) If Y is a loop space in addition, then Baut(Y) is also p-complete.

Proof. For (1) it is sufficient to show that aut(Y) ~ 2Baut(Y) is BZ/p-local.
Taking adjoints we get
map(BZ/p, aut(Y)) ~ map(BZ/px Y, ¥);
~ map(Y, map(BZ/p, Y));
~aut(Y,Y).

Here F denotes the set of homotopy classes of maps /: BZ /p*xY — Y such that f|, is a
homotopy equivalence, and F is the set of homotopy classes of the adjoints of F. The last
equivalence is a consequence of the Sullivan conjecture ([M]).
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Condition (2) follows from a combination of [B-K], VI 5.4,7.1,7.2. Roughly speaking
this says that each component of aut(Y) is p-complete because Y is p-complete and that
7, (aut(Y)) behaves nicely, i.e. that ny (aut(Y)) is Ext-p-complete, because Y is a loop space
in addition. In this situation completion commutes with passing to the classifying space and
therefore BY is also p-complete. 0O

Because a p-compact group enjoys the properties of the last proposition we can speak
about the kernel K:=ker(4) — N,(Ty) — X of the map A.

4.14. Proposition. The subgroup j: K — X is the center of X.

Proof. We have to show two things, namely that Kis a central subgroup of X and that
every central subgroup of X is subconjugated to K. The universal property of the center,
stated in Theorem 4.4, then proves the statement.

Let Z — X be a central subgroup. The product map BZ x BX — BX establishes a map
BZ x QBX — A BX which fits into a pull back diagram of fibrations

BZxQBX —— BZ

| }

ABX — BX.

The upper row is the trivial fibration and shows that the composition BZ — BX — Baut(X)
is null homotopic. The central subgroup Z — X is subconjugated to N,(7y) and therefore
also subconjugated to K.

As a subgroup of N,(7y) the kernel Kis a p-compact toral group. The proxy action of K
on X established by the pull back diagram

BKx X —— BK

} L2

ABX —— BX
is trivial. Hence, we have X"® ~ X Taking adjoints establishes the equivalences

Qmap(BK, BX)y; ~ map(BK x S, BX) |, .—p;
~ map (BK, map(S*, BX)) /ey
~T'(BKX X — BK)

~ XhK .

Here I'( ) denotes the section space of the bundle. This shows that the evaluation
ev:map(BK, BX)p; — BX is a homotopy equivalence and that therefore K — X is
central. O

9 Journal fiir Mathematik. Band 456
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5. The finite covering

Throughout this section, X denotes a connected p-compact group with maximal torus
i: T — X, Weyl group W= W,(X) and center Z(X).

Our first goal is to obtain a description, rationally at least, of the subgroup =, (Z(X))
of 7, (T). It was shown in Lemma 4.9 that the fundamental group of the center is contained
in the W-invariant subgroup of the fundamental group of T.

5.1. Proposition. The index of n,(Z (X)) in n (T)Y is finite.
Proof. We show that dimg_ (7, (Z(X)) ® Q) = dimg, (7, (T)" ® Q).

Let S be a p-compact torus with mod p-dimension equal to the rank of the free finitely
generated Z;'-module m, (T)%. There exists, since [BS, BT] = Hom(n,(S), n,(T)), a ho-
momorphism e : S — T such that the image of the induced monomorphism 7, (¢) is , (T)".

Composition with i: 7 — X produces a homomorphism 7: Cr(S) — Cy(S) of
centralizers. An adjointness argument, bearing in mind that C,(T) =~ 7, shows that
Cr(S)= T (Theorem 2.11) is a maximal torus for the connected (Proposition 3.10)
p-compact group Cy(S). Consider the homomorphism W;(Cy(S)) — Wy(X) of Weyl
groups determined by the diagram T — Cy(S) — X. Both Weyl groups are faithfully
presented in 7,(7) (Theorem 2.13), so this homomorphism is injective. It is also sur-
jective. To see this, note that because =, (S) = =, (T)¥ is invariant under W, woe ~w
for any fibre self-map w of BT over BX; in other words, the mapping space component
BC;(S) = map(BS, BT), is mapped to itself under post-composition with w. Hence we
obtain a commutative diagram

BT BT
o T Tz
BCL(S) —=— BC,(S)
S

showing that w is in the Weyl group WCT(S)(CX (S)). Theorem 2.13 now implies that the
monomorphism (see 2.8) Cyx (S) — X induces an isomorphism H§ (X) —— H§ (Cx(S))
and therefore (Proposition 3.7) C4(S) — X is an isomorphism. This means that ie: S — X
is central.

As shown in Proposition 3.6, e : S — T factors through a monomorphisme’: S/K — T
for some finite abelian p-group K. The composition of ¢’ with i : T — X remains central
([D-W], Lemma 7.5) and is, as the composition of monomorphisms, a monomorphism.
Thus, by the universal property of the center (Theorem 4.4), there exists a monomorphism
S/K — Z(X) and hence (Proposition 3.6)

dim@p(ﬂ1(Z(X)) ®0)=z dim@p(”1(S/K) ® Q) = dim@P(nl(S) ® Q)
= dimg, (7, (T)" ® Q)

as required. 0
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5.2. Covollary. The monomorphism Z(X) — X induces an isomorphism

711(Z(X))®@i* (X)) ® Q

of vector spaces over Q,.
Proof. We have
m,(BZ(X)) ® @ = (n,(BT) ® Q)" *® = HZ (BT)""® ~ H (BX)
> 7, (BX)® Q
by Proposition 5.1 and Theorem 2.13. 0
The following theorem is an immediate consequence of Corollary 5.2.

5.3. Theoxem. The center of X is isomorphic to a finite abelian p-group if and only if the
Sfundamental group n, (X) is finite.

Recall from Lemma 3.3 that connected covering spaces of connected p-compact groups
are p-compact groups. Thus, in particular, the universal covering space X<{1)> of X is a
p-compact group.

Choose ([D-W1, Lemma 8.6) a homomorphism X X Z(X) — X extending the identity
map on X and the central monomorphism Z(X) — X. The composite homomorphism

T XADXZ(X)yg > AXZ(X)g = XXZ(X) » X
is investigated more carefully in the following main result.

5.4. Theorem. For any connected p-compact group X, there exists a short exact
sequence of the form

K—5 X{OXZ(X)y — X

where K is a finite abelian p-group and K X {1y x Z(X), L x > is a central
monomorphism.

Proof. The exact homotopy sequence for n together with Corollary 5.2 immediately
show the existence of the short exact sequence and also that K is a finite abelian p-group.
Proposition 4.12 and Lemma 4.11 show that:: K — X{1> X Z(X),and pryo1: K —» X{1)
are central homomorphisms.

The commutative diagram

X4y K ———— B(Z(X),) ——— BX

| ! |

BK —2 BX(1>x B(Z(X),) 2~ BX

Prl"B’l Prll l

BX{1) =————— BX{l) ———— x
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of interlocking fibrations shows that X {1)/K is homotopy equivalent to X/Z(X),, in
particular [Fpnﬁniﬁe. Thus pryez: K — X{1) is a monomorphism. O

5.5. Corollary. Let i,:S — X<{1) be a maximal torus for the universal covering
p-compact group X {1>. Then:

(1) Gy x1zx,)/K: (SXZ(X))/K — (XY X Z(X),)/K is a maximal torus for
X = (X1 x Z(X)o)/K.

) Z(X) = (Z(X{1)) x Z(X),)/K.

Proof. (1) By [D-W], Lemma 7.5, and since any homomorphism into the abelian
p-compact group Z(X), is central,

CX<1> x Z(X)o (S x Z(X)o) = Cx<1> (S x Z(X)o) x CZ(X)O(S x Z(X)o)
= Cye15 (8) X Z(X),
is a p-compact toral group with .S x Z(X), as its identity component. Thus S X Z(X), is a

maximal torus for X (1). (More generally, the maximal torus of a product is the product of
the maximal tori.) Now point (1) follows from Proposition 4.6.

(2) Let S x Z, — S x Z(X), be a discrete approximation. For any pair (s, z) € $ x Zos
Cisnyy (X<1> x Z(X)o) = Cey (X (1)) X Z(X),

by a computation similar to the one above. Thus Z(X (1) x Z(X),) = Z(X (1)) X Z, and
point (2) follows from Proposition 4.6. O

A fundamental theorem of Browder [B,] says, when translated into the present
context, that the first nonzero homotopy group of a connected p-compact group occurs in an
odd dimension. So for example, 7, (X) = 7, (X (1)) = 0 always.

5.6. Corollary. Let X be a connected p-compact group with maximal torusi : T — X and
Weyl! group W. Then:

(1) The homomorphism (i) : n,(T) — n,(X) is surjective and the rank of the kernel
equals the rational rank of the universal covering p-compact group X<{1> of X.

(2) X|T is simply connected and n,(X|T) is a free finitely generated Z)-module.
(3) X and X {1 have isomorphic Weyl groups.
(4) H,(BX) = HE (BX{15)" ® HE (B(Z(X),)).

Proof. By Corollary 5.5, the maximal torus of X has the form T'= (S x Z(X),)/K
where S — X {1) is a maximal torus for X<{1). Proposition 4.6 tells that

X{AP X Z(X),

X/T~ Sx Z(X),

~ X{1>/S8
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which is simply connected and has second homotopy group isomorphic to m,(S) since
7, (X (1)) = 0 by Browder’s theorem. This proves (1), and (2) is just a reformulation of (1)
using the exact homotopy sequence. -

In order to prove (3), note that

X<1 > X Z(X)O h(S x Z(X)o)
~ X 1 S hSNhZ(X)o ~ X 1 S hS
<—“‘“““s><z(x>o (XSS 2 (X 1)S)
where the last homotopy equivalence comes from the fact that the action of the divisible
abelian group Z(X), on the homotopically discrete Weyl space of X' (1) must be essentially
trivial; cf. [D-W1, Proposition 8.10. Taking groups of components, we obtain the first of the
isomorphisms

Ws(X<{1)) = WSxZ(X)O(X<1> X Z(X),) = Wr(X)
while the second one follows from Proposition 4.6.

The final assertion follows by expressing Hg (BX) as a ring of invariants (Theorem
2.13). O

In classical Lie group theory, the order of the center of a simply connected Lie group
divides the order of the Weyl group. In particular, at large primes, every compact connected
Lie group splits into a product of a simply connected one and a torus. The same statement
also is true for p-compact groups.

5/7. Theorem. Let X be a connected p-compact group. If (p,|Wxl) =1, then
X = X{1) x Z(X), is isomorphic to the product of the universal cover X {1) and the connected
component Z(X), of the center Z(X) of X.

Proof. Because p is coprime to the order of Wy, we have an isomorphism
H*(BX;Z)) = H*(BTy; Z))"* ([D-M-W]). In particular, H*(BX; Z,) is torsion-free.
Moreover, the Wy-module H* (BT, 7)) = M| ® M, splits into a direct sum where M, isa
fixed-point free Wy-module and M, =~ H*(BTy,Z))** is given by the fixed-points.
Classifying spaces of p-compact tori are Eilenberg-MacLane spaces. Therefore we can
realize the summands by maps Bj, : BT, — BTy, i = 1,2. Both tori, 7} and T;, inherit a

4

W,-action and the maps can be realized by equivariant maps.

Next we want to show that 7, — Ty — X is central. The centralizer C (T}) is connected
and of maximal rank (Proposition 3.11). By construction W, 1, = Wy. Hence, by Theorem
2.13, the map BCy(T,) — BX is rationally an equivalence, and by Proposition 3.7 a
homotopy equivalence. This shows that 7, — X is central. In particular, we have
T, = Z(X),.

Let det : X — T be the generalized determinant. That is that T'is a p-compact torus of
the same rank as the free Z,'-module H*(X; Z,') and that B det is given by an isomorphism
H*(X;Z}))=~H *(BT; Z}). By the above remarks the fiber of B det is given by the universal

" d . .
cover X{1)>. The composition BZ(X), — BX el BT is a homotopy equivalence,




130 Moller and Notbohm, Centers and finite coverings of finite loop spaces

because H?>(BX; Z,) = H*(BTy; Z))"*. We identify Z(X), and T via this equivalence.
Hence Bdet has a left inverse given by the central map BZ(X), — BX. The adjoint of
BX{1y - BX ~map(BZ(X)y, BX)y,, establishes an equivalence of fibrations

BX{1> —— BX{1> X BZ(X), —— BZ(X),

| | l=

BX(1> — & Bx — %, BT

This finishes the proof. 0O
The proof of Theorem 5.7 obviously has the following corollary:

5.8. Corollary. Let X be a connected p-compact group. If p does not divide the order of
the Weyl group, then the center Z(X) is connected. In particular, if X is semisimple, then Z (X))
is trivial.

6. Finite coverings of connected finite loop spaces

In this section we will prove Theorem 1.5 which says that every connected finite loop
space has a finite covering which splits into a product of a simply connected finite loop space
and a torus. To do this we use the results of the last section which give us a splitting at each
prime. An arithmetic square argument will complete the proof.

Let L =(L,BL,e) be a connected finite loop space. Then completion at a
prime p gives a p-compact group L, = (L}, BL}, e;). The rational cohomology
H*(BL; Q) ~ Q[x,, ..., x,] is a polynomial algebra of generators x; of even degree 2r,.
We define d(X) =[] r.

The 2-dimensional cohomology H?(BL; Z) is torsionfree of rank s, because BL is
simply connected. Let T be a torus of the same rank and let Bdet: BL. — BT be the
generalized determinant established by a chosen isomorphism H?*(BL; Z) =~ H*(BT; Z).

6.1. Proposition. There exists an unstable Adams operation w* : BT — BT and a map
BT — BL such that the diagram

BL

/ | Bdet

BT —Y BT

commutes up to homotopy. Moreover, for every prime p, completion establishes a central
subgroup T, — L. :

Proof. Let p be a prime. Passing to completion and by Theorem 5.4 we get a
commutative diagram
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BZ(L), — BL}1)x BZ(L}), — BL

1 | Baet

A Wk A
BT, BT, .

The composition Bg:BZ(L}), — BTI,A of the upper row and Bdet is rationally an
equivalence because BL, (1) is 3-connected. In particular, the fiber is given by the kernel
of g which is a finite abelian p-group K,. Hence, there exists only one obstruction for a left
inverse of Bg contained in H*(BT,\; n,(K,)) = H*>(BT,"; K,). Let k,:=| K, |. By an Adams
mapw*r: BT, — BT, this obstruction is mapped to zero which proves the existence of
the left vertical arrow.

By Theorem 2.13 and by a theorem of Chevalley [C] the order of the Weyl group W, is
equal to d (L) for every prime. If p is coprime to d (X), then BL, is equivalent to the product
of BL, {1 x BZ (L))o, and the left vertical arrow exists with k, = 1. That s to say that only
for a finite number of primes k, is unequal to 1. The product k= [1%, is a finite number.

P
Unstable Adams operations of any degree can be realized as self maps of BT and commute
up to homotopy. This establishes a commutative diagram

BL"
/ l Bdet

BT Y BT™

Here, BL" =] | BL) denotes the product of all p-adic completions. The map y* can be

p
realized as a self map of BT.

Rationally BL is a product of rational Eilenberg-MacLane spaces. The map
Bdet* : H*(BT; Q) —» H*(BL; Q) is an isomorphism on the 2-dimensional generators of the
polynomial ring H* (BL; Q). Rationally, the map y*: BT — BT is a homotopy equivalence
with inverse /¥ Therefore, there exists a right inverse ¢ : BT, — BLg of p'/* Bdet*. This
establishes a diagram commutative up to homotopy

Rationally all spaces are products of Eilenberg-MacLane spaces and all maps are classified
up to homotopy by cohomology. Thus, the coherence conditions for using the arithmetic
square are satisfied by construction. This establishes the desired diagram of the statement.
The centrality of the lift BT — BL is already proved. 0O

The universal cover L{1)> — L of a connected finite loop space L is also a finite loop
space, and passes to map BL{1) — BL between the classifying spaces. This follows
analogously as in Corollary 3.3. Actually, the proof of Proposition 3.2 and Corollary 3.3 is
the p-adic version of an integral argument.
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Proof of Theorem 1.5, Let L{1) — L be the universal cover of the finite loop space L.
By Proposition 6.1 and the proof we can choose an Adams operation w*: BT — BT and a
central lift Bg:BT" — BL" The adjoint of BL{1>" - BL" ~ map(BT", BL")y,
establishes a diagram commutative up to homotopy

BL{1>"x BT" —— BIL"

l l Bdet

lpk

BT" ——— BT".
The left vertical map is the projection on the second factor.

Rationally the map BL{1)>,— BLgextends toa map BL{1 Ya X BT, » BLg where the
restriction on the second factor is given by the left inverse of /% Bdet. This establishes the
~analogous diagram for the rationalisations of the spaces. Again, the coherence conditions
for glueing together are satisfied because over the adeles the homotopy classes of the maps
are controlled by cohomology. This proves the statement. 0O
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