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Abstract

In this Master’s thesis I will generalize integration from R” to smooth finite-dimensional
manifolds. This generalization will be used to calculate the volume of some classical
manifolds and give a proof of Weyl’s tube formula [We].

In chapter 1 a classical example for the volume of the n-dimensional Euclidean sphere
and ball in R" is given. A few concepts from differential geometry is mentioned without
definitions.

Chapter 2 is a theoretical chapter which summarizes the basics in the theory of differ-
ential and Riemannian geometry. Many theorems are stated without proofs, but detailed
discussion is made when integration is extended from R" to manifolds. The proof of
theorem 2.82 is my contribution, although a better proof can without a doubt be found.

Chapter 3 goes through the proof of Weyl’s Tube formula, which was first published
in 1939 [We]. For a g-dimensional submanifold P of R", the volume of a tube around P
with small radius is deduced. The result is independent of the embedding of P. Moreover,
the volume of geodesic balls is calculated for some special kinds of manifolds. The main
source for this part of my thesis are chapters 2—4 and a part of chapter 6 in a book called
Tubes by Alfred Gray. Many theorems will be stated without proofs, either because they
are well known or I do not find the proofs instructive. In many cases proofs are written
in much more detail than Gray does. The last section deals with Kihler manifolds.

In chapter 4 both number theory and differential geometry are used to calculate an
invariant meassure of the quotient space Si(n,Z)\SIl(n,R) with respect to an invariant
density on Si(n,R). My main source for this part are a couple of pages taken from [Vos].
The source [Vos] is extremely compact and many statements are stated without proof
and without citation. My search for better proofs were unsuccessful in most cases so the
majority of the proofs in this part of this thesis are my personal deductions. At the end
of the chapter I will discuss some speculations which materialized during my writing and
could easily be sufficient material for a small project or another Master’s thesis.
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Chapter 1

Introduction

1.1 The meaning of area and volume in relations
to manifolds

A real n-dimensional manifold is a topological space which locally is “similar” to
an open subset in R*. An (n — 1)-dimensional embedded submanifold in another
n-dimensional manifold is called a hypersurface. The precise definitions of the these
concepts will be given in chapter 2.

Curves and surfaces are examples of a 1-dimensional and 2-dimensional manifolds
respectively. R” is an example of an n-dimensional manifold. A curve in R? and a
surface in R?® are examples of hypersurfaces. In the following definition an example
of a manifold and a hypersurface is given. We will then deduce formulas for the
volume of the manifold and for the area of the hypersurface.

1.1 Definition
(1) Let R > 0. The set

By(R) :={z € R": |z — p| < R}

is called the n-dimensional open ball with center p and radius R. If R = 1
and p = 0 we write B" instead of B}}(R). B" is called the n-dimensional open
unit ball. The n-dimensional open ball is an example of an n-dimensional
manifold.

(2) Let r > 0. The set
n - n+1 . —
Sp(r)={reR"™ : [z —p|=r}

is called the n-dimensional sphere with center p and radius r. If r = 1 we
write S™ instead of Sy (r). S™ is called the n-dimensional unit sphere. The
n-dimensional sphere is an example of an n-dimensional manifold. Further-
more Sy(r) is a hypersurface in By*'(R) when 0 < r < R. Sp(r) is also a
hypersurface in R"+!.
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1.2 Example
(1) S)(r) is a closed curve in R* and its length is 277

(2 ’

>(r) is a closed surface in R® and its area is 477>
(3

(4
(5) B(R) is an open ball and it’s volume is 4w R® /3.

' (R) is an open interval and it’s length is 2R.

) S
) S
) B
) BZ(R) is an open surface and it’s area is 7R”.

Instead of the common words length, area and volume in the above definition we
could have used Lebesgue measure using concepts from measure theory. In this thesis
however the word volume will in general be used independent of n. Thus the first
line in the above example would change to

(1) Sp(r) is a closed curve in R* and its volume is 277

It’s convenient to use the word area instead of volume when we are working with
manifolds as hypersurfaces in another manifold. This convention will be used in
chapter 3. So if we for example are working with S, (r) as a hypersurface in B2(R)
for 0 < r < R we wold say that the area of S; (r) as a hypersurface in Bﬁ(R) is 27r.
On the other hand the volume of B}(R) is mR”.

We denote by p(Sp(r)) and u(Bj(R)) the Lebesgue measure of Sp(r) and B} (R)
respectively. So here we’d call u(Sp(r)) the n-dimensional area of Sp(r) (as a
hypersurface in B}'(R)) and p(Bp(R)) the (n+1)-dimensional volume of BJ*'(R)
independent of n. In the following section we’ll deduce formulas for u(S}(r)) and
u(ByV(R)) [Cox].

1.2 Formulas for u(S)(r)) and pu(B)*'(R))

We first observe that (S} (r)) and u(Bj*"(R)) are independent of p. We therefore
can assume that p = 0. We have that u(S;(r)) = u(S™)r" and the relation

(B (R)) = /0 (ST dr = n(i 1)R”+1 (1.1)

If f: R — R is a function of r = (32 :cg)l/

/f S"rdr—// /f:cl,..  Tng1) A1+ - ATy

This is a well known fact from functional analysis. We apply this formula to the
function f(r) = e™"". Then

/ wu(S™)r™ dr —/ / / e i
0
n+1
_ (/ o7 dx) — p(nt1)/2.

we have

2
Tnt1 dml e dxn+1
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The substitution ¢ = r? yields

/oo 6*7'2/,‘71, d,},. — 1/00 e*tt(n+1)/271 dt — 11—, n+ ]_ .
5 2 J, 2\ "2

By combining these last two equations we obtain the area of Sg(r), namely

. - 27r(n—|—1)/271n
u(Sp(r)) = p(S™)r" = T (1.2)

From this and (1.1), we deduce that

27r(n—|—1)/2Rn—|—1 ,/T(n—|—1)/2Rn—|—1

,U'(B;H—I(R)) = (n+1)T (HTH) = T (RTH) . (1.3)

Naturally we get the values in example 1.2 when we put a suitable value of n in the
above formulas.

1.3 Remark

We have used many undefined concepts in the last couple of pages. In the follow-
ing chapters precise definitions of the terms mentioned are given and I'll explain
explicitly what is meant by integration on manifolds.
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Chapter 2

Differential and Riemannian
geometry

In this chapter many basic definitions and theorems from differential and Rieman-
nian geometry are stated. The material presented is often taught in an one-year
graduate course. Most of the theorems will be stated without proofs. For more de-
tails and proofs see for example [Ax, Bre, Lee, War| or other books about differential
geometry.

2.1 Notation

2.1 Definition
(1) Let {A;|i € I} be a collection of sets. Then

HAZ' (2.1)

iel
denotes the disjoint union of the sets A; for i € I.

(2) Fori,j € Z we define

0 i#j].

d;,; is called the Kronecker symbol.

51',]' = { ! J; (22)

2.1.1 The Permutation group

2.2 Definition
(1) Let i,j € N where i < j. Then we let

[é, 71 == NN, j].

(2) Let s € N. A bijective map o : [1,s] — [1,s] is called a permutation of s
elements.

13



14 CHAPTER 2. DIFFERENTIAL AND RIEMANNIAN GEOMETRY

(3) The set of all permutations of s elements form a group. It is non-commutative
for s > 2. It is called the permutation group of s elements and is denoted

by
S,.

(4) Let i,j € [1,s]. We denote by (i,j) € &, the element which satisfies the
following conditions:

(a) (i,4)(i) = j and (1,5)(j) = §;
(b) (3,5)(k) =k ifk #1,j].
(1,7) is called a 2-cycle.

(5) For o4,...,0, € &4 the element 0y ---0, :== 010 ---00, € &, is called the
product of 04,...,0,.

(6) Note that (i,7)' = (i,7) and (i,7)° = idg, .

2.3 Remark

It is well known that every permutation can be written as a product of 2-cycles,
though of course not in a unique way. However, the numbers of two-cycles which
product is the same as a given element 0 € G; is either alway even or always odd.
Furthermore it’s straightforward to show that card(&;) = s!

2.4 Definition
Let 0 € G,. Then we define

Ep i=

{1 if o is a product of even numbers of 2-cycles;

—1 if o is a product of odd numbers of 2-cycles.

We call €, the sign of 0.

2.2 Manifolds and tangent spaces

2.5 Definition
Let X be a topological space.

(1) Let U be a collection of subsets of X. If, for each x € X there exists an open
neighborhood of x which meets, non-trivially, only finitely many elements of
U then U is said to be locally finite.

(2) Let U and V be open coverings of X. If
AeU=3IBeV:ACB

holds for every A € U, then we say that U is a refinement of V.
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(3) If every open covering of X has an open locally finite refinement then X is
said to be paracompact.

2.6 Definition
(1) Let T stand for either R or C and let M be a Hausdorff space which has a
countable basis. M, together with a collection of maps, called charts, is said

to be an n-dimensional smooth manifold over I if the following conditions
holds:

(a) A chart is a homeomorphism ¢ : U — U’ C F* where U is open in M
and U’ is open in F";

(b) Each point x € M is in the domain of some chart;

(¢) For charts ¢ : U — U C F* and ¢ : V — V' C F* the function
¢t p(UNV) — ¢(UNV) is infinitely often F-differentiable;

(d) The collection of charts is maximal with properties (a), (b) and (c).

A set of charts which satisfies the first three conditions above is called an
atlas. If F = R we say that M is a real manifold. If F = C we say that M
is a complex manifold.

(2) Let M and N be smooth manifolds over F. Then a map f : M — N is said to
be smooth if, for all charts ¢ on M and 1) on N, the function 1o f o ¢! is
infinitely often F-differentiable where it is defined. If N =R and f: M — N
is a smooth map then f is said to be a smooth function. We denote by
C*®(M) the algebra of all smooth functions on M.

2.7 Definition

If we let F = R in definition 2.6(1) and let M satisfy the given conditions where we
have replaced " by {(z1,...,z,) € R*| 21 < 0} where it occurs, we say that M along
with its collection of charts is a manifold with boundary. The (n—1)-dimensional
manifold which consist of all points in M which get mapped to {(x1,...,x,) €
R"|zy = 0} by a chart, is called the boundary of M.

General agreement

We’ll always let the letter M stand for a real smooth

manifold of dimension n unless otherwise stated.

2.8 Remark
(1) There are other definitions of manifolds than given in definition 2.6 with weaker
conditions. The countable basis axiom in the definition of a manifold guar-
antees that M is paracompact. Theorem 2.10 below shows how this can be
useful.
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(2) It can be shown that an atlas on a manifold has a unique maximal extension.
This maximal extension is called a maxzimal atlas. If A is a maximal atlas for

M, an atlas on M which has A as it’s maximal extension is called a subatlas
of Aon M.

2.9 Definition
Let {U,|a € A} be an open covering of a space X. A collection of continuous maps
{fs : X = [0,1]| B € B} which satisfies:

(1) There exists a locally finite open refinement {V3| 5 € B} of {U,| o € A} such
that supp(fz) C Vj for all B € B;

(2) X5 fp(x) =1 for allz € X;
is called a partition of unity subordinate to {U,| o € A}.

2.10 Theorem

Let {U,| o € A} be an open covering of a paracompact space X. Then there exists
a partition of unity subordinate to {U,| o € A}. Since M is paracompact then for
any open covering of M there exist a partition of unity subordinate to that covering.
It can actually be shown that we can find a partition of unity for M such that the
functions fg in definition 2.9 are smooth. For proof see [Bre]

O

2.11 Definition
Let M have a maximal atlas A. If there exist a subatlas B of A on M such that

5&%)
det >0onVNU
(3%

for all charts ¢ : U - U' C R* and vy : V — V' C R" in B then M is said to be
orientable and M along with B is said to be an oriented manifold.

2.12 Remark

Note that an oriented manifold is not a manifold in general since we don’t assume
that it’s atlas is maximal. There are more equivalent definitions of an oriented
manifold. See for example [War].

2.13 Definition
(1) We denote by E(M,p) the set of all smooth functions which are defined in a
neighborhood of p € M. If f,g € E(M,p) then we regard f = g if f agrees
with g on some neighborhood of p.

(2) A mapd:E(M,p) = R is called a differential operator if it is R-linear and
satisfies

6(fg) = f(p)d(g) +gP)(f) (2.3)
for all f,g € E(M, p).
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(3) Let v be a smooth curve on M with v(0) = p. A map D, : E(M,p) — R
defined by

d

D,(f) = %f(v(t))h:o (2.4)

is called the directional derivative of f along v at p and D, is called the
tangent vector to v at p. We regard D, = D., if they have the same value
at p for every f.

2.14 Definition
Let p € M.

(1) The set of all differential operators 0 : £(M,p) — R is called the tangent
space of M at p.

(2) The set of all tangent vectors D., : E(M,p) — R at p is called the tangent
space of M at p.

2.15 Remark

The two definitions of the tangent space are isomorphic, and we will not make a
distinction between them. The tangent space at p € M is a vector space over R of
same dimension as M.

O

2.16 Definition
We will denote the tangent space of M at p by

T, M.

2.17 Example
Let V be an n-dimensional manifold which also is a vector space over R. Then for
a vector v € V we let 7, : I — V be a curve such that

d
v = d —_— v t - .
7(0) = p and — tzov() v
An obvious choice for such curve is 7,(t) = p + tv. Then the map ¢ : V — T,V
defined by

¢(v) = D,

is a isomorphism, and as before the precise choice of +, is not important as long as
it satisfies the required conditions. 7, is called a representation curve for the
tangent vector v. We call this the natural isomorphism of T,V with V. Note
that if U C V is open in V, then T,U = T,V for all p € U. The most classical
examples are V =R" and V =T, M.
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2.18 Definition
Let ¢ : M — N be a smooth map between manifolds. Then the function ¢, :
TpM — T¢(p)N defined by

$+(Dy) = Dgoy (2.5)
is called the differential of ¢ at p € M.

2.19 Theorem
o, defined above is well defined and linear and satisfies

¢*(D7)(9) = Dv(g o ¢). (2.6)

for all g € E(N,¢(p)). Furthermore if v : N — P is also a smooth map between
manifolds we have

Yutpe = (Y 0 0. (2.7)

Equation (2.7) is known as the chain rule.

4

2.20 Remark

Let V and W be n-dimensional manifolds, which are also vector spaces, and ¢ :
V — W be a smooth map. Then by the natural identifications in example 2.17 we
have

d

QS*(U) = E ¢07v(t)-
t=0

2.21 Definition
Let ¢ : M — N be a smooth map between manifolds.

(1) We say that ¢ is:

(a) an immersion if ¢, is a monomorphism at allp € M.

(b) a submersion if ¢, is onto at allp € M.
(2) (M, @) is said to be a submanifold if ¢ is an injective immersion.

(3) We say that ¢ is an embedding if (M, ¢) is a submanifold and ¢ is homeo-
morphic to it’s range for the relative topology on ¢(M). If ¢ is an embedding,
then we say that ¢(M) is an embedded submanifold of N.

(4) If $(M) is an embedded submanifold of N and dim(M) = dim(N) — 1 then
we say that ¢(M) is a hypersurface of N.
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2.3 Tensors, vector bundles and differential forms

2.22 Definition
Let V' be an n-dimensional vector space over R, and let V* denote the dual space
of V.

(1) A (k,l)-tensor over V is an R-multilinear mapping

F:y*x---xV*Jxl/x---x\/J—)R.

-~ -~

1times k times

(2) A (k,l)-tensor is said to be contravariant if k = 0, and covariant if [ = 0.
(3) The vector space of all (k,[)-tensors over V' is denoted by

TED (V).
(4) A covariant (k,0)-tensor F' which satisfies

F(vo1y, - -, Vo)) = € F (v1, ..., V)

for all vi,...,vx € V and every 0 € Gy, is called an alternating covariant
tensor.

(5) We denote by
Ak(V)

the vector space of all alternating covariant (k,0)-tensors on V. An element
in Ay (V) is called a k-form.

(6) We define
A(V) = @Ak(‘/)

We regard Ay(V') as a subspace of A(V') by identify it with the subspace

Doy e ) e @ (0}

When we take an element n € A(V) we generally assume that there exist a
non-negative integer k such that n € Ax(V).

2.23 Remark
It can be shown that M is orientable if and only if there exist a non-vanishing n-form
on M. (See for example [War]).
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2.24 Definition

Let E be smooth manifold, and w : E — M be a surjective map. The triple (E, M, )
is said to be a k-dimensional smooth vector bundle if the following conditions
are satisfied:

(1) E, := 7 '(p) is endowed with the structure of an k-dimensional vector space,
for every p € M. E, is called the fiber of E over p.

(2) Forevery p € M there exists a neighborhood U C M of p and a diffeomorphism
¢ :m Y({U) — U x R* such that the following diagram commutes:

7Y (U) 2= x Rt
U—-U

Here 7, is the projection onto the first factor. Moreover ¢|g, : E, — {q} x R
is a linear isomorphism for all ¢ € U. ¢ is called a local trivilization of F.

We say that F is the total space, M is the base and 7 is the projection.

2.25 Definition
(1) TM :=[1,cp T,M is called the tangent bundle of M.

(2) T*M = [{,ep(1pM)* is called the cotangent bundle of M.
(3) T®DM :=[],¢p T*D(T,M) is called the bundle of (k,[)-tensor of M.
(4) A*M := [1,cps Ar(T, M) is called the bundle of k-forms of M.

2.26 Example
We define mappings

(1) m : TM — M such that (TM), = ;' (p) = T,M;

(2) my : T*M — M such that (T*M), = 7, ' (p) = (T,M)*;

(3) w3 : T®OM — M such that (T*®D M), = 73t (p) = T*D(T,M);
(4) my : A¥M — M such that (A*M), = 7, (p) = Ar(T,M).

Then (TM, M, ), (T*M, M, ), (T*YM, M, r3) and (A*M, M, r,) are all exam-
ples of vector bundles. The first two are n-dimensional, and the other ones are of
dimension (Z)

2.27 Remark

The only non-trivial thing we have to do to show that the triples in the above
example are indeed vector bundles, is to show that the sets we propose are the total
spaces are indeed manifolds which satisfies the desired conditions. The following
lemma, proved for example in [Lee], gives a very helpful criterium which often makes
this easy. It can for example be used in the above example.
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2.28 Lemma

Let E be a set and m : E — M be a surjective map. Let’s assume that we have
a collection 2 of bijective maps ¢ : m 1 (Uy) — Uy x R* where {U,} is an open
covering on M which satisfies the following conditions:

(1) m 0 ¢o =T;
(2) If U,NUg # 0, where o, B € A, then the composite map qﬁaoqbgl : (UaNUg) %
RF — (U, N Us) x R* is of the form
a0 b5 (p,V) = (0,7(D)V)

where 7 : Uy NUg — Gl(k,R) is a smooth map where Gl(k,R) denotes the
group of invertible (k x k)-matrices (see definition 2.56).

Then E can be made into a smooth k-dimensional manifold in a unique way such that
(E, M, ) is a smooth k-dimensional vector bundle and ¢, are local trivializations
for all a € 2.

4

2.29 Definition

Let (E,M,n) be a vector bundle. A map F : M — E such that F(p) € E, for all
p, Is said to be a section of E. If F(p) =0 € E, for all p € M then F is called the
zero section of E. We say that a section F' is smooth if F' is a smooth map between
the manifolds M and E. We denote the set of all smooth sections on (E, M, ) by

E(M).

2.30 Definition
(1) A smooth section of TM is called a smooth vector field on M. The set of
all smooth vector fields on M is denoted by

X(M)

(2) A smooth section of T*)M is called a smooth (k,[)-tensor field on M.
The set of all smooth (k,[)-tensor fields on M is denoted by

TED(M)

(3) A smooth section of A¥M is called a differential k-form on M. The vector
space of all differential k-form on M is denoted by

QF(M).

2.31 Remark
(1) For X € X(M) and f: M — R we define X(f) : M — R by

X(f)(p) = X(p)(f)-
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(2) By definition we have that QF(M) C A*M.

2.32 Definition
We define

We make the same assumptions for Q(M) as was done for A(V) in definition 2.22(6).

A well known lemma called the Tensor Characterization Lemma states the
following:

2.33 Lemma
(1) A map

T QU (M) X - X QM) x X(M) x -+ x X(M) — C®(M)

7 - o

v v
1times k times

is induced by a smooth (k,l)-tensor field in a natural way if and only if it is
multilinear over C*°(M). By abuse of language we say that the map T is also
a smooth (k,l)-tensor field if it is multilinear over C*°(M).

(2) A map

T QM) x - x QY (M) x X(M) x -+ x X(M) = X(M)

- i - i
-~ -~

1times k times

is induced by a smooth (k,l + 1)-tensor field in a natural way if and only
if it is multilinear over C*°(M). We also say that the map 7' is a smooth
(k, 1+ 1)-tensor field if it is multilinear over C*(M).

For more details see for example [Lee].

O
2.34 Definition
The map A : A(V) x A(V) = A(V), (w,n) — w A n defined by
1
w A n(Xla SRR Xk-Hc’) = W Z EG—LL)(XO—(l), SRR Xa(k))n(XO'(k-l—l)a ERE Xa(k-HC’))a
STy
(2.8)

is called the exterior (or wedge) product. Here we have assumed that w € Ag(V)
andn € Ap(V).
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2.35 Remark

We can define a wedge product A : Q(M) x Q(M) — Q(M) by (2.8) where X; are
now smooth vector fields, instead of vectors.

We have that A(Ax(V) x Ap (V) C Appw (V) and A(QF(M) x QF (M) € QF+HF (M).
If feQ(M)=C>®(M) and w € QF(M) we write fw instead of f A w.

2.36 Theorem
(1) The wedge product is bilinear and associative.

(2) If wi,...,wy are 1-forms then

(Wi A Awp) (X, ..., Xg) = det (wi(X;)). (2.9)

(8) If wy, ..., wy is a basis for V* then {w;j, A --- Aw;,| i1 <--- < i} is a basis of
A (V) over R.

O
2.37 Corollary
Let V' be an n-dimensional vector space. Then
dim A, (V) = (Z), (2.10)
weA(V),neA(V)=>wAn=(-1)*nAw; (2.11)
we A(V), k odd= wAw=0. (2.12)
O
2.38 Remark
w is a differential k-form if and only if for every local coordinates = = (z1,...,z,),
w can be written as

i1yeenin=1

where all the functions f;, _; are smooth.

k

2.39 Definition
The operator d : QF(M) — QF+1(M), defined by

(1) If k=0, and X € X(M) then df(X) := X(f);

(2) dw = d(fdzi, A---Adx;,) = df Adxi, A---Adz;, for k > 0 and then we extend
by linearity to all forms;

is called the exterior derivative.

The following properties for the exterior derivative are easy to prove:
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2.40 Theorem
(1) d is independent of the choice of coordinates, so d is well defined.

(2) df =, 3L du.

(3) d*> =0.

(4) For w € Q(M),n € QF(M) we have

dwAn) =dwAn+ (=1)w A dn.
2.41 Definition
Let ¢ : M — N be a smooth map between manifolds. We define an operator
¢* : Q(N) — Q(M) by letting
O (W) (X1, -, Xi) = w(0.(X1), - -, 0(Xk)), (2.14)

where X1,..., Xy € X(M) and then extend by linearity. Here we have assumed
that w € QF(N). Note that ¢*(QF(N)) C Q¥(M) for all k. If k = 0 we set

" (f)=fo0. (2.15)
In the following theorem many basic features of ¢* are stated.

2.42 Theorem
Let 0 and ¢ be smooth mapping between manifolds. Then

(1) (00 @) =¢"0b";

(2) 0"(wAn) =0"(w) A O™ (n);

(3) 0" (fdys A~ Ndyg) = (f o) d(yr 0 0) A--- Ad(yy 0 0);
(4) 0" (dw) = d(0"(w)).

2.43 Definition
Let V' be an n-dimensional vector space. By (2.10) we have that A,(V) is 1-
dimensional and thus A, (V)\{0} has two components.

(1) An orientation of V' is a choice of a component of A,,(V)\{0}.
(2) V along with an orientation of V is said to be an oriented vector space.
(3) Let V be an oriented vector space. An element which is in the orientation of

V is said to lie in the orientation.

2.44 Remark
There are close relation between orientable manifolds and oriented vector spaces.
For details see for example [War]

The following lemma, is obvious.

2.45 Lemma
Let V' be an oriented vector space, and let \, u lie in the orientation of V. Then
there exist ¢ > 0 such that A = cp.

d
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2.4 Integration of forms

2.46 Definition
Let X be a topological space, and f : X — R be a function. Then we define the
support of f to be

supp(f) = f1(R\{0}).

Let x1,...,x, be the coordinates in R* and w be an n form on R* whose support is
compact an lies in in some open set U C R*. We can thus write

w= f(T1,-. ., Tn)dT1 A -+ Ady,

where supp(f) C U is compact. We define the integral of w over U to be

[wim [[ [ tonminna,

where the right hand side is the ordinary Riemannian (or Lebesgue) integral. By

this definition we see that
/ W= / w.
n U

If W C R” is another open set and 6 : W — U is a diffeomorphism, we have
0*(w) = (fob)d(z100) A--- ANd(xy 00)
by theorem 2.42(3). Furthermore by theorem 2.40(2), we have
" O(x; 0 0) a
j=1 J j=1

where J; ;(0) is the (4, j)-th entry of the Jacobian matrix of §. By simple computation
we have (see for example [Bre, Ru] for details):

d(z100) A Nd(zy 00) =det(J;;(0)) dzy A+ A dzy,. (2.16)
Hence we deduce that
0" (w) = (f o 8)det(J; ;(0)) dz1 A --- ANdxy, (2.17)

and thus by the standard Riemann change of variables we have (see for example [Ru])

[ow=[ o= [[[ 10w ) dens,6)) da---d,

::‘://--- f(-Tl,---;-Tn)dxl"'dxn::t/w'
R U

(2.18)
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The sign is determined by the sign of det(J; ;j(f)) where we assume the same sign
on all components of U if U is not connected. We say that 0 is ortent preserving
if det(Jm(O)) > 0.

Let’s assume that M along with an atlas A is an oriented manifold. We let ¢ : U —
U' C R™ be a chart in A and w be an n-form on M such that supp(w) is compact
and contained in U. Then (¢~ ')*w is an n-form on U’ which we extend by 0 to
the whole R". Thus we can look at (¢~')*w as a n-form in R* which has compact
support in U’'. We define the integral of w over U to be

/Uw:: /U,(Qs_l)*”' (2.19)

This is clearly an extension of integrals of forms defined on U C R*. We’ll have to
show though that our definition is independent of which chart in A we choose. Let
¥ :V — V' C R" be another chart in A such that supp(w) C V, and let § = 1po¢™".
Since ™' o6 = ¢! we have (¢71)* = 6* o (¢~!)* by theorem 2.42(1) and therefore

/U,(¢1)*w _ /n(¢1)*w -/ 0" (1 ) = /n(¢1)*w _ /Vlwl)*w

by (2.18) so (2.19) is well defined. Note that we have used that (M, .A) is an oriented
manifold.

Now let w be an arbitrary n-form on M with compact support K. Let {f;} be a
smooth partition of unity subordinate to a locally finite covering {U;} on M such
that U; is in the domain of some chart on (M, A) for alli € I. Let I' = {i € I|U;
intersects K}. Since K is compact, K intersects only finitely many U, so I' is a
finite set. Now we have that supp(f;w) C U; for all i € I" and we define

/Mw = Ze; ; fiw. (2.20)

This is also clearly an extension of integrals of forms defined on U C M. Let {g;}
be another smooth partition of unity subordinate to another locally finite covering
{V;} on M such that Vj is in the domain of some chart on (M, .A) for all j € J. Let
J'={j € J|V; intersects K}. Since }_, >, fig; = 1 we have

fw= [ 53 g0 [ Show=3 [ fow=3 [ sfo  @2)
U; U; jeJ UijEJ’ jeJ'! U; jEJ! V]

where we have changed the integral and the finite sum. The last equality follows
from (2.19). By combining (2.20) and (2.21) we get

Z/ fiw:ZZ/ gjfiW:Z/ ngfiw:Z/ gjw.
iel VUi el jeat Vi jear?Vi o ger jeg 7V

So we’ve shown that the definition (2.20) is independent of which smooth partition
of unity we take.
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Thus if # : M — N is an orient preserving diffeomorphism between oriented n-
dimensional manifolds and w is an n-form on N which has a compact support we

have that
/w::/ 0w, (2.22)
N M

by the above definitions and observations. The above definitions are very useful and
can be used to give a rather simple proof of the general Stoke’s Theorem. The
theorem states the following:

2.47 Theorem (Stoke’s Theorem)
Let N be an n-dimensional oriented manifold with boundary ON and assume that
w € Q" Y(N) has a compact support. Then

/dw:/ w. (2.23)
N AN
2.48 Remark

Many classical theorems in 2- and 3- dimensional calculus are obtained as a corollary
from the above theorem (see for example [Bre, F1)).

2.5 Lie groups and related topics

2.5.1 Topological groups

2.49 Definition
A topological group is a Hausdorff space G together with a group structure on G
such that

(1) group multiplication M : G x G — G, (g, h) — gh is continuous;
(2) group inversion INV : G — G, g — g~ is continuous.

2.50 Definition
(1) Let G be a topological group, and X be a space. We denote the identity
element of G by e. Then an action of G on X isamap A: G x X — X,
(g9, x) — g(z), which satisfies

(a) gh(z) = g(h(z));
(b) e(z) = z;
for all g,h € G, and all © € X.
(2) Let x € X. Then G(z) = {g(x) € X| g € G} is called the orbit of z. z,y € X
are in the same orbit with respect to GG if and only if there exits an element

g € G such that x = gy. Since G is a group we see that orbits define an
equivalence relation on X. Sometimes we write G - x instead of G(x).
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2.5.2 Lie groups and Lie algebras
2.51 Definition
(1) A topological group G which also has a manifold structure is called a Lie
group.

(2) Let g be a real vector space over R and [-,-] : g X g — g be a bilinear form
that satisfies

[z,y] = —[y,z]; (anti-commutativity)
[[z,y], 2] + [y, 2], z] + [[z,z],y] = O. (Jacobi identity) (2:24)
Then the pair (g, [-,]) is said to be a Lie algebra.
(3) Let G be a Lie group and o € G. The function l, : G — G defined by
lo(7) = o7 (2.25)
is called the left translation by o.
(4) Let X be a vector field on G. If
(lo)so X =X ol, (2.26)

for every 0 € G then X is said to be a left invariant vector field on G.

(5) Let G be a Lie group. We denote by the letter g the vector space of all left
invariant vector fields on G.

(6) Let G be a n-dimensional Lie group. A form w € Q*(G) such that

Lw=uw. (2.27)

for all g € G is said to be a left invariant k-form on G.

In the following theorem we get one of the main property of g. I'll go through the
proof since I find it instructive.

2.52 Theorem
g is a real vector space and the map o : g — T.G defined by a(X) = X(e) is an
isomorphism. Hence dimg = dim7T,G = dimG.

PRrROOF: It’s easy to show the first part and « is linear by definition of a vector
field.
Assume a(X) = a(Y). For o0 € G we have

) = (lo)«(a(X)) = (lp).(a(Y))
Y(e) = ((lo)s 0 Y)(e) = (Y o ls)(e) = Y (o),
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SO « is injective.
Let z € T.G. We want to find X € g such that a(X) = z. Define X on G by
X (o) = (ly)«(z). Now

and since by the chain rule (see (2.7)) we have

(X olr)o = X(10) = (Ir0).(2) = (lrlo)«(2) = (Ir)+ (o)« () = (Ir).(X(9)),

for all 0 € G and thus X lies in g and satisfies the required property. Hence « is
surjective. The proof of the theorem is complete.

O

2.53 Remark
It can be shown that g forms a Lie algebra under the Lie bracket operation (see

definition 2.63(3)) on vector fields [War|. This explains the common notation of g
in definition 2.51(2) and 2.51(5).

2.54 Definition
The Lie algebra g of left invariant vector fields on a Lie group G is said to be the
Lie algebra of the Lie group G.

2.55 Remark
By theorem 2.52, we can identify the Lie algebra of the Lie group G with T.G. We
will make use of this in chapter 4.

2.5.3 Some classical Lie-groups and their Lie algebras

In this section I will give some examples of Lie groups and their Lie algebras. These
examples are well known and more details can be found in books about Lie groups
and differential geometry.

2.56~Deﬁnition
Let R be a ring.

(1) We denote by M (n, R) the vector space of all (nx n)-matrices, with coefficients
in R.

(2) We let GI(n, R) = {A € M(n, R)|det(A) # 0}. Gl(n, R) is a Lie group.
(3) We let M,,(n, R) = {A € M(n, R)|det(A) = m} where m € R.

(4) We let O(n, R) = {A € Gl(n, R)| A' = A'}, where A* denotes the transpose
of A. O(n, R) is a Lie group and is called the orthogonal group.

(5) We let SO(n,R) = {A € O(n, R)|det(4) = 1}. SO(n, R) is a Lie group and
is called the special orthogonal group.
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(6) We let Si(n, R) = My(n, R). Sl(n, R) is a Lie group called the special linear
group.

2.57 Theorem
Let F stand for either R or C.

(1) The Lie algebra of Gl(n,F) is
gl(n,F) :== M(n,F) (2.28)

(2) The Lie algebra of O(n,TF) is
o(n,F) := {4 € gl(n,F)| A" = —A}. (2.29)
Hence dimpo(n,F) =n(n —1)/2. o(n,F) is also the Lie algebra of SO(n,T).

(8) The Lie algebra of Sl(n,TF) is
sl(n,F) := {A € gl(n,F)| traceA = 0}. (2.30)

Hence dimg sl(n,F) = n? — 1.

2.6 Riemannian manifolds

2.58 Definition
Let M be a smooth manifold and g : X(M) x X(M) — C*(M) be a smooth
(2, 0)-tensor field.

(1) g is said to be symmetric if g(X,Y) = g(Y, X) for all X, Y € X(M).
(2) g is said to be positive definite if (X, X) > 0 for all X € X(M), X # 0.

(3) g is said to be a Riemannian metric if it is symmetric and positive definite,
and then M is said to be a Riemannian manifold with respect to g.

2.59 Remark

If g is a Riemannian metric on a manifold M then it induces an inner product (-, -) on
each tangent space T, M, by setting (X (p), Y (p)) := g(X,Y)|, forall X, Y € X(M).
By using partition of unity it can be shown that there exist a Riemannian metric on
every real manifold. We often write (X, Y) instead of g(X,Y) for X, Y € X (M).

2.60 Definition

Let p € M and U C M be an open neighborhood of p and (E1, ..., E,) be n smooth
vector fields defined on U. If (E,|,,...,E,|,) is a basis for T,M for every q € U,
then (Ey, ..., E,) is said to be a local frame for TM on U.

2.61 Remark
We often say that a local frame for 7'M defined on U is a local frame on M.
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2.62 Definition
(1) Let (Ey, ..., E,) be a local frame for TM. If we construct 1-forms ¢1, ..., dn,
defined by letting ¢;(E;) = 0, then (¢1,...,¢,) Is a local frame for T M*,
called the dual coframe.

(2) Let x : U — U' C R" be a chart on M. If we write x = (x1,...,%,) then

9 9
oz, Ox,

is a local frame on U for TM called a coordinate frame. It’s dual coframe
is denoted by

(dl‘l, .. ,dl‘n) .
When it’s clear which chart we’re working with we often write (0;) for the

coordinate frame and (dz;) for it’s dual coframe.

2.6.1 Connections

2.63 Definition
(1) Let (E,M,n) be a vector bundle. A map V : X(M) x E(M) — E(M),
(X,Y) = VxY such that for all X, X1, X5,Y,Y1,Ys € X (M) we have

Vixitex,Y = fVx,Y +9Vx,Y, forall f,g€ C*(M); (2.31)
Vx(aY: +bY3) = aVxY; +bVxY,, foralla,beR; (2.32)
Vx(fY)= fVxY +(Xf)Y, forall feC®(M); (2.33)

is called a connection in E.
(2) A connection in TM is called a linear connection.
(3) A linear connection V which satisfies
[X,Y]:= XY —YX = VxY — Vy X (2.34)

for all vector fields X,Y is said to be symmetric. [X,Y] is called the Lee
brackets of (X,Y) € X(M) x X(M). [X,Y] acts on functions via

(X, Y]pf = Xp(Y ) = Yp(X ).
where p € M.
(4) If (-,-) is a Riemannian metric on M then a linear connection V which satisfies
Vx (Y, Z) = (VxY, Z) + (Y, VxZ) (2.35)

for all vector fields X,Y,Z € X (M) is said to be compatible with (-, -).
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2.64 Theorem (The fundamental theorem of Riemannian geometry)
Let (M, g) be a Riemannian manifold. There exist a unique linear connection that
15 compatible with g and symmetric.

O

2.65 Definition
The unique connection in the above theorem is called the Levi-Civita connection
of g. It is also known as the Riemannian connection of g.

2.6.2 Geodesics and the exponential map

2.66 Definition
Letv:I— M, t~ ~(t) be a map, where I C R is an interval.

(1) We define ~'(t) as 7.(d/dt).
(2) If ~y is smooth, then 7 is called a curve.

(3) If I = [a,b], and v is a curve defined on I, then vy is said to be a curve
segment.

(4) If v is a curve and '(t) # 0 for all t € I then vy is said to be a regular curve.

(5) If v is a regular curve such that |y'(t)| = 1 for all t € I we say that 7 is a unit
speed curve.

(6) If v : [a,b] — M is continuous and there exist real numbers ag, ay, . . ., ay such
that

(a) a; < a; ifi <j;

(b) V|(ai_1,a;] Is @ regular curve fori =1,...,k;

then v is said to be an admissible curve. The numbers ay, a1, ..., ay are said
to be a subdivision for the admissible curve 7.

(7) If v is an admissible curve with subdivision ag, a1, ..., ax, then we define the
length of v to be

L= [ )

It’s easy to show that this is well defined.

(8) Let v : I — M be an admissible curve such that, for every admissible curve
7 :le,d] = M with v(a) = 7(c) and v(b) = 7(d) we have that L(y) < L(7).
Then v is said to be a minimizing curve.
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(9)

Ifv: 1 — M is an admissible curve such that for every t in the interior of I
there exist an open neighborhood |a,b[C I of t with the property that 7|4 is
a minimizing curve then vy is said to be a locally minimizing curve.

2.67 Definition

(1)

(2)

Let v :]a,b[— M be a curve. A vector field along the curve v is a mapping
Y, defined on |a,b| which assigns every t €|a,b| a vector Y; from the tangent
space T,y M such that, the mapping ]a,b[— R,t — Y,f is smooth for every
smooth function f on M.

Let Y be a vector field along the curve v and V be a linear connection on M.
We can define a new vector field

V,Y
along the curve vy by the following:

(a) Ifv'(t) = 0, then we put (V. Y), := 0.

(b) If+'(t) # 0, then there exist an open interval J around t, a neighborhood
U around the point y(t) in M, such that y(J) is a 1-dimensional sub-
manifold in U and v|; : J — 7y(J) is a homeomorphism. Moreover the
vector field Y may be extended from ~(.J) to a smooth tangent fields Y
on U such that ?7(,5) =Y,;. We put

(VYY) o= VY

2.68 Remark

(1)

(2)

It can be shown that we can indeed find J, U and Y and that the definition
does not depend on the choice we make. Furthermore if v : I — M is a curve,
then the derivative 7' : I — T,y (M), t — +'(t) is a smooth tangent field along
the curve 7.

Another equivalent method for defining vector field along curves can be found
in [Lee].

2.69 Definition
Let V be a linear connection on M. A geodesic on M with respect to vy is a smooth
curve y: I — M on M, such that

V., =0.

A geodesic with respect to the Riemannian connection is called a Riemannian
geodesic.

2.70 Definition

(1)

We denote by I',,, the set of all admissible curves vy : [a,b] — M such that
v(a) = p and v(b) = q.
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(2) We define a map d: M x M — RU {oco} by letting d(p,q) = oo if p and q lies
in different connected components and by letting

d(p,q) = inf {L(v)},

Y€lpq

otherwise. If M is connected it can be shown that d is a metric on M.

(3) If M is connected and (M, d) is a complete metric space then we say that M
is a complete Riemannian manifold.

(4) Let M be connected and let V,U C M. Then we define
dist(V,U) :== inf d(p,q)

peV,qeU
2.71 Remark
There are more equivalent definitions of a complete Riemannian manifold.

The following two theorems describe the importance of geodesics and gives of a
intuitive way to think about them. We’ll not go through the proofs but they can be
found in most books about Riemannian geometry (see for example [Lee]).

2.72 Theorem

Let V be a linear connection on M, p € M, V € T,M and t, € R. Then there
exist an open interval around ty and a geodesic v : I — M such that y(to) = p and
v (to) = V. Every two such geodesics agree on their common domains.

O
2.73 Theorem
(1) Every minimizing reqular curve is a geodesic.
(2) All Riemannian geodesics are constant speed curves.
(8) Every Riemannian geodesic is locally minimizing.
O

2.74 Definition
Let v € T,M. Then we denote by

&
the unique maximal unit speed geodesic which satisfies &,(0) = p and &, (0) = v.

2.75 Definition
Let p € M.

(1) The set
&y, = {v € T,M|&, is defined on an interval containing [0, 1]}

is called the domain for the exponential map at p.
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(2) The map exp, : &, — M defined by

expy(v) = &(1) (2.36)

is called the exponential map at p.

(3) Let e > 0. If
exp, : B2(0) = exp, (B (0))

is a diffeomorphism then exp,(B['(0)) is called a geodesic ball in M with
center p and radius €.

In the following theorem some basic features of geodesics and the exponential map
at p is stated.

2.76 Theorem
(1) exp, is smooth;

(2) & (t) = exp,(tv) for allt € R;

(8) &(t) = &y(ct), for allt € R and all ¢ € R\{0}.
U

In the following theorem we get one of the most essential property of the exponential
map. I'll write down the proof since I find it instructive.

2.77 Theorem
Let p € M. Then there are neighborhoods V' of 0 € T,M and U of p € M such that
exp, : V. = U is a diffeomorphism.

PrROOF: We have a natural isomorphism between T4(7,M) and T,M. Let v € T,M
and let 7 : R — T,M be defined by letting 7(¢) = tv. Then 7 is a curve in T,M
such that 7(0) = 0 € T,M and 7'(0) = v € To(T,M) = T,M. By theorem 2.76(2)
we have

(exp,)+ () = 7| (exp, 7))
g =0 J (2.37)
=G _emm) =l aw=v

Hence (exp,). is the identity map, which is invertible so exp, is a diffeomorphism
by the inverse function theorem.

d
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2.6.3 Curvatures

2.78 Definition
Let X, Y € X(M) and V be the Riemannian connection on X (M) x X(M). The
map Rxy : X(M) — X(M) defined by

RXY = V[X,Y] — [Vx, VY] (238)
is called the curvature transformation with respect to (X,Y).

2.79 Theorem
The curvature transformation of M satisfies

Ryy = —Ryx (2.39)
(RwxY,Z) = —(RwxZ,Y) (2.40)
(RwxY,Z) = (RysW,X) (2.41)

(2.42)

S RxyZ = 0
XYz
where ng denotes the cyclic sum. (2.42) is known as the first Bianchi identity.

d

2.80 Definition
We let X,Y,Z, W € X(M).

(1) The function Ry xyz ‘= (RwxY, Z) is called the curvature tensor. It is a
(4, 0)-tensor field.

(2) Let (E4,...,E,) be a local orthonormal frame for TM defined on U C M.
The function p : X(U) x X(U) — R defined by

p(X,Y) = Z Rxg,vE, (2.43)
a=1

is called the Ricci curvature. Note that p is symmetric due to (2.41). By
the scalar curvature we mean the function T defined by

7= p(Be,E) =Y Rp,p,p.5, (2.44)
a=1

a,b=1

(3) The map KM : X(M) x X(M) — R, X,Y — Kxy defined for linearly
independent X,Y € X(M) by

RXYXY
KXY = . (245)
XY — ¢, ¥)2

is called the sectional curvature of M. If M is 2-dimensional there is only
one sectional curvature which we call the Gaussian curvature.
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2.81 Remark
(1) It can be shown that both the Ricci and the scalar curvature are independent
of the choice of orthonormal local frame. There are other equivalent definitions
of the Gaussian curvature, which can be found in most books about differential
geometry.

(2) We often use lowercase letters to indicate the value of a vector field at a given

point. For example we would write Ry, for Rxy zw evaluated at some point
pe M.

2.7 The Riemannian volume element

2.82 Theorem

Let (M, g) be an oriented Riemannian manifold. Then there exist a unique differen-
tial n-form dV' on M such that dV(Es, ..., E,) =1 for every oriented orthonormal
basis (E\, ..., Ey) for T,M for all p € M. Moreover dV can be written in terms of

any oriented local frame {E;} as

det(9i)P1 A -+ A G, (2.46)
where (§i;) = ((E;, E;)) and (¢;) is the dual coframe.
PROOF:

Uniqueness: In the proof we’ll use Einstein summation convention, namely

o'E; =Y oF, (2.47)
i=1
where «; € R and FE; is a smooth vector field on M, fori=1,...,n.

Assume that dV and dV' are n-forms that satisfies
dV(E,...,E,) = dV’(El, By =1

for every oriented orthonormal basis (E,..., E,) for T,M. Now let X;,..., X, be
vectors in T, M. Now for every n-form dW we have

dW(Xy,...,X,) =dW (ol E;,,...,a"E; ) = it ---alrdW (Ey,, .. . E;)
- Z EgQg(1) " ° " Ag(n) dW(El, .. En)

ceG),

From this is follows that dV = dV".

Ezistence: We show that 2.46 applied to oriented orthonormal basis (Ej, ..., E,)
gives 1. Let

A~

By (E\,Ey) --- (B, E,)

En (B, By) -+ (Ey, Ey)
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and observe that

!’

(En, E1>E1 + -+ (E,, E1>En
[By - E,]-A= : =B, --- E,. (248)

We'll define |A| := det(A) for a (n x n)-matrix A. Since for matrices A, B we have
|A- B| = |A|-|B| we see that

det(gz-j)(;ﬁl A=A én(Ela cey E”)

~ 1/2 ~
Ey 1
E, b
El 1/2
= : [E1 e En} A7 (by 2.48).
E,
Since A - A is equal to
[(El,ﬁl)(El,E1)+ ot (B, B )(En, Br) ..o (B, BB En) + o+ (B En) (B, Bn)
(Bay B1)(By, By + -+ (B BB Br) . (B B1)(E1, B + -+ (B, Bn){En, Ba)

Eq
= [ : ] [E1 ... Ey]
En

we have that \/det(g;;)¢1 A ... A ¢u(Ey... E,) = /JAP|A7Y| = 1, due to the
orientation of {E;}. So dV has the desired properties.
4

2.83 Definition
The unique form dV in the last theorem is called the volume form of (M, g).

2.84 Theorem

Let V' be an oriented n-dimensional vector space. Then there exist a linear operator
x: A(V) = A(V) called the Hodge star operator which is well-defined by requiring
that for any orthonormal basis (ey,...,e,) of V., it satisfies

*(1) = +eg A+ -+ Aep, *(e1 A\ ---Ney) = +1,
x(eg A Aeg) = Tep1 A+ Aey,

and then extend it linearly to whole A(V'). Here we choose + if ey A --- N e, lies in
the orientation and — otherwise. Note that *(Ag(V)) C Ap_i(V).

d



2.7. THE RIEMANNIAN VOLUME ELEMENT 39

2.85 Remark

Like with the wedge product we have a natural extension of the Hodge star operators
to differential forms. Let (¢4, ..., ®,) be a local orthonormal frame for TM*. Then
we define the Hodge star operator x : Q(M) — Q(M) by

(1) =21 A A, *(p1 A Ady,) = %1,
H(Pr A Adp) = £bppa Ae o A b,

and then extend linearly to all differential forms. We choose the sign as before.

2.86 Remark
(1) Assume that M is oriented and w is a non-vanishing differential k-form on M.
Then w A *w is the volume form on M.

(2) For more details and proofs about the Hodge star operator see for example [Bis,
War].
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Chapter 3
Tubes

General agreement

In this chapter we assume that M is Riemannian and P is a ¢-

dimensional embedded submanifold of M unless otherwise stated.

To describe the geometry of a neighborhood around P in M, it is convenient to use
the so-called Fermi coordinates and Fermsi fields. We’ll define these concepts in the
following section and name some of their basic properties. When P is a point (0-
dimensional manifold) Fermi coordinates and fields coincide with the better known
normal coordinates and normal fields. Fermi fields are also closely related to Jacob:
fields which are commonly used. For more details see [Gr| and for example [Lee].

3.1 Fermi coordinates and fields

3.1 Definition
The normal bundle of P in M is given by

v :={(p,v)|p € P,v € (T,P)"}. (3.1)
Here (T,P)* stands for the orthogonal complement of T,P in T,M.

3.2 Remark

Let 7 : v — P be defined by letting 7(p,v) = p. Then by lemma 2.28 it’s not
difficult to show that (v, P,7) is a (n — ¢)-dimensional vector bundle. We’ll identify
P with the zero section of v. Thus P can be regarded as a submanifold of v as well
as a submanifold of M. By this it follows that

Tpoyv =T,P & (T,P)".

3.3 Definition
(1) A vector u € (T,P)* is called a radial vector.

(2) A vector x € T,P is called a spherical vector.

41
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3.4 Definition
(1) The set

& ={(p,v) evive &}
is called the domain for the exponential map of the normal bundle.

(2) The map exp, : £, — M defined by

exp, (p, v) = exp,(v),
is called the exponential map of the normal bundle v.

3.5 Lemma
Letp € P. Then ((exp,)«)p.0) | mo((T, P)L) @5 the canonical identification of To((T,P)*)
with (T,P)* and ((exp,)s)p.0)|1o(r,p) s the canonical inclusion of T,P in T,M.

0

3.6 Lemma
There exists a neighborhood U of P in v such that exp, |y : U — exp,(U) is a
diffeomorphism.

3.7 Definition

We denote by Op the largest neighborhood of the zero section of v for which exp,, :
Op — exp,(Op) is a diffecomorphism. Remark 3.2 and the last lemma guarantees
the existence of Op.

3.8 Definition
Let p € V.C P wherey = (y1,...,y,) : V — V' C R is a chart on P, and

let Eqi1,...,E, be a orthonormal local frame for v. The Fermi coordinates
(x1,-.. ,xn) of P C M centered at p relative to the given coordinate system
(y1,---,Y4) on P and the given orthonormal local frame E,.,,... ,E, of v are
defined by

Tq (expu ( > tﬂj(}?’))) =y.(p)  (a=1,...,0), (3.2)

J=q+1

x; (expy ( Zn: tjEj(p')>> =t (t=q+1,...,n), (3.3)

Jj=q+1

=q+1
that z, (1 < a < q) are given by (3.2) and z; (¢ + 1 < i < n) are given by (3.3).

forp' € V, provided that Z? t,E;(p') € Op. We make the notational convention
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The figure above shows how the normal bundle » and Fermi coordinates could look
like when dim M = 2 and dim P = 1. The figure should look a little bit like a tip
of a finger. U C exp,(Op) is a neighborhood of p € Pin M. y; : V — y1 (V) CR
is a chart on P in a neighborhood of p. (E;) is a local (orthonormal) frame for the
normal bundle v and is indicated by several vectors on the figure. m € U C M is a
point which we want to describe. There exist a unique elements p’ € P and t, € R
such that m = exp,,(t2E5(p')) if we assume that exp,(tE2(p')) € U for all t > 0 with
t/t > 1 and t = 0. On the figure & stands for {g,(yy. The Fermi coordinates of m
is thus given by z1(m) = y1(p’) € R and zo(m) = t; € R.

3.9 Lemma
Let (x1,...,x,) be a system of Fermi coordinates centered at p € P. Then the
coordinate vector fields

0 0

ey
8:Cq+1 aﬂ:n

are orthonormal when restricted to P.

The following lemma is very useful when dealing with Fermi coordinates.

3.10 Lemma

Let (p,u) € v. So & := &, is a geodesic normal to P at p. Then there exist a system
of Fermi coordinates (x1,...,x,), centered at p such that for all t with (p,tu) € Op
we have

0
0411 | ¢y

= £'(t) (3.4)
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and

0

‘/Eip

€ T,P,
p

= (Tpp)L

Lq
fort<a<qand g+ 1<1i<n. Moreover,

(Za 0 &)(t) = t0a,q11

for all a.

3.11 Definition

(3.5)

(3.6)

d

Let p € P. Assume that U C exp,(Op) C M and we have a system of Fermi

coordinates (x1, ..., x,) centered at p.

(1) If A€ X(U) can be written as

q
0
A= anaxa

a=1

where ¢, € R for 1 < a < q then A is called a tangential Fermi field. The
g-dimensional vector space of all tangential Fermi fields centered at p € P is

denoted by
X(P,p)".
(2) If X € X(U) can be written as
= 0
X = N
D dig,
1=q+1

(3.7)

where d; € R for ¢ +1 <7 < n then X is called a normal Fermi field. The
(n — q)-dimensional vector space of all normal Fermi fields centered at p € P

is denoted by
X(P,p)*.

(3) We denote by
X(P,p)=X(P,p)" ® X(P,p)*
the space of all Fermi fields centered at p € P.

3.12 Definition
Let (z1,...,2,) be a system of Fermi coordinates of P. We define

(3.8)

(3.9)

(3.10)
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3.13 Remark

It’s noteworthy to observe that when P is a point, ¢ and N are the familiar radzal
distance function and radial vector field (See for example [Lee]). N is also
known as the Gauss map when P is a point. It can be shown that the definitions
of 0 and N are independent of Fermi coordinates.

3.14 Lemma
Let m € M. If there exist a unique unit speed geodesic & from P to m which is
orthogonal to P then

o(m) = dist(P,m) and Ny = & (s).
Hence we have that o is defined on exp,(Op) and N is defined on exp,(Op)\P.

PROOF: We may assume that £(0) = p. Let b > 0 be the number which satisfies
£(b) = m. We choose the Fermi coordinates described in lemma 3.10. Therefore
by (3.4) and (3.6) we have

o(m) = = \/22,1(6() = b = dist(m, P)
and, if b # 0
—~ zi(£(s)) O s 0 ,
New = ) == =¢&(s)
Lo 0(8(8) Omilgryy 5 0grilg
O
In the following lemma some basic properties of o and N are stated.
3.15 Lemma
Let XY € X(P,p)* and A,B € X(P,p)". Then on exp,(Op) we have
VyN = 0 (3.11)
(X,A]=[N,A] = [X,)Y]=[A4,B]=0 (3.12)
[N,oX] = X(o)N (3.13)
VNVNU+RNUN = 0 (fO’f‘ U= A+GX) (314)

3.16 Definition
Let f € C°°(M). The vector field grad f € X (M) defined by setting

(grad f, X) = X f (3.15)
for all X € X(M) is called the gradient vector field of f.

3.17 Remark
The well known Gauss lemma (see for example [Lee]) and it’s corollaries has an
extension for submanifolds. T’ll let it be sufficient to state these generalizations
without proof.
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3.18 Theorem (The generalized Gauss lemma)

N = grado on exp,(Op)\P. (3.16)

0

3.19 Corollary
N is the unit normal to each of the tubular hypersurfaces o = constant about P of
M.

O

3.20 Corollary
exp, : €&, — M preserves the lengths of radial vectors and orthogonality between
radial and spherical vectors.

3.2 Definition of a general tube

General agreement

For the rest of this chapter P is allowed to have a boundary. I

3.21 Definition
(1) Let m € M. The set of all geodesics & : [a,0] — M where a < 0 such that
£(0) = m is denoted by

(2) Let r > 0. The set
T(P,r):={me M|3€ €=, L&) <r:& meets P orthogonally}  (3.17)

is called a tube of radius r about P.

3.22 Remark

We will assume that exp, : {(p,v) € v||v|]| < r} — T(P,r) C exp,(Op) is a
diffeomorphism. If M is complete and the closure of P is compact then this can
always be achieved for sufficiently small » > 0. We can then write

T(P,r) = | J{exp,(v)|v € (T,P)*, v < r}. (3.18)

peEP



3.2. DEFINITION OF A GENERAL TUBE 47

3.23 Definition
The hypersurface

P, = {m € T(p,r)|dist(m, P) =t} (3.19)
is called the tubular hypersurface at a distance t from P.

3.24 Definition
Let V be the Levi-Civita connection on M and R be the curvature transformation
on M.

(1) We denote by Ry : X (exp,(Op)\P) — X (exp,(Op)\P) the operator which is
defined by

RNyU = RyyN. (3.20)
It’s easy to see that Ry is a tensor field.
(2) The operator S : X (exp,(Op)\P) = X (exp,(Op)\P) defined by
SU = —-VyN (3.21)
is called the shape operator.
(3) We define the covariant derivative of S by
Vu(S)V =VySV = SVyV (3.22)

for U,V € X(exp,(Op)\P). For more details about covariant derivative of a
tensor field, see for example [Lee].

3.25 Lemma
(1) S(fU) = f(SU) for all U € X(exp,(Op)\P) and f € C*®(exp,(Op)\P).
Thus S is a tensor field.

(2) SN = 0;

(8) If U,V € X(exp,(Op)\P) satisfies (U, N) = (V,N) = 0 then (SU,V) =
(SV,U).

PROOF:
(1) S(fU) = VN = —fVyN = f(SU).
(2) SN =—-VxyN =0 by (3.11).
(3) We have (U, N) = (V, N) = 0. Hence

(SU, V) — (SV,U)
= —(VyN,V)+(VyN,U)

= (N,VyV)—=U(N,V)—(N,VyU) + V(N,U) (by def. 2.63(4))

= (N, IU, V) (by def 2.63(3))

= (grado, [U,V]) (by the gen. Gauss lemma)
= ([U,V])o (by definition of grad)

= U(Vo)—V(Uos) = U(N,V)—V(N,U) =0
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and the lemma follows.

3.26 Lemma

VN (S) = S* + Ry on exp,(Op)\P. (3.23)

PRrOOF: For every point p € exp,(Op)\P it suffices to show that (3.23) is valid for
vector fields of the form U = A+ 0 X, where A € X(P,p)" and X € X(P,p)™* since
every vector field on exp,(Op)\P is locally spanned by vector fields of this form.
Since by (3.12) and (3.13), [NV, A] =0 and [N,0X]| = X(0)N, we have

[N,U] = [N, A+ 0X] = [N, A] + [N,0X] = X (c)N. (3.24)

Now

Va(S)U
= VxNSU — SVNU definition of covariant derivative)
—VNVyN — S([N,U]l+ VyN) definition of S and def. 2.63(3))
—VNVUN + VUVNN — S[N, U] + 82U by (311) and def. of S)

(
E
RNUN - V[N,U]N — S[N, U] —+ S2U (by (238))
(
(
(

RNU = Vx(@)wN — SX(0)NU + S?U  (by def. of Ry and (3.24))
= RyU - X(0)VNyN — X(0)SNU + 52U (by lemma 3.25(1) and (2.31))
= RyU+ S?U by (3.11) and 3.25(2)),

and the proof is complete.
O

3.27 Corollary
For t > 0 we define S(t), R(t) and S'(t) to be the restriction to P, of S, Ry and
Vn(S) respectively. Then we have

S'(t) = S(t)* + R(t). (3.25)

A differential equation of this form is called a Riccati differential equation.

3.2.1 The second fundamental form of submanifolds

3.28 Definition

Let A,B € X(P,p)" and V be the Levi-Civita connection on M. We define the
map L : X(P,p)T x X(P,p)T — X(P,p)t, L(A, B) — LsB to be the vector field
normal to P which satisfies

(L4B,X) = (V4B, X) (3.26)
for all X € X(P,p)*.
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3.29 Remark
L is clearly linear with respect to smooth functions on P in the first coordinate.
Since by (2.33) we have

(La(fB), X) = (Va(fB), X)
= ((Af)B,X) + (fVaB, X)
= (fLaB, X)

L is also linear with respect to smooth functions on P in the second coordinate.
Thus L is a tensor field on P.

3.30 Definition
(1) The mapT : X(P,p)" x X(P,p)" x X(P,p)t — C°°(P) defined by
T(A, B, X) = (LB, X)

is called the second fundamental form of P. Since L is a tensor field, T is
also a tensor field.

(2) Letpe P, A,B€ X(P,p)", and X € X(P,p)*. We denote by a,b € T,P and
u € (T,P)* the vectors of A, B and X at the point p respectively. Then we
define

Topu :=T(A, B, X)(p)-
Furthermore we define Ty, = L4 B(p).
(3) The map T, : T,P — T,P defined by
(Tu(a),b) = Tap
is called the Weingarten map.

3.31 Remark

Let’s assume that P is a point. Then N is the familiar Gauss map, as already
mentioned. Furthermore we have that S is the ordinary Weingarten map. Since we
have

(LoB,N) =(V4B,N)
= — (B,V4N) + A(B, N) (3.27)
—(~V4N, B) = (SA, B)

we see that T, and S coincide when P is a point so the definitions above are gener-
alizations of well known concepts.

3.32 Remark
The Weingarten map is clearly linear and by using lemma 3.25(3) and (3.27) it’s
easy to show that it is also symmetric.
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The following theorem is taken from spectral theory and is a basic theorem in the
field. It’s proof can be found in many books about linear algebra.

3.33 Theorem (Spectral theorem)

Let V' be a n-dimensional Fuclidean inner product space over R and let A:V —V
be a linear map which is symmetric with respect to the inner product. Then there
exists an orthonormal basis for V' such that the matriz of A with respect to this
basis has a diagonal form. The elements of this basis are eigenvectors for A and
the elements on the diagonal are the corresponding eigenvalues. We say that the
orthonormal basis diagonalizes A.

0

3.34 Remark

Let p € P and u € (T,P)*. By the spectral theorem and remark 3.32 we can
find an orthonormal basis (fi,..., fq) of T,P that diagonalizes Ty (o) : T,P — T, P.
We extend these vectors to unit vector fields (Fi(),..., F,(t)) along &, such that
F,(t) is an eigenvector for S(¢) for all ¢ and all ¢. Then we have eigenvalues x,(t)
corresponding to these eigenvectors, and we can write

S(t)Fa(t) = Ka(t)Fa(t) (328)

for a = 1,...,¢q. We denote the remaining eigenvalues of S(t) by k412(t),. .., kn(2).
Hence there are unit vector fields Fi (%), ..., F,,(t) along &, such that

SW)F(t) = m(t)Fi(t) (3.29)

for i = ¢+ 2,...,n. By letting F;1(t) = & (t) we have that {Fi(¢),..., F,(¢)} is a
local frame along &,.

Note that

traceS(t) = Y Kalt). (3.30)

a=1,...,q,q+2,...,n

3.35 Definition
(1) K1,...,Kq, Kgt2,-- -, Kn in the above remark are called the principal curva-
ture functions of S and Fi,... ,F,, Fys,...,F, are called the principal
curvature vector fields of S.

(2) The eigenfunctions of S of any orientable hypersurface are called the principal
curvatures of the hypersurface.

From the definition we have the following lemma.

3.36 Lemma
Let t > 0 and assume that P, is orientable. Then the restriction of the principal
curvature functions to Py are the principal curvatures of P;.

d
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3.37 Corollary
If F, (1 < a < n) are differentiable at t then

!

Ko (1) = Ka(t)? + Re () Fa e (0Fa ()

Proor: By (3.28) and (3.29) we have that x, is differentiable for all @. By the
generalized Gauss lemma £'(t) has the same properties as N. Furthermore since
VeF, =F'"and (F., F,) =0 we have

R&’FQEIFQ
= (Rer,£, Fa)
= (RgF,, F,) (by defininiton of Ry)
= (Vu(S)F,, F,) — (S?F,, F,) (by lemma 3.26)
= (VeSF,, F,) — (SVaF,, F,) — K2 (def. of covariant derivative)
= (VeSF,+ SF.,F,) —2S(F.,F,) — k2
= (SF,,F,) — k2 =kl — K2

and the proof is complete.

3.3 The infinitesimal change of volume

General agreement

For the rest of the chapter we assume that M

and P are oriented unless otherwise stated.

Let w be the Riemannian volume form on M and w, be the Riemannian volume
form on v. Since dimQ"(v) = 1 we have that exp}(w) = fw, where f: v — R is
a positive real valued function on v. With this in mind we’ll make the following
definition:

3.38 Definition
(1) The function chvol : exp,(Op) — R is defined such that the following equation
is satisfied:

exp,(w) = (chvol o exp, )w,. (3.31)
We note that chvol is everywhere non-negative.
(2) For a point p € P and a unit vector u € (T,P)* the function
Iy (t) = (chvol o exp, ) (p, tu) (3.32)

defined for all (p,tu) € Op is called the infinitesimal change of volume
function of P in the direction .
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3.39 Lemma
Let (z1,...,2,) be a system of Fermi coordinates for P centered at p € P which has
the same orientation as w, i.e. w (%, cee, %) > 0. If (y1,---yq) are system of

Fermi coordinates on P such that

9
8.’131

forms an orthonormal basis of T,P then

p}
0 0

Pu(t) =w (6—x1’ ey %) (exp,,(p, tu)). (3.33)

Proor: By lemma 3.9 we have that

0

'--’—
0z,

)
p

0| o
0%g11],  On|,
is orthonormal basis for (7,P)*. Hence
I
Oz1 |, Oxn |,

is an orthonormal basis for T(, 0 = (T,P) & (T,P)* and since w, is a volume form
on v, its value on this basis is equal to 1. We’ll evaluate both sides of equation (3.31)
on the basis above at the point (p,tu). The left hand side yields:

) B ) ~ ) B
expu(w) <8—$1’ ) a—xn> (pa tU,) =w <(epr)*a—l‘1’ sy (eXpll)*ﬁ) expu(p) tU)

n

=w|— — ) exp, (p, tu);
oxy’ ' Oz, v

by lemma 3.5, and the right hand side yields:

0 0
(chvol o exp,)w, | =, ..., = | (p,tu) = (chvol o exp,)(p, tu) = V,(t), (3.35)
0z 0z,
where we have used the remarks above. Combining (3.34) and (3.35) we get (3.33).
0

The following theorem will be vital for our further study. The proof is a little
technical and I choose to omit it.

3.40 Theorem
Let (p,u) € v. Then along the unit speed geodesic &, we have

m - (”%q_l + traceS(t)) (3.36)

for allt > 0 if (p,tu) € Op.
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0
3.41 Definition
We define
V¥ (r) := the n-dimensional volume of T(P, ),
A?f(r) := the (n — 1)-dimensional volume of P,,
3.42 Remark

We often refer to A?;I (r) as the area of P,. This terminology was used in chapter 1.

3.43 Lemma
We assume as before that the exponential map exp,, : {(p,v) € v|||v|| < r} = T(P,r)
1s a diffeomorphism. Then

A (r) / / r)du dP. (3.37)
Sgn—aq—1

Proor: Let V be a neighborhood of the zero section of v. Define s: V' — R by

s(p,v) = lvll- (3.38)
By the generalized Gauss Lemma and lemma 3.14 we have that s = o c exp,. We
let * denote the Hodge star operator either on M or on v. By remark 2.86 we
have that ds A *ds is the volume form of v and thus *ds is a volume form for
the hypersurface {(p,v) € v|||v|| = t,p € P} on v. Now do A xdo is the volume
form of M in a neighborhood of P. We thus have (by corollaries of the generalized
Gauss lemma) that * do is the volume form of P, for each ¢. We have that the map
exp? : Q"(M) — Q"(v) preserves wedge product (by theorem 2.42(2)) and we can
thus calculate that

exp;(do) A expl(x do) = exp}(do A * do)

0 0
= {w (6—:&,,%) oexpu}ds/\*ds.

Since o is a smooth function we have by theorem 2.42(4) and (2.15) that
exp; (do) = d(exp;(0)) = d(o oexp,) = ds (3.39)

exp, (xdo) = { (821 ARRRWA ai ) oexpu} * ds.

P, has a compact closure, so the integral of * do over P, is Ag(r). Hence we get by
definition of integration of form on manifolds (see (2.22)) that

AYO) = [ o= [ expifedo)
exp, (PT)
// { ( 0 A A 0 ) oexpy}dﬂdP (3.40)
Sn—a=1(r) 0z, 0zy
_anl// A A 0 oexp, ¢ dudP
Sn—q—1 6.731 &vn ’

and thus
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Here dP is the volume form of P, di the volume form on S®~971(r) and du is the
volume form of S"~9-!. Now the lemma follows from lemma 3.39.

O
3.44 Lemma
Assuming the same assumptions as in the previous lemma we have
SV ) = A ). (3.41)
r
PROOF:
Vi (r)
fT(P,r) do A xdo
exp7 (T (Pr) exp’(do) N expi(xdo) (by (2.22))
= Jo Joworim) ds A exp,,(* do) (by (3.39))
= for AL (s)ds (by (3.40))
and the lemma follows from the fundamental theorem of the calculus.
O
The following lemma is easy to prove:
3.45 Lemma
For M = R"™ we have
ﬁu(t) = det(da,b — tTabu) (342)
if the right hand side is non-negative.
O

3.46 Remark
(3.42) is not valid for M in general. We'll see that the previous lemma will be a key
concept in deriving Weyl’s Tube formula later in this chapter.

3.4 The Bishop-Gunther inequalities

In this section the volume of tubes around P will be calculated when P is a point in
some special kind of manifold M. In that case the volume of T'(P,r) is the volume
of a geodesic ball. The following lemma is easily verified.

3.47 Lemma
Let k : (0,t5] = R be a differentiable function which satisfies
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where A € R. Then

V3
) 2 m (3.44)

for 0 < t < tog. If the inequality in (3.48) in the assumption is reversed then the
inequality in (3.44) is also reversed. Note that A =0 is a removable singularity.

4
3.48 Definition
(1) Let m € M and £ be a geodesic with £(0) = m. Let t, > 0 which satisfies

There exists an admissible curve v on M with v(0) = m
and y(t) = &(t) such that L(vy(t)) < L(&(t));

and assume that for all t such that 0 < t < to, the curve |jo4 is minimizing,
then t, is said to be a cut point of m along the geodesic &.

(2) The set of all cut points of m is called the cut locus of m.

3.49 Theorem
Let M be a complete Riemannian manifold. Assume that r is less than or equal to
the distance between m and its cut locus. For A € R we have

KM > )= V?n/[(r)< 2%”/2) /’" (sin(t\/x)) B "

[(n/2 I
" o2 7 (sin(tva) )"
KM <= W”/I(T)>F(n/2)/0 ( 5 ) dt.

PRroOF: We shall first prove the latter statement. Then Re (g, 1)e(1)m ) < A. Thus
the functions k;(t) satisfies the Riccati differential inequality

ki < kP4 A

by corollary 3.37. By lemma 3.47 we have

-V
50 < )
and thus
—(n—1)VA
trace S(t) < m

By theorem 3.40 and the above observation we obtain the equality

(1) S —(n—1) N (n — 1)V Xcos(tv/ )
D) 7t sin(tv/\) '
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The integral of 1/ tan(at) where a € R is In(sin(at))/a for 0 < t < 7/(2a) so we get
Indy(t) > C — (n—1)In(t) + (n — 1) In(sin(tV/\))
where C' € R or, equivalently

Iy (t) = e (M) .

t

Since 9,(0) = 1 we see that ¢¢ = 1/A\"Y/2_ Making use of lemma 3.43 and
lemma 3.44 we have shown the desired inequality. The proof of the former statement
is exactly the same, where we reverse all inequalities.

d

3.50 Definition
If KM = )\ € R then M is called a space of constant sectional curvature and
is denoted by

K" ().
The following corollary follows immediately from the last theorem.

3.51 Corollary
If M = K"(\) is a space of constant sectional curvature, then

ol 7 (sintvny)\"
VTZ(T)_F(n/Q) /0 (7\/X ) dt, (3.45)

for allm e M.

O

3.52 Remark
(1) It is well known that K™() is locally isometric to one of three classical spaces
depending on the value of A\. Those spaces are

(a) The Euclidean space, when \ = 0;
(b) A sphere, when A > 0;
(c¢) A hyperbolic space A < 0.

(2) For a great survey of hyperbolic spaces, I recommend [Rat]. For more about
spaces of constant sectional curvature, see for example [Wo.

3.53 Corollary
It can be shown that S™(r) is a space of constant sectional curvature X where A = /.

By setting s = tV/\ in (8.45) and evaluate the volume at r = m we get a formula for
the volume of S™(r), since the geodesic ball exactly covers S™(r). The result is

n 71.77,/2 m
178 () = W/o (sin )" ds. (3.46)
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[l

3.54 Remark

The integral in the last corollary can easily be calculated explicitly and is done so in
most calculus books. It is left to the reader to show that the result for the volume of
S™(r) in (3.46) is the same as the area of S™(r) as a hypersurface given in chapter 1.
This should not come as a surprise, since this is exactly the same thing we’re doing,
though we use different words for it, and different method to find the answer.

3.55 Remark

In this section we have seen how we could get an estimate of the volume of a
geodesic ball in terms of the sectional curvature K™, and that we could get some
nice equalities when K™ is constant. In the general theory of tubes often an estimate
for the volume is all we can hope to have and many articles in the field today gives
some estimates of the volume of a tube for more general manifolds.

3.5 Weyl’s tube formula

3.5.1 Double forms
3.56 Definition
(1) A smooth covariant (p+q, 0)-tensor field o : X (M )P x X (M)? — C°°(M) which
is antisymmetric in the first p and the last q variables is called a double form
of type (p,q) on M. We write a(Xy,...,X,)(Y1,...,Y,) to denote the value
on vector fields Xq,..., X, Y,...,Y, € X(M).

(2) Let X;,...,X, € X(M). Then we define a mapping (X1, ..., X,) : X(M)? —
C>*(M), (Y1,...,Yy) = o(Xy,...,Xp)(Y1,...,Y,). Then o(Xy,..., X)) is a
g-form by definition.

(3) Let « be a double form of type (p,q) and 3 be a double form of type (r,s).
We define an exterior product A of the double forms o and 3 by

/\(04,5)(X1,--- Xpir) (Y1, .-, Yq+s) = (A B) (X1, Xpir) (Yoo o5 Yoris)
Z Z EpEo X p(l Xp(p))(XU(l)a"'aXU(Q))

olalrls!
p q-r-s: PESyr 0EGC 1
BXow11)s - Xopi1) (KXoar1)s - - Xo(ars)):

(4) If p = ¢ and a(Xy,...,X,)(Y1,....,Y,) = aY1,...,Y,)(Xy, ..., X,) for all
X1, 1,...,X,, Y, € X(M) we say that « is a symmetric double form.

3.57 Remark
(1) The exterior product of double forms is associative and satisfies o A § =
(=13 A o, for o and (3 as in the previous definition. The double forms
of type (p,0) along with the exterior product agrees with ordinary differential
forms and the ordinary exterior product of differential forms.
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(2) The Riemannian metric tensor field g = (-,-) is a symmetric double form of
type (1, 1) and the curvature tensor R is a symmetric double form of type (2, 2).
C.— e 1 C.— LRI 1
Thus ¢g°:= gA--- A g is a double form of type (c,c) and R°:= RA . A R is
ctimes c times

a double form of type (2c, 2¢).

3.58 Definition
Let (E, ..., E,) be an orthonormal local frame on M. For a double form « of type
(p,q) we let C°(a) = a and define C¢(«v) inductively for ¢ > 0 by

Ca) (X1, ..., Xpeo) (Viy -, Yoro)

=3 CTH ) (X1, X, B) Vi, -, Yoy Ba).
a=1

The operators C°¢ are called contraction operators. It’s easy to show that C¢ are
independent of the choice of the orthonormal local frame.

3.59 Definition
Let R be the curvature tensor of P. We note that C**(R°) is a smooth function on
P. We’ll assume that [, C*(R°) dP converges. Then the real number

Fne(P) = @ /P C2(R°) dP (3.47)

is called the (2¢)™ integrated mean curvature of P.

3.60 Remark

It’s easy to calculate k. for small ¢. For example we have ko(P) = Vol(P) (i.e. the
volume of P) and ky(P) = 5 [, 7dP. For large numbers of ¢ it seems non-trivial to
calculate ko, explicitly.

3.5.2 Invariants

3.61 Definition
Let V be an n-dimensional inner product space.

(1) Welet Wy =V"®@---Q V",
—_———

k times

(2) For g € O(n,R) we define a map g : Wy, — Wy, by letting
9D (1 ®---@v) = d(g7 01 ® - ® g7 vg).
O(n,R) acts on Wy, by this definition.
(3) For o € & we define a map o : Wy, — Wy, by letting
o(@) (1 ® -+ @) = ¢(Vo1) @+ ® Vo(r))-
Gy acts on Wy by this definition.
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(4) A map P : W), — R which has a symmetric multilinear extension to the
tensor product Wy ® --- Q@ Wy, is called a polynomial of degree h on W.

~~
h times

We denote the space of all such polynomials by

Py (W). (3.48)

(5) For g € O(n,R) we define a map g : P,(Wy) — Py(Wy) by letting

g(P)(¢) = P(g '¢).
O(n,R) acts on P, (W},) by this definition.
(6) Let P € P,(Wy). If g(P) = P for all g € O(n) then we say that P is invariant.

(7) Let (e1,...,e,) be an orthonormal basis for V. We set

n

Pyd)= > 0(6)(earsCars--->Cam: €an)

ai,...am=1

for ¢ € Wy, and 0 € Goy,,. It is straightforward to check that the definition
is independent of which orthonormal basis we choose.

(8) We define a map ®"¢ € Wy, by letting
(@"P) (11 ® - @ vpk) = B(v1 @ -+ @ V) - P(Vg(n_1)+1 @ @ Vpi)

for € Wy and vy, ...,vp, € V.

3.62 Definition
Let hk = 2m, where m € N and let 0 € &s,,. The polynomial P, € P,(W},) defined

by

n

Py¢)= > 0(®")(Car€ars- - €am>Can) (3.49)

ay,y..,am=1
where ¢ € Wy, is called the elementary invariant corresponding to o.

The following theorem is a key theorem in the theory of invariants. T’ll not go
through its proof.

3.63 Theorem
Every invariant polynomial is a sum of products of the elementary invariants.

d

3.64 Remark
Invariant theory has many applications and is used for example in algebraic topology.
For some discussion see for example [Spi]. [Gilk] is also interesting.
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3.5.3 Some definitions and lemmas

3.65 Definition

Let V' be an n-dimensional positive definite inner product space. We denote by S™*
the unit sphere in V, where we use the metric obtained from the inner product on
V. We define a function I, : Wy — R by

Ii(¢) = é(v,...,v)dv. (3.50)

3.66 Remark
(1) fgn-1 dv is independent of which inner product space V' we use.

(2) I, is a polynomial of degree 1 and by spherical symmetry it’s easy to see that
it is invariant.

3.67 Definition
For an even positive number q we define

q9)=1-3---(¢g—1) (3.51)
We let 0) = 1.

3.68 Definition
We define

Qs ={0€Bylo2t—1)<o(2t+1)fort=1,...,s—1 and
o2t —-1)<o(2t)fort=1,...,s}.

3.69 Lemma
The cardinality of Q; is

(2s)!
255!

card(Q;) =2s) =1-3---(2s—1) = (3.52)
Proor: We'll prove (3.52) by induction. It’s easy to check the formula directly
for small numbers of s. Assume that the formula is valid for s = ¢ — 1, where ¢ > 3.
We'll show that then (3.52) is also valid for s = ¢. Clearly (1) =1 for all o € £;.
We then have two choices for 0(2) € £, namely 0(2) = 2 or 0(2) = 3. We'll
calculate the numbers of elements in £Q; separately depending on their value of o(2)
and then add the numbers together.

(1) o(2) = 2: Elements in £; of this form clearly has the same cardinality as ;4
which is

1-3---(2t = 3) (3.53)

according to our induction hypothesis.
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(2) o(2) = 3: We first choose 4,5 € [2,2s]\{3}, ¢ # 7, such that o(i) = 2 and
o(j) = 4. We can do this in (2¢t — 2) - (2t — 3) ways. For every such choice
we have card(Q;_») possibilities for the rest of the elements in [1, 2¢] which is
1-3---(2t — 5) by our induction hypothesis. Multiplying these numbers we
get the whole cardinality of elements in £; of this form, namely

(2t —2)- (2t —3)-1-3---(2t — 5). (3.54)

By adding (3.53) and (3.54) we get that card(£;) = 2¢) which proves (3.52).

3.70 Remark
For ¢ € Wy, and 0 € G5, we have

Y Y o) Cars Cars -+ Cans €ar)

€G24 A1,...,05=1

n
:255!2 Z (¢)(€ays €ays---»Cags €as)s

o€ a1,..,as=1
since the inner sum is independent of orthonormal basis.

3.71 Definition
Let F' € W, be an integrable function. Then we define the average of F' over the
unit sphere to be the real number

_ fsn—l Fdu

(F) = fosdu

(3.55)
3.72 Theorem

Let (e1,...,e,) be an orthonormal basis of V and denote by (uq,...,u,) its dual
basis. For ¢ =Y ]_, iy, we have

i1 in\ _ i) -+ in)
(ug - -uh) = nn+2)---(n+c—2)

(3.56)

where i1,...,1, € N.

[l

3.73 Remark
The proof of the above theorem when V' = R” can be found in [Gr] but I see nothing
wrong with applying the proof to general positive definite inner product spaces.

3.74 Remark
Let p € G, and f : 6; — R be a function. Then

S o) = Flop = 3 flo). (3.57)

0'663 0'663 UEGS
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3.75 Lemma
(1) If s is odd, then I, = 0;

(2) Let ¢ € Wos. Then Iy is given by

27Tn/2
IS = 213 Ci19 - - -9 Cigy Oy
25(9) nn+2)---(n+2s—2)I'(n/2) U%;“z;_l e, e €ias €ic)
(3.58)

where (e, ..., e,) is any orthonormal basis of V.

PrOOF: The former statement follows trivially from theorem 3.63. By the same
theorem there are constants b, such that

Ly(¢)= ) bg( > 0(¢)(ei1,ei1,...,eis,eis)>. (3.59)

0€Bas T1yeentg=1

We denote by (uy,...,u,) the dual basis of (ey,...,e,) as before. Let ¢ = u?l ceul
By (1.2) and theorem 3.72 we have that

) 271'77'/2

bl ) = e T T 2s — 9T ) (3.60)

independent of ji,...,Jjs as long as j; # ji for | # k. Now let p € Gg,. Then we
have

]25(u§1 el )

=L, (p~" (u3, - - u?)) (since Iy is an invariant polynomial)
-5 (3 e ) o 050)
g€Go, B1yeemls=1
= Z bop ( Z o(uf - u? ) (e, €, - - .,eis,eis)) (by (3.57))
0€G; 81 yeembs =1
=2°s! Z b ( Z o(uf, - uf ) (e, €, - - -,61'8,61'8)) . (by remark 3.70)
0€Q, 81 yeenls=1

The inner sum is always zero unless o = idg, but then it is equal to one. Thus the

last line is equal to 2°s!b,. We deduce that b, are the same for all o, namely
271'”/2

n(n+2)---(n+2s—2)I'(n/2)25s!"

by = (3.61)

Since card(Gs;)/card(Q;) = 2°s! the lemma now follows from lemma 3.69.
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3.76 Corollary
Assume that ¢ € Wy, is symmetric. Then (3.58) simplifies to

n

B 1-3---(25—1)-27m/2 . o
IQS(¢) - n(n + 2) L. (n+28 _ 2)F(n/2) Z Qs(eilaeua .- 'ansans)'

T1,eemts=1

Proor: This follows immediately from the previous lemma and lemma 3.69.

d

3.77 Theorem
Let M = R", and assume that P has a second fundamental form T and curvature
tensor R”. Let Sp~ %" denote the unit sphere in (T,P)*. Then

/ . det (5%[, — tTabu) du
Sp 4

_ opna)2
" T((n—-q)/2)

(3]
_ )2 020((RP)c)t2c
=27 (""0)/2) Z cl(20)0((n — q)/2 + ¢)2¢

CQC((RP)c)tZC
— d(20)(n—q)(n—q+2)---(n—g+2—2)

&

c=0
Note that we define (n —q)(n—q+2)---(n—qg+2c—2)=1ifc=0.
PROOF : We define the mapping 1. be setting

1 q
beltn, - e) = (c!)? Z Z o€ la,myanaym " Tog(eyn(eyue (3.62)

a1,..48c=1 o,m€S,

for uy,...,u. € (T,P)*. By remark 3.57 it’s straightforward to show that 1, is
symmetric and by methods from linear algebra it can be shown that we can expand
det (04, — tTup) by minors which gives us:

det(Sup — tTup) = »_ te(u, ..., u)(—t)", (3.63)
c=0

for u € (T,P)*. We want to integrate 1. over S 7~!. We note that due to symmetry
the integral of 19,1 is equal to 0. Let (e441,...,€,) be an orthonormal basis for
(T,P)*. By corollary 3.76 we have that

1-3--- (26 — 1) : 27r(n—q)/2 ZZ,___’%:Q.}J w20(6i17 €1y -y Cigy eic)
(n—q)(n—q+2)--(n—q+2c—2)L((n—q)/2)
(2¢)127(n=9)/2 .
~ MT((n—q)/2+¢) . Z

115eemle=q+1

IQc(w%) =

(3.64)

@bgc(eil,eil, .. .,eic,eic).

We will have use for the following lemma which is a special case of an equality known
as the Gauss equation. It’s proof can be found for example in [On].
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3.78 Lemma
For a submanifold P C R" the following equation is valid:

n

becd = Z (Taceindei - Tadeincei) = <Taca de) - <Tad: Tbc)-

t=q+1
[l

From this we obtain

n

Z ¢20(€i176i17---a6icaeic)
21 4eenbe=q+1

1 - 1
B ((2c)1)? Z Z Z 608“{T“v<1)”w(1)enT%(z)%(z)en (3.65)

T1yeemic=q+1 a1,..y0c=1 0,mTEG
T Tao'(2c—1)a7r(2c—1)eic Tao'(2c)a1r(2c)eic }

We have that

n

<Taa(s)a7r(t)’Tao(u)aw(v)> = <T%(s)aﬂ(t)’ E : (<Taa(u)ar(v)’ei>ei)>
1=q+1
n n
= E , <Taa(s)a7r(t)’ <Taa(u)a7r('v)’ ei>ei> = E : <Tao-(s)a7r(t)7 ei><Taa(u)a7r('v)’ ei)

i=q+1 1=q+1

n
= E : Taa(s)aﬂ(t)eiTaa(u)ar(v)ei
1=q+1
since (€g41,---,€,) is an orthonormal basis for (7,P)*. Hence we can simplify the

right hand side of (3.65) to

1 q
((2¢)1)? Z Z Eolm { <Taa(1>aw(1) ’ Taa(z)aw(2)> T <Taa(2c—1>aw(2c—1) ) T%(zc)aw(zc)> }

ala"'zaczl 0-171-6626

(3.66)

3.79 Lemma
The expression (3.66) above is the same as

1 q
W Z Z 808”{ (<T“°(1)“"(1)’T“a(2)“7r(2)> - <Ta‘a(1)a‘7r(2)’TG‘G(Z)"‘W(I)>>

a1yeen@c=1 0, TES,

) (<Taa(20—1)a‘1r(20—1)’Tao'(2c)a1r(2c)> - <Taa'(2c—l)a7r(2c)’ TC"o’(Zc)aw@c—l))) }
(3.67)
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PRrROOF: Let ji,...,j. € {0,1}. We define p;,, ; € Sy to be (1,2)---(2¢c —
1,2c)%. We note that

L(=1)Ei=s =1, (3.68)

Now (3.67) can be written as

1

)')2 Z Z €olr Z (=" Topyaray) Tawayanoos)

a1,mte=10,mEG, Jise-uJe=0
Je
( 1) < g (2¢—1)Cx(2¢c— 1+JC)’Taa(2c)a7r(2c ]c)>
q
1
g XYY e
al: =1 J1,..,5c=0 0,mEG 2,

( ) <T 0(1)‘17”)]1 jc(1+11)’Taff@)a‘”ﬂjl,...,jc(2*j1)>

.....

which gives us (3.66) since the last expression is independent of ji, ..., j. by (3.68).
l

We now use the Gauss equation and obtain

n

Z 1/}20(61'1,61'1, .. 'aeicaeic)

214 nte=q+1
P
Z Z 5”6”{ Uy (1) 80 (2) O (1) Grr(2) R“a(?cfl)aa(2c)a7r(2cf1)a7r(2¢)}

al, wac=1 o,mEGy,

2°¢ : Pyc

= o, X o oo
2¢ 2¢ P

= (@) C=((R7)).

a1ye.y@c=1

By this and (3.64) we get

271.(71711)/202c((RP)c)
c(20)12¢T((n—q)/2+¢)

I2s (7/)20) =

Hence by (3.63) we obtain

q

det(6,p — 1Top) du = S (—1)° (. u)d
[ dettous = o =320 [ vl
3]

on oy ORI
_ZIQS e N Y PR CEIZET

which was what was wanted.
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[l

Now we’re ready to prove Weyl’s Tube formula. In order to prevent misunderstand-
ing I’ll write the theorem exactly as it is written in [Gr].

3.80 Theorem (Weyl’s Tube Formula)

Let P be a q-dimensional topologically embedded submanifold in Euclidean space R™.
Assume that P has compact closure, and that every point in the tube T(P,r) has a
unique shortest geodesic connecting it with P. Then the volume V5 (r) of T(P,r)
s given by

N

(rrtyo-az oo (P

Vi (r) = . (3.69
0 F((n=q¢)/2+1) = (n—q+2)(n—qg+4)---(n—q+20) (3.69)
PrOOF: By lemma 3.43 we have that
AR (1) = -1 / / 9, (r)du dP, (3.70)
pJsn-a-1

where 9, (r) = det(04p — tTupu) by lemma 3.45. By theorem 3.77 and definition 3.59
we therefore have

[V]1SY

]

or(af2 |

o (Pt
A ) = =/ 2 - —a+ D — g+ 8- (1—a T2
W(n_q)/Q [%] kQC(P)tn—q—l—l—Qc

T I((n—q)/2+1) g m—q+2)(n—qg+4)---(n—qg+2c—2)

Now, since Vﬂfj (r)=/, Aﬂfj (t) dt by lemma 3.44, Weyl’s Tube Formula follows.

4

3.81 Corollary
The coefficients in (3.69) depends only on the curvature of P and thus the tube

volume V}E,n (r) depends only on P and r and not on the particular way that P is
embedded in R™.

d

3.5.4 Calculating the volume of B)(r)

I'll now calculate the volume of B}(r) in two ways. We have already seen one way
how to do this in chapter 1. Now we’ll use other methods. We observe that B} (r)
is just a geodesic ball with center p and radius 7.



3.6. KAHLER MANIFOLDS 67

(1) Using corollary 3.51: By remark 3.52 we have that the sectional curvature
of R" is 0. Thus we have by corollary 3.51 that

N Lo " [ sin(tv/)) "
B0 = o (T) “

n—1
n/2 r :
_ 27 / 1 i sin(tv/)) it
['(n/2) J, A0 A

27rn/2 r - 2,/Tn/27m
= g =
[(n/2) Jo nl'(n/2)

which agrees with (1.3).

(2) Using Weyl’s tube formula: As mentioned in remark 3.60, ko(P) = Vol(P).
So when P is a point we have Vol(P) = 1. From Weyl’s tube formula we have

] koo (P)r*
—~ (n—q+2)(n—q+4)---(n—q+2)

[Mi=]

(71'7“2)("70)/2 [
['((n—0)/24+1)

_ (o ko(P)r°
I'(n/2+1)

on/2pn

nl'(n/2)’

B} (r) =

p

&

which is the same result as before.

3.6 Kahler manifolds

3.82 Remark

In this section I’ll introduce some concept from the theory of complex manifolds.
Some of the lemmas and theorems in this section will be stated without proof.
For more details see [Gr]. For some introduction to complex manifolds, see for
example [1].

3.83 Definition

Let N be a smooth manifold. A (1,1)-tensor field J : X(N) — X(N) which satisfies
J? = —1I is called an almost complex structure on N. N together with this
structure is called an almost complex manifold.

3.84 Remark

If J and N are as in the above definition, then J is a field of linear transformations
which sends every m € N to a linear map J,,, : T,,N — T,,,N such that J2 = —I,,,
where I, is the identity map on 7, N. If dim N = n, then we have

(=)™ = det(—1,,) = det(J2) = (det(J,,))?,

for all m € N, so N is even dimensional.
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3.85 Definition
Let (-,-) denote the Riemannian metric on M, and assume that M has an almost
complex structure J.

(1) (-,-) is said to be an almost Hermitian metric and M to be an almost
Hermitian manifold if (JX,JY) = (X,Y) for all X, Y € X(M).

(2) Let M be an almost Hermitian manifold. The 2-form F : X (M) x X(M) — R
defined by setting F(X,Y) = (JX,Y) for all X,Y € X is called a Kéhler
form of M with respect to .J.

3.86 Lemma
An almost complex n-dimensional manifold N is orientable and can be made into
an almost Hermitian manifold.

PROOF: N has a Riemannian metric (-,+) by remark 2.59. We define another
Riemannian metric (-,-) : X(N) x X(N) — R by

(X,Y)=(X,Y)+ (JX, JY).
Now
(JX,JY)=(JX,JY)+ (-X,-Y) = (JX,JY) + (-1)*(X,Y) = (X,Y),

S0 (-, -) is an almost Hermitian metric on M. By remark 3.84 dim N is even, so F"/2
is well defined. It is straightforward to show that F™/? is a non-vanishing n-form
and thus N is orientable by remark 2.23.

O
3.87 Definition
Let M be an almost Hermitian manifold, and let m € M.
(1) A real orthonormal basis of the form
(1,1%,...,n,n") := (e1, Jer, ..., en, Jey)
is called a holomorphic orthonormal frame. Note that Ji = i*, Ji* = —1

foralli=1,...,n.
(2) Let X € X(M). Then we define the covariant derivative of J as
Vx(J)=VxJ—-JVx.

(See also definition 3.22). If Vx(J)Y =0 for all X,Y € X then J is said to
be parallel.

(3) If J is parallel then M is called a Kédhler manifold.

The following lemma shows the naturality of J. I'll go through the proof since I find
it instructive.
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3.88 Lemma
Let M be a Kdihler manifold, and let X, Y € X(M). Then

RJXJY = RXY (Kahler Zdentzdy)
p(JX,JY) = p(X,Y)

PROOF : We have for all X, Y, Z W € X(M) that

(RixivZ, W)
= (RzwJX,JY) (by (2.41))
— (Vg — V2, Vi) JX, V) (by (2.35))
= ((Vizw) = VzVw + VwV3z)JX,JY) (def. of Lie brackets)
= (J(Vizw — VzVw +VyV2)X,JY) (since J is parallel)
= (JRzwX,JY) (by (2.38))
= (RzwX,Y) (M is almost Hermitian)
= (RxyZ,W) (by (2.41))

so this proves the first part.

Let (Ey, ..., Es,) be areal local orthonormal frame for TM. Then (JE,,..., JEs,)is
also a local orthonormal frame for T M. By using the same definitions and theorems
as before we have

2n 2n 2n
p(JX,JY) = Rixpve. = Y Rixisvis, = Y (RixsJY, JE,)
a=1 a=1 a=1
2n 2n 2n
= (Bxp,JY,JE) =Y (Ryvsp.X,E) =Y (Ryp.X,E.)
a=1 a=1 a=1

=p(Y,X) = p(X,Y).

3.89 Remark
For a holomorphic orthonormal frame we have by (2.39)—(2.42)

n n

p(X, Y) = Z(Rzzyz + Rm*yz*) = Z(Rm’y*i* - Rwi*y*i)
i=1 i=1
= Z(_Riwy*i* - Ry*iwi*) = Z Rwy*u*
i=1 i=1
3.90 Definition
(1) Let N be an almost complex manifold. A two dimensional subspace T,,I1 of
T.wN which can be written on the form span{x, Jx} where x € T,,N is called

a holomorphic section.

(2) Let M be a Kahler manifold. The sectional curvature (see definition 2.45)
restricted to holomorphic sections of tangent spaces is called the holomorphic
sectional curvature and is denoted by

Khol-
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3.91 Remark
(1) If M is Hermitian then (JX, X) =0 for all X € X(M).

(2) Kpe can be regarded as a function that assigns each unit tangent vector z to
M a real number Kpq(z). We extend the definition to all tangent vectors x
to M by

Khol(x) = RmJa:sz-

3.92 Definition
Let M be an almost Hermitian manifold with an almost Hermitian structure J.

(1) If there exist a constant A such that
Kyol(z) = 4\ ||z||* (3.71)

for all x tangent to M, then M is said to have a constant sectional curva-
ture 4)\.

(2) If N is a Kahler manifold of dimension 2n which satisfies (3.71) we say that N
is a space of constant holomorphic sectional curvature 4\ and denote
it by

1Kﬁol (/\) .
Note that if we regard N as a complex manifold, its complex dimension is n.

The following theorem is well known in the theory of complex manifolds.

3.93 Theorem
Let KI'.,(A\) be a Kdhler manifold of constant holomorphic sectional curvature 4\.
Then it’s sectional curvature of linearly independent x and y is given by

3(Jz,y)? )
K, = (1 + |
Y lzl2|y|]* — {(z,y)?
Thus
A< K < 4.

3.94 Definition
Let R denote the curvature tensor of M.

(1) As before we define the covariant derivate of R as a tensor field by

vV(-R)WXYZ =V (RWXYZ) - RVVWXYZ

- RWVVXYZ - RWXVVYZ - RWXYVVZ

for V. X, Y, Z, W € X(M). (For more details see for example page 53 in [Lee]).
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(2) M is said to be locally symmetric if VR = 0.

3.95 Definition
Let P and v be as before.

(1) Let (p,u) € v. Then we define a map R, : T,M — T,M by
R,x = R,;u

for x € T,M. We note the similarities between R, and Ry. By (2.41) it
follows that R, is symmetric, i.e. (R,z,y) = (z, R,y) for all x,y € T, M.

(2) Let & be a unit speed geodesic on M. Then we define a map R(t) : Ty M —
Tg(t)M by

R(t)ﬂ? = Rg(t)wfl(t).
This generalizes R(t) defined in corollary 3.27.

(3) Let (p,u) € v, T, : T,P — T,P be the Weingarten map and I : (T,P)* —
(T, P)* be the identity map.. Since we have the ordinary identification T,M =
T,P & (I,P)* we have a natural map T, & I : T,M — T,M, defined in an
obvious way.

(4) If for all (p,u) € v, where u is a unit vector we have

T, ® I is diagonalizable < R, is diagonalizable

then P is said to be compatible with M.

3.6.1 A vital Lemma without proof

3.96 Lemma
(1) K™()\) is locally symmetric.

(2) K (N) is locally symmetric.

(8) Any submanifold of K™(\) is compatible with K™(\).

(4) Any complex submanifold of K., () is compatible with K} ().

(5) If M is locally symmetric, and P C M is a submanifold of M and compatible

with M then the eigenvectors of the shape operator of the tubular hypersurface
P, can be chosen parallel along geodesics normal to P.
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3.6.2 Volume of a geodesic ball in K (})

3.97 Lemma
The volume of a geodesic ball in K7, () of constant holomorphic sectional curvature
4\ s given by

n ]_ n
Vair V() = = (3) (sinGrvA) ™
Proor: Let u € T,, K (A), with ||u|| = 1. Let e; = u and extend e; to a holo-
morphic orthonormal frame (ey, Jey, ..., ey, Je,) for T, K (A) which diagonalizes

R,. Let (Ei(t),...,JE,(t)) be a holomorphic frame along & which coincides with
(e1,Je1, ..., en, Je,) at m. Clearly m is compatible with M and thus we have by
theorem 3.96 that E;(t),..., JE,(t) are eigenvectors both for R(t) and S(t). Here
S(t) is the shape operator at £(t) of the geodesic ball

{(m' € K, (\)| dist(m, m') = t}. (3.72)

Thus by theorem 3.93 we have the following Riccati differential equations for the
principal curvature functions on (3.72):

Kb = K3 + 4\
Ky = K2+ A (3< 1< 2n)

where

i(8) t507 o
for i = 2,...,2n. By theorem 3.47 we have

_ 2V o VA .
Ko(t) = m, ki(t) = (V) (3 < i< 2n) (3.73)

By theorem 3.40 we have

() 2n—1 2v/\ (2n — 2)V/A

du(t) i tan(2tv/)) - tan(tv/A)

We solve this in a similar fashion as in the proof of theorem 3.49 and get

Ind,(t) = —(2n — 1) In(¢) + In(sin(26V/ X)) + (2n — 2) In(sin(¢VA)) + C
where C' € R", or equivalently
27719, (t) = €© sin(2tV/A) (sin(tV/ X)) "2,

Due to our initial condition 19,(0) = 1, we can easily calculate that e¢ = %/\’"“/2.
Since £ sin(2tv/A) = sin(tv/A) cos(tv/A) we have that

27719, (t) = (sin(tV/X))?" ! cos(tV A)AT2, (3.74)
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Now we’ll use (1.2), lemmas (3.43) and (3.44) along with the above to obtain the
desired volume, namely

Vot () = / / (sin(tV/A))?* ! cos(tVA) A2 du, dt
0 S2n—1

_ ﬁ " Sin 2n—1 cos —n+1/2
- /0 (sin(tV/N) (VAATH2 gy
= % (;)71 (sin(rv/X))2".
O

3.98 Definition
If 9,(t) is independent of which unit tangent vector u on M we choose, then M is
said to be a harmonic space.

3.6.3 Complex projective space CP"(\)

CP"™(]) is a complex manifold, defined to be the space of complex lines in C**. As
the notation indicates, then CP™()) is a harmonic space. If we define the following
equivalence relation on S?**!

(205 -y 2n) ~ (Wo, ..., wy) & Ja €C, |a| =1:Vi:z = aw;,

where z1,...,2p, W1, ..., w, € C then it is can be show that CP™(1) is the set of
equivalence classes of ~. So CP"(1) is a manifold and the projection 7 : S?*+1 —
CP™(1) is clearly differentiable and surjective.

More important is that CP™ (1) can be made into a Kéhlerian manifold, by using the
so-called Fubini-Study metric. For details of its construction and references see [Gr].
Thus it follows that CP™(\) is CP™ (1) with the Fubini-Study metric divided by A2.

3.99 Theorem
The volume of CP™(\) is given by

Proor: We have that

2"

ASP" O ) = N 1)!)\n—1/2(

sin(tv/A))?" " cos(tV/A) (3.75)

by lemmas 3.97 and 3.43. Since 9,(t) is independent of u so is the distance from m

to the first zero of 9,(t). So for the first ¢ > 0 such that A;CnPn » (t) = 0 is when the
geodesic ball

{m' € CP™(\)|dist(m,m’) < t}
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exactly covers CP". This apparently happens the first time when cos(tv/)) = 0, i.e.
when t = 7/(2v/A). By lemma 3.44 we obtain the volume of CP", namely

" 7/(2VX) "
V" (r/(2VN)) = / AZ" N () gy
0

n 7/ (2VA
:L/o : )(sin(t\/X))Q”_lcos(t\/X) dt

(n—1)IAn-1/2
27 1 WD yn
= in(tvA)?" =— (=
(n— 1)IAn-1/2 [277,\5 sin(tv/A) L n! (/\) ’

which gives the desired volume.



Chapter 4

Invariant measure on

Sl(n, Z)\Sl(n,R)

The main aim of this chapter is to calculate an invariant measure of the quotient
space

Sl(n, Z)\Sl(n,R) = {Sl(n,Z) - x|z € Sl(n,R)}.

I’ll also make a few speculations about fibre bundles and their relation to volume.

4.1 Topics from linear algebra

4.1 Definition

An element in M (n,R) which has 1 in the (i, j)-th entry and 0 elsewhere is denoted
by E;;. The elements E,; ; € M(n,R) where i # j and E;; — E; ;1 ;11 where i €
[1,n—1] form a basis for sl(n,R) [Hum/. This basis is called the zero trace basis.

4.2 Definition
Let X be a matrix. We will denote the i-th row by L;. The following procedures

(1) L; — aL;, meaning multiply row i by a non-zero scalar o;
(2) L; <> L, meaning interchange rows i and j;
(3) Lj — aL; + L;, meaning linear combination aL; + L; replaces row j;

are called row operations and we write r(X) for a row operator r which is applied
to X. For two row operators r, s we define sr(X) := s(r(X)). Two (n x m)-matrices
X, X' are said to be row equivalent if there exist a finite sequence of row operations
(r1,...,r) such that ryry_1---r(X) = X',

4.3 Remark
It’s well known that every non-singular (n X n)-matrix is row-equivalent to the
identity matrix I,. Furthermore if (r{,...,7;) is a sequence of row operations such

that ryry_q - - -7 (X) = I, then
rery (L) = XL

75
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4.4 Definition
1) We define S; ; :=1,—FE;; — E;,;+ FE;,;, — E;; € Sl(n,Z) for all v, j such that
J : 4d J 7,
i # 7.
(2) Let x € R. Then we define the functions
(a) FLOOR(z) which rounds x to the nearest integer towards minus infinity;

(b) F1xX(x) which rounds x to the nearest integer towards zero.

(3) Let A be a (n X n)-matrix. For k € [1,n] we define

Qk(A) == {akk, Gkt1,5s - - - O }-

If the number of non-zero elements in Q(A) equals 1 we let q(Qx(A)) be the
line number i of the non-zero element in Qx(A).

(4) Let NN’€ N, where NXN’and denote by P(i) an expression (or a finite se-
quence of expressions) which depends on i. The following

for i=N:N’
P(1)
end

means that we apply P(i) for all integer values i between N and N’ in an
increasing order including N and N”.

4.5 Theorem

Let © € M,,(n,Z) and let Sl(n,Z) -z be it’s orbit. Then there exist a unique element

Y1 " Yin
Y= - € Sl(n,Z) - x
Yna - bn,n

which satisfies the following conditions:
(1) yj; >0 for all j;
(2) yij =0 for all i,j where i > j;
(3) 0 < yi; <y, foralli,j wherei < j.

PRrRooOF: Emxistence:
Let

a1 o O1p
A= oo € Sl(n,Z) - x.

Qp,1 ° Qpp
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For a € R we define

if a > 0;
sgn(a) :==4¢0 ifa=0;
-1 ifa<O.
We define
sgn(aii) -+ sgn(aiy,)
sgn(A) = : " :
sgn(an1) --- sgn(ann)

In the following diagram we show how we can multiply A from the left side with
elements in Sl(n,Z) to obtain a matrix which satisfies conditions (1) and (2):

TAR k=n true A — sgn(A) .
k=1 — STOP

false false

Hil,ig 21{1 il#ig
ai1,k) 7é 0’ a‘iz,k ?é 0

\k

true

%_,k‘ >1 | true iy .k 7é Oa
ig .k ‘ Qi k 7é 0

true

A—
A= S, A (I —FEi - FIX%) -4

2>

A rounded box means that we perform what is written in the box. If the box is
squared then we check if the statement in the box is true or false and then follow
a suitable arrow. Since every cycle through the lowest three or four boxes brings
one number in Qx(A) closer to zero (though maybe reversing the order of terms),
this diagram eventually comes to an end. In the last rounded box we have that
sgn(A) € Sl(n,Z) since det M,,(n,Z) > 1. After this procedure we apply the fol-
lowing to A.

for j=2:n
for i=1:1-1
A=(I-E_{i,j}Froor(a_{i,j}/a_{j,j}))*A
end
end

This gives the existence.

Uniqueness: Let’s assume that A, A" € Sl(n,Z) - © which satisfies the given condi-
tions. Then there exist C € Sl(n,Z) such that A’ = C A or, equivalently C = A’A™L.
We will first prove the following lemma
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4.6 Lemma
If we write

bl,l T bl,n ai1 - Q1p
0 . 0 Unyn

then b;; = ai’,i1 for all i and

a/ 4
bk = — Z Who] “ bk—j ks (4.1)

for all I, k such that | < k.
ProoF: We define the following row operations
(1) 7 Li — a;ilLi for all 7;
(2) rip: Ly — —al,kal’,llLk + L; for all I, k such that [ < k.
We also define the following combinations of row operators
(1) R=r11792 Tnpm
(2) Ry =rigrok- - Th—14, (forall k> 2).

Then RyR3--- R,R(A) = I, and thus B = RyR3--- R, R(I,) by remark 4.3. This is

just a Gauss elimination process. We clearly have that b;; = q,, 1-1 for all 7. We want

to calculate b, for | < k. We shall look at how R, - - - Ry, reacts on Ry -+ - R, R(I,,),
namely:

B=Ry- Ry | oovoemm

We note that the (I, k)-th entry in Rg.; --- R,R([,) is 0 for [ < k. Furthermore the
(4, k)-th entry in Rj iy ---R,R(I,) is bji. Now R; = 1y roj---1;--1j_1,; for all
j with | < j < k. The only terms in R; which alters the (I, k)-th entry when R;
is applied to Rj;1 -+ R,R(I,) is r;;, namely r;; : L — —al,jal_’lle + L;. Thus the
term

is added to the (I, k)-th entry when we apply R; to R;;1 - R,R(1,). Evidently we
obtain (4.1) by summing over all j with | < j < k.
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O
We’ll continue with the proof of the theorem. Now
c11 -t Cin all,l . a’ll,n bl,l S bl,n
C = I = IEUR: . o
0 Cnon 0 a;w 0 bnn
and thus ¢, can be written as
k—1
Ck = Zaf,kﬁ- . bk:fj,k- (42)
§=0
By previous lemma we have that ¢;; = ai_,il . a;ﬂ-. Since a; , a;,i, ¢i; € N for all 7 we

deduce that a;;|a;; for all i. But since

Haiﬂ' =detA=m=detA' = Ha;,i
i i
we conclude that a;; = a;; for all 4.

We'll now show that a;x = a;, for I < k. To do that we’ll use induction. Let’s first

assume that a;x = a;; for all [ > r. We'll then show that a,,11 = a,,,,. Now we
have by (4.2) and (4.1) that

k—r k—r—1
§ ! § !

cT,k = aT,k—j : bk*.ﬁk = a/T',k)—j : bk*]ak + a”l",’l" ) b’l",k
k—r—1

!
(g bkjk — Grp—j - bejik)
=0
For £k = r 4+ 1 this reduces to
!
a’r,r—}-l — Qrpr+1

Crr41 =
’ af’r—|—1,r—|—1

Since 0 < Grr11,Gppyy < G141 and ¢ pq € Ny we deduce that a, 11 = ay,. .
Now assume that a,j = a,., for all I > r and all £ < s, where [ < s <n. We’'ll show
that a, s = a, ;. We have

s—r—1
P I - . —_— + . .
Crs = E : (ar,sfj bsfj,s Qr,s—j bst,S)
J=0
' s—r—1 r_
_ a/"',S a/"',S ! b . . b . _ a’T,S a"',S
=—+ (ar,s—j “Os—j,s ™ Qrys—j - s—J,S) -
a/S S a/S S

) j=1 )

where the last equality signs follows from our induction assumption. As before we
can conclude that a,; = a; . This observations shows that a;;, = a;,, for all [,k
hence A = A’ proving the uniqueness.
The proof of the theorem is complete.



80 CHAPTER 4. INVARIANT MEASURE ON SL(N, Z)\SL(N, R)

4.2 Topics from number theory

4.2.1 Dirichlet theorem

4.7 Definition
(1) Let D be a subset in R*\{0}. Let C be the set of all half-lines from the origin

which intersects D. The set of all points in C' is called a cone with section
D.

(2) Let (e, ..., e,) be a basis for R*. Then the set
Ze, + - - -+ Ze,
is called a lattice for R".
(3) Let M = Zey + - - - + Ze,, be a lattice for R". The set
[0,1)e; +---+[0,1)e,

is called the fundamental parallelepiped of the lattice M. R™ spanned by
€1,.-.,€En.

(4) A lattice of a Lie group G is a discrete subgroup I' C G such that G/I" has a
finite volume relative to the (induced) G-invariant measure.

(5) Let X be a smooth manifold, and I" be a discrete group. A fundamental
domain of ' is a subset D C X such that the subsets yD, where v € I' have
no common interior points and form a locally finite covering of X. For more
details on fundamental domains, see for example [Rat].

The proof for the following theorem can be found in [Bo]. The proof is simple and
I choose to omit it.

4.8 Theorem (Dirichlet theorem)
Let X be a cone in R*\{0} with vertex at the origin. Let F be a positive function
defined over X which satisfies

(1) F(tx) =t"F(x), Yz € X,t > 0;

(2) T :={zx € X| F(z) <1} is bounded and has a non-zero n-dimensional volume
v(T).

Then for any lattice M in R™ the series

s convergent for s > 1, and

lim (s — 1) £(s) = 22

s—1+ A (44)

where A is the volume of the fundamental parallelepiped of the lattice M.
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[l

4.9 Remark
Let n € N be greater than 1 and let X be a cone in M(n,R) with a section D. We
define a function F' : M(n,R) — R by

F(z) = (det x)™.

By Dirichlet theorem we have

o(T) = lim (s = 1)f(s),  f(s)= > (det )™, (4.5)

s—1+

where M := M(n,Z).

By theorem 4.5 the number of orbits for the left action of the group Sl(n,Z) on
M,,(n,Z) is the same as the number of matrices which satisfies conditions (1)-(3)
in theorem 4.5. Let’s count those matrices.

First we see in how many ways we can choose elements v, 1, ..., Y, on the diagonal.
Clearly that is just the number of ways the number m can be written as a product
of n ordered natural numbers di, ..., d,. Now let’s look at the possible matrix which
has y1,1,...,Ynn on the diagonal. Let 7, be the number of possibilities we can fill
the ([, k)-th entry for | < k. Then the number of matrices which has y11,...,ynn On
the diagonal is [ [,_, 71,5 But by condition (3) in theorem 4.5 we have that 7,5 = yi4
for | < k so we have

1 2 n—1
| | bl,k = Y22 Y33 "Ynn -
<k

By letting dy = yp—k+1,n—k+1 for K =1,...,n we have proven the following lemma:

4.10 Lemma
Let a,, be the number of orbits for the left action of the group Sl(n,Z) on M, (n,Z).
Then

U =Y AV ' dy %y (4.6)

where the sum is taken over all the representations of the number m = dy -dsy - - - d,,,
where d; € N.

O

4.11 Lemma
The function f(s) in (4.5) can be written as

f(s) = C(ns)¢(ns — 1) ---Clns — n +1), (4.7)

where ¢ is the Riemann zeta function defined by

((z) =) _n7"  (forall z € {w € C|Re(w) > 1}). (4.8)
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ProOF: We shall expand the terms on the right side in (4.7). We have

C((ns)¢(ns—1)---C(ns—n+1)

00 00 o)
— — 1 . -1
ZE :ZlnSE :Z2ns—|— E :Znns—l—n
i1=1 =1 in=1
00
— F—NS;—NS —ns -2 n—1
== Z Zlkl Z2k2 ann 1/2102 ZSk2 ann
k1,k2,--kn=1

which is evidently the same as f(s).

U
It’s easy to show that (see for example [Bo))
1
(s—1)¢(ns—n+1) — — as s —+ 1+ (4.9)
n
and thus we have by Dirichlet theorem the following corollary:
4.12 Corollary
The function v(T) in (4.5) is given by
1
o(T) = —¢(2)---((n) (4.10)
O

4.2.2 Calculating we(Sl(n,Z)\Sl(n,R))

4.13 Lemma
Two left invariant n-forms on an n-dimensional Lie group G are proportional to
each other.

PROOF: Let w and w' be two n-forms on G. We have that w = fw' where f is a
real function. Then for every o € G we have

fo' =L (fw') = (f o lo)l5(w') = (f o lg)w’
so f must be a constant.

g

4.14 Definition
Let w be a left invariant n-forms on an n-dimensional Lie group G. Then w is said
to be a left invariant density on G.

4.15 Remark
(1) By lemma 4.13 all left invariant densities on a Lie-group G is identical up to
a constant. We can thus choose a specific left invariant density by giving up
its value at one point.
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(2) If G is compact a left invariant density w on G induces a left invariant Haar
measure on G by requiring that

/Gw = W (G).

(3) If T is a discrete group in G such that the closure of G/T" is compact a left
invariant density w on G induces a left invariant Haar measure on we, on GG
by requiring that for a measurable fundamental domain D for I" in G we have

/Dw = woo(D).

I will not go through the proof of this but these results are taken from measure
theory. For some discussion on Haar measure see for example [Fo].

We denote by z;; the standard coordinates in M(n,R). dzxi3 A -+ A dxy, is the
form which defines the Lebesgue measure in M (n,R). Si(n,R) is a hypersurface in
M (n,R). We choose a connected measurable fundamental domain D for Si(n,Z) in
Sl(n,R). It can be shown that this is indeed possible, but I'll not show this here.
We let w be a left invariant density on Si(n,R) and denote by wy its deduced Haar
measure. We define the measure of Sl(n,Z)\SI(n,R) to be wy(D) and we write
Woo (Sl(n, Z)\SIl(n,R)) to indicate the measure of Sl(n,Z)\SI(n,R). Since wy is a
left invariant measure on Sl(n,R) our definition is independent of the choice if D.
For more details and references on this subject see for example [Rat].

The mapping ¢ : I x D — T, defined by

o(t,y) = ty, (4.11)

where I = (0,1], is clearly a homeomorphism. We extend the mapping ¢ to a
homomorphism of groups ¢ : R* x Sl(n,R) — Gl(n,R), (t,y) — ty.

4.16 Lemma
The form

B = (det(-)) "dz11 A -+ A dTpy
is a left invariant density on Gl(n, R).
Proor: Let A € Gl(n,R). For z = (x1,1,...,Zn,) we define

€11 " Cipn Ar 0 A Ti1 0 Tin

cn,l Cn,n Anl Ann Tpa " xn,n

’

and ¢, ; is given by

n
Cij = Z Ai,k *Tk,j- (412)
k=1
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We then have by (2.16) that

(I48)«

=(det l4z) " det(J; ;(l4))z dT11 A -+ - A dTpp
9 . . . ., 9Cna . 9Can
0x1,1 ox1,1 ox1,1 0x1,1
91 . 9. .. 0Cha . OCunm
afEI,n 6151,7:, a5"'1,n 8-ff"l,n

=(det l4z)™" : : ) : : dziy A Adxp,
601’1 - . . aCl,n - . . .- e . ac’n,l - . . 8C’]’L7n
63771.,1 63771.,1 azn,l al'n,l
8$n,n 8$n,n azn,n 6$n,n

A 0
B B A
=(det A)~"(detz)™" ' dziy A N dpy,

0 | A

=(det A)~"(det z) " (det A)"dx11 A -+ ANdxp, = (det ) "dziy A -+ A dxpy = By

O
If we let n =1 in the above lemma we get the following corollary.
4.17 Corollary
(-\)"'dt is left invariant form on R*.

O

4.18 Lemma
If B on Q(H) is a left invariant form and ¢ : G — H is a homomorphism of Lie
groups then ¢*(B3) is a left invariant form on Q(G).

PROOF:  Since ¢ is a homomorphism it’s easy to show that ¢ ol, = Iy, o ¢.
Therefore for all g € G we have

10" (B) = (poly)" B = (lyg) 0 9)B

which proves the lemma.

4.19 Corollary
(1) ¢*((det(+)) ™dx11 A -+ Adxypy,) = o) tdt Aw, where a € R*.
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(2) ¢*(dzii A~ A dpy) = o) Ldt A w.

where o € R.
PROOF:

(1) In previous lemmas we have shown that ¢*((det(-)) "dz1; A --- A dzy,) and
()7'dt Aw are both left invariant forms on R* x Sl(n,R), so the result follows
from lemma 4.13.

(2) We have

" ((det(-)) "dz11 A - - Ny, n)(t, Y)
¢"((det())") (¢, y)o (dfvl LA N dEn )
((det(-))™" o 9)(¢, y)¢ (dzyg A -+ A dayp)
(det y) "o (dria A ANdxy )

()P (dz1a A NdTy ),

and the results follows.

g

4.20 Remark

TrGl(n,R) is naturally isomorphic to R**. Since TyR* is naturally isomorphic to
R we have that T, g)(R* x Si(n,R)) is isomorphic to R x sl(n,R) by remark 2.55.
Thus via this isomorphism a vector in T, gy (R* x Si(n,R)) can be written on the
form (s, A) where s € R and A € sl(n, R).

4.21 Lemma
Let s € R and A € sl(n,R). Then

(1) ¢.(s,0) = sE;
(2) ¢.(0,4) = A.
PROOF:
(1) Let 7 :]a,b[— R* x Si(n,R) be defined by
7(t) = (1, E) + (st,0)
7 is thus a representation curve for the tangent vector (s,0). So we have

d

¢:(5,0) = - t:0¢o () = .

=sFE e T¢(1,E)Gl(n, R)

(1+ st)E)
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(2) Let 7 :]a,b[— R* x Si(n,R) be defined by
7(t) = (1, E) + (0, tA).
7 is thus a representation curve for the tangent vector (0, A). Thus we get

d

(0,4) =2
00, 4)= 5| _¢° dt|,

=Ae T¢(1,E)Gl(’fl,R)

(E +tA)

In the next two lemmas we let A, be the (n x n)-matrix defined by

1 1 1 -~ 1 1]

1 =1 0 ---
A,={0 1 -1 .- 0 0

[0 0 0 1 -1

4.22 Lemma
[Ap| = (=1)"*'n

Proor: TI'll use induction. The postulate is obvious for n = 1,2. Let’s assume it’s
right for n < p. We'll expand A, on the first column, i.e.

~1 0
1
Ay =1 — — [Ap-1l-
0 -1
If p is even the first term on the right hand side equals —1 and by our induction
hypothesis we have that |A,_;| = p—1. Hence |A,| = —p. On the other hand if p is

odd the first term on the right hand side equals 1 and by our induction hypothesis
we have that |4, 1| = —(p — 1). Thus |A,| = p. We have thus proved the lemma.

d

4.23 Lemma
(d.fL'll VANRERIAN d:vnn)E(E, Ell — EQQ, .. ) ==+n

Proor: By making the suitable change of the permutation of dzy; A - - - Adx,, we
have that

(d.Tll VANCIEEIVAN dxnn)E(E,EH — Egg, .. ) =+

A, 0
0 [

and the results follows from the previous lemma.
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[l
4.24 Theorem
(b*(dl'll FANCRICIAN d-rnn)(l,E)(la E11 - E22, .. ) = 4n.
PROOF:
¢*(dxiy A+ - Ndng)1,8)((1,0), (0, E1y — Eg),--+)
= (dxll ARERIAN dxnn)qﬁ(l,E)(qs*(l: 0)7 d)*(oa Ell - E22)7 o )
(d.Tll VANRRRWA d.Inn)E(E, E11 - E22, N ) (by lemma 421)
= *+n (by lemma 4.23).
O
4.25 Remark

A natural selection of our invariant density w is to require that at the identity its
value on the zero trace basis is equal to +1. By previous theorem we deduce that
|a| = n in corollary 4.19.

Thus

v(T) = /dxn/\ “ANdy, = // ¢ (dx1y A+ Adzpy,)

(4.13)
/ / nt™ Nt Aw = —woo( ).
By combining (4.10) and the above equation we have
4.26 Theorem
woo(SI(n, Z)\SI(n, R)) = ((2) ---{(n) (4.14)
O

4.3 Volume of SO(n,R) and further study

SO(n,R) is a Lie group of dimension n(n — 1)/2. In [F1, He] it is shown how a
basis of linearly independent left invariant 1-forms w;; where 1 < 4 < I < n can
be constructed. The resulting basis is known as the Maurer-Cartan basis. We
define an invariant density on SO(n,R) by

Qp = /\wi,ja (4'15)

i>j
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where we require that the induced measure on SO(n, R),
a4, (SO(n,R)) := / Qp,
SO(n,R)
is equal to the volume of SO(n,R) with respect to the standard density. We look
at SO(n — 1,R) as a subgroup of SO(n,R) by
SO(TZ - 1,R) = {A < SO(H, R)| a1 = 1, ;1 = 014 = 0 for all i = 2, .. .,n}.
(4.16)

, . N -
Let’s write oy = tUp—1 A Gp—1 Where u,_1 = Ao wi1 and &, = /\i>j>1wi,j- Then
it can be shown that

an(SO(n,R)) = a,, 1(SO(n — 1,R)) - u(S™1) (4.17)

where u is the volume form on S™ !, From this we can calculate a,(SO(n,R)) for
all n, and I’ll do that in the following theorem.

4.27 Theorem
For n € N we have

n -1
A(SO(n,R)) = 2n~1anm+DATT T (9) . 418
n($0( ) = 2w I (5 (418)
Proor: We'll use induction. From chapter 1 we have that
9r(m+1)/2
u(S™) = ;Tﬂ
(5*)
(4.18) is obvious for n = 1. Let’s assume it’s true for n = p — 1, where p > 2.
By (4.17) and our induction hypothesis we have
a,(SO(p, R)) = 0,1(SO(p — 1,R)) - up1 (S )

p—1 B 9
— 9p—2.(p—1)p/4 H T (9) ! . 27Tpp/
-1

P
— op—1(P*-p)/4+20/4 T T (9)
T 11 5

a=1

Ld -1
—op—1lp(e+)/ATT (9)

so (4.18) is also true for n = p and thus (4.18) is true for all n so the proof is
complete.

d

In [Gilm| the volume of many classical Lie groups and quotients of Lie groups is
calculated. We have seen that for the fibre bundle

SO(n—1) = SO(n) — S™ !

we got a very nice relation between the volume of these spaces. One might ask if
this was true in general. Let’s look at the following question:
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Question:

Let’s assume that F' and B are compact Riemannian manifolds with invariant den-
sities ur and pup respectively. If F is a manifold such that ¥ — F — B is a fibre
bundle, can we find a Riemannian metric on F such that

pe(E) = pr(F) - pp(B)

where pg(F) is the volume of F with respect to some invariant density pg ?

Part of answer:

We saw that this was true, when we calculated the volume of SO(n,R). According
to [Mac| the answer to the above question is “yes” if F, E' and B are compact Lie
groups. MacDonald’s proof is above my understanding and so is a simpler proof
given by [Ha]. Those who are familiar with characteristic classes and algebraic
topology could however find the proofs interesting. For some more discussion of this
see: http://www.lehigh.edu/~dmd1/p2000.html. Many classical fibre bundles are
given in [Br]. [Hus] is also a great book about fibre bundles. I think that studying
this further could be very interesting, but it’s beyond the scope of this thesis.
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