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Introduction

The existence and non-existence of vector fields on the sphere is a classical problem arising
in the theory of fibre bundles and homotopy theory with implications in many areas of
mathematics.

A tangent vector field on S™ ! is a continuous function which assigns a tangent vector
to S ! to each point z € S"~!. Given k such vector fields we say that they are linearly
independent, if the k vectors are linearly independent for all points = € S™~L.

Figure 1: Vector fields on sphere of dimension 1

To illustrate the problem, consider first the one dimensional sphere, the circle. As
illustrated in figure 1 there is one obvious tangent vector field everywhere non-zero, and
clearly, any other tangent vector field is linearly dependent on this.

Figure 2: Attempts of constructions of vector fields on the 2-sphere

For the two dimensional sphere, there are no everywhere non-trivial vector fields at all,
as illustrated in the figure 2. It is a classical result of algebraic topology (the hairy ball
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theorem) that for the 2-sphere, any vector field has a singularity in at least two points.
In fact, for any even dimensional sphere (i.e. n odd) there exist no everywhere non-trivial
vector field.

The problem of vector fields on the sphere is to determine the maximum number of such
linearly independent vector fields on S™ . Since Gram-Schmidt orthonormalisation is a
continuous operation, we may restrict our studies to orthonormal vector fields. Then the
existence of vector fields on the sphere S™~! is equivalent to the existence of a cross section
of the appropriate Stiefel fibrering.

It is known from a result by Hurwitz, Radon and Eckmann from 1942, that for n =
(2a+1)2¢"4 with a, ¢, d integers and 0 < ¢ < 3 the sphere S ! admits p(n)—1 independent,
vector fields, where p(n) = 2¢+ 8d.

In the following we state and prove the converse: The sphere S™~! does not admit p(n)
linearly independent vector fields. This was first proved in 1962 by use of K-theory[2]. This
is the approach we will follow.

The line of proof may seem indirect, it is in fact a pincer movement: Using the theory
of Thom spaces we reduce the problem to a problem of coreducibility of certain stunted
projective spaces. Subsequently with the aid of K-theory, we prove that such a coreduction
cannot exist.

Chapters 1 and 2 serve to provide an introduction to vector bundles and determine the
homotopy properties of vector bundles. These chapters provide the natural framework of
our further studies.

In chapter 3, we construct the algebraic and cohomological structures making up K-
theory, using the structures of vector bundles introduced in the first chapters. Chapter 4
is a fairly standard account of the Bott periodicity theorem, and in chapter 5 we introduce
additional algebraic structures of K-theory, first of all the Adams operations, and state some
results connecting K-theory with ordinary cohomology. We conclude the chapter with some
results on spectral sequences due to Atiyah and Hirzebruch which are an important tool for
determining the K-rings in chapter 7.

The remaining two chapters provide the actual solution of the non-existence problem.
Chapter 6 gives an account of Thom spaces and reducibility. In this chapter, we provide
the proof of a well established reduction of the problem of non-existence of vector fields on
the sphere to a problem of coreducibility of certain stunted projective spaces. The results of
chapter 6 motivate further studies on stunted projective spaces in chapter 7. In this chapter,
we apply K-theory to arrive at our main result.

Throughout the thesis we keep notation simple and consistent, and to the extent possible
in accordance with standard notation. However to ease notation we make use of “dynamic”
notation, the meaning of the notation is context dependent. Thus, if we denote a vector
bundle by &, we may also refer to the isomorphism class determined by & as £ in the context
of vector bundle isomorphism classes, or to the element of K(X) or K(X) determined by
¢ by that same symbol. This abuse of notation should not lead to any confusion and will
prove convenient.
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Vector bundles

Vector bundles arise naturally in differential geometry, but may also be viewed as general
bundles with more structure. In this chapter we introduce the basic concepts and results
from the theory of vector bundles, but only to the extend needed for our further studies. A
more thorough exposition of the subject can be found in [15, chp. 2-8].

In section 1, we define vector bundles and give some simple yet important examples of
vector bundles. In section 2, we define morphisms of vector bundles and form categories of
vector bundles. Section 3 is devoted to the study of pullback of vector bundles, which is
important in order to establish the cohomology structure of K-theory. We end the chapter
studying constructions of vector bundles from which we will define the algebraic structures
of K-theory which will be introduced in the following chapters.

1.1 Definitions and examples

1.1.1 Definition. An F-vector bundle is a triple (E,p, X) where E and X are spaces and
p: F — X is a map such that the following condition of local triviality is satisfied: There is
an open covering {U,} of X such that for each « there is an integer n and a homeomorphism
Vo : D (Us) — Uy X F* and for each z € U, the restriction 1, : p~'(z) — F" is a vector
space isomorphism.

The space FE is called the total space, X the base space and p the projection of the bundle.
The vector spaces p !(z) are called the fibres, and the map v, a local trivialisation. Some
times the inverse ¢! is used, and borrowing from differential geometry we then speak of a
local chart. For F = R, C or H we speak of real, complex or quaternionic vector bundles
respectively.

It is common to denote bundles by Greek letters, £,7,(... Also it is common notation
to denote the base space of the vector bundle £ by B(£) and the total space by E(£), and
we will denote the projection map by p.

1.1.2 Remark. With the definition above, the dimension of the vector spaces may differ on
each connected component. If the dimension of p~1(z) is n for all z € X, e.g. if the base
space is connected, we speak of an n-dimensional vector bundle.

1.1.8 Ezample. Clearly, for a space X the triple (X x F"* 7, X') with 7 the projection onto
the first factor is a vector bundle, the product vector bundle. This is also known as the
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n-dimensional trivial vector bundle, and we will denote it ", in particular, if n = 1 we
speak of a line bundle. A space X may be regarded as the zero dimensional vector bundle
(X,id, X) and a vector space V may be regarded as a vector bundle over a point with a
constant map as projection.

1.1.4 Definition. Let £ = (E, p, X) be a vector bundle, and let A C X. The restriction of
£ to A is the vector bundle &[4 = (E',p', A) where E' = p~'(A) and p’ = p|pr.

1.1.5 Definition. A vector subbundle of a vector bundle £ = (E,p, X) is a vector bundle
(E',p', X) such that E' C E and p' = p|p.

1.1.6 Definition. A cross section of a vector bundle £ = (E,p,X)isamaps: X — E
such that po s = 1y, that is for each z € X, s(x) € p~!(z). In particular we define the zero
section as the cross section mapping X into the zero vectors of the fibres of F.

1.1.7 Example. The tangent vector bundle 7(S™) = (T,p, S™) over S™ is the subbundle of
the product bundle (S™ x R*™! p S™) where the total space T is the space T = {(z,v) €
S™ x R*"! [{(z|v) = 0}. The bundle 7(S™) has a natural vector space structure on the fibres
since p!(x) is an n-dimensional vector subspace of R*™ for every z € S™. For an element
(z,v) € T, v is called a tangent vector to S™ at z and a cross section is called a tangent
vector field of S™.

Similarly we define the normal vector bundle v(S™) = (N, q,S™) as the subbundle of
(S™ x R*™! ¢, S™) with total space N = {(z,v) € S" x R*™'|v = sz, s € R}. For elements
(z,v) € N, v is called a normal vector to S™ at x, and the fibre ¢ !(z) is of dimension 1. A
cross section of v(S™) is called a normal vector field of S™.

1.1.8 Ezample. A bundle of k-frames 74(S™) over S™ for k¥ < n is a subbundle of the
product bundle (S™ x (S™)*,p, S™) where the total space E = E(74(S™)) is the subspace
E(1:(5™) = {(x,v1,...,v¢) € S™ x (S")*|{z|v;) = 0 and (v|v;) = 6;;,1 < 4,5 < k}. Thus
an element of E is a system of k£ orthonormal tangent vectors to S™ at x. Clearly, this is
not a vector bundle.

1.1.9 Definition. The Stiefel variety of k-frames in R is the space Vi (R") = {(v1,...,vx) €
(S" MYk |(v;|vg) = 6;5}. Vi(R™) is compact since it is a closed subspace of the compact space
(Sn—l)k_

With each k-frame (vq,...,vx) € Vi(R") we associate the k-dimensional subspace of R"
spanned by the vectors v, ..., vk, and denote this space (vq,. .., vg)-

1.1.10 Definition. The Grassmann wvariety of k-dimensional subspaces of R" denoted
Gr(R™) is the set of k-dimensional subspaces of R" with the quotient topology obtained
by the map (vi,...,vx) — (vi,...,v) of Vx(R™) to Gx(R™). Thus Gx(R") is a compact
subspace since Vi (R™) is compact.

1.1.11 Remark. We define the Stiefel and Grassmann variety over C* and H" analogously.

1.1.12 Ezample. Consider the product bundle £ = (G, (F") x F*, p, G (F")). We define the
canonical k-dimensional vector bundle v; on G(F") as the subbundle of the product bundle
¢ with total space E(yf) = {(V,v) € Gx(F") x F*|v € V'}. This bundle has a natural vector
space structure on the fibres, since the fibre over V' € G (F") is the subspace V of F".
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To define local trivialisations on 7 we define maps 7 : G (F") xF* — F* where w(V, v) is
the orthogonal projection of v onto V', and define for H C {1,...,n} a subset of k elements
the map uy : * — F" by placing zero’s on the coordinates not in H. Let Uy be an open
subset of G (F") with elements V' € Gy (F") such that the map 7(V,-) : ug(F") - Vis a
bijection. Then hy : Uy X F* — p~1(Uy) defined by the formula g (V,v) = (V,n(V,v)) is
a isomorphism linear on each fibre. For more details on this construction cf. [13, lem. 1.7,
p. 13].

Similarly we define the orthogonal complement *v; as the subbundle of ¢ with total
space E(*vp) = {(V,v) € Gx(F*) x F*|{V|z) = 0}.

By natural inclusion we have G,(F") C G(F"*!) and define Gy (F®) = Up<, Gy (F™)
with the inductive topology. Then v us defined for £ < n < oco. If n = oo we simply write
V-

1.1.13 Ezample. As special cases, let k = 1. Note Vi(R") = S" ! and G;(R") = RP" .
The canonical bundle on G(R") is called the canonical line bundle.

The canonical vector bundles are important for the classification of vector bundles (which
explains the term canonical), we return to this in section 2.2.

1.2 Morphisms of vector bundles

1.2.1 Definition. Let £ = (F,p, X) and £ = (E',p', X') be vector bundles. A vector bundle
morphism is a pair of maps, u: E — E’ and f: X — X' satisfying p' ou = f o p and such
that the restriction u : p~*(z) — p !(f(z)) is linear for each z € X.

Thus a vector bundle morphism is a pair of maps (u, f) such that the diagram

E——F'

|

X—X

commutes, and such that when restricting to the fibres, u is linear. Given amap u : E — F,
such that v is linear when restricting to the fibres, p~(z), then u defines a map f: X —
X' by commutativity of the above diagram, and the pair (u, f) defines a vector bundle
morphism. Thus we may speak of the vector bundle morphism u : EF — E’ letting f be
given implicitly, and we will write u : £ — £'.

1.2.2 Definition. Let £ = (E,p, X) and & = (E',p', X) be vector bundles. An X -vector
bundle morphism is a map, u : & — & such that u induces the identity map on the base
space.

1.2.3 Example. Let € be the product bundle (X xF", p, X) and let £’ be the product bundle
(X x F™,p, X). Then the X-morphisms, u : & — & are on the form u(z,v) = (z, f(z,v)),
where f: X x F* — F™ is a map linear in v.

Let L(F",F™) denote the vector space of linear transformations, F* — F™. Then f :
X x F* — F™ is continuous if and only if z — f(z,-) € L(IF",F™) is continuous.
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Clearly, the pair of identity maps (1g,1x) is a vector bundle morphism of the vector
bundle (F,p, X). Also composition of vector bundle morphisms form a vector bundle mor-
phism. Hence, the set of vector bundles forms a category denoted VB, with vector bundle
morphisms as morphisms. We form the natural subcategories of n-dimensional vector bun-
dles denoted VB", the subcategory of vector bundles over X denoted VBx with X-vector
bundle morphisms as morphisms, and the subcategory of n-dimensional vector bundles over
X, VB, = VBx N VB".

1.2.4 Definition. An isomorphism of vector bundles £ = (E,p, X) and & = (E',p/, X')
is a vector bundle morphism u : & — &' such that there exists a vector bundle morphism
u' & — & with v'u = 1 and uu' = 1.

An X-vector bundle isomorphism is an X-vector bundle morphism u : & — £ of vector
bundles over X that is an isomorphism of vector bundles.

1.2.5 Definition. A vector bundle ¢ = (E,p, X) is called trivial if for some n € N it
is isomorphic to the trivial bundle e® = (X x F*, 7, X), where 7 : X x F* — X is the
projection onto the first factor. An X-vector bundle isomorphism, u : £ — €™ is also called
a trivialisation.

1.2.6 Proposition. Let u : £ — &' be an X -vector bundle morphism of the vector bundles &
and &' over X. Then u is an isomorphism if and only if the restriction u : p~1(z) — p'!(x)
18 a vector space isomorphism for every x € X.

Proof: The direct implication is clear. For the converse, let u' : £ — £ be a function defined
by the condition that the restriction v’ : p"!(z) — p~!(x) is the inverse of the restriction
u:p”(z) = P (2).

We need to prove that ' is continuous. Let v : p~(U) — U x F* and ¢’ : p" }(U) —
U x F* be local trivialisations of £ and £ respectively. Then 'uyp™! : U x F* — U x F*
is a map of the form (z,v) — (z, fz(v)) where z — f, is a map U — GL(n,F). Similarly,
Yup~! U x F* — U x F* is a map of the form (z,v) — (x, f7*(v)) where z — f 'is a
map U — GL(n,F).

Thus, the restriction ' : p'~1(U) — p~1(U) is continuous. It now follows that v’ is
continuous, since by definition there exists a family of local trivialisations (v,,U,) and
(¢!, U,) of € and &' respectively, such that {U,} is an open covering of X. O

o)

1.3 Pullback of vector bundles

Let £ = (E,p,X) be a vector bundle over X and let f : X’ — X be a map. Define
f(E) = {(z',v) € X' x E|f(z') = p(v)}. With this subspace of X’ x E we obtain the
commutative diagram
. f
[*(E)—F

pl

bS]

XI#X
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where p’' : f*(F) — X' is the projection onto the first factor, and f f*(E) — E is
defined by f(z',v) = v. Clearly f*(&) = (f*(E),p’, X') is a vector bundle as we may view
f*(€) as the restriction of the product bundle (X' x E,1x X p, X’ x X)) to the graph of f,
{(2, f(z")) € X' x X} which we identify with X" via the projection (z', f(z')) + 2'. Since

f(z',v) = v, f is a vector space isomorphism when restricted to the fibres of f*(&).

1.3.1 Definition. Let £ = (F,p, X) be a vector bundle over X and let f : X' — X be a
map. The vector bundle f*(§) = (f*(E),p’, X') is called the pullback vector bundle.

1.3.2 Example. A trivial example is the inclusion 2 of the subspace X' C X. Then +*(E)
is isomorphic to p~'(X') via the map (z',v) — v since the condition #(z') = p(v) simply
states that v € p~!(z'). Thus restriction of vector bundles may be viewed as a special case
of pullback.

1.3.3 Remark. If u : & — £ is a vector bundle morphism, then u factors as a composition,
u= fu,

where v'(y) = (pe'(y), u(y)). Further, v’ is a vector bundle morphism over X".

1.3.4 Theorem. Let £ and &' be vector bundles. For a map f : X' — X the bundles f*(£)
and & are X'-isomorphic if and only if there exists a morphism u : & — £ such that u is
an isomorphism of vector spaces when restricted to the fibres, u : p'~1(2') — p~1(f(z")) for
every ©' € X'.

Proof: Assume f*(§) and &' are X'-isomorphic and let v’ : & — f*(§) be an X'-isomorphism.
Then by the above factorisation we have a vector bundle morphism u : { — £ given by
u = fu'. Since v is an X'-isomorphism, the restriction, u' : p'~'(z') — p''(2') is a
vector space isomorphism. Since f is a vector bundle isomorphism it now follows that the
restriction u : p'~'(2') — p~!(f(a')) is a vector space isomorphism.

Conversely, assume u : & — £ is a vector bundle morphism, such that the restriction to
the fibres is a vector space isomorphism. Then u factors through f*(£) by the composition
fu'. Since the restriction of u to the fibres is a vector space isomorphism, so is u' and it
follows that u' is an X'-isomorphism. O

Ifu:&— ¢ is an X-morphism and f : X' — X a map, then it follows from the formula
fru)(2',v) = (z,u(v)) that f*(u) : f*(&) — f*(£) is an X'-vector bundle morphism. Thus
linearity of u over f(z') implies linearity of f*(u) over z'. With these definitions it follows
that f*: VBx — VByx: is a functor.

For vector bundles &, &1, & over X, X7 and X, respectively, 1*(£) and £ are X-isomorphic
and for maps, f: X; — X and ¢g: Xy — X1, ¢*(f*(€)) and (fg)*(§) are X, isomorphic. It
is easy to show that if & =~ &, with & and & vector bundles over X, then f*(&;) ~ f*(&).
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1.4 Operations on vector bundles

1.4.1 Definition. Let & = (E1,p1, X) and & = (FEs,p2, X) be vector bundles over X.
We then define the fibre product, & @ & = (Ey @ E,q,X), where Ey @ Ey = {(v1,12) €
By x Ey|pi(v1) = p2(ve) } and q(v1,v2) = p1(v2) = pa(ve).

The fibre ¢~ (z) of £, &, for 2 € X is the product of the fibres, ¢~!(x) = p'(z) xpy ' (2)
which explains the term fibre product.

For the fibre product & & & of two vector bundles we define a vector space structure on
the fibres ¢~*(z) by the direct sum of the two vector spaces. Thus if ¢; : p; (U) — U x F™
and ¥y : py 1(U ) = U x F™ are local trivialisations of &; and &, respectively, then 1) @ v, :
U x Tt — ¢71(U) is a local trivialisation of & @ &,.

1.4.2 Definition. The Whitney sum of two vector bundles & and &, denoted &; @&, is the
fibre product of the bundles &; and & with the above vector space structure on the fibres.

1.4.3 Ezample. For the canonical vector bundle 77 and its dual *7? we have 7 @ *@ ~ ¢'.

1.4.4 Ezample. Let 7(RP*1) be the tangent bundle over the real projective space RP* !
and let &_; denote the canonical line bundle over RP*~!. Then there is an isomorphism
¢ : k&1 — T(RPF1) @ el

First note that we may view the tangent bundle 7(RP*~!) as the quotient of the sphere
bundle 7(S*-1), with total space E(7(RP*1)) = {+(z,v)|z € S¥~1,v € R}.

Let (-|-) be the standard inner product of R*~!. We then have linear maps, 7, : RF-1 — R
and v, : RF~1 — R*~! defined by

me(v) = (v]z)/(z|z)

vp(v) =v—m(v)x
For +z € RP*~! we then define the bundle morphism u : k&, 1 — 7(RP*1) @ ¢! by
u(tz, a1z, ..., qpx) = (£(x, vz(ar, - .., ax)), (£x, 72 (a1, - - -, ax)))

u is well defined since —v,(v) = v_z(—v) and —7,(v) = 7x(v), and u is invertible since
v = vg(v) + 7 (v)x. Hence we have an isomorphism of vector bundles.

The Whitney sum may be extended to define a functor on the category of vector bundles
over X. Let &, &, n1 and 72 be vector bundles over X, and let uy : & — n; and ug : & — 19
be X-vector bundle morphisms. Then we define the X-vector bundle morphism u; @ us :
& D& — m1 @y by the relation uy Bug(vi, v2) = (u1(ve), ua(ve)). Since pp,uq(vi) = pg, (v1) =
Pe, (V1) = Pyytia(va), ur @ ug is well defined. Clearly, 1g, @ 1p, = lpen,. If (1 and ( are
vector bundles over X, and v} : ;; — (; and 4} : m; — (3 are vector bundle morphisms,
then (u} @ ub)(u1 & upy) = (vjuy) & (uhus).

We define other operations on vector bundles similarly by adapting the operations from
vector spaces to operations on the fibres of vector bundles. The tensor product is of particular
importance for the development of K-theory in the following chapters.

Let & = (E;, p;, X) be n;-dimensional real or complex vector bundles over X, fori = 1, 2.
We wish to define the bundle, (E; ® Ej,p, X), with fibres, p7*(z) ® p; ' (z) for z € X.
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As a set, the total space of the bundle is

Hp ®p2 )

z€X

and p maps p; ' (r) ® p, }(x) to x, Vo € X. To define a topology on the set, choose an open
cover {U,} of X, such that for i = 1,2 there exists a local trivialisation, ¥*, : p; '(U,) —
U, X R". For each x € X we then have a linear isomorphism of vector spaces,

<O, 9 (@ O (@) > BT @R =R

Hence, we obtain the commutative diagram,

- - Yo
HzGUa b, 1(35) Q Py 1(ﬂﬁ) — U, x R "2

1

Ua

id

where 1), is a bijection given fibrewise by Qﬁclm ® wfm. We then adopt the topology of
Ua x RM™ t0 [[,cp 01 (z) @ py ' (z) by the map q.

Before proceeding the reader should note the following properties of Whitney sum and
tensor products which can easily be derived from the corresponding properties of the ope-
rations on vector spaces:

1

§DLrRLEDE
i) 6@ (L)~ (606 D6
i) § @&~ L&

i)
i)
i)
iv) 6 ®(L®&)~ (Li®&) &
V) §® (&8 8) = (L0&) D (6 ®8&)
) (&G ® &)~ (&)@ f (&)
) (&G ® &)~ (&) f(&)

V1

vii

The properties involving tensor product only holds for real and complex vector bundles.
Clearly, e' @ -+ - @ e! = &™ for the n-fold sum of trivial line bundles, hence €™ @ " ~ ™",
Also, e™ ®e™ & ™", Hence we may write n for €. For the n-fold sum of the bundle & with
itself we will write n& and for the n-fold tensor product we write £”. Note that £ @ % ~ &
and { ® el ~ €&,

In case that £ and n are vector bundles over X and Y respectively we may define the
exterior tensor product as follows. Let mx : X XY — X and 1y : X XY — Y be the
standard projections, we then define the exterior tensor product by £é&n = 7% (£) ® 73 (n).

Using the results above, we construct the ezterior product of vector bundles, \*(€) (this
should not be confused with the exterior tensor product above). First recall for a vector space
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V, the k’th exterior product \*(V) is given by the k-fold tensor product of V, V@ ---®@V
modulo the subspace generated by vectors on the form v; ® - - - @ vy, — sgn(a)va(l) ® - ®Us(k)
where o is a permutation and sgn (o) is the sign of o. If V has dimension n then A\¥(V') has
dimension (Z)

For a vector bundle & we first form the disjoint union of the exterior product of the fibres,
[TM*(pt(x)). To define a topology for this set, we note that a linear map ¢ : R* — R”
induces a linear map Af(¢) : A*(R®) — A¥(R"). This map is continuously dependent on ¢
since it is a quotient map of the k-fold tensor product of ¢ with itself. We can then use
arguments analogous to those for the tensor product.

The exterior product of vector bundles has the following properties,

i) M(& &) =D:(N(&) @ N (&)
i) A°(§) = &
iii) AM(E) =¢
iv) AK(€) = &0 for k > maxdim(p~(z)).
v) fr(AE(E)) = A5(f*(6))-

The first property follows from the distributive properties of tensor products and Whit-
ney sum stated above. Properties ii) and iii) are clear and property iv) follows from the
corresponding fact for vector spaces, and v) follows from properties vi) and vii) of Whitney
sum and tensor product together with property i) above.



2

Homotopy properties of vector
bundles

In this chapter we develop the homotopy properties of vector bundles. Using these we
classify vector bundles up to homotopy, and construct new vector bundles. The study of
the homotopy properties of vector bundles will provide us with the extra tools needed to
study the cohomological properties of K-theory in the following chapters.

2.1 Homotopy properties

2.1.1 Lemma. Let & be a vector bundle with base space X x [0,1]. Then & is trivial if for
some t € [0, 1] the restrictions & = &|xx[0, &1 = &|xx[e1] are trivial.

Proof: Let vy : Fy — Xo X F* and ¢, : By — X; x " be trivialisations of & and &
respectively. These trivialisations may not agree on p~(X x {t}). Define ¢y = 1| xx 3 and
©1 = P1|xxq1p- Then oo+ X x {t} xF" — X x {t} xF" is an isomorphism of trivial vector
bundles. Thus we may write, ¢, ' (z,t,y) = (z,t,7(x)y), where (z,t,y) € X x {t} x "
and 7: X — GL(n,F).

We prolong ¢,¢5" to a X x [t, 1]-isomorphism of trivial bundles, w : X x [t,1] x F* —
X X [t, 1] x F*, defined by the formula w(z, s,y) = (z, s, 7(z)y) for (z,s,y) € X x [t,1] x F".
Then wi : By — X x [t,1] x F* is a vector bundle isomorphism, and vy and w; agree on
p~'(X x {t}). Thus there exists an isomorphism 1 : F — X x [0,1] x F* with v¥|g, = 1
and ¢|E‘1 = WM- a

2.1.2 Lemma. Let & be a vector bundle over X x I. Then there exists an open covering
{U,} of X such that the restrictions, &|y,x1 are trivial.

Proof: By definition there exists an open cover {Vj x Iz} such that the restriction |y, 1z,
is trivial. Thus for any z € X we can choose a family of neighbourhoods, {Vjs, x Iz} such
that & |V6,wx 15, is trivial, and Ulg, = I. Since I is compact we may choose a finite family of
neighbourhoods with these properties.

Let U, = NVj. Since I is locally compact Hausdorff, we can choose a partition 0 = ¢, <
ty < --- < tp = 1 such that U, x [t;_1,t;] C Vg x Iy for some 3. Then |y, x4 18
trivial for all 1 <4 < k. Thus by lemma 2.1.1, £|y, «s is trivial. O
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2.1.3 Proposition. Let & be a vector bundle over X x I where X is paracompact. Then
the restrictions of € to the base spaces X x {0} and X x {1} are isomorphic.

Proof: By lemma 2.1.2 we can choose an open cover {U,} of X, such that £|y, «s is trivial.
Since X is paracompact there exists a countable cover {Vj},>1 of X and a partition of unity
{¢x} such that V} is a disjoint union of open sets with each connected component contained
in U, for some «, and for each k£ > 1 ¢, has support in Vj. Thus |y, «7 is trivial for all k.

Define for k > 0, ¢y = 3¢, ¢; and let ¢y = 0. Let Xj = {(z,¢x(z)) € X x I} be the
graph of ¢, and let & = | x,. A trivialisation of £ over Vj x I then lifts to an isomorphism,
hi : & — Ex—1 which is the identity outside p=(V} x I).

For any x € X, there is a neighbourhood U of x such that only finitely many ¢;’s
are nonzero, and thus for large k, hy|ly = 1y. It follows that the infinite composition,
h = hihy--- is a well defined isomorphism of vector bundles, h : f|X><{0} — §|X><{1}- O

2.1.4 Theorem. Let & be a vector bundle over'Y and let f,g: X — Y be homotopic maps.
If X is paracompact, then the pullback bundles f*(§) and g*(&) are X -isomorphic.

Proof: Let h: X x I — Y be a homotopy of f and g with h(z,0) = f(z) and h(z,1) = g(z)
for z € X, and define the vector bundle { x I = (E x I,p' x 1;,Y x I).
Then the pullback A*(£) is a bundle over X x I. By restriction, we have f*(§)

h*(€)|x {0y and g*(§) = h*(§)|xx {13, and thus by proposition 2.1.3, f*(£) ~ g*(¢). O
2.1.5 Corollary. FEvery vector bundle over a contractible paracompact space X is trivial.

Proof: Let 1x be the identity map and let f : X — X be the constant map. Then for each
k-dimensional vector bundle € over X, 1% (&) is X-isomorphic to £ and f*(£) is X-isomorphic
to the product bundle (X x F*,p, X). Since 1x and f are homotopic it follows from theorem
2.1.4 that ¢ is isomorphic to the product bundle (X x F* p, X). O

2.2 The universal bundle

2.2.1 Definition. Let £ be a k-dimensional F-vector bundle. A Gauss map of £ is a map
G : F — " with £ <n < 400 such that G is a linear monomorphism on the fibres of &.

Recall that for the canonical vector bundle 77, the total space E is the subspace {(V,v) €
Gi(F") x F*|v € V}. Thus for the canonical vector bundle, we obtain a Gauss map by
projection on the second factor G(V,v) = v.

2.2.2 Proposition. Let u : £ = v} be a vector bundle morphism that is an isomorphism
on the fibres. Then Gu is a Gauss map of £&. Conversely if there is a Gauss map g : £ — F”
then there exists a vector bundle morphism u : & — v such that Gu = g.

Proof: The first statement is clear. For the converse statement, we construct a vector
bundle morphism as follows. Let f(z) = g(p '(z)) € G(F") for x € X and define u(v) =
(f(p(v)),g(v)) € E(y}) for v € E(£). Then from the local trivialisations of ¢ it follows that
f is continuous, and thus that u is continuous. O
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2.2.3 Corollary. For a vector bundle & over X there exists a Gauss map if and only if € is
X -isomorphic to f*(vy) for some map f : X — Gp(F").

2.2.4 Proposition. let & be a vector bundle over a paracompact space X, and let {U;} be an
open covering of X such that |y, is trivial for all i. Then there exists a countable covering
{V;} such that &|y, is trivial for all j.

Proof: This follows immediately by paracompactness of X. O

2.2.5 Theorem. Let & be a k-dimensional vector bundle over a paracompact space X. Then
there exists a Gauss map g : B — F*®.

Proof: Let {U;} be a countable open covering of X such that {|y, is trivial for all ¢, with
trivialisations ; : €|y, — U; xF*. Let {(;} be a partition of unity subordinate to the covering
{U;}, and let 7; : F* — F*° be the inclusion of F* into the 7’th k-dimensional subspace of
F>°. We then define a map g : E — F*® by the sum g = ), g; where g; = ¢;4;m; and
7 : X x F* — F* is the projection onto the second factor.

Clearly g; is a monomorphism on the fibres over x € X where ¢;(z) > 0, and since the
gi;'s maps to complementary subspaces ¢ is a monomorphism. O

2.2.6 Corollary. FEvery k-dimensional vector bundle & over a paracompact space X 1s X-
isomorphic to f*(yg) for some map f: X — Gi(F>).

2.2.7 Proposition. Let fo, f1 : X — G(F®) be maps such that fi(v) =~ fi(v). Then fy
and fi are homotopic.

Proof: Let £ be a vector bundle over X such that £ ~ f§(vx) and £ = f; (k). Then f; and
f1 induce Gauss maps gg, g1 : F(§) — R™ that are linear injections on the fibres.

Define L; : R® — R* by Ly(xg, z1,...) = (1—1)(xo, Z2, dots) + t((x¢, 0, 21,0, ...). Com-
posing with gy we obtain a homotopy of the image of gy into the odd numbered coordinates
of R*®. Similarly we have a homotopy mapping the image of g; into the even numbered
coordinates of R>*. Hence, we may assume that the Gauss maps g and g; maps to the odd
numbered and even numbered coordinates respectively.

We then have a homotopy from gy to g; defined by ¢g; = (1 — t)go + tg;. From this we
obtain a homotopy f; from fy to fi defined by fi(z) = g;(p~'(x)) where p : E(§) — X is
the projection map of €. O

2.2.8 Definition. A vector bundle £ over X is of finite type if there exists a finite open
covering {U;} of X such that |y, is trivial for all .

2.2.9 Proposition. Let & be a k-dimensional vector bundle over X. Then the following
statements are equivalent

i) € is of finite type.

ii) There exists a map f : X — Gi(F") for some n such that & and f*(77) are X-
1somorphic.

iii) There ezists a vector bundle n over X such that & ® n is trivial.
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Proof: From theorem 2.2.5 it follows that i) implies ii). Since v} @ *v} is trivial over Gy, (IF")
it follows that f*(v; @ *v;) is X-isomorphic to ™. Let n = f*(*v}). From property iv) of
Whitney sums we have that f*(v; @ *v;) and (f*(vp) @ f*(*vr) are X-isomorphic. Hence
ii) implies iii). Let n be a vector bundle such that £ @ 7 is trivial. Then the composition
E—=Edn— X X F* — F" is a Gauss map. O

Let Vecty(X) denote the set of X-isomorphism classes of F-vector bundles over X.
We denote the set of X-isomorphism classes of k-dimensional F-vector bundles over X by
Vectf:(X) and the isomorphism class of a vector bundle ¢ over X by {&}.

Let f : Y — X be a map. The homotopy class determined by f defines a morphism
Vectr([f]) : Vectr(X) — Vectp(Y') by the formula, Vectr([f])({£}) = {f*(£)}. This is well
defined by theorem 2.1.4. Thus, by the properties of pullback Vecty is a cofunctor from the
category of spaces and maps to the category of isomorphism classes of vector bundles and
homotopy classes of vector bundle morphisms.

Let [X,Y] denote the set of homotopy classes of maps f : X — Y. For a space X we
define the function ¢x : [X, Gx(F*®)] — Vect:(X) by the formula, ¢x([f]) = {f*(7x)}, where
vk is the canonical k-dimensional vector bundle. From theorem 2.1.4 if f, g : X — Gy(F*)
are homotopic maps, then f*(y;) and g*(x) are X-isomorphic. Hence, hence ¢y is well
defined.

2.2.10 Theorem. For a paracompact space X the map ¢x : [X, GR(F®)] = Vecti(X) is a
bijection.

Proof: By proposition 2.2.7, if fo, fi : X — G(F>) are maps such that fi(y) and f(vx)
are X-isomorphic, then f; and f; are homotopic. Hence, ¢x is injective.

For a vector bundle £ over X there exists a map f : X — Gg(F*) such that £ is X-
isomorphic to f*(yx) by corollary 2.2.6. Hence, ¢x is surjective. O

With this theorem the problem of classifying vector bundles has been reduced to calcu-
lation of homotopy classes of maps [X, G (F*®)]|. However the theorem does not provide any
tools for calculating [X, G (F*)]. Its significance is more of theoretical implications, since
general statements of vector bundles may be deduced from statements of universal bundles,
i.e. vector bundles over G (F>).

2.3 Collapsing and clutching constructions

We have in the previous chapter studied how to combine vector bundles to form new ones
using the vector space structure on the fibres. In this section, we will study other ways
to construct vector bundles by altering the base space, namely collapsing and clutching of
vector bundles.

Collapsing of vector bundles is a process of identifying the fibres over a closed subset to a
single fibre over a point. This operation is needed to establish the cohomological properties
of K-theory to be presented in the next chapter.

2.3.1 Definition. Let £ be a vector bundle over X and A a subset of X such that there
exists a trivialisation t : £|A — A x F*. A collapsing of £ with respect to ¢ is a triple
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(&/t,u,r) where £/t is a vector bundle over X/A, u : & — £/t is a vector bundle morphism
and 7 : {/t|, — F" is a vector space isomorphism, such that the restriction u : & — &/t|x()
for x € X is a linear isomorphism where 7 : X — X/A is the standard projection, and such
that ¢ = ru when restricted to &|4.

The next proposition states under which conditions such a collapsing exists,

2.3.2 Proposition. Let & be a vector bundle over X and let A be a closed subset of X
such that there ezists a trivialisation of & over A. Then there exists a collapsing (&/t,u, )
of & with respect to t if and only if there exists an open neighbourhood U with A C U
and a trivialisation t' of U such that t' prolongs t to U. The collapsing is unique up to
1somorphism.

Proof: Assume that there exists a collapsing, (£/t, u, r), then there exists a local trivialisation
p:&[tly = V x F* with x € V| such that ¢|, = r. Let t' = pu, then ¢' prolongs ¢.

For the converse we construct the total space E/t of £/t as the total space E of £ with the
following identification: For z,z' € p~1(A) let t(z) = (p~'(z),v) and t(z') = (p 1(z'),v").
Then we set x ~ ' if v = v'. With this identification, £/t is a vector bundle over X/A
with the induced projection. Let u : & — £/t be the quotient map, then u is a fibrewise
linear isomorphism. The prolongation ¢’ of ¢ then defines a local trivialisation of £/t in a
neighbourhood of *, and for neighbourhoods U with * ¢ U we have local trivialisations from
£.

For uniqueness, assume ((£/t)',u',7") is another collapsing of £ with respect to ¢. Then
we have an isomorphism 1 : £/t — (£/t)" defined by v = u'u~! for z # * and using local
trivialisations that restricts to r and r’ respectively, we have 1 = '~ !r in a neighbourhood
of . O

2.3.8 Remark. Note that the proposition applies to CW-pairs (X, A), i.e. X is a CW-complex
and A is a subcomplex of X.

2.3.4 Proposition. Let & and &' be vector bundles over X and X' with trivialisations t
and t' over A and A’ respectively. Let v : & — £ be a vector bundle morphism such that
the image of A is a subset of A" and t = t'v. Then there exists an unique vector bundle
morphism w : £/t — &' [t' such that the diagram

{——=¢

§/t—= &/t
commutes. Further if v is an isomorphism carrying A into A’ then w is an isomorphism.

Proof: The diagram defines w uniquely. If v is an isomorphism, then the inverse of v defines
an inverse of w. O

2.3.5 Proposition. Let £ and &' be vector bundles over X with trivialisations t and t' over
A Then €/t @€/t ~ (E@E)/(t@F) and /1@ E [t ~ (E8E)/(tBY).
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We end the section studying clutching of vector bundles. For a CW-complex X, we
define a CW-triad as a triple (X, Xy, X1), where X, and X; are subcomplexes of X such
that X = XU X;. Given vector bundles & and &; over Xy and X respectively we now wish
to construct a vector bundle over X by gluing these together. This process is important for
the proof of the Bott periodicity theorem in chapter 4. The following proposition states to
what extent this is possible.

2.3.6 Proposition. Let (X, Xy, X1) be a CW-triad with A = XoN X1 and let &; be a vector
bundle over X;, i = 0,1. If a: &|la — &1]a is a vector bundle isomorphism, then there exists
a triple (&, uo, uy) such that & is a vector bundle over X, u; : & — &|x, is a vector bundle
isomorphism for i = 0,1 and uy = ura over A. Further, the vector bundle £ is unique up to
1somorphism.

Proof: Let E be the space obtained by the disjoint union of Ey and E; identifying z € p;*(A)
with a(z) € p;'(A). There is a natural projection E — X induced by the projections
of & and &, a natural vector space structure and natural vector bundle isomorphisms
U; - 51 —)g‘xi, 1=0,1.

Thus, we only need to prove local triviality of £&. For x ¢ A the existence of local
trivialisations is clear. Let £ € A and choose an open neighbourhood U of x in X such that
there are local trivialisations ¢; : &|unx, = U N X; x F* and such that there is a retraction
r:UnNXy,—UnNA.

UNAxT <2 Eylyna 2 Eilpna 2>~UNAX"
| N |
UnA UnA UnA

Over the set U N A we then have p1ap,! = 1yna X M where 1yn4 is the identity on
UNA and M € GL(n,F) is a matrix continuously dependent on x € U N A. Composing
o with the retraction we can assume that ¢y = @1 over U N A. We then have a local
trivialisation ¢ : &|y — U x F* and g;u; = ¢|unx;-

For uniqueness assume (7, vg,v1) is some other triple satisfying the same conditions.
Then we obtain an isomorphism w : n — £ by the compositions, uw;l :n|x, = &|x,- The
isomorphism is well defined since E(7) is the union of the closed subsets E(n|x;)- O

2.3.7 Corollary. Let & be a bundle over a CW-complex X and let Xy and X be subcom-
plexzes of X such that X = XqU Xy. Then & = &|x, U, &|x, -

2.3.8 Definition. The vector bundle & J, & is called the clutching of & and & along A,
the map « is called the clutching map and the triple (&, o, &) is called the clutching data

Directly from the definition we have,

2.3.9 Proposition. Let (&, a,&) be clutching data over the CW-triad (X, Xy, X1), let
(no, B,m) be clutching data over the CW-triad (Y,Ys, Y1), and let u; : & — n; be vector
bundle morphisms for i = 0,1 such that ugae = [uy over A. Then there exists a vector
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bundle morphism u : &\J, & — mo U/B n such that the diagram

& ———= i

T

&o Ua & —%=1o Ug T

commutes for 1 = 0,1 where the vertical maps are inclusions. Further, the morphism u is
unique with respect to this property, and if ug and u; are vector bundle isomorphisms, then
S0 18 U.

2.3.10 Proposition. Let (&, a, &) and (no, 5,m) be two sets of clutching data over the CW-
triad (X, Xo, X1). Then (§ @ 10) Upep (& ® m) and (SoU, 1) © (mUzm) are isomorphic.
Similarty, (& © o) Upes(€ ® 1) and (& U £0) @ (mo Uy m) are isomorphic.

2.3.11 Proposition. Let (X, Xy, X1) be a CW-triad with & vector bundles over X; for
i =0,1. Let oy : &la — &i]a be a homotopy of clutching functions. Then &§|J,, & and
§oUq, &1 are isomorphic.

Proof: We may view « as a clutching function of the bundles & x I and & x I. Then
&o Uao §1 is isomorphic to the restriction (§o X I'{J, &1 X I)|xx 0y and & |, &1 is isomorphic
to the restriction (§o X I'{J, &1 X I)|xx{13- Since & X I'{J, & x I is isomorphic to n x I for
some 7 the proposition follows from proposition 2.1.3. O
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K-theory

The history of K-theory traces back to Grothendieck, who developed tools to solve the
Riemann-Roch theorem. His method was first applied to topology by Borel and Hirzebruch[8|
in 1958.

The idea of K-theory is to make the Whitney sum and tensor product operations on
vector bundles over a fixed base space into addition and multiplication operations of a ring.
For quaternionic vector bundles we can only form a group this way with addition defined
by Whitney sum of vector bundles, but since we will only need real and complex vector
bundles, we will discard this case, and so [ refers to either R or C.

The spaces we are concerned with are compact CW-complexes, and thus have all the
nice properties we may wish for, namely Hausdorff and paracompactness properties. For
the remaining part of the thesis all spaces are assumed compact CW-complexes.

3.1 The K-cofunctor

Transferring the operations of vector bundles, Vecty(X) forms a semiring, that is Vecty(X)
satisfies the axioms of a ring except for the existence of an additive inverse, with sum defined
by the Whitney sum of bundles, {{} 4+ {n} = {{ ® n}, and multiplication defined by tensor
product, {¢} x {n} = {€ ® n}, with neutral elements of addition and multiplication, {€°}
and {e'} respectively.

The notation introduced will soon prove inconvenient. Since we will only be working
with isomorphism classes of vector bundles and homotopy classes of maps, we will simply
write £ for the isomorphism class determined by the vector bundle & and similarly, write f
for the homotopy class of maps, [f], determined by f. This should not lead to any confusion.

There is a standard method to extend a semiring to a ring. We will apply this to
Vectr(X), but first we need a definition.

3.1.1 Definition. Let £ and n be vector bundles over X. We say that £ and n are stably
equivalent and write £ =, 7, if for some integer n, £ ® " ~ n @ ". If for some integers
m,n, EDe™ = n @ e, we say that £ and n are s-equivalent and write & ~ 1. A bundle &
s-equivalent to €° is called stably trivial or s-trivial.

Consider the set of ~s-equivalence classes, Vecty(X)/ ~;. For the Whitney sum opera-
tion, only the £%-class has an inverse, namely £°, since £ ® &' =, ¥ implies £ D &' D™ =, €7,
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hence £ is 0-dimensional. However, since for any £ there exists a bundle & such that
EDE =~ " by proposition 2.2.9, we do have the following cancellation property: If
&1 @& ~; & @ & adding & to both sides we then obtain & @ & @ & =5 & D & B &,
which reduces to & @ e™ ~; & @ €™. 1t then follows that & =, &;.

Now consider the set of pairs of classes of vector bundles Vectr(X) x Vectr(X), we will
write the elements as formal differences £ — &', and define the following equivalence relation,
&—& =& =& ifand only if & D E) =, E,BE]. Tt is easy to show that this is an equivalence
relation using the cancellation property above.

For elements £ — &', n—n' € Vecty(X) x Vecty(X) define addition and multiplication by
=& +Mm—-n)=Edn—-¢on and ((-&)n—7)=E6@n—-E@n -@n+ @7 =
EdnaeEen)—(Eon)® (¢ ®@n). With these operations Vectp(X) x Vectp(X) forms
a ring with identity ¢! and zero element &°.

Defining the morphism A : Vectr(X) — Vectr(X) x Vecty(X) by the formula A(€) =
& — €Y, the semiring Vecty(X) is included in Vectyp(X) x Vecty(X). Thus we have obtained
the ring completion of Vecty(X)/ ~;. It is possible to show that ring completion is unique
up to isomorphism [15, p. 115].

3.1.2 Definition. For a space X we define Ky(X) as the ring completion of Vecty(X)/ ;.

3.1.8 Remark. Any element of Ky(X) can be represented as £ — €™ for some n. For ( —n €
Kr(X) we have an element 1 such that n ® 5’ =~ . Adding 7' to both terms we have
Codn —em Since (D7 —e™ ~; ( —n setting £ = ( @ 1’ gives the result. Since £ ® e’ ~ &
we will write £ for an element & — &°.

For a map f : Y — X we defined the semiring morphism Vectp(f) : Vecty(X) —
Vectp(Y'). Similarly, we now define the morphism Kp(f) : Kp(X) — Kp(Y) by commuta-
tivity of the following diagram,

Vectr(X) A, Kr(X)
Vectﬂa(f)l lKIF(f)
Vecty(Y) —2> Kp(Y)

Thus for vector bundles &,1 over X, we have Ky(f)(§ —n) = f*(&) — f*(n). It is easy to
show that this is a ring homomorphism using the properties of pullback. If g: Z — Y is a
second map we obtain Kr(fg) = Kr(g9)Kr(f) and clearly Ky(1x) is the identity on Ky(X).
Thus Ky is a cofunctor.

Choose a basepoint g € X. We then define the morphism, called the rank, rk :
Vect(X) — Z by rk(§) = dim(£|,,), that is 7k maps the vector bundle £ over X to the
dimension of the vector space over zy. This induces a morphism rk : Kg(X) — Z defined
by rk(€ — n) = rk(€) — rk(n).

Conversely, since any element of Kp(X) may be represented £ — " for some n there is
a natural morphism Ky(X) — Vectp(X)/ ~ defined by £ — ™ — £. Clearly this morphism
is surjective, and the kernel consists of elements on the form €™ — £". These elements form
a subring of Kp(X) isomorphic to Z.

Hence we have a splitting, Kp(X) = Kz(X) @ Z depending on the choice of zg. If X is
path connected, Kz(X) is independent of .
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3.1.4 Definition. For a pointed space X we define Kr(X) by the splitting Kg(X) =
Kr(X)® Z. Kp(X) is called the reduced Kp-ring.

Let X and Y be pointed spaces. For a basepoint preserving map f : Y — X we define
Kp(f) as the restriction of Ku(f) to K(X). Thus, with the cofunctorial properties of Kp
it follows that f(F is a cofunctor.

In the beginning of the chapter we mentioned that we will consider both real and complex
vector bundles. Unless specified explicitly, the results in this chapter apply to both real and
complex vector bundles, and thus we can drop the F from the notation for the remaining
part of the chapter.

Also, we will simplify notation for the remaining part of the thesis further by writing f#
for K(f) or K(f) leaving it to the reader to determine which is meant from the context.

3.2 Cohomological properties

K-theory was originally known as extraordinary cohomology. In this section we explore
some of the cohomological properties of K-theory, namely exact sequences.

For a space X let A be a closed subspace of X. With the natural inclusion and projection
maps we then obtain the sequence of spaces,

A—">X "= X/A
If X is a CW-complex and A a subcomplex of X also refer to this sequence as the sequence
of the pair (X, A).
3.2.1 Theorem. For a closed subspace A C X the sequence A—=X —=X/A induces
an ezact sequence K(X/A) ”—#>I~((X) Z—#>I~{(A) .

Proof: The inclusion imn# C ker+# follows immediately from the composition A — A/A <
X/A and the fact that K(A/A) = 0.

For the opposite inclusion, ker :# C imn#, let ¢ be a vector bundle over X. Since A is
closed there exists a collapsing £/t. We then have the commutative diagram,

E——~E/t

|
X —X/A

and it remains only to verify that & &~ 7*(&/t). This follows since the map E — E/t is a
linear isomorphism on the fibres. O

3.2.2 Corollary. If A C X 1is contractible, the quotient map m : X — X/A induces an
isomorphism 7 : K(X/A) = K(X).

Proof: Since A is contractible to a point there exists a retract F' : A x I — A such that
F(a,0) = a and F(a,1) = * for a € A. Using this we obtain a homotopy X/x — X/A.
Thus by proposition 2.1.3 the vector bundles over X/ and X /A are isomorphic. O

With the following definition the above results have analogs in unreduced K-theory:
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3.2.3 Definition. For a finite CW-pair, (X, A) we define K(X, A) = K(X/A).
3.2.4 Corollary. Let (X, A) be a finite CW-pair. We then have the exact sequence,

# #

K(X) —=K(4)

K(X, A) =

Proof: This follows since K (X, A) = K(X/A) and the inclusion A < X induces morphisms
K(X) — K(A) and K(X) — K(A) with the same kernel. O

Before we proceed we will recall some common constructions of spaces from homotopy
theory. For a space X we define the cylinder of X, ZX = X x I, and we obtain the cone
of X by identifying the top of the cylinder to a point, CX = X x I/X x {1} = X AI. We
continue the process and collapse the base of the cone to obtain the unreduced suspension,
YX=XxI/X x0I.

For a pointed space X we form the reduced suspension SAX = S x X/SV X. This can
be obtained from the unreduced suspension by collapsing the arc through the basepoint of
X, {zo} x I to a point.

For CW-complexes this is a homotopy equivalence [10, chp. VII, thm. 1.9, p. 436] and
since we are only working with CW-complexes we will not distinguish, and for short write
SX. Since S A S = S? we will write S”X for the n-fold suspension of X.

If f: X — Y is a map, we define the mapping cylinder Z; =Y Uy X x I as the disjoint
union of Y and X x [ identifying the bottom of the cylinder with the image of f, that is
(2,0) ~ f(z) and Z; = YIIX x I/ ~. Similarly we define the mapping cone Cy =Y U;CX.
The map f is called the attaching map.

For a map f : X — Y we define the cone map of f , Cf : CX — CY by Cf =
fx1/f(X) x {1}, and similarly we define the reduced suspension map, Sf : SX — SY.

Let (X, A) be a finite CW-pair with A a closed subcomplex of X. Consider the sequence

AinCiijle

where 7, 7, k and [ are the natural inclusion maps.

Since C'A is contractible to a point there exists a homotopy equivalence [10, thm. 1.6, p.
433] h : C; — X/A. By similar arguments we have homotopy equivalences C; — C;/CX =
Ci/X = SA, and C, — Ci/C; = C;/C; = SX. Thus we have the homotopy equivalent
sequence,

A—X —X/A—SA— 85X

This sequence is known as the Puppe sequence of spaces. Now apply the K-cofunctor.

3.2.5 Theorem. Let X be a finite CW-complex and A a closed subcomplex of X with the
natural inclusion map v : A — X. Then there ezists a morphism 0 : K(SA) — K(X/A)
such that the sequence,

K(SX) — K(S4) —2> K(X/A) — K(X) — K (A)

18 exact.
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Proof: From the discussion above we have a homotopy equivalence h : C; — X /A, thus we
obtain an isomorphism h# : K(X/A) — K(C;). Since we have C;/CX = C;/X = SA the
diagram,
K(SA) —— K(C;) —— K(X)
e
K(Xx/4)

commutes and by theorem 3.2.1 the top row is exact. Since hA# is an isomorphism the result
follows. O

Since SCy = Cgp ~ SX/SA ~ S(X/A), the Puppe sequence can be extended to form a
long sequence of spaces

A X X/A SA SX S(X/A) —>- -

and thus we can extend the previous theorem,

= K(S(X/A)) — K(SX) — K(SA) — K(X/A) — K(X) — K (A)

Now let K "(X) = K(S"X) and K "(X/A) = K(S"(X/A)), then the sequence can be

rewritten
--—>I~{*1(X/A) —>I~(*1(X) —>I~(*1(A) —>I~((X/A) —>I~{(X) —>R'(A)

where we have chosen negative indices so that the coboundary maps 0 introduced in theorem
3.2.5 increase dimension as in ordinary cohomology.
As in corollary 3.2.4 we have an unreduced version of the sequence.

> K YX,A) — K (X)) — K Y(4) — K (X, A) — K(X) — K(A)

3.3 Products in K-theory

For spaces X,Y let px : X XY — X and py : X XY — Y denote the natural projections
of the product space. We then define a ring morphism p: K(X)® K(Y) — K(X xY) by
1€ @ n) = pt(€)p¥(n). This is simply the exterior tensor product and we will write £&r.
Clearly p is a ring homomorphism since for vector bundles &, &' over X and 1,7’ over Y we

have (£&n) ® (£'@n') = (@ £)@M®n') and (£&n) & (f'@n') = (&)@ M S 7')

3.3.1 Definition. For spaces X,Y we define the ezxternal K-cup product by the morphism
p:K(X)® K(Y) = K(X xY) defined as above.

For pointed spaces X, Y, we wish to define an external K-cup product in a similar way.
This is done essentially by restriction of the external K-cup product.

3.3.2 Proposition. Let X,Y be pointed spaces and let1x : X — XVY andiy 1Y — XVY
be the natural inclusion maps. Then the group morphism ) K(XVY) = K(X)®
K(Y) is an isomorphism.
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Proof: With the natural inclusion and projection maps we have the sequence of spaces,
XX XVvYy 2> XVY/X Y

and thus from theorem 3.2.1 we obtain the sequence

Kwyﬁlkmvyygeku)

Similarly we obtain the sequence

R0 R(X VY)Y R()

Thus by exactness W# is inverse of f}% and 7@% is inverse of sz. Hence, we have a splitting
KXVY)~ KX)® K(Y). O

3.3.3 Proposition. With the natural inclusion X VY — X x Y the exact sequence
0—K(XAY)— KX xY)—KXVY)—=0

splits.

Proof: With the natural projections defined above, the following diagram commutes:

0—K(XAY)— =KX xY)——=K(XVY)—=0

Thus the composition (p% @ p#) (1%, %) is a splitting map and so K(X xY) - K(X VY)
is an epimorphism. O
It follows that KXxY)r K(XAY)® K(X)® K(Y). Viewing K(X) as a subring
of K(X) and K(Y) as a subring of K(Y) we can apply the external K-cup product to the
elements ¢ € K(X) and n € K(Y). Since 7k(£®n) = rk(&)rk(n), é9n € K(X x Y).

3.3.4 Proposition. With the restricted K-cup product as the first morphism the composi-
tion

KX)QK(Y)— KX xY)—=K(XVY)
vanish.

Proof: Since frid vanish on K(Y) and p¥ vanish on K(X), the product vanish on both K (X)
and K(Y'), hence on K(X VY). O

_ In particular, since KXVY)~ KX)o K(Y), there is a unique morphism /i : K(X)®
K(Y) - K(X AY) which composed with the morphism K (X AY) — K(X xY) is identical
to the restricted K-cup product of proposition 3.3.4.
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3.3.5 Definition. We define the ezternal K -cup product (or the reduced K-cup product) by
the morphism /i : K(X) ® K(Y) — K(X AY) defined above. We will write {&®n also for
the external K-cup product, we leave it to the reader to determine which is meant.

We now obtain the commutative diagram,

KX)9K(Y) =~ (KX)o K(Y)®o KX)o K(Y)aZ

. l

KXxY)——=(KX)AKY)aKX)eKY)®Z

where the second vertical arrow is the identity on the last three summands and the external
K-cup product on the first.

By use of the reduced external K-cup product we can now define the external K-cup
product for finite CW-pairs, (X, A) and (Y, B), using the natural identification X x Y/(X x
BUAXY)=X/AANY/B,

3.3.6 Definition. For pairs (X, A) and (Y, B) of finite CW-complexes, we define the relative
K -cup product as the morphism K(X,A4) ® K(Y,B) - K(X x Y, X x BUA xY) defined
by the reduced external K-cup product, K(X/A)® K(Y/B) — K(X/AAY/B).

3.4 Relations between real and complex K-theory

In this section we introduce some morphisms relating real and complex K-theory. To do
this we apply well known operations on vector spaces to the fibres of vector bundles and so
obtain the morphisms relating real and complex K-theory.

Recall that for a real vector space V' of dimension k there is a natural inclusion V < V'
into the complex vector space V' of dimension k£ mapping a basis v1, ..., v, of V into a basis
vy,..., v, of V. That is, essentially we replace real coefficients by complex coefficients.
Applying this operation to the fibres of vector bundles over X we obtain a sequence of maps
Ci = Vecth (X) — Vecth(X).

Clearly, for vector bundles £ and 7 of dimension k£ and [ respectively we have,

Crr1(§®n) =Cr(&) ® Ci(n)
Cul(§ ®n) = Cr(§) @ Ci(n)

and so the sequence defines a homomorphism of semirings, C' : Vectg(X) — Vectc(X).
This homomorphism induces a ring homomorphism, complezification, C : Kg(X) — K¢ (X)
defined by the formula C(¢£ —n) = C(&) — C(n).

For a complex vector space V of dimension k, let v{,...,v; be a basis. Then there is a
natural inclusion of V into the real vector space V' of dimension 2k defined by v; — vj; 4
and iv; > vy;, where vy, ..., vy, is a basis of V'. Applying this operation to the fibres of
vector bundles over X we obtain a sequence of maps Ry, : Vectt(X) — Vecta(X).

Clearly, for vector bundles £ and 71 of dimension £ and [ respectively we have

Ru(§ ®n) = Ri(§) @ Ru(n)
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but the morphism does not have multiplicative properties like C' since Ry (¢ ® 1) is of
dimension 2kl whereas Ry(£) ® R;(n) is of dimension 4k!.

Thus the sequence defines a homomorphism of semigroups R : Vectc(X) — Vectg(X)
which induces a group homomorphism, realification, R : Kc(X) — Kgr(X) defined by
R(§—n) = R(§) — R(n).

Finally, let vy, ..., v, be a basis for the complex vector space V. Then we define a map
V' — V which maps each vector v to its complex conjugate, that is if v = a1v; + - - - + axvg
then ¥ = @ v, +- - -+axvg. Transferring this operation to the fibres of complex vector bundles
we obtain a sequence of maps, T} : Vectt(X) — Vectt(X) which maps the fibres of a vector
bundle to the complex conjugate. Clearly, this sequence induces a ring homomorphism,
congugation T : K¢(X) — Kc(X).

From the defining operations on vector spaces we obtain the following relations for the
homomorphisms defined above

RC =2
CR=1+T
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The Bott periodicity theorem

The Bott periodicity theorem is a key result in K-theory, the first proof of Bott appeared in
1959 used purely geometric arguments, later J. C. Moore proved the theorem using homology
theory. In 1964 Bott and Atiyah gave a proof for the complex case of the theorem using
only very basic theory of vector bundles and complex analysis, and Atiyah gave later (in
1966) a similar proof for the real case.

The theorem is stated in versions for both real and complex K-theory, but we will only
prove the complex case, the reader may refer to [16, sec. 3.5] for a proof of the real version.
The line of proof remains unchanged from the presentation of Atiyah and Bott [5], the
presentation given in this chapter follows [15, chp. 11] closely.

4.1 The Bott periodicity theorem

4.1.1 Theorem (Bott periodicity theorem). Let X be a compact space. Then the
external cup product Kp(X) ® Kp(S*) — Kp(X x S*) is an isomorphism for k =2 if F = C
and for k=8 if F =R.

Consider the sequence
XVvSF—=Xx Sk——= X A Sk

From this we obtain the commutative diagram

KX)9K(Y) =~ (KX)o K(Y)®o KX)o K(Y)aZ

| l

K(X xY) (KX)ANKY)eo KX)o KY)oZ

where the vertical arrow on the right is the identity on the last three summands and the
external K-cup product on the first. From this we obtain,

4.1.2 Proposition. The external K-cup product K(X) ® K(S*) — K(X x S*) is an
isomorphism if and only if the external K-cup product K( ) ® K(S*) — K(X A S*¥) is an
1somorphism.
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Thus the periodicity theorem transfers to a periodicity theorem in reduced K-theory.
Whereas it is far easier to specify the isomorphism explicitly for reduced K-theory, it is
easier to prove the theorem in unreduced K-theory. We will only prove the theorem for
complex K-theory, and for the remaining part of the chapter all vector bundles are complex
vector bundles.

The strategy of the proof is to use the clutching construction introduced in section 2.3.
We first show that any vector bundle over X x $? can be decomposed as the clutching of two
(isomorphic) vector bundles over X x D for some clutching map . We then gradually reduce
the clutching map to simpler clutching maps. With this decomposition we can specify an
inverse to the periodicity morphism defined by the external K-cup product.

4.2 Complex bundles over X x S?

In this section, we establish the general setup for the proof of the periodicity theorem. We
view S? as the Riemann sphere, and Dy denote the disk |z| < 1 and D, denote the disk
|z| > 1. Then Dy N Dy, = S* and Dy U Dy, = S2.

For a compact space X we define the natural projections on X, 75 : X x Dy — X,
Moo : X X Dog — X, and m : X x S — X. Defining s : X — X x S? by the formula
s(z) = (z,1) we have ms = 1.

The following proposition asserts that any vector bundle over X x S? can be described
as the clutching of two vector bundles over X x D for some clutching function.

4.2.1 Proposition. Let & be a vector bundle over X x S? and let n = s*(£). Then there
is an automorphism « : wi(n) — 7w (n) such that & is isomorphic to w§(n) Uy 75 (n) and
a: ()| xxqy = T (0)|xx{1} i homotopic to the identity. Further o is unique with respect
to these properties.

Proof: Consider s : X — X x Dy. Then the composition sty : X X Dy — X x Dy
is a homotopy equivalence. Thus, since the disk is contractible, the natural isomorphism
&lxxq13 = 71 (n)|xxq1} prolongs to an isomorphism, ag : &|xxp, — 75(n). Similarly for
s: X =5 X X Dg,.

The extensions over X x Dy (and X X Dy,) differ by an automorphism which is the
homotopic to the identity on X x {1}, and since Dy is contractible, the automorphism is
homotopic to the identity on X x Dy. Choosing o = a_lap as our clutching function it
follows from proposition 2.3.9 that there is an isomorphism & — 75 (n) Ua 72 (7). O

We will denote the clutching construction defined by proposition 4.2.1 by [n, a]. The
following proposition asserts that any vector bundle over X x S? can be obtained as the
clutching with a certain clutching function defined as follows,

4.2.2 Definition. A Laurent polynomial clutching map o for the vector bundle 7 is a map

of the form
az, z) = Z ar(z)2*

k[<n

where ay, : 1 — 1 are vector bundle endomorphisms of n and |z| = 1. In particular, a linear
clutching map is a map of the form «(z, 2) = a(z) + b(x)z.
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4.2.3 Proposition. Let & be a vector bundle over X x S?, and let n = s*(§). Then & ~
7§ (n) U 72 (n) where o is a Laurent polynomial clutching map.

Proof: Assume & is isomorphic to 7§ (n) Uy 75 (n), for some clutching map o/. We define
the morphism ay : n — 7 by the integral

1 ks dz
ak(x)Qm, /slz o'(z, 2) p
and define
se(z,2) = ) aj()2
i<k
and

a;L(‘/E7z) = Z Sk($,2)
0<k<n

Then «/, is the n’th partial Cesaro sum of a Fourier sequence, and by Fejer’s theorem [13,
lem. 2.10, p. 40] o, converges uniformly in z and z to /.

Since the homotopy classes of clutching maps are open sets with the uniform topology
o), is a clutching map homotopic to o for n sufficiently large. Hence choose a = o, for
some sufficiently large integer n. Then there exists an isomorphism £ — 73 (n) Ua 72, (n). O

4.2.4 Ezample. Let v denote the canonical line bundle over S? = CP!, we then wish to
decompose 7y as a clutching of vector bundles. We obtain CP! as the quotient space C? —
{0}/ ~ where (zq,21) ~ (24, 21) if (20, 21) = (A2, AZ}) for some A € C — {0}. Let (zg,21)
denote the class determined by (zg, z1). We may also represent points of CP! as ratios, z =
z1/z9 € CU{oo} = S2. Then points in Dy can be represented uniquely as (1, 21 /2) = (1, 2)
with |z| < 1 and points in D,, can be represented uniquely as (zo/z1,1) = (27!, 1) with
27 < 1.

Over Dy and D, we have sections (1, z1/z9) — (1,21/20) and (z9/21,1) — (20/21,1)
respectively, which determine trivialisations of the canonical bundle over the disks. We pass
from S* C Dy, to S' C Dy by multiplication with z = 2;/zy. Thus we obtain the canonical
line bundle over CP! as the clutching Dy U, Dy, where a(z) = 2.

Similarly, the dual line bundle *+y can be obtained with the clutching function a(z) = 271,
Then v = [¢', 2] and *y = [¢!, 27!], where &' is the trivial line bundle over a point. We have
v ® *v ~ &' where €' is the trivial line bundle over CP! = §2.

4.2.5 Proposition. Let £ be isomorphic to [n,a] over X x S? for some vector bundle n
over X and Laurent polynomial clutching map o, then [n, 2"a] is isomorphic to E&Y" and
[n, 27 "] is isomorphic to EQ*y™ where ¥ denotes the n-fold tensor product of v and & is
the external tensor product.

Proof: By the properties of the tensor product for clutching maps, we have that 7§ (1) U,ng

7% (n) is isomorphic to (7 (n) ® ') Uagan (12,(n) ® €'). The proposition now follows since

(T5(n) @ ') Uagan (7%, (n) @ €') and £®7™ are isomorphic. Likewise for *+. O

It follows that for a monomial clutching map az™ we have [n, az"] ~ n®".
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4.3 Linear clutching maps

Let n be a vector bundle over X. Any Laurent polynomial clutching function « for n can be
written o = z7"p for some polynomial clutching function p = >, .. prz* where py : 7 — n
is a vector bundle endomorphism for |k| < n. Then we have [n, z27"p] & [, p|®*y". The
next step is to linearise the polynomial clutching map p.

For a vector bundle n with polynomial clutching function p = 3 .., Prz* let L™(p)
denote the linear polynomial clutching function for the vector bundle L"(n) = (n + 1)n
given by the matrix,

-pO P1 --- Pn-1 pn-
—z 1 0 0
0O 0 ... 1 0

i 0o 0 ... —z 1 |

Then L"(p) can be obtained as the product of three matrices,

1 pf ... ol |p O ... 0 1 0 ... 0
0 1 0 01 Of [—= 1 0
0 0 1 0 0 . 1 0 O 1

where pj(z) = > i, Prz" " and p; — zp},; = p. We then have L"(p) = (1+ N)(p &
1)(1+ N3) where N; and N, are nil-potent. Hence, we obtain a homotopy of clutching maps
LY(p) = (1 +tNy)(p @ 1)(1 + tNy) of L™(n), from p @ 1 to L"(p). This gives the following
proposition,

4.3.1 Proposition. For a vector bundle n over X and polynomial clutching function p =
> o<k<n prz¥, the vector bundles [L™(n), L™ (p)] and [L™(n),p ® 1] are isomorphic.

For the following propositions, we may view p =) ;... pr2® as a polynomial clutching
map of degree n + 1 with p,,; = 0. o

4.3.2 Proposition. Let n be a vector bundle over X and letp= "7 1\, pe2® be a polyno-
mial clutching map of n. Then [L™(n), L™ (p)] is isomorphic to [L™(n), L"(p)] ® [n,1].

Proof: The proposition follows using the homotopy of clutching maps,

bPo P1 --- Pn 0
—2z 1 ... 0 0
0o 0 ... 1 0
[0 0 ... —(1—t2) 1

Then for ¢ = 0 we have [L"*'(n), L"™(p)] and for ¢ = 1 we have [L"(n), L"(p)] & [n,1]. O
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4.3.3 Proposition. Let n be a vector bundle over X and letp =7, .., pr2® be a polyno-
mial clutching map of n. Then [L™*(n), L™ (2p)] is isomorphic to [L"(n), L"(p)] ® [n, 2]

Proof: As above, we obtain the result using the homotopy of clutching maps,

0 Po P1 --. Dn
—z 11—t 0 ... O
0 0 ... 1 0
_0 0 .. —Z 1_

Then for ¢t = 0 we have [L"!(n), L™ (2p)]| and for ¢t = 1 we have [L™(n), L™(p)] ® [n,2]. O

As a corollary we obtain,

4.3.4 Corollary. For the canonical line bundle v over S* = CP! and the dual bundle *v

we have V> @ el =~ v @ v or equivalently *y 2 @ el ~*y 1@yt

Proof: By proposition 4.3.3 there is an isomorphism from [¢2, 22] = [L%(g!), 2] to [¢, 2] @
[el,2] = v @ v, and by proposition 4.3.1 there is an isomorphism from [¢2, 22| to [¢!, 2%] ®
1] =7 @e. O

Let n be a vector bundle over X and let p(z, z) = a(x)z + b(x) be a linear clutching map
of n. We wish to prove that 7 decomposes as a Whitney sum n = 7% & n® such that the
restrictions p|,o n% — 79 are nonsingular for all z € X and 2| > 1, and p|0 :n° —n° is
nonsingular for all x € X and |z| < 1. Then the vector bundle [, a(x)z+b(x)] is isomorphic
to 1%, 2] @ [12,1].

The linear clutching map p(z, z) = a(z)z + b(x) is nonsingular for all  and |z| = 1. By
compactness of X, there exists a § > 0 such that p is singular for all z and 1 -6 < [z| < 1+46.

We define,

1

po(x) = 9mi | |:1[a(x)z +b(z)] ta(z)dz
Poo() = 2% | |:1a($)[a(x)z + b(z)] " dz

where po : 7 — 1 and py, : 7 — 1 are bundle morphisms independent of z.

4.3.5 Proposition. For a vector bundle n over X and a linear clutching map p(z,z), let
Po and P be defined as above. Then p(x, z)po(z) = poo(z)p(x, 2) for all x € X and |z| = 1.
Further py and ps are projections, i.e. po(z)po(x) = po(x) and peo(Z)Peo(T) = Poo()-

Proof: First, let z,w denote complex variables. Then for z # w we have the following
relation,
[aw + b alaz + b7t = [az + b] " aaw + b

B [az+b]_1+[aw+b]_1
Cow— 2 zZ—w
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This follows using the symmetry of z and w since,

-1 -1
[az + 0] +[aw+b] ~ faw + b 1aw+b[ O faw +b]1 +b[z+b]’1
w— 2z Z—w w z
_ law + 8! [aw—i—b_ az—i—b] faz + 51
w—z w—2

= [aw + b] 'a[az +b] !

Note: This relation also holds if w = z.
To establish the relation p(x, 2)po(z) = peo(z)p(x, z) we multiply by [az + b] on the left,

laz + blpy = 5 |Z|:1[az + b)law + b] 'adw
= % |z|:1[az + b][aw + b 'alaz + b] " [az + bldw
= 271m' |z|:1[az + b)[az + b 'alaw + b]'[az + bldw
_ QLM oo =01 oz +
= Poo[az + b

To show that po is a projection, chose 1 — 6 < r; < ry < 1+ 6. Then for |z| =7y >

we have,
dw
/ - 0
w=|r1| w—z

From this we obtain,

1
PoPo = [az + b]'afaw + b] ' adzdw
2 |z|=r1 J |w|=r2
b~ b~
/ / [0z + a—+ low + 5] adzdw
(2mi)? zl=ry J jw|=ry W — % Z—w
— [aw + b] " adw
271'2 \z\ -
=Do
The proof for p,, follows the same pattern. O

For [n, p] let py and ps be defined as above. We denote the vector bundle impy by 79 and
ker py by 7%, hence, n = n% @ 7. Similarly, n3® = imps,, N> = ker pe, and 7 = 7° & n>.
From the relation p(z, 2)po(z) = Poo(z)p(z,2) we then have the following restrictions of
p(z, 2),

pi(2) i m) =0
p-(-,2) : > = 0>
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4.3.6 Proposition. The restriction py(-,z) : 0} — 13 is an isomorphism for |z| > 1 and
p_(-,2) : n° — ™ is an isomorphism for |z| < 1.

Proof: Let v be in the fibre of 1 over z such that [a(z)w + b(z)]v = 0 for |w| # 1. Then
[a(z)w+b(z)]v = (2—w)a(z)v and [a(z)2+b(z)] " a(z)v = (z—w)~'v for |z| = 1. Integrating
over S! we get the relations,

po(a)v = v for |w| <1
0 for |w|>1

If v € ker[a(z)w + b(x)] and |w| < 1 then v € 7% and p_ is an monomorphism for |z < 1. If
v € ker[a(z)w + b(x)] and |w| > 1 then v € n°. Hence, p, is an monomorphism for |z| > 1.
For dimensional reasons, p; and p_ are epimorphisms for |z| > 1 and |z| < 1 respectively.
Hence, p, and p_ are isomorphisms on D, and Dy respectively. O

4.3.7 Proposition. Let py = a2+ by and p_ = a_z+ b_ where py and p_ are defined as
above, and let p* = pl, + p' where p, = ayz+1tby andp_ =ta_z+b_ for 0 <t <1. Then
p! is a homotopy of linear clutching maps from a,z + b_ to p. Further, the vector bundles
[n,p] and (1%, 2] & [n°,1] are isomorphic.

Proof: By proposition 4.3.6, piL and p! are isomorphisms onto their respective images for all
0 <t < 1. Then [n,p| is isomorphic to (7S U,, . 1) & (n° Up_ n°°) over X x S2. Since ay :
n% — n® and b_ : n° — 9 are isomorphisms, there are isomorphisms 79, z] = 7% U, 7%
and [n°,1] — n° Uy_ n™. O

To sum up the results of the section, let n be a vector bundle over X with polynomial
clutching map p with degp < n. Then the vector bundle L™(n) = (n+ 1)n decomposes with
respect to the linear clutching map L"(p). We denote this vector bundle by,

L*(n) = L"(n,p)+ ® L"(n,p)-
By proposition 4.3.7 we have [L™(n), L"(p)] = [L"(n,p)+, 2] ® [L"(n,p)_, 1]. Thus,

4.3.8 Proposition. Let n be a vector bundle over X and let p(x, z) be a polynomial clutching
map for n with degp < n.Then for L™ (p) we have,

L™ (n,p)+ = L"(n,p)+
L™ (n,p)- =~ L"(n,p)- &7

—~

and for L™ (2p) we have,

L™ (n, zp)+ ~ L™(n,p)+ &1
L™ (n, zp)- ~ L"(n,p)-
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4.4 The periodicity isomorphism

The periodicity homomorphism p : K¢ (X) ® Kc(S?) — Kc(X x S?) is the external K-cup
product as defined in section 3.3. With the results of the previous sections we can now
define a morphism v : K¢(X X S?) — Kc¢(X) ® Kc(S?) and show that this is an inverse
of .

Let n be a vector bundle over X and let a be a clutching map. By proposition 4.2.3
there exists a Laurent polynomial clutching map z~"p,(z, z) homotopic to «, where p,(z, 2)
is a polynomial with degp, < 2n. We then define

va(n, @) = L (n,pa)+ ® (/" ="9") + n @ "y"
Since (1 — *y)*y = (1 — *v) by corollary 4.3.4 this reduces to

Va(m, @) = L"(0,pn)1 ® (1 =) +n @ "9"
This defines a morphism v, : K(X x S?) = K¢(X) ® Kc(S?)

4.4.1 Proposition. The morphism v, : K(X x §%) — K¢(X) ® Kc(S?) is independent
of n, i.e. v(n, ) = Vpi1(n, @).

Proof: From proposition 4.3.8 we have

L2, pns1)+ = L2 (0, 2bnt1)+ = L (0, 2pn)+ = L** (0, pn)+ ® 1

Hence, we obtain

Vnsr (1, @) = L2 (0, ppis)+ ® (7" = ") 4 @ 4t
=L, pn)+ @ (1 =) +n @ (7" = ") + n @ 4!
=L (n,pn)+ ® (1 =) +n®*y"
= vn(n, @)

O

Since v, is independent of n we can drop the index from notation and write v for
this morphism. Let « and o' be clutching functions of the vector bundle 7 such that
[n,a] = [n,d'] =~ & and let z7"p and 2~ "p’ be Laurent polynomial clutching maps for o and
o' respectively. Then the line segment joining p with p’ defines a homotopy of clutching
maps. Hence, v([n, a]) = v([n, ¢']) and we simply write v(§).

Note that for vector bundles &, &' over X x S? we have v(§ ® &) = v(€) + v(£). Hence,
v: Kc(X x S?) = Kc(X) ® Kc(S?) is a well defined homomorphism.

4.4.2 Theorem. The external K-cup product p : Kc(X) ® Kc(S?) — Kc(X x S?) is an
isomorphism with v : Kc(X x S?) — Kc(X) ® Kc(S?) as inverse.

Proof: We first prove that vy = 1. It is sufficient to show that vu(n ® *y*) = n®*y™ where
n is a vector bundle over X. Since u(n ® *y™) = [n, 27" by proposition 4.2.5 we have,

v([n,z") = L"(n, 1)+ @ "Y' =" ") +nQ®@ " =n®*y"
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Since L?"(n,1), = L%(n, 1), = 0. Hence, vu = 1.
For pv = 1. we have the following relations by proposition 4.3.7

(L2 (1, pn)+, 2] = [L*™(n), L*"(pn)] — [L*" (0, r) -, 1]
[L"(n,pn)—, 2" "] = [L*™(n), L™ (pn)] @ *¥" = [L* (1, pn) -, 1] @ *4"

where the second relation follows from proposition 4.3.2. Now,
[L2"(n), L*(pn)] = [0, Pn(, 2)] + 201

Let £ be a vector bundle over X x S? with £ = [n, a] for some vector bundle  over X
and clutching map a. We then have,

v(€) =v(ln,a)) = L"(n,pa)+ ® (" =" +n® "

Hence,
,U,l/(f) - [LG (napn)—l—: Zl_n] - [LG(napn), Z_n] + [na z—n]
= [L*(n), L (pn)] ® *v" — [L*™(n, pn)—, 1] ® *¥" = [L*"(1,p)+, 1] @ *7" + [, 27"
=2n(n®*y") + [0,z "pa) — [L**(1),1] @ V" + n @ *y"
= [n,27"pn(z, 2)]
=¢
This proves the theorem. O

4.4.3 Ezample. From the periodicity theorem we have that K¢(S?) = Z @ Z. This is gener-
ated by (1,~) where 7 is the canonical vector bundle over S? = CP!, with the multiplication
determined by corollary 4.3.4, 7> = 2y — 1. We may rewrite this as (y — 1)> = 0. Hence,
K¢(S5?) is the truncated polynomial ring Z[y]/(y — 1)2.

Regarding K¢ (S?) as the kernel of K¢(S?) — Kc(xg), then K¢(S?) is generated by

(v — 1). Multiplication is trivial since we have the relation (y — 1)2 =10

Using the Bott periodicity we may extend the long exact sequence of chapter 3 and
define rings K"(X,Y) for positive n,

= K(X,A) — K(X) —= K(A) — K}(X, A) — K(X) — K'(A) — - --

and it is common to define K% (X) = K2(X) U K{(X).

For the sphere S, Kz(S") is determined by the homotopy group 7,_;(Ug) where Up =
UnpU(n) for F = C and Ur = U,O(n) for F = R [15, thm. 5.1, p. 120]. Since S™ = S" (%),
this yields,

- n= O -1 -2 -3 -4 -5 -6 -7 -8
Kg(*) =%Z 0 Z 0 Z 0 Z 0 Z
Kix)= Z Zy Zs 0 Z O 0 0 Z
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5

Algebraic structures of K(X)

In this chapter, we introduce further algebraic operations on the rings Kr(X), namely a set
of morphisms WX : Kz(X) — Kr(X). These operations are known as the Adams operations
and were introduced by J. F. Adams in 1962, [2]. The Adams operations are studied in
the first section. In the second section we study the Chern classes and Chern character
which provide a connection with ordinary cohomology. Finally we briefly consider spectral
sequences and state some results due to Atiyah and Hirzebruch [6].

5.1 The Adams operations

For the construction of the Adams operations, Adams used representation theory to obtain
the results for real and complex vector bundles [2, sec. 4]. Restricting to complex vector
bundles the Adams operations can be obtained using the splitting principle, which in turn
relies on the Leray-Hirsch theorem [15, thm. 1.1, p. 245].

It is beyond the scope of this thesis to give a full account on the construction of the
Adams operations, we will only give an account for the complex case. However, unless
explicitly stated otherwise, the properties of the Adams operations also hold for real vector
bundles. We state the splitting principle without proof, for a proof we refer to [16, chp. IV,
thm. 2.15].

5.1.1 Theorem (The splitting principle). Let & be a complex vector bundle over X.
Then there is a space Y and a map f :Y — X such that

i) [*(&) decomposes as a Whitney sum of line bundles.
i) f7: Ko(X) — Kc(Y) is injective.

5.1.2 Corollary. For any finite set of vector bundles &1, ...,&, there is a space Y and a
map f:Y — X such that

i) For alli, f*(&) decomposes as a Whitney sum of line bundles.

i) f#: Ko(X) — Kc(Y) is injective.
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Proof: This follows by repeated use of the splitting principle and the naturality of f* since
line bundles are pulled back to line bundles. O

5.1.3 Theorem. For a compact Hausdorff space X there exists ring homomorphisms Wk :
Kp(X) — Kp(X), defined for k > 0 satisfying the following properties,

i) Foramap f: X — Y, Ukf# = f#k

ii) For a line bundle v, UE(y) = +*

Proof: To prove the theorem we first construct operations for the class of sums of line bundles
satisfying the above properties for the isomorphism classes of vector bundles. Then, using
the splitting principle, we show that these operations satisfies the properties above when
applied to arbitrary classes of vector bundles. Finally we show that these operations induce
operations on Kp(X) satisfying the properties stated in the theorem.

First note that for a sum of line bundles £ = v, @ --- & 7, € Vecty(X), it follows from
the properties of Whitney sum and tensor product that the properties of the theorem are
satisfied if

Ve Om =& &N

We wish to define a general formula that specialises to this for sums of line bundles.

Recall the properties of exterior products for vector bundles from p. 12, clearly these also
hold for isomorphism classes of vector bundles. For a sum of line bundles, £ = v ®---®, €
Vectr(X), we define a polynomial with coefficients in Vecty(X) by

(€)= DN (©)F

By property iv) of exterior products this sum is finite, and generalising property i) of
exterior products we obtain,

A(€) = T Ae()
Since X°(y) =1, A}(y) = v and M\*(y) = 0 for k£ > 1 this formula can be rewritten,

n(©) = [T +)

1

Thus we see that the coefficient M (€) of the t/’th term is the j'th elementary symmetric
function o; of the v;’s, namely the sum of all products of j distinct line bundles,

N(€) =0;(71,---,7n)

The fundamental theorem of symmetric polynomials assert that any symmetric poly-
nomial of degree k£ in n variables can be expressed uniquely as a polynomial in oy, ..., 0oy,
where o; is the i’th elementary symmetric polynomial of n variables. In particular view-
ing 7% & --- ®~F as a polynomial of degree k in n this can be expressed as a polynomial
sk(o1,...,01) called the Newton polynomial of degree k. The Newton polynomials are inde-
pendent of the number of variables, we can pass from n to n — 1 variables by letting terms
with the n’th variable vanish.
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Now we define for arbitrary classes of vector bundles the operation & : Vecty(X) —
Vectr(X) by the formula

\II]IBC‘(é-) = Sk(/\l(f)1 R Ak(g))

Clearly, it follows from the properties of exterior products that the naturality property
i) is satisfied for arbitrary classes of vector bundles, and from the discussion above property
ii) is clear.

We next verify that the operations are additive and multiplicative. This follows using the
splitting principle and the naturality of the operations proved above. Let £ ¢’ € Vecty(X)
be a class of bundles and let f : ¥ — X be a splitting such that f*(£) = @, and

f*(&) = @, ;- Then we have

[Fupcad) =vpffEad)
=Ur(1 @D O MmOND--- S,
ol AR R A R R R
=V @ O Vm) ® V(11 & - D7)
= UEf#(&) @ VEf# ()
= f#(VE(E) ® PE(E))

To show multiplicity, using the splitting principle on each factor, the product & ® &
decomposes as a sum of terms of the form ; ® v;. Thus we obtain

FRUEE®E) =Tpf*(E®f)
= UE(fF (&) ® f7(¢)
= U@ e D))

= V(P @)
1,J

= P vi(rv @ 7))

1]

= P vh(v) @ ¥h(7)

1,

- (@) o (@t
— @ 0 B

= W f*(€) ® Tef*(¢))
= f#(U5(E) ® UE(€))

Since the operations W% preserves sums and products of classes of vector bundles, they
induce ring homomorphisms W% : Kp(X) — Kp(X) by Uk(é—n) = UE(£)—Tk(n). Additivity
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is clear and multiplicativity follows by simple calculations using the multiplication rules on
p- 22. O

5.1.4 Definition. The operations WX : Kp(X) — Ky(X) introduced in theorem 5.1.1 are
called the Adams operations.

5.1.5 Theorem. The Adams operations satisfy the following equation
g o Ul = Of!

Proof: Using the splitting principle, we only need to prove the theorem for a line bundle
v € Vectp(X). For a line bundle v we have,

g o Uip(y) = Ug(v')
=UE(7) @ --- @ Ug(y)
= ,ch R--® fyk
— ,Ykl

5.1.6 Theorem. The following diagram is commutative,

\I/k

Kp(X) — Kg(X)

|,k

K¢(X) — Kc(X)
Proof: Complexification commutes with sums and products, and so with exterior products.
The result now follows. O

The Adams operations can be extended to negative powers consistent with the results
above as follows:

5.1.7 Definition. For K¢(X) we define
U'l=T
and for Kg(X) we define
Tg' =Ty
This definition extends the Adams operations to negative powers by the formula ¥ k—
U 3 i
_ The Adams operations restricts to similar operations in reduced K-theory, Uk Kp(X) —
Ky(X) by property i) since Kp(X) is the kernel of the map Ky(X) — Kp(x) for some
o € X. For the reduced external K-cup product we then have,
WE(E&n) = VE(k (6) @ pf(n)
= Ui(pk (6) ® VE(p} (n))
= p%(YE(E)) ® pf (VE(n))
= Ug(§)®T(n)
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5.1.8 Proposition. The Adams operations
Uk - Kp(S™) — Kp(S™)
where n s even for F =R, are given by
VE(E) = k"¢
Proof: Since Wk is additive it suffices to show the theorem for generators. For K¢ (S?) we
have from example 4.4.3 the generator y =y — 1, where + is the canonical line bundle over
S? = CP!. Since (7 —1)? = 0 we have,
Ug(a) = Tg(y—1)

= f)/k -1

=(a+1)F -1

=1+ka-1

= ko

Since S?" = S2 A --- A S2, Kc(S?") is generated by 1 ® - -- ® p and the result follows.
For F = R and n even it follows from the work of Bott[9] that the complexification

C:Z=Kg(S™) = Kc(S™) =7
is monomorphic, and so the result follows from the complex case. O

5.1.9 Remark. Tn fact, it follows from the work of Bott[9] that C : Kg(S?*) — K¢(S?") is
an isomorphism for n =0 mod 4 and imC' = 2Z for n = 2 mod 4.

5.2 Characteristic classes

In this section we provide a connection to ordinary cohomology, but the exposition given
here will be limited to definitions and stating the properties we need for our further studies,
no proofs will be given. For a more extensive expositions we refer to [19, chp. 18] and [15,
chp. 17].

For a space X there is a sequence of morphisms ¢ : Vecte(X) — H?*(X;Z) assigning
to each class £ € Vectc(X) a class ¢ (€) € H?*(X; Z) satisfying the following properties:

i) co(€) =1 and ¢x(&) = 0 for dim(&) < k

ii) If f: Y — X is a map, then the diagram

Vecte (X) —2>~ H?*(X; Z)

1ok

Vecte(Y) —2~ H?*(Y'; Z)

commutes for all k, where the vertical arrows are the maps induced by f.
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iii) For the canonical line bundle v over S? = CP!, ¢;(7) is a generator of H%(S?%Z).

5.2.1 Theorem. For vector bundles &, 1 € Vecte(X),

k
6@77 :ZCZ Clcz
=0

5.2.2 Definition. For £ € Vectc(X) the class ¢z (§) € H*(X;Z) is called the k’th Chern
class of &€ and we define the total Chern class ¢ : Vectc(X) — H*(X;Z) by the formula

For a space X there is a sequence of morphisms chy, : Vectc(X) — H?(X; Q) such that
the following properties are satisfied:

i) chy(§) = dim(€) and chy (&) = ¢1(€).

ii) For a map f : Y — X with the induced morphisms f* : Vectc(X) — Vecte(Y) and
f*: H (X;Q) —» H*(Y;Q), the diagram

Chk

Vecte(X) — H*(X,Q)
1)
Vecte (V) —22= H2(Y, Q)

commutes for all .

5.2.3 Theorem. For vector bundles &, 1 € Vectc(X) the morphism chy, satisfies

chy, (€ ® 1) = chy (&) + chy(n)

and
k

chi(E®n) = Z ch; (€)ch_;(n)

for all k.

5.2.4 Definition. For £ € Vectc(X) the class chy(€) is called the k’th Chern character of
¢ and we define the total Chern character, ch : Vecte(X) — H**(X;Q), by the formula

h(€) =) chi(€)

For a line bundle vy over X
1

chy,(y) = HChl(V)k
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which is the k’th term of the power expansion of the exponential function and so for the
total Chern character we have
ch(y) = )

For arbitrary vector bundles we obtain, using the splitting principle,
Ch(é') = eChl('Yl) 4.4+ €Ch1(’7n)

where E &~ 7 D - -+ B Yy

By the universal property of the construction of K¢(X) and application of theorem 5.2.3,
the Chern character induces a ring homomorphism ch : K¢(X) — H**(X;Q) and we will
refer to this morphism as the Chern character in the following.

To end the section, we remark that the Chern class has an analog for real vector bund-
les, namely the Stiefel-Whitney class, w : Vectg(X) — H*(X;Z,) satisfying properties
analogous to those for the Chern class.

5.3 Spectral sequences of K-theory

In this section we state one important result due to Atiyah and Hirzebruch, namely the
existence of a certain spectral sequence. No proof will be given, instead we refer to [6, §2],
[15, Sec. 9.5] and [9, p. 315].

Let X be a CW-complex and X? the p-skeleton of X. The natural inclusion X7~ ! — X
then induces a morphism K9(X) — K9(X?~1). We define

K}(X) = ker[K§(X) — Kg(X? )]

When working with spectral sequences we drop F from notation and let it be determined
from the context whether to use real or complex K-theory.

5.3.1 Theorem. Let X be a finite CW-complex, and xq € X a point. Then there exists a
spectral sequence, EP9 where r > 1 and —oo < p,q < oo with

EP x5 OP(X, K(10))
E w0 HP(X, K(10))
EL ~ KpH(X) /Ky (X)

where 0y is the ordinary coboundary operator. In the complex case if r is even, the differential
Op : EP1 — EPTHa="1 yanish since EP? =0 for q odd.

The spectral sequence does not determine Kp(X) explicitly, but it does reveal some
structure of Kp(X). Tt follows from the theorem that Kp(X) is filtered by the groups
Kp(X/X?~1) and the successive quotients are the entries of EP:"P. Given an element x in
Kp(X/XP~1) this maps to some element, in Ky(X?~'*"/X?~") where 1 < r < co. Passing
to quotients we then obtain an element «, of EP"P such that 0,x, = 0.

In particular, for F = C and 7 = 1, an element x € K¢(X?/X? ') defines an element
k1 of CP(X, K7P(xp)). Since X?/XP~! is a wedge of spheres, we obtain an isomorphism
Ke(X?P/XP1) &~ CP(X, K~P(x0)). Hence, we can determine if #; is a generator by examining
the Chern character of .
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6

Thom spaces

This chapter provides the first part of the proof of the non-existence theorem. We give a
reduction of the problem to a problem of coreducibility of certain stunted projective spaces.
This reduction was first proved by James (1958) and Atiyah later proved the theorem using
Thom complexes and S-theory [4], we will follow his approach.

The first section defines Thom complexes and we show that these may be viewed as
generalised suspensions. In section 2, we introduce S-theory and state two fundamental
theorems due to Spanier, Whitehead and Atiyah. Section 3 is concerned with fibre homotopy
type, and we relate this with the results of the previous sections in theorem 6.3.3. In section
4, we give an account of reducibility which provide the basis for the reduction of the non-
existence theorem. Finally in section 5, we are ready to prove the reduction theorem.

6.1 Thom spaces and vector bundles

To each real vector bundle &, p : E — X, we associate the projective bundle P(§) — X
with total space P(&) defined as follows: Let s : X — E be the zero section, then the total
space of the projective bundle is given by P(£) = FE — s(X)/ ~ where we factor out scalar
multiplication on the fibres of £&. The projection P(£) — X is defined from the projection
of £&. Thus if for x € X the fibre p~!(z) is R* in E then the fibre over z in P(§) is RP" !,
that is the fibres of the projective bundle are homeomorphic to projective spaces.

Similarly we define the sphere bundle S(§) — X as the bundle over X with total space
S() = F — s(X)/ ~ where we factor out positive scalars, and we obtain the projection
map S(£) — X from the projection map of £. Thus, if the fibre p~!(z) over z € X is R® in
E, then the fibre over z in S(&) is S™~1. Tt is clear from the construction that we can also
obtain the projective bundle as a quotient space of the sphere bundle.

From the sphere bundle we now define the disk bundle D(§) — X where total space
D(&) is the mapping cylinder of the projection S(£) — X.

A similar construction can be carried out for complex vector bundles with only few
modifications. In this chapter we will only consider real vector bundles.

6.1.1 Definition. For a vector bundle £ over X we define the Thom space as the quotient

space T(§) = D(£)/5(¢)-
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6.1.2 Proposition. For a vector bundle & with total space E, T (&) is homeomorphic to the
one point compactification of E.

Proof: Note that D(§) — S(€) is homeomorphic to E. Since D(£)/S(€) is the one point
compactification of D(£) — S(&), it follows that 7'(£) is homeomorphic to the one point
compactification of F. O

We define the Cartesian product of bundles, £ x n = (E(§) x E(n), pe X py, B(§) X B(n)).
We then have,

6.1.3 Proposition. Let £ and n be real vector bundles over a compact space. Then the
Thom space T'( x n) is homeomorphic to the smash product T(£) A T(n).

Proof: From 6.1.2, we have that the Thom space T'(£ x ) is the one point compactification
of E(&xn) and T(&) AT (n) is the one point compactification of E(£) x E(n). The proposition
now follows from the identity F(§) x E(n) = E(§ x n). a

6.1.4 Corollary. The Thom space T'(§ @ €™) is homeomorphic to the n-fold suspension
S™(T(8))-

Proof: First note that the vector bundle £ e™ is isomorphic to £ X R", where we regard R" as
the n-dimensional vector bundle over a point. Since T(R") = S™ we have from proposition
6.1.3 that T(¢ @ ™) is homeomorphic to S™ AT (&) = S™(T'(€)). O

From the proof, we see that the Thom space may be viewed as a generalisation of
suspension to vector bundles.

6.1.5 Proposition. Let & be the canonical line bundle over RP*. Then the Thom space
T(mé& ® ™) and the n-fold suspension of the stunted projective space S™(RP™F /RP™ 1)
are homeomorphic.

Proof: We only need to prove that T'(m&) is homeomorphic to RP™* /RP™~!. First note
that the total space of & is homeomorphic to S¥ x R/ ~, where (z,y) ~ (—z, —y). Then the
m-fold Whitney sum of &, has total space S¥ x R™/ ~, where (z,y) ~ (-, —y) for z € S*
and y € R™. Hence we obtain the disk bundle of mé&, with total space D(mé&;) = S¥x D™/ ~
and sphere bundle with total space S(mé&;) = S¥ x S™71/ ~.

Define the map, f : S¥ x D™ — S¥*™ by the relation f(z,y) = (v, (1 — ||y||)z). Then
f(S* x 8m~1) = §m=1 ¢ Sk¥*™_ Since f is odd, f defines a map g : D(m&;,) — RP*™ such
that the restrictions g : S(m&) — RP™ !, and g : D(m&;) — S(mé&) — RP™H — Rp™—!
are homeomorphisms. Hence, the quotient map,

h: T(m&) — RPF™ /RP™—1

is a homeomorphism. O

6.2 Duality

Let X and Y be pointed spaces and let [X, Y] denote the set of base point preserving maps.
Then the suspension S : X +— SX induces a map S : [X,Y] — [SX,SY]. The direct limit
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of the sequence
(X, Y] —[SX,SY] — - — [SFHLX, SFFY] —- ..

denoted {X,Y} is stable under the suspension map, {X,Y} = {SX, SY}. The elements of
{X,Y}, denoted {f} are called S-maps and hence we obtain the suspension category or the
S-category with pointed spaces as objects and S-maps as maps.

For k > 1 the set [S* X, S¥Y] can be regarded as a homotopy group and S : [S¥X, S*Y] —
[SFHLX | S*¥+1Y] as a group homomorphism, the suspension homomorphism. Passing to the
limit we obtain a group isomorphism {X,Y} — {SX,SY}.

We state the following theorem due to Spanier and Whitehead. It goes beyond the scope
of this thesis to give a full and satisfying account of the proof, instead we refer to [21, p.
458|.

6.2.1 Theorem (Spanier & Whitehead). Let X and Y be pointed spaces where X is a
CW-complex with dimension m and Y is n-connected. Then the suspension map

S:[X,Y] = [SX, SY]
s a bijection if m < 2n.

6.2.2 Corollary. If X is an m-dimensional CW-complex and Y is n-connected with 2n > m,

then there is a bijection,
[X, Y] = {X,Y}

Proof: If X has dimension m then dim S*X = m+k, and if Y is n-connected then by theorem
6.2.1, S*Y is n+k-connected. Hence for every k > 0, the map [S* X, S¥Y] — [SF+H1 X SFH1Y]
is a bijection by theorem 6.2.1. We now obtain the result from the sequence

[X,Y] —=[SX, SY] —= - —= [SFH1X, §FH1Y] — - .-

passing to the limit. O

For pointed spaces X and X’ a map u : X A X' — S™ is called an n-pairing. For a
pointed space Z, u then defines two group homomorphisms uy : {Z, X'} - {XAZ, S} and
u? : {X,Z} — {ZAX',S"} by the relations, uz ({f}) = {u(1Af)} and u”({g}) = {u(gA1)}.
If Z = S* we write uj, and u* respectively.

6.2.3 Definition. A space X is called an n-dual of the space X' if there exists an n-pairing
u: X AX'— S", such that ug : {S*, X'} — {X AS*,S"} and vF : {X', S¥} — {SFA X, S}
are group isomorphisms for all £ > 1. The map u is called an n-duality map.

If for some integers, k, m and n, the suspension S*X is n-dual of the suspension S™X’,
we say that X is S-dual of X'.

In section 6.1 we saw that Thom complexes may be viewed as generalised suspensions.
The following theorem due to Atiyah [4, thm. 3.3] gives an important relation between
S-duality and Thom spaces.

6.2.4 Theorem (Atiyah). Let £ and n be vector bundles over a closed differentiable mani-
fold X such that E®n@®T(X) is stably trivial, where 7(X) is the tangent bundle of X. Then
T (&) and T'(n) are S-duals.
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6.3 Stable fibre homotopy equivalence

Recall that two spaces X,Y are said to have same homotopy type if there exist maps
f:X —=>Yandg:Y — X such that fg ~ 1x and gf >~ 1y. We write X ~ Y. In the
following we will generalise this to fibre bundles, we will be particularly interested in the
fibre homotopy type of the associated sphere bundles.

Let £ and &' be bundles over X. A homotopy h; : E — E' is a fibre homotopy if for
every t € I, p'h; = p, i.e. the homotopy preserves fibres.

Let ug,u; : E — E' be bundle morphisms, then uy and u; are fibre homotopic, if there
exists a fibre homotopy h; : £ — E' with hg = ug and h; = u;. A bundle morphism
u: E — E'is a fibre homotopy equivalence if there exists a bundle morphism v’ : ' — F
such that vy’ and u'u are fibre homotopic to the identity maps. Finally, two bundles £ and
&' have same fibre homotopy type if there exists a fibre homotopy equivalence v : E — E'.

6.3.1 Definition. Let £ and n be vector bundles over X. The associated sphere bundles
are stable fibre homotopically equivalent if for some integers m, n, the bundles S({ &™) and
S(n @ ™) have same fibre homotopy type.

Clearly stable fibre homotopy equivalence is an equivalence relation. For a vector bundle
& over X, we denote by J(&) the stable fibre homotopy equivalence class defined by & and
J(X) denotes the set of all stable fibre homotopy equivalence classes over X.

6.3.2 Proposition. If X is a finite CW-complex, then Whitney sum of vector bundles
induces the structure of an abelian group on J(X).

Proof: The Whitney sum of vector bundles is commutative and associative up to isomor-
phism, and hence it is sufficient to show that J(£ & n) = J(&' & n) for vector bundles &, ¢’
and n over X with J(&) = J(¢).

Replacing & by £ @™ and &' by & @ ™ for suitable choices of m and n, we may assume
that S(&) and S(&') are fibre homotopy equivalent, hence it is sufficient to prove that S(£@®n)
is fibre homotopy equivalent to S(&' @ 7).

Let f: S(&) — S(¢) and f' : S(¢) — S(&) be fibre homotopy equivalences and let
hy : S(€) — S(€) and A} : S(¢') — S(&') be fibre homotopies such that hg = f'f, by = 1,
hy = ff' and B} = 1. . .

We then define maps f : S(E@®n) — S(E @n) and f': S ®n) = S(E®n) by the
relations

f(u cosf,vsinf) = (f(u)cosf,vsinh)

f'(u' cosB,vsin@) = (f'(u') cos B, vsin )

where u € S(§), u' € S(¢'), v € S(n) and 0 € [0, 37]. From these maps we then obtain the

desired fibre homotopies &, : S(€®n) — S(E®n) and A, : S(& ©n) — S(€' ®n) defined by
the equations,

hy(ucos B, vsin @) = (hy(u) cos @, vsin 6)

R (u' cos B, vsin @) = (hl(u') cos B, v sin )

Clear]y, iLO = f’f, ill = ]_, il6 = ffl and ;l’l =1. U
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It follows, that if X is a finite CW-complex, then there is a natural epimorphism
Kg(X) = J(X)

where Kz (X) is regarded as an abelian group with addition defined by Whitney sum. If X
is a finite CW-complex, then J(X) is a finite group [4, prop. 1.5].

6.3.3 Proposition. Let & and n be vector bundles over X. If S(§) and S(n) have same
fibre homotopy type, then T'(§) and T (n) have the same homotopy type. If J(§) = J(n) then
T(&) and T(n) have the same S-type, i.e. there exists integers m,n, such that S™T (&) and
S™T'(n) have same homotopy type.

Proof: Let f:S(&) — S(n) and f': S(n) — S(£) be fibre homotopy maps that are inverses
of each other. Then f and f’ prolong to maps g : D(¢) — D(n) and ¢’ : D(n) — D(§).
Hence, the homotopy from ff’ to the identity map then prolongs radially to a homotopy
D(§) — D(&) between gg' and the identity on D(). Similarly for f'f and ¢'g. Using
the quotient map we now obtain maps h : T(§) — T(n) and A’ : T'(n) — T(§) which are
homotopy inverses of each other.

For the second statement, we have by definition, that if J(£) = J(n), then there exists
integers m,n such that S( @& €™) and S(n @ ™) have same fibre homotopy type. By the
first statement, it follows that T'(£ ©™) and T'(n@®e") have same homotopy type, and from
corollary 6.1.4 it follows that T'(£ @ ™) = S™(T'(&)) and T (n @ &™) = S™(T'(n)) have same
homotopy type. Hence, T'(£) and T'(n) have same S-type. a

6.4 Reducibility

6.4.1 Definition. A pointed space X is reducible if for some integer n there exists a map
f 8™ - X such that f, : H;(S™) — H;(X) is an isomorphism for ¢ > n. A space X is
called S-reducible if for some integer k, S*X is reducible.

6.4.2 Definition. A pointed space X is called coreducible if for some integer n there exists
amap g: X — S™ such that ¢* : H'(S") — H*(X) is an isomorphism for s < n. A space X
is S-coreducible if for some integer k, S*X is coreducible.

For the following, for an n-dimensional CW-complex X, we denote the subcomplex of
X consisting of cells up to dimension k by X*.

6.4.3 Proposition. Let X be a n-dimensional CW-complex with one n-cell and let p : X —
X/X" 1 = S" be the natural projection map. The space X is reducible if and only if there
1s a map f: S™ — X such that pf is homotopic to the identity.
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Proof: From the sequence of spaces,
anl —>X _)X/anl
we obtain the following commutative diagram:

H,(S™)

0

0= H, (X" 1) — H,(X) 2> Ho(X/X" 1) 2> H,_ (X"1) —>---

First assume X is reducible, let f : S — X be a map that satisfies the condition on the
homology groups described above. We need to prove that pf is homotopic to the identity,
ie. (pf)s: Ho(S™) — H,(X/X™ 1) is an isomorphism. p, is monomorphic by exactness and
since f, is assumed an isomorphism, we only need to show that p, is an epimorphism.

Since f, is an isomorphism we have H,(X) = Z and hence p, is multiplication by an
integer p, that is p,(H,(X/X" 1)) = pZ. From exactness, imd ~ Z/pZ. Since H,_ (X" 1)
is free abelian, it follows that O is zero, hence p = 1, and we conclude that p, is an epimor-
phism.

Conversely, assume that there exists a map f : S™ — X such that pf is homotopic to
the identity, hence (pf). is an isomorphism. Since X has dimension n and only one n-cell,
it follows from the cellular chain complex that H,(X) = Z or 0. Thus, (pf), has degree 1,
and hence f, gives a reduction of H,(X). O

6.4.4 Proposition. Let X be a CW-complex with one n-cell, and no cells of lower dimen-
sion, i.e. X™ is homeomorphic to S™. Let 1 : X™ — X be the natural inclusion map of the
n-cell of X into X. The space X is coreducible if and only if there is a map g : X — S™
such that gi is homotopic to the identity.

X

N
gt ST

XTL

Proof: From the sequence of spaces,
Xt — X — X/X"
we have the commutative diagram in cohomology,
0= A™(X/X") — H*(X) —*= H™(X") —= A" (X/X") — -
"

If X is coreducible, then there exists a map g : X — S™ with ¢* : H*(S") — H*(X) an
isomorphism for 7 < n. With the same arguments as the previous proof, 2* is an isomorphism,
hence, (g2)* is an isomorphism, i.e. g2 is homotopic to the identity.
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Conversely, if there exists a map g : X — S™ such that gz is homotopic to the identity,
then (g2)* has degree 1, and hence, g gives a reduction of H"(X). O

6.4.5 Theorem. Let X be a CW-complex with one n-cell, and no cells of lower dimension.
Then X 1is coreducible if and only if X is S-coreducible.

Proof: The direct implication is clear from the definition. For the converse implication
assume that X is S-coreducible. Then by proposition 6.4.4 for some integer k£ > 0 there exists
amap g: S¥X — S*¥*" such that composition with the natural inclusion 2 : S¥t* — SkX
is homotopic to the identity.

Since X has only one n-cell and no cells of lower dimension, X is n-connected. Since S™
has dimension n, it follows from corollary 6.2.2 that there is a bijection [X, S"] — {X,S"}.
In particular from the construction there is a bijection [X, S"] — [SFX, Sk+n].

Hence the bijection defines a map g : X — S™ such that g composed with the natural
inclusion 2 : S™ — X is homotopic to the identity. By proposition 6.4.4 it follows that X is
coreducible. a

6.5 Vector fields on the sphere and reducibility

In the following consider R" as the n-dimensional real vector space with basis {e1,...,e,}
and inner product (-|-). S"! is the subset of unit vectors and we obtain the real projective
space RP™ by identifying antipodal points in S™~1.

For the real projective space RP"~! we then define the map © : RP"~! — O(n) as
follows. An element z € RP"! spans a line through the origin in R", then ©(z) is the
reflection through the hyperplane perpendicular to this line, that is for x € RP™~! and
y € R O(2)y =y — 2(zly)=.

With this map we then obtain the diagram

RPn—k-1 © O(n—k)

| l

RP"1 e O(n)

| l

RP"—! /RP"k-1 —© O(n)/O(n — k)

where the vertical maps are the natural inclusions and projections respectively. The bottom
row is defined by commutativity of the diagram, hence we have ©(x) = (v1, ..., v;) where
v; = O(x)ep_gyq for 1 <i < k.

6.5.1 Proposition. The map © : "' = RP" ! /RP"? — O(n)/O(n — 1) = S"! defined

as above is a homeomorphism.

Proof: Observe that O(z)e, = e, — 2(z|en)r = (22120, ..., —2Tp_1x — n,1 — 22). For
y € S"! with g, # 1 there exists an unique z € RP"~! such that x, > 0 and O(z)e, = y.
For z, = 0, we have ©(x)e, = e,. O
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Since O(n) consists of n x n-matrices with orthonormal column vectors, the map © :
RP™™' — O(n) can be regarded as a map © : RP"! — V,(R"). Factoring out the last
n — k vectors we now obtain a homeomorphism © : RP"~! /RP"*~! — V} (R") [10, p. 464].

6.5.2 Proposition. Fori < 2n—2k—1, © induces an isomorphism m;(RP"~! /RP"*-1) —

Proof: The proof is by induction on k. For £ = 1 the result follows from proposition 6.5.1.
Assume the statement holds for £ — 1, then the map © induces the commutative diagram,

anf2/RPn7k71 o V;Cfl(Rn_l)

‘| |

an—l/RPn—k—l o Vk(Rn)

L

]RPn—l/RPn—Q Vl (Rn)

By the induction hypothesis © induces isomorphisms of homotopy groups on the top row,
and on the bottom row © induces isomorphisms by the induction start.

Using the Wang sequence [21, cor. 6 p. 456] of homology on the right column we obtain
a commutative “ladder” in homology with exact columns. Since © in the top and bottom
row of the diagram induces isomorphisms of homotopy groups, © induces isomorphisms of
the corresponding homology groups by the Whitehead theorem [21, thm. 9 p. 399].

It then follows by the five lemma that the homology homomorphisms induced by © :
RP"~! /RP"*~! — V,(R") are isomorphisms. Applying the Whitehead theorem, we con-
clude that © : RP* ! /RP™ *~! — V;(R") induces isomorphisms of homotopy groups. O

For an integer n we write n = (2a + 1)2°7%? where a, c and d are integers and 0 < ¢ < 3.
Define p(n) = 2¢+ 8d. Then if n — 1 < 2n — (2p(n) + 2) — 1, that is for 2p(n) + 2 < n,
we have an isomorphism 7, 1 (RP"~! /RP"~(")=2) — 7 1 (V,,)41(R")). This leads to the
following proposition,

6.5.3 Theorem. If 2p(n) + 2 < n, then the bundle p : Vyu)41(R*) — S™ ! has a cross
section if and only if there exists a map

]c . Sn—l N an—l/RPn—p(n)—Z

such that composition with the natural projection w : RP™~! /RP"+(M~2 _ RP"~! /RP" 2 =
S"=! has degree 1, i.e. RP"™' /RP"P(M~2 s reducible.

Proof: With k = p(n) + 1 we obtain as in the proof above the commutative diagram,

RPan/RPnfp(n)f2 %(n)+1(Rn)

| |

Sn—l — R‘Pn—l/an—Z C] ‘/'I(Rn) — Sn—l
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Let s: S 1 — Vimy+1(R™) be a cross section. Since © induces isomorphisms by propo-
sition 6.5.2, there exists a map f : S"~' — RP"~! /RP"*("~2 which composed with © is
homotopic to s. Hence composing with s we obtain a map homotopic to the identity.

Conversely assume there is a map f : S”~! — RP"~' /RP"#()~2 gych that composition
with 7 has degree 1. Since © defines an isomorphism on the top row by 6.5.2, composing
f with © defines a map s’ : S" ' — RP" ! /RP"#("~2 guch that ps’ is homotopic to the
identity on S™'. Since p is a fibre map this homotopy lifts to V)11 (R™) to define a cross
section. O

6.5.4 Proposition. Let &_, be the canonical line bundle over RP*~! and let r denote
the order of J(&—1) in J(RP*=1). Then for all positive integers p, RP" /RP" P~k qnd
RP™ /RP™* have the same S-type. For rp > n + 1 the space RP™P*—" /RP™P"=2 s an
S-dual of RP™ /RP™ .

Proof: For the first part, we have by proposition 6.1.5 that the space RP™ /RP"* is homeo-
morphic to T'((n — k + 1)&;_1), and RP™*? /RP™ *+7? is homeomorphic to T'((n — k + 1 +
rp)r_1) =T((n — k + 1)&_1 @ rp&_1). Since r is the order of J(&_1), J(rp&_1) is trivial
as sphere bundle. The Thom space is completely determined by the sphere bundle, hence
T((n—k+ 1) 1 @ rp€_1) is homeomorphic to T'((n — k + 1)&,_1 @ ™). It follows that
RP™ /RP™*+7P is homeomorphic to T'((n — k + 1)&x_1 @ ™). From proposition 6.1.5 we
have that T'((n — k + 1)&—1 ®€™) and S™(T((n — k + 1)&_1)) are homeomorphic. Hence,
we conclude that RP" /RP™ % and RP"? /RP™ **7 have same S-type.

We prove the second statement by applying the Atiyah theorem, 6.2.4. First, recall
from example 1.4.4 that 7(RP*~!) @ ¢! is isomorphic to k&, ;. From proposition 6.1.5 we
have that RP" /RP"~* is homeomorphic to T'((n — k + 1)&¥~1) and RP"PTF—n /RP™P—"=2 ig
homeomorphic to T'((rp — n — 1)&x_1). From the first statement we have that T((rp — n —
1)&k—1) and T'((—n — 1)&_1) have same S-type. Hence, we obtain (n — k + 1)&_1 & (—n —

1)1 ® k&1 ~, €°, and the result follows from theorem 6.2.4. O
6.5.5 Lemma. If S ! admits k orthonormal tangent vector fields vy, ..., vs, then for any
integer ¢ > 1, ST admits k orthonormal tangent vector fields vy, . .., v}.

Proof: We may view the vector fields as a set of continuous maps, v; : S** — R" satisfying
(z|vi(z)) = 0 and (v;(x)|v;(z)) = 045 for 1 < 4,5 < k.

The sphere S7~! can be regarded as a ¢-fold join of spheres, S"~!: For z € S ! we
can write z = (a(1)z(1),...,a(q)z(g)) where z; € S" ! and >, af = 1 with o; > 0. We
then define the vector fields, v} : S~ ! — R by the formula v}(a(1)z(1),...,a(q)z(q)) =
> i vi(x;). It follows by easy computations that (z|vi(z)) = 0 and (vj(x)[vj(z)) = &;; for
1<i,j <k o

6.5.6 Theorem. If there exists p(n) orthonormal vector fields on S™ ', then there exists
an integer m > 1 with p(m) = p(n) such that RP™7(™) /RP™ 1 s coreducible.

Proof: Given p(n) vector fields on S™ !, then from lemma 6.5.5 it is possible to construct
p(n) vector fields on S9! for any integer ¢ > 1.

For ¢ odd, p(gn) = p(n) and if gn > 2(p(n) + 1), it follows from theorem 6.5.3 that the
stunted projective space RP~1 /RP~7(")=2 is reducible.
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Let &,n) denote the canonical line bundle over RP?™ and let r denote the order of
J(&p@n)) in J(RP?™). Let p be a multiple of 2n such that m = rp — ¢gn > 1. From
proposition 6.5.4 we have that the stunted projective space, RP™+r(m) JRP™! " is an S-
dual of RP™~! /RP™~P("~2 Hence, since RP"~! /RP™*(")~2 is reducible, it follows that
RP™7(m) /[RP™! is S-coreducible.

The result now follows from theorem 6.4.5, since we have that RP™+*(™) /RP™! is S-
coreducible if and only if RP™+#(™) /RP™! is coreducible. O



7

Vector fields on the sphere

With our preliminary work, we are now able to prove the key theorem to the problem of
vector fields on the sphere, and thus deduce the main result of the thesis. The results of the
previous chapter reduced the problem of existence of vector fields on the sphere to a problem
of reducibility of certain projective spaces, and so motivates further studies of projective
spaces.

7.1 Computations on projective spaces

In this section we will calculate the rings f(]p(X ) for stunted real and complex projective
spaces, together with the Adams operations on these rings. Our interest is to determine
Kg(RP"/RP™) and the Adams operations on this ring. We follow the procedure pre-
sented by J. F. Adams [2] and compute K¢(CP" /CP™), K¢(RP™ /RP™) and Kr(RP"™ /RP™)
together with the Adams operations, in that order. The following lemma provides the con-
nection between the K-rings of our interest.

7.1.1 Lemma. Let ¢ be the canonical real line bundle over RP?**1 and let n be the canonical
complex line bundle over CP*. Let m: RP?**! — CP* be the standard projection. Then

Cé=n'n

Proof: The complex line bundles are classified by their first Chern class, ¢;. For £ > 0 we
have H?(RP*11: Z) ~ Z,. Since c;m*n = m*c1n # 0, we need to prove that C¢ is non-trivial.
Let w be the total Stiefel-Whitney class, and let z € H'(RP?**1:Z,) be a generator. Then
RCE¢ = €@ € and so w(RCE) = 1 + 22, Since 2? € H?*(RP*11;7Z,) = Z, is non-trivial we
have that C'¢ is non-trivial. O

Let £ be the canonical real line bundle over RP™ and 7 the canonical complex line bundle
over CP™. We then define,

A =¢&— 1€ Kg(RP")
p=mn—1¢c Kc(CP")
v=C\=7n%pu € Kc(RP")
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7.1.2 Remark. For the last identity, if n = 2k +1 then p € K¢ (CP¥) defines the element v €
Kc(RP™). If n = 2k then v € K¢(RP") is obtained by composition with ¢# : K¢(RP?**') —
K¢ (RP?) where 27 is induced by the standard inclusion.

The remaining part of the section will be devoted to show that these elements are
generators of the corresponding rings, and to calculate the Adams operations on these
elements.

7.1.3 Theorem. For the complex projective space CP™, the ring Kc(CP™) is a truncated
polynomial ring with integer coefficients and one generator u with one relation ™' = 0.

The projection CP™ — CP™ /CP™ maps Kc(CP"™ /CP™) isomorphically onto the subgroup
of Kc(CP™) generated by the elements u™*', ..., u™.

Proof: We prove the first statement using induction on n. For n = 0, CP™ is a point
and hence the statement is clear. Now assume the statement holds for n — 1. To do
the inductive step we first note that if z € H?(CP™;Z) is the canonical generator, then
H*(CP™;Z) = Z[z]/z™"" [14, thm. 3.12, p. 210]. Identifying H*(CP";Z) with its image
under the natural inclusion map H*(CP";Z) — H*(CP™; Q) [14, cor. 3A.6, p. 264] we have
H*(CP™; Q) = Qla]/a™+.

From the sequence of spaces CP"~! —=CP" —=CP"/CP"! we obtain the commu-
tative diagram,

Kc(CP /CP™ 1) Kc(CP™) Kc(CP™)

Je Jo o

0 — H*(CP"/CP"*; Q) — H*(CP"; Q) — H*(CP" 1;Q) — 0

Since the groups on the bottom row are torsion free, ch is a monomorphism [7, prop.
2.3], and since CP"/CP" ! ~ S we have K¢(CP"/CP" ') = Z. Hence the Chern
character maps K¢(CP™/CP" 1) isomorphically onto the image of H?*(CP™/CP™ ';Z) in
H?*"(CP™/CP™ *; Q) [7, prop. 2.2].

We know that " € H*(CP"; Q) maps to zero in H*(CP"';Q) and by exactness z" is
the image of the generator of H*(CP™/CP"*; Q). It now follows from the commutativity
of the diagram that the generator u € K¢c(CP™) is mapped to the generator of K¢(CP" 1)
and p" € K¢(CP™) is mapped to zero.

By definition, for u € K¢(CP™) and z the canonical generator of H?(CP™;Z), we have

22
ch(,u):x+5+...

and the sum terminates since 2! = 0. Hence,
ch(y") = 2" and ch(p"™) =0

Since ch : K¢(CP") — H*(CP";Q) is a monomorphism, "' = 0 in K¢(CP"). The
algebraic structure of K¢(CP™) now follows from the algebraic structure of H*(CP™; Q).
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For the second statement, we have the case m = n — 1 from the proof above. For
m < n — 1 the result follows from the sequence of the pair (CP", CP™) since the sequence
of spaces induces the exact sequence of rings,

K¢(CP™ /JCP™) — K¢ (CP™) — K¢ (CP™)
and the generator of K¢(CP™) is mapped to the generator of K¢(CP™). O

7.1.4 Proposition. For Kc(CP") the Adams operations are given by

e = ((1+p)' = 1)
Proof: From theorem 5.1.1 we have % (n) = n*, thus we obtain,

Ve(l+p) = (1+p)
Using additivity we have,

Yep=(1+p"-1

It now follows from multiplicity,

e = ((L+p)' = 1)

O

7.1.5 Notation. To establish the next theorem we introduce the following notation. Let
n =2k +9, and m = 2¢+ 6,,, where 9,, = 0 for n even and d,, = 1 for n odd. We then write
pY for the element of K¢(CP*/CP*) which maps to pu‘t! € K¢(CP*). Evidently this is
independent of £ which justifies the omission of k£ from the notation.

The standard projection 7 : RP?**! — CP* factors to give projections

@ : RP*+1 /RP?*F1 _ CP* /CP*
w : RP?** /RP?* — CP* /CP*

Where the map = is factors through @ : RP?*! /RP?¢+! — CP*/CP*. We write v(*+1) =
# ) and v = #uED . Then 7Y maps to v which maps to v in
K@(RP2k+1).

For integers m,n we define the o(m, n) to be the number of even integers p, such that
m+1<p<n,ie. if m=20+4, and n =2k + J,, then

(m, n) k—¢—1 formodd
o(m =
’ k—¢ for m even

Note that ¢(0,n) = k. In the following, to simplify notation, we just write o for o(m,n).
This should not give rise to confusion.
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7.1.6 Theorem. For the real projective space RP™, K¢(RP™) is a polynomial ring over the
integers with one generator, v, modulo the relations,

2

v =% and VR =

where k is given by the equation, n = 2k + dy,.

Form > 0, we write m = 20 + 6p,. If 6, = 0 then Kc(RP™/RP™) is generated by v+
and the projection RP™ — RP™ /RP™ induces a group isomorphism of f(«;(RP”/RPm) onto
the subgroup of Kc(RP™) generated by v***. If §,, = 1, then

Kc(RP"/RP™) = Z & K¢(RP™ /RP™!)

£+1

where the first term is generated by 7Y and the second term is embedded by the projection

map RP" /RP™ — RP" /RP™ 1.

Proof: We first apply the spectral sequence to the space X = RP"/RP™. Recall from
theorem 5.3.1 that for a finite CW-complex X we have

EY ~ HP(X, K& (x0))
and from the periodicity we have,

Z for q even

q —
Ke(zo) = {o for ¢ odd
We can then determine E5'? of the spectral sequence for the space X = RP" /RP™.

To obtain the spectral sequence we need to determine the cohomology groups for different
values of p. For even p with m+1 < p <n, H*(X,Z) = Z,. If nis odd, H"(X,Z) = Z, and
if m is odd, H™}(X,Z) = Z. All other groups are zero. Clearly the sequence converges
since E5'? =0 for all p < m and p > n.

First consider the space X = RP™. Then all differentials vanish since for n even only
entries with even coordinates are non-trivial, hence differentials either maps to zero or comes
from zero. For n odd, differentials mapping onto E;*? = Z will originate from 0 or Z,, and
by exactness, these vanish. Hence, all terms of F5 survive to F..

Examining the E?; P diagonal we find k copies of Zs, every other term is zero and hence
we immediately conclude that K¢(RP?*) ~ K¢ (RP?*1). From theorem 5.3.1 we have that
Kc(RP") is filtered by K¢(RP"/RP?P~!), and with the notation introduced above, we have
an element 7 € K¢(RP™/RPP~1) for p = 2i which maps to v* € K¢(RP"). Since this
element is independent of n, we obtain an element 7 € K¢(RP? /RPP~1) = EP™?_ By the
naturality of the Chern character, we have the commutative diagram,

o*

f(@(CPi /Cpi—l) KR (RP% /szi—1)

ichi ch; l

HZi(CPi/CPi—l;Q) w* HZi(RPQi/RP%—l;Q)

By construction 7% = @# % and since p = 2i we have RP? /RPP~! = 5% = CP*/CP~!. As
in the proof of theorem 7.1.3 the Chern character ch; : K¢(S%) — H?(S%; Q) maps K¢ (S5%)



7.1 Computations on projective spaces 61

isomorphically onto the image of H*(S%;Z) in H*(S5?; Q). Hence, by commutativity ch;
maps 7 to a generator of H?(RP% /RP%~!: Q). Thus, we conclude that v, ...,v* are the
generators of the successive quotients of the filtration and so K¢(RP") = Zgs.

Recall that v = 7%y = 7% (n — 1). We then get the relation v**!' = 0 from the fact
that p**! = 0 and the naturality of 7#. Since 7*n is a complex line bundle over RP", it
is completely determined by its first Chern class in H?(RP",Z) = Z,, hence (7*n)? = 1.
We now have v? = (n*n — 1)? = (7*n)? — 27*n+ 1 = —27*n + 2 = —2v. Combining these
relations, we have v**! = (—2)*v = 0. This establishes the theorem for m = 0.

If m is even all differentials vanish, by the same arguments as above. Hence if m is even,
the entries of F all survive to E,,. Since IN(@(X ) is filtered by the diagonal E?: P we obtain

Kc(RP" /RP™) = Zyo
If m is odd, consider the sequence of spaces,

RP22+2 /RP%—H -~ RP" /RP%—H -~ RP" /RP2£—|—2

Since RP?¢+2 /RP%+! = §2642 we have K¢(RP?*2 /RP%+1) = 7 and by periodicity that
KG!'(RP?42 /RP?H1) = K (S(RP?42 /RP41)) = K¢ (S%+3) = 0. Since imi# is a subring
of K¢(RP%+2/RP?+1) imy# = 0 or Z, but by construction K¢(RP"/RP?*1) is mapped
non-trivially onto K¢(RP26+2 /RP2+1). Hence, imi# = Z, and we obtain the split exact
sequence,

00— K@(RPTL /]RP%“) - KC(RPTL /szzH) - KC(RP2€+2 /RP”“) 0
From the splitting it then follows that
Kc(RP" /RP™) = 7, @ K¢ (RP" /RP™)

Next, consider the space RP™"/RP™ where m is even, m = 2¢. The sequence of the pair
(RP™, RP™) yields

K¢ (RP™ JRP™) — K¢ (RP™) —— K¢ (RP™)

Since the generator of Kc(RP") is mapped to the generator of Kc(RP™), it follows by

exactness that K¢ (RP™/RP™) is generated by v¢+1).
If m is odd, m = 2/ + 1, we have the split exact sequence

00— f(@(]RPn /RP%“) - K@(RP” /RP%H) . K@(RPQH—Q /RP%“) 0

which maps 7t to a generator of Z. It follows that K¢(RP™ /RP?+2) generated by v(¢+2)
is mapped monomorphically into K¢(RP™). This concludes the proof. O

7.1.7 Proposition. For Kc(RP") the Adams operations are given by the relations,

Ty 0 7 even,
v = .
¢ vi i odd
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For K¢(RP™, RP™), write m = 20+ 6,,. If 6, = 0 then the Adams operations are given by

- 0 1 even
io,(6+1) ’
Yev {NH) i odd

and for 6,, = 1 we have

25 odd

Ui pHD) = e pletD) 4 %(iE—H )

\IIZ;:V(H—Q) _ {O 1 even,

Proof: From theorem 5.1.1 we have W4 (y) = 7", for a complex line bundle v and since we
have (7#n)2 = 1 for the line bundle 7*n over RP™ we obtain,

. 1 1 even
Ui (m*n) = ’
c(m™n) {71'*77 1 odd
Using 7*n = v @& 1 we have,
1 1 even,

Ve(vel) = {:@1 i odd

Additivity of the Adams operations gives,

; 0 7 even,
Yel) = {,, i odd

And so, using multiplicity of the Adams operations we have

\Ilfcl/j _ 0. z even,
v 4 odd
For the case K¢(RP",RP™), recall that if m = 2¢ then K¢(RP",RP™) is mapped
monomorphically into K¢(RP"), hence we immediately have,

. 0 1 even
i ,(0+1) ’
Yo = {NH) i 0dd

If m=2¢+1, then

. 0 7 even
i, (6+2) — ’
Yev {1/(”2) i odd

follows as above.
To establish the result for 7(**1)| we may express UE7(*1) in terms of the generators,
i.e.
\I!(’ED(ZH) — (1,17(“—1) + by(Z+2)
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for some integer coefficients a, b.

Using the natural inclusion RP%+2 /RP?*+! — RP" /RP%*! it follows from lemma 5.1.8
that a = i*T! since RP?¢+2 /RP+1 = §26+2,

To determine b recall that 7¢*1) maps into v+ and v**+2) maps to —2v*1) under the
projection RP" /RP2+1 — RP" /RP%+2. Tt follows that

\I]?'CV(Z-I—I) = aV(f—Fl) o QbV(ﬁ—l—l) mod 20+1

and so we obtain

b= 13" —4;) mod2°

1

2

O

To state the next theorem we define the function w(m,n) for integers m,n with 0 <

m < n, as the number of integers m < k < n such that £ = 0,1,2 or 4 mod 8. Note that

w(m,n) = w(0,n) — w(0,m). To ease notation we will write w for w(m, n), wy, for w(0,m)
and w, for w(0,n).

7.1.8 Theorem. For the real projective space RP", Kg(RP™) is a polynomial ring over the
integers generated by \ with two relations,

A2 = —2)\ and \ontl =

Form # 3 mod 4, Kg(RP"/RP™) = Zy. and the projection RP" — RP™ /RP™ induces
an isomorphism of Kr(RP™ /RP™) onto the subgroup of Kg(RP™) generated by \*=+'. We
will write X%V for the element which maps to \*»*' € Kg(RP").

For m =3 mod 4 we write m =4¢ + 3. Then

KR(RPVL /RPM—FS) =7 kR(RPn /RP4Z+4)

The first summand is generated by an element X=tY) yet to be defined and the second is
embedded by the projection RP™ /RP4+3 — RP™ /RP4+*.

The proof of the theorem relies on a number of lemmas which we will prove along the
way as we need them.
Proof: As in the proof of theorem 7.1.6 we obtain the spectral sequence from the cohomology
groups for different values of p using the formula of theorem 5.3.1 for the finite CW-complex
X,
EY? ~ HP (X, Ki(x))
Recall that
Zy forgq=6,7 mod8
Ki(xg) =< Z forq=0,4 mod 8
0  otherwise
We can now determine E2'? of the spectral sequence for the space X = RP"/RP™. If

K{(xg) = Z, then we have as in the proof of theorem 7.1.6, that for even p with m + 1 <
p <n, H?(X,Z) = Zy. If n is odd, H*(X,Z) = Z, and if m is odd, H™""(X,Z) = Z. If
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K& (o) = Zs, then for all p where m < p < n, the group H?(X,Zs) = Z,. All other groups
are zero, and hence the sequence converges since F2? = 0 for all p < m and p > n.
Looking at the non-trivial terms with total degree zero, i.e. the terms F¥ ? we find
that w terms are Zs for m # 3 mod 4 and for m = 3 mod 4 we find one term is Z and the
remaining w — 1 terms are Zs,.
We first consider the case m = 0, that is X = RP"™. We then have the following lemma,

7.1.9 Lemma. Forn=6,7 or 8 mod 8 the complexification
C : Kr(RP") — Kc(RP")
s an isomorphism.

Proof: The complexification homomorphism C : K’R(RP”) — f(@(RP") is an epimorphism
since K¢(RP") is generated by v = C\.

If n = 8k + 6 or n = 8k + 7 for some k then w(n) = 4k + 3. Thus Kg(RP") contains
at most 2%13 elements. By theorem 7.1.6 K¢(RP™) contains 2*73 elements and it follows
that C' is an isomorphism.

If n = 8(k + 1) for some k, then w(n) = 4k + 4 and so Kg(RP") contains at most 2*+*
elements, but again by theorem 7.1.6 K¢(RP™) contains 2*** elements and it follows that
C' is an isomorphism. O

Hence, since v = C\ generates K¢ (RP™), it follows that Kg(RP") = Z., is generated
by A for n =6,7 or 8 mod 8. Thus, all the terms on the diagonal (p, —p) of E, survive to
E..

For n # 6,7 or 8 mod 8 there is an N > n such that N = 6,7 or 8 mod 8. Hence,
using the inclusion RP" — RP¥ it follows that the terms on the diagonal (p, —p) of E,
survive to infinity also for smaller values of n. Since Kr(IRP") is filtered by the elements of
the diagonal we conclude that Kg(RP™) = Zgu. and Kg(RP") is generated by .

We next establish the two relations for A. Recall that A = £ — 1 where £ is the canonical
real vector bundle over RP™. ¢ is characterised by the first Stiefel-Whitney class, w;(§) €
H'(RP"; Zy) = Zs, hence £ = 1. We now have \? = (£—1)? = £2-264+1 = —2£+2 = =2\
The relation A*»*! = 0 now follows from the fact that A“»*! = 29» X\ = (. This completes
the theorem for X = RP".

We now turn to determine the generators for the space RP"/RP™ with m > 0. For
m % 3 mod 4, consider exact the sequence

R (RP™ /RP™) > Kp(RP™) —> Ky(RP™)

Since +# maps the generator of K(RP") to the generator of Kg(RP™), the kernel of +# has
29 elements. Since K (RP"/RP™) has at most 2 elements, hence Kg(RP" /RP™) is mapped
isomorphically onto the subgroup of K (RP") generated by the elements, £29m )\ = £ \wm+1,
Following Adams, we denote the element which maps to A*=*! under the projection by
AlmFD)

Now consider the case m =3 mod 4. We have the following lemma,
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7.1.10 Lemma. Forn > m and m = 4¢ 4+ 3 the sequence
KR(RP"/RP"H'l) ”#3 KR(RP"/RP"L) 1#3 KR(RP’”'H/RP’”)

splits, where 7% is induced by the standard projection and 1¥ is induced by the standard
inclusion.

Proof: Above we have shown that the composite

Kr(RP™ /RP™+1) _* KR(RP" JRP™) — KR(RP")

is monomorphic, hence 7# is monomorphic. We need to prove that ¢# is epimorphic. To
prove this consider the commutative diagram, with exact rows and columns,

KR(RP” /RP4Z+3) Z#B kR(RP4€+4/RP4E+3) 9 S KI}&(RP”/RPM'H)

ﬂ#l Wfl
#

KR(an /RP““) SR RR(RP41Z+4/RP4IZ+2)

l |

KR(RP4E+3/RP4Z+2) = K—R(RPMH’, /RP4£+2)

Since RP4+3 /RP4+2 = §4+3 e have that Kr(RP*+3 /RP**2) = 0, hence 7 and nf are
epimorphic. From the computations above we have that Kr(RP*+4 /RP%**2) = 7, hence
zfﬁ is epimorphic, and thus the composite zf%f is epimorphic. By commutativity of the
diagram, it follows that W# 2# is epimorphic.

Since RP***/RP¥+3 = §4+4  Kp(RP*+* /RPY+3) = 7, thus ©¥ is an epimorphism
from Z onto Zs, hence since Wf »# is an epimorphism, 2# must be multiplication by an odd
integer q, i.e. im* = Za. By exactness of the top row of the diagram, im:# = ker 0, hence
imo = Z,.

Since Ki(RP"/RP%+4) is filtered by the elements E?~Pt! of the spectral sequence, it
follows that Kz (RP™/RP**4) contains no elements of odd order. Hence o = 1, and o# is
epimorphic. O

Since the sequence splits, it follows that
K‘R(RPH /RP4£+3) =7& R’R(RPTL /RP4Z+4)

For m = 4¢+ 3, w(0,m+ 1) = wy, + 1. Hence from the embedding of Kr(RP" /RP***) into
Kr(RP™ /RP**3) we have that A“m*2) is a generator.
To complete the proof we need to determine A“m»*1). We need the following lemma,

7.1.11 Lemma. Forn=06,7 or 8 mod 8 and m = 4¢ + 3 the complezification
C IN(R(RPn/RP4Z+3) — RC(RPn/RPzLH%)

18 a monomorphism. Further, C s an isomorphism for ¢ odd.
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Proof: Consider the commutative diagram,

K (RP™ /RP4+) n# K (RP™ /RP4+3) o K (RPY+ /RPAH3)

Cll/ C\L C2\L
KC(RPH/RPM—HL) S R’C(RPH /RP4E+3) S KC(RPM-I—LL/RPM—I—?))

where the rows are split exact by lemma 7.1.10 and theorem 7.1.6 and C, C and C5 are the
complexification homomorphisms.

Since RP4£+4/RP4Z+3 — 5413-1—47 we have KR(RPM-I—LL/RPM-F?») — RC(RP4Z+4/RP4€+3) -7,
As remarked in section 5.1, we have that C, : Kg(RP*+*/RP*+3) — K¢ (RP4+*/RP4+3) is
a monomorphism for ¢/ even and an isomorphism for ¢ odd.

Next, consider the complexification homomorphism on the left. Note that if £ is odd then
o = wand o(40+4) = w(4+4), if £ is even then 0 = w+1 and o(4¢+4) = w(4¢+4)+1. Hence
for £ odd Kg(RP™/RP***) is generated by A“m+1+1) and K (RP"/RP***) is generated by

y@m+1+1)  Thys,
Cl)\(wm+1+1) — pwmt1+1)

and so C} is an isomorphism. For £ even, K¢(RP"/RP**4) is generated by v(“m+1) hence

Cl)\(wm+1+1) — V(wm+1+1) — pWm+1

Thus, C; is monomorphic for £ even. The lemma now follows from the five lemma. O
Conclusion of proof of theorem 7.1.8: For m = 4 + 3 let £ = 2s + 6. If §, = 0 then

w(0,4043) =w(0,85+3) =4s+2 =20+ 2

and if 6, = 1 then
w(0,40+3) =w(0,85+7) =4s+3=20+1
Recall that for £ = 25+ 1, w(0,4¢+ 3) = 0(0,4¢ + 3). Hence, the Z-term of K (RP™/RP™)
is generated by 7“m*1)_ We then choose A“=*1 such that CAWn+1) = plwm+1),
For ¢ = 2s, w(0,4¢ 4+ 3) = 0(0,4¢ + 3) + 1. Hence the Z-term of Kc(RP"/RP™) is
generated by 7). If we choose A“m*1) such that A\“=+Y) = —Rp(“n) then

CAert) = —CRym)
= —(1+ughpn

= —2plem)

Since imCy = 27, we have that #X“m+1) is a generator of Kg(RP***/RP*+3) = 7 and
we may choose A“m*1) as our generator of the Z-term of Kg(RP"/RP*+3).

The above argument only holds for n = 6,7 or 8 mod 8. For other values of n choose
integers ni,ny such that m < n; < n < ny and ny,ne = 6,7 or 8 mod 8 Then the
inclusions RP" ——=RP" —=RP"™ factors to induce the commutative diagram,

Kg(RP™ /RP™) — K (RP" /RP™) — K (RP™ /RP™)

l | |

Kg(RP"2) Kg(RP™) Kg(RP™)
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The composition map of the top row maps the generator A=+1) in Ky(RP"2 /RP™) to the
generator A(“n*1) in Kg(RP™ /RP™), and so defines an element \“n+!) € K (RP™ /RP™)
with the same properties.

We note that A=+ ig mapped to \*»*!. For n = 6,7 or 8 mod 8 this follows since
A@nt1) is mapped to 7“m+1) which maps to v*»t! € K¢(RP") by theorem 7.1.6, and from
lemma 7.1.9 the complexification C : Kg(RP") — K¢(RP") is an isomorphism. For other
values of n the result then follows from the commutativity of the diagram above. This
justifies the notation. O

7.1.12 Remark. The above construction does not consider the case when m =3 mod 8 and
n =m + 2. We will only be interested in Kg(RP™*(™ /RP™ ') when p(m) > 1, i.e. when
m is even. Hence, the case excluded is of no relevance for the following.

7.1.13 Proposition. For Kg(RP™) the Adams operations are given by,
\I/ﬁ{)\jz 0. z even
N i oodd
Ifm % 3 mod 4, then the Adams operations for Kg(RP™ /RP™) are given by,

. 0 1 even
Pt )\(wm—i—l) — ’
K Nwmt) 4 odd

For m =3 mod 4, the Adams operations are given by,

) 0 1 even
Pl )\(wm+2) — 7
R Nem+2) i odd

i \mtl) = 2423 (mt1) | %(izuz — §;)Almt2)

Proof: This proof is analogous to that of proposition 7.1.7. For the first equation, recall that
A =& —1 and € is a real line bundle over RP™. Hence £ is determined by its first Whitney
class, wy(§) € H' (RP™, Zy) = Zy. Thus we have £2 = 1. As in the proof of proposition 7.1.7
we now obtain

TiN — 0 7even
BT 701N dodd

For m # 3 mod 4 recall from above that Kg(RP"/RP™) is mapped isomorphically onto
the subgroup of Kg(RP™) generated by A=+ Hence,

) 0 1 even
Pt /\(wm+1) —
R Aen+D) i odd

For m =3 mod 4 let m = 4¢ + 3. Then

. 0 1 even
Pt )\(wm+2) —
R Awmt2) 4 odd
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as in proposition 7.1.7, since Kg(RP"/RP™1) is embedded in Kg(RP" /RP™) by the pro-
jection RP™ /RP™ — RP” /RP™*!. For the element A% we have

TeA@mth) = gAmtD) 4 pLmt2)

From the inclusion RP*+* /RP4+3 — RP" /RP**3 it follows by proposition 5.1.8 that a =
242 since RP*+4 /RP#+3 = G§2(26+2) By the same arguments as for proposition 7.1.7 it
follows that

\Illzkj\(wm—l—l) — i2ﬁ+25\(wm+1) 4 (Z-ZZ—I—Q _ 5i))\(wm+2)

1
2

7.2 The non-existence theorem

For n € N we may write n = (2a + 1)2° with b = ¢ + 4d and 0 < ¢ < 3 where a, b, c and d
are integers. We define p(n) = 2°+ 8d.

7.2.1 Theorem. With p(n) defined as above, there do not exists p(n) linear independent
tangent vector fields on the n — 1 dimensional sphere, S™*.

With the reduction theorem of section 6.5 the theorem of non-existence of vector vector
fields on the sphere is reduced to the following theorem:

7.2.2 Theorem. RP™+°(m) JRP™1 4s not coreducible, that is, there is no map
[ RPmFem) /RPm—t —— gm
such that the composite,
§m = RP™ /RP™=1 s Rpmto(m) /Rpm-1 L gm

has degree 1, where o : RP™ /RP™! — RP™ (™) /[RP™! is the natural inclusion.
For the proof we will need the following lemma,
7.2.3 Lemma. If n = (2a + 1)2° then 3" — 1 = 2°%2 mod 2°F3.
Proof: We first prove by induction that for £ > 1
32 1 =2k2 pod 2kt
For k = 1 we have 32 — 1 = 8. Now assume that the result holds for some k > 1. Then,
3 1 = (3" —1)(3@% + 1)
= (2842 4 g2kt (23 (21 4 g2kt 4 9)
= (252 1 2284 (2 4 4y2%)
= (249 4 22449) (14 y2?)
ok

+3 mod 2k‘+5

Il
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proving the induction step. It now follows, since 3**") — 1 = 2k+3 that,

2k+1)

3¢ 1 mod 2F+3

and
3(202F) _ g(a2"*) — 1 [10q 9kt3

From this we obtain

3(2a+1)2k = 3(2k) ~ 1 mod 2Ft3

— 2k+2 2k+3

mod

O

Proof of theorem 7.2.2: In the following we write m = (2a + 1)2°, where a,b, c and d are
integers with b = ¢+ 4d and 0 < ¢ < 3. We define p(m) = 2¢ + 8d. The theorem was
proved for d = 0 by Steenrod and Whitehead using Steenrod squares [24, thm. 1.1], so
we will assume that m = 0 mod 8. The proof is by contradiction. Since d > 0 we have
w(m,m+p(m)) = b+ 1. Following the notation from theorem 7.1.8 we write m—1 = 4/+ 3.
Since m — 1 = 3 mod 4, we have w(0,m — 1) = w,, — 1 and w,,, = 2 + 2. From theorem
7.1.8 we then have
Kg(RP™(M /RP™ 1) = 7, @ Zigprs

where the summands are generated by elements A“=) and A“=+D respectively. For the
inclusion map, 1 : RP™/RP™ ! — RP™(m) /RP™ ! we have 1# \“nt1) = 0 and +# \(@n)
maps to a generator v of Kg(S™) = Z.

For the map f we have f#y = A“n) 4 g\“n+1) for some integer a. We now have from
proposition 5.1.3 that

fHuby = wh fy
hence, using proposition 5.1.8 we obtain
F(R4429) = WE(Xer) 4 axn )
It follows from theorem 7.1.8 that
B2 (Nem) 4 g\lemt1)) = 2er2)(wm) 4 %(k%” — 5 )AEm T 45 g\t D)

Thus we obtain
(a = 3)(K*F2 = )2 +) = g
or
(a— 3 (K**? - 6) =0 mod 2"

We then obtain a contradiction if
k*F2 — 5, = 211 mod 212

for some k. But we have shown in lemma 7.2.3 that for k¥ = 3 we have k2t2 — §, = 2b+!
mod 2°*2. This completes the proof. O

In theorem 6.5.3 we assumed 2p(n) + 2 < n, hence theorem 7.2.2 above excludes the
cases n = 1,2,3,4,6,8 and 16. The case n = 1 is both extraordinary and trivial, and we
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will exclude this. For n = 2,4 or 8, the theorem follows since p(n) = n. The case n = 3 is a
classical result from algebraic topology as explained in the introduction. Finally we obtain
the result for n = 6 or 16 from lemma 6.5.5 using that p(3n) = p(n).

Theorem 7.2.1 resolves a long development in mathematics, particular in homotopy
theory. The implications of theorem 7.2.1 is summarised in the following corollary:

7.2.4 Corollary. The following statements are true if and only if n =1,2,4 or 8.
i) R™ is a division algebra over R.

i) S™ ! is parallelisable with the usual differential structure.

i3) S™! is an H-space.

i) There exists an element of Hopf invariant one in mon_1(S™).

Proof: According to Adams [1] the statements are related as follows, i) = ii), i) = iii), ii)
= iii) and iii) < iv). We know that i) holds for n = 1,2,4 or 8 and ii) is simply a less
strong version of theorem 7.2.1. Hence, the corollary follows. O

7.2.5 Remark. A proof of i) = ii) can be found in [12, p. 289], for proof of i) = iii) and ii)
= iii) confer [13, lem. 2.15 p. 48].
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Master Thesis

Institute for Mathematical Sciences

The existence or non-existence of vector fields on the sphere
is a classical problem arising in the theory of fibre bundles and
homotopy theory with implications in many areas of mathe-
matics.
In this thesis the negative statement is proved, that is, there
exists at most p(n) — 1 linearly independent tangent vec-
tor fields on the n — 1-sphere, where p(n) = 2¢+ 8d for
n = (2a + 1)2°T44. This was first proved by J. F. Adams in
his article from 1962 using K-theory. The thesis follows his
approach.
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