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log-concave sequences

Definition 1.1 (LC)

A finite sequence a1, ao, . . ., an of positive numbers is log-concave
(LC)if a_q1a,1 < ggfor1 <j<m.

: ai _a am-
(@), is log-concave <> Ao

&  a T am
log a;_1 Z'Og g1 _ loga; = (&), is unimodal
log &;
(j,log &) Example 1.2

' (j+1,logaj1)
Binomial sequence
INTE i — (M) is LC
j,s(logaj_4 +log a4 ) (/)
U2lo93- ) 2 8% 1 is unimodal

(j—1,logaj_+) but not LC
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Falling factorials and Stirling numbers

Two bases for the polynomial ring Z]r]

j
j=rr=1)---(r—j+1), rA=Fr7

J

falling factorial base (FFB) monomial base (MOB)
. (71, 2. s, Cﬁ:jze 02,
[Mm = 32" S1(m, j)r! rm =30 Sa(m. j)lr];
Stirling numbers 1st kind Stirling numbers 2nd kind

So>(m, j) is the number of partitions of an m-set into j blocks
[ =1 rt=[rl J— 181(m,j)|is LC
[de=—r"+ ¢ r? =[rl1 +[rl2 j— S2(m.j)is LC
[rMls=2r"—3r2+r3 3 =[r]y +3[r]2 + [r]s
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Colorings of simplicial complexes

Definition 2.1 (Colorings of simplicial complexes)

A (weak) (r, d)-coloring of the simplicial complex K is a map
col: FO(K)— {1,2,...,r}

such that
|col(c)] =1 = dimo < d

for all simplices o € K. (K #0,d > 0.)

(4,1)-coloring  (2,2)-coloring (2, 3)-coloring
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Chromatic numbers of simplicial complexes

Definition 2.3 (The d-chromatic number of a simplicial complex K)

The d-chromatic number of K, chr(K, d), is the minimal r so that K
admits an (r, d)-coloring.

|FO(K)| > chr(K,1) > chr(K,2) > --- > chr(K,dim K) > 1

Example 2.4 (Do we know the chromatic numbers of any complexes?)

K = D[4] chr(K,1) =4
chr(K,2) =2
chr(K,3) =2

chr(D[m], d) =[]
(2,2)-coloring
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Chromatic numbers of triangulable manifolds

Definition 2.5 (The d-chromatic number of a compact manifold M)
chr(M, d) = sup{chr(K, d) | K triangulates M}

oo > chr(M, 1) > chr(M,2) > --- > chr(M,dim M) > 1
Example 2.6 (Do we know the chromatic numbers of any manifolds?)

A K| = Is there a triangulation
chr( 32 K of S? with

hr(K,2) > 27
chr(K2)—2 chr(K;2) >

Theorem 2.7 (The 4-color theorem = chromatic numbers of S?)
chr(S?,1) = 4 and chr(S?,2) =
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Chromatic numbers of S8

Problem 1: What are the chromatic numbers of S3?

@ chr(S3,1) = oo FOR SURE

@ chr(S8,2) = co PRESUMABLY

@ chr(S8%,3) < oo UNKNOWN
The standard triangulation K = 9D[5] of S® has chr(K, 3) = 2.
There exists a triangulation K, f(K) = (18,143,250, 125), of S% with
3-chromatic number chr(K, 3) = 3.

Does there exist a triangulation K of S® with 3-chromatic number
chr(K,3) > 37

Theorem 2.8 (Chromatic numbers of spheres)
chr(S9, [d/2]) = oo when d > 3 PRESUMABLY
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Red-necked Grebe
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x(K, r,d) is the number of (r, d)-colorings of K

x(K,r.1) x(K,r,2)

12 12

10 10

8 8

6 6

4 4

2 2

01 2 3 4 5' o 1 2 3 '
chr(K,§1) =5 chr(Ki) =2
X(K,5,1) =120 |v(K,2,2) =10
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r — x(K, r,d) is the d-chromatic polynomial of K

x(K,r, 1) x(K,r,2)
x(K,r,1) x(K,r,2)
12 | 12
10 | 10
8 8
6 o
4f “‘ 4 /
2 | 2 /
\ I /
0o 12 3 4 5' o 1 2 3 '
Lehi(K,1) =5 chr(K,I2) —2
\(K.5,1) = 120
T

JM Moller (U of Copenhagen)



Simplicial Stirling numbers

Compute the number (K, r, d) of (r, d)-colorings of K'!

Definition 2.9 (Simplical Stirling numbers)

S(K,j, d) is the number of partitions of F°(K) into j blocks containing
only K-simplices of dimension < d.

4 S(K,j, d) = Sg(m,j) when K = e ° ° ° °
@ Ki C Ko = S(Ki,J,d) > S(Ka,j,d) when FO(K;) = FO(K>)
@ Sx(m,j) > S(K,j,d) > S(D[m, j, d) with equality for
j=IF%K)|,...,|Fo(K)| —d + 1, m=|F(K)|
d
o S(K,|FO(K)| - d,d) = Sa(|FO(K)I,[FO(K)| - d) — f9(K)
@ S(K,j,d)=0for0 <j < chr(K,d)
@ chr(K,d) =min{j | S(K,j,d) > 0}
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Colorings and equivalence relations

S(vav d)[r]j

S(K.j,d)
(r,Cccf)i-.c,o(Ingsb[c;; K [lrto-1  Ppartitions of FO(K) into j

with [col(FO(K))| = j blocks without d-simplices

col: FO(K) — {1,...,r} |—————|[I{v € FO(K) | col(v) = k}

Theorem 2.10 (The d-chromatic polynomial of K)

The number of (r, d)-colorings of K is

|F(K)

X(K,r,d)= Y S(K,js)r;
j=chr(K,d)
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Colorings and equivalence relations

r possible colors r — 1 possible colors

r — 2 possible colors

3 blocks with no d-simplices can [FO(K)]
be colored in [r]; ways from a x(K,r,d) = Z S(K,j,d)Ir];
palette of r colors J=chr(K,d)
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Colorings and equivalence relations

|F(K)

X(K.rd)y=% " S(K.j,d)r];
j=chr(K,d)
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Colorings and equivalence relations

|F(K)

X(K.rd)y=% " S(K.j,d)r];
j=chr(K,d)
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Colorings and equivalence relations

|F(K)

X(K.rd)y=% " S(K.j,d)r];
j=chr(K,d)
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The two chromatic polynomials of a 2-complex

x(MB, r, 1)
r® —10r* + 35r3 — 50r2 + 24r!

[r]s
chr(MB,1) =5

x(MB, r,2)
r°—5r +5r° — 1
5[r]2 4+ 20[r]s + 10[r]s + [r]5
chr(MB, 2) = 2
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Chromatic polynomials of graphs

Example 2.11 (Specialization to graphs)

An (r,1)-coloring of K is an r-coloring of the simple graph K, and the
1-chromatic number of K is the graph chromatic number of K.

monomial basis (MOB) falling factorial basis (FFB)
— —_——~
LGOI |FO(K)]
Z bjrj :X(K¢r71): Z aj[r]]
j=1 j=1

Properties of 1-chromatic polynomials

MOB is + The MOB coefficients (b;) alternate in sign
MOBis LC  The MOB coefficients (|b;|) are LC

No roots < 0 x(K,r,1) has no roots < 0

m, m—1vals x(K,m,1) > ex(K,m—1,1), m=|F°(K)|
FFBis LC The FFB coefficients (a;) are LC UNKNOWN
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Example of a 1-chromatic polynomial

Properties of x(OG,r,1)

MOB is + Yes
MOB is LC Yes
Noroots <0 Yes
m, m—1vals Yes
FFBis LC Yes

1-chromatic polynomial in MOB and FFB

x(0G,r,1) = _64r' +154r2 —137r3 +58r* — 12r5 + 6
= [rls +3[r]la +3[r]s + [rls
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Example of a 2-chromatic polynomial

1 4 7 3 .
0 Properties of x(MT, r, 2)

MOB is + No
MOB is LC No
No roots <0 No
m, m—1vals No
FFBis LC Yes

| . ‘
1 4 7 3

2-chromatic polynomial in MOB and FFB

Xx(MT,r,2) = 6r —21r2 +7r3 +21r* —14r5 + r’
= 84["]3 + 231 [r]4 aF 126[[’]5 + 21 [f]e 4 [r]7
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Are the simplicial Stirling numbers LC?

Problem 2: Are the simplicial Stirling numbers
j— S(K.j,d),  chi(K,d) <j<|F(K)|

LC for fixed K and d? (Only property that might generalize!)

logg 3(3$3,56>j7 d)

= D W A~ 00O

1 2 3456 7 8 9 10111213
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Topology meets combinatorics

Theorem 2.12 (Equivalent conditions for colorability)

@ K admits an (r, d)-coloring
@ There exists a lift such that

r
A

Davis—Januszkiewicz space rBU(d) x -+ x BU(d)

})\dx--ox)\d
A1 X o X\
DJ(K) C BU(1) x --- x BU(1) BU
|FO(K)
is homotopy commutative

@ x(K,r,d)>0
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The d-chromatic lattice

T ¢ L(K,2) Tel(K,2),|n(T)|=2 TelLK,2),|n(T) =1
Definition 3.1

The d-chromatic lattice, L(K, d), is the partially ordered set of
monochrome subsets of F(K) of the form

M9 (col) = {0 € FU(K) | |col(c)| =1} C FI(K)
for some map col: FO(K) — {1,...,|F°(K)|}.

o L(K,d)is a finite lattice with 0 = ) and 1 = FI(K)
@ . is the Mdbius function of L(K, d)
@ |7(T)| is the number of connected components of T € L(K, d)
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Simplicial Stirling numbers and the chromatic lattice

Theorem 3.2 (Relating simplicial and usual Stirling numbers)
x(K,r.d)="%" u(©,T)r7)
Tel(K,d)
S(K.j,d)= > u(0.T)Sz(Im(T)L.))

TeL(K,d)

‘Dehn-Sommerville relations’ for simplicial Stirling numbers of
manifold?

L(K,d) is graded for d = 1 but not for d > 1.
Theorem 3.3
The reduced Euler characteristic of the open interval (6, T) inL(K,d)is

IFO(K)

Y. (1T - 1)1S(K. . d)

j=chr(K,d)
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Integer sequences of Euler characteristics

The reduced Euler characteristics of L(D[m], d) (6, T) for
m—d=23,4,...are

2. 6,24, 120,720, —5040, 40320, —362880, . ..
3,-6,0,90, -630,2520,0, — 113400, 1247400, . ..
4,-10,20, —70, 560, —4200, 25200, —138600, . . .

5, 15,35, -70,0,2100, —23100, 173250, —1051050, . ..
6, 21,56, —126,252, —924. 11088, —126126, . . .
7,-28,84, 210,462, 924, 0, 42042, —630630, ...

8, 36,120, -330,792, —1716,3432, —12870, . ..

9, 45,165, —495,1287, —3003, 6435, —12870,0, .. .

Q Q Q Q Q Q Q Q
I
® N oW =

The first sequence is the sequence (—1)"~'(m — 1)!. The second
sequence is A009014 from The On-Line Encyclopedia of Integer
Sequences (OES). The remaining 6 sequences don’t match any
sequences of the OES.
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Weighted colorings

Let w: F°(K) — N be a weight function on the vertices. The weight of
a simplex o € K is the sum

w(o) =) w(v)

veo

of the weights of its vertices. (Special case: w = 1.)
Definition 4.1 (Weighted (r, d)-coloring of K)
A (r,w < d)-coloring of K is a function

col: FO(K)— {1,2,...,r}

such that |col(0)] =1 = w(o) < d for all simplices o € K.

Definition 4.2 (Weighted s-chromatic number of K)

The weighted d-chromatic number of K, chr(K, w < d), is the minimal
r so that K admits an (r, w < d)-coloring.
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Weighted chromatic polynomials

Definition 4.3 (Weighted simplicial Stirling numbers)
S(K,j,w < d) is the number of partitions of F°(K) with j classes
containing only simplices o € K of weight w(c) < d.
Theorem 4.4 (Weighted d-chromatic polynomial)
The number of weighted (r, d)-colorings of K is
|FO(K)

X(K,ow<d)y= Y S(K,j,w<d)r]
Jj=chr(K,w<d)

Problem 2: Are the weighted simplicial Stirling numbers
j— S(K.j,w<d),  chr(K,w<d)<j<|FK)
LC for fixed K, w, and d?
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Colorings as simplicial maps

Definition 4.5
An (r,d)-coloring of K is a simplicial map

col: K — Dr]

such that dim{c € K | col(o) =/} <dfor1 <j<r

Definition 4.6
An (L, d)-coloring of K is a simplicial map

col: K— L

such that dimcol~"(v) < d for all vertices v in L.
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