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1. Notation

• p is a fixed prime
• np is the highest power of p dividing the natural number n =

∏
np
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• mϕ ∈ N and Kϕ ⊂ N are the images under the map M
ϕ−→ N of the element m ∈ M or the subset

K ⊂M . The composition of the two maps M
ϕ−→ N

ψ−→ P is ϕψ
• GRP is the category of groups
• GRPOID is the category of groupoids
• ALG is the category of algebraic groups
• FRB is the category of Frobenius categories

2. Category theory for beginners

Let C be a category with objects P and Q:
• C(P,Q) is the set of morphisms from P to Q
• C(P,Q)× C(Q,R) ◦−→ C(P,R) : (ϕ,ψ)→ ϕ ◦ ψ is composition in C

Q
ψ

��???????

P

ϕ
??�������

ϕψ
// R

• C(Q) = C(Q,Q) is the monoid of endomorphisms and C(Q)◦ the group of automorphisms of Q

2.1. Isomorphisms and equivalences.

Definition 2.1. [31] [nCat] A functor T : C → D is
• an isomorphism if it is bijective on both objects and morphisms
• an equivalence if C(Q,R)→ D(QT , RT ) is bijective for all objects Q, R of C and every object of D is

isomorphic to some object in the image of T

We say that a functor is an equivalence if it is essentially surjective on objects and fully faithful on
morphisms.

2.2. The exterior quotient. An left (right) interior structure in a category C is a function that to any
object P of C associates a group I(P ) ≤ C(P )◦ (of “inner” automorphisms of P ) such that I(P )◦ϕ ⊂ ϕ◦I(Q)
(ϕ◦I(Q) ⊂ I(P )◦ϕ) for all ϕ ∈ C(P,Q). (In case of a left interior structure, this means that for any p ∈ I(P )
there exists q ∈ I(Q) and a commutative diagram

P

ϕ

��

p // P

ϕ

��
Q

q // Q

in C.) In particular, I(P ) � C(P )◦.

Definition 2.2. [37, 1.3] The exterior quotient of the left interior structure I is the quotient category C̃ that
has the same objects as C and morphism sets

C̃(P,Q) = C(P,Q)/I(Q), C̃(P )◦ = C(P )◦/I(P ) (left cosets)

Composition in C̃ is induced from composition in C by the rule ϕI(Q) ◦ ψI(R) = ϕψI(R) for ϕ ∈ C(P,Q),
ψ ∈ C(Q,R).

The exterior quotient of the right interior I structure is the quotient category C̃ that has the same objects
as C and whose morphism sets are

C̃(P,Q) = I(P )\C(P,Q) C̃(P )◦ = I(P )\C(P )◦ (right cosets)

Composition in C̃ is induced from composition in C by the rule I(P )ϕ ◦ I(Q)ψ = I(P )ϕψ for ϕ ∈ C(P,Q),
ψ ∈ C(Q,R).

Example 2.3. (1) In the category GRP of groups, the inner automorphisms Inn(G) = Z(G)\G ≤ GRP(G)
provide a left interior structure. In the left exterior quotient G̃RP the morphism sets and the automorphism
groups

G̃RP(G,H) = GRP(G,H)/Inn(H), G̃RP(G)◦ = GRP(G)◦/Inn(G)
consist of left H-conjugacy classes of group homomorphisms of G → H and outer automorphisms of G.
(Observe that morphisms in G̃RP do not have images but still have kernels.)
(2) Consider the group G = G(∗) as a category with one object ∗. The subgroup OpG(∗) generated by the
p′-elements is a left and right interior structure because OpG(∗)g = gOpG(∗) for all g ∈ G(∗) as OpG(∗)

http://ncatlab.org/nlab/show/equivalence+of+categories
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is a normal subgroup. The right exterior quotient G̃ = OpG\G is the group of right cosets. This is a

functorial construction. Any group homomorphism G1
f−→ G2 sends OpG1 to OpG2 and so induces a group

homomorphism Op(G1)\G1 → Op(G2)\G2. Thus G 7→ OpG\G is an endofunctor of the category GRP of
groups. (We will need this construction in Proposition 11.8.)
(3) Suppose that M is a groupoid. There is a left and right interior structure given by I(P ) = OpM(P ) for any
object P of M . In the right exterior quotient groupoid OpM\M the morphism sets and automorphism groups
are OpM(P )\M(P,Q) and OpM(P )\M(P ) (the p-groups nearest to M(P )). This is a functorial construction.

For any functor M1
f−→ M2 and any object P of M1, we have that OpM1(P )f ⊂ OpM2(P f ), which means

that f induces a functor OpM1\M1 → OpM2\M2 between the right exterior quotient groupoids. Thus
M 7→ OpM\M is en endofunctor of the category GRPOID of groupoids. (We will need this construction
in subsection 11.1.)

3. Group theory for beginners

Let G be a finite group with element g ∈ G and subgroups H,K ≤ G:
• G is a p-group if |G|p = |G| and a p′-group if |G|p = 1.
• hg = g−1hg for group elements g, h ∈ G
• Conjugation by g ∈ G is the inner automorphism g ∈ GRP(G)◦ taking h ∈ G to hg.
• Hg is the image of H under conjugation by g
• H �G means that H is a normal subgroup of G, ie Hg = H for all g ∈ G
• CG(H) = {g ∈ G | ∀h ∈ H : hg = h} is the centralizer of H
• NG(H) = {g ∈ G | Hg = H} is the normalizer of H
• NG(H,K) = {g ∈ G | Hg ≤ K} is the transporter set
• H\G 3 Hg is the set of right cosets of H ≤ G and G/H 3 gH the set of left cosets1

• Op(G) is the normal subgroup generated by all p′-elements of G [23, p 3]
• Op′(G) is the normal subgroup generated by all p-elements of G [24, p 34]
• Op(G) is the largest normal p-subgroup of G, the intersection of all Sylow p-subgroups of G [40, 9.1]
• Op′(G) the largest normal p′-subgroup of G [40, 9.1]

3.1. Index theorems. We shall need these basic facts about the index of a subgroup. If H and K are
subgroups, their commutator is [H,K] = 〈h−1k−1hk | h ∈ H, k ∈ K〉, [H,K] � 〈H,K〉; we say that H
normalizes K if H ≤ NG(K) or [H,K] ≤ K.

Proposition 3.1. [40, 1.3.11, 1.3.14, 1.4.4] Let H and K be subgroups of G and put H · K = {hk | h ∈
H, k ∈ K}.

(1) |H ·K||H ∩K| = |H||K|
(2) If L ≤ G, and L contains at least one of the groups H or K then (H ·K) ∩ L = (H ∩ L) · (K ∩ L)
(3) |G : H ∩K| ≤ |G : H||G : K| with equality if the indeces |G : H| and |G : K| are coprime.
(4) If H ·K = K ·H, then HK = 〈H,K〉 = KH is a subgroup.
(5) If H normalizes K then HK is a subgroup, K �HK, H ∩K �H, and HK/K ∼= H/H ∩K.

Proposition 3.2. The following conditions are equivalent for a normal subgroup N �G:
(1) N contains a Sylow p-subgroup of G
(2) N contains all p-elements of G
(3) N contains Op

′
(G)

(4) N has p′-index

3.2. Sylow subgroups. Sylow’s theorem is the king of finite group theory. Sylow proved his theorem
without knowing what a group is!

Definition 3.3. A Sylow p-subgroup is a p-subgroup of index prime to p.

Theorem 3.4 (Sylow theorem). [40, 1.6.16] Let G be any finite group.
(1) G has a Sylow p-subgroup
(2) Every p-subgroup of G is contained in a Sylow p-subgroup.

1In a right coset, Hg, the element from G is on the right and the set, H\G, of right cosets is a right G-set.

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Sylow.html
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(3) All Sylow p-subgroups are conjugate
(4) The number of Sylow p-subgroups (the length of the Sylow p-subgroup) is congruent to 1 modulo p.

Corollary 3.5 (Sylow subgroups of (normal) subgroups and factor groups). [40, 1.6.18, 5.2.14][23, Lemma
4.4] Let P be a Sylow p-subgroup of G, H ≤ G a subgroup, and N �G a normal subgroup.

(1) Hg ∩ P is a Sylow p-subgroup of Hg for some g ∈ G
(2) N ∩ P is a Sylow p-subgroup of N and PN/N is a Sylow p-subgroup of G/N .
(3) G = NG(N ∩ P ) ·N (The Frattini argument)

Proof. (1) Let S be a Sylow p-subgroup of H. There is an element g of G so that Sg is contained in the
Sylow p-subgroup P of G (Theorem 3.4). Now Sg ≤ Hg ∩P ≤ Hg. Since Sg is a maximal p-subgroup of Hg,
we actually have Sg = Hg ∩ P . This subgroup is a Sylow p-subgroup of Hg.
(2) This follows from the index formulas of Proposition 3.1.
(3) N ∩ P is a Sylow p-subgroup of N . Let g be any element of G. Then (N ∩ P )g ≤ Ng = N , so (N ∩ P )g

is also a Sylow p-subgroup of N , and thus (N ∩ P )g = (N ∩ P )n for some n ∈ N . This means that gn−1

normalizes N ∩ P and that g = (gn−1)n ∈ NG(N ∩ P ) ·N . �

By induction on the length of a subnormal chain from H to G it follows that if H is subnormal in G, then
H ∩ P is a Sylow p-subgroup of H.

Lemma 3.6. If the normal subgroup N�G has p-power index, then all Sylow p-subgroups of G are conjugate
by elements of N .

Proof. We need to prove that N → G → NG(P )\G is surjective. The image of this map is N ∩NG(P )\N .
Thus we need to show that |N : N ∩NG(P )| = |G : NG(P )|. This follows from the index formula |G : N ∩
NG(P )| = |G : N ||G : NG(P )| which holds since N and NG(P ) have coprime indices (Proposition 3.1.(3)). �

3.3. From centralizers to normalizers. We introduce the K-normalizer of a subgroup.

Definition 3.7. For any Q ≤ G and K ≤ GRP(Q)◦ the K-normalizer NK
G (Q) is the inverse image of K

under the homomorphism NG(Q)→ GRP(Q)◦. Q is K-normal in G if NK
G (Q) = G.

By the very definition there is a commutative diagram

1 // CG(Q) // NK
G (Q) //

� _

��

K ∩GRP(Q)◦� _

��
1 // CG(Q) // NG(Q) // GRP(Q)◦

with exact rows. In particular, CG(Q) = N1
G(Q) � NK

G (Q) ≤ N
GRP(Q)◦

G (P ) = NG(Q). If H ≤ K ≤
GRP(Q)◦, then NH

G (Q) ≤ NK
G (Q), and if H �K, then NH

G (Q) �NK
G (Q). If K contains the inner automor-

phisms of Q, then Q�NK
G (Q).

Any injective group homomorphism ϕ : Q→ P induces an isomorphism GRP(Q)◦ → GRP(Qϕ)◦ taking
k ∈ GRP(Q)◦ to kϕ = ϕ−1kϕ. Let Kϕ ≤ GRP(Qϕ)◦ be the image of K ≤ GRP(Q)◦ under this
isomorphism.

Q
ϕ

∼=
//

K

XX Qϕ

Kϕ

XX

Proposition 3.8. Assume that Q ≤ P ≤ G and K ≤ GRP(Q)◦.

(1) NK
P (Q)ϕ = NKϕ

Pϕ (Qϕ) for any group automorphism ϕ ∈ GRP(G)◦

(2) NK
P (Q)ϕ ≤ NKϕ

P (Qϕ) for any injective group homomorphism ϕ : Q ·NK
P (Q)→ P

Proof. (1) This is clear as ϕ is an automorphism of G.
(2) If g ∈ P normalizes Q and conjugation by g is the automorphism k ∈ K of Q, then g lies in NK

P (Q) so
gϕ lies in P , gϕ normalizes Qϕ, and conjugation by gϕ is the automorphism kϕ of Qϕ. �



FROBENIUS CATEGORIES OF CHEVALLEY GROUPS 5

4. Algebraic group theory for beginners

In this section, F is an algebraically closed field of finite characteristic r.
An affine variety is the common set of zeros in Fn for a finite set of polynomials. The affine varieties are

the closed sets in the Zariski topology on Fn. The affine space Fn itself is an irreducible affine variety.
The set

GLn(F) = {(xij) ∈ Fn
2
| det(xij) 6= 0}

is a principal open set in the irreducible affine variety Fn
2
. It is therefore itself an affine variety [26, p 10],

namely the variety in Fn
2+1 3 (d, xij) defined by the equation ddet(xij)− 1 = 0. The group operations can

be seen to be morphisms of varieties. GLn(F) is the basic example of a an algebraic group[26, Chp II].

Definition 4.1. An algebraic group over F is a variety that is also a group such that the group operation maps
are morphisms of algebraic varieties. An algebraic group morphism between algebraic groups is a morphism
of varieties that is also a group homomorphism.

Examples of algebraic groups:
• GLn(F)
• Zariski closed subgroups of GLn(F), such as SLn(F)
• Products of algebraic groups are algebraic groups
• The multiplicative group F× = GL1(F) (with endomorphism monoid ALG(F×) = Z).
• The additive group

F+ = U2(F) =
{(

1 t
0 1

)
| t ∈ F

}
≤ GL2(F),

(
1 t
0 1

)(
1 u
0 1

)
=
(

1 t+ u
0 1

)
( with automorphism group ALG(F+)◦ = F×).

• Diagonal matrices Tn(F) =


s1 0 0

0 s2 0
0 0 s3

 | s1, . . . , sn ∈ F×

 ∼= F× × · · · × F×

• Unitriangular matrices Un(F) =


1 ∗ ∗

0 1 ∗
0 0 1

 ≤ GLn(F)

• Triangular matrices Bn(F) = Tn(F)Un(F) =


s1 ∗ ∗

0 s2 ∗
0 0 s3

 ≤ GLn(F)

Definition 4.2. A torus is an algebraic group isomorphic to Tn(F) = F× × · · · × F× for some n

The abelian group of algebraic group homomorphisms from an n-torus Tn(F) to the multiplicative group
F× is the free finitely generated abelian group (lattice)

ALG(Tn(F),F×) = Z{e1, . . . , en}
generated by the n coordinate functions ei : Tn(F)→ F× given by sei = si for s = (s1, . . . , sn) ∈ Tn(F). The
linear combination

∑
niei ∈ Z{e1, . . . , en} corresponds to the homomorphism Tn(F) → F× : s 7→

∏
snii ; in

particular, sej−ei = sjs
−1
i .

Theorem 4.3 (Existence of maximal tori). Any algebraic group contains a maximal torus and any two
maximal tori are conjugate.

For instance, Tn+1(F) is a maximal torus in GLn+1(F) and

Tn+1(F) ∩ SLn+1(F) = 〈diag(s1, s
−1, 1, . . . , 1), . . . ,diag(1, . . . , sn, s−1

n ) | s1, . . . , sn ∈ F×〉
is a maximal torus of SLn+1(F)

4.1. Root systems. Let E be a Euclidean space over R, ie E is a finite-dimensional real vector space with
an inner product (·, ·). Let α be a nonzero vector. The orthogonal projection of β on α is (β,α)

(α,α)α and the
orthogonal reflection across the hyperplane α⊥ perpendicular to α is the isometry

rα(β) = β − 〈β, α〉α, β ∈ E,

where we let 〈β, α〉 = 2 (β,α)
(α,α) = 2 (β,α)

|α|2 . (Then the inner product (α, β) = 2〈α, β〉|α|2.)
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//
α

α⊥

JJJJJJJJJJJJJddβ

______oo
(β,α)
(α,α)α

ttttttttttttt:: rα(β) = β − 2 (β,α)
(α,α)α

_ _ _ _ _ _ _ _ _ _ _ //

Figure 1. Reflection of β across α⊥ changes β in the direction of α

Definition 4.4. A root system in E is a set Σ ⊂ E of nonzero vectors (called roots) in E such that rα(Σ) = Σ
for all α ∈ Σ.

Suppose that Σ is a root system. Σ is
reduced: if Rα ∩ Σ = {−α, α} for all α ∈ Σ (Note that −α = rα(α) ∈ Σ.)
crystallographic: if the numbers 〈β, α〉 are all integers (the Cartan integers)
irreducible: if there is no partition Σ = Σ1 ∪ Σ2 of Σ into nonempty orthogonal subsets

The Weyl group of Σ is the group of isometries W (Σ) = 〈rα | α ∈ Σ〉 generated by the reflections associated
to the elements of Σ. Since rα(Σ) = Σ, the Weyl group W (Σ) acts on the root system Σ.

A fundamental system for the reduced, crystallographic root system Σ is a linearly independent set of roots
Π ⊂ Σ such that Σ = Σ+ ∪ Σ− where Σ+ (Σ−) is the set of roots expressible as nonnegative (nonpositive)
linear combinations of the fundamental roots. The information contained in the Cartan matrix is the matrix
(〈α, β〉)α,β∈Π. is conveniently displayed in the Dynkin diagram is the graph whose nodes are the fundamental
roots and with 〈α, β〉〈β, α〉 edges connecting α, β ∈ Π, α 6= β [13, 3.4]. There is no edge between perpendicular
fundamental roots. In case two fundamental roots are not perpendicular and not of equal length, then there
is an inequality sign between them. The relation between the lengths of two fundamental roots and the angle
between them is given by

〈α, β〉|β|2 = 2(α, β) = 2(β, α) = 〈β, α〉|α|2, 〈α, β〉〈β, α〉 = 4
(α, β)(β, α)
(α, α)(β, β)

= 4
(α, β)2

(α, α)(β, β)
= 4 cos2∠(α, β)

The number of edges connecting α and β in the Dynkin diagram, 〈α, β〉〈β, α〉, is the product of two integers
and is ≥ 0 and ≤ 4 and, in fact, ≤ 3 since α and β are linearly independent so not proportional. This
leaves very few possibilities for the angles between and relative lengths of two fundamental roots [4, VI.§1.3].
Therefore the Dynkin diagram determines the root system completely. (Figure 2 shows three examples of
2-dimensional root systems with Cartan matrices and Dynkin diagrams. The root system A1 ×A1 could be
added to that picture. The Weyl group for B2 is the symmetry group of the square given by the roots, the
dihedral group of order 8. The Weyl group for G2 is the symmetry group of the hexagon given by the short
roots, the dihedral group of order 12.)

Here are some useful relations

〈α, β〉 = 2
(α, β)
|β|2

= (α, β∨) (β∨ =
2β
|β|2

), (α, β) =
1
2
|β|2〈α, β〉, 〈α,

∑
biβi〉 =

∑
bi〈α, βi〉|βi|2

|
∑
biβi|2

connecting the bilinear form (−,−) and the function 〈−,−〉 which is linear only in the first variable.
In the above definition the inner product comes out of the blue. Let V be any real vector space, α an

element of V , and α∨ an element of the dual of V , a real form on V . The endomorphism

rα,α∨(β) = β − (β)α∨α, β ∈ V,
fixes the hyperplane kerα∨ and has order 2 if (α)α∨ = 2. Let us call such a map a reflection. (If V has an
inner product, then α∨ = 2 (−,α)

(α,α) is a possibility.)

Lemma 4.5. [4, VI.§1] Let V be a real vector space and Σ ⊂ V a finite set of nonzero vectors. Suppose that
(1) Σ spans V
(2) for each α ∈ Σ there exists a linear form α∨ on V such that (α)α∨ = 2 and rα,α∨ stabilizes Σ
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A2

α1

α2

120◦

B2

α1

α2

135◦

G2

α1

α2

150◦

|α2| =|α1|,∠(α1, α2) = 120◦ |α2| =
√

2|α1|,∠(α1, α2) = 135◦ |α2| =
√

3|α1|,∠(α1, α2) = 150◦

α1 α2
α1 α2 α1 α2

(
2 −1
−1 2

) (
2 −1
−2 2

) (
2 −1
−3 2

)

Figure 2. Root systems A2, B2, and G2

(3) (Σ)α∨ ⊂ Z for all α ∈ Σ.
Then there is an inner product (·, ·) on V such that rα,α∨ is the orthogonal reflection across α⊥ and Σ is a
crystallographic root system in the Euclidean space (V, (·, ·)).

In fact, α∨ is uniquely determined by α and we can write just rα instead of rα,α∨ .

Example 4.6 (The root system An). Let e1, . . . , en+1 be the standard orthonormal basis for Rn+1, n ≥ 2,
with the usual inner product. The set of n(n+ 1) vectors

An = {ej − ei | 1 ≤ i, j ≤ n+ 1, i 6= j} ⊂ Z{e1, . . . , en+1}
is a (reduced, crystallographic, irreducible) root system. The reflection rej−ei across (ej − ei)⊥

rej−ei(β) = β − (βj − βi)(ej − ei) = β + (βi − βj)ej + (βj − βi)ei
interchanges the ith and jth coordinate for any vector β ∈ Rn+1. The Weyl group W (An) ≤ GLn+1(Z) ≤
GLn+1(R) generated by these reflections is the permutation group Σn+1 on the n+ 1 coordinates. (The rank
of the root system An, the dimension of the vector space spanned by An, is n.) The set

Π = {e2 − e1, . . . , en+1 − en}
is a fundamental system, A+

n = {ej−ei | 1 ≤ i < j ≤ n+ 1} are the positive roots, and the negative roots are

A−n = {ej−ei | 1 ≤ j < i ≤ n+1}. The Dynkin diagram is the linear graph
α1 α2 αn−1 αn

with Π as vertex set.

Example 4.7 (The root system Bn). Let e1, . . . , en be the standard orthonormal basis for Rn, n ≥ 2, with
the usual inner product. The set of 2n2 vectors

Bn = {±ej ± ei | n ≥ j, i ≥ 1, i 6= j} ∪ {±ei | 1 ≤ i ≤ n} ⊂ Z{e1, . . . , en}
is a (reduced, crystallographic, irreducible) root system. The reflections rei and rej+ei

rei(β) = β − 2βiei, rej+ei(β) = β − (βj + βi)(ej + ei) = β − (βj + βi)ej − (βj + βi)ei
changes sign on the ith coordinate and swaps the jth and ith coordinates and changes their signs of any
vector β ∈ Rn. The Weyl group W (Bn) = C2 oΣn consists of coordinatewise permutations and sign changes.
The set

Π = {e2 − e1, . . . , en − en−1, e1}
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is a fundamental system and B+
n = {ej ± ei | n ≥ j > i ≥ 1} ∪ {ei | 1 ≤ i ≤ n} are the positive roots. The

Dynkin diagram is the graph
α1 α2 αn−1 αn

with Π as vertex set.

Two root systems are isomorphic if there is a bijective map between them preserving the forms 〈·, ·〉 [24,
Definition 1.8.4].

Theorem 4.8 (Classification of irreducible reduced crystallographic root systems). [4, VI.§4] [24, Table
1.8, Theorem 1.8.7] Two irreducible reduced crystallographic root systems are isomorphic if and only if their
Dynkin diagrams are isomorphic. Any irreducible reduced crystallographic root is isomorphic to precisely one
of the root systems An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4 or G2.

There is a unique element w0 ∈ W (Σ) so that w0(Π) = −Π [13, Proposition 2.2.6]. This element has
order 2 and the linear transformation −w0 is an automorphism of Σ. When w0 6= −1, which happens for An
(n > 1), D2n+1, and E6, ρ = −w0 is the unique automorphism of Π of order 2 [24, Remark 1.8.9].

4.2. Root groups. We shall illustrate the idea of root groups by the simple example of GL3(F).

Example 4.9 (Root subgroups of GL3(F)). Consider the algebraic group GL3(F) and let

T3(F) =


s1 0 0

0 s2 0
0 0 s3

∣∣∣ s1, s2, s3 ∈ F×


be the standard maximal torus. For i 6= j, 1 ≤ i, j ≤ 3, put

xij(t) = I + teij ∈ GL3(F), t ∈ F,

where I is the identity matrix and eij the matrix with 1 in the ith row and jth column and 0 elsewhere, eg

x12(t) =

1 t 0
0 1 0
0 0 1

 , t ∈ F

The map x12 is clearly injective and as

x12(t)x12(u) =

1 t 0
0 1 0
0 0 1

1 u 0
0 1 0
0 0 1

 =

1 t+ u 0
0 1 0
0 0 1

 = x12(t+ u),

x12 is an isomorphism between F+ and the subgroup

X12 =


1 t 0

0 1 0
0 0 1

∣∣∣ t ∈ F


of GL3(F). Also, the computations−1

1 0 0
0 s−1

2 0
0 0 s−1

3

1 t 0
0 1 0
0 0 1

s1 0 0
0 s2 0
0 0 s3

 =

1 s2s
−1
1 t 0

0 1 0
0 0 1

 =

1 se2−e1t 0
0 1 0
0 0 1


shows that the maximal torus T3(F) normalizes the subgroup X12.

Similarly for all six roots groups Xij . Conjugating the parameterization xij(t) of Xij by an element s of
the maximal torus

xij(t)s = xij(sej−eit), s ∈ T3(F), t ∈ F,
amounts to reparameterization by the factor sej−ei . We may visualize this by the commutative diagram

Xij
s // Xij

F+

xij

OO

sej−ei
// F+

xij

OO

of algebraic groups isomorphisms.
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Let Σ = {X12, X13, X23, X21, X31, X32} be the set of these six subgroups of GL3(F). We can embed Σ
into the lattice ALG(T3(F),F×) = Z{e1, e2, e3} by the map

(4.10) Σ→ ALG(T3(F),F×) = Z{e1, e2, e3} : Xij 7→ ej − ei
taking each subgroup Xij ∈ Σ to its associated reparameterization function ej − ei ∈ ALG(T3(F),F×) =
Z{e1, e2, e3}. This embedding takes the set Σ bijectively to the root system A2 (Example 4.6). Observe that
the group T3(F)\NGL3(F)(T3(F)) acts

Σ //

T3(F)\NGL3(F)(T3(F))

YY ALG(T3(F),F×)

T3(F)\NGL3(F)(T3(F))

VV

on the domain and codomain of the map (4.10).
The normalizer NGL3(F)(T3(F)) of the maximal torus, the group of monomial matrices (with exactly one

nonzero entry in each row and column), acts on the set Σ by conjugation. For example, the permutation
matrix

(4.11) n =

1 0 0
0 0 1
0 1 0

 ∈ NGL3(F)(T3(F))

corresponding to the transposition (2, 3) conjugates X12 into X13 because

x12(t)n =

1 0 0
0 0 1
0 1 0

1 t 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0

 =

1 0 t
0 1 0
0 0 1

 = x13(t)

As T3(F) acts trivially on Σ(T ), we in fact have an action of the quotient group T3(F)\NGL3(F)(T3(F)) on
Σ.

The normalizer NGL3(F)(T3(F)) also acts on the lattice ALG(T3(F),F×) by conjugation: For α ∈
ALG(T3(F),F×) and n ∈ NGL3(F)(T3(F)), αn is the homomorphisms αn(s) = α(s−n). For instance, with n
corresponding to the transposition (2, 3) as in (4.11), the computation

(e2 − e1)n(s) = (e2 − e1)(s−n) = (e2 − e1)(s1, s3, s2) = s3s
−1
1 = (e3 − e1)(s)

shows that n takes e2−e1 to e3−e1. This indicates that the map (4.10) is T3(F)\NGL3(F)(T3(F))- equivariant.
The fact that the quotient group T3(F)\NGL3(F)(T3(F)) acts on the rank three lattice ALG(T3(F),F×)

means that we have a homomorphism

T3(F)\NGL3(F)(T3(F))→ GRP(ALG(T3(F),F×))◦ ∼= GL3(Z)

into the automorphism group of the lattice. This homomorphism happens to be injective and to take
T3(F)\NGL3(F)(T3(F)) isomorphically to the Weyl group W (A2).

After this concrete example, we now consider the general theory of root groups. Let K be an algebraic
group and T a maximal torus of K.

Definition 4.12. A one-parameter group X is an algebraic group isomorphic to the additive group F+ and
a parameterization of X is an algebraic group isomorphism x : F+ → X.

Any two parameterizations of a one-parameter group differ by an element of the automorphism group
ALG(F+)◦ = F×.

Definition 4.13. A root group of K (relative to T ) is a one-parameter subgroup of K normalized by T .

Let Σ(T ) be the set of root groups relative to T . Suppose Σ(T ) 3 X ≤ K is a root group. Let x : F+ → X
be any parameterization of X and let s be any element of the maximal torus T . Then t → x(t)s is also a
parameterization of X and therefore

x(t)s = x(αX(s)t)
for some reparameterization factor αX(s) ∈ ALG(F+)◦ = F× (independent of the choice of parameterization
x for X). This means that there is a map

Σ(T )→ ALG(T,F×) : X 7→ αX
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Σ Ku(Σ) Z(Ku(Σ)) Ka(Σ) Aut(Σ)
An SLn+1(F) Or′Cn+1 PSLn+1(F) C2

Bn Spin2n+1(F)
C2 r 6= 2
1 r = 2 SO2n+1(F) 1

Cn Sp2n(F)
C2 r 6= 2
1 r = 2 PSp2n(F) 1

Dn Spin2n(F)
C2

2 r 6= 2, n even
C4 r 6= 2, n odd
1 r = 2

PSO2n(F)
Σ3 m = 4
C2 m > 4

Table 1. The simple classical algebraic groups (r denotes the characteristic of F)

taking a root group X ≤ K to its reparameterization function αX : T → F×.
The normalizer NK(T ) of the maximal torus acts on the lattice ALG(T,F×). Indeed, if n ∈ NK(T )

normalizes T and α : T → F× is a homomorphism define αn to be the homomorphism that makes

T

n

��

α // F×

T
αn

// F×

commute, ie αn(sn) = α(s) or αn(s) = α(s−n). Of course, T acts trivially, so that we in fact have an action
of the quotient group T\NK(T ) on the lattice.
NK(T ) also acts on the set Σ(T ) of root groups. Indeed, if n ∈ NK(T ) normalizes T and x : F+ → X is a

parameterization of a root group X then

x(t)ns = x(t)nsn
−1n = x(t)s

−nn = x(αX(s−n))n = x(αnX(s))n

which says that Xn is a root group with reparameterization function αXn = αnX . In other words, the map
Σ(T ) → ALG(T,F×) is NK(T )-equivariant. Again, T acts trivially, so that in fact T\NK(T ) acts on the
set Σ(T ) of root groups and the map Σ(T )→ ALG(T,F×) is T\NK(T )-equivariant.

The fact that T\NK(T ) acts on ALG(T,F×) means that there is a homomorphism

T\NK(T )→ GRP(ALG(T,F×))◦

into the automorphism group of the lattice.

Theorem 4.14. [24, Theorem 1.9.5][26, 27.1] Assume that K is a reductive algebraic group.
(1) The map Σ(T )→ ALG(T,F×) is injective and T\NK(T )-equivariant
(2) Σ(T ) is a reduced crystallographic root system in ALG(T,F×) (or R⊗Z ALG(T,F×))
(3) There is an isomorphism between T\NK(T ) and W (Σ(T )) induced by the action T\NK(T ) →

GRP(ALG(T,F×))◦

The root groups in K, acted upon by T\NK(T ), correspond to roots in a root system Σ in ALG(T,F×),
acted upon by W (Σ).

An isogeny is an epimorphism K → H of algebraic groups with finite kernel [24, Definition 1.10.2].
SLn+1(F)→ PSLn+1(F) and SLn+1(F)× F× → GLn+1(F) are examples of isogenies.

Theorem 4.15 (Chevalley classification of semisimple algebraic groups). [24, Theorem 1.10.4] Semisimple
algebraic groups are determined, up to isogeny, by their root systems. More precisely,

(1) If the algebraic groups K and H are connected by an isogeny then K and H have isomorphic root
systems (or their root systems are Bm and Cm and F has characteristic two).

(2) Let Σ be any reduced and crystallographic root system. Then there exist unique semisimple algebraic
groups, Ku(Σ) (the universal version) and Ka(Σ) (the adjoint version), such that for any algebraic
K group with root system Σ there are isogenies Ku(Σ)→ K → Ka(Σ).

(3) The center of Ku(Σ) is finite (Table 1) and the center Ka(Σ) is trivial.

Some of the classical algebraic groups [3, V.§23] [26, 7.2] in Table 1 are

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Chevalley.html
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SLn+1(F): is {B ∈ GLn+1(F) | det(B) = 1}, the subgroup of GLn+1(F) of matrices of determinant 1.
SO2n+1(F): is {B ∈ SL2n+1(F) | BTPB = P}, the subgroup of invertible matrices preserving the

nondegenerate symmetric bilinear form

((u0, u1, . . . , un, u−1, . . . , u−n), (v0, v1, . . . , vn, v−1, . . . , v−n)) = uPv = u0v0 +
n∑
i=1

(uiv−i + u−ivi)

given by the nondegenerate symmetric matrix

P =

2 0 0
0 0 In
0 In 0


The associated quadratic form is 2u2

0 + 2
∑n
i=0 uiu−i. (This is under the assumption that F has odd

characteristic r.)
Sp2n(F): is {B ∈ GL2n(F) | BTPB = P}, the subgroup of invertible matrices preserving the nonde-

generate skew-symmetric bilinear form

((u1, . . . , un, u−1, . . . , u−n), (v1, . . . , vn, v−1, . . . , v−n)) = uPv =
n∑
i=1

(uiv−i − u−ivi)

given by the nondegenerate skew-symmetric matrix

P =
(

0 In
−In 0

)
SO2n(F): is {B ∈ SL2n(F) | BTPB = P}, the subgroup of invertible matrices preserving the nonde-

generate symmetric bilinear form

((u1, . . . , un, u−1, . . . , u−n), (v1, . . . , vn, v−1, . . . , v−n)) = uPv =
n∑
i=1

(uiv−i + u−ivi)

given by the nondegenerate symmetric matrix

P =
(

0 In
In 0

)
(This is under the assumption that F has odd characteristic r.)

A subgroup of an algebraic group K is unipotent if there is some embedding of K into some general linear
group GLn(F) taking the subgroup into Un(F). The algebraic group K is reductive if the trivial subgroup is
the only connected normal unipotent subgroup. The algebraic group K is semisimple if the trivial subgroup
is the only connected normal solvable subgroup. All semisimple algebraic groups are reductive.

A simple algebraic group is a finite central quotient of Ku(Σ) where Σ is irreducible. (Table 1 contains
a list of the classical simple algebraic groups.) A semisimple algebraic group is a finite central quotient of
a finite product K1 × · · · × Kh of simple algebraic groups. A reductive algebraic group is a finite central
quotient of a finite product K1×· · ·×Kh×T of simple algebraic groups and a torus. (For example, GLn(F)
is reductive and not semisimple.)

Σ Ku(Σ) Z(Ku(Σ)) Aut(Σ)

E6 E6(F)
C3 r 6= 3
1 r = 3 C2

E7 E7(F)
C2 r 6= 2
1 r = 2 1

E8 E8(F) 1 1
F4 F4(F) 1 1
G2 G2(F) 1 1

Table 2. The simple exceptional algebraic groups (r denotes the characteristic of F)
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Example 4.16 (Root systems of GLn+1(F) and SLn+1(F)). The maximal torus of GLn+1(F) is the group
Tn+1(F) of diagonal matrices and its dual is the lattice ALG(Tn+1(F),F×) = Z{e1, . . . , en+1} generated
by the n + 1 coordinates ei : Tn+1(F)→ F×. Generalizing Example 4.9 we learn that the root groups of
GLn+1(F) are the one-parameter subgroups Xij 1 ≤ i 6= j ≤ n+ 1, with parameterization xij(t) = I + teij ,
t ∈ F, and that conjugation by an element s = (s1, . . . , sn+1) of the maximal torus Tn+1(F) results in the
reparameterization

xij(t)s = xij(sej−eit), s ∈ Tn+1(F),

of the root group. The set {Xij} of the n(n+ 1) root groups corresponds to the root system

(4.17) An = {ej − ei | 1 ≤ i 6= j ≤ n+ 1} ⊂ Z{e1, . . . , en+1}

The reflection rej−ei : Z{e1, . . . , en+1} → Z{e1, . . . , en+1} for the root ej − ei is

(4.18) (β)rej−ei = β − (β)(e∨j − e∨i )(ej − ei)

where e∨i : Z{e1, . . . , en+1} → Z is the usual dual, (ej)e∨i = δij , to the basis element ei.
We now turn to the simple algebraic group SLn+1(F). The n-torus

Tn(F)→ SLn+1(F) : (s1, . . . , sn) 7→ (s1, s
−1
1 s2, . . . , s

−1
n−1sn, s

−1
n )

is a maximal torus of SLn+1(F). The inclusion Tn(F) ↪→ Tn+1(F) into the maximal torus Tn+1(F) for
GLn+1(F) induces a projection ALG(Tn+1(F),F×) � ALG(Tn(F),F×) that can be identified to the pro-
jection

(4.19) ALG(Tn+1(F),F×) = Z{e1, . . . , en+1} → Z{e1, . . . , en+1}/Z(e1 + · · ·+ en+1) = ALG(Tn(F),F×)

onto the quotient lattice by the sublattice generated by the sum e1 + · · ·+ en+1 of the basis elements.
The root groups for SLn+1(F) are the same one-parameter groups Xij as for GLn+1(F) and the effect of

conjugation by an s element of the maximal torus Tn(F) ≤ Tn+1(F)

xij(t)s = xij(sej−eit), s ∈ Tn(F),

is also as before, of course. This means that the root system for SLn+1(F) is the image

(4.20) An = {ej − ei + Z(e1 + . . .+ en+1) | 1 ≤ i 6= j ≤ n+ 1} ⊂ Z{e1, . . . , en+1}/Z(e1 + . . .+ en+1)

under the quotient map (4.19) of the root system An ⊂ Z{e1, . . . , en+1} for GLn+1(F). Note that the linear
forms e∨j − e∨i factor through the quotient lattice

Z{e1, . . . , en+1}

��

e∨j −e
∨
i // Z

Z{e1, . . . , en+1}/Z(e1 + · · · en+1)

e∨j −e
∨
i

55

so that the reflections rej−ei and rej−ei+Z(e1+...+en+1) in the commutative diagram

Z{e1, . . . , en+1}

��

rej−ei // Z{e1, . . . , en+1}

��
Z{e1, . . . , en+1}/Z(e1 + . . .+ en+1) // Z{e1, . . . , en+1}/Z(e1 + . . .+ en+1)

both are given by formula (4.18). Lemma 4.5 shows that (4.20) indeed is a root system. Also, since the forms
〈·, ·〉 are preserved under the bijection induced by the projection (4.19), the root systems for GLn+1(F) and
SLn+1(F) are isomorphic.
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4.3. Steinberg and Frobenius endomorphisms of algebraic groups. These are the endomorphisms of
algebraic groups whose fixed point groups are finite.

Definition 4.21. [24, Definition 1.15.1] A Steinberg endomorphism of the algebraic group K is a surjective
endomorphism σ whose fixed point group CK(σ) is finite.

Let q be a power of r and ϕq : F→ F the Frobenius automorphism ϕq(t) = tq (with fixed field the
finite Galois field Fq with q elements). We may extend ϕq to an a bijective algebraic group endomorphism
ϕq : GLn(F)→ GLn(F) by (tij)ϕq = (tqij). (A bijective algebraic group endomorphism may not be an
algebraic group automorphism as the inverse (abstract) group endomorphism may not be algebraic.) The
fixed group of this ϕq is the finite group CGLn(F)(ϕq) = GLn(q). If K is a closed subgroup of GLn(F) and
K is normalized by ϕq then ϕq|K is a Steinberg endomorphism of K because CK(ϕq) is a subgroup of the
finite group CGLn(F)(ϕq) [24, Theorem 2.1.11].

Theorem 4.22. Let K be a simple algebraic group and q = r, r2, . . . a positive power of r. There is a unique
bijective endomorphism ϕq of K such that (t)xϕqα = (tq)xα for all α ∈ Σ, t ∈ F. The endomorphism ϕq is a
Steinberg endomorphism.

Frobenius endomorphisms are special Steinberg endomorphism.

Definition 4.23. [24, Definition 2.1.9] An endomorphism σ of an algebraic group K is called a Frobenius
endomorphism (of level q1/m) if some power σm of σ equals ϕq|K for some inclusion of K as a closed subgroup
of some GLn(F).

All Frobenius endomorphisms are Steinberg endomorphisms. Indeed, the fixed point group CK(σ) is a
subgroup of the finite group CK(σm) = CK(ϕq). For simple algebraic groups, Steinberg endomorphism =
Frobenius endomorphism [24, Theorem 2.1.11].

Example 4.24. The Dynkin diagram • • for SL3(F), with vertices Π = {e2 − e1, e3 − e2}, admits
a symmetry which extends to an automorphism ρ of the root system {Xij | 1 ≤ i 6= j ≤ 3} = A2 ⊂
Z{e1, e2, e3}/Z(e1 + e2 + e3) given by (ei)ρ = −e4−i [13, Proposition 12.2.2].

1 X12 cc
##GGGG X13 ll

X21 cc
##GGGG 1 X23

X3122 X32 1

This permutation of the root groups Xij even extends to the (graph) automorphism γρ of SL3(F) given by

(g)γρ = A(gT )−1A−1

where A is the matrix whose only nonzero entries are a string of alternating ±1 running (anti-)diagonally
from the upper right to the lower left corner [24, Chp 2.7]. Observe, for instance, that

(t)xγρ12 = A(−t)x21A = (t)x23, t ∈ F,

as ((t)xT12)−1 = (t)x−1
21 = (−t)x21 and A−1 = A (in this dimension 3). Actually,

xγρα = xαρ

for all roots α ∈ A2 [24, Theorem 1.15.2]. On the maximal torus, (s1, s2, s3)γρ = (s−1
3 , s−1

2 , s−1
1 ).

The composition σ = γρϕq, for any power q of r, is a Frobenius endomorphism of SL3(F) (of level q1/2).
Indeed, σ2 = σq2 . The fixed point group SL−3 (q) = CSL3(F)(σ) for σ is a subgroup of the fixed point group
SL+

3 (q2) = CSL3(F)(σq2) for σ2 = σq2 .

More generally, the symmetry of the Dynkin diagram for An extends to an automorphism ρ of order 2
of the root system An and even to a bijective endomorphism γρ of SLn+1(F) such that xγρα = xαρ for all
roots α ∈ An [24, Theorem 1.15.2]. The composite σ = γρϕq, where q is any power of r, is a Frobenius
endomorphism with σ2 = σq2 . The fixed point group SL−m+1(q) = CSLm+1(F)(σ) for σ is a subgroup of the
fixed point group SL+

m+1(q2) = CSLm+1(F)(σq2) for σ2 = σq2 .
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Similarly, the root systems Dn and E6 admit a symmetry ρ of order 2 that extends to a bijective endomor-
phism γρ of a simple algebraic group K with these root systems. Then σ = γρϕq is a Frobenius endomorphism
with σ2 = ϕq2 for any power q of r.

Also, the root system D4 admits a symmetry ρ of order 3 that extends to a bijective endomorphism γρ
of a simple algebraic group K with this root system. Then σ = γρϕq is a Frobenius endomorphism with
σ3 = ϕq3 for any power q of r.

These Frobenius endomorphisms exist for all characteristics r. Now follow some special constructions that
only work when the field is chosen properly.

Let Σ be one of the root systems B2, F4, or G2, (see Figure 2) and let Π be a basis. The Dynkin diagrams
are

α1 α2

B2

α1 α2 α3 α4

F4

α1 α2

G2

There exists a bijection ρ of a basis Π, taking short roots to long roots, such that the linear automorphism
ρ : RΣ→ RΣ preserves angles but not lengths, and ρ2 is 2, 2, or 3. Thus ρ is not quite an automorphism
of the root system since it does not preserve the form 〈·, ·〉 or, equivalently, the inner product. Nevertheless,
if K is a simple algebraic group with root system Σ and the field F has characteristic r equal to 2, 2, or 3,
then there exists an endomorphism ψρ of K such that

(t)xψρα =

{
(t)xαρ α is long
(tr)xαρ α is short

and ψ2
ρ is ϕ2, ϕ2, ϕ3. Thus σ = ψρϕra with square σ2 = ψ2

ρϕr2a = ϕr2a+1 is a Frobenius endomorphism of K
for every positive exponent a.

5. Finite groups of Lie type

For any group G and any prime r, recall that Or
′
G is the subgroup of G generated by the set of r-elements

of G; it is the smallest normal subgroup of G with an r′-quotient group.

Definition 5.1. [24, Definition 2.2.2] A finite group of Lie type (in characteristic r) is a group of the form
Or
′
CK̄(σ) where K̄ is a simple algebraic group over F̄r and σ a Frobenius endomorphism of K̄.

In fact, we can always assume that σ = γρϕq for some automorphism ρ of the root system and some
power q of r [24, Theorem 2.2.3]. If K̄ is of universal type then CK̄(σ) is generated by its r-elements so that
Or
′
CK̄(σ) = CK̄(σ) [24, Theorem 2.2.6].

The finite group of Lie type Or
′
CK̄(σ) is a

Chevalley group: if σ = ϕq – examples are SL+
n+1(q), Spin2n+1(q), Sp2n(q), Spin+

2n(q), E6(q), E7(q),
E8(q), F4(q), G2(q);

Steinberg group: if σ = γρϕq for some nonidentity automorphism ρ of the root system – examples
are SL−n+1(q) (n ≥ 2), Spin−2n(q), (n ≥ 3) 3D4(q), 2E6(q);

Suzuki–Ree group: if Σ = B2, F4, G2, r = 2, 2, 3, and σ = ψ2a+1, where ψ is an automorphism with
ψ2 = ϕr (ψ = r

1
2 ), we get the Suzuki group 2B2(2a+ 1

2 ), and the Ree groups 2F4(2a+ 1
2 ), 2G2(3a+ 1

2 )
as the fixed points for the odd powers of ψ. (The fixed points for the even powers ψ2a = ϕra are
Chevalley groups B2(2a), F4(2a), G2(3a).)

The Steinberg group SL−n+1(q) is also denoted SUn+1(q) and it is isomorphic to the subgroup of GLn+1(q2)
of matrices that preserve the Hermitian inner product ((u1, . . . , un+1), (v1, . . . , vn+1)) =

∑n+1
i=1 uiv

q
i .

6. The Frobenius category associated to a finite group

Let G be a finite group and P a Sylow p-subgroup of G.

Definition 6.1. [37, 1.8] The Frobenius category associated with G (and P ) is the category FG whose objects
are the subgroups of P and whose morphisms are group homomorphisms induced by conjugation in G.
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All morphisms in FG are injective group homomorphisms. More explicitly, for Q,R ≤ P
FG(Q,R) = CG(Q)\NG(Q,R) and FG(Q) = CG(Q)\NG(Q)

Note that FG is equivalent to the category where the objects are all p-subgroups of G and the morphisms are
group homomorphisms induced by conjugation in G. Therefore different choices of P will lead to equivalent
(in fact, isomorphic) categories.

The category FG is not a faithful representation of G. FG is trivial when G is a p′-group. FG = FP when
G is nilpotent and thus isomorphic to the product of its Sylow p-subgroups [40, 5.2.4]. In fact, Frobenius
normal p-complement theorem (Theorem 7.3) says that FG = FP if and only if G is p-nilpotent. When
P ≤ H ≤ G, FH and FG have the same objects Q,R ≤ P and FH(Q,R) ⊂ FG(Q,R). When actually
FH = FG we say that H controls fusion in G [23, Definition 15.8]. We have

(6.2) FH = FG ⇐⇒ ∀Q ≤ P : NH(Q) = NG(Q)

because |FG(Q) : FH(Q)| = |NG(Q) : NH(Q)|.

Example 6.3. The three simple groups SL3(F2), A6, andA7 of order 168 = 23·21, 360 = 23·45, 2520 = 23·315
happen to have identical Frobenius categories at p = 2. The p = 2 Frobenius category of any of these three
groups is

D
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where we only show the nonidentity subgroups. In Corollary 12.2 we shall see more examples of distinct
simple groups with Frobenius categories that are equivalent (as Frobenius categories).

Example 6.4. Suppose that K is a normal p′-subgroup of G. Then G and its factor group G/K have
isomorphic Frobenius cateories. The group homomorphism π : G → G/K induces a (Frobenius) functor
FG → FG/K . This functor is an equivalence of categories. Let P and Q be p-subgroups of G. Since the
projections P → Pπ and Q→ Qπ are isomorphisms the map FG(P,Q)→ FGπ (Pπ, Qπ) is injective. It is also
surjective. Let g be an element of G so that P g ≤ KQ. Since Q is a Sylow p-subgroup of KQ there exists
an element x ∈ K so that P gx ≤ Q. Conjugation by gx determines an FG-morphism from P to Q over the
FGπ -morphism Pπ → Qπ that is conjugation by g.

For instance, consider SLn+1(q) where q is a power of p. The center of SLn+1(q) is cyclic of order (n+1, q−1)
not divisible by p. Thus SLn+1(q) and PSLn+1(q) have isomorphic Frobenius categories at p.

Example 6.5 (GL2(Fq) for p | q). Let q be a positive power of p and GL2(Fq) the group of invertible
2× 2-matrices over Fq. The order of this group is |GL2(Fq)| = (q2 − 1)(q2 − q) = q(q2 − 1)(q − 1) and the
p-part of the order is |GL2(Fq)|p = q. Consider the subgroups

H =
{(

s1 0
0 s2

)
| s1, s2 ∈ F×q

}
∼= F×q × F×q , U =

{(
1 t
0 1

)
| t ∈ Fq

}
∼= F+

q ,

B = HU =
{(

s1 t
0 s2

)
| s1, s2 ∈ F×q , t ∈ Fq

}
, B � U, U ∩H = 1, B/U = H

of diagonal, (upper) unitriangular matrices, and triangular matrices. H normalizes U , ie H ≤ NGL2(Fq)(U),
because (

s1 0
0 s2

)−1(1 t
0 1

)(
s1 0
0 s2

)
=
(

1 s2s
−1
1 t

0 1

)
and therefore B is a subgroup of NGL2(Fq)(U). In fact, B = NGL2(Fq)(U) is the normalizer of U . To see this
we (refer to theory of parabolic subgroups or) compute the effect of conjugation by

g =
(
a b
c d

)
∈ GL2(Fq), D = ad− bc,
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on U :(
1 t
0 1

)g
=
(
a b
c d

)−1(1 t
0 1

)(
a b
c d

)
= D−1

(
d −b
−c a

)(
a+ tc b+ td
c d

)
= D−1

(
? tbd
−tc2 ?

)
This shows that

Ug = U ⇐⇒ c = 0 ⇐⇒ U ∩ Ug 6= 1 ⇐⇒ g ∈ B
U is a Sylow p-subgroup of GL2(Fq) because |U | = q. The above discussion shows that B controls fusion
in GL2(Fq), ie FGL2(Fq) = FB . The objects of FB are the subgroups of the elementary abelian p-group
U ∼= F+

q = F+
p × · · · × F+

p . The morphisms in FB are restrictions of the group automorphisms in the image
of Cq−1 = F×q → GRP(F+

q )◦.
We conclude that the Frobenius category FGL2(Fq) associated to GL2(Fq) is the category of subgroups of

U with maps induced from B = HU , ie FGL2(Fq) = 〈FB(U)〉 = 〈 F+
q F×qjj 〉.

We note five general properties of FG:
(1) FP is a subcategory of FG
(2) FP (P ) = CG(P )∩P\P = CG(P )\PCG(P ) is a normal Sylow p-subgroup of FG(P ) = CG(P )\NG(P )

because P is Sylow p-subgroup of NG(P ) and CG(P ) and PCG(P ) are normal in NG(P ) (Proposi-
tion 3.1, Corollary 3.5).

(3) If for some group homomorphism ϕ : R→ S and some FG-morphism y → yg from S to T , the

composition R
ϕ−→ S

y→yg−−−−→ T is an FG-morphism, (xϕ)g = xh, then xϕ = xhg
−1

, so ϕ is an FG-
morphism too:

R
ϕ∈GRP(R,S) //

ϕψ∈FG(R,T )

44S
ψ∈FG(S,T ) // T =⇒ ϕ ∈ FG(R,S)

(4) For a subgroup Q of P and K ≤ GRP(Q)◦, the K-normalizer of Q in P is a p-subgroup of the
K-normalizer of Q in G but NK

P (Q) need not be a Sylow p-subgroup of NK
G (Q), as it may be too

small. When is NK
P (Q) a Sylow p-subgroup of NK

G (Q)? See subsection 6.1.
(5) Some homomorphisms Q→ P in FG may extend to a larger subgroup R ≥ Q of P . How far can you

extend a given homomorphism in FG? See subsection 6.3.

6.1. Fully K-normalized subgroups. We shall now discuss in more detail Sylow p-subgroups of centralizers
or normalizers of p-subgroups. Let Q ≤ P .

Lemma 6.6. The following two conditions are equivalent:
(1) NP (Q) is a Sylow p-subgroup of NG(Q)
(2) CP (Q) is a Sylow p-subgroup of CG(Q) and FP (Q) is a Sylow p-subgroup of FG(Q)

Proof. This is clear as |NG(Q) : NP (Q)| = |CG(Q) : CP (Q)||FG(Q) : FP (Q)| simply because |NG(Q)| =
|CG(Q)||FG(Q)| and |NP (Q)| = |CP (Q)||FP (Q)|. �

Lemma 6.7. There is g ∈ NG(Q,P ) so that NP (Qg) is a Sylow p-subgroup of NG(Qg) (and CP (Qg) is a
Sylow p-subgroup of CG(Qg)).

Proof. Let N be a Sylow p-subgroup of NG(Q). We can choose N so that N contains Q. Also, we can find
g ∈ G so that Ng ≤ P . Now

NG(Q)g = NG(Qg) ≥ NP (Qg) = P ∩NG(Qg) = P ∩NG(Q)g ≥ P ∩Ng = Ng

But Ng is a maximal p-subgroup of NG(Q)g and therefore NP (Qg) = Ng is a Sylow p-subgroup of NG(Q)g =
NG(Qg). �

Lemma 6.8. The following conditions are equivalent:
(1) CP (Q) is a Sylow p-subgroup of CG(Q)
(2) |CP (Q)| ≥ |CP (Qg)| for all g ∈ NG(Q,P )
(3) CP (Q)g = CP (Qg) for all g ∈ NG(Q · CP (Q), P )
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Proof. (1) =⇒ (2) CP (Q)g is a Sylow p-subgroup of CG(Q)g = CG(Qq) and CP (Qg) is a p-subgroup of
CG(Q)g = CG(Q)g.
(2) =⇒ (3) CP (Q)g = P ∩ CP (Q)g = P ∩ CP g (Qg) = CP∩P g (Qq) ≤ CP (Qg) (as in Proposition 3.8), and
from (2), |CP (Q)g| = |CP (Q)| ≥ |CP (Qg)|. Therefore, in fact, CP (Q)g = CP (Qg).
(3) =⇒ (1) Choose g ∈ NG(Q,P ) so that CP (Qg) is a Sylow p-subgroup of CG(Qg) (Lemma 6.7). Now
CP (Q)g is a p-subgroup of CG(Q)g = CG(Qg) so CP (Q)gh ≤ CP (Qg) for some h ∈ CG(Qg) (Theorem 3.4).
Then Qgh = Qg as h centralizes Qg and (Q · CP (Q))gh = Qg · CP (Q)gh ≤ Qg · CP (Qg) ≤ P · P = P so that
gh ∈ NG(Q ·CP (Q), P ) and CP (Q)gh = CP (Qgh) = CP (Qg) where the first equality comes from assumption
(3). Thus CP (Qg) = CP (Q)gh is a Sylow p-subgroup of CG(Qg) = CG(Qgh) = CG(Q)gh and CP (Q) is a
Sylow p-subgroup of CG(Q). �

Lemma 6.9. The following conditions are equivalent:
(1) NP (Q) is a Sylow p-subgroup of NG(Q)
(2) CP (Q) is a Sylow p-subgroup of CG(Q) and FP (Q) is a Sylow p-subgroup of FG(Q)
(3) |NP (Q)| ≥ |NP (Qg)| for all g ∈ NG(Q,P )
(4) NP (Q)g = NP (Qg) for all g ∈ NG(NP (Q), P )

Proof. (1) ⇐⇒ (2) Lemma 6.6.
(1) =⇒ (3) NP (Qg) is a p-subgroup and NP (Q)g a Sylow p-subgroup of NG(Q)g = NG(Qg).
(3) =⇒ (4) Suppose that NP (Q)g ≤ P . Then NP (Q)g ≤ NP (Qg) by Proposition 3.8.(2). As also Qg ≤ P ,
we know from (3) that |NP (Q)g| = |NP (Q)| ≥ |NP (Qg)|. Therefore, in fact, NP (Q)g = NP (Qg).
(4) =⇒ (1) Choose g ∈ NG(Q,P ) so that NP (Qg) is a Sylow p-subgroup of NG(Qg) (Lemma 6.7). Now
NP (Q)g is a p-subgroup of NG(Q)g = NG(Qg) so NP (Q)gh ≤ NP (Qg) ≤ P for some h ∈ NG(Qg). Then
Qgh = Qg as h normalizes Qg and (Q · NP (Q))gh = Qg · NP (Q)gh ≤ P · P = P . This means that gh ∈
NG(Q · NG(H), P ) and therefore NP (Q)gh = NP (Qgh) = NP (Qg) by assumption (4). Thus NP (Q)gh is a
Sylow p-subgroup of NG(Qg) = NG(Qgh) = NG(Q)gh and, equivalently, NP (Q) is a Sylow p-subgroup of
NG(Q). �

Definition 6.10. Q is fully centralized in FG if it satisfies any one of the conditions of Lemma 6.8 and fully
normalized in FG if it satisfies any one of the conditions of Lemma 6.9.

By Lemma 6.9.(2): Q is fully normalized =⇒ Q is fully centralized.
Central subgroups of P are fully centralized in FG as CP (Q) = P (Lemma 6.8.(2)) and normal subgroups

of P are fully normalized in FG as NP (Q) = P (Lemma 6.9.(3)).
Observe that the preceding results about centralizers and normalizer have a great deal in common. In

fact, they both are extreme special cases of a general statement using K-normalizers. In this framework,
Lemma 6.6–6.9 are special cases (with K = {1} the trivial group or K = GRP(Q)◦ the full automorphism
group) of the following three statements.

Let Q ≤ P , K ≤ GRP(Q)◦, and let NK
P (Q) and NK

G (Q) be the K-normalizers of Q in P and G
(Definition 3.7).

Lemma 6.11. The following conditions are equivalent:
(1) NK

P (Q) is a Sylow p-subgroup of NK
G (Q)

(2) CP (Q) is a Sylow p-subgroup of CG(Q) and K ∩ FP (Q) is a Sylow p-subgroup of K ∩ FG(Q)

Proof. By definition, there is an exact sequence 1→ CG(Q)→ NK
G (Q)→ K∩FG(Q)→ 1 so that |NG(Q)| =

|CG(Q)||K ∩FG(Q)|. Similarly, |NP (Q)| = |CP (Q)||K ∩FP (Q)|. These two identities prove the lemma. �

Lemma 6.12. There is g ∈ NG(Q,P ) so that NKg

P (Qg) is a Sylow p-subgroup of NKg

G (Qg).

Proof. We may assume that Q is already fully normalized in FG (Lemma 6.7) so that CP (Q) is a Sylow p-
subgroup of CG(Q) and FP (Q) is a Sylow p-subgroup of FG(Q) (Lemma 6.6). Choose g ∈ NG(Q,Q) = NG(Q)
so that (Corollary 3.5.(1)) (K ∩FG(Q))g ∩FP (Q) = Kg ∩FG(Qg) is a Sylow p-subgroup of (K ∩FG(Q))g =
Kg ∩ FG(Qg) (and Qg = Q). Then NKg

P (Qg) is a Sylow p-subgroup of NKg

G (Qg) (Lemma 6.11). �

Lemma 6.13. The following conditions are equivalent:
(1) NK

P (Q) is a Sylow p-subgroup of NK
G (Q)

(2) CP (Q) is a Sylow p-subgroup of CG(Q) and K ∩ FP (Q) is a Sylow p-subgroup of K ∩ FG(Q)
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(3) |NK
P (Q)| ≥ |NKg

P (Qg)| for all g ∈ NG(Q,P )
(4) NK

P (Q)g = NKg

P (Qg) for all g ∈ NG(Q ·NK
P (Q), P )

Proof. (1) ⇐⇒ (2) Lemma 6.11.
(1) =⇒ (3) NKg

P (Qg) is a p-subgroup and NK
P (Q)g a Sylow p-subgroup of NK

G (Q)g = NKg

G (Qg).
(3) =⇒ (4) Proceed exactly as in the proof of Lemma 6.9.
(4) =⇒ (1) Proceed exactly as in the proof of Lemma 6.9 (replacing Lemma 6.7 by Lemma 6.12). �

Definition 6.14. Q is fully K-normalized in FG if it satisfies any one of the conditions of Lemma 6.13.

By Lemma 6.13.(2):

Q is fully K-normalized in FG =⇒ Q is fully centralized in FG ⇐⇒ Q is fully FP (G)-normalized in FG

Lemma 6.15. If Q is fully K-normalized in FG and H �K then Q is also fully H-normalized in FG.

Proof. As NH
G (Q)�NK

G (Q), and NK
P (Q) is a Sylow p-subgroup of NK

G (Q), the intersection NK
P (Q)∩NH

G (Q) =
NH
P (Q) is a Sylow p-subgroup of NH

G (Q) (Corollary 3.5). �

Remark 6.16 (K-normalizer Frobenius categories). Assume that Q is fully K-normalized in FG so that
NK
P (Q) is a Sylow p-subgroup of NK

G (Q). The Frobenius category FNKG (Q) is a subcategory of FG. The
objects of FNKG (Q) are subgroups R, T , of NK

P (Q) and the morphisms sets are

FNKG (Q)(R, T ) = CG(R)\(NK
G (Q) ∩NG(R, T ))

An element g ∈ G belongs to NK
G (Q) ∩NG(R, T ) if and only if conjugation with g defines a homomorphism

Q · R g−→ Q · T that restricts to a morphism R
g−→ T and an isomorphism Q

g−→∼= Q in K. Observe that the

following two conditions are equivalent for N ≤ P :
(1) N is K-normal in P and NK

G (N) controls fusion in G
(2) N is fully K-normalized in FG and FNKG (N) = FG.

If we assume (1), the objects of FNKG (N) = FG are all subgroups, R, T , of NK
P (N) = P and the morphisms are

FNKG (N)(R, T ) = FG(R, T ) since NK
G (N) controls fusion in G. Conversely, if we assume (2), then NK

P (N) is
a Sylow p-subgroup of NK

G (N). But P is also a subgroup of NK
G (N) because P is an object of FG = FNKG (N).

Thus NK
P (N) ≤ P ≤ NK

G (N) so that NK
P (N) = P by maximality. The equation FNKG (N) = FG means that

NK
G (N) controls fusion in G.

This shows that the Frobenius categories of the local subgroups of G are subcategories of the Frobenius
category of G.

6.2. Selfcentralizing subgroups. In this section we introduce the p-selfcentralizing p-subgroups of G.

Definition 6.17. (1) A subgroup H of G is selfcentralizing if the center of H equals the centralizer of
H: Z(H) = CH(H) = CG(H)

(2) A p-subgroup Q of G is p-selfcentralizing if the center of Q is a Sylow p-subgroup of the centralizer
of Q: Z(Q) = CQ(Q) ∈ Sylp(CG(Q))

Lemma 6.18. The following conditions are equivalent:
(1) Z(Q) is a Sylow p-subgroup of CG(Q)
(2) Q is a Sylow p-subgroup of QCG(Q)
(3) CP (Qg) ≤ Qg for all g ∈ NG(Q,P )
(4) CP (Qg) = Z(Qg) for all g ∈ NG(Q,P )
(5) CG(Q) ∼= Z(Q)×Op′(CG(Q))

Proof. (1) ⇐⇒ (2) Q is normal in QCG(Q) and the isomorphism QCG(Q)/Q ∼= CG(Q)/(Q ∩ CG(Q)) =
CG(Q)/Z(Q) shows that Q has index prime to p in CG(Q) if and only if Z(Q) has index prime to p in CG(Q).
(1) =⇒ (3) Under assumption (1), Z(Q) is the unique Sylow p-subgroup of CG(Q) because it is evidently
central. CP (Qg) is a p-subgroup of CG(Qg) = CG(Q)g, so it is contained in the unique Sylow p-subgroup
Z(Q)g, which of course is contained in Qg.
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(3) =⇒ (1) Choose g ∈ NG(Q,P ) so that Qg is fully centralized (Definition 6.10), ie CP (Qg) is a Sylow
p-subgroup of CG(Qg) = CG(Q)g . By assumption (3) we also have that CP (Qg) is contained in Qg so that
CP (Qg) = CP (Qg) ∩Qg = CQg (Qg) = CQ(Q)g = Z(Q)g. We have now shown (1).
(3) ⇐⇒ (4) This is clear.
(5) ⇐⇒ (1) If Z(Q) is a Sylow p-subgroup of CG(Q) then it is a central Sylow p-subgroup and there is a
commutative diagram with exact row

1 // Z(Q) // CG(Q) // CG(Q)/Z(Q) // 1

Op′(CG(Q))
?�

OO

∼=

77nnnnnnnnnnnn

which splits by the Schur–Zassenhaus theorem [40, 9.1.2]. Conversely, if there is a splitting of CG(Q) as in
(5) then clearly Z(Q) is a Sylow p-subgroup. �

Definition 6.19. A subgroup Q ≤ P is FG-selfcentralizing if it satisfies any of the conditions of Lemma 6.18.

Proposition 6.20. Assume that Q ≤ P is FG-selfcentralizing.
(1) Q is fully centralized in FG.
(2) If NG(Q,R) 6= ∅, then R ≤ P is FG-selfcentralizing.

Proof. (1) Note that the order of CP (Qg) is constant for all g ∈ NG(Q,P ) and apply Lemma 6.8.
(2) For g ∈ NG(Q,R) and h ∈ NG(R,P ) we have Qg ≤ R and Qgh ≤ Rh so that CP (Rh) ≤ CP (Qgh) ≤
Qgh ≤ Rh. �

Some easy observations:
• P itself is FG-selfcentralizing and the trivial subgroup is not FG-selfcentralizing
• Proposition 6.20.(2) says that supergroups of FG-selfcentralizing subgroups are FG-selfcentralizing.

Let Q ≤ P . We say that Q is selfcentralizing in P if Q contains its centralizer in P , Q ≥ CP (Q). Then
Z(Q) = CQ(Q) = Q ∩ CP (Q) = CP (Q) (cf Lemma 6.18.(4)) but still Q may not be FG-selfcentralizing.

Example 6.21. Let p = 2 and let G = GL2(F3) (of order 48). Let P be a Sylow 2-subgroup of G and B
its derived group. Then B is cyclic of order 4 and B has two other G-conjugates that we call A. The two
groups A happen to lie in P . The centralizer in P of B is a Singer cycle (a cyclic group of order 8) and
the centralizer of A is A itself. Thus A is selfcentralizing in P but not FG-selfcentralizing. (I heard of this
example from Bernd Stellmacher and Andy Chermak.)

In Example 6.21, the group action FG(A)×FG(A,S)×FG(S)→ FG(A,S), of FG(A)×FG(S) on the set
of FG-morphisms from A to S, is not transitive. (Any automorphism of S must preserve the set of subgroups
that are selfcentralizing in P .)

6.3. The extension property. We shall now discuss the problem of extending homomorphisms in FG [37,
Chapter 2][9, Appendix A].

Lemma 6.22. Suppose that Q, R and S are subgroups of G and that Q is contained in both R and S. Then

CG(Q) ·NFS(Q)
R (Q) = CG(Q) ·NFR(Q)

S (Q)

Proof. NFS(Q)
R (Q)/CR(Q) = N

FR(Q)∩FS(Q)
R (Q)/CR(Q) = FR(Q) ∩ FS(Q) = N

FR(Q)
S (Q)/CS(Q). �

Lemma 6.23 (Extension Lemma). Let Q ≤ P be subgroup of the Sylow p-subgroup P and let g ∈ NG(Q,P ).
Assume that Qg is fully centralized in FG (and hence fully FP (Qg)-normalized). Then the morphism Q

g−→ P

in FG extends to a morphism N
FP (Qg)g

−1

P (Q)→ P in FG.

Proof. [9, Proposition 1.3] The element g defines an isomorphism Q→ Qg and these isomorphisms

Q
g //

FP (Qg)g
−1

XX Qg

FP (Qg)

XX Q
g //

FP (Q)

XX Qg

FPg (Qg)

XX
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between groups of automorphisms of Q and Qg.

Put NQ = CG(Q) ·NFP (Qg)g
−1

P (Q) and NQg = CG(Q) ·NFP (Q)g

P (Qg). The image of NQ under conjugation
by g is

Ng
Q = N

FP (Qg)
P g (Qg) · CG(Qg) = N

FPg (Qg)
P (Qg) · CG(Qg) = N

FP (Q)g

P (Qg) · CG(Qg) = NQg

where we use Lemma 6.22. NFP (Q)g

P (Qg) is a p-subgroup of NQp and since the index [NQg : NFP (Q)g

P (Qg)] =
[CG(Qg) : CP (Qg)] is prime to p, as CP (Qg) is a Sylow p-subgroup of CG(Qg), it is in fact a Sylow p-subgroup.
Note also that CG(Qg) is a normal subgroup of NQg and its index

|NQg : CG(Qg)| = |NFP (Q)g

P (Qg) : NFP (Q)g

P (Qg) ∩ CG(Q)| = |NFP (Q)g

P (Qg) : CP (Q)|

is a p-power.

Conjugation by g takes the p-subgroup N
FP (Qg)g

−1

P (Q) of NQ into a p-subgroup of Ng
Q = NQg , so by

Lemma 3.6, there is some h ∈ CG(Qg) such that(
N
FP (Qg)g

−1

P (Q)
)gh ≤ NFP (Q)g

P (Qg) ≤ P

Thus the group element gh defines an FG-morphism N
FP (Qg)g

−1

P (Q)→ P .

The group N
FP (Qg)g

−1

P (Q) contains Q because FP (Qg)g
−1

contains the group FQg (Qg)g
−1

= FQ(Q) of

inner automorphisms of Q. The morphism gh restricted to Q is the composite Q
g−→ Qg

h−→ Qgh ≤ P .
However, since h centralizes Qg, Qg = Qgh and the morphism Qg

h−→ Qgh = Qg is the identity. �

Here is a perhaps more accessible version of Lemma 6.23.

Corollary 6.24. Assume that Qg is fully centralized in FG for some g ∈ NG(Q,P ). If K ≤ GRP(Q)◦ and
Kg ≤ FP (Qg), then the FG-morphism Q

g−→ P extends to a FG-morphism Q ·NK
P (Q)→ P .

Proof. It is immediate from Lemma 6.23 that we may extend Q
g−→ P to NK

P (Q) because NK
P (Q) ≤

N
FP (Qg)g

−1

P (Q) as Kg ≤ FP (Qg) in GRP(Qg)◦ or, equivalently, K ≤ FP (Qg)g
−1

in GRP(Q)◦.
Of course, FQ(Q)g = FQg (Qg) ≤ FP (Qg) so that, after replacing K by K · FQ(Q) if necessary, we can

assume that FQ(Q) ≤ K. This assures that Q ≤ NK
P (Q). �

Corollary 6.25. Let Q ≤ P , K ≤ GRP(Q)◦, and g ∈ NG(Q,P ). Assume that Qg is fully Kg-normalized
in FG. Then, for some χ ∈ K ∩ FG(Q), the morphism Q

χ−→ Q
g−→ P in FG extends to a morphism

Q ·NK
P (Q)→ P in FG.

Proof. By assumption, Qg is fully centralized in FG and Kg∩FP (Qg) is a Sylow p-subgroup of Kg∩FG(Qg).
Now

Kg ∩ FP (Qg) is a Sylow p-subgroup of Kg ∩ FG(Qg) = Kg ∩ FG(Q)g

=⇒ K ∩ FP (Qg)g
−1

is a Sylow p-subgroup of K ∩ FG(Q)

=⇒ ∃χ ∈ K ∩ FG(Q) : (K ∩ FP (Q))χ ≤ K ∩ FP (Qg)g
−1

=⇒ ∃χ ∈ K ∩ FG(Q) : (K ∩ FP (Q))χg ≤ FP (Qg)
6.24=⇒ Q

χg−→ Q extends to Q ·NK∩FP (Q)
P (Q)→ P

where NK∩FP (Q)
P (Q) = NK

P (Q) as a general fact. �

Here is a perhaps more accessible version of Corollary 6.25 (preceded by a lemma needed in the proof).

Lemma 6.26. Suppose that Q is fully centralized in FG.

(1) If Q ≤ R ≤ NP (Q), then Q is fully FR(Q)-normalized in FG.
(2) If FQ(Q) ≤ K ≤ FP (Q), then Q is fully K-normalized in FG.
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Proof. (1) We check condition Lemma 6.13.(4). As all elements of R normalize Q, R ≤ NR(Q), and thus R =
NR(Q). Now N

FR(Q)
P (Q) = NP (Q)∩NR(Q)·CP (Q) = NP (Q)∩R·CP (Q) = R·CP (Q) as R·CP (Q) ≤ NP (Q).

Let g ∈ G be any group element so that NFR(Q)
P (Q)g = (R ·CP (Q))g ≤ P . Here, CP (Q)g = CP (Qg) because

(Q · CP (Q))g ≤ P and Q is assumed fully centralized in FG (Lemma 6.8.(3)). Also Rg ≤ P and this implies
that Qg ≤ Rg ≤ P∩NP (Q)g = P∩NP g (Qg) ≤ NP (Qg). We have just seen that NFRg (Qg)

P (Qg) = Rg ·CP (Qg)
in this situation. We conclude that

N
FR(Q)
P (Q)g = (R · CP (Q))g = Rg · CP (Qg) = N

FRg (Qg)
P (Qg) = N

FR(Q)g

P (Qg)

which shows that Q is fully FG(Q)-normalized in FG.
(2) Since Q ≤ NK

P (Q) ≤ NP (Q), Q is fully FNKP (Q)(Q)-normalized in FG by (1). We already observed that
FNKP (Q)(Q) = K. �

Q
g //

_�

��

P

R

?

??

Q ≤ R ≤ NP (Q) Q
g //

FR(Q)

XX Qg

FP (Qg)

��

FR(Q)g

XX

Corollary 6.27. [37, 2.10.1] If Qg is fully centralized in FG for some g ∈ NG(Q,P ), Q ≤ R ≤ NP (Q), and
FR(Q)g ≤ FP (Qg), then the FG-morphism Q

g−→ P extends to a FG-morphism R→ P .

Proof. Observe that

Q ≤ R =⇒ Qg ≤ Rg =⇒ FQg (Qg) ≤ FRg (Qg) = FR(Q)g

and that FR(Q)g ≤ FP (Qg) by assumption. Hence Qg is fully FR(Q)g-normalized in FG by Lemma 6.26.(2).
According to Corollary 6.25 there exists a morphism χ ∈ FR(Q) such that Q

χg−→ Q extends to an FG-

morphism Q · NFR(Q)
P (Q)

ψ−→ P . Here, NFR(Q)
P (Q) = R · CP (Q) by the proof of Lemma 6.26.(1). In

particular, Q
χg−→ Q extends to R

ψ−→ P . The FG-homomorphism χ ∈ FR(Q) extends to an inner morphism
χ ∈ FR(R). Composing with the inverse χ−1 ∈ FR(R) as in the commutative diagram

Q� _

��

χ−1
// Q� _

��

χ // Q
g // P

R
χ−1

// R

ψ

77oooooooooooooo

we see that R
χ−1ψ−−−→ P extends Q

g−→ P . �

7. What does FG know about G?

A general question is how much FG knows about G. We have already seen that FG = FG/N where N
is any normal p′-subgroup of G (Example 6.4). Also, the Frobenius p-complement Theorem 7.3 says that
FS = FG when the Sylow p-subgroup S of G has a normal complement. On the other hand, Proposition 10.8
shows that FG is strong enough to guarantee that G is simple up to a normal p′-subgroup. We shall here see
two other examples of information about the group that is retained by the Frobenius category.

7.1. Group cohomology. Let Q ≤ P and g ∈ NG(Q,P ). The morphism Q
g−→ P factors as Q

g−→ Qg ↪→ P .
Since conjugation by g induces the identity map on H∗(G) there is a commutative diagram

H∗(G)� _

resGP
��

H∗(G)
g∗=id

��

H∗(G)

��

H∗(G)� _

resGP
��

H∗(P )
resPQg

// H∗(Qg)
g∗

// H∗(Q) H∗(P )
resPQ

oo
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where the vertical arrows are restriction homomorphisms. This means that the image of H∗(G) in H∗(P ) is
contained in the subring

H∗(P )FG = {x ∈ H∗(P ) | ∀Q ≤ P ∀ϕ1, ϕ2 ∈ FG(Q,P ) : ϕ∗1(x) = ϕ∗2(x)}

of FG-stable elements. An old theorem of Cartan and Eilenberg tells us that even more is true. (Here, H∗(K)
is short for H∗(K; Fp).)

Theorem 7.1. [12, Theorem 10.1] [1, Theorem II.6.6] The restriction map H∗(G) → H∗(P )FG is an iso-
morphism.

7.2. Frobenius normal p-complement theorem. We consider here finite groups that are p-groups up to
normal p′-subgroups.

Definition 7.2. A group G is p-nilpotent if a Sylow p-subgroup of G is a retract of G.

In other words, G is said to be p-nilpotent [40, p 270] (or to have a normal p-complement) if G = Op′(G)P
where P is a Sylow p-subgroup of G.

The following theorem is the motivation to name FG after Frobenius.

Theorem 7.3. [24, Proposition 16.10] [21] Let G be a finite group and P a Sylow p-subgroup of G. The
following conditions are equivalent:

(1) G is p-nilpotent
(2) NG(Q) is p-nilpotent for every nontrivial Q ≤ P
(3) FG(Q) is a p-group for every nontrivial Q ≤ P
(4) FG = FP (P controls fusion in G)
(5) H∗(G; Fp)→ H∗(P ; Fp) is an isomorphism

Proof. (1) ⇐⇒ (2) ⇐⇒ (3): This is Frobenius’ original theorem [22, Theorem 7.4.4] [40, 10.3.2].
(4) =⇒ (3): Clear.
(1) =⇒ (4): If G = N o P then there is a retraction (an idempotent) σ : G → P of G onto P given by
(kh)σ = h. But then any two elements of P that are conjugate in G are already conjugate in P : If h ∈ P ,
g ∈ G and hg ∈ P then hg = (hg)σ = hg

σ

.
(1) ⇐⇒ (5): [38] �

This means that the Frobenius category of a p-nilpotent group depends only on its Sylow p-subgroup. It
is now easy to find many examples of distinct groups with identical Frobenius categories.

Example 7.4. The short exact sequence 1→ C3 → D24 → D8 → 1, involving the dihedral groups of order
24 and 8, shows that D24 = C3 oD8 is 2-nilpotent and therefore FD24 = FD8 .

The alternating group G = A4 of order 12 has Sylow 2-subgroup C2×C2 = 〈(12)(34), (13)(24)〉 generated
by the double transpositions. G is not 2-nilpotent and the Frobenius categories FP and FG are not isomorphic.

For odd primes it is possible to strengthen Frobenius’s theorem. The Thompson subgroup J(P ) of a finite
p-group P is the subgroup generated by the set of abelian subgroups of maximal order.

Theorem 7.5 (Glauberman–Thompson normal p-complement theorem). [24, Theorem 16.12]. Let G be a
finite group and P a Sylow p-subgroup of G and assume that p is an odd prime. Then G has a normal
p-complement if and only if NG(Z(J(P ))) has a normal p-complement.

See also Glauberman’s fusion theorem 9.5 which in particular applies when P is abelian.

8. Abstract Frobenius categories

Let P be a finite p-group.

Definition 8.1. [37, Chapter 2] A P -category is a category F where
• the objects of F are the subgroups of P
• the morphisms of F are injective group homomorphisms
• FP is a subcategory of F

A P -category F that satisfies the

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frobenius.html
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Divisibility axiom: If R,S, T ≤ P and R
ψ−→ S

ϕ−→ T are group homomorphisms then

ϕ ∈ F(S, T ), ψϕ ∈ F(R, T ) =⇒ ψ ∈ F(R,S)

is called a divisible P -category.

If F is a divisible P -category and ϕ ∈ F(Q,P ) a morphism then ϕ ∈ F(Q,Qϕ) and ϕ−1 ∈ F(Qϕ, Q).
Let F be a divisible P -category and Q ≤ P , K ≤ GRP(Q)◦.

Definition 8.2. Q is fully K-normalized in F if NK
P (Q)ϕ = NKϕ

P (Qϕ) for all ϕ ∈ F(Q ·NK
P (Q), P ).

In particular, Q is fully centralized in F if CP (Q)ϕ = CP (Qϕ) for all ϕ ∈ F(Q ·CP (Q), P ), and Q is fully
normalized in F if NP (Q)ϕ = NP (Qϕ) for all ϕ ∈ F(NP (Q), P ). Obviously, P itself is fully normalized.

Definition 8.3. [37, Chapter 2] A Frobenius P -category is a divisible P -category F satisfying these two
additional axioms:

Sylow axiom: The group FP (P ) of inner automorphisms of P is a Sylow p-subgroup of the group
F(P ) of F-automorphisms of P

Extension axiom I: For any subgroup Q of P , any K ≤ GRP(Q)◦, and any F-morphism Q
ϕ−→ P

such that Qϕ is fully Kϕ-normalized in F , there exists χ ∈ K ∩F(Q) such that Q
χ−→ Q

ϕ−→ P extends
to an F-morphism Q ·NK

P (Q)→ P .

Extension axiom I, corresponding to Corollary 6.25, can be replaced by this variant [37, Proposition 2.11]
corresponding to Corollary 6.27:

Extension axiom II: For any subgroup Q of P and any F-morphism Q
ϕ−→ P such that Qϕ is fully

centralized and fully normalized in F and any subgroup R such that Q ≤ R ≤ NP (Q) and FR(Q)ϕ ≤
FP (Qϕ) there exists an F-morphism R→ P extending Q

ϕ−→ P

Let F be a Frobenius P -category and Q ≤ P , K ≤ GRP(Q)◦.

Proposition 8.4. [37, Proposition 2.7] There exists a morphism ϕ ∈ F(Q,P ) such that Qϕ is fully Kϕ-
normalized in F .

Proposition 8.5. [37, Proposition 2.11] The following conditions are equivalent:
(1) Q is fully centralized in F and K ∩ FP (Q) is a Sylow p-subgroup of K ∩ F(Q)
(2) |NK

P (Q)| ≥ |NKϕ

P (Qϕ)| for all ϕ ∈ F(Q,P )
(3) Q is fully K-normalized in F

By Lemma 8.5.(1):

Q is fully K-normalized in F =⇒ Q is fully centralized in F ⇐⇒ Q is fully FP (Q)-normalized in F
If Q is K-normal in P then Q is fully K-normalized because NK

P (Q) = P of course implies that the order
|NK

P (Q)| is maximal among the subgroups F-isomorphic to Q.

Definition 8.6. [37, 2.14] Assume that Q is fully K-normalized in F . The K-normalizer of Q in F is the
divisible NK

P (Q)-category NK
F (Q) where the morphism sets are

NK
F (Q)(R, T ) =

{
ϕ ∈ F(R, T ) | ∃ψ ∈ F(Q ·R,Q · T ), χ ∈ K ∩ F(Q) :

R_�

��

ϕ // T_�
��

Q ·R ψ // Q · T

Q
?�

OO

χ
// Q
?�

OO

}

for all R, T ≤ NK
P (Q).

Proposition 8.7. [37, Proposition 2.16] If Q is fully K-normalized in F , then NK
F (Q) is a Frobenius

NK
P (Q)-category.

Example 8.8. If G is a finite group with Sylow p-subgroup P , then the category FG (Definition 6.1) is a
Frobenius P -category. If Q ≤ P is fully K-normalized for some subgroup K ≤ GRP(Q)◦ then NK

FG(Q) =
FNKG (Q) (Remark 6.16). The Sylow p-subgroup P is always fully K-normalized in FG for any group K

of automorphisms of P . If P is K-normal in G, ie NK
G (P ) = G, then NK

FG(P ) = FNKG (P ) = FG and
FG = 〈K ∩ FG(P )〉 (see below).
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In particular, if Q is fully normalized or fully centralized in F , then the morphisms sets in the categories
NF (Q) and CF (Q) are

NF (Q)(R, T ) =
{
ϕ ∈ F(R, T ) |

R_�

��

ϕ // T_�
��

Q ·R
F(QR,QT ) // Q · T

Q
?�

OO

F(Q)
// Q
?�

OO

}
R, T ≤ NP (Q)

CF (Q)(R, T ) =
{
ϕ ∈ FG(R, T ) |

R_�

��

ϕ // T_�
��

Q ·R
FG(QR,QT ) // Q · T

Q
?�

OO

Q
?�

OO

}
R, T ≤ CP (Q)

We shall write F = 〈F(Q1), . . . ,F(Qk)〉 if there are subgroups Q1, . . . , Qk ≤ P such that any morphism
R1 → Rt in F is a composition

Q1
ϕ1 // Q1 Q2

ϕ2 // Q2 · · · Qt−1
ϕt−1 // Qt−1

R1

0�

@@�������
// R2

. N

^^=======
0�

@@�������
// R3

. N

^^=======
// · · · // Rt−1

. �

=={{{{{{{{
// Rt
/ O

__@@@@@@@@

of restrictions of automorphisms ϕ1 ∈ F(Q1), . . . , ϕt−1 ∈ F(Qt−1).
The group P is always fully K-normalized in F for any K ≤ GRP(P )◦ so that the category NK

F (P ) is
defined. It is immediate from Definition 8.6 that

(8.9) NK
F (P ) = F ⇐⇒ F = 〈K ∩ F(P )〉

so that, in particular, NF (P ) = F if and only if F = 〈F(P )〉 and CF (P ) = F if and only if F is the category
of posets of P .

Theorem 8.10 (Burnside fusion theorem). [23, Lemma 16.2] F = NF (P ) when P is abelian.

Proof. Let Q ≤ P be any subgroup of P . Since P is abelian, Q is fully centralized in F . The claim of
the theorem is that every morphism ϕ ∈ F(Q,P ) extends to an F-morphism defined on P . This follows
immediately from Extension axiom I. �

The concept of selfcentralizing subgroups (Definition 6.19) translates immediately to this abstract setting.

Definition 8.11. [37, 4.8.1] Q is F-selfcentralizing if CP (Qϕ) ≤ Qϕ for all ϕ ∈ F(Q,P )

If Q is F-selfcentralizing and and F(Q,R) 6= ∅ then also R is F-selfcentralizing because CP (Rϕ) ≤
CP (Qψϕ) ≤ Qψϕ ≤ Rϕ for any ψ ∈ F(Q,R) and any ϕ ∈ F(R,P ). (Anything receiving a morphism from a
selfcentralizing subgroup is selfcentralizing [37, Proposition 4.5].)

If Q is fully centralized in F then QCP (Q) is F-selfcentralizing because

CP ((QCP (Q))ϕ) = CP (QϕCP (Q)ϕ) = CP (QϕCP (Qϕ)) ≤ CP (Qϕ) Defn 8.2= CP (Q)ϕ ≤ (QCP (Q))ϕ

for any ϕ ∈ F(QCP (Q), P ). This observation implies that

Q is F-selfcentralizing ⇐⇒ Q is fully centralized in F and Z(Q) = CP (Q)
⇐⇒ Q is fully centralized in F and selfcentralizing in P

for any Q ≤ P (as in Proposition 6.20). To see this, assume first that Q is F-selfcentralizing. Then
CP (Qϕ) = Qϕ ∩ CP (Qϕ) = CQϕ(Qϕ) = Z(Qϕ) = Z(Q)ϕ is independent of ϕ ∈ F(Q,P ), and therefore Q is
fully centralized in F . Conversely, if Q is fully centralized in F and Z(Q) = CP (Q) then QCP (Q) = Q is
F-selfcentralizing.

Proposition 8.12. [9, Proposition A8] [37, Proposition 4.6] Suppose that R ≤ Q ≤ P where R is F-
selfcentralizing. If ϕ ∈ F(Q,P ) is the identity on R, then xϕ = xu for all x ∈ Q for some u ∈ CP (R) = Z(R).
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Proof. Assume first that R is normal in Q. Then Qϕ = Q. To see this, note that for all r ∈ R, q ∈ Q,
r(q)ϕ = (rϕ)(q)ϕ = (rq)ϕ = rq, means that (q)ϕq−1 ∈ CP (R) ≤ R so that (q)ϕ ∈ Rq ≤ Q. Thus ϕ ∈ F(Q).
Let K = {α ∈ GRP(Q)◦ | α|R = id|R} be the group of automorphisms of Q extending the identity on R.
We can, by replacing Q by an F-isomorphic subgroup, if necessary, assume that Q is fully K-normalized
in F (Proposition 8.4). Because CQ(R) = Q ∩ CP (R) ≤ Q ∩ R = R, it is easily seen that any α ∈ K will
induce the identity on Q/R. (As above, qα ≡ q mod R for all q ∈ Q.) This implies that K is a p-group [22,
Corollary 5.3.3, p 179]. Now K ∩FP (Q) is a Sylow p-subgroup of K ∩F(Q) (Proposition 8.5). As the latter
is a p-group, this, in fact, means that K ∩ FP (Q) = K ∩ F(Q). Because ϕ lies in FP (Q), xϕ = xu for some
u ∈ NP (R). Because xr = xϕ = x when x ∈ R, this u ∈ CP (R).

In general, R is not normal but it is subnormal in Q: Taking successive normalizers we obtain a normal
chain R = R0 � R1 � · · · � Rt = Q because normalizers grow in a nilpotent group [40, 5.2.4] [27, III.2.3].
Here, CP (R) = CP (R0) ≥ CP (R1) ≥ · · · ≥ CP (Rt−1). By applying the above result finitely many times, we
get the proposition. �

Definition 8.13 (Exterior quotient of F). F̃ is the left exterior quotient of F by the left interior structure
I(Q) = FQ(Q) for all Q ≤ P .

Because q ◦ ϕ = ϕ ◦ qϕ for any q ∈ Q, ϕ ∈ F(Q,R), it is clear that Q→ FQ(Q) is a left interior structure
in F . The morphisms and automorphisms in the exterior quotient F̃ (Definition 2.2)

F̃(Q,R) = F(Q,R)/FR(R), F̃(Q) = F(Q)/FQ(Q) = F̃(Q)◦

are conjugacy classes of F-morphisms and F-automorphisms (outer F-automorphisms). F̃(P ) = F(P )/FP (P )
is a p′-group because FP (P ) is a Sylow p-subgroup of F(P ) by the Sylow axiom (Definition 8.3).

8.1. Alperin fusion. A subgroup M of a group X is strongly p-embedded if 1 < M < X, |M |p > 0, and
|M ∩Mx|p = 0 for all x ∈ X −M [24, Definition 17.1, Lemma 17.11].

Lemma 8.14. A group X with a strongly p-embedded subgroup has no nontrivial normal p-subgroups:
Op(X) = 1.

Proof. Suppose that N is a normal p-subgroup in a group X containing a strongly p-embedded subgroup M .
Let S be a Sylow p-subgroup of X. Then M ≥ NG(S) ≥ S ≥ N [24, Lemma 17.11] and Mx ≥ Nx = N for
all x ∈ X. If we choose x 6∈M , we see that M ∩Mx ≥ N and thus N must be trivial. �

Definition 8.15. [37, Theorem 5.11] Q ≤ P is F-essential if Q is F-selfcentralizing and F̃(Q) contains a
strongly p-embedded subgroup.

By Lemma 8.14 and some easy manipulations with the functor Op,

Q is F-essential =⇒ OpF̃(Q) = 1 ⇐⇒ OpF(Q) = FQ(Q)

P itself is not F-essential as the p′-group F̃(P ) can not contain a strongly p-embedded subgroup.

Theorem 8.16 (Alperin Fusion Theorem). [37, 5.11][30, 5.2] F = 〈F(Q) | Q is F-essential or Q = P 〉

For instance, if P is abelian, there are no F-essential subgroups because the only F-selfcentralizing sub-
group is P itself. (If Q ≤ P is F-selfcentralizing then P = CP (Q) ≤ Q by Lemma 6.18.(3).) Therefore
F = 〈F(P )〉 = FPoF(P ) by Alperin’s Fusion Theorem (reproving Theorem 8.10) so that P and F(P )
completely determine F .

Example 8.17. Let G = GL2(Fq) where q is a power of the prime r. The order is |G| = (q2 − 1)(q2 − q) =
q(q − 1)2(q + 1). We shall determine FG at the (odd) primes p where it is nontrivial.
q ≡ 0 mod p: The subgroup U ∼= F+

q of upper unitriangular matrices from Example 6.5 is a Sylow p-subgroup
of G. Its normalizer is NG(U) = B. Since U is abelian, FG = 〈FG(U)〉, where FG(U) ∼= F×q (Theorem 8.10).
Note that the computations of Example 6.5 show that B is a strongly p-embedded subgroup of GL2(Fq).
q ≡ 1 mod p, p > 2: The maximal torus T2(Fq) ∼= F×q × F×q contains a Sylow p-subgroup P = OpT2(Fq) for
G. As P is abelian, FG = 〈FG(P )〉. Elementary matrix calculations show that NG(P ) = 〈T2(Fq),Σ2〉 (the
monomial matrices) where Σ2 are the permutation matrices, and so FG(P ) = Σ2. Observe that FG only
depends on the p-adic valuation νp(q − 1) of q − 1 in this case.
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q ≡ −1 mod p, p > 2: We follow the description given in [24, Chp 4.10] to determine a Sylow p-subgroup of
G = GL2(q). Let r be the characteristic of the field Fq and view G as CK̄(σ) where K̄ = GL2(F̄r) and
σ = ϕq is the Frobenius map.

Let n be the permutation matrix for the transposition (1, 2). Choose a matrix g ∈ K̄, such that gg−σ = n.
(Use elementary matrix calculations or Lang’s Theorem [24, Theorem 2.1.1] for this.) The commutative
diagram

NK̄(T̄ )

σn−1

��

g // NK̄(T̄ )g

σ

��
NK̄(T̄ ) g

// NK̄(T̄ )

expresses that the action σn−1 on NK̄(T̄ ) corresponds to the action of σ on NK̄(T̄ ). This follows from the
computation

(xg)σ = xσg
σ

= xσn
−1g = (xσn

−1
)g

where x is any element of NK̄(T̄ ). Since (t1, t2)σn
−1

= (tq2, t
q
1), elementary calculations give that

CNK̄(T̄ )(σn
−1) = 〈

(
u 0
0 uq

)
,

(
0 1
1 0

)
〉

where u is a primitive element of Fq2 . This group contains a normal cyclic subgroup of order q + 1,

Cq+1 = 〈
(
v 0
0 vq

)
〉, v = uq−1,

and, by the above commutative diagram, CNK̄(T̄ )(σn−1)g is a subgroup of CNK̄(T̄ )(σ) ≤ CK̄(σ) = G. We
have now shown that P g, with P = OpCq+1, is a Sylow p-subgroup in G. The normalizer of P g in G is

NG(P g) = NCK̄(σ)(P g) = CNK̄(P g)(σ) = CNK̄(P )g (σ) = CNK̄(T̄ )g (σ) = CNK̄(T̄ )(σn
−1)g

where we used that NK̄(P ) = NK̄(T̄ ). This shows that FG(P g) has order 2. Again, Alperin’s Fusion Theorem
says that FG = 〈FG(P g)〉.

At p = 2, 2 - q, it is convenient to distinguish between the cases q ≡ ±1 mod 4 because

ν2(q2 − 1) =

{
1 + ν2(q − 1) q ≡ +1 mod 4
1 + ν2(q + 1) q ≡ −1 mod 4

, ν2(|GL2(q)|) =

{
1 + 2ν2(q − 1) q ≡ +1 mod 4
2 + ν2(q + 1) q ≡ −1 mod 4

We shall not go further into this here.

8.2. Frobenius functors. We introduce the category FRB of Frobenius categories. Let F be a P -category,
F ′ a P ′-category, and P

α−→ P ′ a group homomorphism.

Definition 8.18. [37, 12.1] The homomorphism α is (F ,F ′)-functorial if F(Q,R) ◦α ⊂ α ◦F ′(Qα, Rα), for
every Q,R ≤ P .

Equivalently, α is (F ,F ′)-functorial if for every ϕ ∈ F(Q,R), there exists ϕα ∈ F ′(Qα, Rα) such that

Q

ϕ

��

α // // Qα

ϕα

��
R α

// // Rα

commutes. In particular, (ker(α) ∩ Q)ϕ ≤ ker(α) ∩ R for all morphisms ϕ ∈ F(Q,R) in F . If ϕα exists, it
is unique. The functor fα : (F ,FP ) → (F ′,FP ′), ϕ ∈ F(Q,R) → ϕα ∈ F(Qα, Rα), induced by an (F ,F ′)-
functorial α : P → P ′ is called a Frobenius functor [37, 12.1.2].

Let FRB be the category of Frobenius categories F and F ′ with (F ,F ′)-functorial epimorphisms α : P �
P ′. The automorphism group (equal to the endomorphism monoid) of a Frobenius P -category F

FRB(F)◦ = {α ∈ GRP(P )◦ | α is (F ,F)-functorial} = FRB(F)
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consists of the (F ,F)-functorial automorphisms of P . The automorphisms of F are the group automorphisms
α of P that normalize F in the sense that F(Qα, Rα) = F(Q,R)α for all Q,R ≤ P . In symbols, the
automorphism group of the Frobenius cateogry F is the group

FRB(F) = {α ∈ GRP(P )◦ | ∀Q,R ≤ P : F(Q,R)α = F(Qα, Rα)}

Always, FRB(FP ) = GRP(P )◦ and FRB(F) ≤ NGRP(P )◦(F(P )). If P ≤ H ≤ G, then FRB(FH) ≥
FRB(FG). Different choices of Sylow p-subgroup in G lead to isomorphic objects FG in the category FRB.

Proposition 8.19. Suppose that Q ≤ P is fully K-normalized in F . For any (F ,F)-functorial automor-
phism α ∈ FRB(F), Qα is fully Kα-normalized and α|NK

P (Q) : NK
P (Q) → NKα

P (Qα) is an isomorphism
of Frobenius categories, α|NK

P (Q) ∈ FRB(NK
F (Q), NKα

F (Qα)). If, in addition, Q and K are normalized by
FRB(F), then there is a restriction homomorphism FRB(F)→ FRB(NK

F (Q)).

The F-automorphism groups of P , F(P ) � FRB(F), define an interior structure (Definition 2.2) in the
category of Frobenius categories. In the exterior quotient F̃RB the morphisms sets and the automorphism
groups are

F̃RB(F ,F ′) = FRB(F ,F ′)/F(P ′), F̃RB(F) = FRB(F)/F(P )

Observe here that any ϕ ∈ F(P ) is (F ,F)-functorial as there are commutative diagrams

Q
ψ //

∼=ϕ

��

R

∼= ϕ

��
Qϕ

ψϕ
// Rϕ

within the category F . This shows that F(P ) ≤ FRB(F). Also, F(P ) ◦ α ⊂ F ′(P ′) ◦ α for any α ∈
FRB(F ,F ′) as α is (F ,F ′)-functorial and maps P onto P ′. Always, F̃RB(F) ≤ NGRP(P )◦(F(P ))/F(P ).
There are group homomorphisms

(8.20) κG : NGRP(G)◦(P )→ FRB(FG), κ̃G : G̃RP(G)◦ → F̃RB(FG)

for any finite group G. The homomorphism κ̃G is surjective if any (FG,FG)-functorial automorphism of P
extends to an automorphism of G.

Example 8.21. If F = 〈F(P )〉 (for instance if P is abelian) then the automorphism group and the outer
automorphism groups are

FRB(F) = NGRP(P )◦(F(P )) F̃RB(F) = NGRP(P )◦(F(P ))/F(P )

In Example 6.5 we determined the Frobenius category FGL2(Fq) associated to GL2(Fq) for q a power of p.
The automorphism and outer automorphism groups are

FRB(FGL2(Fq)) = NGRP(F+
q )◦(F

×
q ) = F×q Gal(Fq/Fp), F̃RB(FGL2(Fq)) = NGRP(F+

q )◦(F
×
q )/F×q = Gal(Fq/Fp)

where Gal(Fq/Fp) is the Galois group (acting on F+
q = F+

p × · · · ×F+
p by the cyclic permutation). We have

shown that κ̃GL2(Fq) : G̃RP(GL2(Fq))◦ → F̃RB(FGL2(Fq)) is surjective.
Let G be a p-nilpotent group (Theorem 7.3). Since FG(P ) = FP (P ) = Inn(P ), the outer automorphism

group of the Frobenius category

F̃RB(FG)◦ = NGRP(P )◦(Inn(P ))/Inn(P ) = GRP(P )◦/Inn(P ) = G̃RP(P )◦

is the outer automorphism group of P and the homomorphism κ̃G is the standard group homomorphism

κ̃G : G̃RP(G)◦ → G̃PR(P )◦

from the outer automorphism group of G to the outer automorphism group of its Sylow p-subgroup. In case
of G = C5 o C4 = 2B2(2), κ̃G is not onto for the outer automorphism group of G is trivial but the (outer)
automorphism group of C4 has order 2. In case of G = C2

3 oQ8 = 2A2(2), κ̃G is an isomorphism and both
outer automorphism groups are isomorphic to the symmetric group Σ3.
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9. F-normal and F-stable subgroups of P

Assume that N ≤ P and K ≤ GRP(N)◦.

Definition 9.1. [37, 12.6] N is F-K-normal if N is fully K-normalized in F and NK
F (N) = F .

Equivalently, N is F-K-normal if N is K-normal in P (hence fully K-normalized in F) and every F-
morphism Q → R extends to an F-morphism QN → RN taking N to N by an automorphism in K. To
see this, start by recalling that NK

F is a Frobenius NK
P (N)-category (Definition 8.6) and that the equality

NK
F (N) = F implies NK

P (N) = P . In particular, we may speak of F-central subgroups (K = 1) and
F-normal subgroups (K = GRP(N)◦).

Definition 9.2. [37, 12.2] [23, Definition 16.18] U ≤ P is F-stable if (U ∩ Q)ϕ ≤ U for all Q ≤ P and all
morphisms ϕ ∈ F(Q,P ).

In words, U is F-stable if all elements of U stay in U under F-morphisms. The trivial subgroup and P
itself are always F-stable.

For any N ≤ P we have

N is F-normal =⇒ N is F-stable =⇒ N is normal in P and fully normalized in F

If N is F-normal then any ϕ ∈ F(Q,P ) extends to a morphism ψ ∈ F(QN,P ) taking N to N and therefore
(N ∩Q)ϕ = (N ∩Q)ψ ≤ Nψ ≤ N . If U is F-stable then Uϕ = U all ϕ ∈ FP (P ), so that U is normal in P
and therefore fully normalized in F .

Proposition 9.3. [37, Proposition 19.5] Let N ≤ P be a subgroup of P .

N is F-normal ⇐⇒ N is contained in Q and stabilized by F(Q) for any F-essential Q ≤ P and Q = P

N is F-stable ⇐⇒ N ∩Q is stabilized by F(Q) for any F-essential Q ≤ P and Q = P

Proof. This is a consequence of Alperin’s Fusion Theorem (Theorem 8.16). �

Proposition 9.3 reveals that subgroups generated by F-normal subgroups are F-normal.

Definition 9.4. Op(F) is the biggest F-normal subgroup of P .

In particular,

Op(F) = 1 ⇐⇒ The trivial subgroup is the only F-normal subgroup of P

Op(F) = P ⇐⇒ P is F-normal ⇐⇒ NF (P ) = F (8.9)⇐⇒ F = 〈F(P )〉

If F = FG for some finite group G and N ≤ P then

N is FG-K-normal ⇐⇒ N is K-normal in P and NK
G (N) controls fusion in G

according to Remark 6.16. Special cases are

N is FG-normal ⇐⇒ N is normal in P and FG = FNG(N)

N is FG-central ⇐⇒ N is central in P and FG = FCG(N)

We have that Op(G) ≤ Op(FG) because Op(G) is FG-normal. In case N = P , the above says that

Op(FG) = P ⇐⇒ P is FG-normal ⇐⇒ FG = 〈FG(P )〉 ⇐⇒ FG = FNG(P )

In fact, a similar but much stronger statement is true.

Theorem 9.5 (Glauberman fusion theorem). [24, Proposition 16.20] Any abelian FG-stable subgroup A ≤ P
is FG-normal.

For every F-stable U ≤ P there is a Frobenius P/U -category F/U , the U -quotient of F [37, Proposition
12.3]. For U ≤ Q,R ≤ P the F/U morphisms Q/U → R/U are the group homomorphisms induced by the
F-morphisms Q→ R.

Proposition 9.6. [37, Remark 12.4] If U is F-stable and F-selfcentralizing, then F/U is the Frobenius
category associated to the group F̃(U).
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Proof. As U is fully normalized, FP (U) is a Sylow p-subgroup of F(U) (Proposition 8.5) andNP (U)/UCP (U) =
P/UCP (U) a Sylow p-subgroup of F̃(U) (Definition 8.13). Here, NP (U) = P as U is normal in P . If U is
also F-selfcentralizing (Definition 8.11), UCP (U) = U and P/UCP (U) = P/U . It is now easy to check that
F/U = F eF(U). �

10. Normal subcategories of Frobenius categories

Normal subcategories are supposed to mimic FN inside FG where N is normal in G (see Example 10.2.(1)).

Definition 10.1. [37, 12.6] Let P ′ ≤ P and let F ′ be a divisible P ′-subcategory of F . Then F ′ is normal in
F if

• P ′ is F-stable
• F(P ′) ≤ FRB(F ′) (F(P ′) normalizes F ′)
• F ′(Q)ϕ = F ′(Qϕ) for all Q ≤ P ′ and ϕ ∈ F(Q,P ) (F ′(Q) � F(Q), in particular)

Observe that F ′ is just required to be a divisible P ′-category, not necessarily a Frobenius category. It
is easily seen that if F ′1 and F ′2 are two normal divisible P ′-categories in F then their intersection F ′1 ∩ F ′2
(defined in the obvious way) is also a normal divisible P ′-subcategory in F .

Example 10.2. Here are three examples, with increasing levels of abstraction, of normal subcategories of
Frobenius categories.

(1) Let N be a normal subgroup of G. Then FN is a normal (N ∩ P )-subcategory of FG:
• Let Q ≤ P and g ∈ NG(Q,P ). Conjugation by g takes N ∩ P ∩Q = N ∩Q into N ∩ P . Thus
N ∩ P is FG-stable.

• Let Q,R ≤ N ∩ P and g ∈ NG(N ∩ P ). Then Qg, Rg ≤ (N ∩ P )g = N ∩ P and conjugation by
g takes NN (Q,R) to NN (Qg, Rg). Thus FG(N ∩ P ) normalizes FN (Q,R).

• Let Q ≤ N ∩ P and g ∈ NG(Q,P ). Conjugation by g takes NN (Q) to NN (Qg). This means
that FN (Q)ϕ = FN (Qϕ) for all ϕ ∈ FG(Q,P ).

(2) Suppose that Q ≤ P is fully K-normalized in FG for some K ≤ GRP(Q)×. Then FCG(Q) is
a Frobenius CP (Q)-subcategory of the Frobenius NP (Q)-category FNKG (Q) (Remark 6.16). Since
CG(Q) is normal in NK

G (Q), the CP (Q)-subcategory FCG(Q) = CFG(Q) is normal in the NP (Q)-
category FNKG (Q) = NK

FG(Q).
(3) Let Q ≤ P , K ≤ GRP(Q)◦, and assume that Q is fully K-normalized in F . Then Q is fully

centralized in F by Proposition 8.5.(1). Therefore CF (Q) is Frobenius CP (Q)-category and NK
F (Q)

a NK
P (Q)-category (Proposition 8.7). It is easy to check that CF (Q) is normal in NK

F (Q) [37, 18.2].

Proposition 10.3 (Frattini argument). [37, Proposition 12.8] Assume that P ′ ≤ P and that F ′ is a divisible
P ′-subcategory of F . Then F ′ is normal in F if and only if

• P ′ is F-stable
• F(P ′) ≤ FRB(F ′)
• F(Q,P ′) = F ′(Q,P ′) ◦ F(P ′) for all Q ≤ P ′. Q

F ′(Q,P ′)
//

F(Q,P ′)

))
P ′

F(P ′)

//P ′

The adjoin subcategory Fa of F is the smallest Frobenius P -category F ′ in F satisfying a certain condition
[37, 12.7, Corollary 12.17] [7, Definition 3.1]. Fa is a Frobenius P -category, Fa is normal in F , and (Fa)a =
Fa. By Proposition 10.4, Fa can also be characterized as the smallest normal Frobenius P -category in F .

Proposition 10.4. Let F be a Frobenius P -category.

(1) If F ′ is a normal divisible P -category in F then F ′(Q) has index prime to p in F(Q) for every
Q ≤ P .

(2) Fa is the smallest normal Frobenius P -category in F .
(3) The intersection of finitely many normal Frobenius categories in F is a normal Frobenius category

in F .

Proof. (1) [30] Let Q ≤ P . Choose ϕ ∈ F(Q,P ) so that Qϕ is fully F-normalized (Proposition 8.4). Now

FP (Qϕ) ≤ F ′(Qϕ) � F(Qϕ)
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where FP (Qϕ) is Sylow p-subgroup of the last group (Proposition 8.5.(1)), F(Qϕ), and hence also of the
middle group, F ′(Qϕ). Thus F ′(Qϕ) = F ′(Q)ϕ has index prime to p in F(Qϕ) = F(Q)ϕ and F ′(Q) has
index prime to p in F(Q).
(2) Let F ′ be a normal Frobenius P -category in F . In order to show that F ′ contains Fa it suffices to show
that XF (Q) ≤ F ′(Q) for every F-essential Q ≤ P [37, Corollary 12.17] where XF (Q) is the subgroup defined
in [37, Corollary 5.13]. The group FQ(Q) is contained in FP (Q) and in F ′(Q) because FP is a subcategory
of F ′. Since we know that F ′(Q) has index prime to p in F(Q) also F ′(Q)/FQ(Q) has index prime to p

in F(Q)/FQ(Q) = F̃(Q) (Definition 8.13). Thus every p-element of F̃(Q) lies in F ′(Q)/FQ(Q). Let X be
a normal subgroup of F̃(Q) whose order is divisible by p. Then the same is true of X ∩ F ′(Q)/FQ(Q).
This shows that the smallest such subgroup, X eF (Q), is contained in F ′(Q)/FQ(Q). Therefore, its preimage,
XF (Q), is contained in F ′(Q).
(3) Let F ′1 and F ′2 be normal Frobenius P -categories in F . Their intersection, F ′1∩F ′2, is a divisible P -category
in F containing Fa. By [37, Corollary 12.17], F ′1 ∩ F ′2 is a Frobenius category. �

The extreme cases are that Fa equals F or FP . We have

F = Fa ⇐⇒ F is the only normal Frobenius P -category in F
according to Proposition 10.4.

Corollary 10.5. The following conditions are equivalent:
(1) FP = Fa
(2) FP is normal in F
(3) F = NF (P )
(4) F = 〈F(P )〉

Proof. (1) and (2) are equivalent because Fa is normal in F and FP is the smallest Frobenius P -category in
F . We previously observed that (3) and (4) are equivalent. That (2) implies (4) follows from Proposition 10.3.
The converse is clear. �

Definition 10.6. [37, 12.20] The Frobenius P -category F is simple if there are no nontrivial proper F-stable
subgroups of P and F = Fa.

Example 10.7. [7, p 3839] Let G = A5 of order 60 and p = 2. The Sylow p-subgroup P = C2 × C2 is
abelian so FG = 〈FG(P )〉 where FG(P ) = C3 (Theorem 8.10). It is easy to verify directly that the discrete
category FP is a normal P -category in FG [30, Proposition 7.3]. Thus FaG = FP and FG is not simple even
though G is simple. Also, Op

′
(G) = G because G is simple so that Fa is not FOp′ (G).

Since the Frobenius category is unable to distinguish between a group G and any factor group G/N by a
normal p′-subgroup N (Example 6.4) the following result is about the best we could hope for.

Proposition 10.8. [37, 12.20.1] If FG is simple and Op′(G) = 1, then G is simple.

Proof. Let N be a nontrivial normal subgroup of G. N is not a p′-group for Op′(G) = 1. Let P be a Sylow
p-subgroup of G. Then N ∩ P , a Sylow p-subgroup of N (Corollary 3.5.(2)), is nontrivial. N ∩ P is also
FG-stable (Example 10.2), and therefore N ∩ P = P . This shows that N contains P . We have now shown
that N contains all Sylow p-subgroups of G. This means that N contains Op

′
(G), the normal subgroup

generated by all Sylow p-subgroups of G.
We know that FN is a normal P -subcategory of FG (Example 10.2). For any Q ≤ P , NN (Q) is normal in

NG(Q) and NG(Q)/NN (Q) is a p′-group because NN (Q) contains all p-elements of NG(Q) (Proposition 3.2).
The quotient group FG(Q)/FN (Q) is therefore also a p′-group. This means that FN (Q) contains Op

′FG(Q).
But the adjoin subcategory FaG is the smallest normal P -subcategory with this property and therefore FaG is
a P -subcategory of FN . By assumption, FaG equals FG, so we conclude that FN = FG and that NG(P ) =
NN (P ) (6.2). Now G = NG(P )N = NN (P )N = N where the first equality is the Frattini argument
(Corollary 3.5.(3)). �

The hyperfocal subcategory Fh of F [37, 13.8] is the smallest normal HF -subcategory of F such that
Fh(R) ≥ Op(F(R)) for any R ≤ HF fully normalized in F [37, Theorem 13.6]; F(R)/Fh(R) is p-group.
Here,

HF = 〈u−1uσ | u ∈ Q ≤ P, σ ∈ Op(F(Q))〉
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is the F-hyperfocal subgroup of P [37, 13.2]. (In the special case of the Frobenius category of a finite group
G, HFG = P ∩Op(G) [37, 13.2.1] [7, Lemma 2.2].) 2

Definition 10.9. [2] The group G is wild if (assuming p odd)

• Op(F) = 1
• FaG = FG = FhG
• κ̃G (8.20) is not split surjective

It is not known if wild groups exist. If they do then they will produce exotic fusion categories [2].
Albert showed that there are simple groups such that the fusion system contains a normal subfusion

system.

11. Frobenius categories and classifying spaces

Let G be a finite group, BG the classifying space, and Cp(BG) the Bousfield–Kan p-completion of BG
(Subsection 11.2). Whereas the classifying space BG is a K(π, 1), the p-completed classifying space may
have higher homotopy groups. However, whatever happens to BG under p-completion is invisible seen from
a finite p-group.

Theorem 11.1. For any finite p-group Q and any finite group G, there are HZ/p-equivalences∐
ρ∈G̃RP(Q,G)

BCG(Qρ) ' map(BQ,BG) ' map(BQ,Cp(BG))

Equivalently,

(1) The natural maps G̃RP(Q,G)→ [BQ,BG]→ [BQ,Cp(BG)] are bijections
(2) The natural maps BCG(Qρ) → map(BQ,BG)ρ → map(BQ,Cp(BG))ρ are HZ/p-equivalences for

any group homomorphism ρ : Q→ G.

Proof. (1) Dwyer and Zabrodsky [14, Theorem 1.1] show that G̃RP(Q,G) = [BQ,BG] and Mislin [34,
Equation (4)] shows that [BQ,BG] = [BQ,Cp(BG)].
(2) The group homomorphism CG(Qρ)×Q→ G induces a map BCG(Qρ)×BQ→ BG between classifying
spaces whose adjoint is the map BCG(Qρ)→ map(BQ,BG)ρ. Dwyer and Zabrodsky [14, Theorem 1.1] show
that BCG(Qρ)→ map(BQ,BG)ρ is an HZ/p-equivalence, and Mislin [34] or Broto and Levi [8, Proposition
2.1] that also map(BQ,BG)ρ → map(BQ,Cp(BG))ρ is an HZ/p-equivalence. (These results would not have
been possible without the Sullivan conjecture [33].) �

The finite group G determines a presheaf

(11.2) G̃RP(−, G) : pGRPop → SET

on the category pGRP of p-groups. Recall that elements of G̃RP(Q,G) have kernels (Example 2.3.(1)). The
constant epimorphism Q→ 1 induces an injection {1} = G̃RP(1, G)→ G̃RP(Q,G) that picks out the con-
stant homomorphism Q

1−→ G. If G1 and G2 are two finite groups and A : G̃RP(−, G1)⇒ G̃RP(−, G2) a nat-
ural transformation of the associated presheaves, then the component A(Q) : G̃RP(Q,G1)⇒ G̃RP(Q,G2),
for any finite p-group Q, takes 1 to 1 and it increases kernels in the sense that kerϕ ≤ kerA(Q)(ϕ) for any
ϕ ∈ G̃RP(Q,G1) by naturality.

Proposition 11.3. The following are equivalent for two given finite groups G1 and G2:

(1) FG1 and FG2 are isomorphic Frobenius categories
(2) G̃RP(−, G1) and G̃RP(−, G2) are isomorphic presheaves on pGRP

2 The adjoin subcategory Fa is denoted Op′ (F) in [7, p 3838]. The F-hyperfocal subgroup HF is denoted Op
F (P ) [7,

Definition 2.1] and the hyperfocal subcategory Fh is Op(F) in [7, p 3823].
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Proof. Suppose that FG1 and FG2 are isomorphic Frobenius categories. This means that there exists an
(FG1 ,FG2)-functorial isomorphism α : P1 → P2 of Sylow p-subgroups (Definition 8.18). There is an induced
bijection, natural in Q, as in the diagram

(11.4) GRP(Q,P1)

����

α
∼=

// GRP(Q,P2)

����

G̃RP(Q,G1)
A // G̃RP(Q,G2)

The reason that this bijection is well-defined is that if ϕ1, ϕ2 : Q→ P1 are two lifts up to conjugacy in G1 of
the same ϕ : Q→ G1, then ϕg1 = ϕ2 for some g in G1. Because α is functorial there is some gα in G2 such
that the diagram

Qϕ1

g

��

α // Qϕ1α

gα

��

// G2

gα

��

Q

ϕ1 88rrrrrr

ϕ2 &&LLLLLL

Qϕ2 α // Qϕ2α // G2

commutes. Thus ϕ1α and ϕ2α are G2-conjugate.
Conversely, assume that A : G̃RP(−, G1) ⇒ G̃RP(−, G2) is a natural isomorphism of presheaves on

pGRP. Then A preserves kernels. Let P1
ι1
↪→ G1 be the inclusion of a Sylow p-subgroup. Consider the

component A(P1) : G̃RP(P1, G1)→ G̃RP(P1, G2) of A. Now

A(P1)(P1
ι1
↪→ G1)G1 = (P1

α
↪→ G2)G2

for some monomorphism α : P1 ↪→ G2. Put P2 = α(P1) ≤ G2. Then P2 is a Sylow p-subgroup of G2 because it
is a p-subgroup of maximal order. Moreover, the isomorphism α : P1

∼=−→ P2 realizes the natural isomorphism
A as in the above commutative diagram (11.4). An easy inspection reveals that this precisely means that α
is (FG1 ,FG2)-functorial. �

As the presheaf G̃RP(−, G) = [B−, Cp(BG)] is determined by the p-completed classifying space by
Theorem 11.1, we arrive at the following corollary which says that we can construct isomorphisms of Frobenius
categories by constructing homotopy equivalences between localized classifying spaces.

Corollary 11.5. [32] If Cp(BG1) and Cp(BG2) are homotopy equivalent topological spaces then FG1 and
FG2 are isomorphic Frobenius categories.

The converse of Corollary 11.5, called the Martino–Priddy conjecture, has been proved by Bob Oliver
[35, 36] using the classification of the finite simple groups. The conclusion is

Cp(BG1) ' Cp(BG2) ⇐⇒ FG1
∼= FG2

for any two finite groups G1 and G2. This means that two finite groups have the same p-local structure if
and only if their classifying spaces have the same p-local structure (Remark 11.9).

11.1. An algebraization of Cp(BG). There is a functor

L : Fop
G → GSET : (Q

g−→ R) 7→ (CG(Q)\G CG(Q)gh←CG(R)h←−−−−−−−−−−−− CG(R)\G)

taking values in the category of transitive right G-sets. Observe that the the morphism L(g) is well-defined
because gCG(R) ⊂ CG(Q)g, or CG(R) ≤ CG(Q)g = CG(Qg), whenever g ∈ NG(Q,R). Define

(11.6) Lp : Fop
G → GRPOID

be the composite functor Fop
G

L−→ GSET→ GRPOID
M 7→OpM\M−−−−−−−−→ GRPOID. More explicitly, Lp(Q), for

any Q ≤ P , is the connected groupoid on the object set CG(Q)\G with morphism sets and automorphism
groups

Lp(Q)(CG(Q)g1, CG(Q)g2) = OpCG(Q)g1\g−1
1 CG(Q)g2, Lp(Q)(CG(Q)g) = OpCG(Q)g\CG(Q)g
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Cp(BG)

��

// Lp o Fop
Goo

��

G

ddIIIIIIIIII

::vvvvvvvvv

zzuuuuuuuuuu

$$HHHHHHHHHH

H∗(G; Fp) FGoo

OO

Figure 3. p-local information attached to the finite group G

In particular, when Q is selfcentralizing, Lp(Q) is a connected groupoid with automorphism groups isomorphic
to

Lp(Q)(CG(Q)) = OpCG(Q)\CG(Q) ∼= Z(Q)

The isomorphism here comes from the splitting CG(Q) ∼= Z(Q)×Op′CG(Q) from Lemma 6.18. In this case
the classifying space BLp(Q) of the groupoid Lp(Q) is homotopy equivalent to BZ(Q).

Define F sc
G to be the full subcategory of the Frobenius category FG generated by all its selfcentralizing

objects. Let Lsc
p denote the restriction to F sc

G of the sheaf Lp on FG.

Theorem 11.7. [9, 15] The spaces Cp(hocolimLsc
p ) and Cp(BG) are homotopy equivalent.

According to this theorem we can build the p-completed classifying space Cp(BG) from the very simple
building blocks BZ(Q) where Q is a FG-selfcentralizing object. Thus the functor (11.6), or its restriction to
the selfcentralizing subcategory, is an algebraization of Cp(BG). The homotopy colimit of the functor Lsc

p

is homotopy equivalent to the classifying space of the Grothendieck construction Lsc
G = Lsc

p o Fop
G on the

functor Lsc
p [41]. Therefore we have

Cp(BG1) ' Cp(BG2) ⇐⇒ Lsc
G1
∼= Lsc

G2

The hard part in proving the Martino–Priddy conjecture is to show that FG1
∼= FG2 =⇒ Lsc

G1
∼= Lsc

G2
.

(The category Lsc
G is the ‘centric linking system’ of [9] and an example of an ‘FG-locality’ of [37, 17.3]. The

existence or uniqueness of centric linking systems associated to abstract Frobenius categories is an important
unsolved problem.)

11.2. The Bousfield–Kan p-completion functor Cp. Let us say that a space C is p-local if [A,C]← [B,C]
is bijective whenever A → B is an HZ/p-equivalence. (C is p-local if it believes that all HZ/p-equivalence
are homotopy equivalences.) Ideally, we would like to have a functorial construction of an HZ/p-equivalence
X → CX into a p-local space CX (a p-local space not far from X).

Bousfield and Kan partially succeed in this. They functorially associate to any space X a map X → Cp(X).
The Bousfield–Kan p-completion, Cp(X), is indeed p-local but X and Cp(X) do not always have the same
HZ/p-homology, only when X is ‘Z/p-good’ [6, I.5.1]. The main properties of the Bousfield–Kan p-completion
are:

• Cp(X) is p-local [6, II.2.8]
• X → Cp(X) is an HZ/p-equivalence when X is connected and nilpotent or π1(X) is finite [6, VI.5.3,

VII.5.1] (and Cp(X) agrees with the Bousfield HZ/p-localization of X] [5, §4])
• X → Y is an HZ/p-equivalence ⇐⇒ Cp(X)→ Cp(Y ) is a homotopy equivalence [6, I.5.5]
• X is k-connected =⇒ Cp(X) is k-connected [6, I.6.1]
• Cp preserves HZ/p-nilpotent fibrations of connected spaces [6, II.5.1]
• BQ→ Cp(BQ) is a homotopy equivalence for any finite p-group Q [6, VI.3]

It follows for instance that Cp(X) ' ∗ ⇐⇒ X → ∗ is an HZ/p-equivalence ⇐⇒ H∗(X; Z/p) = 0.
By definition, X is Z/p-complete if X → Cp(X) is a homotopy equivalence [6, I.5.1]. BQ, Q a finite p-

group, is Z/p-complete. If X is connected and nilpotent or has a finite fundamental group, then X → Cp(X)
is a HZ/p-equivalence and Cp(X) is Z/p-complete [6, I.5.2]. In that case, the HZ/p-equivalence X → Cp(X)
is terminal among HZ/p-equivalences from X to some space and initial among maps from X to Z/p-complete
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spaces [6, VII.2.1]:
X

��

// Y

'
��

X

��

// Y

��zz
Cp(X) //

::

Cp(Y ) Cp(X) ' // Cp(Y )

Proposition 11.8. Let G be a finite group.
(1) π1(Cp(BG)) = OpG\G
(2) Cp(BOp(G)) is the universal covering space of Cp(BG)
(3) Cp(BG) is aspherical ⇐⇒ OpG contains no elements of order p

Proof. The normal subgroup OpG, generated by all p′-elements is Z/p-perfect, H1(OpG; Z/p) = 0, so that
Cp(BOpG) is simply connected [6, VII.3.2]. The fibration B(OpG)→ BG→ B(G/OpG) induces a fibration

Cp(BOpG)→ Cp(BG)→ B(G/OpG)

of p-completed spaces because G/OpG is a finite p-group. Thus π1Cp(BG) = G/OpG and Cp(BOpG) is the
universal covering space of Cp(BG). Therefore

Cp(BG) is a K(π, 1) ⇐⇒ CpB(OpG) ' ∗ ⇐⇒ H∗(OpG; Z/p) = 0 ⇐⇒ OpG has order prime to p

For the last step we use that if the finite group K contains an element of order p then H∗(K; Z/p) will
contain a polynomial subring by Quillen’s theorem that the Krull dimension of H∗(K; Fp) equals the p-rank
of K [39, 19]. �

Remark 11.9. Let X and Y be topological spaces. Let us say that X1 and X2 have the same p-local
structure, X1 ∼p X2, if there there exist a topological space Y and HZ/p-equivalences X1 → Y ← X2. This
is an equivalence relation. To prove transitivity, consider the diagram

X1
f1 // Y1

$$HHHHHHHHH X2
g2oo f2 // Y2

{{vvvvvvvvv
X3

g3oo

C(f2, g2)

where C(f2, g2) = Y1∪g2 ∪(I×X2)∪f2 is the double mapping cylinder. The homology of the double mapping
cylinder is easily computed from the Mayer–Vietoris sequence and we see that the maps Y1 → C(f2, g2)← Y2

are HZ/p-equivalences when f2 and g2 are HZ/p-equivalences. It is immediate that X1 ∼p X2 if and only
if CpX1 ∼ CpX2 when X1 and X2 are HZ/p-good spaces (eg X1 and X2 are connected and have finite
fundamental groups). In particular, when G1 and G2 are finite groups, Cp(BG1) ∼ Cp(BG2) if and only if
there are HZ/p-equivalences BG1 → B ← BG2.

12. Friedlander description of finite groups of Lie type

Friedlander [20] describes the p-completed classifying spaces of finite groups of Lie type as homotopy fixed
point spaces for homotopy equivalences of p-completed classifying spaces of Lie groups. I shall now explain
what these words mean.

Let X be a topological space and α : X → X a map of X into itself. The fixed-point space of α is the
space X〈α〉 = {x ∈ X | xα = x} and the homotopy fixed-point space of α is the space Xh〈α〉 = {(x, u) ∈
X ×map(I,X) | 0u = x, 1u = xα} defined by the pull-back diagrams

X〈α〉

��

// X

(id,id)

��

Xh〈α〉

��

// map(I,X)

(ev0,ev1)

��
X

(id,α) // X ×X X
(id,α) // X ×X

of topological spaces.
Let K(Zp, 2)n = CpK(Z, 2)n be the Eilenberg–MacLane space with second homotopy group isomorphic

to the group Z⊕np where Zp is the ring of p-adic integers. For each p-adic unit u, let ψu be the homotopy
self-equivalence of K(Zp, 2)n that is multiplication by u on the second homotopy group.
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The space K(Zp, 2)n is the p-completed classifying space CpBTn(C) of the maximal torus Tn(C) →
SLn+1(C) of the special linear group. According to Jackowski–McClure–Oliver [28] the map ψu on the
maximal torus extends to a unique self-homotopy equivalence ψu

CpBTn(C)
ψu //

��

CpBTn(C)

��
CpB SLn+1(C)

ψu // CpB SLn+1(C)

of the p-completed classifying space of SLn+1(C). Moreover, these maps account for the entire group of
self-homotopy equivalences,

Out(CpB SLn+1(C)) ∼= Z×p
for n > 1. (When n = 1, the maps ψu and ψ−u are homotopic.)

Let q be a prime power not divisible by p so that q is a unit in the ring Zp of p-adic integers and ψ±q is a
self-homotopy equivalence of CpB SLn+1(C). Friedlander’s theorem, for this special case,

CpB SL±n+1(Fq) ' CpB SLn+1(C)h〈ψ
±q〉

describes the p-completed classifying space of SL±n+1(Fq) as the homotopy fixed point space for the homotopy
self-equivalence ψ±q of CpB SLn+1(C). We now see that it would be good to be able to compare homotopy
fixed point spaces.

Let B be a topological space. Let Uk ≤ Out(B) be the subgroup of self-homotopy equivalences inducing
the identity on H∗(B; Z/pk). Define the p-adic topology on the group Out(B) to be the topology whose
basis at the identity consists of the Uk. (If Hi(B; Z/p) is finite for all i ≥ 0, Hi(B; Zp) is the inverse limit of
the groups Hi(B; Z/pk) (by a change of functors spectral sequence), and Out(B) is a Hausdorff topological
group if and only if Out(B) is detected on H∗(B; Zp). Here, Zp stands for the ring of p-adic integers.)

Theorem 12.1. [11, Theorem 2.4] Let B be a connected p-complete space such that Hi(B; Z/p) is finite
for all i ≥ 0, H∗(B; Z/p) is a finitely generated Z/p-algebra, and Out(B) is detected on H∗(B; Zp). Let
α, β ∈ Out(B) be two self-homotopy equivalences of B. Then

Bh〈α〉 ' Bh〈β〉

if 〈α〉 = 〈β〉 in the topological group Out(B).

As the conditions of this theorem are satisfied for B = CpB SLn+1(C), we get this immediate consequence:

Corollary 12.2. Let q1 and q2 be two prime powers not divisible by p. If 〈q1〉 = 〈 ± q2〉 in the topological
group Z×p , then CpB SL+

n+1(q1) ' CpB SL±n+1(q2).

It is not hard to see that

〈q1〉 = 〈q2〉 ⇐⇒

{
q1 ≡ q2 mod p and νp(qe1 − 1) = νp(qe2 − 1) p odd
q1 ≡ q2 mod 4 and νp(q2

1 − 1) = νp(q2
2 − 1) p = 2

where e is the multiplicative order of q1 modulo p.
According to Corollary 11.5, these topological statements about p-completed classifying spaces translate

to the purely group theoretical statements

〈q1〉 = 〈 ± q2〉 =⇒ FSL+
n+1(q1)

∼= FSL±n+1(q2)

about Frobenius categories of finite groups of Lie type. (This is only one instance of a more general statement
[11, Theorem A] comparing Frobenius categories for finite groups of Lie type.)

In [10] we replace the p-completed classifying spaces of Lie groups by the more general p-compact groups
and show that the homotopy fixed point spaces define Frobenius categories that in many cases are exotic in
the sense that they are not Frobenius categories of any finite group.

Theorem 12.3. [10] Let BX be a connected p-compact group, u ∈ Z×p a p-adic unit, and ψu the corresponding
unstable Adams operation on BX. Then BXh〈ψu〉 is the classifying space of a Frobenius category.
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At odd primes, this provides many examples of exotic Frobenius categories. At the prime p = 2 with
BX = BDI(4) the Dwyer–Wilkerson space [16], this construction provides the only known exotic Frobenius
system [29].

13. Open problems

• Is it possible to classify Frobenius categories? Would that be helpful eg in the classification of the
finite simple groups?

• Does every abstract Frobenius category F admit a (unique) functor like (11.6) (and hence a classifying
space)?

• Every Frobenius category of a finite group is the Frobenius category of a block – is the converse true?
• Describe the exotic Frobenius categories, the Frobenius categories not associated to any finite group.
• Is it true that there is essentially just one exotic Frobenius category at p = 2?

14. Student activities

Exercises:
(1) Determine FG for your favorite groups G.
(2) Find examples of nonisomorphic groups with isomorphic Frobenius categories.
(3) Show that the Frobenius categories associated to Σm are the same when np ≤ m < (n+ 1)p. (Here,

Σm is the symmetric group on m letters.)
(4) Find all Frobenius categories on C2×C2 and C2×C2×C2. (This exercise was suggested by Martin.)
(5) Complete the proof of Proposition 9.6.
(6) Do Example 8.17 for p = 2.
(7) Show that U ≤ P is F-stable if and only if U is the kernel of some (F ,F ′)-functorial group homo-

morphism α : P → P ′.
(8) Identify the group Op(FG) (Definition 9.4) for a finite group G.
(9) Imagine that you were to make an exam for this course. What questions would you put in the exam?

Short (30–60 minutes) presentations:

(1) What is an affine group group scheme? [42, 18]
(2) Classification of root systems [4]
(3) Homotopy colimits [17, 25]
(4) The Bousfield–Kan p-completion functor [6]
(5) Sharp homology decompositions of classifying spaces of finite groups
(6) Euler characteristic of Frobenius categories (Martin Wedel Jacobsen)

Links:
• Algebraic groups
• Classical groups
• Normal p-complement
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