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1. NOTATION

e p is a fixed prime

o n, is the highest power of p dividing the natural number n = [[ n,
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m¥ € N and K¥ C N are the images under the map M 2, N of the element m € M or the subset

K C M. The composition of the two maps M 2N Pis oY
GRP is the category of groups

GRPOID is the category of groupoids

ALG is the category of algebraic groups

FRB is the category of Frobenius categories

2. CATEGORY THEORY FOR BEGINNERS
Let C be a category with objects P and Q: / \
e C(P,Q) is the set of morphisms from P to Q P R
e C(P,Q) xC(Q,R) = C(P,R): (¢,¥) — ¢ o1 is composition in C
e C(Q) =C(Q, Q) is the monoid of endomorphisms and C(Q)° the group of automorphlsms of Q

2.1. Isomorphisms and equivalences.

Definition 2.1. [31] /nCat] A functor T: C — D is

e an isomorphism if it is bijective on both objects and morphisms
o an equivalence if C(Q, R) — D(QT, RT) is bijective for all objects Q, R of C and every object of D is
isomorphic to some object in the image of T

We say that a functor is an equivalence if it is essentially surjective on objects and fully faithful on
morphisms.

2.2. The exterior quotient. An left (right) interior structure in a category C is a function that to any
object P of C associates a group Z(P) < C(P)° (of “inner” automorphisms of P) such that Z(P)oy C ¢oZ(Q)
(poZ(Q) CZ(P)oyp) for all p € C(P,Q). (In case of a left interior structure, this means that for any p € Z(P)
there exists ¢ € Z(Q) and a commutative diagram

p—L=p
Q—>Q
in C.) In particular, Z(P) < C(P)°.

Definition 2.2. [37, 1.3] The exterior quotient of the left interior structure T is the quotient category C that
has the same objects as C and morphism sets

C(P,Q) =C(P,Q)/Z(Q),  C(P)°=C(P)°/Z(P)  (left cosets)
Composition in C is induced from composition in C by the rule ¢Z(Q) o YZ(R) = p¢YZ(R) for ¢ € C(P,Q),
» €C(Q.R). .
The exterior quotient of the right interior I structure is the quotient category C that has the same objects
as C and whose morphism sets are

C(P,Q) =Z(P)\C(P,Q) C(P)° =Z(P)\C(P)°  (right cosets)

Composition in C is induced from composition in C by the rule Z(P)p o Z(Q)¢ = Z(P)p for ¢ € C(P,Q),
P eC(Q,R).
Example 2.3. (1) In the category GRP of groups, the inner automorphisms Inn(G) = Z(G)\G < GRP(G)
provide a left interior structure. In the left exterior quotient (El\{_l; the morphism sets and the automorphism
groups

GRP(G,H) = GRP(G, H)/lm(H), GRP(G)° = GRP(G)®/Inn(G)
consist of left H-conjugacy classes of group homomorphisms of G — H and outer automorphisms of G.
(Observe that morphisms in GRP do not have images but still have kernels.)

(2) Cousider the group G = G(x) as a category with one object *. The subgroup OPG(x) generated by the
p'-elements is a left and right interior structure because OPG(x)g = gOPG(x) for all g € G(x) as OPG(x)


http://ncatlab.org/nlab/show/equivalence+of+categories
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is a normal subgroup. The right exterior quotient G = OPG\G is the group of right cosets. This is a

functorial construction. Any group homomorphism G ER G2 sends OPG; to OPG4 and so induces a group
homomorphism OP(G1)\G1 — OP(G2)\G2. Thus G — OPG\G is an endofunctor of the category GRP of
groups. (We will need this construction in Proposition 11.8.)

(3) Suppose that M is a groupoid. There is a left and right interior structure given by Z(P) = OP M (P) for any
object P of M. In the right exterior quotient groupoid O? M\ M the morphism sets and automorphism groups
are OP M (P)\M (P, Q) and OP M (P)\ M (P) (the p-groups nearest to M (P)). This is a functorial construction.

For any functor M; ER M and any object P of My, we have that OP M, (P)f - OPMQ(Pf)7 which means
that f induces a functor OPM;\M; — OPMy\M; between the right exterior quotient groupoids. Thus
M +— OPM\M is en endofunctor of the category GRPOID of groupoids. (We will need this construction
in subsection 11.1.)

3. GROUP THEORY FOR BEGINNERS

Let G be a finite group with element g € G and subgroups H, K < G:
e G is a p-group if |G|, = |G| and a p’-group if |G|, = 1.
e h9 = g~ 1lhg for group elements g,h € G
e Conjugation by g € G is the inner automorphism g € GRP(G)° taking h € G to hY.
e HY is the image of H under conjugation by g
e H <1 G means that H is a normal subgroup of G, ie H9 = H for all g € G
o Cqo(H)={9€ G|Vhe H: h? =h} is the centralizer of H
e Ng(H)={g9 € G| HY9= H} is the normalizer of H
o Ng(H,K)={g9 € G| HY <K} is the transporter set
e H\G > Hg is the set of right cosets of H < G and G/H > gH the set of left cosets’
e OP(@) is the normal subgroup generated by all p’-elements of G [23, p 3]
o OF (@) is the normal subgroup generated by all p-elements of G [24, p 34]
e 0,(Q) is the largest normal p-subgroup of G, the intersection of all Sylow p-subgroups of G [40, 9.1]
o O, (G) the largest normal p’-subgroup of G [40, 9.1]

3.1. Index theorems. We shall need these basic facts about the index of a subgroup. If H and K are
subgroups, their commutator is [H, K] = (h"'k~'hk | h € H,k € K), [H,K] < (H,K); we say that H
normalizes K if H < Ng(K) or [H,K] < K.

Proposition 3.1. [40, 1.3.11, 1.3.14, 1.4.4] Let H and K be subgroups of G and put H - K = {hk | h €
H ke K}.

(1) |[H-K|[HNK|=|H|K]|

(2) If L < G, and L contains at least one of the groups H or K then (H-K)NL=(HNL)-(KNL)

(3) |G: HNK| < |G : H||G : K| with equality if the indeces |G : H| and |G : K| are coprime.

(4) If H-K=K-H, then HK = (H,K) = KH is a subgroup.

(5) If H normalizes K then HK is a subgroup, K <HK, HNK <H, and HK/K *H/HNK.
Proposition 3.2. The following conditions are equivalent for a normal subgroup N < G:

(1) N contains a Sylow p-subgroup of G

(2) N contains all p-elements of G

(3) N contains O (G)

(4) N has p'-index
3.2. Sylow subgroups. Sylow’s theorem is the king of finite group theory. Sylow proved his theorem
without knowing what a group is!

Definition 3.3. A Sylow p-subgroup is a p-subgroup of index prime to p.

Theorem 3.4 (Sylow theorem). [40, 1.6.16] Let G be any finite group.

(1) G has a Sylow p-subgroup
(2) Ewvery p-subgroup of G is contained in a Sylow p-subgroup.

IIna right coset, Hg, the element from G is on the right and the set, H\G, of right cosets is a right G-set.


http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Sylow.html
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(3) All Sylow p-subgroups are conjugate
(4) The number of Sylow p-subgroups (the length of the Sylow p-subgroup) is congruent to 1 modulo p.

Corollary 3.5 (Sylow subgroups of (normal) subgroups and factor groups). [40, 1.6.18, 5.2.14][23, Lemma
4.4] Let P be a Sylow p-subgroup of G, H < G a subgroup, and N < G a normal subgroup.

(1) H9N P is a Sylow p-subgroup of HY for some g € G

(2) NN P is a Sylow p-subgroup of N and PN/N is a Sylow p-subgroup of G/N.

(3) G=Ng(NNP)-N (The Frattini argument)

Proof. (1) Let S be a Sylow p-subgroup of H. There is an element g of G so that S9 is contained in the
Sylow p-subgroup P of G (Theorem 3.4). Now S9 < H9NP < HY. Since SY is a maximal p-subgroup of HY,
we actually have S9 = HY9 N P. This subgroup is a Sylow p-subgroup of HY.

(2) This follows from the index formulas of Proposition 3.1.

(3) NN P is a Sylow p-subgroup of N. Let g be any element of G. Then (NN P)9 < N9 =N, so (NnNP)¢
is also a Sylow p-subgroup of N, and thus (N N P)9 = (N N P)" for some n € N. This means that gn~*
normalizes N N P and that g = (gn~1)n € Ng(N N P) - N. O

By induction on the length of a subnormal chain from H to G it follows that if H is subnormal in G, then
H N P is a Sylow p-subgroup of H.

Lemma 3.6. If the normal subgroup N <G has p-power indez, then all Sylow p-subgroups of G are conjugate
by elements of N.

Proof. We need to prove that N — G — Ng(P)\G is surjective. The image of this map is N N Ng(P)\N.
Thus we need to show that |[N : N N Ng(P)| = |G : Ng(P)|. This follows from the index formula |G : N N
N¢g(P)| = |G : N||G : Ng(P)| which holds since N and N¢(P) have coprime indices (Proposition 3.1.(3)). O

3.3. From centralizers to normalizers. We introduce the K-normalizer of a subgroup.

Definition 3.7. For any Q < G and K < GRP(Q)° the K-normalizer NX (Q) is the inverse image of K
under the homomorphism Ng(Q) — GRP(Q)°. Q is K-normal in G if N (Q) = G.

By the very definition there is a commutative diagram

1 Ca(Q) NE(@Q) —= KN GRP(Q)°

| |

1 —Ca(Q) — Na(Q) GRP(Q)°

with exact rows. In particular, Cq(Q) = N&(Q) < NE(Q) < NSRP(Q)O(P) = Ng(Q). It H < K <
GRP(Q)°, then NH(Q) < NE(Q), and if H < K, then N¥(Q) < NE (Q). If K contains the inner automor-
phisms of @, then Q < NE (Q).

Any injective group homomorphism ¢: @ — P induces an isomorphism GRP(Q)° — GRP(Q¥)° taking
k € GRP(Q)° to k¥ = ¢ tkp. Let K¥ < GRP(Q¥)° be the image of K < GRP(Q)° under this

isomorphism.

©
Q = Q”
(% o (N
/ /
K K¢

Proposition 3.8. Assume that Q < P < G and K < GRP(Q)°.

(1) NE(Q)? = NE(Q¥) for any group automorphism ¢ € GRP(G)°
(2) NE(Q)? < NE7(Q¥) for any injective group homomorphism ¢: Q - N5 (Q) — P
Proof. (1) This is clear as ¢ is an automorphism of G.

(2) If g € P normalizes Q and conjugation by g is the automorphism k € K of @, then g lies in N5 (Q) so
g% lies in P, ¢g¥ normalizes Q¥, and conjugation by g% is the automorphism k% of Q¥. O
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4. ALGEBRAIC GROUP THEORY FOR BEGINNERS

In this section, F' is an algebraically closed field of finite characteristic r.

An affine variety is the common set of zeros in F™ for a finite set of polynomials. The affine varieties are
the closed sets in the Zariski topology on F™. The affine space F" itself is an irreducible affine variety.

The set ,

GL,(F) = {(zi;) € F* | det(z;) # 0}

is a principal open set in the irreducible affine variety F™. It is therefore itself an affine variety [26, p 10],
namely the variety in F+l 5 (d, z;;) defined by the equation ddet(x;;) —1 = 0. The group operations can
be seen to be morphisms of varieties. GL,,(F) is the basic example of a an algebraic group[26, Chp II].
Definition 4.1. An algebraic group over F is a variety that is also a group such that the group operation maps

are morphisms of algebraic varieties. An algebraic group morphism between algebraic groups is a morphism
of varieties that is also a group homomorphism.

Examples of algebraic groups:

e GL,(F)

Zariski closed subgroups of GL,,(F), such as SL,, (F)
Products of algebraic groups are algebraic groups
The multiplicative group F* = GL,(F) (with endomorphism monoid ALG(F*) = Z).
The additive group

o3 rer)sm ()6 -6 )

( with automorphism group ALG(FT)° = F*).

S1 0 0
e Diagonal matrices T, (F) = 0 s2 0]]s1,...,8p €F* 2F*x...xF*
0 0 S3
1 x =*
e Unitriangular matrices U, (F) = 0 1 =« < GL,(F)
0 0 1
S1 * *
e Triangular matrices B, (F) = T,,(F)U,(F) = 0 s2 =% < GL,(F)
0 0 S3

Definition 4.2. A torus is an algebraic group isomorphic to T,,(F) = F* x --- x F* for some n

The abelian group of algebraic group homomorphisms from an n-torus 7, (F) to the multiplicative group
F* is the free finitely generated abelian group (lattice)

ALG(T,(F),F*) = Z{ey,. .., en}

generated by the n coordinate functions e;: T,,(F) — F* given by s% = s; for s = (s1,...,8,) € T(F). The
linear combination ) n;e; € Z{e1,...,e,} corresponds to the homomorphism T, (F) — F*: s +— [[s; in
particular, s~ = s;5; .

Theorem 4.3 (Existence of maximal tori). Any algebraic group contains a mazimal torus and any two
mazimal tori are conjugate.

For instance, 7,41 (F) is a maximal torus in GL,,,,(F) and
Ty1(F)NSL, 1 (F) = (diag(s1, s~ 1,...,1),... diag(1, ..., sp, 8, ") | $1,...,8, € F¥)
is a maximal torus of SL,, | (F)

4.1. Root systems. Let F be a Euclidean space over R, ie F is a finite-dimensional real vector space with

an inner product (-,-). Let a be a nonzero vector. The orthogonal projection of 8 on « is Eigga and the

orthogonal reflection across the hyperplane at perpendicular to « is the isometry
ra(ﬁ):67<ﬂaa>aa ﬁGEa
where we let (3, a) = 282 — 2(5:9) " (Then the inner product (o, 8) = 2(a, 8)|a2.)

(e,e0) lo?
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(B:0) @

()

FIGURE 1. Reflection of 3 across a- changes 3 in the direction of o

Definition 4.4. A root system in E is a set ¥ C E of nonzero vectors (called roots) in E such that ro(X) =%
foralla e X.

Suppose that ¥ is a root system. X is

reduced: if RaNY = {—a,a} for all & € ¥ (Note that —a = r,(a) € X.)
crystallographic: if the numbers (3, ) are all integers (the Cartan integers)
irreducible: if there is no partition ¥ = 3; U 35 of ¥ into nonempty orthogonal subsets

The Weyl group of ¥ is the group of isometries W(X) = (r, | « € X) generated by the reflections associated
to the elements of ¥. Since r,(X) = 3, the Weyl group W (X) acts on the root system X.
A fundamental system for the reduced, crystallographic root system ¥ is a linearly independent set of roots
II C ¥ such that ¥ = Xt UX~ where X1 (X7) is the set of roots expressible as nonnegative (nonpositive)
linear combinations of the fundamental roots. The information contained in the Cartan matriz is the matrix
({a, B))a,pem- is conveniently displayed in the Dynkin diagram is the graph whose nodes are the fundamental
roots and with («, 8) (0, a) edges connecting a, 8 € TI, a # 3 [13, 3.4]. There is no edge between perpendicular
fundamental roots. In case two fundamental roots are not perpendicular and not of equal length, then there
is an inequality sign between them. The relation between the lengths of two fundamental roots and the angle
between them is given by
(@.B)(B.0) _, (@)

<O‘7ﬁ>|ﬁ‘ = 2(0475) = Q(ﬁaa) = <B,a>\o¢| ) <a76><6’a> :4(a,a)(ﬁ,ﬂ) = 4(04,04)(5,[3) =4cos 4(a7ﬁ)

The number of edges connecting « and ( in the Dynkin diagram, (a, 3)(0, «), is the product of two integers
and is > 0 and < 4 and, in fact, < 3 since o and (3 are linearly independent so not proportional. This
leaves very few possibilities for the angles between and relative lengths of two fundamental roots [4, VI.§1.3].
Therefore the Dynkin diagram determines the root system completely. (Figure 2 shows three examples of
2-dimensional root systems with Cartan matrices and Dynkin diagrams. The root system A; x A; could be
added to that picture. The Weyl group for Bs is the symmetry group of the square given by the roots, the
dihedral group of order 8. The Weyl group for G5 is the symmetry group of the hexagon given by the short
roots, the dihedral group of order 12.)
Here are some useful relations

(@, ) v v_ 2B Lo > bile, B) |8

a,B) =2 = (o, =—=), a,B) =2 a, B), a, )y bif) =720
(o, B) EE (@, 57) (B \5|2) (@, 8) = 516 {e, B) (@, Y bif) I
connecting the bilinear form (—, —) and the function (—, —) which is linear only in the first variable.

In the above definition the inner product comes out of the blue. Let V be any real vector space, a an
element of V', and oV an element of the dual of V, a real form on V. The endomorphism

To,aV (5) = ﬁ - (6)04\/&, ﬁ € Va

fixes the hyperplane ker oV and has order 2 if (a)a = 2. Let us call such a map a reflection. (If V has an
inner product, then oV = 2((;:1‘)) is a possibility.)

Lemma 4.5. [4, VI.§1] Let V be a real vector space and ¥ C 'V a finite set of nonzero vectors. Suppose that
(1) 2 spans V
(2) for each o € X there exists a linear form o on V' such that (a)a =2 and rq ov stabilizes 3
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A2 (6%) 2
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120° <X'135° 150°

N

o] =[on], Z(ar,a2) =120°  |ag| = V2|ou|, Z(a1,02) = 135°  |aa| = VB|au|, Z(a, ag) = 150°

a1 (%) (6731 (&%)

(4 ) (= ) (5 )

FIGURE 2. Root systems Ay, By, and Go

(3) (X)a¥ CZ foralla € 3.
Then there is an inner product (-,-) on V such that ro.qv is the orthogonal reflection across at and X is a
crystallographic oot system in the Euclidean space (V, (-, ")).

In fact, @V is uniquely determined by o and we can write just r, instead of 74 ov.

Example 4.6 (The root system A,). Let e1,...,e,41 be the standard orthonormal basis for R**!, n > 2,
with the usual inner product. The set of n(n + 1) vectors
Ay, ={ej—e|1<i,j<n+1i#j} CZ{er,...,ens1}
is a (reduced, crystallographic, irreducible) root system. The reflection 7., ., across (e; — e;
Tej—e;(8) =B — (B — Bi)(ej — ;) = B+ (Bi — Bj)ej + (B; — Bi)ei
interchanges the ith and jth coordinate for any vector 3 € R"*!. The Weyl group W (A,) < GL,(Z) <

GL,,,;(R) generated by these reflections is the permutation group %,,41 on the n+1 coordinates. (The rank
of the root system A,,, the dimension of the vector space spanned by A,,, is n.) The set

)L

I = {62—61,...,€n+1 —en}
is a fundamental system, A7 = {e; —e; | 1 <i < j < n+1} are the positive roots, and the negative roots are
(o %1 (o) Ap—1  Op
A, ={ej—e; | 1 <j<i<n+1}. The Dynkin diagram is the linear graph @ @ @ @ @ @
with IT as vertex set.

Example 4.7 (The root system B,,). Let eq,...,e, be the standard orthonormal basis for R", n > 2, with
the usual inner product. The set of 2n? vectors
B,={xejte; |n>ji>1i#j}U{te; |1 <i<n}CZ{e,...,e,}
is a (reduced, crystallographic, irreducible) root system. The reflections r., and r¢, .,
re,(B) = B — 2[;eq, Te;1e;(B) = B — (85 + Bi)(ej +ei) = B — (85 + Bi)e; — (Bj + Bi)ei
changes sign on the ith coordinate and swaps the jth and ith coordinates and changes their signs of any
vector 8 € R™. The Weyl group W (B,,) = C31%,, consists of coordinatewise permutations and sign changes.

The set
M={ex—e1,...,n —€p_1,€1}
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is a fundamental system and B} = {e; £ e; |n>j>i>1}U{e; | 1 <14 < n} are the positive roots. The
Qay Q2 Qn-1_ Qp
Dynkin diagram is the graph @ 1 1 ® .é:. with II as vertex set.

Two root systems are isomorphic if there is a bijective map between them preserving the forms (-,-) [24,
Definition 1.8.4].

Theorem 4.8 (Classification of irreducible reduced crystallographic root systems). [4, VI.§4] [24, Table
1.8, Theorem 1.8.7] Two irreducible reduced crystallographic root systems are isomorphic if and only if their
Dynkin diagrams are isomorphic. Any irreducible reduced crystallographic root is isomorphic to precisely one
of the root systems A, (n>1), B, (n>2),C,, (n>3), D, (n>4), Eg, E7, Es, Fy or Gs.

There is a unique element wy € W(X) so that we(II) = —II [13, Proposition 2.2.6]. This element has
order 2 and the linear transformation —wy is an automorphism of . When wy # —1, which happens for A,
(n > 1), Dopy1, and Eg, p = —wyp is the unique automorphism of II of order 2 [24, Remark 1.8.9].

4.2. Root groups. We shall illustrate the idea of root groups by the simple example of GL4(F).
Example 4.9 (Root subgroups of GL4(F)). Consider the algebraic group GL4(F) and let

S1 O 0
Tg(F): 0 s O 81752,83€FX
0 0 S3

be the standard maximal torus. For i # j, 1 <, < 3, put
Tij (t) =1+ teij S GL3(F), teF,

where I is the identity matrix and e;; the matrix with 1 in the 7th row and jth column and 0 elsewhere, eg

1 ¢t 0
z12(t) =10 1 0], teF
0 0 1
The map x5 is clearly injective and as
1 ¢t 0 1 uw 0 1 t+u O
xlg(t)xlg(u) = 0 1 0 0 1 0 = 0 1 0 = 1’12(t + U)7
0 0 1 0 0 1 0 0 1
219 is an isomorphism between F+ and the subgroup
t 0
X2 = 01 0 teF
0 0 1
of GL4(F). Also, the computation
s;’t 00 1t 0\ /s1 0 0 1 syt 0 1 st 0
0 s;' 0 01 0[]0 s O)J=(0o 1 o]=|0 1 0
0 0 s3'/\0 0 1/ \0 0 s3 o o 1/ \o o0 1

shows that the maximal torus T5(F) normalizes the subgroup Xis.
Similarly for all six roots groups X;;. Conjugating the parameterization x;;(t) of X;; by an element s of
the maximal torus
Iij(t)s = I’ij(sejieit), s € Tg(F), te F,

amounts to reparameterization by the factor s¢~¢. We may visualize this by the commutative diagram

S

of algebraic groups isomorphisms.
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Let ¥ = {X12, X13, Xo3, Xo21, X31, X32} be the set of these six subgroups of GL;(F). We can embed %
into the lattice ALG(T3(F),F*) = Z{e1, e2,e3} by the map

(410) Y — ALG(T3(F),FX) = Z{€1,62,63}2 Xij —€; — €
taking each subgroup X;; € ¥ to its associated reparameterization function e; — e; € ALG(T3(F),F*) =

Z{ey, e, e3}. This embedding takes the set ¥ bijectively to the root system As (Example 4.6). Observe that
the group T3(F)\Naw, (r) (T5(F)) acts

S ——> ALG(T3(F),F¥)

) o

T5(F)\NcL,(r)(T3(F))  T3(F)\NcL, ) (T5(F))

on the domain and codomain of the map (4.10).

The normalizer Ngr, () (73(F)) of the maximal torus, the group of monomial matrices (with exactly one
nonzero entry in each row and column), acts on the set 3 by conjugation. For example, the permutation
matrix

1 0 0
(4.11) n=10 0 1| € Nar,r (T53(F))
0 1 0
corresponding to the transposition (2,3) conjugates X5 into X135 because
1 0 0 1 ¢ 0 1 0 0 1 0 ¢
@ =(0 0 1o 1 o)l[o 0 1]=(0 1 0] =10
0 1 0 0 0 1 01 0 0 0 1

As T5(F) acts trivially on (T
3.

The normalizer Ngr,(r)(T3(F)) also acts on the lattice ALG(75(F),F*) by conjugation: For a €
ALG(T5(F),F*) and n € Nap,(r) (13(F)), o™ is the homomorphisms a"(s) = a(s™"). For instance, with n
corresponding to the transposition (2,3) as in (4.11), the computation

~—

, we in fact have an action of the quotient group T5(F)\Nar,¥)(75(F)) on

(ea —e1)"(s) = (e2 —e1)(s7") = (e2 — e1) (51,53, 52) = 5357 " = (e3 — e1)(s)
shows that n takes ez —e; to e3 —e1. This indicates that the map (4.10) is T3(F)\Ngw, (r) (T3(F))- equivariant.
The fact that the quotient group 75(F)\Nar, ) (753(F)) acts on the rank three lattice ALG(T5(F),F*)
means that we have a homomorphism
T3(F)\No, ) (T3(F)) — GRP(ALG(T}(F), F¥))° = GL, (2)
into the automorphism group of the lattice. This homomorphism happens to be injective and to take
Ty (F)\NGLS(F) (T53(F)) isomorphically to the Weyl group W (Az).

After this concrete example, we now consider the general theory of root groups. Let K be an algebraic
group and 7" a maximal torus of K.

Definition 4.12. A one-parameter group X is an algebraic group isomorphic to the additive group F+ and
a parameterization of X is an algebraic group isomorphism x: FT — X.

Any two parameterizations of a one-parameter group differ by an element of the automorphism group
ALG(FT)° =F*.

Definition 4.13. A root group of K (relative to T') is a one-parameter subgroup of K normalized by T'.

Let (7)) be the set of root groups relative to T'. Suppose X(T) 3 X < K is a root group. Let z: FT — X
be any parameterization of X and let s be any element of the maximal torus T. Then ¢t — z(¢)® is also a
parameterization of X and therefore

2(t)” = x(ax(s)t)
for some reparameterization factor ax (s) € ALG(F*1)° = F* (independent of the choice of parameterization
z for X). This means that there is a map

(T) - ALG(T,F*): X — ax
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SRR 2(Ku(%) Ku®) | Auw()
An SLn+1(F) Or’Cn+1 PSLn+1(F) 02
B, Spln2n+1(F) 12 : i 9 SOQnH(F) 1
C 2
Crn | Spy,(F) 12 : i 5 PSp,, (F) 1
C3 r+#2,neven -
D, | Spin,,(F) Cy r=#2,nodd PSO,, (F) Y3 m=4
1 r=2 Co m>4

TABLE 1. The simple classical algebraic groups (r denotes the characteristic of F)

taking a root group X < K to its reparameterization function ax: T — F*.
The normalizer Ng (T') of the maximal torus acts on the lattice ALG(T,F*). Indeed, if n € Ng(T)
normalizes T" and «: T'— F* is a homomorphism define o™ to be the homomorphism that makes

T —2= Fx

y

T —> F~

commute, ie a™(s™) = a(s) or a(s) = a(s™™). Of course, T' acts trivially, so that we in fact have an action
of the quotient group T\Ng(T) on the lattice.

Nk (T) also acts on the set X(T') of root groups. Indeed, if n € Nk (T) normalizes T and z: F+ — X is a
parameterization of a root group X then

o(t)" =)™ " =a()” " =a(ax(sT")" = a(ak(s))"

which says that X™ is a root group with reparameterization function ax» = a%. In other words, the map
3(T) — ALG(T,F*) is Nk (T)-equivariant. Again, T" acts trivially, so that in fact T\Ng(T') acts on the
set X(T') of root groups and the map X(7T) — ALG(T,F*) is T\ Nk (T')-equivariant.

The fact that T\Ng (T') acts on ALG(T,F*) means that there is a homomorphism

T\Nk(T) - GRP(ALG(T,F*))°
into the automorphism group of the lattice.

Theorem 4.14. [24, Theorem 1.9.5][26, 27.1] Assume that K is a reductive algebraic group.
(1) The map X(T) — ALG(T,F*) is injective and T\Ng (T)-equivariant
(2) 3(T) is a reduced crystallographic root system in ALG(T,F*) (or R ®z ALG(T,F*))

(3) There is an isomorphism between T\Ngk(T) and W(3(T)) induced by the action T\Ng(T) —
GRP(ALG(T,F*))°

The root groups in K, acted upon by T\ Nk (T'), correspond to roots in a root system ¥ in ALG(T,F*),
acted upon by W(X).

An isogeny is an epimorphism K — H of algebraic groups with finite kernel [24, Definition 1.10.2].
SL, 1 (F) — PSL,,41(F) and SL,, ,, (F) x F* — GL,,,;(F) are examples of isogenies.

Theorem 4.15 (Chevalley classification of semisimple algebraic groups). [24, Theorem 1.10.4] Semisimple
algebraic groups are determined, up to isogeny, by their root systems. More precisely,

(1) If the algebraic groups K and H are connected by an isogeny then K and H have isomorphic root
systems (or their root systems are By, and Cp, and F has characteristic two).

(2) Let 3 be any reduced and crystallographic root system. Then there exist unique semisimple algebraic
groups, K, () (the universal version) and K,(X) (the adjoint version), such that for any algebraic
K group with root system X there are isogenies K, (3) — K — K, (X).

(3) The center of K, (%) is finite (Table 1) and the center K,(X) is trivial.

Some of the classical algebraic groups [3, V.§23] [26, 7.2] in Table 1 are


http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Chevalley.html
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SL,, ., (F): is {B € GL,,,(F) | det(B) = 1}, the subgroup of GL,, ; (F) of matrices of determinant 1.
SO2,+1(F): is {B € SLy, (F) | BPPB = P}, the subgroup of invertible matrices preserving the
nondegenerate symmetric bilinear form

n
((Woy Uy v e ey Uy Uy ey Uy )y (VO V15 e v ey Uy U1y e oo, Up)) = UPV = ugup + Z(uiv_i + u_;v;)
i=1

given by the nondegenerate symmetric matrix

The associated quadratic form is 2u? + 2", u;u_;. (This is under the assumption that F has odd

characteristic r.)
Spy, (F): is {B € GL,,(F) | BT PB = P}, the subgroup of invertible matrices preserving the nonde-
generate skew-symmetric bilinear form

((Ugy ey Uy Uy ey Ugy), (V1o Uy U1, ey Ug)) = uPoy = Z(uiv,i —u_;v;)

given by the nondegenerate skew-symmetric matrix

(0 I,
P-4 6

SO, (F): is {B € SL,,,(F) | BTPB = P}, the subgroup of invertible matrices preserving the nonde-
generate symmetric bilinear form
((U1y ey Uy Uy ey Ugy), (U1 Uy U1, ey U—g)) = uPoy = Z(uw,i + u_v;)
i=1

given by the nondegenerate symmetric matrix

(0 I,
r=(x o)
(This is under the assumption that F has odd characteristic r.)

A subgroup of an algebraic group K is unipotent if there is some embedding of K into some general linear
group GL,, (F) taking the subgroup into U, (F). The algebraic group K is reductive if the trivial subgroup is
the only connected normal unipotent subgroup. The algebraic group K is semisimple if the trivial subgroup
is the only connected normal solvable subgroup. All semisimple algebraic groups are reductive.

A simple algebraic group is a finite central quotient of K,(3) where ¥ is irreducible. (Table 1 contains
a list of the classical simple algebraic groups.) A semisimple algebraic group is a finite central quotient of
a finite product K; x --- x K} of simple algebraic groups. A reductive algebraic group is a finite central
quotient of a finite product Ky X --- x K}, x T of simple algebraic groups and a torus. (For example, GL,,(F)
is reductive and not semisimple.)

S| K2 | Z(Ku(E) | Aut(D)
C 3

Eg | Es(F) 13 : i 5 O,
C 2

E7 E7(F) 12 : i 2 1

Es | Es(F) 1 1

Fy | Fu(F) 1 1

G, | Go(F) 1 1

TABLE 2. The simple exceptional algebraic groups (r denotes the characteristic of F)
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Example 4.16 (Root systems of GL,, ;(F) and SL,, ;(F)). The maximal torus of GL,, ,(F) is the group
T.+1(F) of diagonal matrices and its dual is the lattice ALG(T},+1(F),F*) = Z{e1,...,ent1} generated
by the n + 1 coordinates e;: T,,+1(F) — F*. Generalizing Example 4.9 we learn that the root groups of
GL,,,(F) are the one-parameter subgroups X;; 1 <1i # j < n + 1, with parameterization x;;(t) = I + te;;,
t € F, and that conjugation by an element s = (s1,...,8,+1) of the maximal torus T}, 11 (F) results in the
reparameterization

x5 (t)° = xi;(s97t), s €T (F),

of the root group. The set {X;;} of the n(n + 1) root groups corresponds to the root system

(4.17) A, ={ej—e; |1 <i#j<n+1} CZ{e,...,en41}

The reflection 7, ¢, : Z{e1,...,ent1} — Z{e1,...,enq1} for the root e; —e; is

(4.18) (B)reyer = B — (B)(e) — ¥)(es — ex)

where € : Z{e1,...,ent1} — Z is the usual dual, (ej)ey = d;;, to the basis element e;.

We now turn to the simple algebraic group SL,, ; (F). The n-torus

To(F) — SL, 1 (F): (s1,--,80) > (51,87 '82, -+, 85, 180, 8, 1)

n

is a maximal torus of SL, ,;(F). The inclusion T,(F) — T,41(F) into the maximal torus 7}, (F) for
GL,,,,(F) induces a projection ALG(T,,11(F),F*) - ALG(T},(F),F*) that can be identified to the pro-
jection

(419) ALG(T,1(F),F*) =Z{e1,... . ent1} — Z{er, ... ens1}/Z(e1 + - + eny1) = ALG(T,(F), F*)

onto the quotient lattice by the sublattice generated by the sum e; + - - - + e, 41 of the basis elements.
The root groups for SL,,,;(F) are the same one-parameter groups X;; as for GL,,,;(F) and the effect of
conjugation by an s element of the maximal torus T,,(F) < T, 1 (F)

x5 (t)° = x5 (s%741), s € T,(F),
is also as before, of course. This means that the root system for SL,, ;(F) is the image
(420) An = {ej —€; +Z(61 +...+€n+1) | 1 S ) 7&] S n -+ 1} C Z{el,...,€n+1}/Z(€1 —|—...+€n+1)

under the quotient map (4.19) of the root system A,, C Z{ey, ..., enq1} for GL, ,(F). Note that the linear
forms ey — e} factor through the quotient lattice

\%

Z{e1,...,ent1} #; Z
Z{e,. .., enﬂ}/Z(ei + - ent1)
so that the reflections re, ., and ¢, ¢, 1 z(e;+...4¢,4,) 0 the commutative diagram

Te;—e

Z{el,...,en_H} J Z{el,...,en_H}

| |

Z{el, .. .,€n+1}/Z(€1 4+ ...+ 6,,L+1) I Z{el, SN ,€7L+1}/Z(€1 + ...+ €n+1)

i

both are given by formula (4.18). Lemma 4.5 shows that (4.20) indeed is a root system. Also, since the forms
(-,-) are preserved under the bijection induced by the projection (4.19), the root systems for GL,, ,;(F) and
SL,,, (F) are isomorphic.
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4.3. Steinberg and Frobenius endomorphisms of algebraic groups. These are the endomorphisms of
algebraic groups whose fixed point groups are finite.

Definition 4.21. [24, Definition 1.15.1] A Steinberg endomorphism of the algebraic group K is a surjective
endomorphism o whose fized point group Ck (o) is finite.

Let g be a power of r and ¢,: F — F the Frobenius automorphism ¢, (t) = t9 (with fixed field the
finite Galois field F, with ¢ elements). We may extend ¢, to an a bijective algebraic group endomorphism
¢q: GL,(F) — GL,(F) by (tij)ps = (t{;). (A bijective algebraic group endomorphism may not be an
algebraic group automorphism as the inverse (abstract) group endomorphism may not be algebraic.) The
fixed group of this ¢, is the finite group Cqr, (r)(pq) = GL,(q). If K is a closed subgroup of GL,,(F) and
K is normalized by ¢, then ¢4|K is a Steinberg endomorphism of K because Ck (¢,) is a subgroup of the
finite group Cqr, (r)(¢q) [24, Theorem 2.1.11].

Theorem 4.22. Let K be a simple algebraic group and g = r,7v2,. .. a positive power of r. There is a unique
bijective endomorphism ¢, of K such that (t)x&’ = (t)z4 for all a € &, t € F. The endomorphism ¢, is a
Steinberg endomorphism.

Frobenius endomorphisms are special Steinberg endomorphism.

Definition 4.23. [24, Definition 2.1.9] An endomorphism o of an algebraic group K is called a Frobenius
endomorphism (of level ¢*/™ ) if some power o™ of o equals wq| K for some inclusion of K as a closed subgroup

of some GL,,(F).

All Frobenius endomorphisms are Steinberg endomorphisms. Indeed, the fixed point group Ck (o) is a
subgroup of the finite group Cx(6™) = Ck(pq). For simple algebraic groups, Steinberg endomorphism =
Frobenius endomorphism [24, Theorem 2.1.11].

Example 4.24. The Dynkin diagram e o for SL;(F), with vertices IT = {es — e1,e5 — e}, admits
a symmetry which extends to an automorphism p of the root system {X;; | 1 < i # j < 3} = Ay C
Z{ey,e2,e3}/Z(e1 + ez + e3) given by (e;)p = —es—; [13, Proposition 12.2.2].

1 X9 XlsD

AN

Xo1 1 Xo3

™

C X311 X3 1
This permutation of the root groups X;; even extends to the (graph) automorphism v, of SLs(F) given by
(9)7p = A(g") 1A

where A is the matrix whose only nonzero entries are a string of alternating +1 running (anti-)diagonally
from the upper right to the lower left corner [24, Chp 2.7]. Observe, for instance, that

()]s = A(—t)w21 A = (t)723, t € F,
as ((t)zTy) ™t = (t)xy = (—t)29; and A~! = A (in this dimension 3). Actually,
TP = Tar
for all roots o € Ay [24, Theorem 1.15.2]. On the maximal torus, (s, S2,53)7, = (53,85 51 ")

The composition o = v,p,, for any power ¢ of 7, is a Frobenius endomorphism of SL;(F) (of level q'7?).
Indeed, 0% = 0,2. The fixed point group SL3 (q) = CsL,(r)(0) for o is a subgroup of the fixed point group
SL3+(q2) = CSLS(F)(Uq2) for O'2 = 0g42.

More generally, the symmetry of the Dynkin diagram for A, extends to an automorphism p of order 2
of the root system A, and even to a bijective endomorphism 7, of SL, ,;(F) such that 2/ = x,, for all

roots a € A, [24, Theorem 1.15.2]. The composite ¢ = 7,p,, where ¢ is any power of r, is a Frobenius
endomorphism with 02 = o2. The fixed point group SL,, . (q) = Cs,,,, (F) (o) for o is a subgroup of the

fixed point group SL; . (¢?) = Cst,, ., (F)(0g2) for 02 =o0p.
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Similarly, the root systems D,, and Eg admit a symmetry p of order 2 that extends to a bijective endomor-
phism v, of a simple algebraic group K with these root systems. Then o = 7,¢, is a Frobenius endomorphism
with 02 = 2 for any power g of 7.

Also, the root system D4 admits a symmetry p of order 3 that extends to a bijective endomorphism ~,
of a simple algebraic group K with this root system. Then o = 7,p, is a Frobenius endomorphism with
o3 = g3 for any power g of 7.

These Frobenius endomorphisms exist for all characteristics ». Now follow some special constructions that
only work when the field is chosen properly.

Let X be one of the root systems Ba, Fy, or G, (see Figure 2) and let II be a basis. The Dynkin diagrams
are

B2 F4 G2

aq Q2 aq (&%) Qa3 Qy g Q2

There exists a bijection p of a basis II, taking short roots to long roots, such that the linear automorphism
p: RY — RY preserves angles but not lengths, and p? is 2, 2, or 3. Thus p is not quite an automorphism
of the root system since it does not preserve the form (-,-) or, equivalently, the inner product. Nevertheless,
if K is a simple algebraic group with root system X and the field F has characteristic r equal to 2, 2, or 3,
then there exists an endomorphism v, of K such that

(H)ale = (t)xaqr «islong
“ (t")Tor « is short

and wz is 2, @2, 3. Thus ¢ = 1),¢r« with square o? = wﬁgprza = p,2q+1 is a Frobenius endomorphism of K
for every positive exponent a.

5. FINITE GROUPS OF LIE TYPE

For any group G and any prime r, recall that O™ @ is the subgroup of G generated by the set of r-elements
of G; it is the smallest normal subgroup of G with an r’-quotient group.

Definition 5.1. [24, Definition 2.2.2] A finite group of Lie type (in characteristic r) is a group of the form
OT/C[((U) where K is a simple algebraic group over F, and o a Frobenius endomorphism of K.

In fact, we can always assume that o = 7,p, for some automorphism p of the root system and some
power ¢ of r [24, Theorem 2.2.3]. If K is of universal type then C'z (o) is generated by its r-elements so that
0" Cg(0) = Cg (o) [24, Theorem 2.2.6].

The finite group of Lie type O” Cx(c) is a

Chevalley group: if o = ¢, — examples are L, (q), Spinyy11(q), SP2.(2), Sping,(9), Ea(q), E7(q),

Eg(q), Fi(q), G2(q);
Steinberg group: if o = 7,p, for some nonidentity automorphism p of the root system — examples

are SL,, 1 (q) (n > 2), Sping,, (q), (n > 3) *Da(q), *Es(q);
Suzuki-Ree group: if ¥ = By, Fy, Gy, 7 = 2,2,3, and 0 = 2%+l where 1 is an automorphism with
Y2 = @, () = r2), we get the Suzuki group 2B,(2°"2), and the Ree groups 2F,(29F2), 2G4(39T2)
as the fixed points for the odd powers of . (The fixed points for the even powers ¥?% = .. are
Chevalley groups B2(2%), Fy(2%), G2(3%).)
The Steinberg group SL;,;(q) is also denoted SU,,;1(q) and it is isomorphic to the subgroup of GL,, ;(¢?)

. e 1
of matrices that preserve the Hermitian inner product ((u1,...,uns1), (V1,...,0pt1)) = Z?:Jrl u;vy.

6. THE FROBENIUS CATEGORY ASSOCIATED TO A FINITE GROUP

Let G be a finite group and P a Sylow p-subgroup of G.

Definition 6.1. [37, 1.8] The Frobenius category associated with G (and P) is the category Fo whose objects
are the subgroups of P and whose morphisms are group homomorphisms induced by conjugation in G.
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All morphisms in Fg are injective group homomorphisms. More explicitly, for Q, R < P

Fa(Q, R) = Ca(Q)\Na(Q, R) and F¢(Q) = Ca(Q)\Na(Q)

Note that Fg is equivalent to the category where the objects are all p-subgroups of G and the morphisms are
group homomorphisms induced by conjugation in G. Therefore different choices of P will lead to equivalent
(in fact, isomorphic) categories.

The category Fg is not a faithful representation of G. Fg is trivial when G is a p’-group. Fg = Fp when
G is nilpotent and thus isomorphic to the product of its Sylow p-subgroups [40, 5.2.4]. In fact, Frobenius
normal p-complement theorem (Theorem 7.3) says that Fg = Fp if and only if G is p-nilpotent. When
P < H < G, Fg and Fg have the same objects Q, R < P and Fy(Q,R) C Fg(Q,R). When actually
Fu = Fe we say that H controls fusion in G [23, Definition 15.8]. We have

(6.2) Fu =Fc < VQ < P: Ny(Q) = Na(Q)
because |Fg(Q): Fu(Q)| = |Na(Q): Ng(Q)].

Example 6.3. The three simple groups SL;(F2), Ag, and A7 of order 168 = 2321, 360 = 23-45, 2520 = 23-315
happen to have identical Frobenius categories at p = 2. The p = 2 Frobenius category of any of these three
groups is

C€Xi2
&
zgc%\ /cg”} 0432
Cy

where we only show the nonidentity subgroups. In Corollary 12.2 we shall see more examples of distinct
simple groups with Frobenius categories that are equivalent (as Frobenius categories).

Example 6.4. Suppose that K is a normal p’-subgroup of G. Then G and its factor group G/K have
isomorphic Frobenius cateories. The group homomorphism 7: G — G/K induces a (Frobenius) functor
Fo — Fayk- This functor is an equivalence of categories. Let P and @) be p-subgroups of G. Since the
projections P — P™ and Q — Q™ are isomorphisms the map Fg (P, Q) — Fao=(P™, Q™) is injective. It is also
surjective. Let g be an element of G so that P9 < K(@Q. Since @ is a Sylow p-subgroup of K@ there exists
an element = € K so that P9 < ). Conjugation by gz determines an Fg-morphism from P to @ over the
Far-morphism P™ — Q™ that is conjugation by g.

For instance, consider SL,,  ; (¢) where ¢ is a power of p. The center of SL,, , ;(q) is cyclic of order (n+1, ¢—1)
not divisible by p. Thus SL,,,;(q) and PSL,, | ;(¢) have isomorphic Frobenius categories at p.

Example 6.5 (GLy(F,) for p | ¢). Let ¢ be a positive power of p and GL,(F,) the group of invertible
2 x 2-matrices over F,. The order of this group is | GLy(F,)| = (¢*> — 1)(¢®> — ¢) = q(¢®> — 1)(¢ — 1) and the
p-part of the order is | GLy(Fy)|, = g. Consider the subgroups

s 0 ~ 1 ¢ ~
H:{(OI 82>|81,82€F;}—F;XF;, U:{(O 1)t€Fq}—F;r,

BHU{(SO1 St>|sl,52€F;,tqu}, BeU, UNH=1, B/U=H
2

of diagonal, (upper) unitriangular matrices, and triangular matrices. H normalizes U, ie H < NGLZ(Fq)(U ),

because .
si 0\ /1 t\(s1 0\ [1 sasy't
0 S92 0 1 0 S92 - 0 1

and therefore B is a subgroup of Ngr,, (r,)(U). In fact, B = Ngr,(r,)(U) is the normalizer of U. To see this
we (refer to theory of parabolic subgroups or) compute the effect of conjugation by

g= (Z Z) € GLy(F,), D =ad— b,
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on U:

1\ fa b\ (1 t a b\ _poafd b\ fatte bitd) _ a7 thd
0 1) \ec¢ d 0 1)\c d) —c a c d | —tc2 7

This shows that
Ud=U <= ¢c=0<«<= UNUI#1 < g€ B

U is a Sylow p-subgroup of GL,(F,) because |U| = ¢q. The above discussion shows that B controls fusion
in GLy(Fy), ie Far,®,) = Fp- The objects of Fp are the subgroups of the elementary abelian p-group
U=F} =F} x---xF}. The morphisms in Fp are restrictions of the group automorphisms in the image
of C;o1 =F; — GRP(F})°.

We conclude that the Frobenius category Far,,(r,) associated to GL, (F,) is the category of subgroups of
U with maps induced from B = HU, ie Far,(¥,) = (FB(U)) = ( F/ D Fr ).

We note five general properties of Fg:
(1) Fp is a subcategory of Fg
(2) Fp(P)=Cg(P)NP\P = Cq(P)\PCg(P) is a normal Sylow p-subgroup of F¢(P) = Cq(P)\Ng(P)
because P is Sylow p-subgroup of Ng(P) and Cg(P) and PCg(P) are normal in Ng(P) (Proposi-
tion 3.1, Corollary 3.5).

(3) If for some group homomorphism ¢: R — S and some Fg-morphism y — 39 from S to T, the

- —y . . -1 .
composition R 2,08 X5 T is an Fe-morphism, (z%)9 = z" then ¥ = 2" | so ¢ is an Fg-

morphism too:

©eGRP(R,S) g YeFa(S,T)

\v//

pYeFa(R,T)

(4) For a subgroup @ of P and K < GRP(Q)°, the K-normalizer of @ in P is a p-subgroup of the
K-normalizer of @ in G but N5 (Q) need not be a Sylow p-subgroup of N&(Q), as it may be too
small. When is N5 (Q) a Sylow p-subgroup of NX (Q)? See subsection 6.1.

(5) Some homomorphisms @ — P in Fg may extend to a larger subgroup R > @ of P. How far can you
extend a given homomorphism in F5? See subsection 6.3.

T = peFa(R,S)

6.1. Fully K-normalized subgroups. We shall now discuss in more detail Sylow p-subgroups of centralizers
or normalizers of p-subgroups. Let Q < P.
Lemma 6.6. The following two conditions are equivalent:

(1) Np(Q) is a Sylow p-subgroup of Na(Q)

(2) Cp(Q) is a Sylow p-subgroup of Ca(Q) and Fp(Q) is a Sylow p-subgroup of Fa(Q)

Proof. This is clear as |[Ng(Q): Np(Q)| = |Ca(Q): Cp(Q)||Fe(Q): Fp(Q)| simply because |Ng(Q)|
ICc(Q)||Fa(Q)| and [Np(Q)| = |Cr(Q)I|Fr(Q).
Lemma 6.7. There is g € Ng(Q, P) so that Np(Q9) is a Sylow p-subgroup of Ne(Q9) (and Cp(Q9) is a
Sylow p-subgroup of Ce(QI)).
Proof. Let N be a Sylow p-subgroup of Ng(Q). We can choose N so that N contains (. Also, we can find
g € G so that N9 < P. Now

Ng(Q)g = Ng(Qg) > Np(Qg) = PﬂNg(Qg) = PﬂNg(Q)g >PNN9=NY
But NY is a maximal p-subgroup of Ng(Q)? and therefore Np(Q9) = NY is a Sylow p-subgroup of Ng(Q)9
Nea(Q7).
Lemma 6.8. The following conditions are equivalent:

(1) Cp(Q) is a Sylow p-subgroup of Ca(Q)
(2) [Cp(Q)] = |Cp(Q?)] for all g € Na(Q, P)
(3) Cp(Q)? = Cp(QY) for all g € Na(Q - Cp(Q), P)

o

o



FROBENIUS CATEGORIES OF CHEVALLEY GROUPS 17

Proof (1) = (2) Cp(Q)? is a Sylow p-subgroup of Cc(Q)9 = Ce(Q?) and Cp(QY) is a p-subgroup of
Ca(Q)? = Ca(Q)?.

(2) = () Cp(Q)Y =PNCp(Q) =PNCps(Q?9) = Cprps(Q?) < Cp(Q7) (as in Proposition 3.8), and
from (2), |Cp(Q)?] = |Cp(Q)] > |Cp(Q?)|. Therefore, in fact, Cp(Q)? = Cp(Q9).

(3) = (1) Choose g € Ng(Q, P) so that Cp(Q9) is a Sylow p-subgroup of Ce(Q9) (Lemma 6.7). Now
Cp(Q)Y is a p-subgroup of C(Q)? = Ce(QI) so Cp(Q)I* < Cp(QI) for some h € Ce(Q?) (Theorem 3.4).
Then Q9" = Q9 as h centralizes Q9 and (Q-Cp(Q)" =Q9-Cp(Q)" <QI-Cp(Q9) < P-P = P so that
gh € Ng(Q-Cp(Q), P) and Cp(Q)%" = Cp(QI") = Cp(Q9) where the first equality comes from assumption
(3). Thus Cp(Q7) = Cp(Q)%" is a Sylow p-subgroup of Cg(QY) = Ca(Q9") = Co(Q)9" and Cp(Q) is a
Sylow p-subgroup of Cx(Q). O

Lemma 6.9. The following conditions are equivalent:
(1) Np(Q) is a Sylow p-subgroup of Na(Q)
2) Cp(Q) is a Sylow p-subgroup of C(Q) and Fp(Q) is a Sylow p-subgroup of Fa(Q)
) INp(Q)] = [Np(Q)] for all g € Ng(Q, P)
) Np(Q)9 = Np(Q9) for all g € Na(Np(Q), P)

Proof. (1) <= (2) Lemma 6.6.

1) = (3) Np(Q9) is a p-subgroup and Np(Q)? a Sylow p-subgroup of Ng(Q)9 = Ng(Q9).

3) = (4) Suppose that Np(Q)9 < P. Then Np(Q)Y < Np(Q9) by Proposition 3.8.(2). As also Q9 < P,
we know from (3) that [Np(Q)¢] = |[Np(Q)| > |Np(Q9)|. Therefore, in fact, Np(Q)9 = Np(Q9).

(4) = (1) Choose g € Ng(Q, P) so that Np(Q?) is a Sylow p-subgroup of N¢(Q?9) (Lemma 6.7). Now
Np(Q)9 is a p-subgroup of Ng(Q)Y = Ng(QY) so Np(Q)9" < Np(Q9) < P for some h € Ng(QY). Then
Q% = Q9 as h normalizes Q9 and (Q - Np(Q))" = Q9 - Np(Q)%" < P- P = P. This means that gh €
Ng(Q - Ng(H), P) and therefore Np(Q)9" = Np(Qgh) = Np(Q9) by assumption (4). Thus Np(Q)" is a
Sylow p-subgroup of Ng(QY) = Ng(Q9") = Ng(Q)I" and, equivalently, Np(Q) is a Sylow p-subgroup of

Ng(Q). O

Definition 6.10. @ is fully centralized in F¢g if it satisfies any one of the conditions of Lemma 6.8 and fully
normalized in Fg if it satisfies any one of the conditions of Lemma 6.9.

S~ o~

By Lemma 6.9.(2): @ is fully normalized = @ is fully centralized.

Central subgroups of P are fully centralized in Fg as Cp(Q) = P (Lemma 6.8.(2)) and normal subgroups
of P are fully normalized in Fg as Np(Q) = P (Lemma 6.9.(3)).

Observe that the preceding results about centralizers and normalizer have a great deal in common. In
fact, they both are extreme special cases of a general statement using K-normalizers. In this framework,
Lemma 6.6-6.9 are special cases (with K = {1} the trivial group or K = GRP(Q)° the full automorphism
group) of the following three statements.

Let @ < P, K < GRP(Q)°, and let N5(Q) and NX(Q) be the K-normalizers of @ in P and G
(Definition 3.7).

Lemma 6.11. The following conditions are equivalent:
(1) NE(Q) is a Sylow p-subgroup of N (Q)
(2) Cp(Q) is a Sylow p-subgroup of Ca(Q) and K N Fp(Q) is a Sylow p-subgroup of K N Fe(Q)

Proof. By definition, there is an exact sequence 1 — Cg(Q) — NE(Q) — KNFe(Q) — 1so that |[Ng(Q)| =
|Ca(Q)||K N Fa(Q)|. Similarly, |[INp(Q)| = |Cp(Q)||K NFp(Q)|. These two identities prove the lemma. [

Lemma 6.12. There is g € Ng(Q, P) so that NK*(Q9) is a Sylow p-subgroup of Ngg (Q9).

Proof. We may assume that @ is already fully normalized in F¢ (Lemma 6.7) so that Cp(Q) is a Sylow p-
subgroup of Cg(Q) and Fp(Q) is a Sylow p-subgroup of F¢(Q) (Lemma 6.6). Choose g € Ng(Q, Q) = Ng(Q)
so that (Corollary 3.5.(1)) (K NFa(Q))I NFp(Q) = KINFe(QI) is a Sylow p-subgroup of (K NFg(Q))?I =
K90 Fe(Q9) (and Q7 = Q). Then N’ (Q9) is a Sylow p-subgroup of N5’ (Q9) (Lemma 6.11). O

Lemma 6.13. The following conditions are equivalent:

(1) NE(Q) is a Sylow p-subgroup of NEK(Q)
(2) Cp(Q) is a Sylow p-subgroup of Ca(Q) and K N Fp(Q) is a Sylow p-subgroup of K N Fa(Q)
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(3) INK(Q)| > INE*(Q9)] for all g € Na(Q, P)
(4) NE(Q)? = NE°(Q9) for all g € Na(Q - NK(Q), P)
Proof. (1 ( ) Lemma 6.11.

) =
(1) = (3) NE?(Q9) is a p-subgroup and N5 (Q)? a Sylow p-subgroup of N& (Q)9 = N&*(Q9).
3) = 1) Proceed exactly as in the proof of Lemma 6.9.
(4) = (1) Proceed exactly as in the proof of Lemma 6.9 (replacing Lemma 6.7 by Lemma 6.12). O

Definition 6.14. Q is fully K-normalized in Fq if it satisfies any one of the conditions of Lemma 6.13.
By Lemma 6.13.(2):
Q is fully K-normalized in F¢ = @ is fully centralized in Fg <= Q@ is fully Fp(G)-normalized in Fg
Lemma 6.15. If Q is fully K-normalized in Fg and H < K then Q is also fully H-normalized in Fg.

Proof. As N¥(Q)<NE (Q), and NE (Q) is a Sylow p-subgroup of N& (Q), the intersection NX (Q)NNH (Q) =
NH(Q) is a Sylow p-subgroup of NH(Q) (Corollary 3.5). O

Remark 6.16 (K-normalizer Frobenius categories). Assume that @ is fully K-normalized in F¢ so that
NE(Q) is a Sylow p-subgroup of N&(Q). The Frobenius category ng(Q) is a subcategory of Fg. The

objects of ng(Q) are subgroups R, T, of N5 (Q) and the morphisms sets are
Fnx ) (R T) = Ca(R\(NE (Q) N Ne (R, T))

An element g € G belongs to N&(Q) N Ng(R,T) if and only if conjugation with g defines a homomorphism
Q-R L Q- T that restricts to a morphism R 2 T and an isomorphism Q % @ in K. Observe that the
following two conditions are equivalent for N < P: N

(1) N is K-normal in P and N} (N) controls fusion in G

(2) N is fully K-normalized in F¢ and Fys (n) = Fa-
If we assume (1), the objects of Fyx () = Fg are all subgroups, R, T', of NE(N) = P and the morphisms are
Fne ) (B, T) = Fg(R,T) since NE(N) controls fusion in G. Conversely, if we assume (2), then NX (N) is
a Sylow p-subgroup of NX (). But P is also a subgroup of N5 (N) because P is an object of Fg = FNE(N)-
Thus NK(N) < P < NE(N) so that N5 (N) = P by maximality. The equation Fnx(ny = Fa means that
NE(N) controls fusion in G.

This shows that the Frobenius categories of the local subgroups of G are subcategories of the Frobenius
category of G.

6.2. Selfcentralizing subgroups. In this section we introduce the p-selfcentralizing p-subgroups of G.

Definition 6.17. (1) A subgroup H of G is selfcentralizing if the center of H equals the centralizer of
(2) A p-subgroup @ of G is p-selfcentralizing if the center of Q is a Sylow p-subgroup of the centralizer
of Q: Z(Q) = Co(Q) € Syl,(Ca(Q))
Lemma 6.18. The following conditions are equivalent:

(1) Z(Q) is a Sylow p-subgroup of Cx(Q)
(2) Q is a Sylow p-subgroup of QCx(Q)
(3) Cp(Q9) < QY for all g € Na(Q, P)
(4) Cp(Q7) = Z(Q?) for all g € Na(Q, P)
(5) Ca(Q) = Z(Q) x Oy (Ca(Q))

Proof. (1) <= (2) Q is normal in QC¢(Q) and the isomorphism QCq(Q)/Q = Ca(Q)/(Q N Ce(Q)) =
Ce(Q)/Z(Q) shows that @ has index prime to p in C¢(Q) if and only if Z(Q) has index prime to p in Cg(Q).
(1) = (3) Under assumption (1), Z(Q) is the unique Sylow p-subgroup of Cg(Q) because it is evidently
central. Cp(Q?) is a p-subgroup of Cq(Q?) = Ca(Q)?, so it is contained in the unique Sylow p-subgroup
Z(Q)?, which of course is contained in Q7.

3
4
)



FROBENIUS CATEGORIES OF CHEVALLEY GROUPS 19

(3) = (1) Choose g € Ng(Q, P) so that Q7 is fully centralized (Definition 6.10), ie Cp(Q?) is a Sylow
p-subgroup of Cg(Q9) = C(Q)? . By assumption (3) we also have that Cp(Q7) is contained in Q9 so that
Cp(R9)=Cp(RQI)NQI =Cqu(QY) =Co(Q)! = Z(Q)?. We have now shown (1).

(3) < (4) This is clear.

(5) <= (1) If Z(Q) is a Sylow p-subgroup of Cg(Q) then it is a central Sylow p-subgroup and there is a
commutative diagram with exact row

1 Z2(Q) Ce(Q) —Cc(Q)/2(Q) —=1
Op (Ce(Q))
which splits by the Schur—Zassenhaus theorem [40, 9.1.2]. Conversely, if there is a splitting of C(Q) as in
(5) then clearly Z(Q) is a Sylow p-subgroup. O

Definition 6.19. A subgroup Q < P is Fg-selfcentralizing if it satisfies any of the conditions of Lemma 6.18.

Proposition 6.20. Assume that Q < P is Fg-selfcentralizing.
(1) Q is fully centralized in Fg.
(2) If Ng(Q, R) # 0, then R < P is Fg-selfcentralizing.
Proof. (1) Note that the order of Cp(Q?) is constant for all g € Ng(Q, P) and apply Lemma 6.8.
(2) For g € Ng(Q,R) and h € Ng(R, P) we have Q9 < R and Q9" < R" so that Cp(R") < Cp(Q9") <
Q9" < Rh. a
Some easy observations:

o P itself is Fg-selfcentralizing and the trivial subgroup is not Fg-selfcentralizing
e Proposition 6.20.(2) says that supergroups of Fg-selfcentralizing subgroups are Fg-selfcentralizing.
Let @ < P. We say that @ is selfcentralizing in P if Q) contains its centralizer in P, @ > Cp(Q). Then
Z(Q)=Co(Q)=QNCp(Q) =Cp(Q) (cf Lemma 6.18.(4)) but still Q may not be Fg-selfcentralizing.

Example 6.21. Let p = 2 and let G = GL4(F3) (of order 48). Let P be a Sylow 2-subgroup of G and B
its derived group. Then B is cyclic of order 4 and B has two other G-conjugates that we call A. The two
groups A happen to lie in P. The centralizer in P of B is a Singer cycle (a cyclic group of order 8) and
the centralizer of A is A itself. Thus A is selfcentralizing in P but not Fg-selfcentralizing. (I heard of this
example from Bernd Stellmacher and Andy Chermak.)

In Example 6.21, the group action Fg(A) X Fg(A4,S) x Fa(S) — Fa(A,S), of Fg(A) x Fa(S) on the set
of Fg-morphisms from A to S, is not transitive. (Any automorphism of S must preserve the set of subgroups
that are selfcentralizing in P.)

6.3. The extension property. We shall now discuss the problem of extending homomorphisms in F¢ [37,
Chapter 2][9, Appendix A].

Lemma 6.22. Suppose that Q, R and S are subgroups of G and that @ is contained in both R and S. Then
Ca(Q)- Nz"@(Q) = Ca(Q) - NZ™ (@)

Proof. N7*'9(Q)/Cr(Q) = N O™759(Q) /CR(Q) = Fr(Q) N Fs(Q) = NI ?(Q)/Cs(Q). O

Lemma 6.23 (Extension Lemma). Let Q < P be subgroup of the Sylow p-subgroup P and let g € Ng(Q, P).
Assume that Q9 is fully centralized in Fg (and hence fully Fp(Q9)-normalized). Then the morphism Q < P

gyt
in Fa extends to a morphism lep(@' ) (Q) — P in Fg.
Proof. |9, Proposition 1.3] The element g defines an isomorphism @ — @9 and these isomorphisms
g g
Q Q7 Q Q7
/ {» (
) ) ) o)

]:P(Qg)971 Fp(QY) Fr(Q) Fpa(QY)
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between groups of automorphisms of @) and Q9.

gyt 9
Put Ng = Cc;(Q)-ng(Q‘) (Q) and Ngs = C(;(Q)-ng(Q) (Q9). The image of N¢g under conjugation
by g is

N = N5 9@ - Ca(@0) = Np9(@Q7) - Ca(Q) = NPTV (Q7) - (@) = Nos

where we use Lemma 6.22. NIfP(Q)g(Qg) is a p-subgroup of Ng» and since the index [Ngs : N;:P(Q)y(Qg)] =
[Ca(Q9) : Cp(QY)] is prime to p, as Cp(Q7) is a Sylow p-subgroup of C(Q7), it is in fact a Sylow p-subgroup.
Note also that C(QY) is a normal subgroup of Ngs and its index

[Nags : Ca(@Q)| = INFT D" (Q9) : NIPD"(Q1) nCa(@) = INFT D" (Q%) : Cr(Q)]

is a p-power.
: ; . . Fp(Q9)Y
Conjugation by g takes the p-subgroup Np
Lemma 3.6, there is some h € C(Q?) such that

(Q) of Ng into a p-subgroup of N = Nga, so by

P gy9~* gh b 9
(NZP@ (@) < NP (o)< P

gyg~ !
Thus the group element gh defines an Fg-morphism N;P @) (Q) — P.

-1
The group N;P(Qg)g (Q) contains @) because ]—'p(Q-q)if1 contains the group .7-'@(629)«‘171 = Fo(Q) of
inner automorphisms of (). The morphism gh restricted to ) is the composite @Q ER QI LN Q9 < P.

However, since h centralizes Q9, Q9 = Q9" and the morphism Q9 LN Q" = QY is the identity. O

Here is a perhaps more accessible version of Lemma 6.23.

Corollary 6.24. Assume that Q9 is fully centralized in Fg for some g € Na(Q, P). If K < GRP(Q)° and
K9 < Fp(QY), then the Fg-morphism Q < P extends to a Fg-morphism Q - NEK(Q) — P.
Proof. Tt is immediate from Lemma 6.23 that we may extend Q@ % P to NE(Q) because NE(Q) <

NZF@D" Q) as K9 < Fp(Q9) in GRP(Q9)° or, equivalently, K < Fp(Q9)? ' in GRP(Q)°.
Of course, Fo(Q)? = Fgs(Q9) < Fp(Q9) so that, after replacing K by K - Fo(Q) if necessary, we can
assume that Fo(Q) < K. This assures that Q < NEK(Q). O

Corollary 6.25. Let Q < P, K < GRP(Q)°, and g € Ng(Q, P). Assume that Q9 is fully K9-normalized
X

in Fa. Then, for some x € K N Fg(Q), the morphism @ = @ 2 P in Fg extends to a morphism

Proof. By assumption, Q9 is fully centralized in F¢ and K9NFp(QY) is a Sylow p-subgroup of K9NFa(QY).
Now

K9N Fp(Q?) is a Sylow p-subgroup of K9 N Fu(Q?) = K9 NFa(Q)?
= KnN J”-'ID(Qg)f1 is a Sylow p-subgroup of K N F(Q)

— 3y e KNFe(Q): (KNFp(Q)X < KN Fp(QI)
— 3y € KN Fa(Q): (KN Fp(Q)X < Fo(QY)

& Q X% Q extends to Q - NIIDm}-P(Q)(Q) — P
where N;,mfp(Q)(Q) = NK(Q) as a general fact. O

Here is a perhaps more accessible version of Corollary 6.25 (preceded by a lemma needed in the proof).

Lemma 6.26. Suppose that Q is fully centralized in F¢.

(1) If @ < R < Np(Q), then Q is fully Fr(Q)-normalized in Fe.
(2) If Fo(Q) < K < Fp(Q), then Q is fully K-normalized in Fq.
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Proof. (1) We check condition Lemma 6.13.(4). As all elements of R normalize @, R < Nr(Q), and thus R =

NE(Q). Now NZ*P(Q) = Np(Q)NNr(Q)-Cp(Q) = Np(Q)NR-Cp(Q) = R-Cp(Q) as R-Cp(Q) < Np(Q).
Let g € G be any group element so that NIfR(Q)(Q)g = (R-Cp(Q))? < P. Here, Cp(Q)? = Cp(QY) because
(Q-Cp(Q))? < P and Q is assumed fully centralized in Fi (Lemma 6.8.(3)). Also R9 < P and this implies

that @ < R < PNNp(Q)? = PNNps(Q9) < Np(Q9). We have just seen that Nng(Q (Q9) = R-Cp(Q9)
in this situation. We conclude that

N DQ) = (R-Cp(Q)) = R - Cp(@Q7) = Np™@7(Q%) = N (@)
which shows that @ is fully Fg(Q)-normalized in Fg.
(2) Since Q < NEK(Q) < Np(Q), Q is fully Fni (@) (Q)-normalized in F¢ by (1). We already observed that
Frs@(@) =K. -

_9 P Fr(QY)

Q

l A "’
- Q7

8

Q < R<Np(Q) Q <
W) )

Fr(Q) Fr(Q)?

Corollary 6.27. [37, 2.10.1] If Q9 is fully centralized in Fg for some g € Ne(Q,P), Q@ < R < Np(Q), and
Fr(Q)9 < Fp(Q9), then the Fg-morphism Q 2 P extends to a Fg-morphism R — P.

Proof. Observe that

Q<R = Q<R = Fq@(Q) < Fro(QY) = Fr(Q)’
and that Fr(Q)? < Fp(Q9) by assumption. Hence Q9 is fully Fr(Q)9-normalized in F¢ by Lemma 6.26.(2).
According to Corollary 6.25 there exists a morphism x € Fgr(Q) such that Q X9, Q extends to an Fg-
morphism @ - NfR(Q)(Q) 2 p. Here, N;R(Q)(Q) = R - Cp(Q) by the proof of Lemma 6.26.(1). In

particular, Q X% Q extends to R Y, P. The Fe-homomorphism x € Fr(Q) extends to an inner morphism
X € Fr(R). Composing with the inverse y~! € Fr(R) as in the commutative diagram

ff/

R*>R

-1
we see that R X% P extends QL P. O

7. WHAT DOES Fg KNOW ABOUT G?

A general question is how much Fg knows about G. We have already seen that Fg = Fg/n where N
is any normal p’-subgroup of G (Example 6.4). Also, the Frobenius p-complement Theorem 7.3 says that
Fs = Fg when the Sylow p-subgroup S of G has a normal complement. On the other hand, Proposition 10.8
shows that Fg is strong enough to guarantee that G is simple up to a normal p’-subgroup. We shall here see
two other examples of information about the group that is retained by the Frobenius category.

7.1. Group cohomology. Let Q < P and g € Ng(Q, P). The morphism Q < P factors as Q & Q9 — P.
Since conjugation by g induces the identity map on H*(G) there is a commutative diagram

g*=id

H*(G) =—— H*(G) H*(G) =——— H*(G)

] L o

H*(P) ——— H"(QY) ————— H"(Q) =——— H"(P)

P P
resgg g resg
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where the vertical arrows are restriction homomorphisms. This means that the image of H*(G) in H*(P) is
contained in the subring

H*(P)*¢ ={z € H'(P)|VQ < P Y1, € Fa(Q, P): ¢i(z) = ¢3(2)}

of Fg-stable elements. An old theorem of Cartan and Eilenberg tells us that even more is true. (Here, H*(K)
is short for H*(K;F)).)

Theorem 7.1. [12, Theorem 10.1] [1, Theorem 11.6.6] The restriction map H*(G) — H*(P)7¢ is an iso-
morphism.

7.2. Frobenius normal p-complement theorem. We consider here finite groups that are p-groups up to
normal p’-subgroups.

Definition 7.2. A group G is p-nilpotent if a Sylow p-subgroup of G is a retract of G.

In other words, G is said to be p-nilpotent [40, p 270] (or to have a normal p-complement) if G = O,/ (G)P
where P is a Sylow p-subgroup of G.
The following theorem is the motivation to name F¢ after Frobenius.

Theorem 7.3. [24, Proposition 16.10] [21] Let G be a finite group and P a Sylow p-subgroup of G. The
following conditions are equivalent:
(1) G is p-nilpotent
2) Ng(Q) is p-nilpotent for every nontrivial Q < P
) Fa(Q) is a p-group for every nontrivial Q < P
4) Fg = .7:13 (P controls fusion in G)
)

(
i
(5) H*(G;F,) — H*(P;F,) is an isomorphism

Proof. (1) <= (2) <= (3): This is Frobenius’ original theorem [22, Theorem 7.4.4] [40, 10.3.2].
(4) = (3): Clear.
(1) = (4): If G = N x P then there is a retraction (an idempotent) o: G — P of G onto P given by

(kh)? = h. But then any two elements of P that are conjugate in G are already conjugate in P: If h € P,
g € G and h9 € P then h9 = (h9)° = h9°.
(1) < (5): [3§] O

This means that the Frobenius category of a p-nilpotent group depends only on its Sylow p-subgroup. It
is now easy to find many examples of distinct groups with identical Frobenius categories.

Example 7.4. The short exact sequence 1 — C3 — Dyy — Dg — 1, involving the dihedral groups of order
24 and 8, shows that Dyy = C3 x Dg is 2-nilpotent and therefore Fp,, = Fp,.

The alternating group G = A4 of order 12 has Sylow 2-subgroup Cs x Cy = ((12)(34), (13)(24)) generated
by the double transpositions. G is not 2-nilpotent and the Frobenius categories Fp and Fg are not isomorphic.

For odd primes it is possible to strengthen Frobenius’s theorem. The Thompson subgroup J(P) of a finite
p-group P is the subgroup generated by the set of abelian subgroups of maximal order.

Theorem 7.5 (Glauberman—Thompson normal p-complement theorem). [24, Theorem 16.12]. Let G be a
finite group and P a Sylow p-subgroup of G and assume that p is an odd prime. Then G has a normal
p-complement if and only if Na(Z(J(P))) has a normal p-complement.

See also Glauberman’s fusion theorem 9.5 which in particular applies when P is abelian.

8. ABSTRACT FROBENIUS CATEGORIES
Let P be a finite p-group.

Definition 8.1. [37, Chapter 2] A P-category is a category F where

o the objects of F are the subgroups of P
o the morphisms of F are injective group homomorphisms
o Fp is a subcategory of F

A P-category F that satisfies the


http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frobenius.html
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Divisibility axiom: If R,S,T < P and R Y. 8 T are group homomorphisms then
¢ € F(S,T), vy € F(R,T) = ¢ € F(R,S)
18 called a divisible P-category.

If F is a divisible P-category and ¢ € F(Q, P) a morphism then ¢ € F(Q, Q%) and ¢~ ! € F(Q%,Q).

Let F be a divisible P-category and @ < P, K < GRP(Q)°.

Definition 8.2. Q is fully K-normalized in F if NK(Q)? = NE”(Q¥) for all o € F(Q - NK(Q), P).

In particular, @ is fully centralized in F if Cp(Q)¥ = Cp(Q¥) for all ¢ € F(Q-Cp(Q), P), and Q is fully
normalized in F if Np(Q)¥ = Np(Q¥) for all ¢ € F(Np(Q), P). Obviously, P itself is fully normalized.
Definition 8.3. [37, Chapter 2] A Frobenius P-category is a divisible P-category F satisfying these two
additional azioms:

Sylow axiom: The group Fp(P) of inner automorphisms of P is a Sylow p-subgroup of the group
F(P) of F-automorphisms of P

Extension axiom I: For any subgroup @ of P, any K < GRP(Q)°, and any F-morphism Q P
such that Q¥ is fully K¥-normalized in F, there exists x € KNF(Q) such that Q X QL& P extends
to an F-morphism Q - N5 (Q) — P.

Extension axiom I, corresponding to Corollary 6.25, can be replaced by this variant [37, Proposition 2.11]
corresponding to Corollary 6.27:

Extension axiom II: For any subgroup Q of P and any F-morphism Q > P such that Q¥ is fully
centralized and fully normalized in F and any subgroup R such that Q@ < R < Np(Q) and Fr(Q)? <

Fp(Q¥) there exists an F-morphism R — P extending Q 2P
Let F be a Frobenius P-category and @ < P, K < GRP(Q)°.
Proposition 8.4. [37, Proposition 2.7] There exists a morphism ¢ € F(Q,P) such that Q¥ is fully K?-
normalized in F.
Proposition 8.5. [37, Proposition 2.11] The following conditions are equivalent:
(1) Q is fully centralized in F and K N Fp(Q) is a Sylow p-subgroup of K N F(Q)
(2) INE(Q)| > INE"(Q?)] for all ¢ € F(Q, P)
(3) Q is fully K-normalized in F
By Lemma 8.5.(1):
Q is fully K-normalized in F = @ is fully centralized in F <= @ is fully Fp(Q)-normalized in F

If Q is K-normal in P then @ is fully K-normalized because NX (Q) = P of course implies that the order
INK(Q)| is maximal among the subgroups F-isomorphic to Q.

Definition 8.6. [37, 2.14] Assume that Q is fully K-normalized in F. The K-normalizer of Q in F is the
divisible NE (Q)-category NE(Q) where the morphism sets are

©
E—

NE@Q(RT)={pe F(RT)| W e FIQ-RQ-T), xe KNFQ): Q-R+Q-T }

T
o

O~ ‘Qe)bd

—_—
X

for all R, T < NK(Q).

Proposition 8.7. [37, Proposition 2.16] If Q is fully K-normalized in F, then NE(Q) is a Frobenius
NE(Q)-category.

Example 8.8. If G is a finite group with Sylow p-subgroup P, then the category Fg (Definition 6.1) is a
Frobenius P-category. If @ < P is fully K-normalized for some subgroup K < GRP(Q)° then N }(G Q) =
FNE@Q) (Remark 6.16). The Sylow p-subgroup P is always fully K-normalized in F¢g for any group K
of automorphisms of P. If P is K-normal in G, ie N5 (P) = G, then N£ (P) = Fyrwpy = Fa and
Fo = (KNFg(P)) (see below).
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In particular, if @ is fully normalized or fully centralized in F, then the morphisms sets in the categories
Nz (Q) and Cr(Q) are

@

<

T
n Y
Nr@(RT) ={pe FRT)| @-RT g 1}

O
O

F(Q)

<3

Cr(Q)R,T) = {‘PEFG(RaTH Q~RM>Q~T} R,T < Cp(Q)

O
O

We shall write F = (F(Q1),...,F(Qr)) if there are subgroups Q1,...,Qx < P such that any morphism
R; — R; in F is a composition

Pt—1

Q12> Q2 2> Qy Qi1 —> Qi1

AN NN

Ry Ry

of restrictions of automorphisms @1 € F(Q1),...,0t—1 € F(Qi—1).
The group P is always fully K-normalized in F for any K < GRP(P)° so that the category NX(P) is
defined. It is immediate from Definition 8.6 that

(8.9) NE(P)=F < F=(KnF(P))

so that, in particular, Nx(P) = F if and only if F = (F(P)) and Cx(P) = F if and only if F is the category
of posets of P.

Theorem 8.10 (Burnside fusion theorem). [23, Lemma 16.2] F = Nz(P) when P is abelian.

Proof. Let @ < P be any subgroup of P. Since P is abelian, @) is fully centralized in F. The claim of
the theorem is that every morphism ¢ € F(Q, P) extends to an F-morphism defined on P. This follows
immediately from Extension axiom I. O

The concept of selfcentralizing subgroups (Definition 6.19) translates immediately to this abstract setting.
Definition 8.11. [37, 4.8.1] Q is F-selfcentralizing if Cp(Q¥) < Q¥ for all p € F(Q, P)

If Q is F-selfcentralizing and and F(Q, R) # 0 then also R is F-selfcentralizing because Cp(R¥) <
Cp(Q¥?) < Q¥¥ < R for any ¥ € F(Q, R) and any ¢ € F(R, P). (Anything receiving a morphism from a
selfcentralizing subgroup is selfcentralizing [37, Proposition 4.5].)

If @ is fully centralized in F then QCp(Q) is F-selfcentralizing because

Cr((QCP(Q))7) = Cr(QPCP(Q)7) = Cr(QPC(Q?)) < Cp(Q?) "2 Cr(Q)* < (QCP(Q)
for any ¢ € F(QCp(Q), P). This observation implies that

Q is F-selfcentralizing <= @ is fully centralized in F and Z(Q) = Cp(Q)
<= ( is fully centralized in F and selfcentralizing in P

for any @ < P (as in Proposition 6.20). To see this, assume first that @ is F-selfcentralizing. Then
Cp(Q¥) =Q*NCp(Q?) =Coe(Q?) = Z(Q?) = Z(Q)¥ is independent of ¢ € F(Q, P), and therefore @ is
fully centralized in F. Conversely, if @ is fully centralized in F and Z(Q) = Cp(Q) then QCp(Q) = Q is
F-selfcentralizing.

Proposition 8.12. [9, Proposition A8] [37, Proposition 4.6] Suppose that R < Q < P where R is F-
selfcentralizing. If ¢ € F(Q, P) is the identity on R, then x¥ = z" for allx € Q for someu € Cp(R) = Z(R).
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Proof. Assume first that R is normal in . Then Q¥ = @Q. To see this, note that for all » € R, ¢ € Q,
r@¢ = (p#)(@7 = (r0)% = 9 means that (¢)pq~! € Cp(R) < R so that ()¢ € R? < Q. Thus ¢ € F(Q).
Let K = {a € GRP(Q)° | a|R = id|R} be the group of automorphisms of @ extending the identity on R.
We can, by replacing @ by an F-isomorphic subgroup, if necessary, assume that @ is fully K-normalized
in F (Proposition 8.4). Because Cg(R) = QN Cp(R) < QN R = R, it is easily seen that any o € K will
induce the identity on Q/R. (As above, ¢* = g mod R for all ¢ € @).) This implies that K is a p-group [22,
Corollary 5.3.3, p 179]. Now K N Fp(Q) is a Sylow p-subgroup of K N F(Q) (Proposition 8.5). As the latter
is a p-group, this, in fact, means that K N Fp(Q) = K N F(Q). Because ¢ lies in Fp(Q), ¥ = a* for some
u € Np(R). Because 2" = z¥ = x when z € R, this u € Cp(R).

In general, R is not normal but it is subnormal in @): Taking successive normalizers we obtain a normal
chain R = Ry < Ry < --- < Ry = @ because normalizers grow in a nilpotent group [40, 5.2.4] [27, 111.2.3].
Here, Cp(R) = Cp(Rp) > Cp(Ry1) > -+- > Cp(Ri—1). By applying the above result finitely many times, we
get the proposition. O

Definition 8.13 (Exterior quotient of F). F is the left exterior quotient of F by the left interior structure
Z(Q) = Fo(Q) for all Q@ < P.

Because go ¢ = pog¢? for any ¢ € Q, ¢ € F(Q, R), it is clear that Q — F(Q) is a left interior structure
in . The morphisms and automorphisms in the exterior quotient F (Definition 2.2)

F(Q.R)=F(Q.R)/Fr(R), F(Q)=F(Q)/FoQ) =F(Q)°

are conjugacy classes of F-morphisms and F-automorphisms (outer F-automorphisms). F(P) = F(P)/Fp(P)
is a p’-group because Fp(P) is a Sylow p-subgroup of F(P) by the Sylow axiom (Definition 8.3).

8.1. Alperin fusion. A subgroup M of a group X is strongly p-embedded if 1 < M < X, |M|, > 0, and
|M N M?*|, =0 for all z € X — M [24, Definition 17.1, Lemma 17.11].

Lemma 8.14. A group X with a strongly p-embedded subgroup has no nontrivial normal p-subgroups:
Op(X) =1.

Proof. Suppose that N is a normal p-subgroup in a group X containing a strongly p-embedded subgroup M.
Let S be a Sylow p-subgroup of X. Then M > Ng(S) > S > N [24, Lemma 17.11] and M* > N* = N for
all z € X. If we choose x & M, we see that M N M* > N and thus N must be trivial. O

Definition 8.15. [37, Theorem 5.11] Q < P is F-essential if Q is F-selfcentralizing and .7-'(Q) contains a
strongly p-embedded subgroup.

By Lemma 8.14 and some easy manipulations with the functor O,
Q is F-essential = O0,F(Q) =1 < 0,F(Q) = Fo(Q)
P itself is not F-essential as the p’-group F (P) can not contain a strongly p-embedded subgroup.
Theorem 8.16 (Alperin Fusion Theorem). [37, 5.11][30, 5.2] F = (F(Q) | Q is F-essential or Q = P)

For instance, if P is abelian, there are no F-essential subgroups because the only F-selfcentralizing sub-
group is P itself. (If @ < P is F-selfcentralizing then P = Cp(Q) < @ by Lemma 6.18.(3).) Therefore
F = (F(P)) = Fpurcp) by Alperin’s Fusion Theorem (reproving Theorem 8.10) so that P and F(P)
completely determine F.

Example 8.17. Let G = GLy(F,) where ¢ is a power of the prime r. The order is |G| = (¢*> — 1)(¢®> — q) =
q(q —1)%(q + 1). We shall determine F¢ at the (odd) primes p where it is nontrivial.

q = 0 mod p: The subgroup U = F;r of upper unitriangular matrices from Example 6.5 is a Sylow p-subgroup
of G. Its normalizer is Ng(U) = B. Since U is abelian, Fg = (F¢(U)), where Fg(U) = F (Theorem 8.10).
Note that the computations of Example 6.5 show that B is a strongly p-embedded subgroup of GL,(F,).

¢ = 1 mod p, p > 2: The maximal torus T>(F,) = F x F contains a Sylow p-subgroup P = O,T>(F,) for
G. As P is abelian, Fg = (Fg(P)). Elementary matrix calculations show that Ng(P) = (T5(Fy), X2) (the
monomial matrices) where ¥y are the permutation matrices, and so Fg(P) = Y. Observe that F¢g only
depends on the p-adic valuation v,(¢ — 1) of ¢ — 1 in this case.
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g = —1mod p, p > 2: We follow the description given in [24, Chp 4.10] to determine a Sylow p-subgroup of
G = GLy(q). Let r be the characteristic of the field F, and view G as Cg(0) where K = GL,(F,) and
0 = 4 is the Frobenius map.

Let n be the permutation matrix for the transposition (1,2). Choose a matrix g € K, such that gg=7 = n.
(Use elementary matrix calculations or Lang’s Theorem [24, Theorem 2.1.1] for this.) The commutative
diagram

g

Ng(T) —= Ng(T)*

Ng(T) —5— Ng(T)

expresses that the action on~! on Ng(T) corresponds to the action of o on Ng(T). This follows from the
computation

o

(xg)cr = 299 = ‘,Eanflg — (‘,Eanfl)g

where z is any element of N (T). Since (t1,t2)°" = (t,19), elementary calculations give that

Cxpm(en ™ =((5 ) (7 o))

where u is a primitive element of Fg 2. This group contains a normal cyclic subgroup of order ¢ + 1,

v 0 _
Cq+1:<(0 ’Uq> >’ v=ul 17

and, by the above commutative diagram, Cy_()(on™")¢ is a subgroup of Cy_(7)(0) < Cg(0) = G. We
have now shown that P9, with P = O,Cy41, is a Sylow p-subgroup in G. The normalizer of P9 in G is

Ng(P?) = Ney (o) (P?) = Oy (po)(0) = Oy (pya (0) = Cv (799 (0) = Ono 7y (on™1)?
where we used that Ng (P) = N (T). This shows that F(PY) has order 2. Again, Alperin’s Fusion Theorem

says that Fg = (Fq(P9)).
At p =2, 21g, it is convenient to distinguish between the cases ¢ = +1 mod 4 because

14+ 2v5(g—1) ¢=+1mod4

9 _J14+w(g—1) g=+1mod4
va(qg” —1)
24+ w(g+1) ¢g=-1mod4

© |14w(g+1) g=-1mod4’ v2(| GLy(q)]) = {

We shall not go further into this here.

8.2. Frobenius functors. We introduce the category FRB of Frobenius categories. Let F be a P-category,
F' a P'-category, and P 5 P’ a group homomorphism.

Definition 8.18. [37, 12.1] The homomorphism « is (F,F')-functorial if F(Q, R) oo C avo F'(Q%, R*), for
every @Q,R < P.

Equivalently, « is (F, F')-functorial if for every ¢ € F(Q, R), there exists p* € F'(Q%, R*) such that
Q—>Q"

s

R—> R*

commutes. In particular, (ker(a) N Q)% < ker(a) N R for all morphisms ¢ € F(Q, R) in F. If p® exists, it
is unique. The functor f,: (F,Fp) — (F',Fp'), ¢ € F(Q,R) — ¢~ € F(Q*, R¥), induced by an (F,F’)-
functorial a.: P — P’ is called a Frobenius functor [37, 12.1.2].

Let FRB be the category of Frobenius categories F and F’ with (F, F’)-functorial epimorphisms a:: P —»
P’. The automorphism group (equal to the endomorphism monoid) of a Frobenius P-category F

FRB(F)° = {a € GRP(P)° | o is (F, F)-functorial} = FRB(F)
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consists of the (F, F)-functorial automorphisms of P. The automorphisms of F are the group automorphisms
a of P that normalize F in the sense that F(Q%, R*) = F(Q,R)* for all Q,R < P. In symbols, the
automorphism group of the Frobenius cateogry F is the group
FRB(F) ={a € GRP(P)° |VQ,R < P: F(Q,R)* = F(Q*,R")}
Always, FRB(Fp) = GRP(P)° and FRB(F) < Ngrp(p)o (F(P)). If P < H < G, then FRB(Fy) >
FRB(F). Different choices of Sylow p-subgroup in G lead to isomorphic objects F¢ in the category FRB.

Proposition 8.19. Suppose that Q < P is fully K-normalized in F. For any (F,F )-functorial automor-
phism o € FRB(F), Q is fully K®-normalized and o|NK (Q): NEK(Q) — NE"(Q%) is an isomorphism
of Frobenius categories, o|NEK(Q) € FRB(N]I:((Q),N]I_fa (QY). If, in addition, Q and K are normalized by
FRB(F), then there is a restriction homomorphism FRB(F) — FRB(NE(Q)).

The F-automorphism groups of P, F(P) < FRB(F), define an interior structure (Definition 2.2) in the

category of Frobenius categories. In the exterior quotient FRB the morphisms sets and the automorphism
groups are

FRB(F,F') = FRB(F,F)/F(P'), FRB(F)=FRB(F)/F(P)

Observe here that any ¢ € F(P) is (F, F)-functorial as there are commutative diagrams

QLR

‘| zlw

Q“D?R“’

within the category F. This shows that F(P) < FRB(F). Also, F(P)oa C F'(P')o« for any a €

FRB(F,F') as a is (F, F')-functorial and maps P onto P’. Always, F/‘I\{_ﬁ(}") < Ngrp(p) (F(P))/F(P).
There are group homomorphisms

(8.20) ka: Narpye(P) — FRB(Fg),  #g: GRP(G)° — FRB(Fg)

for any finite group G. The homomorphism K¢ is surjective if any (Fg, Fe)-functorial automorphism of P
extends to an automorphism of G.

Example 8.21. If F = (F(P)) (for instance if P is abelian) then the automorphism group and the outer
automorphism groups are

FRB(F) = Narp(p)-(F(P))  FRB(F) = Narp(p): (F(P))/F(P)

In Example 6.5 we determined the Frobenius category Far, (r,) associated to GL, (F,) for ¢ a power of p.
The automorphism and outer automorphism groups are

FRB(]:GLQ(Fq)) = NGRP(F;)O(F;) = FqX Gal(Fy/Fy), FRB(]:GLQ(Fq)) = NGRP(F;)O(qu)/FqX = Gal(F,/F))

where Gal(F,/F,) is the Galois group (acting on F} = F}" x --- x F;f by the cyclic permutation). We have
shown that Kar,(r,): é_f\{f’(GLz(Fq))O — I?_P\{ﬁ(fGLQ(Fq)) is surjective.
Let G be a p-nilpotent group (Theorem 7.3). Since Fg(P) = Fp(P) = Inn(P), the outer automorphism
group of the Frobenius category
FRB(F¢)° = Narp(p)- (Inn(P))/Inn(P) = GRP(P)° /Inn(P) = GRP(P)°
is the outer automorphism group of P and the homomorphism K¢ is the standard group homomorphism
%#c: GRP(G)° — GPR(P)°

from the outer automorphism group of G to the outer automorphism group of its Sylow p-subgroup. In case
of G = C5 x Cy = 2By(2), K¢ is not onto for the outer automorphism group of G is trivial but the (outer)
automorphism group of Cy has order 2. In case of G = C2 x Qg = 2A5(2), K¢ is an isomorphism and both
outer automorphism groups are isomorphic to the symmetric group 3.
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9. F-NORMAL AND F-STABLE SUBGROUPS OF P
Assume that N < P and K < GRP(N)°.
Definition 9.1. [37, 12.6] N is F-K-normal if N is fully K-normalized in F and NX(N) = F.

Equivalently, N is F-K-normal if N is K-normal in P (hence fully K-normalized in F) and every F-
morphism @ — R extends to an F-morphism QN — RN taking N to N by an automorphism in K. To
see this, start by recalling that NX is a Frobenius Nj (IV)-category (Definition 8.6) and that the equality
NE(N) = F implies N5 (N) = P. In particular, we may speak of F-central subgroups (K = 1) and
F-normal subgroups (K = GRP(N)°).

Definition 9.2. [37, 12.2] [23, Definition 16.18] U < P is F-stable if (UNQ)%? < U for all Q@ < P and all
morphisms ¢ € F(Q, P).

In words, U is F-stable if all elements of U stay in U under F-morphisms. The trivial subgroup and P
itself are always F-stable.
For any N < P we have

N is F-normal = N is F-stable = N is normal in P and fully normalized in F

If N is F-normal then any ¢ € F(Q, P) extends to a morphism ¢ € F(QN, P) taking N to N and therefore
(NNQ)¥ =(NNQ)¥ < N¥ < N. If U is F-stable then U¥ = U all ¢ € Fp(P), so that U is normal in P
and therefore fully normalized in F.

Proposition 9.3. [37, Proposition 19.5] Let N < P be a subgroup of P.
N is F-normal <= N is contained in Q and stabilized by F(Q) for any F-essential @ < P and Q = P
N is F-stable <= N NQ is stabilized by F(Q) for any F-essential Q < P and Q = P
Proof. This is a consequence of Alperin’s Fusion Theorem (Theorem 8.16). O
Proposition 9.3 reveals that subgroups generated by F-normal subgroups are F-normal.
Definition 9.4. O,(F) is the biggest F-normal subgroup of P.
In particular,

Op(F) =1 <= The trivial subgroup is the only F-normal subgroup of P

0,(F) =P < Pis Fnormal < Ny(P)=F £4 7= (F(P)
If F = F¢ for some finite group G and N < P then
N is Fg-K-normal <= N is K-normal in P and N (N) controls fusion in G

according to Remark 6.16. Special cases are

N is Fg-normal <= N is normal in P and Fg = Fny(n)

N is Fg-central <= N is central in P and Fg = Fog(n)
We have that O,(G) < Op(F¢g) because Oy(G) is Fg-normal. In case N = P, the above says that

Op(Fg) = P <= Pis Fg-normal <= Fg = (Fa(P)) <= Fa = Fns(p)

In fact, a similar but much stronger statement is true.

Theorem 9.5 (Glauberman fusion theorem). [24, Proposition 16.20] Any abelian Fg-stable subgroup A < P
18 Fa-normal.

For every F-stable U < P there is a Frobenius P/U-category F /U, the U-quotient of F [37, Proposition
12.3]. For U < Q, R < P the F/U morphisms Q/U — R/U are the group homomorphisms induced by the
F-morphisms @ — R.

Proposition 9.6. [37, Remark 12.4] If U is F-stable and F-selfcentralizing, then F/U is the Frobenius
category associated to the group F(U).
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Proof. As U is fully normalized, Fp(U) is a Sylow p-subgroup of F(U) (Proposition 8.5) and Np(U)/UCp(U) =
P/UCp(U) a Sylow p-subgroup of F(U) (Definition 8.13). Here, Np(U) = P as U is normal in P. If U is
also F-selfcentralizing (Definition 8.11), UCp(U) = U and P/UCp(U) = P/U. It is now easy to check that
FIU =Fzu- O

10. NORMAL SUBCATEGORIES OF FROBENIUS CATEGORIES
Normal subcategories are supposed to mimic Fy inside F¢ where N is normal in G (see Example 10.2.(1)).

Definition 10.1. [37, 12.6] Let P’ < P and let F' be a divisible P’-subcategory of F. Then F' is normal in
Fif

o P is F-stable

o F(P') <FRB(F') (F(P') normalizes F')

o F(Q)? =F'(QF) for all Q < P and v € F(Q, P) (F(Q) 1 F(Q), in particular)

Observe that F’ is just required to be a divisible P’-category, not necessarily a Frobenius category. It
is easily seen that if F] and F} are two normal divisible P’-categories in F then their intersection Fj N F}
(defined in the obvious way) is also a normal divisible P’-subcategory in F.

Example 10.2. Here are three examples, with increasing levels of abstraction, of normal subcategories of
Frobenius categories.

(1) Let N be a normal subgroup of G. Then Fy is a normal (N N P)-subcategory of Fg:

e Let @ < P and g € Ng(Q, P). Conjugation by g takes NN PNQ =NNQ into NN P. Thus
N N P is Fg-stable.

e Let QRS NNPand g € Ng(NNP). Then Q9, R < (NN P)9 = NN P and conjugation by
g takes Ny (Q, R) to Ny(QY, R9). Thus Fg(N N P) normalizes Fn(Q, R).

e Let Q < NN P and g € Ng(Q, P). Conjugation by g takes Ny(Q) to Nx(Q9). This means
that Fn(Q)? = Fn(Q¥) for all ¢ € Fa(Q, P).

(2) Suppose that @ < P is fully K-normalized in Fg for some K < GRP(Q)*. Then F¢ () is
a Frobenius Cp(Q)-subcategory of the Frobenius Np(Q)-category Fyr () (Remark 6.16). Since
Ce(Q) is normal in N&(Q), the Cp(Q)-subcategory Fe, ) = Crs(Q) is normal in the Np(Q)-
category Fr (@) = NE (Q).

(3) Let @ < P, K < GRP(Q)°, and assume that @ is fully K-normalized in F. Then @ is fully
centralized in F by Proposition 8.5.(1). Therefore C£(Q) is Frobenius Cp(Q)-category and NX(Q)
a NJ (Q)-category (Proposition 8.7). It is easy to check that Cx(Q) is normal in NX(Q) [37, 18.2].

Proposition 10.3 (Frattini argument). [37, Proposition 12.8] Assume that P’ < P and that F' is a divisible
P’-subcategory of F. Then F' is normal in F if and only if

o P’ is F-stable

« F(P') < FRB(F) P
F(Q, P = F'(Q, P') o F(P' Q<P P P
o F(Q.P) = F(Q.P')o F(P') for all Q e

The adjoin subcategory F* of F is the smallest Frobenius P-category F’ in F satisfying a certain condition
[37, 12.7, Corollary 12.17] [7, Definition 3.1]. F* is a Frobenius P-category, F* is normal in F, and (F*)* =
F“. By Proposition 10.4, F* can also be characterized as the smallest normal Frobenius P-category in F.

Proposition 10.4. Let F be a Frobenius P-category.

(1) If ' is a normal divisible P-category in F then F'(Q) has index prime to p in F(Q) for every
Q<P
(2) F2 is the smallest normal Frobenius P-category in F.

(3) The intersection of finitely many normal Frobenius categories in F is a normal Frobenius category
mn F.

Proof. (1) [30] Let @ < P. Choose ¢ € F(Q, P) so that Q¥ is fully F-normalized (Proposition 8.4). Now
Fr(Q¥) < FI(Q¥) < F(Q?)
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where Fp(Q¥) is Sylow p-subgroup of the last group (Proposition 8.5.(1)), F(Q¥), and hence also of the
middle group, F'(Q%¥). Thus F'(Q¥) = F'(Q)¥ has index prime to p in F(Q¥) = F(Q)¥ and F'(Q) has
index prime to p in F(Q).

(2) Let F' be a normal Frobenius P-category in F. In order to show that F’ contains F* it suffices to show
that X#(Q) < F'(Q) for every F-essential Q < P [37, Corollary 12.17] where X £(Q) is the subgroup defined
in [37, Corollary 5.13]. The group F(Q) is contained in Fp(Q) and in F'(Q) because Fp is a subcategory
of F'. Since we know that F'(Q) has index prime to p in F(Q) also F'(Q)/Fo(Q) has index prime to p
in F(Q)/Fo(Q) = F(Q) (Definition 8.13). Thus every p-element of F(Q) lies in F'(Q)/Fo(Q). Let X be
a normal subgroup of F(Q) whose order is divisible by p. Then the same is true of X N F'(Q)/Fo(Q).
This shows that the smallest such subgroup, X z(Q), is contained in F'(Q)/Fq(Q). Therefore, its preimage,
X7(Q), is contained in F'(Q).

(3) Let F] and F} be normal Frobenius P-categories in F. Their intersection, FjNF3, is a divisible P-category
in F containing F¢. By [37, Corollary 12.17], F{ N F is a Frobenius category. O

The extreme cases are that F° equals F or Fp. We have
F =F* < F is the only normal Frobenius P-category in F
according to Proposition 10.4.

Corollary 10.5. The following conditions are equivalent:
(1) Fp=F°

(2) Fp is normal in F

(3) F = Ng(P)

(4) F = (F(P))

Proof. (1) and (2) are equivalent because F* is normal in F and Fp is the smallest Frobenius P-category in
F. We previously observed that (3) and (4) are equivalent. That (2) implies (4) follows from Proposition 10.3.
The converse is clear. O

Definition 10.6. [37, 12.20] The Frobenius P-category F is simple if there are no nontrivial proper F-stable
subgroups of P and F = F*°.

Example 10.7. [7, p 3839] Let G = As of order 60 and p = 2. The Sylow p-subgroup P = Cy x Cs is
abelian so Fg = (Fg(P)) where Fg(P) = C3 (Theorem 8.10). It is easy to verify directly that the discrete
category Fp is a normal P-category in F¢ [30, Proposition 7.3]. Thus F& = Fp and F¢ is not simple even
though G is simple. Also, OF' (G) = G because G is simple so that F* is not For' ()-

Since the Frobenius category is unable to distinguish between a group G and any factor group G/N by a
normal p’-subgroup N (Example 6.4) the following result is about the best we could hope for.

Proposition 10.8. [37, 12.20.1] If F¢ is simple and O (G) =1, then G is simple.

Proof. Let N be a nontrivial normal subgroup of G. N is not a p’-group for O, (G) = 1. Let P be a Sylow
p-subgroup of G. Then N N P, a Sylow p-subgroup of N (Corollary 3.5.(2)), is nontrivial. N N P is also
Fe-stable (Example 10.2), and therefore N N P = P. This shows that N contains P. We have now shown
that N contains all Sylow p-subgroups of G. This means that N contains O’ (G), the normal subgroup
generated by all Sylow p-subgroups of G.

We know that Fy is a normal P-subcategory of F¢ (Example 10.2). For any @ < P, Ny (Q) is normal in
Neg(Q) and Ng(Q)/Nn(Q) is a p’-group because Ny (Q) contains all p-elements of Ng(Q) (Proposition 3.2).
The quotient group Fe(Q)/Fn(Q) is therefore also a p’-group. This means that Fn (Q) contains Op/]:(;(Q).
But the adjoin subcategory F¢ is the smallest normal P-subcategory with this property and therefore F¢ is
a P-subcategory of Fy. By assumption, F& equals F¢, so we conclude that Fy = Fg and that Ng(P) =
Nn(P) (6.2). Now G = Ng(P)N = Ny(P)N = N where the first equality is the Frattini argument
(Corollary 3.5.(3)). O

The hyperfocal subcategory F" of F [37, 13.8] is the smallest normal Hz-subcategory of F such that
FM(R) > OP(F(R)) for any R < Hz fully normalized in F [37, Theorem 13.6]; F(R)/F"(R) is p-group.
Here,

Hr =(u"u’ |ue Q< PocOP(F(Q)))
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is the F-hyperfocal subgroup of P [37, 13.2]. (In the special case of the Frobenius category of a finite group
G, Hr, = PN OP(G) [37, 13.2.1] [7, Lemma 2.2].) ?

Definition 10.9. [2] The group G is wild if (assuming p odd)
° Op(F) =1
o Fi=Fg=Fk
e K (8.20) is not split surjective

It is not known if wild groups exist. If they do then they will produce exotic fusion categories [2].
Albert showed that there are simple groups such that the fusion system contains a normal subfusion
system.

11. FROBENIUS CATEGORIES AND CLASSIFYING SPACES

Let G be a finite group, BG the classifying space, and C,(BG) the Bousfield-Kan p-completion of BG
(Subsection 11.2). Whereas the classifying space BG is a K(m, 1), the p-completed classifying space may
have higher homotopy groups. However, whatever happens to BG under p-completion is invisible seen from
a finite p-group.

Theorem 11.1. For any finite p-group Q and any finite group G, there are HZ /p-equivalences

H BCs(Q") ~ map(BQ, BG) ~ map(BQ, Cp(BG))

peGRP(Q,G)
Equivalently,

(1) The natural maps (/}_f\{f’(CLG) — [BQ, BG] — [BQ, C,(BG)] are bijections
(2) The natural maps BCq(Q?) — map(BQ, BG), — map(BQ, Cyp(BG)), are HZ/p-equivalences for
any group homomorphism p: Q — G.

Proof. (1) Dwyer and Zabrodsky [14, Theorem 1.1] show that GRP(Q,G) = [BQ, BG] and Mislin [34,
Equation (4)] shows that [BQ, BG| = [BQ, C,(BG)].

(2) The group homomorphism C;(Q*) x @ — G induces a map BCq(Q”) x BQ — BG between classifying
spaces whose adjoint is the map BCq(Q”) — map(BQ, BG),. Dwyer and Zabrodsky [14, Theorem 1.1] show
that BC¢(Q”) — map(BQ, BG), is an HZ/p-equivalence, and Mislin [34] or Broto and Levi [8, Proposition
2.1] that also map(BQ, BG), — map(BQ, C,(BQ)), is an HZ/p-equivalence. (These results would not have
been possible without the Sullivan conjecture [33].) O

The finite group G determines a presheaf

(11.2) GRP(—,G): pGRP®® — SET

on the category pGRP of p-groups. Recall that elements of C/}_f\{TD(Q, G) have kernels (Example 2.3.(1)). The
constant epimorphism @ — 1 induces an injection {1} = GRP(1,G) — GRP(Q, G) that picks out the con-
stant homomorphism Q - G. If G and G5 are two finite groups and A: GRP(—,G;) = GRP(—, G3) anat-

ural transformation of the associated presheaves, then the component A(Q): 61\{?)(@, Gy) = (El\l_l;(Q, G2),
for any finite p-group @, takes 1 to 1 and it increases kernels in the sense that ker ¢ < ker A(Q)(p) for any

¢ € GRP(Q, G1) by naturality.

Proposition 11.3. The following are equivalent for two given finite groups G1 and Gs:

(1) Fg, and Fg, are isomorphic Frobenius categories
(2) GRP(—,G1) and GRP(—, G3) are isomorphic presheaves on pGRP

2 The adjoin subcategory F@ is denoted OP’ (F) in [7, p 3838]. The F-hyperfocal subgroup Hx is denoted OZ.(P) [7,
Definition 2.1] and the hyperfocal subcategory F" is OP(F) in [7, p 3823].
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Proof. Suppose that Fg, and Fg, are isomorphic Frobenius categories. This means that there exists an
(Fa,, Fa,)-functorial isomorphism «: P; — Py of Sylow p-subgroups (Definition 8.18). There is an induced
bijection, natural in @), as in the diagram

(11.4) GRP(Q, P\) ——> GRP(Q, P»)

i i

GRP(Q,G,) > GRP(Q, Gs)

The reason that this bijection is well-defined is that if ¢, p2: @ — Py are two lifts up to conjugacy in Gy of
the same ¢: Q — Gy, then @] = @2 for some g in G;. Because « is functorial there is some g* in G5 such
that the diagram

o Q¥ @ Q¥ > (o
Q g g° g°

N

Q¥ —2> Qv > Gy
commutes. Thus p;a and o are Ga-conjugate.
Conversely, assume that A: GRP(—,G;) = GRP(—,G2) is a natural isomorphism of presheaves on

pGRP. Then A preserves kernels. Let Py & G1 be the inclusion of a Sylow p-subgroup. Consider the
component A(P;): GRP(P,G1) — GRP (P, Gs) of A. Now

AP (P <5 G = (P < Gy)@2

for some monomorphism «: P; < Gy. Put P, = a(P;) < Gs. Then P, is a Sylow p-subgroup of G5 because it

is a p-subgroup of maximal order. Moreover, the isomorphism «: Py =N P, realizes the natural isomorphism
A as in the above commutative diagram (11.4). An easy inspection reveals that this precisely means that «
is (Fa,, Fa,)-functorial. O

As the presheaf (/}P\ﬁ’(—,G) = [B—,Cp(BG)] is determined by the p-completed classifying space by
Theorem 11.1, we arrive at the following corollary which says that we can construct isomorphisms of Frobenius
categories by constructing homotopy equivalences between localized classifying spaces.

Corollary 11.5. [32] If C,,(BG1) and C,(BG2) are homotopy equivalent topological spaces then Fg, and
Fa, are isomorphic Frobenius categories.

The converse of Corollary 11.5, called the Martino—Priddy conjecture, has been proved by Bob Oliver
[35, 36] using the classification of the finite simple groups. The conclusion is

Cp(BG1) ~ Cp(BG2) = Fg, = Fa,

for any two finite groups GG; and G,. This means that two finite groups have the same p-local structure if
and only if their classifying spaces have the same p-local structure (Remark 11.9).

11.1. An algebraization of C,(BG). There is a functor

L: FP = GSET: (Q % R) = (Co(Q\G <H 2L C6(R)\G)
taking values in the category of transitive right G-sets. Observe that the the morphism L(g) is well-defined
because gCs(R) C Cq(Q)g, or Ca(R) < Ca(Q)Y = Ce(Q9), whenever g € Ng(Q, R). Define
(11.6) L,: 7}’ — GRPOID

be the composite functor F¢’ L, GSET — GRPOID M=\ GRPOID. More explicitly, L,(Q), for

any Q < P, is the connected groupoid on the object set Cg(Q)\G with morphism sets and automorphism
groups

Ly(Q)(Cc(Q)g1,Ca(Q)g2) = OPCa(Q)"\g1 'Ca(Q)g2,  Lyp(Q)(Ce(Q)g) = 0" Ca(Q)*\Ca(Q)*
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Cp(BG) L, x FeP
H*(G; Fyp) Fe

FI1GURE 3. p-local information attached to the finite group G

In particular, when @ is selfcentralizing, L,(Q) is a connected groupoid with automorphism groups isomorphic
to

L,(Q)(Ca(Q)) = 0PCa(Q)\Ca(Q) = Z(Q)

The isomorphism here comes from the splitting C(Q) = Z(Q) x Op Ce(Q) from Lemma 6.18. In this case
the classifying space BL,(Q) of the groupoid L,(Q) is homotopy equivalent to BZ(Q).

Define F¢ to be the full subcategory of the Frobenius category Fg generated by all its selfcentralizing
objects. Let L;° denote the restriction to F¢ of the sheaf L, on Fg.

Theorem 11.7. [9, 15] The spaces Cp(hocolim L3¢) and Cp(BG) are homotopy equivalent.

According to this theorem we can build the p-completed classifying space C,(BG) from the very simple
building blocks BZ(Q) where Q is a Fg-selfcentralizing object. Thus the functor (11.6), or its restriction to
the selfcentralizing subcategory, is an algebraization of C,(BG). The homotopy colimit of the functor L3°
is homotopy equivalent to the classifying space of the Grothendieck construction L7 = Lj° x Fer on the
functor L’ [41]. Therefore we have

Cp(BGL) ~ Cp(BG2) <= LG, = LG,

The hard part in proving the Martino-Priddy conjecture is to show that Fg, = Fq, = L = L§,.
(The category L is the ‘centric linking system’ of [9] and an example of an ‘Fg-locality’ of [37, 17.3]. The
existence or uniqueness of centric linking systems associated to abstract Frobenius categories is an important
unsolved problem.)

11.2. The Bousfield-Kan p-completion functor C,. Let us say that a space C is p-local if [A, C] — [B, C]
is bijective whenever A — B is an HZ/p-equivalence. (C' is p-local if it believes that all HZ/p-equivalence
are homotopy equivalences.) Ideally, we would like to have a functorial construction of an HZ/p-equivalence
X — CX into a p-local space CX (a p-local space not far from X).

Bousfield and Kan partially succeed in this. They functorially associate to any space X a map X — Cp(X).
The Bousfield-Kan p-completion, C,(X), is indeed p-local but X and C,(X) do not always have the same
HZ/p-homology, only when X is ‘Z/p-good’ [6, 1.5.1]. The main properties of the Bousfield-Kan p-completion
are:

o Cy(X) is p-local [6, 11.2.8]
X — Cp(X) is an HZ/p-equivalence when X is connected and nilpotent or 71 (X) is finite [6, VI.5.3,
VIL5.1] (and C,(X) agrees with the Bousfield HZ /p-localization of X] [5, §4])
X — Y is an HZ/p-equivalence <= C,(X) — C,(Y) is a homotopy equivalence [6, I.5.5]
X is k-connected = C,(X) is k-connected [6, 1.6.1]
C,, preserves HZ /p-nilpotent fibrations of connected spaces [6, 11.5.1]
BQ — C,(BQ) is a homotopy equivalence for any finite p-group Q [6, VI.3]

It follows for instance that C,(X) ~ x <= X — x is an HZ/p-equivalence < H.(X;Z/p) = 0.

By definition, X is Z/p-complete if X — C,(X) is a homotopy equivalence [6, I.5.1]. BQ, @ a finite p-
group, is Z/p-complete. If X is connected and nilpotent or has a finite fundamental group, then X — C,(X)
is a HZ /p-equivalence and Cp(X) is Z/p-complete [6, 1.5.2]. In that case, the HZ/p-equivalence X — C,(X)
is terminal among HZ/p-equivalences from X to some space and initial among maps from X to Z/p-complete
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spaces [6, VIL.2.1]:

X —;Y X —>Y
Lk o
Cp(X Cp(Y) Cp(X) —== G, (1)

Proposition 11.8. Let G be a finite group.
(1) m(Cp(BG)) = OPG\G
(2) CL(BOP(G)) ts the universal covering space of Cp(BG)
(3) Cu(BG) is aspherical <= OPG contains no elements of order p

Proof. The normal subgroup OPG, generated by all p’-elements is Z/p-perfect, H1(OPG;Z/p) = 0, so that
Cp(BOPQ@) is simply connected [6, VIL.3.2]. The fibration B(O?G) — BG — B(G/OPG) induces a fibration

C,(BOPG) — C,(BG) — B(G/OPG)

of p-completed spaces because G/OPG is a finite p-group. Thus mCp(BG) = G/OPG and C,(BOPQG) is the
universal covering space of C,(BG). Therefore

Cp(BG) is a K(m,1) <= C,B(OPG) ~x < H.(O’G;Z/p) =0 <= OPG has order prime to p

For the last step we use that if the finite group K contains an element of order p then H*(K;Z/p) will
contain a polynomial subring by Quillen’s theorem that the Krull dimension of H*(K; F,) equals the p-rank
of K [39, 19]. O

Remark 11.9. Let X and Y be topological spaces. Let us say that X; and X5 have the same p-local
structure, X ~, Xa, if there there exist a topological space Y and HZ/p-equivalences X; — Y « X,. This
is an equivalence relation. To prove transitivity, consider the diagram

f1 g2 f2 g3

X1 Y1 X2 Y2

N 7

C(f2,92)

where C(f2,g2) = Y1 Ug, U(I X X2)Uy, is the double mapping cylinder. The homology of the double mapping
cylinder is easily computed from the Mayer—Vietoris sequence and we see that the maps Y1 — C(fa, g2) <« Y2
are HZ /p-equivalences when fo and go are HZ/p-equivalences. It is immediate that X; ~, X if and only
if Cp,X1 ~ CpXy when Xy and X, are HZ/p-good spaces (eg X7 and X, are connected and have finite
fundamental groups). In particular, when G1 and G are finite groups, Cp,(BG1) ~ Cp(BG2) if and only if
there are HZ/p-equivalences BG; — B <« BGhs.

X3

12. FRIEDLANDER DESCRIPTION OF FINITE GROUPS OF LIE TYPE

Friedlander [20] describes the p-completed classifying spaces of finite groups of Lie type as homotopy fixed
point spaces for homotopy equivalences of p-completed classifying spaces of Lie groups. I shall now explain
what these words mean.

Let X be a topological space and a: X — X a map of X into itself. The fized-point space of a is the
space X' = {z € X | 2* = z} and the homotopy fized-point space of o is the space XM = {(z,u) €
X x map([ X) | 0% = x,1" = 2} defined by the pull-back diagrams

X (@) X Xh(e) ——map(l, X)
i l(id,id) i \L(evo,evl)
(id,a) (id,a)
X—XxX X—Xx X

of topological spaces.

Let K(Z,,2)" = Cp,K(Z,2)™ be the Eilenberg-MacLane space with second homotopy group isomorphic
to the group Z;‘f” where Z, is the ring of p-adic integers. For each p-adic unit u, let )" be the homotopy
self-equivalence of K (Z,,2)" that is multiplication by « on the second homotopy group.
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The space K(Zp,2)" is the p-completed classifying space C,BT,(C) of the maximal torus T,(C) —
SL,,+1(C) of the special linear group. According to Jackowski-McClure-Oliver [28] the map " on the
maximal torus extends to a unique self-homotopy equivalence ¥*

C,BT,(C) —Y" = ¢, BT, (C)

| i

C,BSL,.,(C) -~ C,BSL,,,(C)
of the p-completed classifying space of SL, ,,(C). Moreover, these maps account for the entire group of
self-homotopy equivalences,

Out(C,BSL,,,(C)) = Z*

for n > 1. (When n = 1, the maps " and ¢¥~* are homotopic.)
Let g be a prime power not divisible by p so that ¢ is a unit in the ring Z, of p-adic integers and Pt is a
self-homotopy equivalence of C,B SL,, ,(C). Friedlander’s theorem, for this special case,

B SL’riH-l(Fq) ~CpB SLn+1(C)h<¢iq>

describes the p-completed classifying space of SLff 1(F,) as the homotopy fixed point space for the homotopy
self-equivalence 1+ of C,,BSL,, +1(C). We now see that it would be good to be able to compare homotopy
fixed point spaces.

Let B be a topological space. Let Uy < Out(B) be the subgroup of self-homotopy equivalences inducing
the identity on H*(B;Z/p*). Define the p-adic topology on the group Out(B) to be the topology whose
basis at the identity consists of the Uy. (If H(B;Z/p) is finite for all i > 0, H(B;Z,) is the inverse limit of
the groups H'(B;Z/p*) (by a change of functors spectral sequence), and Out(B) is a Hausdorff topological
group if and only if Out(B) is detected on H*(B;Z,). Here, Z, stands for the ring of p-adic integers.)

Theorem 12.1. [11, Theorem 2.4] Let B be a connected p-complete space such that H'(B;Z/p) is finite
for alli > 0, H*(B;Z/p) is a finitely generated Z/p-algebra, and Out(B) is detected on H*(B;Z,). Let
a, € Out(B) be two self-homotopy equivalences of B. Then

B ) ~ gh(B)

if (a) = (B) in the topological group Out(B).

As the conditions of this theorem are satisfied for B = C, B SL,,  ; (C), we get this immediate consequence:

Corollary 12.2. Let q; and g2 be two prime powers not divisible by p. If (¢1) = (£ g2) in the topological
group Z,, then C, B SLIH(ql) ~ C,B SLf_H(qg),

It is not hard to see that

@:@ — ¢1 = g2 mod p and v, (¢ — 1) = v,(¢5 — 1) p odd
g =gemod4and v,(¢f —1)=1,(¢3 —1) p=2

where e is the multiplicative order of ¢; modulo p.
According to Corollary 11.5, these topological statements about p-completed classifying spaces translate
to the purely group theoretical statements

{a) ={£ @) = Four (4) = Fst,,(a)

about Frobenius categories of finite groups of Lie type. (This is only one instance of a more general statement
[11, Theorem A] comparing Frobenius categories for finite groups of Lie type.)

In [10] we replace the p-completed classifying spaces of Lie groups by the more general p-compact groups
and show that the homotopy fixed point spaces define Frobenius categories that in many cases are exotic in
the sense that they are not Frobenius categories of any finite group.

Theorem 12.3. [10] Let BX be a connected p-compact group, u € Z; ap-adic unit, and " the corresponding
unstable Adams operation on BX. Then BX™Y") is the classifying space of a Frobenius category.
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At odd primes, this provides many examples of exotic Frobenius categories. At the prime p = 2 with
BX = BDI(4) the Dwyer—Wilkerson space [16], this construction provides the only known exotic Frobenius
system [29].

13. OPEN PROBLEMS

e Is it possible to classify Frobenius categories? Would that be helpful eg in the classification of the
finite simple groups?

e Does every abstract Frobenius category F admit a (unique) functor like (11.6) (and hence a classifying
space)?

e Every Frobenius category of a finite group is the Frobenius category of a block — is the converse true?

e Describe the exotic Frobenius categories, the Frobenius categories not associated to any finite group.

e Is it true that there is essentially just one exotic Frobenius category at p = 27

14. STUDENT ACTIVITIES

Exercises:

(1) Determine F¢ for your favorite groups G.

(2) Find examples of nonisomorphic groups with isomorphic Frobenius categories.

(3) Show that the Frobenius categories associated to %, are the same when np < m < (n + 1)p. (Here,
3. is the symmetric group on m letters.)

(4) Find all Frobenius categories on Cy x Co and Co X Cy x Co. (This exercise was suggested by Martin.)

(5) Complete the proof of Proposition 9.6.

(6) Do Example 8.17 for p = 2.

(7) Show that U < P is F-stable if and only if U is the kernel of some (F, F’)-functorial group homo-

morphism a: P — P’.

(8) Identify the group O,(F¢) (Definition 9.4) for a finite group G.

(9) Imagine that you were to make an exam for this course. What questions would you put in the exam?

Short (30-60 minutes) presentations:

(1) What is an affine group group scheme? [42, 18]

Sharp homology decompositions of classifying spaces of finite groups
(6) Euler characteristic of Frobenius categories (Martin Wedel Jacobsen)

Links:
e Algebraic groups
e (Classical groups
e Normal p-complement
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