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Outline of talk

0 Euler characteristics of square matrices
@ Euler characteristic of the poset Sg;
@ Euler characteristic of the fusion category F
@ Euler characteristic of the orbit category O

e Mébius algebras

The Euler characteristic of a category C only depends on ¢(C)

k2:C —Q €
c—c¢c)— S =Y Ke=x(C)=) k
ke : C — Q Zb: za:a

Example (The Euler characteristic of a one-object category)

X(G) = |G|’

v
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Summary of main results [ ]

S Poset of p-subgroups

F Fusion category of p-subgroups

O Orbit category of p-subgroups

¢ x(C) x(C)

Sa 2 (H>1 —X(SH (k) > k=1 —H(K)
F& | 2[H1>1 2xeCnyny(H) _X(S/CVA;G((Z;T)/H) DK %
Og 2 iH)>1 Tc(os<f3)\ & P
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Euler characteristic of the poset Sé
Euler characteristic of the fusion category 7
Euler characteristic of the orbit category Oé

Weightings and coweightings for a square matrix ¢

A weighting for ¢ is a column vector (k¢) such that

1
(c(a.0)) (k) = | :
.
A coweighting for ¢ is a row vector (k) such that

(k3 (C(ab))=(1 - 1)
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Euler characteristic of the poset S
Euler characteristic of the fusion category 7

Euler characteristic of the orbit category O(’;

@ A matrix may have none or many (co)weightings
e If (u(a, b)) is an inverse to (¢(a, b)) then

1

(k&) = (w(a,b)) | : | = (D _u(a b)) (rowsums)
1 b

(k)= (1 - 1) (u(ab)) = (> u(ab) (columnsums)
a
are the unique weighting and coweighting for ¢

@ ¢( = (11) (notinvertible) has weighting and coweighting
@ ¢ = (12) has a weighting but no coweighting
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Euler characteristic of the poset S
Euler characteristic of the fusion category 7

Euler characteristic of the orbit category O(‘;

If ¢ admits both a weighting k¢ and a coweighting kS then the
sum of their values agree

Dok =D (D kac(a Nk =D ka(d_c(ab)kt) =D ks
b a b a

b a

Definition (The Euler characteristic of a matrix (Leinster 2008))

S KE=x() =D ks
b a

If ¢ is invertible then

X(©Q) =Y K=Y uC)ab)=> kS uC)=¢C)
b a,b a

MW Jacobsen, JM Mgller



Euler characteristic of the poset Sé
Euler characteristic of the fusion category 7
Euler characteristic of the orbit category Oé

Definition (The incidence matrix of a finite category C)

C(C) = (C(a’ b))aybec C(a’ b) = |C(av b)‘

Definition ((Reduced) Euler characteristic of a category via

x(C) = Z e = Zkg(c)
xX(C) = ( )—1

Proposition (Invarians under equivalence (Leinster 2008 []))
@ Ifthere is an adjunction C_—_—=D then x(C) = x(D)
@ [fC has an initial or terminal element then x(C) = 1
@ IfC and D are equivalent then x(C) = x(D)
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Euler characteristic of the poset Sé
Euler characteristic of the fusion category 7
Euler characteristic of the orbit category Oé

Euler characteristic of a finite poset

Definition (Incidence and Mdébius matrix of a finite poset S)

1 a<b
0 otherwise

C(S) = (C(aa b))a,bes C(a7 b) = {
wS) = ¢(S)™

Definition (The Euler characteristic of a finite poset S)

X(S) = X(¢©S) = Y u(S)(ab) = st - st

a,beS

k&= u(S)(ab) Zu )(a,b)
a




Euler characteristic of the poset Sé
Euler characteristic of the fusion category 7

Euler characteristic of the orbit category Oé

Example (A poset with a terminal element)

19961
¢ <<3>=(88591)
/\ 0000 1
J TERR
SN/ A= e
b 00 0 0 1
x(8) = x(¢(S5)) =1

Question

What is the relation between the combinatorial Euler

characteristic x(S) and the topological Euler characteristic
x(BS)?
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Euler characteristic of the poset Sé
Euler characteristic of the fusion category 7

Euler characteristic of the orbit category Oé

Definition (Simplices in a poset)
A k-simplex, k > 0, (from ato b) is a totally ordered subset of
k + 1 points (with a as smallest and b as greatest element).

Example ((¢ — E)X counts k-simplices)

09000
0-simplices 00100 | =(¢—E)° \
00010 ’
0000 1 /
00151 5
1-simplices 00001 | = (¢ — E)
P 0000 1 (C-E)
0000 1
00002
2-simplices 00000 | = (¢ — E)?
P 00000 (C-E)
00000
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Euler characteristic of the poset Sé

Euler characteristic of the fusion category 7
Euler characteristic of the orbit category Oé

Counting simplices in poset S

(¢ — E)X(a, b) = #{k-simplices from ato b} (k
> ab(¢ — E)¥(a,b) = #{k-simplices in S} (k >

> 0)
0)

Topological Euler characteristic of the realization BS

X(BS) =) (—1)*#{k-simplices in S}

k=0
=Y (D> (- E)(ab)
k=0 abes

=> > (D¢~ E)(ab)

=0 =+ (x—1)7! z;'zo(—uk(x—nk
1

E u(a, b) =




Euler characteristic of the poset Sé
Euler characteristic of the fusion category 7
Euler characteristic of the orbit category Oé

u(a, b) depends only on the interval [a, b]

1 a=>t
u(a,b) = {x(ab) a<b
0 atb

Proof incase a < b

[e.9]

ua b) =" (~1)k(¢ - E)¥(a,b)
k=0
— 0+ (1) + 31 - EY(ab)
k=2
= -1+ ) #{k-simplices in (a, b)} = X(a,b)
k=0
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Euler characteristic of the fusion category 7
Euler characteristic of the orbit category O(‘;

The subgroup posets S and S;; at p

G is a finite group and p is a prime number

The posets S; and Sg;

@ S is the poset of all p-subgroups of G
@ S; is the Brown poset of nonidentity p-subgroups of G

@ x(Sg) = 1 because Sg has initial element 1
@ Whatis x(S5)? Find a weighting and a coweighting!
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Euler characteristic of the fusion category 7
Euler characteristic of the orbit category Oé

The Mébius function p(K) for finite p-group K

(—1)”p(5) K elementary abelian, |K| = p”
w(K) = .
0 otherwise

(Co)Weighting and Euler characteristic for S; and S

K = —X(Skgum) ke = —m(K)
> =X (Shgerym) = X(88) = D —u(K)

H>1 K>1

Reformulation

> X Sngry) =1, D m(K) = —X(S8)

H>1 K>1
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Euler characteristic of the fusion category 7

Euler characteristic of the orbit category O(’;

The poset S knows
@ the elementary abelian p-subgroups
@ the p-radical p-subgroups (Strong Quillen Conjecture!)

Example (Symmetric and alternating groups at p = 2)
n \ 4 5 6 7 8 9 10

x(8s)|1 —-15 —-15 161 513 -639 -7935
X(83,) | 1 5 —-15 175 65 5121 15105

Example (Alternating groups at p = 3)
n \ 4 5 6 7 8 9 10

X(S,T\,,)‘Af 10 10 -35 -224 2996 —24380

v
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Euler characteristic of the fusion category 7
Euler characteristic of the orbit category Oé

What is known about x(Sg)?

Product formula

XSty 6) =] -%(S8)

i=1

Theorem (Brown 1975, Quillen 1978)
—X(Sg) is divisible by |G|p

Theorem (Quillen 1978)
If G has a nonidentity normal p-subgroup then S, ~ x

Strong Quillen Conjecture
0p,G>1 = X(Sg)=0




Euler characteristic of the fusion category 7
Euler characteristic of the orbit category O(’;

What is unknown about x(S§)!

@ (Euler characteristics of Chevalley groups) Is
_%(San(q)) — (_1 )nq#{positive roots} for G = A B,C,D, E?
@ (Euler characteristics of alternating groups) Describe the
sequence n — x(S3 )
@ (Original Quillen conjecture 1978) OpG > 1 <= Sf ~ *
@ (Strong Quillen conjecture) Op,G > 1 = X(S5) =0
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Euler characteristic of the poset S

Euler characteristic of the orbit category O(’;

The p-subgroup categories F; and F

G is a finite group and p is a prime number

The fusion categories 7, and F¢, at p

@ F is the fusion category of all p-subgroups of G
@ F is the fusion category of nonidentity p-subgroups of G

@ F is a finite category with morphism sets
Fa(H,K) = Ca(H)\Ng(H, K), Fg(H) = Ca(H)\Ng(H)

@ x(Fg) = 1 as Fg hasinitial element 1
@ What is x(F5)? We need a weighting and a coweighting!
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Euler characteristic of the poset Sé

Euler characteristic of the orbit category Oé

Example (Skeletal subcategory of 7, p = 2)

4,
)
&

S ‘\6\2 133165
4 x\\ . 0 6 0 0 6
{_b § ¢ d_2 ((Fa)=]0 0606

N, S 0002 2
N | 0000 4
5y
\1,/
0
K " K. % Fi)=1/3
e _ | - . 8 =(1-1/3-1/300 2) =
3 e (1-1/8-1/300)  x(Fp)=1/
1/4
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Euler characteristic of the poset Sé

Euler characteristic of the orbit category Oé

Weighting, coweighting, and Euler characteristic of 7

K)o
Z Z CNG(H)(X)/H) = |G|7 Z |.7:*(K)| = X(fG)

H>1 xeCg(H) K]>1 '~ G

@ The category F¢, knows the elementary abelian
p-subgroups
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Euler characteristic of the poset Sé

Euler characteristic of the orbit category Oé

What is known about x(F5)?

Product formula

n

X(Fp ) =11 -%(Fg)

i=1

@ If G has a nonidentity central p-subgroup then x(F5) =0
® |Gly - x(Fg) €2
{e € 75(P) | Cp(p) > 1}
x(Fg) = =

[ F&(P)I
p-subgroup, is abelian.

o X(Fg) = x(F&) and x(Fg) = x(Fg)

when P, the Sylow
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Euler characteristic of the poset Sé

Euler characteristic of the orbit category Oé

Example (Alternating groups A, at p = 2)

n | x(Sa,) | x(Fa,) n x(S4,) x(F4,)
41 1 1/3 10| 55105 18/35
5| 5 1/3 11| 55935 18/35
6| —15 | 1/3 12 | —288255 | 389/567
7| —175 1/3 13 1626625 | 389/567
8| 68 | 41/63 14 | 23664641 | 233/405
9| 5121 41/63 15 | 150554625 | 233/405

Example (The smallest group with x(Fg5) > 1)

There is a group G = C5 x H, where H = (C3 x C3) x Cy, of
order |G| = 288 with Euler characteristic x(F5) = 10/9 at
p=2.
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Euler characteristic of the poset S

Euler characteristic of the orbit category O(’;

What is unknown about x(F¢)

@ Are F; and F& homotopy equivalent? Yes!

e Are 7 and F5 homotopy equivalent?

@ Is x(F() always positive when p divides the order of G?

@ Can x(Fg) get arbitrarily large?

@ Whatis x(F, )? Does it converge for n — oo?

® Whatis x(73_ r,)?

@ Is there a |G|y -fold covering map E — BF where E is
(homotopy) finite and x(E) = |G|y x(Fg)?
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Definition

Euler characteristic of the poset Sé

Euler characteristic of the orbit category Oé

Categories of centric subgroups

The p-subgroup H < G is p-centric if pt |Cg(H): Cy(H)|

Example (Euler characteristics of centric subgroup categories

for alternating groups at p = 2)

n 45| 6 7 [ 8] 9| 10 11
[Anx(£5) [ 1|5 15| —105 | 65 | 585 | 11745 | 129195
x(85) |[1|5| 15| 17565 | 585 | 11745 | 107745
X(£5) [1/12] —1/24 | 13/4032 29/4480
XF5) | 1/3 1/3 13/63 19/105
X(F5) | 1/3 1/3 13/63 19/105
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Euler characteristic of the poset Sé

Euler characteristic of the orbit category Oé

Weighting and Euler characteristic for 7§

S )
S(H)
|G: Ng(H)|kE, = ——¢" ¢ )
e | FE(H)

_ —X(S%
X(F&) =

fg(H))
| F5(H)

@ The category fg knows the p-selfcentralizing 7 ;-radical
p-subgroups

X(FE) = x(F&)
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Euler characteristic of the poset S
Euler characteristic of the fusion category 7

The p-subgroup categories O and O

G is a finite group and p is a prime number

The orbit categories O, and O at p

@ O is the orbit category of all p-subgroups of G
@ O is the orbit category of nonidentity p-subgroups of G

@ O is a finite category with morphism sets

Oa(H,K) = Na(H,K)/K,  Og(H) = Na(H)/H
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Euler characteristic of the poset Sé
Euler characteristic of the fusion category 7

Weighting and Euler characteristic of orbit category O

_ —55(5(*96(H))
G No(H)IKE = i1
~XSogm) _ _1+(p-1)3Ic]
2 TogH) %)=

Gly|G: Na(H)k§ €Z, (1—-p) > |Cl=1mod p|Gl
1<C<G

@ The category O knows the p-radical p-subgroups
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Maobius algebras

Assumption

C is a finite category and [C] is the finite set of isomorphism
classes of objects of C.

The rational Mébius algebra of C
M([C]; Q) is the Q-algebra with vector space basis [C] and

C(a,b-c)| = |C(a,b)[|C(a, c)l

Example (Burnside rings are special cases)

The Burnside ring of G is the M&bius algebra of the full orbit
category Og of G. The p-Burnside ring of G is the Mdbius
algebra of the orbit category O.

C =S5 Tg Fg Lo FS - . - are other possibilities.
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Unit, primitive idempotents, Mébius function [1] = ¢([C])~"

1= ek ey = Slalu((Cl(al. [b])
[a] [a]

The product K - K in the Mébius algebra M([C]; Q) is

SG KinNKs
T4 > K N K]
geG ( K)
1 w(H,
7ol 1@ 2 2 Ce(K)
HeOb( G) (91792)€G><GK6[H,K1Q‘QK292]

1 u(H, K)
fo gy, 2 M2 2 [opCe(K)
€0b( ) (g1 :92)EGX G Ke[H, K NKS2
FS > [K9 N K]

geKi1OPCq(K1)\G/K2OPCg(Kz)
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Integral product for Mébius algebras
Multiplication in the rational Mébius algebra M([C]; Q) restricts

M([C]; Z) x M([C]; Z) — M([C];Z), C =Sg5,Lg Fg Og, Oc,fg-

Corollary

The p-local Mébius algebras M([C]; Z)), C = Og, O, fg, are
commutative unital algebras.

Theorem (Diaz—Libman 2009 [ ])

There is an isomorphism of algebras

P([0Z], [FED): M([0]: Z(p)) = M([FEL: Zp))

given by an upper triangular nonnegative integral matrix.
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M([F4]; Q) for G = SLy(Fs), |G| = 24, at p = 2

Hs . - —Ho+2H;3 —5H, + 6H3
H, . . . 7H> —18H5 + 12H,

Note that coefficient sum always equals 1.

M(IFEl: Q) | Ha Hs Hy
H> Ho H> Ho
Hs - —Ho+2H;3 —5H, + 6H;
Hy : . 7H, — 18Hs + 12H,

1= 2H, + 1Hs + 75H, and the Euler characteristic x(F5) = 1
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