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Outline of talk

1 Euler characteristics of square matrices
Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit category O∗G

2 Möbius algebras

The Euler characteristic of a category C only depends on ζ(C)

C → ζ(C)→
k•C : C → Q
kC• : C → Q

→
∑

b

kb
C = χ(C) =

∑
a

kCa

Example (The Euler characteristic of a one-object category)

χ(G) = |G|−1
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Summary of main results [3]

SG Poset of p-subgroups
FG Fusion category of p-subgroups
OG Orbit category of p-subgroups

C χ(C) χ(C)

S∗G
∑

[H]>1−χ̃(S∗OG(H))
∑

K>1−µ(K )

F∗G
∑

[H]>1
∑

x∈CNG(H)(H)

−eχ(S∗CNG(H)(x)/H
)

|NG(H)|
∑

[K ]>1
−µ(K )
|F∗G(K )|

OG
∑

[H]≥1

−eχ(S∗OG(H)
)

|OG(H)|
1+(p−1)

P
|C|

p|G|
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

Weightings and coweightings for a square matrix ζ

Definition
A weighting for ζ is a column vector (k•ζ ) such that

(
ζ(a,b)

)
(kb
ζ ) =

1
...
1


A coweighting for ζ is a row vector (kζ• ) such that

(kζa )
(
ζ(a,b)

)
=
(
1 · · · 1

)
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

A matrix may have none or many (co)weightings
If
(
µ(a,b)

)
is an inverse to

(
ζ(a,b)

)
then

(
ka
ζ

)
=
(
µ(a,b)

)1
...
1

 =
(∑

b

µ(a,b)
)

(row sums)

(
kζb
)

=
(
1 · · · 1

) (
µ(a,b)

)
=
(∑

a

µ(a,b)
)

(column sums)

are the unique weighting and coweighting for ζ
ζ =

(
1 1
1 1

)
(not invertible) has weighting and coweighting

ζ =
(

1 2
1 2

)
has a weighting but no coweighting
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

If ζ admits both a weighting k•ζ and a coweighting kζ• then the
sum of their values agree∑

b

kb
ζ =

∑
b

(∑
a

kζaζ(a,b))
)
kb
ζ =

∑
a

kζa
(∑

b

ζ(a,b)kb
ζ

)
=
∑

a

kζa

Definition (The Euler characteristic of a matrix (Leinster 2008))∑
b

kb
ζ = χ(ζ) =

∑
a

kζa

If ζ is invertible then

χ(ζ) =
∑

b

kb
ζ =

∑
a,b

µ(C)(a,b) =
∑

a

kζa , µ(C) = ζ(C)−1
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

Definition (The incidence matrix of a finite category C)

ζ(C) =
(
ζ(a,b)

)
a,b∈C ζ(a,b) = |C(a,b)|

Definition ((Reduced) Euler characteristic of a category via
ζ(C))

χ(C) = χ(ζ(C)) =
∑

b

kb
ζ(C) =

∑
a

kζ(C)a

χ̃(C) = χ(C)− 1

Proposition (Invarians under equivalence (Leinster 2008 [2]))

If there is an adjunction C //Doo then χ(C) = χ(D)

If C has an initial or terminal element then χ(C) = 1
If C and D are equivalent then χ(C) = χ(D)
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

Euler characteristic of a finite poset

Definition (Incidence and Möbius matrix of a finite poset S)

ζ(S) =
(
ζ(a,b)

)
a,b∈S ζ(a,b) =

{
1 a ≤ b
0 otherwise

µ(S) = ζ(S)−1

Definition (The Euler characteristic of a finite poset S)

χ(S) = χ(ζ(S)) =
∑

a,b∈S
µ(S)(a,b) =

∑
b

kb
S =

∑
a

kSa

kb
S =

∑
a

µ(S)(a,b) kSa =
∑

b

µ(S)(a,b)
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

Example (A poset with a terminal element)

a b

c d

e









44444

44444















44444

ζ(S) =

( 1 0 1 0 1
0 1 1 1 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

)

µ(S) =

 1 0 −1 0 0
0 1 −1 −1 1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1


χ(S) = χ(ζ(S)) = 1

Question
What is the relation between the combinatorial Euler
characteristic χ(S) and the topological Euler characteristic
χ(BS)?
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

Definition (Simplices in a poset)
A k -simplex, k ≥ 0, (from a to b) is a totally ordered subset of
k + 1 points (with a as smallest and b as greatest element).

Example ((ζ − E)k counts k -simplices)

0-simplices

( 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
= (ζ − E)0

1-simplices

( 0 0 1 0 1
0 0 1 1 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

)
= (ζ − E)1

2-simplices

( 0 0 0 0 1
0 0 0 0 2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
= (ζ − E)2

a b

c d

e








44444

44444














44444
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

Counting simplices in poset S
(ζ − E)k (a,b) = #{k -simplices from a to b} (k ≥ 0)∑

a,b(ζ − E)k (a,b) = #{k -simplices in S} (k ≥ 0)

Topological Euler characteristic of the realization BS

χ(BS) =
∞∑

k=0

(−1)k#{k -simplices in S}

=
∞∑

k=0

(−1)k
∑

a,b∈S
(ζ − E)k (a,b)

=
∑
a,b

∞∑
k=0

(−1)k (ζ − E)k (a,b)

=
∑
a,b

ζ−1(a,b) =
∑
a,b

µ(a,b) = χ(S)

x−1 = (1 + (x − 1))−1 =
P∞

k=0(−1)k (x − 1)k
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

µ(a,b) depends only on the interval [a,b]

µ(a,b) =


1 a = b
χ̃(a,b) a < b
0 a � b

Proof in case a < b

µ(a,b) =
∞∑

k=0

(−1)k (ζ − E)k (a,b)

= 0 + (−1) +
∞∑

k=2

(−1)k (ζ − E)k (a,b)

= −1 +
∞∑

k=0

#{k -simplices in (a,b)} = χ̃(a,b)
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

The subgroup posets SG and S∗G at p

Assumptions
G is a finite group and p is a prime number

The posets SG and S∗G
SG is the poset of all p-subgroups of G
S∗G is the Brown poset of nonidentity p-subgroups of G

χ(SG) = 1 because SG has initial element 1
What is χ(S∗G)? Find a weighting and a coweighting!
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

The Möbius function µ(K ) for finite p-group K

µ(K ) =

{
(−1)np(n

2) K elementary abelian, |K | = pn

0 otherwise

(Co)Weighting and Euler characteristic for SG and S∗G

kH
S = −χ̃(S∗NG(H)/H), kSK = −µ(K )∑

H>1

−χ̃(S∗NG(H)/H) = χ(S∗G) =
∑
K>1

−µ(K )

Reformulation∑
H≥1

−χ̃(S∗NG(H)/H) = 1,
∑
K≥1

µ(K ) = −χ̃(S∗G)
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

The poset S∗G knows
the elementary abelian p-subgroups
the p-radical p-subgroups (Strong Quillen Conjecture!)

Example (Symmetric and alternating groups at p = 2)

n 4 5 6 7 8 9 10
χ(S∗Sn

) 1 −15 −15 161 513 −639 −7935
χ(S∗An

) 1 5 −15 −175 65 5121 15105

Example (Alternating groups at p = 3)

n 4 5 6 7 8 9 10
χ(S∗An

) 4 10 10 −35 −224 −2996 −24380
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

What is known about χ(S∗G)?

Product formula

−χ̃(S∗Qn
i=1 Gi

) =
n∏

i=1

−χ̃(S∗Gi
)

Theorem (Brown 1975, Quillen 1978)

−χ̃(S∗G) is divisible by |G|p

Theorem (Quillen 1978)
If G has a nonidentity normal p-subgroup then S∗G ' ∗

Strong Quillen Conjecture

OpG > 1 ⇐⇒ χ̃(S∗G) = 0
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

What is unknown about χ(S∗G)!

(Euler characteristics of Chevalley groups) Is
−χ̃(S∗Gn(q)) = (−1)nq#{positive roots} for G = A,B,C,D,E?

(Euler characteristics of alternating groups) Describe the
sequence n→ χ(S∗An

)

(Original Quillen conjecture 1978) OpG > 1 ⇐⇒ S∗G ' ∗
(Strong Quillen conjecture) OpG > 1 ⇐⇒ χ̃(S∗G) = 0
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

The p-subgroup categories FG and F∗G

Assumptions
G is a finite group and p is a prime number

The fusion categories FG and F∗G at p

FG is the fusion category of all p-subgroups of G
F∗G is the fusion category of nonidentity p-subgroups of G

FG is a finite category with morphism sets

FG(H,K ) = CG(H)\NG(H,K ), FG(H) = CG(H)\NG(H)

χ(FG) = 1 as FG has initial element 1
What is χ(F∗G)? We need a weighting and a coweighting!
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

Example (Skeletal subcategory of F∗A6
, p = 2)

e

4
��

b6 99

6���

??���

c6 99

6???

__???

d 2ee

2OOOOOOO

ggOOOOOOO

a

1

YY

3???

__???
3���

??���
1ooooooo

77ooooooo

5

OO

ζ(F∗A6
) =


1 3 3 1 5
0 6 0 0 6
0 0 6 0 6
0 0 0 2 2
0 0 0 0 4



k•F∗A6
=

 0
−1/12
−1/12

1/4
1/4

 k
F∗A6
• = ( 1 −1/3 −1/3 0 0 ) χ(F∗A6

) = 1/3
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

Weighting, coweighting, and Euler characteristic of F∗G

kH
F =

1
|G|

∑
x∈CG(H)

−χ̃(S∗CNG(H)(x)/H), kFK = − 1
|G|

µ(K )|CG(K )|

1
|G|

∑
H>1

∑
x∈CG(H)

−χ̃(S∗CNG(H)(x)/H) = χ(F∗G) =
∑

[K ]>1

−µ(K )

|F∗G(K )|

Reformulation

∑
H≥1

∑
x∈CG(H)

−χ̃(S∗CNG(H)(x)/H) = |G|,
∑

[K ]≥1

−µ(K )

|F∗G(K )|
= χ̃(F∗G)

The category F∗G knows the elementary abelian
p-subgroups
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

What is known about χ(F∗G)?

Product formula

−χ̃(F∗Qn
i=1 Gi

) =
n∏

i=1

−χ̃(F∗Gi
)

Proposition

If G has a nonidentity central p-subgroup then χ̃(F∗G) = 0
|G|p′ · χ(F∗G) ∈ Z

χ(F∗G) =
|{ϕ ∈ F∗G(P) | CP(ϕ) > 1}

|F∗G(P)|
when P, the Sylow

p-subgroup, is abelian.
χ(F∗G) = χ(F a

G) and χ(F∗G) = χ(F̃∗G)
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

Example (Alternating groups An at p = 2)

n χ(S∗An
) χ(F∗An

)

4 1 1/3
5 5 1/3
6 −15 1/3
7 −175 1/3
8 68 41/63
9 5121 41/63

n χ(S∗An
) χ(F∗An

)

10 55105 18/35
11 55935 18/35
12 −288255 389/567
13 1626625 389/567
14 23664641 233/405
15 150554625 233/405

Example (The smallest group with χ(F∗G) > 1)

There is a group G = C4
2 o H, where H = (C3 × C3)o C2, of

order |G| = 288 with Euler characteristic χ(F∗G) = 10/9 at
p = 2.
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

What is unknown about χ(F∗G)

Are F∗G and Fa
G homotopy equivalent? Yes!

Are F∗G and F̃∗G homotopy equivalent?
Is χ(F∗G) always positive when p divides the order of G?
Can χ(F∗G) get arbitrarily large?
What is χ(F∗An

)? Does it converge for n→∞?
What is χ(F∗SLn(Fq))?

Is there a |G|p′-fold covering map E → BF∗G where E is
(homotopy) finite and χ(E) = |G|p′χ(F∗G)?
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

Categories of centric subgroups

Definition
The p-subgroup H ≤ G is p-centric if p - |CG(H) : CH(H)|

Example (Euler characteristics of centric subgroup categories
for alternating groups at p = 2)

n 4 5 6 7 8 9 10 11
|An|χ(Lc

An
) 1 5 −15 −105 65 585 11745 129195

χ(Sc
An

) 1 5 −15 −175 65 585 11745 107745
χ(Lc

An
) 1/12 −1/24 13/4032 29/4480

χ(Fc
An

) 1/3 1/3 13/63 19/105
χ(F̃c

An
) 1/3 1/3 13/63 19/105
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

Weighting and Euler characteristic for F̃c
G

|G : NG(H)|kHeFc
G

=
−χ̃(S∗eFc

G(H)
)

|F̃c
G(H)|

∈ Z(p)

χ(F̃c
G) =

∑
[H]

−χ̃(S∗eFc
G(H)

)

|F̃c
G(H)|

The category F̃c
G knows the p-selfcentralizing FG-radical

p-subgroups

Conjecture

χ(Fc
G) = χ(F̃c

G)
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

The p-subgroup categories OG and O∗G

Assumptions
G is a finite group and p is a prime number

The orbit categories OG and O∗G at p

OG is the orbit category of all p-subgroups of G
O∗G is the orbit category of nonidentity p-subgroups of G

OG is a finite category with morphism sets

OG(H,K ) = NG(H,K )/K , OG(H) = NG(H)/H
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Euler characteristic of the poset S∗G
Euler characteristic of the fusion category F∗G
Euler characteristic of the orbit categoryO∗G

Weighting and Euler characteristic of orbit category OG

|G : NG(H)|kH
O =

−χ̃(S∗OG(H))

|OG(H)|∑
[H]

−χ̃(S∗OG(H))

|OG(H)|
= χ(OG) =

1 + (p − 1)
∑
|C|

p|G|

Corollary

|G|p′ |G : NG(H)|kH
O ∈ Z, (1− p)

∑
1≤C≤G

|C| ≡ 1 mod p|G|p

The category OG knows the p-radical p-subgroups
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Möbius algebras

Assumption

C is a finite category and [C ] is the finite set of isomorphism
classes of objects of C .

The rational Möbius algebra of C
M([C ]; Q) is the Q-algebra with vector space basis [C ] and

|C(a,b · c)| = |C(a,b)||C(a, c)|

Example (Burnside rings are special cases)

The Burnside ring of G is the Möbius algebra of the full orbit
category OG of G. The p-Burnside ring of G is the Möbius
algebra of the orbit category OG.

C = SG, TG,FG,LG, F̃
c
G, . . . are other possibilities.
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Unit, primitive idempotents, Möbius function [µ] = ζ([C])−1

1 =
∑
[a]

[a]k [a]
[C] , e[b] =

∑
[a]

[a]µ([C])([a], [b])

The product K1 · K2 in the Möbius algebra M([C]; Q) is

SG K1 ∩ K2

TG

∑
g∈G

[K g
1 ∩ K2]

FG
1
|G|

∑
H∈Ob(FG)

[H]
∑

(g1,g2)∈G×G

∑
K∈[H,K

g1
1 ∩K

g2
2 ]

µ(H,K )

|CG(K )|

LG
1
|G|

∑
H∈Ob(FG)

[H]
∑

(g1,g2)∈G×G

∑
K∈[H,K

g1
1 ∩K

g2
2 ]

µ(H,K )

|OpCG(K )|

F̃c
G

∑
g∈K1OpCG(K1)\G/K2OpCG(K2)

[K g
1 ∩ K2]
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Integral product for Möbius algebras

Multiplication in the rational Möbius algebra M([C]; Q) restricts

M([C]; Z)×M([C]; Z)→ M([C]; Z), C = SG,LG,FG,OG,O
c
G, F̃

c
G

Corollary

The p-local Möbius algebras M([C]; Z(p)), C = OG,O
c
G, F̃

c
G, are

commutative unital algebras.

Theorem (Diaz–Libman 2009 [1] )
There is an isomorphism of algebras

ϕ([Oc
G], [F̃c

G]) : M([Oc
G]; Z(p))

∼=−→ M([F̃c
G]; Z(p))

given by an upper triangular nonnegative integral matrix.
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M([FG]; Q) for G = SL2(F3), |G| = 24, at p = 2

M([FG]; Q) H1 H2 H3 H4
H1 H1 H1 H1 H1
H2 · H2 H2 H2
H3 · · −H2 + 2H3 −5H2 + 6H3
H4 · · · 7H2 − 18H3 + 12H4

Note that coefficient sum always equals 1.

M([F∗G]; Q) H2 H3 H4
H2 H2 H2 H2
H3 · −H2 + 2H3 −5H2 + 6H3
H4 · · 7H2 − 18H3 + 12H4

1 = 2
3H2 + 1

4H3 + 1
12H4 and the Euler characteristic χ(F∗G) = 1
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