

Euler characteristics of finite categories

With applications to p -subgroup categories

Martin Wedel Jacobsen and Jesper Michael Møller

University of Copenhagen

SYM lecture, September 14, 2011

Outline of talk

1 Euler characteristics of square matrices

- Euler characteristic of the poset S_G^*
- Euler characteristic of the fusion category \mathcal{F}_G^*
- Euler characteristic of the orbit category \mathcal{O}_G^*

2 Möbius algebras

The Euler characteristic of a category \mathcal{C} only depends on $\zeta(\mathcal{C})$

$$\mathcal{C} \rightarrow \zeta(\mathcal{C}) \rightarrow \begin{matrix} k_{\mathcal{C}}^{\bullet} : \mathcal{C} \rightarrow \mathbf{Q} \\ k_{\bullet}^{\mathcal{C}} : \mathcal{C} \rightarrow \mathbf{Q} \end{matrix} \rightarrow \sum_b k_{\mathcal{C}}^b = \chi(\mathcal{C}) = \sum_a k_a^{\mathcal{C}}$$

Example (The Euler characteristic of a one-object category)

$$\chi(G) = |G|^{-1}$$

Summary of main results [3]

 \mathcal{S}_G Poset of p -subgroups \mathcal{F}_G Fusion category of p -subgroups \mathcal{O}_G Orbit category of p -subgroups

\mathcal{C}	$\chi(\mathcal{C})$	$\chi(\mathcal{C})$
\mathcal{S}_G^*	$\sum_{[H]>1} -\tilde{\chi}(\mathcal{S}_{\mathcal{O}_G(H)}^*)$	$\sum_{K>1} -\mu(K)$
\mathcal{F}_G^*	$\sum_{[H]>1} \sum_{x \in C_{N_G(H)}(H)} \frac{-\tilde{\chi}(\mathcal{S}_{C_{N_G(H)}(x)/H}^*)}{ N_G(H) }$	$\sum_{[K]>1} \frac{-\mu(K)}{ \mathcal{F}_G^*(K) }$
\mathcal{O}_G	$\sum_{[H]\geq 1} \frac{-\tilde{\chi}(\mathcal{S}_{\mathcal{O}_G(H)}^*)}{ \mathcal{O}_G(H) }$	$\frac{1+(p-1)\sum \mathcal{C} }{p G }$

Weightings and coweightings for a square matrix ζ

Definition

A **weighting** for ζ is a column vector (k_ζ^\bullet) such that

$$(\zeta(a, b))(k_\zeta^b) = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

A **coweighting** for ζ is a row vector (k_a^ζ) such that

$$(k_a^\zeta)(\zeta(a, b)) = (1 \quad \cdots \quad 1)$$

- A matrix may have none or many (co)weightings
- If $(\mu(a, b))$ is an inverse to $(\zeta(a, b))$ then

$$(k_\zeta^a) = (\mu(a, b)) \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \left(\sum_b \mu(a, b) \right) \quad (\text{row sums})$$

$$(k_b^\zeta) = (1 \quad \cdots \quad 1) (\mu(a, b)) = \left(\sum_a \mu(a, b) \right) \quad (\text{column sums})$$

are the **unique** weighting and coweighting for ζ

- $\zeta = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (not invertible) has weighting and coweighting
- $\zeta = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ has a weighting but no coweighting

If ζ admits both a weighting k_ζ^\bullet and a coweighting k_ζ^ζ then the sum of their values agree

$$\sum_b k_\zeta^b = \sum_b \left(\sum_a k_a^\zeta \zeta(a, b) \right) k_\zeta^b = \sum_a k_a^\zeta \left(\sum_b \zeta(a, b) k_\zeta^b \right) = \sum_a k_a^\zeta$$

Definition (The Euler characteristic of a matrix (Leinster 2008))

$$\sum_b k_\zeta^b = \chi(\zeta) = \sum_a k_a^\zeta$$

If ζ is invertible then

$$\chi(\zeta) = \sum_b k_\zeta^b = \sum_{a,b} \mu(\mathcal{C})(a, b) = \sum_a k_a^\zeta, \quad \mu(\mathcal{C}) = \zeta(\mathcal{C})^{-1}$$

Definition (The incidence matrix of a finite category \mathcal{C})

$$\zeta(\mathcal{C}) = (\zeta(a, b))_{a, b \in \mathcal{C}} \quad \zeta(a, b) = |\mathcal{C}(a, b)|$$

Definition ((Reduced) Euler characteristic of a category via $\zeta(\mathcal{C})$)

$$\begin{aligned}\chi(\mathcal{C}) &= \chi(\zeta(\mathcal{C})) = \sum_b k_{\zeta(\mathcal{C})}^b = \sum_a k_a^{\zeta(\mathcal{C})} \\ \tilde{\chi}(\mathcal{C}) &= \chi(\mathcal{C}) - 1\end{aligned}$$

Proposition (Invariants under equivalence (Leinster 2008 [2]))

- If there is an adjunction $\mathcal{C} \rightleftarrows \mathcal{D}$ then $\chi(\mathcal{C}) = \chi(\mathcal{D})$
- If \mathcal{C} has an initial or terminal element then $\chi(\mathcal{C}) = 1$
- If \mathcal{C} and \mathcal{D} are equivalent then $\chi(\mathcal{C}) = \chi(\mathcal{D})$

Euler characteristic of a finite poset

Definition (Incidence and Möbius matrix of a finite poset \mathcal{S})

$$\zeta(\mathcal{S}) = (\zeta(a, b))_{a, b \in \mathcal{S}} \quad \zeta(a, b) = \begin{cases} 1 & a \leq b \\ 0 & \text{otherwise} \end{cases}$$

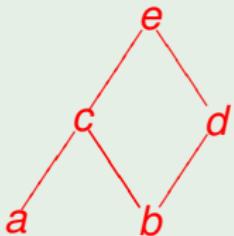
$$\mu(\mathcal{S}) = \zeta(\mathcal{S})^{-1}$$

Definition (The Euler characteristic of a finite poset \mathcal{S})

$$\chi(\mathcal{S}) = \chi(\zeta(\mathcal{S})) = \sum_{a, b \in \mathcal{S}} \mu(\mathcal{S})(a, b) = \sum_b k_{\mathcal{S}}^b = \sum_a k_a^{\mathcal{S}}$$

$$k_{\mathcal{S}}^b = \sum_a \mu(\mathcal{S})(a, b) \quad k_a^{\mathcal{S}} = \sum_b \mu(\mathcal{S})(a, b)$$

Example (A poset with a terminal element)



$$\zeta(\mathcal{S}) = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\mu(\mathcal{S}) = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\chi(\mathcal{S}) = \chi(\zeta(\mathcal{S})) = 1$$

Question

What is the relation between the combinatorial Euler characteristic $\chi(\mathcal{S})$ and the topological Euler characteristic $\chi(B\mathcal{S})$?

Definition (Simplices in a poset)

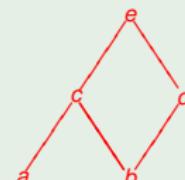
A k -simplex, $k \geq 0$, (from a to b) is a totally ordered subset of $k + 1$ points (with a as smallest and b as greatest element).

Example $((\zeta - E)^k$ counts k -simplices)

0-simplices $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = (\zeta - E)^0$

1-simplices $\begin{pmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = (\zeta - E)^1$

2-simplices $\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = (\zeta - E)^2$



Counting simplices in poset \mathcal{S}

$$(\zeta - E)^k(a, b) = \#\{k\text{-simplices from } a \text{ to } b\} \quad (k \geq 0)$$

$$\sum_{a,b} (\zeta - E)^k(a, b) = \#\{k\text{-simplices in } \mathcal{S}\} \quad (k \geq 0)$$

Topological Euler characteristic of the realization $B\mathcal{S}$

$$\begin{aligned} \chi(B\mathcal{S}) &= \sum_{k=0}^{\infty} (-1)^k \#\{k\text{-simplices in } \mathcal{S}\} \\ &= \sum_{k=0}^{\infty} (-1)^k \sum_{a,b \in \mathcal{S}} (\zeta - E)^k(a, b) \\ &= \sum_{a,b} \sum_{k=0}^{\infty} (-1)^k (\zeta - E)^k(a, b) \quad x^{-1} = (1 + (x - 1))^{-1} = \sum_{k=0}^{\infty} (-1)^k (x - 1)^k \\ &= \sum_{a,b} \zeta^{-1}(a, b) = \sum_{a,b} \mu(a, b) = \chi(\mathcal{S}) \end{aligned}$$

$\mu(a, b)$ depends only on the interval $[a, b]$

$$\mu(a, b) = \begin{cases} 1 & a = b \\ \tilde{\chi}(a, b) & a < b \\ 0 & a \not\leq b \end{cases}$$

Proof in case $a < b$

$$\begin{aligned} \mu(a, b) &= \sum_{k=0}^{\infty} (-1)^k (\zeta - E)^k (a, b) \\ &= 0 + (-1) + \sum_{k=2}^{\infty} (-1)^k (\zeta - E)^k (a, b) \\ &= -1 + \sum_{k=0}^{\infty} \#\{k\text{-simplices in } (a, b)\} = \tilde{\chi}(a, b) \end{aligned}$$

The subgroup posets \mathcal{S}_G and \mathcal{S}_G^* at p

Assumptions

G is a finite group and p is a prime number

The posets \mathcal{S}_G and \mathcal{S}_G^*

- \mathcal{S}_G is the poset of **all** p -subgroups of G
- \mathcal{S}_G^* is the Brown poset of **nonidentity** p -subgroups of G

- $\chi(\mathcal{S}_G) = 1$ because \mathcal{S}_G has initial element 1
- What is $\chi(\mathcal{S}_G^*)$? Find a weighting and a coweighting!

The Möbius function $\mu(K)$ for finite p -group K

$$\mu(K) = \begin{cases} (-1)^n p^{\binom{n}{2}} & K \text{ elementary abelian, } |K| = p^n \\ 0 & \text{otherwise} \end{cases}$$

(Co)Weighting and Euler characteristic for \mathcal{S}_G and \mathcal{S}_G^*

$$k_{\mathcal{S}}^H = -\tilde{\chi}(\mathcal{S}_{N_G(H)/H}^*), \quad k_K^{\mathcal{S}} = -\mu(K)$$

$$\sum_{H>1} -\tilde{\chi}(\mathcal{S}_{N_G(H)/H}^*) = \chi(\mathcal{S}_G^*) = \sum_{K>1} -\mu(K)$$

Reformulation

$$\sum_{H \geq 1} -\tilde{\chi}(\mathcal{S}_{N_G(H)/H}^*) = 1, \quad \sum_{K \geq 1} \mu(K) = -\tilde{\chi}(\mathcal{S}_G^*)$$

The **poset** \mathcal{S}_G^* knows

- the elementary abelian p -subgroups
- the p -radical p -subgroups (Strong Quillen Conjecture!)

Example (Symmetric and alternating groups at $p = 2$)

n	4	5	6	7	8	9	10
$\chi(\mathcal{S}_{S_n}^*)$	1	-15	-15	161	513	-639	-7935
$\chi(\mathcal{S}_{A_n}^*)$	1	5	-15	-175	65	5121	15105

Example (Alternating groups at $p = 3$)

n	4	5	6	7	8	9	10
$\chi(\mathcal{S}_{A_n}^*)$	4	10	10	-35	-224	-2996	-24380

What is known about $\chi(\mathcal{S}_G^*)$?

Product formula

$$-\tilde{\chi}(\mathcal{S}_{\prod_{i=1}^n G_i}^*) = \prod_{i=1}^n -\tilde{\chi}(\mathcal{S}_{G_i}^*)$$

Theorem (Brown 1975, Quillen 1978)

$-\tilde{\chi}(\mathcal{S}_G^*)$ is divisible by $|G|_p$

Theorem (Quillen 1978)

If G has a nonidentity **normal** p -subgroup then $\mathcal{S}_G^* \simeq *$

Strong Quillen Conjecture

$$O_p G > 1 \iff \tilde{\chi}(\mathcal{S}_G^*) = 0$$

What is unknown about $\chi(\mathcal{S}_G^*)$!

- (Euler characteristics of Chevalley groups) Is $-\tilde{\chi}(\mathcal{S}_{G_n(q)}^*) = (-1)^n q^{\#\{\text{positive roots}\}}$ for $G = A, B, C, D, E$?
- (Euler characteristics of alternating groups) Describe the sequence $n \rightarrow \chi(\mathcal{S}_{A_n}^*)$
- (Original Quillen conjecture 1978) $O_p G > 1 \iff \mathcal{S}_G^* \simeq *$
- (Strong Quillen conjecture) $O_p G > 1 \iff \tilde{\chi}(\mathcal{S}_G^*) = 0$

The p -subgroup categories \mathcal{F}_G and \mathcal{F}_G^*

Assumptions

G is a finite group and p is a prime number

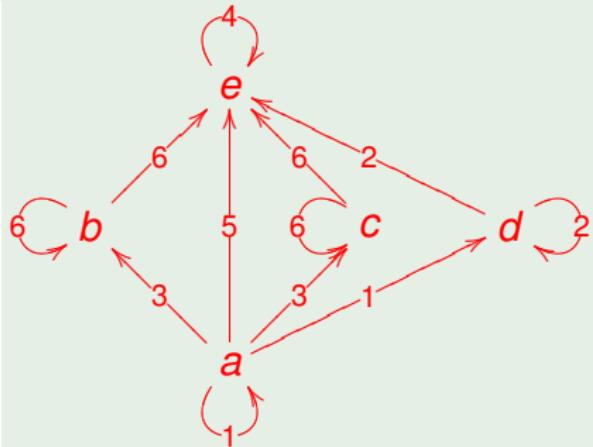
The fusion categories \mathcal{F}_G and \mathcal{F}_G^* at p

- \mathcal{F}_G is the fusion category of **all** p -subgroups of G
- \mathcal{F}_G^* is the fusion category of **nonidentity** p -subgroups of G
- \mathcal{F}_G is a finite category with morphism sets

$$\mathcal{F}_G(H, K) = C_G(H) \setminus N_G(H, K), \quad \mathcal{F}_G(H) = C_G(H) \setminus N_G(H)$$

- $\chi(\mathcal{F}_G) = 1$ as \mathcal{F}_G has initial element 1
- What is $\chi(\mathcal{F}_G^*)$? We need a weighting and a coweighting!

Example (Skeletal subcategory of $\mathcal{F}_{A_6}^*$, $p = 2$)



$$\zeta(\mathcal{F}_{A_6}^*) = \begin{pmatrix} 1 & 3 & 3 & 1 & 5 \\ 0 & 6 & 0 & 0 & 6 \\ 0 & 0 & 6 & 0 & 6 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

$$k_{\mathcal{F}_{A_6}^*}^\bullet = \begin{pmatrix} 0 \\ -1/12 \\ -1/12 \\ 1/4 \\ 1/4 \end{pmatrix} \quad k_{\bullet}^{\mathcal{F}_{A_6}^*} = (1 \ -1/3 \ -1/3 \ 0 \ 0) \quad \chi(\mathcal{F}_{A_6}^*) = 1/3$$

Weighting, coweighting, and Euler characteristic of \mathcal{F}_G^*

$$k_{\mathcal{F}}^H = \frac{1}{|G|} \sum_{x \in C_G(H)} -\tilde{\chi}(\mathcal{S}_{C_{N_G(H)}(x)/H}^*), \quad k_{\mathcal{K}}^{\mathcal{F}} = -\frac{1}{|G|} \mu(K) |C_G(K)|$$

$$\frac{1}{|G|} \sum_{H > 1} \sum_{x \in C_G(H)} -\tilde{\chi}(\mathcal{S}_{C_{N_G(H)}(x)/H}^*) = \chi(\mathcal{F}_G^*) = \sum_{[K] > 1} \frac{-\mu(K)}{|\mathcal{F}_G^*(K)|}$$

Reformulation

$$\sum_{H \geq 1} \sum_{x \in C_G(H)} -\tilde{\chi}(\mathcal{S}_{C_{N_G(H)}(x)/H}^*) = |G|, \quad \sum_{[K] \geq 1} \frac{-\mu(K)}{|\mathcal{F}_G^*(K)|} = \tilde{\chi}(\mathcal{F}_G^*)$$

- The **category** \mathcal{F}_G^* knows the elementary abelian p -subgroups

What is known about $\chi(\mathcal{F}_G^*)$?

Product formula

$$-\tilde{\chi}(\mathcal{F}_{\prod_{i=1}^n G_i}^*) = \prod_{i=1}^n -\tilde{\chi}(\mathcal{F}_{G_i}^*)$$

Proposition

- If G has a nonidentity **central** p -subgroup then $\tilde{\chi}(\mathcal{F}_G^*) = 0$
- $|G|_{p'} \cdot \chi(\mathcal{F}_G^*) \in \mathbf{Z}$
- $\chi(\mathcal{F}_G^*) = \frac{|\{\varphi \in \mathcal{F}_G^*(P) \mid C_P(\varphi) > 1\}|}{|\mathcal{F}_G^*(P)|}$ when P , the Sylow p -subgroup, is abelian.
- $\chi(\mathcal{F}_G^*) = \chi(\mathcal{F}_G^a)$ and $\chi(\mathcal{F}_G^*) = \chi(\tilde{\mathcal{F}}_G^*)$

Example (Alternating groups A_n at $p = 2$)

n	$\chi(\mathcal{S}_{A_n}^*)$	$\chi(\mathcal{F}_{A_n}^*)$
4	1	1/3
5	5	1/3
6	-15	1/3
7	-175	1/3
8	68	41/63
9	5121	41/63

n	$\chi(\mathcal{S}_{A_n}^*)$	$\chi(\mathcal{F}_{A_n}^*)$
10	55105	18/35
11	55935	18/35
12	-288255	389/567
13	1626625	389/567
14	23664641	233/405
15	150554625	233/405

Example (The smallest group with $\chi(\mathcal{F}_G^*) > 1$)

There is a group $G = C_2^4 \rtimes H$, where $H = (C_3 \times C_3) \rtimes C_2$, of order $|G| = 288$ with Euler characteristic $\chi(\mathcal{F}_G^*) = 10/9$ at $p = 2$.

What is unknown about $\chi(\mathcal{F}_G^*)$

- Are \mathcal{F}_G^* and \mathcal{F}_G^a homotopy equivalent? **Yes!**
- Are \mathcal{F}_G^* and $\tilde{\mathcal{F}}_G^*$ homotopy equivalent?
- Is $\chi(\mathcal{F}_G^*)$ always positive when p divides the order of G ?
- Can $\chi(\mathcal{F}_G^*)$ get arbitrarily large?
- What is $\chi(\mathcal{F}_{A_n}^*)$? Does it converge for $n \rightarrow \infty$?
- What is $\chi(\mathcal{F}_{\mathrm{SL}_n(\mathbb{F}_q)}^*)$?
- Is there a $|G|_{p'}$ -fold covering map $E \rightarrow B\mathcal{F}_G^*$ where E is (homotopy) finite and $\chi(E) = |G|_{p'}\chi(\mathcal{F}_G^*)$?

Categories of centric subgroups

Definition

The p -subgroup $H \leq G$ is p -centric if $p \nmid |C_G(H) : C_H(H)|$

Example (Euler characteristics of centric subgroup categories for alternating groups at $p = 2$)

n	4	5	6	7	8	9	10	11
$ A_n \chi(\mathcal{L}_{A_n}^c)$	1	5	-15	-105	65	585	11745	129195
$\chi(\mathcal{S}_{A_n}^c)$	1	5	-15	-175	65	585	11745	107745
$\chi(\mathcal{L}_{A_n}^c)$	1/12		-1/24		13/4032		29/4480	
$\chi(\mathcal{F}_{A_n}^c)$	1/3		1/3		13/63		19/105	
$\chi(\widetilde{\mathcal{F}}_{A_n}^c)$	1/3		1/3		13/63		19/105	

Weighting and Euler characteristic for $\tilde{\mathcal{F}}_G^c$

$$|G: N_G(H)|k_{\tilde{\mathcal{F}}_G^c}^H = \frac{-\tilde{\chi}(\mathcal{S}_{\tilde{\mathcal{F}}_G^c(H)}^*)}{|\tilde{\mathcal{F}}_G^c(H)|} \in \mathbf{Z}_{(p)}$$
$$\chi(\tilde{\mathcal{F}}_G^c) = \sum_{[H]} \frac{-\tilde{\chi}(\mathcal{S}_{\tilde{\mathcal{F}}_G^c(H)}^*)}{|\tilde{\mathcal{F}}_G^c(H)|}$$

- The **category** $\tilde{\mathcal{F}}_G^c$ knows the p -selfcentralizing \mathcal{F}_G -radical p -subgroups

Conjecture

$$\chi(\mathcal{F}_G^c) = \chi(\tilde{\mathcal{F}}_G^c)$$

The p -subgroup categories \mathcal{O}_G and \mathcal{O}_G^*

Assumptions

G is a finite group and p is a prime number

The orbit categories \mathcal{O}_G and \mathcal{O}_G^* at p

- \mathcal{O}_G is the orbit category of **all** p -subgroups of G
- \mathcal{O}_G^* is the orbit category of **nonidentity** p -subgroups of G
- \mathcal{O}_G is a finite category with morphism sets

$$\mathcal{O}_G(H, K) = N_G(H, K)/K, \quad \mathcal{O}_G(H) = N_G(H)/H$$

Weighting and Euler characteristic of orbit category \mathcal{O}_G

$$|G : N_G(H)|k_{\mathcal{O}}^H = \frac{-\tilde{\chi}(\mathcal{S}_{\mathcal{O}_G(H)}^*)}{|\mathcal{O}_G(H)|}$$
$$\sum_{[H]} \frac{-\tilde{\chi}(\mathcal{S}_{\mathcal{O}_G(H)}^*)}{|\mathcal{O}_G(H)|} = \chi(\mathcal{O}_G) = \frac{1 + (p-1) \sum |C|}{p|G|}$$

Corollary

$$|G|_p |G : N_G(H)|k_{\mathcal{O}}^H \in \mathbf{Z}, \quad (1-p) \sum_{1 \leq C \leq G} |C| \equiv 1 \pmod{p|G|_p}$$

- The **category** \mathcal{O}_G knows the p -radical p -subgroups

Möbius algebras

Assumption

\mathcal{C} is a finite category and $[\mathcal{C}]$ is the finite set of isomorphism classes of objects of \mathcal{C} .

The rational Möbius algebra of \mathcal{C}

$M([\mathcal{C}]; \mathbf{Q})$ is the \mathbf{Q} -algebra with vector space basis $[\mathcal{C}]$ and

$$|\mathcal{C}(a, b \cdot c)| = |\mathcal{C}(a, b)| |\mathcal{C}(a, c)|$$

Example (Burnside rings are special cases)

The **Burnside ring** of G is the Möbius algebra of the full orbit category $\overline{\mathcal{O}_G}$ of G . The **p -Burnside ring** of G is the Möbius algebra of the orbit category \mathcal{O}_G .

$\mathcal{C} = \mathcal{S}_G, \mathcal{T}_G, \mathcal{F}_G, \mathcal{L}_G, \tilde{\mathcal{F}}_G^c, \dots$ are other possibilities.

Unit, primitive idempotents, Möbius function $[\mu] = \zeta([\mathcal{C}])^{-1}$

$$1 = \sum_{[a]} [a] k_{[\mathcal{C}]}^{[a]}, \quad e_{[b]} = \sum_{[a]} [a] \mu([\mathcal{C}]) ([a], [b])$$

The product $K_1 \cdot K_2$ in the Möbius algebra $M([\mathcal{C}]; \mathbf{Q})$ is

$$\begin{array}{c|c}
 \mathcal{S}_G & K_1 \cap K_2 \\
 \mathcal{T}_G & \sum_{g \in G} [K_1^g \cap K_2] \\
 \mathcal{F}_G & \frac{1}{|G|} \sum_{H \in \text{Ob}(\mathcal{F}_G)} [H] \sum_{(g_1, g_2) \in G \times G} \sum_{K \in [H, K_1^{g_1} \cap K_2^{g_2}]} \frac{\mu(H, K)}{|C_G(K)|} \\
 \mathcal{L}_G & \frac{1}{|G|} \sum_{H \in \text{Ob}(\mathcal{F}_G)} [H] \sum_{(g_1, g_2) \in G \times G} \sum_{K \in [H, K_1^{g_1} \cap K_2^{g_2}]} \frac{\mu(H, K)}{|O^p C_G(K)|} \\
 \widetilde{\mathcal{F}}_G^c & \sum_{g \in K_1 O^p C_G(K_1) \setminus G / K_2 O^p C_G(K_2)} [K_1^g \cap K_2]
 \end{array}$$

Integral product for Möbius algebras

Multiplication in the rational Möbius algebra $M([\mathcal{C}]; \mathbf{Q})$ restricts $M([\mathcal{C}]; \mathbf{Z}) \times M([\mathcal{C}]; \mathbf{Z}) \rightarrow M([\mathcal{C}]; \mathbf{Z})$, $\mathcal{C} = \mathcal{S}_G, \mathcal{L}_G, \mathcal{F}_G, \mathcal{O}_G, \mathcal{O}_G^c, \tilde{\mathcal{F}}_G^c$

Corollary

The p -local Möbius algebras $M([\mathcal{C}]; \mathbf{Z}_{(p)})$, $\mathcal{C} = \mathcal{O}_G, \mathcal{O}_G^c, \tilde{\mathcal{F}}_G^c$, are commutative unital algebras.

Theorem (Diaz–Libman 2009 [1])

There is an isomorphism of algebras

$$\varphi([\mathcal{O}_G^c], [\tilde{\mathcal{F}}_G^c]) : M([\mathcal{O}_G^c]; \mathbf{Z}_{(p)}) \xrightarrow{\cong} M([\tilde{\mathcal{F}}_G^c]; \mathbf{Z}_{(p)})$$

given by an upper triangular nonnegative integral matrix.

$M([\mathcal{F}_G]; \mathbf{Q})$ for $G = \mathrm{SL}_2(\mathbf{F}_3)$, $|G| = 24$, at $p = 2$

$M([\mathcal{F}_G]; \mathbf{Q})$	H_1	H_2	H_3	H_4
H_1	H_1	H_1	H_1	H_1
H_2	.	H_2	H_2	H_2
H_3	.	.	$-H_2 + 2H_3$	$-5H_2 + 6H_3$
H_4	.	.	.	$7H_2 - 18H_3 + 12H_4$

Note that coefficient sum always equals 1.

$M([\mathcal{F}_G^*]; \mathbf{Q})$	H_2	H_3	H_4
H_2	H_2	H_2	H_2
H_3	.	$-H_2 + 2H_3$	$-5H_2 + 6H_3$
H_4	.	.	$7H_2 - 18H_3 + 12H_4$

$1 = \frac{2}{3}H_2 + \frac{1}{4}H_3 + \frac{1}{12}H_4$ and the Euler characteristic $\chi(\mathcal{F}_G^*) = 1$

References

- Antonio Díaz and Assaf Libman, *The Burnside ring of fusion systems*, Adv. Math. **222** (2009), no. 6, 1943–1963. MR 2562769 (2011a:20039)
- Tom Leinster, *The Euler characteristic of a category*, Doc. Math. **13** (2008), 21–49. MR MR2393085
- Jesper M. Møller and Martin Wedel Jacobsen, *Euler characteristics of p -subgroup categories*, arXiv:1007.1890v3.