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Abstract

This Bachelor Thesis in Mathematics is concerned with establishing
integral representation theorems for convex sets in terms of their ex-
treme points. The idea of considering a point in a metrizable compact
convex set X as being represented by a probability measure concen-
trated on the set of extreme points Ext(X) of X is due to Choquet,
and the whole theory is called Choquet theory.

In the special case when Ext(X) is a closed set, the representation
theorem is equivalent to the Krein-Milman theorem, which is a funda-
mental result in functional analysis with a broad range of applications.
In this thesis, we prove the Krein-Milman theorem and explain how
to reformulate it as an integral representation theorem. We also prove
Choquet’s theorem in the metrizable case.

Resumé

Dette bachelorprojekt i Matematik handler om at etablere sæt-
ninger for repræsentationsintegraler for konvekse mængder i forhold
til deres ekstreme punkter, Ext(X). Choquet var den første, der be-
tragtede et punkt i en kompakt, metriserbar og konveks mængde X
som værende repræsenteret af et sandsynlighedsmål, der er koncentr-
eret på Ext(X). Teorien omkring dette emne kaldes meget naturligt
for Choquet teori.

Hvis Ext(X) er en lukket mængde, så er integralrepræsentationen
ækvivalent med Krein-Milmans Theorem, der er et afgørende resul-
tat i funktionalanalyse med en bred vifte af anvendelser. I dette pro-
jekt beviser vi Krein-Milmans Theorem og omformulerer det til vores
nye sprog med repræsentationsintegraler. Derudover viser vi Choquets
Theorem i det metriserbare tilfælde.
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Introduction

Before reading this thesis the reader should gather some basic knowledge of
functional analysis. In particular the different versions of the Hahn-Banach
Theorems, the Riesz Representation Theorem and properties of nets, since
we will juggle around with these things quite alot but will not spent time
discussing them.

With this clarified we can continue to state the main question of this
thesis.

“If X is a compact convex subset of a locally convex Hausdorff topological
vector space E and x ∈ X, does there exist a probability measure µ on X
which is supported by the extreme points of X and which represents x? ”

The first stop on our quest for the answer is at one of the fundamental
results about compact convex sets in Rn (due to Minkowski). It is that their
points can be represented as convex combinations of extreme ones. In Section
1 we formulate and prove a more refined version of this theorem, known as
the Carathéodory theorem. To do that, we need some basic results from
convex analysis, for this [2] has been very helpful.

Next we move on to the Krein-Milman Theorem i Section 2. The proof
of this is mostly inspired by [3].

Third stop on the road is the introduction to integral representation
theorems. This section is a big jump in the right direction to the answer of
our question. We reformulate the Krein-Milman Theorem from Section 2 in
our new language. This section is based on [5].

Final step in our quest is Section 4. Here we prove Choquet’s Theorem
in the metrizable case and give an answer to our main question. This section
is also based on [5].
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1 CARATHÉODORY’S THEOREM

1 Carathéodory’s Theorem

A more refined version of Minkowski’s Theorem, known as the Carathéodory
theorem, is the object of study of this section. In particular, we will prove
Carathéodory’s Theorem. To do this, we need to know a few things about
convex analysis of which, in particular the notions of relative interior and
supporting hyperplane for a convex set in E. Throughout this section, when
we write E, it will be an n-dimensional real vector space - this means E is
homeomorphic to Rn.

1.1 Background on convexity

Before we can do anything interesting we need to develop some background
knowledge on convex sets.

Recall that a non-empty subset X of E is convex if αx+ (1− α)y ∈ X
for all x, y ∈ X and 0 < α < 1.

In the following proposition we state some important and very useful
facts about convexity.

Proposition 1.1. Let Xi be a convex set

(a) The intersection
⋂
i∈I Xi of any collection {Xi | i ∈ I} is convex.

(b) The set λXi is convex for any λ ∈ R.

(c) The closure, Xi, and the interior, int(Xi), is convex.

Proof. The proof is straightforward and will be omitted.

In the definition of convexity we had α ∈ (0, 1); if, instead, we let α ∈ R
we get the defintion of an affine set. More precisely,

Definition 1.2. A non-empty subset X of E is affine if αx+ (1−α)y ∈ X
for all x, y ∈ X and α ∈ R.

With this at hand we can continue to define the convex (respectively
affine) hull of X. It is defined to be the smallest convex (respectively affine)
set containing X. We denote the convex hull of X by conv(X) and the affine
hull of X by aff(X). It turns out that we can describe them in another way,
as well. Let X be a subset of E. Then

• conv(X) = {
∑n

i=1 αixi | xi ∈ X,αi > 0,
∑n

i=1 αi = 1, n ∈ N},

• aff(X) = {
∑n

i=1 αixi | xi ∈ X,αi ∈ R,
∑n

i=1 αi = 1, n ∈ N}.

We note that aff(X) = aff (conv(X)).
As a consequence of the properties set forth in Proposition 1.1, we obtain

the following result, which will be useful later.
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1 CARATHÉODORY’S THEOREM

Lemma 1.3. For any non-empty subset X of E,

conv(X) = conv(X).

Proof. It is clear that conv(X) ⊆ conv(X). For the other inclusion, notice
that conv(X) ⊇ X, hence conv(X) ⊇ X. As conv(X) is convex by Proposi-
tion 1.1 (c), it will also contain conv(X). Furthermore, as conv(X) is closed,
it will also contain conv(X).

Another important concept associated to a convex set X ⊆ E is the one
of relative interior.

Definition 1.4. Let X be a subset of E. A point x ∈ X is said to be a
relative interior point of X if there exists an open ball in E centered at
x with radius r, B(x, r) ⊆ E, such that B(x, r) ∩ aff(X) ⊆ X, i.e., x is an
interior point of X relative to aff(X). The collection of all relative interior
points of X is denoted by ri(X).

This concept can seem rather strange and meaningless at first. But as the
following example shows, int(X) and ri(X) need not be equal but sometimes
they will be.

Example 1.5. Let E = R3 and consider the closed unit disc D. For every
x ∈ D there does not exist an ε > 0 such that B(x, ε) ⊆ D, hence int(D) = ∅.

The relative interior of D is the interior of D according to aff(D) which
in this case will be a plane. Hence, the relative interior of D is the open unit
disc. Thus, int(D) 6= ri(D).

If we on the other hand consider the closed unit sphere S, then the
interior of S will be the open unit sphere. The affine hull of S is all of E and
hence the relative interior is the same as the interior.

Proposition 1.6. Let X be a non-empty convex set in E.

(a) If x ∈ ri(X) and y ∈ X, then all points on the line segment connecting
x and y, except possibly y, belong to ri(X).

(b) ri(X) is a non-empty convex set and

aff (ri(X)) = aff(X).

(c) X = ri(X).

Proof. For part (a), since x ∈ ri(X) there exists ε > 0 such that the open
sphere S = {z ∈ X | ‖z − x‖∞ < ε} satisfies S ∩ aff(X) ⊆ X. Given y ∈ X,
let for α ∈ (0, 1], xα = αx+ (1− α)y and Sα = {z ∈ X | ‖z − xα‖∞ < αε}.
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1 CARATHÉODORY’S THEOREM

If y ∈ X, then every point of Sα∩aff(X) is a convex combination of some
point in S ∩ aff(X) and y. Hence, by the convexity of X, Sα ∩ aff(X) ⊆ X,
implying that xα ∈ ri(X).

Next, suppose y ∈ X\X. Consider a sequence (xk)k≥1 ⊆ X that con-
verges to y as k →∞, and set xk,α = αx+(1−α)xk, for all α ∈ (0, 1]. With
the same argument as above, {z ∈ X | ‖z − xk,α‖∞ < αε} ∩ aff(X) ⊆ X for
every k ≥ 1. Since xk,α → xα as k →∞, we have for large enough k that{

z ∈ X | ‖z − xα‖∞ <
αε

2

}
⊆ {z ∈ X | ‖z − xk,α‖∞ < αε}.

It follows that {z ∈ X | ‖z−xα‖∞ < αε/2}∩aff(X) ⊆ X. Thus xα ∈ ri(X).

Part (b) uses part (a) to show the convexity of ri(X). For the rest of
part (b), assume without loss of generality that 0 ∈ X. The affine hull of X
is a subspace of E whose dimension will be denoted m.

If m = 0 then both X and aff(X) consist of a single point, which is
unique. Hence ri(X) 6= ∅ and aff(X) = aff(ri(X)).

If m > 0, we can find m linearly independent vectors z1, . . . , zm ∈ X
that span aff(X), thus forming a basis for aff(X). Consider

Y =

{
x ∈ X

∣∣∣∣ x =
m∑
i=1

αizi,
m∑
i=1

αi < 1, αi > 0, i = 1, . . . ,m

}
.

We want to show that Y is open relative to aff(X), i.e., for every vector
y ∈ Y , there exists an open ball B centered at y such that B ∩ aff(X) ⊆ Y .
To do that, fix y ∈ Y and let x ∈ aff(X). Let Z be the n × m-matrix
whose columns are the vectors z1, . . . , zm and let ᾱ, α be the suitable unique
m-dimensional vectors such that y = Zᾱ and x = Zα. This is possible due
to [2, Proposition 1.1.10 (iv)]. The matrix ZtZ is symmetric and positive
definite, and hence by [2, Proposition 1.1.11 (d)], we have for some scalar γ
(independent of x and y),

‖x− y‖2 = ‖Zα− Zᾱ‖2 = ‖Z(α− ᾱ)‖2

= (Z(α− ᾱ))t (Z(α− ᾱ))
= (α− ᾱ)tZtZ(α− ᾱ)

≥ γ‖α− ᾱ‖2.

Since y ∈ Y , the corresponding vector ᾱ lies in the open set

A =

{
(α1, . . . , αm)

∣∣∣∣ m∑
i=1

αi < 1, αi > 0, i = 1, . . . ,m

}
.

From the above calculations we see that if x lies in a suitable small ball
centered at y, the corresponding vector α lies in A, implying that x ∈ Y .
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1 CARATHÉODORY’S THEOREM

This means, that Y contains the intersection of aff(X) and an open ball
centered at y. Hence, Y is open relative to aff(X). Note that all points of Y
are relative interior points of X, and hence ri(X) 6= ∅. Our construction
of Y gives us that aff(Y ) = aff(X), and since Y ⊆ ri(X), we see that
aff(ri(X)) = aff(X).

For part (c), we have ri(X) ⊆ X and hence ri(X) ⊆ X. Conversely, let
y ∈ X and x ∈ ri(X). Due to (b), such an x exists. If x = y, we are done.
Assume instead that x 6= y. From (a), we know that αx+ (1− α)y ∈ ri(X)
for all α ∈ (0, 1). Consider the sequence(

1
k
x+

(
1− 1

k

)
y

)
k≥1

⊆ ri(X).

This sequence converges to y and hence y ∈ ri(X). Meaning that X ⊆ ri(X),
and thus we are done.

We continue with another concept closely associated with convex sets.

Definition 1.7. A non-empty convex subset X of E is called a convex body
if int(X) 6= ∅.

We notice that if X is a convex body, then

int(X) = X. (1)

Indeed, as int(X) is a non-empty open set, we deduce that aff (int(X)) = E.
Since aff(X) ⊇ aff(int(X)), we have aff(X) = E. By the definition of relative
interior, it follows that int(X) = ri(X). Upon taking the closure on both
sides, an application of Proposition 1.6 (c) proves the claim.

Now, given an arbitrary convex subset X of E, let E0 = aff(X). Then
E0 is an m-dimensional space for some m ≤ n (n is the dimension of E) and
X is a convex body relative to E0 by definition. Hence X is a convex body
in E if and only if E0 = E.

1.2 Extreme points

The notion of extreme points of a convex set is the central theme of this
thesis. We recall the definition.

Definition 1.8. Let X be a non-empty convex set. A point x ∈ X is an
extreme point of X if the condition

x = αx1 + (1− α)x2

for x1, x2 ∈ X and 0 < α < 1 implies that x = x1 = x2. The set of extreme
points of X is denoted by Ext(X).
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1 CARATHÉODORY’S THEOREM

The following example shows that the set of extreme points of a convex
set need not be convex, nor closed.

Example 1.9. Let X consist of the union of two closed solid cones sharing
a common base (as drawn on the left hand-side of the picture). The drawing
on the right represents the extreme points of X. Clearly, Ext(X) is neither
closed, nor convex.

One can see from the picture that X = conv(Ext(X)), and in particular,
it follows that conv(Ext(X)) is closed. This are general features of compact
convex sets in Rn. In fact, a more refined version of this result (namely, that
every point of a convex compact subset X of Rn is a convex combination
of at most n + 1 extreme points in X) is the statement of Carathéodory’s
theorem which we prove in Section 1.4. The proof relies on the notion of
supporting hyperplane, which we discuss next.

1.3 Supporting hyperplane

Definition 1.10. A supporting hyperplane H for a non-empty convex set
X in E is an affine hyperplane in E such that X is contained in one of the
two closed half spaces of E determined by H.

Recall that any affine hyperplane H ⊆ E can be described as

H = {x ∈ E | f(x) = α} ,

for some linear functional f : E → R and some α ∈ R. In other words, H is
a supporting hyperplane for X ⊆ E if there exists f : E → R linear, f 6= 0
and α ∈ R such that H = {x ∈ E | f(x) = α} and f(y) ≤ α for all y ∈ X.

Lemma 1.11. If H is a supporting hyperplane for X ⊆ E and if H∩X 6= ∅,
then Ext(H ∩X) ⊆ Ext(X).
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1 CARATHÉODORY’S THEOREM

Proof. Let H = {x ∈ E | f(x) = α} as above, and x ∈ Ext(H ∩ X).
To show that x ∈ Ext(X), let y1, y2 ∈ X and 0 < λ < 1 be such that
x = λy1 +(1−λ)y2. Due to linearity of f , α = f(x) = λf(y1)+(1−λ)f(y2).
As f(yj) ≤ α for j = 1, 2, we must have f(y1) = f(y2) = α. Hence,
y1, y2 ∈ H ∩X. Now, we use the fact that x ∈ Ext(H ∩X), to deduce from
x = λy1 + (1 − λ)y2 that y1 = y2 = x. This shows that x ∈ Ext(X), as
wanted.

Proposition 1.12. If X ⊆ E is a convex body and if x ∈ ∂X, then there
exists a supporting hyperplane H for X such that x ∈ H.

Proof. Let x ∈ ∂X. Since int(X) is a non-empty convex set, there exists
a hyperplane H separating x and int(X), due to the Hahn-Banach Separa-
tion Theorem. Then, the corresponding closed half space containing x, also
contains X = int(X) (due to (1) on p. 8), showing that H is a supporting
hyperplane for X.

1.4 Carathéodory’s Theorem

With all this at hand we are finally ready to prove the announced main result
of this section.

Theorem 1.13 (Carathéodory’s Theorem). Let E be an n-dimensional space
and let X be a non-empty convex compact subset of E. Then Ext(X) 6= ∅
and each point x ∈ X is a convex combination of at most n + 1 extreme
points of X.

Proof. We will prove this by induction on n. If n = 1, then E = R and
X = [α, β] for some α, β ∈ R. In this case ∅ 6= Ext(X) = {α, β} and every
x ∈ [α, β] = X is of the form x = λα+ (1− λ)β for some 0 ≤ λ ≤ 1. Hence
a convex combination of at most 2 = (n+ 1) extreme points.

Now, suppose n ≥ 2, and that the claim has been proved whenever E
has dimension at most n− 1. If X is not a convex body, then (see comment
following Definition 1.7) X ⊆ E0 for some proper affine subspace E0 of E
and dim(E0) < dim(E) = n and the claim will follow from the induction
hypothesis. We may therefore assume that X is a convex body.

First, let x ∈ ∂X, which is non-empty since X is compact. Let H ⊆ E
be a supporting hyperplane for X such that x ∈ H. Such a hyperplane
exists due to Propostion 1.12. Then H∩X is convex and compact in H, and
dim(H) = n − 1. By the induction hypothesis, Ext(H ∩X) 6= ∅ and x is a
convex combination of at most n extreme points of H ∩X. By Lemma 1.11
every extreme point of H ∩X is an extreme point of X, hence Ext(X) 6= ∅.
Moreover, x is a convex combination of at most n extreme points of X, so
in particular of at most n+ 1 extreme points, as wanted.

Now let x ∈ int(X) and take y ∈ Ext(X) (note that this implies y 6= x).
Set L = {x + t(y − x) | t ∈ R} ⊆ E. Then L ∩ X is a compact convex

11



1 CARATHÉODORY’S THEOREM

subset of L and x ∈ L ∩ X. Choose t0 to be the smallest t ∈ R such that
x+ t(y−x) ∈ L∩X and set z = x+ t0(y−x). Note that t0 < 0 and z ∈ ∂X.
Then x belongs to the line segment [z, y], so x = λz + (1 − λ)y for some
0 < λ < 1. Since z ∈ ∂X, we know that z is a convex combination of at
most n extreme points of X. This implies that x = λz+ (1−λ)y is a convex
combination of at most n+ 1 extreme points of X, and we are done.

Remark 1.14. After having established Carathéodory’s theorem, we now
know that for any non-empty compact convex subset X of Rn, the set of
its extreme points, Ext(X), is always non-empty and we can also justify the
assertion that the convex hull of Ext(X), conv(Ext(X)), is always closed (in
fact, compact).
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2 THE KREIN-MILMAN THEOREM

2 The Krein-Milman Theorem

By Carathéodory’s theorem, we know that if E = Rn, then we can write any
point of a compact convex non-empty subset X of E as a convex combination
of (finitely many, in this case) extreme points of X. The goal of this section
is to prove that an (appropriately formulated) analogous statement holds
when Rn is replaced by a more general locally convex Hausdorff topological
vector space E. This statement is known as the Krein-Milman theorem.

The notion of convexity (and related concepts) can be introduced nat-
urally in this setting (since E has the structure of a vector space), and, in
particular, the definition of extreme points is the same as the one previously
given.

We will start by discussing some concrete examples of convex sets and
their extreme points.

2.1 Examples of extreme points

The first example shows that in this more general setting (unlike the case of
Rn), the set of extreme points may, sometimes, be empty.

Example 2.1. Let K1 be the closed unit ball of L1([0, 1],m). We will show
that Ext(K1) = ∅.

First let f ∈ K1 with ‖f‖1 = 0, then f = 0 almost everywhere. Note
that f = 0 = 1/2 · 1 + 1/2 · (−1) almost everywhere. Since 1 and −1 are
different functions in K1, f is a proper convex combination of elements of
K1, hence f = 0 /∈ Ext(K1).

Now, let f ∈ K1 with 0 < ‖f‖1 ≤ 1. Consider the function F : [0, 1]→ R
defined by F (x) =

∫ x
0 |f(t)|dt, x ∈ [0, 1]. Then F is continuous and satisfies

F (0) = 0 and F (1) = 1. Hence, by the Intermediate Value Theorem there
exists b ∈ [0, 1] such that∫ b

0
|f(t)|dt =

1
2

∫ 1

0
|f(t)|dt.

Now, for t ∈ [0, 1] define f1(t) = 1[0,b](t)2f(t) and f2(t) = 1(b,1]2f(t). Then

‖f1‖1 =
∫ 1

0
|f1(t)| dt =

∫ b

0
2|f(t)|dt =

∫ 1

0
|f(t)|dt ≤ 1

and likewise

‖f2‖1 =
∫ 1

0
|f2(t)| dt =

∫ 1

b
2|f(t)|dt =

∫ 1

0
2|f(t)|dt−

∫ b

0
2|f(t)|dt

= 2
∫ 1

0
|f(t)|dt−

∫ 1

0
|f(t)|dt =

∫ 1

0
|f(t)|dt ≤ 1,

13



2 THE KREIN-MILMAN THEOREM

Hence f1, f2 ∈ K1. Now, note that f(t) = 1[0,b](t)f(t) + 1(b,1](t)f(t) =
1/2

(
1[0,b](t)2f(t)

)
+ 1/2

(
1(b,1](t)2f(t)

)
= 1/2f1(t) + 1/2f2(t), for all t ∈

[0, 1]. We only need to check whether f1 = f or f2 = f . We have

‖f1 − f‖1 =
∫ 1

0
|f1(t)− f(t)| dt ≥

∫ b

0
|f1(t)− f(t)|dt

=
∫ b

0
|2f(t)− f(t)| dt =

∫ b

0
|f(t)|dt

=
1
2

∫ 1

0
|f(t)| dt > 0

and likewise

‖f2 − f‖1 =
∫ 1

0
|f2(t)− f(t)|dt ≥

∫ 1

b
|f2(t)− f(t)| dt

=
∫ 1

b
|2f(t)− f(t)|dt =

∫ 1

b
|f(t)| dt

=
∫ 1

0
|f(t)|dt−

∫ b

0
|f(t)| dt

=
∫ 1

0
|f(t)|dt− 1

2

∫ 1

0
|f(t)|dt

=
1
2

∫ 1

0
|f(t)|dt > 0.

We conclude that, f 6= f1 and f 6= f2. But then f is a proper convex
combination of two elements of K1, hence f is not an extreme point of K1.
Thus, Ext(K1) = ∅.

The next example concerns the extreme points of the set of probability
measures on a (locally) compact Hausdorff topological space. These are
Radon measures with total mass 1. We first recall the definition of a Radon
measure, and discuss some results concerning the notion of support.

Definition 2.2. Let X be a locally compact Hausdorff topological space. A
Radon measure µ on X is a Borel measure, i.e., a non-negative measure
on the Borel σ-algebra B(X) on X, satisfying the following conditions:

• µ(K) <∞ for all compact sets K ⊆ X.

• (Outer regularity)
For each Borel set A in X, µ(A) = inf{µ(U) | U open, A ⊆ U}.

• (Inner regularity)
For each open set U in X, µ(U) = sup{µ(K) | K compact, K ⊆ U}.
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2 THE KREIN-MILMAN THEOREM

As mentioned above a probability measure is a Radon measure on X
having total mass equal to 1.

Now, we continue to define the support of µ. Let (Ui)i∈I be the family
of all open sets Ui ⊆ X such that µ(Ui) = 0 for all i ∈ I. Set N =

⋃
i∈I Ui.

Clearly N is also open. We will show that µ(N) = 0. Since µ is a Radon
measure, it is inner regular, so it suffices to show that µ(K) = 0 for all
compact setsK ⊆ N . LetK ⊆

⋃
i∈I Ui be compact. There exists i1, . . . , in ∈

I such that K ⊆
⋃n
k=1 Uik . Hence, µ(K) ≤ µ (

⋃n
k=1 Uik) ≤

∑n
k=1 µ (Uik) = 0

as wanted.
The complement of N is called the support of µ and is denoted by

supp(µ).

Remark 2.3. For x ∈ X, consider the Dirac mass δx at x. It is immediate
to see that supp(δx) = {x}.

The following shows that the converse also holds.

Lemma 2.4. Let µ be a Radon measure on a locally compact Hausdorff
topological space X. If the support of µ is a singleton, i.e., supp(µ) = {x}
for some x ∈ X, then µ = cδx, where c = µ(X).

Proof. Let x ∈ X and supp(µ) = {x}. By the definition of support of a
measure, µ(X\{x}) = 0, hence µ({x}) = µ(X)−µ(X\{x}) = µ(X) = c. To
show that µ = cδx, let A ∈ B(X). First, if x /∈ A then A ⊆ X\{x} which
means µ(A) = 0 = cδx(A). Now, if x ∈ A then A = {x} ∪ (A\{x}), and
hence

µ(A) = µ({x}) + µ(A\{x}) = µ({x}) = c = cδx(A).

Thus, µ = cδx, for all x ∈ X.

Note that if µ is a probability measure such that supp(µ) = {x}, then
µ = δx, as announced in the above Remark.

Lemma 2.5. Let µ be a Radon measure on a locally compact Hausdorff
topological space X. If f ∈ C(X), 0 ≤ f ≤ 1 and f(x) > 0 for some
x ∈ supp(µ), then

∫
X f dµ > 0.

Proof. Let λ := f(x). Set

U =
{
y ∈ X

∣∣∣∣ f(y) >
λ

2

}
.

Then x ∈ U , the set U is open and f > λ/2 · 1U . Hence∫
X
f dµ >

∫
X

λ

2
1U dµ =

λ

2
µ(U) > 0.

The latter holds because if µ(U) = 0, then x ∈ U ⊆ N where N is the largest
open set having µ-measure zero. By the definition of supp(µ), it follows that
x /∈ supp(µ), which is a contradiction.
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We are now ready to study the extreme points of P (X), the set of prob-
ability measures on X, when X is a compact Hausdorff topological space.

Proposition 2.6. Let X be a compact Hausdorff topological space. Then
P (X) is a convex set and

Ext(P (X)) = {δx | x ∈ X}.

Proof. It is easy to see that a convex combination of probability measures
is a probability measure, hence P (X) is convex. Given x ∈ X, assume to
reach a contradiction that δx /∈ Ext(P (X)). Then there exists µ1 6= δx
and µ2 6= δx such that δx = αµ1 + (1 − α)µ2 for some 0 < α < 1 and
µ1, µ2 ∈ P (X). We have δx({x}) = αµ1({x}) + (1 − α)µ2({x}), which
implies 1 = αµ1({x}) + (1 − α)µ2({x}). For 0 ≤ µ1({x}), µ2({x}) ≤ 1 and
0 < α < 1, we must have 1 = µ1({x}) = µ2({x}). As µ1 is a probability
measure, µ1(X\{x}) = 0, hence supp(µ1) = {x} and due to Lemma 2.4,
µ1 = δx, a contradiction. This proves that {δx | x ∈ X} ⊆ Ext(P (X)).

To show the converse inclusion, let µ ∈ Ext(P (X)). We want to show
that there exists x ∈ X such that µ = δx. By Lemma 2.4, it suffices to show
that supp(µ) = {x} for some x ∈ X. Suppose there exist x, y ∈ X with
x 6= y such that x, y ∈ supp(µ). Since X is a compact Hausdorff topological
space, X is normal [4, 4.25]. Hence there exist U, V open subsets of X
such that x ∈ U , y ∈ V and U ∩ V = ∅. By Urysohn’s Lemma [4, 4.15],
there exists f ∈ C(X), 0 ≤ f ≤ 1 such that f |U = 1 and f |V = 0. Since
f(x) = 1 > 0, by Lemma 2.5 we deduce that 0 <

∫
X f dµ =: λ. Furthermore,

we want to show that λ < 1. For this note that f ≤ 1X\V which implies
λ =

∫
X f dµ ≤ µ(X\V ) = µ(X)− µ(V ) = 1− µ(V ) < 1. The latter follows

from the fact that if µ(V ) = 0 then V ⊆ N (where N is the largest open
set of µ-measure zero). But y ∈ V and y ∈ supp(µ) = N c, a contradiction.
Now, set

µ1 =
1
λ
fµ and µ2 =

1
1− λ

(1− f)µ.

Then µ1, µ2 ∈ P (X) and we have µ = λµ1 + (1− λ)µ2. Note that

µ1(U) =
1
λ

∫
U
f dµ =

µ(U)
λ

> 0 and µ2(U) =
1

1− λ

∫
U

(1− f) dµ = 0

hence µ1 6= µ2, which contradicts the fact that µ ∈ Ext(P (X)).

2.2 The Krein-Milman Theorem

Now we are ready to prove the main result of this section. To do that we
first establish some very helpful results.

16
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Proposition 2.7. If X is a non-empty compact subset of a locally convex
Hausdorff topological vector space E and f : X → R is upper semicontinuous
(i.e, the set {x ∈ X | f(x) < a} is open for all a ∈ R), then f assumes its
maximum on X.

Proof. First we show that the maximum does exist, i.e., supx∈X f(x) < ∞.
Note that

X =
∞⋃
n=1

{x ∈ X | f(x) < n} .

Since X is compact there exists n0 ∈ N such that X = {x ∈ X | f(x) < n0}.
This shows that supx∈X f(x) ≤ n0 <∞, as claimed.

Next, we show that there exists x0 ∈ X such that supx∈X f(x) = f(x0).
Suppose to reach a contradiction that this is not the case. Then for all x ∈ X,
f(x) < supx∈X f(x) =: M . Then X =

⋃∞
n=1 {x ∈ X | f(x) < M − 1/n}.

SinceX is compact, there exists n1 ∈ N soX = {x ∈ X | f(x) < M − 1/n1}.
This implies supx∈X f(x) ≤M − 1/n1 < M , a contradiction.

Actually, f assumes its maximum at an extreme point. This will be shown
soon. But before we continue, we need the concept of a convex function.

Definition 2.8. Let f be a real valued function on a convex set X. Then f
is a convex function if for each x, y ∈ X

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

If the inequality is strict, the function is called strictly convex.

If there is equality in the statement above f is said to be an affine
function.

Example 2.9. Notice that the function f : x 7→ x2 is strictly convex. This
means that for each x 6= y and s ∈ (0, 1), we have

f (sx+ (1− s)y)2 < sf(x) + (1− s)f(y)

or equivalently

(sx+ (1− s)y)2 < sx2 + (1− s)y2.

This example will be useful later.

We can now continue to show that f (defined as in Proposition 2.7)
assumes its maximum at an extreme point.

Theorem 2.10. If X is a non-empty compact subset of a locally convex
Hausdorff topological vector space E and f : X → R is convex and upper
semicontinuous. Then there exists an extreme point of X at which f assumes
its maximum value.

17
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Proof. Define a collection of subsets of X by

A = {F ⊆ X | F 6= ∅, F is closed and if (a, b) ⊆ X
and (a, b) ∩ F 6= ∅, then (a, b) ⊆ F}.

Here (a, b) for a, b ∈ F means the open segment {λa+ (1−λ)b | 0 < λ < 1}.
Note that the set (a, a) = {a}.

We will now state and prove five properties for A and use them to finish
the proof.

(i) X ∈ A.

This follows from the fact that X is non-empty and compact.

(ii) If {Xi}i∈I ⊆ A and
⋂
i∈I Xi 6= ∅, then

⋂
i∈I Xi ∈ A.

Clearly
⋂
i∈I Xi is non-empty and closed, so it remains to show that if (a, b) ⊆

X and (a, b)∩(
⋂
i∈I Xi) 6= ∅ then (a, b) ⊆

⋂
i∈I Xi. For this let (a, b) ⊆ X and

(a, b)∩(
⋂
i∈I Xi) 6= ∅. Then

⋂
i∈I ((a, b) ∩Xi) 6= ∅ which means (a, b)∩Xi 6=

∅ for all i ∈ I. Since Xi ∈ A for all i ∈ I and (a, b) ⊆ X, we have (a, b) ⊆ Xi

for all i ∈ I. Thus (a, b) ⊆
⋂
i∈I Xi and hence

⋂
i∈I Xi ∈ A, as wanted.

(iii) For each x ∈ X, we have {x} ∈ A if and only if x is an extreme point
of X.

To show this, let {x} ∈ A. Suppose x = αa + (1 − α)b for 0 < α < 1, then
{x} ∈ (a, b). By our hypothesis, (a, b) ⊆ {x}, which means (a, b) = {x}
which again gives us that x = a = b, meaning x ∈ Ext(X). Conversely,
assume x ∈ Ext(X). Then (a, b) = {x} for all a, b with {x} ⊆ (a, b), hence
(a, b) ∩ {x} 6= ∅ and (a, b) ⊆ {x}. Clearly, {x} is closed and non-empty,
hence {x} ∈ A, as wanted.

(iv) F ′ ∈ A for each F ∈ A and every convex upper semicontinuous func-
tion g, where

F ′ =
{
x ∈ F

∣∣ g(x) = sup{g(y) | y ∈ F}
}
.

Indeed, since we know from Proposition 2.7 that there exists some x0 at
which g assumes its maximum value, we deduce that F ′ 6= ∅. To show
closedness of F ′, note that

F ′ =
∞⋂
n=1

{
x ∈ F

∣∣∣∣ g(x) ≥ sup
y∈F

g(y)− 1
n

}
.

Since g is upper semicontinuous, all sets on the right hand-side are closed,
hence F ′ is closed.

18
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To check the last condition, assume that (a, b) ⊆ X and (a, b) ∩ F ′ 6= ∅.
This means there exists x0 ∈ (a, b)∩F ′ ⊆ (a, b)∩F . Since F ∈ A, (a, b) ⊆ F .
Let x, y ∈ (a, b) be such that x0 = λx+ (1− λ)y for some 0 < λ < 1. Then

g(x0) ≤ λg(x) + (1− λ)g(y) ≤ λ sup
z∈F

g(z) + (1− λ) sup
z∈F

g(z)

= λg(x0) + (1− λ)g(x0) = g(x0),

using that x0 ∈ (a, b) ∩ F ′. Since g(x0) = supz∈F g(z), we must have
g(x) = g(x0) = g(y), so x, y ∈ F ′ and hence (a, b) ∈ F ′, as wanted.

We define a partial ordering on A by setting F1 ≤ F2 if and only if
F1 ⊇ F2 and we then continue with the last statement about A.

(v) If F ∈ A is a maximal element, then F = {a}.

Suppose F ∈ A is a maxial element. Let a ∈ F and assume that also b ∈ F
with a 6= b. The Hahn-Banach Separation Theorem gives us that there exists
a functional l : E → R such that l(a) 6= l(b). Use (iv) with g = l to conclude
that

F ′ = {x ∈ F | l(x) = sup
z∈F

l(z)}.

Since l(a) 6= l(b) then a /∈ F ′ or b /∈ F ′. This means F ′ ⊂ F hence F ′ > F ,
so F is not maximal, a contradiction.

Now we are ready to finish the proof. Let (Fα)α∈A be a linearly ordered
family in A. Since the family has the finite intersection property, it has a
non-empty intersection due to compactness of X and hence

⋂
α∈A Fα 6= ∅.

By (ii),
⋂
α∈A Fα ∈ A and thus it is clear that

⋂
α∈A Fα is an upper bound

for the family. This shows that Zorn’s Lemma [4, 0.2] applies, thus every
F ∈ A is majorised by a maximal element. Take, say, F = {y ∈ X | f(y) =
supx∈X f(x)}. From (i) X ∈ A, hence (iv) gives us that F ∈ A. If {a} ⊆ F
is maximal, then a ∈ Ext(X) according to (iii), as wanted.

Using Theorem 2.10, we can easily prove the Krein-Milman Theorem.

Theorem 2.11 (Krein-Milman). Let X be a non-empty compact convex
subset of a locally convex Hausdorff topological vector space E. Then

X = conv(Ext(X)).

Proof. Since Ext(X) ⊆ X, we have conv(Ext(X)) ⊆ conv(X) = X, as X is
convex and closed.

For the converse inclusion suppose there exists x ∈ X\conv(Ext(X)). By
the Hahn-Banach Separation Theorem [1, Theorem 2.3, Chapter 1], there
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exists a functional f on X and α ∈ R such that f
(
conv(Ext(X))

)
≤ α and

f(x) > α. Due to Theorem 2.10, there exists an extreme point of X where
f assumes its maximum value, hence there is an extreme point of X which
is not in conv(Ext(X)), a contradiction.

Remark 2.12. With the help of Krein-Milman’s theorem, we can now say
a bit more about the example discussed in Proposition 2.6. Namely, in
view of the Riesz representation theorem [4, Theorem 7.2] , the set P (X)
of probability measures on a compact Hausdorff topological space X can
be identified with a weak∗-compact (-convex) subset of C(X)∗. Then, by
Krein-Milman’s theorem, combined with Proposition 2.6, we deduce that

P (X) = conv{δx | x ∈ X}.
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3 The Krein-Milman Theorem as an integral rep-
resentation theorem

We would like to interpret the Krein-Milman theorem as an integral repre-
sentation theorem. This terminology has to be developed first and in the end
of this section, we will reformulate the Krein-Milman theorem in our new
language.

Definition 3.1. Suppose that X is a non-empty compact subset of a lo-
cally convex Hausdorff topological vector space E, and that µ is a proba-
bility measure on X. A point x in E is said to be represented by µ if
f(x) =

∫
X f dµ for every continuous linear functional f on E. Often we

write µ(f) =
∫
X f dµ. Other terminology is that x is the resultant of µ.

Remark 3.2. Given x ∈ X there is always a probability measure repre-
senting x, namely δx. Uniqueness of representing measures will be discussed
later in this section.

Definition 3.3. If µ is a Radon measure on the compact Hausdorff space X
and S is a Borel subset of X, we say that µ is supported by S if µ(X\S) =
0.

Note that the support of µ, supp(µ), defined earlier is a Borel subset of
X such that µ(X\supp(µ)) = 0, hence µ is supported by supp(µ).

We now develop further theory of representing measures.

Theorem 3.4. Suppose that Y is a compact subset of a locally convex space
E, and that the closed convex hull X of Y is compact. If µ is a probability
measure on Y , then there exists a unique point x ∈ X which is represented
by µ, and the function µ 7→ (resultant of µ) is an affine weak∗-continuous
map from P (Y ) (the probability measures on Y ) into X.

Proof. For the first statement of the theorem, we want to begin with showing
that the compact convex set X contains a point x such that f(x) =

∫
Y f dµ

for all f ∈ E∗. To do this, given f ∈ E∗, let

Hf =
{
y ∈ E

∣∣∣∣ f(y) =
∫
Y
f dµ =: µ(f)

}
.

We observe that Hf is closed. Now we want to show that
⋂
f∈E∗ Hf ∩X 6= ∅.

Since Hf and X are both closed, Hf ∩X is closed for all f ∈ E∗. The set
X is compact and therefore it has the finite intersection property. Hence it
suffices to show that

⋂n
i=1Hfi ∩ X 6= ∅ for finitely many f1, . . . , fn ∈ E∗,

arbitrarily chosen.
To do this, we define T : E → Rn by Ty = (f1(y), f2(y), . . . , fn(y)). The

map T is clearly linear and continuous. Since X is compact, TX is compact,
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as well. To check the convexity of TX, let t ∈ (0, 1) and a, b ∈ TX. Then
we can find x, y ∈ X such that a = Tx and b = Ty. Consider

ta+ (1− t)b = tTx+ (1− t)Ty = T (tx+ (1− t)y) .

The last assertion comes from the fact that T is linear. We know that X is
convex, hence tx+ (1− t)y ∈ X. Therefore TX is convex, as well.

Now, let p = (µ(f1), µ(f2), . . . , µ(fn)). If p ∈ TX then there exists y ∈ X
such that

(f1(y), f2(y), . . . , fn(y)) = Ty = p =
(∫

Y
f1 dµ,

∫
Y
f2 dµ, . . . ,

∫
Y
fn dµ

)
which is what we wanted.

Assume towards contradiction that p /∈ TX. Recall that TX is compact
and convex. Due to the Hahn-Banach Separation Theorem there exists a
linear functional Φ: Rn → R such that

Φ(p) > sup {Φ(Ty) | y ∈ X} = sup {Φ(z) | z ∈ TX} .

The space Rn is a Hilbert space and due to the Riesz Representation Theorem
[4, Theorem 5.25], we can find a vector a = (a1, a2, . . . , an) ∈ Rn such that

Φ(z) = 〈z, a〉 , z ∈ Rn.

Since a, z ∈ Rn, we have 〈z, a〉 = 〈a, z〉. Therefore

〈p, a〉 = 〈a, p〉 > sup {〈a, Tx〉 | x ∈ X} .

We define a linear functional g on E by g(x) = 〈a, Tx〉 =
∑n

i=1 aifi(x)
for x ∈ E. Since T is continuous, so is g. We have that

Φ(p) = 〈a, p〉 =
n∑
i=1

ai

∫
Y
fi dµ =

∫
Y

n∑
i=1

aifi dµ =
∫
Y
g dµ.

This means∫
Y
g dµ = 〈a, p〉 > sup {〈a, Tx〉 | x ∈ X} = sup {g(x) | x ∈ X} .

But we also have∫
Y
g dµ ≤

∫
Y

sup {g(x) | x ∈ Y } dµ = sup {g(x) | x ∈ Y }µ(Y )

≤ sup {g(x) | x ∈ X}

This gives us a contradiction and hence, we have p ∈ TX, as wanted.
To show the uniqueness of the represented point, let x, y ∈ E be repre-

sented by µ. This means that for all f ∈ E∗, we have f(x) =
∫
Y f dµ and
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f(y) =
∫
Y f dµ. In particular f(x) = f(y) for all f ∈ E∗. Due to linearity of

f , we have f(x− y) = 0. Since f is arbitrary, the Hahn-Banach Separation
Theorem then gives us that x − y = 0. Therefore x = y and hence the
represented point is unique.

To show the second part of the theorem, we want to prove that the map
Ψ: P (Y )→ X, which sends a probability measure µ into its resultant in X,
is weak∗-continuous and affine. To show it is affine, let µ1, µ2 be probability
measures and assume x1 is represented by µ1 and x2 is represented by µ2.
This means f(x1) =

∫
Y f dµ1 and f(x2) =

∫
Y f dµ2 for all f ∈ E∗. Hence∫

Y
f d(λµ1 + (1− λ)µ2) = λ

∫
Y
f dµ1 + (1− λ)

∫
Y
f dµ2

= λf(x1) + (1− λ)f(x2)
= f (λx1 + (1− λ)x2)

which means that λµ1 + (1 − λ)µ2 represents λx1 + (1 − λ)x2. Hence we
have Ψ (λµ1 + (1− λ)µ2) = λx1 + (1−λ)x2 = λΨ(µ1) + (1−λ)Ψ(µ2) which
shows that Ψ is affine.

To show the weak∗-continuity of Ψ, assume there is a net (µα)α of prob-
ability measures converging in weak∗-topology to µ. By definition (Ψ(µα))α
is a net in X. Since X is compact there exists a subnet (Ψ(µβ))β such that
Ψ(µβ)→ y for some y ∈ X [4, Theorem 4.29]. The net (µβ)β is a subnet of
(µα)α which clearly converges to the same limit µ. Hence for all f ∈ E∗

f(xβ) =
∫
Y
f dµβ →

∫
Y
f dµ = f(x)

where xβ and x are (according to the first part of the theorem) the unique
points in X that are represented by µβ and µ, respectively. This means
f(x− y) = f(x)− f(y) = f(x)− f (limβ xβ) = f(x)− limβ f(xβ) = f(x)−
f(x) = 0. But then f(x − y) = 0 for all f ∈ E∗, hence x − y = 0 which
implies x = y. Since (Ψ(µα))α is a net in the compact set X, we know
Ψ(µα)→ y = x = Ψ(µ), hence Ψ is weak∗-continuous.

The next result gives a characterization of points in the closed convex
hull of compact sets in terms of representing measures.

Theorem 3.5. Suppose Y is a compact subset of a locally convex space E.
A point x ∈ E is in the closed convex hull X of Y if and only if there exists
a probability measure µ on Y which represents x.

Proof. Suppose there exists a probability measure µ on Y which represents
x, then for each f ∈ E∗, we have

f(x) = µ(f) =
∫
Y
f dµ ≤

∫
Y

sup {f(y) | y ∈ Y } dµ

= sup {f(y) | y ∈ Y }µ(Y ) = sup f(Y )
≤ sup {f(y) | y ∈ X} = sup f(X)

23



3 THE KREIN-MILMAN THEOREM AS AN INTEGRAL
REPRESENTATION THEOREM

Assume x /∈ X. Since X is closed and convex, the Hahn-Banach Separation
Theorem gives us that there exists g ∈ E∗, such that

g(x) > sup {g(y) | y ∈ X} .

This is a contradiction to the calculations above. Hence x ∈ X.
To show the converse implication, assume x ∈ conv(Y ) = X. Then there

exists a net in the convex hull of Y which converges to x [4, Proposition
4.18]. Equivalently, there exists a net (yα)α of the form yα =

∑nα
i=1 λ

α
i x

α
i

where λαi > 0,
∑nα

i=1 λ
α
i = 1 and xαi ∈ Y , which converges to x. Each yα

is represented by the probability measure µα =
∑nα

i=1 λ
α
i δ

α
xi according to

Remark 3.2. By the Riesz Representation theorem, we know that the set
of all probability measures on Y can be identified with a weak∗-compact
convex subset of C(Y )∗. Hence there exists a subnet (µβ)β of (µα)α, which
converges to some probability measure µ on Y . Furthermore each f ∈ E∗ is
in C(Y ), when restricted to Y , hence

lim
β
f(yβ) = lim

β

∫
Y
f dµβ =

∫
Y
f dµ.

Since (yα)α converges to x, so does the subnet (yβ)β and therefore f(x) =∫
Y f dµ for all f ∈ E∗.

The following result shows that the extreme points of X can be charac-
terized by the fact that they have unique representing measures, namely, the
corresponding point-masses.

Proposition 3.6. Suppose X is a compact convex subset of a locally convex
Hausdorff topological vector space E and that x ∈ X. Then x is an extreme
point of X if and only if the point mass δx is the only probability measure on
X which represents x.

Proof. Suppose x is an extreme point ofX and that the measure µ represents
x. Then we want to show that µ is supported by the set {x}, which in turns
of Lemma 2.4 will show that µ = δx. To do this it suffices to show that
µ(D) = 0 for each compact set D with D ⊆ X\{x}, due to inner regularity
of µ. Suppose instead that µ(D) > 0 for someD. We want to show that there
exists a point y ∈ D such that µ(U ∩X) > 0 for every open neighborhood
U of y. Assume towards contradiction that for every y there exists a Uy
such that µ(Uy ∩ X) = 0. The set {Uy}y∈D is an open cover of D. Since
D is compact Uy1 , . . . , Uyn also covers D for y1, . . . , yn ∈ D. This means
D ⊆ Uy1 ∪ . . . ∪ Uyn . We also have

D = D ∩X ⊆

(
n⋃
k=1

Uyk

)
∩X =

n⋃
k=1

(Uyk ∩X) .
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Due to our first assumption

0 < µ(D) ≤ µ

(
n⋃
k=1

(Uyk ∩X)

)
≤

n∑
k=1

µ (Uyk ∩X) = n · 0 = 0,

a contradiction. Hence, there must exist y such that µ(U ∩ X) > 0 for
all U . Choose U to be the closed convex neighbourhood of y such that
K = U ∩ X ⊆ X\{x}. Since K is a closed subset of the compact set X,
K is itself compact, as well as convex, and 0 < r := µ(K) < 1. The latter
holds because if µ(K) = 1, then the resultant x of µ would be in K, a
contradiction. We define Borel measures µ1 and µ2 on X by

µ1(B) = r−1µ(B ∩K) and µ2(B) = (1− r)−1µ(B ∩ (X\K))

for each Borel set B in X. Let xi be the resultant of µi for i = 1, 2. Since
µ1(K) = 1, we see that x1 ∈ K and hence x 6= x1. We observe that

(rµ1 + (1− r)µ2)(B) = rµ1(B) + (1− r)µ2(B)

= r · r−1µ(B ∩K) + (1− r)(1− r)−1µ(B ∩ (X\K))
= µ(B ∩K) + µ (B ∩ (X\K))
= µ ((B ∩K) ∪ (B ∩ (X\K))) = µ(B ∩X) = µ(B).

Let f ∈ E∗, then using the above calculations, we get

f(x) =
∫
X
f dµ =

∫
X
f d (rµ1 + (1− r)µ2)

= r

∫
X
f dµ1 + (1− r)

∫
X
f dµ2 = rf(x1) + (1− r)f(x2)

= f (rx1 + (1− r)x2) .

Since this holds for all f ∈ E∗, we have x = rx1+(1−r)x2. But we also have
x 6= x1 and r ∈ (0, 1), hence x /∈ Ext(X), a contradiction. Thus, µ(D) 6>
0 and therefore µ(D) = 0, as wanted. Since µ is regular, µ (X\{x}) =
sup {µ(D) | D ⊆ X\{x}, D compact} = 0. Hence, µ({x}) = 1 which means
µ = δx.

For the converse implication, if x /∈ Ext(X), then there exist x0, x1 ∈
X\{x} and 0 < α < 1 such that x = αx0 + (1− α)x1. It is then easily seen
that µ = αδx0 + (1 − α)δx1 represents x, and clearly µ 6= δx (for instance,
µ{x0} = α 6= 0 = δx({x0})).

Proposition 3.7. Suppose that X is a compact convex subset of a locally
convex Hausdorff topological vector space, that Z ⊆ X and that X is the
closed convex hull of Z. Then the extreme points of X are contained in the
closure of Z.
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REPRESENTATION THEOREM

Proof. Let Y = Z and suppose x ∈ Ext(X). Since Y is closed and a subset
of the compact set X, Y is itself compact. By Proposition 3.5 there exists a
probability measure µ on Y which represents x, i.e.,

f(x) =
∫
Y
f dµ.

By Proposition 3.6, µ = δx. Hence x ∈ Y .

Theorem 3.8. Every point of a compact convex subset X of a locally convex
Hausdorff topological vector space E is represented by a probability measure
µ on X which is supported by the closure of the extreme points of X.

Proof. We will use the Krein-Milman Theorem (Theorem 2.11) to show this
theorem. Let x ∈ X and define Y = Ext(X). By the Krein-Milman Theo-
rem, we have that x ∈ X = conv(Ext(X)) ⊆ conv(Y ). Theorem 3.5 gives
us, that there exists a probability measure µ on Y which represents x. We
extend µ to X and observe that µ(X\Y ) = 0, which means µ is supported
by the closure of the extreme points, as wanted.

We are now ready to reformulate the Krein-Milman theorem as an inte-
gral representation result.

Corollary 3.9. The Krein-Milman Theorem (Theorem 2.11) and Theo-
rem 3.8 are equivalent statements.

Proof. We have already used the Krein-Milman theorem to prove Theo-
rem 3.8. Conversely, assume the conclusion of Theorem 3.8 holds and let
x ∈ X and define Y = Ext(X). Since X is compact and Ext(X) ⊆ X,
Ext(X) is compact as well. By assumption every point x ∈ X, in particular
x ∈ Y , is represented by a probability measure µ. Then Theorem 3.5 gives
us that x ∈ conv(Y ) = conv(Ext(X)) = conv(Ext(X)). As this holds for all
x ∈ X, we have X ⊆ conv(Ext(X)). But since X is convex and compact
(hence closed), we have X = conv(X). We also have Ext(X) ⊆ X, hence
conv(Ext(X)) ⊆ conv(X) = X, thus X = conv(Ext(X)), as wanted.
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4 Choquet’s Theorem

Motivated by the reformulation of Krein-Milman’s theorem as an integral
representation result, as explained in the previous section, we now consider
the following more refined problem:

If X is a compact convex subset of a locally convex Hausdorff topological
vector space E and x ∈ X, does there exist a probability measure µ on X
which is supported by the extreme points of X and which represents x?

Note that a priori, there is no guarentee that Ext(X) is a Borel subset
of X (as it is required by the definition of “supported by”). In fact, such
counterexamples do exist (see [5] for a reference).

In the case where X is metrizable, Ext(X) will always be a Borel set, as
shown by the following:

Theorem 4.1. If X is a metrizable, compact convex subset of a locally con-
vex Hausdorff topological vector space E, then the extreme points of X form
a Gδ set.

Proof. Suppose the topology on X is given by the metric d and for each
n ∈ N let Fn =

{
x | x = 2−1(y + z), y, z ∈ X, d(y, z) ≥ n−1

}
. Fn is closed.

We want to show
∞⋃
n=1

Fn = {x ∈ X | x /∈ Ext(X)} .

Let x ∈ Fn, then x = 1/2y + 1/2z with d(y, z) ≥ 1/n. This means y 6= z
and in particular x is not an extreme point of X.

To show the converse inclusion, let x /∈ Ext(X), then there exists y, z ∈ X
with y 6= x, z 6= x and λ ∈ (0, 1) such that x = λy + (1− λ)z. Now λ ≤ 1/2
or (1−λ) ≤ 1/2. Without loss of generality, we can assume λ ≤ 1/2 (because
otherwise we just redefine λ′ := (1 − λ)). If λ = 1/2 we can choose n such
that 1/n < d(y, z) and then x ∈ Fn. If λ < 1/2 then 2λ ∈ (0, 1) and hence
2λy+(1−2λ)z ∈ X. Define y′ = 2λy+(1−2λ)z. We observe 1/2z+1/2y′ =
1/2z + λy + 1/2(1 − 2λ)z = 1/2z + λy + 1/2z − λz = λy + (1 − λ)z = x,
hence all we need to show is that z 6= y′. Assume to reach a contradiction
that z = y′, then z = y′ = 2λy + (1 − 2λ)z = 2λy + z − 2λz, which means
2λy = 2λz, hence y = z, a contradiction. Therefore we can choose n such
that 1/n < d(z, y′), which means x ∈ Fn.

Now we have shown, that the complement of the extreme points is a
countable union of closed sets, i.e., it is an Fσ-set. Hence Ext(X) is a Gδ-set
(countable intersection of open sets).

Furthermore under the metrizability assumption, Choquet has proved
that the answer to the above question is affirmative. We will discuss Cho-
quet’s theorem in the following. The proof makes use of the notion of upper
(affine) envelope of a bounded function, a concept which we now define.
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Denote by A the set of all continuous affine functions on X. Clearly
A ⊆ C(X).

Definition 4.2. If f is a bounded function on X and x ∈ X, let f(x) =
inf{h(x) | h ∈ A, h ≥ f}.

The function f is called the upper envelope of f , and it has the following
properties:

Proposition 4.3. Let f be the upper envelope of f , then

(a) f is concave, bounded, and upper semicontinuous - hence Borel measur-
able.

(b) f ≤ f and if f is concave and upper semicontinuous, then f = f .

(c) If f, g are bounded, then f + g ≤ f + g and |f − g| ≤ ‖f − g‖, while
f + g = f + g if g ∈ A. If r > 0, then rf = rf .

Proof. The proof will be omitted.

Theorem 4.4 (Choquet). Suppose that X is a metrizable compact convex
subset of a locally convex Hausdorff topological vector space E, and that x0

is an element of X. Then there is a probability measure µ on X which
represents x0 and is supported by the extreme points of X.

Proof. The first thing we want to show is the existence of a strictly convex
function f ∈ C(X). For this, observe that since X is metrizable, C(X)
is separable and hence so is it’s subset A defined above. (We include the
proofs of these results in the Appendix). We choose a countable dense subset
S′ = {h′n | n ∈ N} consisting of functions of A. For every n ∈ N, we define
hn = h′n/‖h′n‖∞. We define S = {hn | n ∈ N}. We want to show that
S is dense in the unit sphere. Let h0 ∈ K := {h ∈ A | ‖h‖∞ = 1},
then there exists a sequence (g′n)n∈N in S′ converging to h0. Thus we have
g′n/‖g′n‖ → h0/‖h0‖ = h0 as n → ∞. Since g′n/‖g′n‖∞ ∈ S, S is also dense
in K.

Now we want to show that S separates points in X. To do that, we
first show it for S′. Let x, y ∈ X with x 6= y and hence x − y 6= 0. Due to
the Hahn-Banach Separation Theorem there exists a linear functional φ such
that φ(x − y) 6= 0 and hence φ(x) 6= φ(y). Let |φ(x) − φ(y)| = 2r. Since φ
is linear it is in particular affine and therefore in A. Consider the open ball
B(φ, r) ⊆ A. Since S′ is dense in A and the ball is open and non-empty, it
contains a point from S′. Let h′ ∈ S′, x, y ∈ X with x 6= y and h′ ∈ B(φ, r).
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Then∣∣h′(x)− h′(y)
∣∣ =

∣∣(h′(x)− φ(x)
)

+ (φ(x)− φ(y)) +
(
φ(y)− h′(y)

)∣∣
≥ |φ(x)− φ(y)| −

∣∣(h′(x)− φ(x)
)

+
(
φ(y)− h′(y)

)∣∣
≥ 2r −

(∣∣h′(x)− φ(x)
∣∣+
∣∣φ(y)− h′(y)

∣∣)
≥ 2r −

(
‖h′ − φ‖∞ + ‖φ− h′‖∞

)
= 2r − 2‖h′ − φ‖ > 2r − 2r = 0.

Hence h′(x) 6= h′(y), and therefore S′ separates points of X. To show that
S does this as well, note that h′(x)/‖h′‖ 6= h′(y)/‖h′‖. Since h′/‖h′‖ ∈ S,
the set S does separate points of X.

Let f(x) =
∑∞

n=1 2−nh2
n(x). Since h2

n(x) ≤ ‖h2
n‖ = ‖hn‖2 = 1 the series

converges pointwise. Consider∣∣∣∣∣f(x)−
N∑
n=1

2−nh2
n(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

2−nh2
n(x)

∣∣∣∣∣ ≤
∞∑

n=N+1

2−n
∣∣h2
n(x)

∣∣
≤

∞∑
n=N+1

2−n
∥∥h2

n

∥∥ ≤ ∞∑
n=N+1

2−n.

Hence we have

sup
x∈X

∣∣∣∣∣f(x)−
∞∑
n=1

2−nh2
n(x)

∣∣∣∣∣ ≤
∞∑

n=N+1

2−n → 0 as N →∞.

Hence the series converges uniformly to f , thus f ∈ C(X).
To see that f is a strictly convex function, we need the result of Exam-

ple 2.9.
In our case, let x, y ∈ X with x 6= y and s ∈ (0, 1). Since hn is affine, we

have

h2
n (sx+ (1− s)y) = (hn (sx+ (1− s)y))2

= (shn(x) + (1− s)hn(y))2 .

Thus, we have

(shn(x) + (1− s)hn(y))2 < sh2
n(x) + (1− s)h2

n(y)

when hn(x) 6= hn(y). Since S separates points of X we can actually find
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some k ∈ N for which hk(x) 6= hk(y) and hence

f (sx+ (1− s)y) =
∞∑
n=1

2−nh2
n (sx+ (1− s)y)

<

∞∑
n=1

2−n
(
sh2

n(x) + (1− s)h2
n(y)

)
= s

( ∞∑
n=1

2−nh2
n(x)

)
+ (1− s)

∞∑
n=1

2−nh2
n(y)

= sf(x) + (1− s)f(y),

giving us that f is strictly convex.
Now, let B denote the subspace A + Rf of C(X). Furthermore, let

p : C(X)→ R be defined by p(g) = g(x0) for g ∈ C(X) and x0 ∈ X. We want
to show that p is a sublinear functional. To do this, let g1, g2 ∈ C(X) and
note that g1, g2 are bounded, since X is compact. Then by Proposition 4.3
(c), we have

p(g1 + g2) = g1 + g2(x0) ≤ g1(x0) + g2(x0) = p(g1) + p(g2).

Furthermore, let r ≥ 0 and note that

p(rg1) = rg1(x0) = rg1(x0) = rp(g1).

Hence, p is a sublinear functional, as wanted.
Define a new linear functional ψ on B by h+ rf → h(x0) + rf(x0) where

h ∈ A and r ∈ R. We will show that ψ is dominated on B by p, i.e.,
ψ(g) ≤ p(g) for all g ∈ B. This is the same as ψ(h+ rf) = h(x0) + rf(x0) ≤
h+ rf(x0) for all h ∈ A and r ∈ R. Let r ≥ 0, then by Proposition 4.3 (c),
we have that

ψ(h+ rf) = h(x0) + rf(x0) = h(x0) + rf(x0) = h+ rf(x0).

If r < 0, then h + rf is concave. Indeed, since −h − rf is convex by these
calculations

(−h− rf) (λx+ (1− λ)y) = −h (λx+ (1− λ)y)− rf (λx+ (1− λ)y)
≤ −λh(x)− (1− λ)h(y)− λrf(x)− (1− λ)rf(y)
= λ(−h− rf)(x) + (1− λ)(−h− rf)(y).

Hence h+rf is concave and easily seen to be continuous - in particular upper
semicontinuous. Hence, due to Proposition 4.3 (b), h+ rf = h+rf ≥ h+rf ,
where the latter comes from the fact that r < 0.

By the Hahn-Banach Extension Theorem [4, 5.6], then, there exists a
linear functional m on C(X) such that m(g) ≤ p(g) = g(x0) for g ∈ C(X)
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and m(g) = ψ(g) for g ∈ B, i.e., m(h + rf) = h(x0) + rf(x0) for h ∈ A
and r ∈ R. We want to show that m is a positive linear functional with
m(1) = 1. Note that 1 ∈ A since all constant functions a clearly affine,
thus m(1) = m(1 + 0f) = 1. Furthermore, let g ∈ C(X) with g ≤ 0,
then by definition g(x0) = inf{h(x) | h ∈ A and h ≥ g} ≤ 0. Thus,
m(g) ≤ p(g) = g(x0) ≤ 0. Now let g ≥ 0, then −g ≤ 0 and m(−g) ≤ 0 and
since m is linear, −m(g) ≤ 0 and thus m(g) ≥ 0. All in all, m is a positive
linear functional. Note that Cc(X) = C(X) since X is compact. Thus, due
to the Riesz Representation Theorem [4, 7.2] there exists a Radon measure
µ on X such that

m(g) =
∫
X
g dµ = µ(g)

for g ∈ C(X). Notice that

µ(X) =
∫
X

1 dµ = m(1) = 1,

hence, µ is a probability measure. Now we need to show that µ represents x0.
Consider φ ∈ E∗, since φ is linear it is in A as well, hence in B. Therefore
we have

µ(φ) =
∫
X
φ dµ = m(φ) = φ(x0),

thus µ represents x0.
The only thing left is to show that µ is supported by the extreme points of

X. For this, we notice f ≤ f by Proposition 4.3 (b) end hence µ(f) ≤ µ(f).
If h ∈ A and h ≥ f , then h(x) ≥ inf{h′(x) | h′ ∈ A, h′ ≥ f} = f(x), thus
h(x0) = µ(h) ≥ µ(f). On the other hand, we also have µ(f) = m(f) =
f(x0) = inf{h(x0) | h ∈ A, h ≥ f} ≥ µ(f). Therefore

µ(f) = µ(f).

Define E = {x ∈ X | f(x) = f(x)}. We next show that µ vanishes on the
complement of E . This is a standard result in measure theory, but we include
the proof. Since µ(f) = µ(f), we have

0 =
∫
X
f dµ−

∫
X
f dµ =

∫
X

(f − f) dµ.

As f ≤ f , f − f ≥ 0. Now, for all n ∈ N, let En = {x ∈ X | f − f ≥ 1/n}.
As 0 ≤ 1En(f̄ − f) ≤ f̄ − f , we have

0 =
∫
X
f̄ − f dµ ≥

∫
En

f̄ − f dµ ≥
∫
En

1
n

dµ =
1
n
µ(En),
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so µ(En) = 0 for all n ∈ N. Hence, µ (
⋃∞
n=1En) = 0, but

⋃∞
n=1En = {x ∈

X | f̄ − f > 0}, which shows us that µ vanishes on {x ∈ X | f̄ − f > 0} =
{x ∈ X | f̄ > f} = Ec.

Therefore, we only need to show that E is contained in the set of extreme
points of X.

For this, let x ∈ X and suppose x = λx1 + (1 − λ)x2 for λ ∈ (0, 1)
and x1, x2 ∈ X with x 6= x1, x 6= x2. That E ⊆ Ext(X) is the same as
Ext(X)c ⊆ Ec. Let x ∈ Ext(X)c. Since f is strictly convex and f ≤ f , we
have

f(x) = f (λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2)

≤ λf(x1) + (1− λ)f(x2),

but we also have

f(x) = f(λx1 + (1− λ)x2)
= inf {h (λx1 + (1− λ)x2) | h ∈ A, h ≥ f}
= inf {λh(x1) + (1− λ)h(x2) | h ∈ A, h ≥ f}
≥ inf {λh(x1) | h ∈ A, h ≥ f}+ inf {(1− λ)h(x2) | h ∈ A, h ≥ f}
= λ inf {h(x1) | h ∈ A, h ≥ f}+ (1− λ) inf {h(x2) | h ∈ A, h ≥ f}
= λf(x1) + (1− λ)f(x2).

So all in all, we have that f(x) < f(x), thus x ∈ Ec, as wanted.

Choquet’s theory of integral representations of convex sets in terms of
their extreme points provides a unified approach to a number of important
results in harmonic analysis and functional analysis. In this thesis we have
only “scratched the surface”, and we hope to pursue these topics further in
the future.
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A Separability

Recall that a metric space (M,d) is called separable if it contains a countable
subset (xn)n≥1 which is dense in M (i.e., for all x ∈ M and every ε > 0,
there exists n ≥ 1 such that d(x, xn) < ε).

The following result provides us with examples of separable metric spaces.

Lemma A.1. If M is a compact metric space, then M is separable.

Proof. For every ε > 0, the family of open balls {B(x, ε) | x ∈M} is an open
cover ofM . Hence, by compactness ofM , there is a finite subfamily covering
M . This argument shows, in particular, that for K ∈ N, there exists a finite
set Fk ⊆ M such that

⋃
x∈Fk B(x, 1/k) covers M . Now let F =

⋃
k∈N Fk.

Then F is a countable subset ofM , so there is an enumeration (xn)n≥1 of F .
We want to show that (xn)n≥1 is dense inM . For this, let ε0 > 0 and x ∈M
be given. Then there exists k0 ∈ N such that 1/k0 < ε0. By construction of
the family, Fk0 ⊆ {xn | n ≥ 1} so there exists n0 ∈ N such that

x ∈ B
(
xn0 ,

1
k0

)
⊆ B(xn0 , ε0),

and we are done.

The following lemma will be quite useful to us.

Lemma A.2. If (M,d) is a separable metric space and M0 is a non-empty
subset of M , then M0 is separable as well.

Proof. Let (xn)n≥1 be dense in M . Set

I =
{

(n,m) ∈ N× N | B
(
xn,

1
m

)
∩M0 6= ∅

}
.

Let y ∈M0, then for all m ∈ N there exists n ∈ N such that xn ∈ B(y, 1/m)
which implies that y ∈ B(xn, 1/m), i.e., (n,m) ∈ I, thus I 6= ∅.

Now, for every (n,m) ∈ I, choose y(n,m) ∈ B(xn, 1/m) ∩M0. Then the
set C := {y(n,m) | (n,m) ∈ I} is a countable subset of M0. To show it is also
dense, let z ∈M0 and 0 < ε < 1. Choose x0 ∈ B(z, ε/4)∩{xn | n ≥ 1}, then
there existsN ∈ N such that ε/4 ≤ 1/N ≤ ε/2. Since z ∈ B(x0, 1/N)∩M0 6=
∅, there exists y(n,m) ∈ C such that d(y(n,m), x0) < 1/N . Now, we have that
d(y(n,m), z) ≤ d(y(n,m), x0) + d(x0, z) < 1/N + 1/N ≤ ε/2 + ε/2 = ε, hence
y(n,m) ∈ B(z, ε) and therefore M0 has a countable dense subset C, thus is
separable.

We now prove the main result concerning separability:

Theorem A.3. Suppose that (M,d) is a compact metric space. Then C(M)
(the space of real-valued continuous functions onM , equipped with the metric
given by the uniform norm) is separable.
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Proof. Since M is a compact metric space, Theorem A.1 gives us that M
itself is separable. Hence, there exists a countable dense subset of M , i.e.,
there exists (xn)n≥1 ⊆ M such that for all x ∈ M and every ε > 0, we can
choose xn with dM (x, xn) < ε. We define a sequence of functions gn ∈ C(M)
by gn(x) = dM (x, xn). Given an arbitrary finite string of indices (n1, . . . , nk),
we define

gn1,...,nk(x) = gn1(x) · · · gnk(x).

Let A be the set of all linear combinations of gn1,...,nk , i.e,

A =

{
a+

∑
n1,...,nk

an1,...,nkgn1,...,nk

∣∣∣∣ a, an1,...,nk ∈ R

}
,

where the above sums are finite. Note that A is not necessarily countable.
Notice that A contains the constant functions and observe furthermore that
A is clearly an algebra. Our aim is for A to satisfy the conditions for the
Stone-Weierstrass Theorem [4, Theorem 4.45], hence it remains to show that
A separates points of M . Thus, suppose x, y ∈ M with x 6= y and let
dM (x, y) = dM (y, x) = 2ε > 0. Due to separability of M , we can choose
xn ∈ M such that dM (x, xn) < ε. Now, consider gn ∈ A. By definition,
gn(x) < ε. But, we also have

gn(y) = dM (y, xn) ≥ dM (y, x)− dM (x, xn) ≥ 2ε− ε = ε,

thus gn(x) 6= gn(y). Now, applying the Stone-Weierstrass Theorem, we get
that A = C(M), hence A is a dense subset of C(M). We still need the
subset to be countable. For this consider the set

A′ =

{
a+

∑
n1,...,nk

an1,...,nkgn1,...,nk | a, an1,...,nk ∈ Q

}
.

Obviously, A′ is countable and dense in A, therefore A′ is a countable dense
subset of C(M).
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