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Abstract

In this project several fundamental concepts of free probability are

presented. We de�ne the R transform and prove that it linearizes free

additive convolution. This is used to prove the free central limit theorem,

which in turn is used to prove a variant of the celebrated Wigner's Law

of random matrices. The project is in english.
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Introduction

Free probability was introduced in the 80's by Dan Voiculescu to attack the elu-
sive 'free group factors ismomorphism problem' of operator algebras. Although
not su�cient to solve the problem completely, the theory enjoyed a great deal of
success and, as a result, a great deal of interest. Later, important connections to
many other areas of mathematics has been discovered, warranting indenpendent
interest in free probability. This is the point of view of the present presentation.

In section 1 we introduce the fundamental concepts of free probability and
present a number of examples. The proofs are mostly elementary and may be
skipped on a �rst reading. In section 2 The R transform is introduced and we
investigate how it interacts with free convolution. The proofs of this section are
mainly due to U�e Haagerup [4]. In section 3 the free central limit theorem is
proved and it is used in the �nal section to prove a variant of Wigner's Law
due to Dan Voiculescu [1]. This result, though originally intended for other
purposes, illustrates how methods from free probability can be used to study
problems of independent interest.
In the appendix a short introduction to formal power series is given, including a
proof of the Lagrange Inversion Formula, used in the discussion of the R trans-
form.

I wish to thank my advisor Magdalena Musat for her help and advice. Al-
though our communication have not always been optimal, I sincerely appreciate
the respect and support she has shown in the proccess.

Isak Mottelson
Department of mathematical sciences

University of Copenhagen
January, 2012.

2



1 Free probability

1.1 Non-commutative probability spaces

The pre�x 'non-commutative' can be added to many classical areas of mathe-
matics. The programme typically runs roughly as follows:

Classically one studies a space of some kind. Often, this naturally
suggests some algebra of functions on the space, and one then strives
to express the interesting properties of the space in terms of this
algebra. To earn the pre�x 'non-commutative' one then forgets the
space, and replaces the algebra with a non-commutative algebra with
corresponding structure.

Examples include non-commutative topological spaces (C∗-agebras), non-com-
mutative measure spaces (von Neumann algebras), non-commutative manifolds
and many more. Many constructions carry over (loosely) to the non-commutative
setting as well, such as non-commutative one-point compacti�cation (unitaliza-
tion), non-commutative Stone-Čech compacti�cation (multiplier algebras) and
non-commutative Lp-spaces. In the following we introduce the concepts of a
non-commutative probability space, as well as some of the corresponding con-
tructions, and as we shall see, very closely follow the outline given above.

The fundamental notion in probability theory is that of a probability space,
i.e., the triple (Ω,S, P ) with Ω a set, S a σ-algebra on Ω and P a probability
measure on (Ω,S). We may then study the random variables, i.e., the measur-
able maps X : Ω → C (or X : Ω → R). This algebra is too big to study even
in the commutative case, so it is a question to which smaller algebra we should
try to apply the above procedure. An example could be the algebra

L =

∞⋂
p=1

Lp(Ω,S, P )

of random variables with moments of all orders, or one may study the subalgebra
L∞(Ω,S, P ) ⊆ L of essentially bounded random variables1. On these algebras
we have a natural functional E given by

E(f) =

∫
Ω

fdP, f ∈ L

and note that E(1) = 1 with 1 being the constant function 1 on Ω. This suggests
the following de�nition:

De�nition 1.1. A non-commutative probability space is a pair (A, φ) where A
is an algebra with unit, and φ is a linear functional on A taking the value 1 at
the indentity element of A

It is customary to refer to the elements of A as non-commutative stochastic
variables (or random variables) and to the functional as the expectation. This
de�nition is very generous in that it allows any algebra and any functional as

1We gloss over the fact that the above algebras actually consist of equivalence classes of
functions.
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input data, which sometimes can make arguments simpler. On the other hand,
because of its generality it permits no analytic arguments of any kind. Further,
the notion of a positive random variable cannot be expressed in this level of
generality. To remedy this, we have a more restrictive de�nition:

De�nition 1.2. A C∗-probability space is a pair (A, φ) where A is a C∗-algebra
with unit and φ is a state.

To illustrate the above de�nitions, we give a few examples:

Example 1.3. Let I be any set and denote by C 〈Xi | i ∈ I〉 the non-commutative
polynomials in the symbols (Xi)i∈I , i.e., linear combinations of Xm1

i1
· · ·Xmn

in
,

n ∈ N, m1, . . .mn ∈ N and i1, . . . in ∈ I such that i1 6= i2 6= · · · 6= in. Note
that the possibility that i1 = i3 is not precluded. Together with any functional
µ taking the value 1 at the unit of the algebra (C 〈Xi | i ∈ I〉 , µ), this is a non-
commutative probability space.

The next example will serve as a model space for phenomena occuring in
any non-commutative probability space. It has both very algebraic and very
analytic properties at the same time:

Example 1.4 (Full Fock spaces). Let Hn denote an n-dimensional Hilbert space
with orthonormal basis e1, . . . , en. Consider the full Fock space over Hn de�ned
by

F(Hn) = CΩ⊕
∞⊕
k=1

Hn
⊗k.

Here Ω denotes some distinguished unit vector. Consider the algebra B(F(Hn))
of bounded linear operators on the full Fock space over Hn, together with the
linear functional ω given by

ω(T ) = 〈TΩ,Ω〉 , T ∈ B(F(Hn)).

Since B(F(Hn)) is a unital C∗-algebra, and ω is a state (a vector state, even)
the pair (B(F(Hn)), ω) is a C∗-probability space for any Hilbert space Hn.

1.2 Distributions and freeness

A classical radom variable X : Ω→ C gives rise to a measure X(P ) on C de�ned
by

X(P )(E) = P (X−1(E)), E ∈ B(C).

We refer to X(P ) as the distribution of X (with respect to P ). Note that in a
certain sense, a measure is exactly a functional on the functions on the measure
space given by integration with respect to the measure. And if X has moments
of all orders we have the change of variable formula∫

R
pdX(P ) =

∫
Ω

p ◦XdP = E(p ◦X),

for each polynomial p ∈ C[X]. For large classes of random variables, it is
even true that the measure is completely determined by the values of the above
funtional on polynomials. This suggests the following de�nition:
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De�nition 1.5. If a is a random variable in a non-commutative probability
space (A, φ) we denote by µa the functional µa : C[X]→ C given by

µa

(
k∑

n=1

cnX
n

)
=

k∑
n=1

cnφ(an).

That is, µa(p) = φ(p(a)) for all p ∈ C[X]. We refer to µa as the distribution of
a.

More generally, we de�ne

De�nition 1.6. If I is an index set and (ai)i∈I a family of random variables in
a non-commutative probability space (A, φ), de�ne the joint distribution µ(ai)i∈I

as the functional on C 〈Xi | i ∈ I〉 given by

µ(ai)i∈I

(
Xm1
i1
· · ·Xmn

in

)
= φ

(
am1
i1
· · · amn

in

)
Note that this identi�es the distribution of an element/family of elements

with the collection of (non-commutative) moments of the element/family.
The following example illustrates the approach:

Example 1.7. Let (A, φ) be a C∗-probability space, and let a be a normal
element in A. By de�nition the distribution of a is the map

µa : C[X]→ C given by µa(P ) = φ(P (a)).

However, in this case we can use the Spectral Theorem to extend this functional
to the C∗-algebra C(σ(a)) simply by de�ning µa(f) = φ(f(a)). By the properties
of the continuous functional calculus, to wit it is continuous and preserves posi-
tivity, this gives us a state on C(σ(a)). Now the Riesz Representation Theorem
yields a unique regular probability measure µ such that

µa(f) =

∫
σ(a)

fdµ ∀ f ∈ C(σ(a)).

Since the above extension of µa to C(σ(a)) is the only continuous one (the poly-
nomials being dense in C(σ(a))) µ is the only measure with this property. Hence,
if the C∗-algebra is already an algebra of stochastic variables on some probability
space, the above construction gives back the classically de�ned distribution.

A very important concept in classical probability is the notion of indepen-
dent random variables. Classically, random variables X1, . . . , Xn are said to
be independent if the joint distribution (X1, . . . , Xn)(P ) on Cn is the product
measure X1(P )⊗· · ·⊗Xn(P ). In particular, if p1, . . . pn are polynomials in one
variable, we get (by Fubini's Theorem) that

E (p1(X1) · · · pn(Xn)) =

n∏
i=1

E (pi(Xi)) .

We can easily translate this notion directly to the setting of non-commutative
probability. We might say that non-commutative random variables x1, . . . xn in
(A, φ) are independent if

φ(p1(x1)p2(x2) · · · pn(xn)) = φ(p(x1))φ(p2(x2)) · · ·φ(pn(xn)),
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but that seems ill advised for the following reason. In the commutative case,
the desirable aspect of independent variables is that their joint distribution is
completely determined from the marginal distributions. If we simply require the
above condition for the non-commutative situation this will no longer hold, since
it gives no information on the expectations of non-commutative polynomials in
the given variables, e.g., φ(x1x2x1). One solution is to additionally require that
the variables under consideration commute, but that seems to defeat the purpose
of introducing non-commutative probability theory. Instead, we introduce the
notion of freeness, which is a purely non-commutative phenomenon:

De�nition 1.8. Let (A, φ) be a non-commutative probability space and let
(Ai)i∈I be a family of unital subalgebras. We say that the family is free if

φ(a1 · · · an) = 0

whenever ai ∈ Ami , m1 6= m2 6= · · · 6= mn with φ(Ai) = 0 for i = 1, . . . n. A
family of elements (ai)i∈I is said to be free if (alg(ai))i∈I is2 free.

Similarly to classically independent variables we have that the distribution
of a+ b only depends on the marginal distributions:

Proposition 1.9. Let a, b be free random variables in a non-commutative prob-
ability space (A, φ). Then µa+b depends only on µa and µb. More speci�cally,
there exists polynomials Pn independent of a and b such that

µa+b(X
n) = Pn (µa(X), . . . , µa(Xn), µb(X), . . . , µb(X

n)) .

We then denote µa+b = µa � µb - the additive free convolution.

Proof. The author remarks that although it may seem complicated, the proof
is really simple, and may perhaps even be skipped by the con�dent reader.
Start by writing

µa+b(X
n) = φ ((a+ b)n)

and expand into monomials. Let A1 = alg(a, 1), A2 = alg(b, 1) and write the
monomials as

c = c1c2 · · · cm, m ∈ N cj ∈ Aij i1 6= i2 6= · · · 6= im

where cj is a power nj of either a or b for all j and
∑
nj ≤ n. Now, for any

x ∈ A put
o
x= x− φ(x)1. Then calculate:

φ(c1 · · · cm) = φ
(

(
o
c1 +φ(c1)1) · · · ( o

cm +φ(cm))
)

=
∑

S⊆{1,...,m}

 ∏
j∈{1,...,m}\S

φ(cj)

φ

∏
j∈S

o
cj


The crucial observation is then the fact that if S = {1, . . . ,m}, then

φ

∏
j∈S

o
cj

 = φ(
o
c1 · · ·

o
cm) = 0

2Or (C∗(ai))i∈I in the case of a C∗-probability space.
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by assumption. Hence we may assume S ( {1, . . . ,m}. Now employ the same
manoeuvre:

φ

∏
j∈S

o
cj

 =
∑
R⊆S

 ∏
j∈S\R

(
− φ(cj)

)φ

∏
j∈R

cj


Now note that

∏
j∈R cj can be written as c̃1c̃2 · · · c̃q with3 c̃j ∈ Akj , k1 6= · · · 6=

kq for some q ≤ |R| < m Hence, a lot of moments of a and b aside we are back
where we started, only with strictly fewer factors. An induction argument then
�nishes the proof.

Note that the proof shows that we can calculate the expectation of any
non-commutative polynomial in free variables only knowing the moments of the
individual variables.
An important exmple to illustrate the above concept is in order:

1.3 The model example

Let Hn denote an n-dimensional Hilbert space with orthonormal basis e1, . . . , en
and recall the non-commutative probability space (B(F(Hn)), ω) of example 1.4.
De�ne the creation operators `k : F(Hn)→ F(Hn), k = 1, . . . , n on F(Hn) by

`k(ej1 ⊗ · · · ejm) = ek ⊗ ej1 ⊗ · · · ejm , `kΩ = ek.

These maps are clearly linear isometries and hence in B(F(Hn)). Further, we
immediately see that

`∗j (ei1 ⊗ · · · ⊗ eim) = 〈ej , ei1〉 ei2 ⊗ · · · ⊗ eim , `∗jej = Ω.

We now have

Lemma 1.10. The families
{
`j , `

∗
j

}
are free in (B(F(Hn)), ω), viewed as either

a non-commutative probability space or a C∗-probability space. We say that the
`js are ∗-free.

Proof. Since the `js are isometries we have `∗j `j = 1. Therefore

Aj = alg(`j , `
∗
j ) = span

{
`mj (`∗j )

n | m,n ∈ N0

}
.

Furthermore, we see that

ω
(
`mj (`∗j )

n
)

=
〈
(`∗j )

mΩ, (`∗j )
nΩ
〉

=

{
1 for n = m = 0
0 else

Note that this actually proves that ω(x) = 0 for all non-scalar x ∈ Aj .
Now let j1 6= j2 6= · · · 6= jk and assume

ω
(
`mi
ji

(`∗ji)
ni
)

= 0, i = 1, . . . , k, ω(`m1
j1

(`∗j1)n1 · · · `mk
jk

(`∗jk)nk) 6= 0.

Now calculate:

ω
(
`m1
j1

(`∗j1)n1 · · · `mk
jk

(`∗jk)nk
)

=
〈
`m1
j1

(`∗j1)n1 · · · `mk
jk

(`∗jk)nkΩ,Ω
〉

=
〈
(`∗j1)n1 · · · `mk

jk
(`∗jk)nkΩ, (`∗j1)m1Ω

〉
.

3We even still have that each factor is a power of a or b.
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If ω(`m1
j1

(`∗j1)n1) = 0, then either m1 or n1 is di�erent from 0. If m1 6= 0,
then (`∗j1)m1Ω = 0 and the above expression is zero. If m1 = 0, then (as
n1 6= 0) we must have m2 = 0, since `∗j `k = 0 for j 6= k. Inductively, we get
m1 = m2 = · · · = mk = 0. But then nk 6= 0, and the expectation is zero anyway
(since `∗jkΩ = 0).

By continuity, the above proof also shows that the `j 's are ∗-free in the C∗-
algebra sense.

For independent classical random variables X,Y it is well known that (X +
Y )(P ) = X(P ) ∗ Y (P ) (convolution). To analyze such quantities one has the
Fourier transform, which turns convolution into multiplication. One may then
even take the logarithm to completely linearize the before so complicated phe-
nomenon. In the next section we introduce the R-transform of Voiculescu and
prove that it has a similar property with respect to free convolution.

2 The R transform

2.1 De�nition and properties

The present work approaches the R transform from the perspective of formal
power series, developed in the appendix. For an element a in a non-commutative
probability space (A, φ), de�ne the 'formal Cauchy transform' of a as a formal
power series Ga(λ) by

Ga(λ) =

∞∑
n=0

λ−n−1φ(an).

Strictly speaking, this is may not be a bona �de Laurent series, since arbitrarily
many coe�cients correspoding to negative powers of λ may occur. Hence, for
simplicity, we consider ψ(t) ∈ C[[t]] de�ned by

ψ(t) =

∞∑
n=0

tn+1φ(an).

The philosophy of this object is to encode all the moments mn = φ(an) of a in a
single power series. Since there is no constant term in ψ and the �rst order term
has coe�cient 1, the series can be inverted in C[[t]] with respect to composition
(see the appendix) to get a series ψ(−1)(z) ∈ C[[z]]. We then makte the following
de�nition.

De�nition 2.1. If a is a random variable in a non-commutative probability
space (A, φ) we de�ne the R transform of a as the formal power series

Ra(z) =
1

ψ(−1)(z)
− 1

z
.

Here ψ(t) is the formal power series

ψ(t) = t

(
1 +

∞∑
n=1

mnt
n

)
.
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We now claim that Ra(z) ∈ C[[z]] and denote it

Ra(z) =

∞∑
p=0

rp+1z
p.

The coe�cients of the series (rp)
∞
p=1 are called the free cumulants of a. That

this actually de�nes a formal power series follows directly from the composition
and inversion formulas in the appendix. The reason for introducing this strange
object is primarily the following two facts:

(I) The moments (mk)∞k=1 are completely determined by the R transform.
Furthermore, there exist �xed polynomials (independent of the random
variable in question) expressing the �rst k cumulants in terms of the �rst
k moments and vice versa.

(II) If a and b are free random variables in (A, φ), then

Ra+b(z) = Ra(z) + Rb(z)

The �rst point follows from the Lagrange inversion formula, proved in the ap-
pendix. More precisely one has:

Theorem 2.2 (The moment-cumulant formulas). The cumulants may be ex-
pressed in terms of the moments as

rp = mp +

p∑
k=2

(−1)k−1

k

(
p+ k − 2

k − 1

)∑
Qk

mq1 · · ·mqk . (1)

The moments may be expressed in terms of cumulants as

mp = rp +

p∑
k=2

1

k

(
p

k − 1

)∑
Qk

rq1 · · · rqk . (2)

Here Qk denotes the set

Qk =

{
(q1, . . . , qk) ∈ Nk |

k∑
i=1

qi = p

}

The �rst few cumulants are expressed below:

r1 = m1

r2 = m2 −m2
1

r3 = m3 − 3m1m2 + 2m3
1.

We now turn our attention towards the property II.

2.2 The R transform and free convolution

The strategy is �rst to prove the result in a very easy model example in (B(F(H2)), ω),
and then to extend this to an arbitrary case. To accomplish the �rst step we
prove the following theorem:
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Theorem 2.3. a) Let f be a polynomial, and let

a = `1 + f (`∗1) .

Then
Ra(z) = f(z) z ∈ C.

b) Let f and g be two polynomials, and let

a = `1 + f (`∗1)

b = `2 + g (`∗2) .

Then a and b are free and

Ra+b(z) = Ra(z) + Rb(z), z ∈ C.

Before we begin the proof, note that the above claims are made in a C∗-
probability space. Hence the 'formal Cauchy transform' G(λ) actually con-
verges, at least for |λ| > ‖a‖. Hence, in this case the R transform is actually an
analytic function in some domain and

R(z) = G(−1)(z)− 1

z
.

We use this to employ methods from complex analysis in the following proof.

Proof. a) The strategy is to calculate the formal Cauchy transform by relating
it to the resolvent by the Neumann series.
For z ∈ C, |z| < 1 de�ne the vector

ωz = (1− z`1)−1Ω = Ω +

∞∑
n=1

zne⊗n1 .

Then

`1ωz =

∞∑
n=0

zne
⊗(n+1)
1 =

1

z
(ωz − Ω) , 0 < |z| < 1.

Since we have `∗1Ω = 0 and `∗1
(
e⊗n1

)
, (here we set e⊗0

1 = Ω) we get

`∗1ωz =

∞∑
n=1

zne
⊗(n−1)
1 = zωz, |z| < 1.

Therefore we have that

(`∗1)
n
ωz = znωz, n ∈ N, |z| < 1.

Hence for our a = `1 + f (`∗1) we have proved

aωz =
1

z
(ωz − Ω) + f(z)ωz

=

(
1

z
+ f(z)

)
ωz −

1

z
Ω, 0 < |z| < 1.
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This means that ((
1
z + f(z)

)
− a
)
ωz =

1

z
Ω.

Since
lim
z→0

∣∣ 1
z + f(z)

∣∣ =∞

we can choose δ ∈ R, 0 < δ ≤ 1 such that∣∣ 1
z + f(z)

∣∣ > ‖a‖, when 0 < |z| < δ.

Using the Neumann series we see that
(

1
z + f(z)

)
− a is invertible for 0 <

|z| < δ, and {(
1
z + f(z)

)
− a
}−1

Ω = zωz.

By de�nition of ω this gives

ω
({(

1
z + f(z)

)
− a
}−1

)
= z 〈ωz,Ω〉 = z.

Now we are ready to �nish the proof:
We need to set

Ga(λ) =

∞∑
n=0

λ−n−1ω(an) = ω
(
(λ− a)−1

)
, |λ| > ‖a‖,

again using the Neumann series. The above discussion then gives

Ga
(

1
z + f(z)

)
= z, 0 < |z| < δ.

That is, Ga is invertible near in�nity, and

G(−1)
a (z) =

1

z
+ f(z), 0 < |z| < δ.

By the discussion preceding the proof, this gives

Ra(z) = f(z)

as desired.

b) First note that `1 and `2 are free, as proved in Lemma 1.10. Now the proof
proceeds very much like in the proof of a). That is, we introduce

ρz = (1− z(`1 + `2))
−1

Ω, |z| < 1/2.

Then, arguing as above and using that `∗1`2 = `∗2`1 = 0 we get

`∗1ρz = zρz, `∗2ρz = zρz.

In the same way as in the previous calculations this gives

(a+ b)ρz =

{(
1

z
+ f(z) + g(z)

)
− (a+ b)

}
ρz =

1

z
Ω.
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Inverting this for small z as above we get

ω

({(
1

z
+ f(z) + g(z)

)
− (a+ b)

}−1
)

= (zρz,Ω) = z.

As in the �rst part we conclude

Ra+b(z) = f(z) + g(z) = Ra(z) + Rb(z)

which is what we wanted to prove.

This gives (II) remarkably easily in view of (I):

Corollary 2.4. Let (A, φ) be a non-commutative probability space, and let a, b ∈
A be free. Then

Ra+b(z) = Ra(z) + Rb(z)

as formal power series.

Proof. Put

Ra(z) =

∞∑
p=0

rp+1(a)zp

Rb(z) =

∞∑
p=0

rp+1(b)zp

Let n ≥ 1 be given. We prove that rp(a+b) = rp(a)+rp(b) for all p ≤ n. De�ne

a′ = `1 +

n∑
p=0

rp+1(a)(`∗1)p

b′ = `2 +

n∑
p=0

rp+1(b)(`∗2)p

in B(F(H2)). Then Ra(z) and Ra′(z) agrees on the �rst n coe�cients. By (I)
this implies that the �rst n moments of a and a′ agree (and the same for b and
b′). By Proposition 1.9 and Lemma 1.10 this gives

φ ((a+ b)p) = ω ((a′ + b′)p)

for p ≤ n. Hence by (I) again Ra+b(z) coincides with Ra′+b′(z) on the �rst
n coe�cients. But by Theorem 2.3 we have rp(a

′ + b′) = rp(a
′) + rp(b

′) =
rp(a) + rp(b) as we wanted to prove.

3 The central limit theorem

Recall the central limit theorem of classical probability (see [5], Theorem 2.7):
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Theorem 3.1 (The central limit theorem). Let (Xn)∞n=1 be a sequence of inde-
pendent identically distributed random variables with mean µ and variance σ2.
Then

XN =
√
N

((
1

N

N∑
n=1

Xn

)
− µ

)
converges in distribution towards a random variable with distribution N (0, σ2).

If one imposes further conditions on the variables one may relax the assump-
tion of identical distributions.
In this section we prove the free analogue of this result. The notion of conver-
gence in distribution is a natural one in non-commutative probability:

De�nition 3.2. If µn : C[X] → C is a sequence of distributions, we say that
µn converges to a distribution µ : C[X]→ C if

µn(P )→ µ(P )

For all P ∈ C[X]. Now let (A, φ) be a non-commutative probability space, and
(an)n∈N be a sequence of random variables with distributions µn. Then we say
that an converges to µ in distribution if µn converges to µ.

Before we state the free central limit theorem, let us introduce the distribu-
tion playing the role of the normal distribution of classical probability:

De�nition 3.3. The semi-circle distribution with center a and radius r > 0 is
the distribution γa,r : C[X]→ C such that

γa,r(P ) =
2

r2π

∫ a+r

a−r
P (t)

√
r2 − (t− a)2dt,

for all P ∈ C[X].

Equivalently, we could have just listed all the moments of the semi-circle dis-
tribution, and since this is the way we approach distributions in non-commutative
probability, we calculate them below:

Lemma 3.4. The semi-circle distribution γ0,r has moments

m2n =
(r

2

)2n (2n)!

n!(n+ 1)!
.

The odd moments are 0 since the density is even.

Proof. This is just integration.

m2n =
2

πr2

∫ r

−r
x2n
√
r2 − x2dx

=
2

π
r2n

∫ 1

−1

t2n
√

1− t2dt

=
2r2n

π

∫ π/2

−π/2
sin2n t cos2 tdt

=
r2n

π(2n+ 1)

∫ 2π

0

sin2n+2 tdt. (3)

13



Here the second and third lines follow from elementary substitions and the last
line follow from integration by parts and using that sin is odd. We now employ
standard methods from complex analysis to �nish the calculation:∫ 2π

0

sin2n tdt =

∫
T
−iz−1

(
z − z−1

2i

)2n

dz

=
−i(−1)n

4n

∫
T
z−(2n+1)

2n∑
k=0

(
2n

k

)
z2k(−1)2n−kdz

= 2πi · −i(−1)n

4n

(
2n

n

)
(−1)n

=
2π

4n

(
2n

n

)
, (4)

using the Cauchy Residue Theorem in the penultimate line. Plugging this into
equation (3) we get

m2n =
2π

4n+1

(
2n+ 2

n+ 1

)
r2n

π(2n+ 1)

=
(r

2

)2n (2n)!

n!(n+ 1)!
. (5)

This �nishes the lemma. For r = 2 we get the moments

m2n =
(2n)!

n!(n+ 1)!
=

(
2n

n

)
−
(

2n

n− 1

)
which are known in combinatorics as the Catalan numbers.

Like many classical proofs of the Central Limit Theorem the strategy is to
exploit the 'Fourier transformation' - in this case the R transform. To that end
we calculate the R transform of the semi-circle distribution.

Sadly it is not readily computed directly, so we employ a trick. We consider
the random variable `1 +`∗1, which clearly has R transform z (in view of Lemma
2.3). We then realize, using some combinatorics, that this variable has the same
distribution as γ0,2 and use the moment-cumulant formula.

Lemma 3.5. The semi-circle distribution γ0,2 has R transform Rγ0,2(z) = z.

Proof. Let T denote the operator `1 + `∗1 in B(F(H)). Let us show that the
moments of T coincide with those of γ0,2 calculated in Lemma 3.4. That is, we
need to calculate

ω (Tn) = 〈(`1 + `∗1)
n

Ω,Ω〉 .

Expanding the power of T we get

Tn =
∑

w∈W2,2n

w (`1, `
∗
1) .

Here W2,2n denotes the set of words in 2 letters of length 2n. As in the proof of
Lemma 1.10 we see that the expectation of a term in the above sum can only

14



be di�erent from 0 if `1 and `∗1 appear the same number of times. This proves
that the odd moments are 0. Consider a word w in 2 letters of length 2n:

w (`1, `
∗
1) = `k11 (`∗1)k2 · · · `km−1

1 (`∗1)km ,

m∑
i=1

ki = 2n.

Recall that (1) `∗1Ω = 0 and that (2) `∗1`1 = 1. When we then use (2) to make
cancellations in the right end of the word we see from (1) that if the rightmost
operator is `∗1 at any point, the expectation is 0. On the other hand, if this never
happens and the number of `1s and `

∗
1s is the same, the entire term is 1, and

therefore has expectation 1. That is, we only need to count the number of such
terms. In combinatorics terms, we need to count the number of non-negative
walks in Z of length 2n that begin and end in 0. Such a walk is called a Dyck
path in the literature. Let Bn denote the total number of walks of length 2n
beginning and ending in 0. Clearly,

Bn =

(
2n

n

)
.

It su�ces to count the number Bn of the above paths that hit the negative axis
at least once. The �rst time such a path hits −1, we get a path ending in −2 by
reversing every subsequent step in the sequence. We see that one can get every
path of length 2n starting at 0 and ending in −2 in this way, so we have proved

ω
(
T 2n

)
= Bn −Bn =

(
2n

n

)
−
(

2n

n− 1

)
as desired (see Lemma 3.4).

By a simple scaling argument r
2T has distribution γ0,r.

3.1 The free Central Limit Theorem

The statement of the theorem is the following:

Theorem 3.6 (Central limit theorem). Let (A, φ) be a non-commutative prob-
ability space, and let (an)n∈N be a sequence of random variables in A Assume
that:

1. For all n ∈ N, φ(an) = 0.

2. There exist r > 0 such that

lim
N→∞

1

N

N∑
n=1

φ(a2
n) =

r2

4
.

3. For all k ≥ 2 we have
sup
n∈N
|φ(akn)| <∞.
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Put

sN =
1√
N

N∑
n=1

an.

Then sN converges to γ0,r in distribution.

We rely on a few relatively simple lemmas in addition to Corollary 2.4:

Lemma 3.7. Let (µn)n∈N be a sequence of distributions with R transforms

Rµn(z) =

∞∑
p=0

rn,p+1z
p.

Then if µ is a distribution with R transform Rµ(z) =
∑∞
p=0 rp+1z

p, we have
that µn converges to µ if and only if

rn,p+1 → rp+1 for n→∞

for all p ∈ N.

Proof. This is an immediate consequence of Proposition 1.9.

We need to investigate how the R-transform interacts with scaling:

Lemma 3.8. Let a be a non-commutative random variable. Then for any r > 0
we have

Rra(z) = rRa(rz).

Proof. Let

Ra(z) =

∞∑
k=0

rk+1z
k

Now, `1 +
∑N
k=0 rk+1(`∗1)k shares the �rst N free cumulants with a, and hence

shares the �rst N moments, as well (by the moment-cumulant formula). There-

fore, r`1 +
∑N
k=0 r · rk+1(`∗1)k has the same �rst N moments as ra. Now we

claim that for any sequence (αk) of complex numbers, the distribution of

r`1 +

N∑
k=0

βk+1(`∗1)k

equals that of

`1 +

N∑
k=0

βk+1(r`∗1)k.

This follows from the fact that a monomial in `1 and `∗1 can only have non-zero
expectation if `1 and `

∗
1 appear an equal number of times just as in Lemma 3.5.4

We use this to see that

r`1 +

N∑
k=0

r · rk+1(`∗1)k

4Recall that in non-commutative probability the distribution is just the collection of mo-
ments, which for the above random variables may be expanded into monomials in `1 and
`∗1.
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has the same distribution as

`1 +

N∑
k=0

r · rk+1(r`∗1)k.

This �nally implies thatRra(z) and rRa(rz) agree in the �rst N terms (again by
the moment-cumulant formula). Since N was arbitrary this proves the lemma.

3.2 Proof of Theorem 3.6

We want to prove that the distribution

µsN = µN−1/2(a1+···+aN )

converges to γ0,r. By Lemma 3.8 and Corollary 2.4 we get

RsN (z) =
1√
N

Ra1+···+aN

(
1√
N
z

)
=

1√
N

N∑
n=1

Ran

(
1√
N
z

)
Let

Ran(z) =

∞∑
k=0

r
(n)
k+1z

k

denote the R transform of the individual random variables. Then we have

RsN (z) =

∞∑
k=0

(
N−

k+1
2

N∑
n=1

r
(n)
k+1

)
zk

=

∞∑
k=0

β
(N)
k+1z

k

where

β
(N)
k = N−

k
2

N∑
n=0

r
(n)
k .

By Lemma 3.7 and Lemma 3.5 we have to prove that

β
(N)
2 → r2

4
and β

(N)
k → 0 for k 6= 2

as N → ∞. Since m1 = r1 for all random variables, we immediately have

β
(N)
1 = 0 for all N , by assumption. Similarly, since r

(n)
2 = φ(a2

n) − φ(an)2 =
φ(a2

n) we get

β
(N)
2 =

1

N

N∑
n=1

φ(a2
n)→ r2

4

by assumption. Expressing the kth cumulant as a polynomial Qk(m1, . . . ,mk)
(this can be done as we saw in the previous chapter) we get from condition 3.
that the kth cumulant of an is uniformly bounded in n. This gives

|β(N)
k | ≤ N−

k
2NC → 0 for N →∞

if k > 2. Now Lemma 3.7 and Lemma 3.5 together prove the theorem.
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4 Random matrices

4.1 Introduction and preliminaries

Interest in random matrices (that is, matrices with random variables as en-
tries), and in particular their eigenvalues originally stems from various areas of
applied mathematics. In the beginning of the 20th century Wishart used them
to study statistical data analysis and they were later used by Wigner to describe
heavy-nuclei atoms. Since then is has become clear that random matrices play
an important role in pure mathematics as well. The main result of this section
(this project even) is Theorem 4.4, which may be viewed as a variant of a famous
result by Wigner. The present theorem is due to Dan Voiculescu who used it
as a tool to study the group von Neumann algebras of free groups. Here on
the other hand we view the theorem as an application of free probability to an
apparently unrelated area of classical mathematics. This shows (in the authors
oppinion) that free probability warrants our attention whether or not we are
interested in operator algebra.

The type of results we are looking for conerns limit behaviours of certain classes
of random matrices. To enable the connection to free probability, we make the
following de�nition.

De�nition 4.1. Let I = ∪j∈JIj be a partition of a set I. A sequence of families
({Ti(n)|i ∈ Ij})j∈J of sets of random variables in a non-commutative probability
space is said to be asymptotically free as n → ∞, if the joint distributions has
a limit µ and if ({Xi | i ∈ Ij})j∈J is a free family of sets of random variables

in (C 〈Xi | i ∈ I〉 , µ).

We start with a technical result, which may not be of independent interest.
In essence, we prove that in order to get asymptotic freeness of central limit
type sums, one does not need the families themselves to be free. It su�ces to
assume freeness 'up to second order'. More precisely, one has

Theorem 4.2. Let (Tj)j∈N be a sequence of random variables in a non-commutative
probability space (A, φ), with φ being a trace. Assume further that

1. For all m ∈ N,
sup

j1,j2,...,jm

|φ(Tj1Tj2 · · ·Tjm)| <∞ .

2. (a) If j1 6= jq for all q = 2, . . .m then

φ(Tj1Tj2 · · ·Tjm) = 0.

(b) If j1 = j2 and jp = q for at most 2 values of p for each q, then

φ(Tj1Tj2 · · ·Tjm) = φ(Tj3 · · ·Tjm).

(c) If j1 6= j2 6= . . . 6= jm 6= j1 then

φ(Tj1Tj2 · · ·Tjm) = 0.
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Furthermore if β : N× N→ N is an injection, de�ne

Am,n = n−1/2
n∑
q=1

Tβ(m,q).

Then

(A) (Am,n)m∈N is asymptotically free as n→∞.

(B) The distribution of Am,n converges to a semi-circle distribution as n→∞.

Note that under the assumtions (1) and (2), we can calculate expectations
of the form

φ(Tj1 · · ·Tjm)

as long as each Tji occurs at most twice, using that φ is a trace.

Proof. The strategy of the proof is to �rst prove that the conditions (1) and
(2) are satis�ed if (Tj)j∈N is a free family with φ(Tj) = 0, φ(T 2

j ) = 1 and

supj∈N |φ(T kj )| <∞ for all j, k ∈ N. Next, one proves that the limit distribution
exists for a family satisfying (1) and (2) and that the value of the limit distri-
bution can be calculated only using these conditions. Therefore, it su�ces to
prove the result under the assumtion that the family is free, which is then the
�nal step of the proof.
(I): Prove that (1) and (2) hold for a free family, subject to φ(Tj) = 0, φ(T 2

j ) = 1

and supj∈N |φ(T kj )| <∞ for all j, k ∈ N.
(1): Since the family is free we have that φ(Tj1 · · ·Tjm) is one of �nitely many
polynomials in the φ(T kji) by proposition 1.9. The boundedness then follows

from the j-independent bound on φ(T kj ).
(2a): If j1 appears only once, then {Tj1} and {Tj2 , . . . , Tjm} are free families.
Hence

φ(Tj1 · · ·Tjm) = φ(Tj1)φ(Tj2 · · ·Tjm) = 0.

(2b): As above, if Tj1 appears only in the �rst two positions, then the families
{Tj1} and {Tj3 , . . . , Tjm} are free and

φ(T 2
j1Tj3 · · ·Tjm) = φ(T 2

j1)φ(Tj3 · · ·Tjm) = φ(Tj3 · · ·Tjm).

(2c): This is clear from the freeness condition. This leads us to:
(II): Prove that the limit distribution of (Am,n)m∈N exists as n → ∞ and that
it can be calculated using only (1) and (2).
For this, we have to calculate

lim
n→∞

φ(Am1,nAm2,n · · ·Amr,n)

Seeking to keep track of the n-dependence, we write out the A's and sum in a
more convenient order to give us (after applying some combinatorics)

Am1,n · · ·Amr,n = n−r/2
∑
I∈P r

cIπI (∗)
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where P = {m1, . . . ,mr} × {1, . . . , n}, cI is a number equal to either5 0 or 1
and

πI = Tβ(a1,b1)Tβ(a2,b2) · · ·Tβ(ar,br) for I = ((a1, b1), . . . , (ar, br)) ∈ P r.

We now claim that

lim
n→∞

φ(Am1,n · · ·Amr,n) = lim
n→∞

n−r/2
∑
I∈Qr

cIπI (∗∗)

where

Qr =

{
I = ((a1, b1), . . . (ar, br)) ∈ P r |

each pair (ai, bi) appears twice
or not at all

}
.

Recalling that any terms I = (p1, . . . , pr) in (∗) where some pi appears only
once has φ(πI) = 0 by condition (2a), we need to prove that the limit in (∗∗)
exists and that

lim
n→∞

n−r/2φ

(∑
I∈Rr

cIπI

)
= 0

where

Rr =

{
I = (p1, . . . , pr) ∈ P r

∣∣ for all i, pi appears at least twice, and one
pi appears at least thrice

}
.

Because of (1), the φ(πI) are uniformly bounded, so it su�ces to prove that
|Rr| = o(nr/2) as n→∞. This is a counting argument: If I = (p1, . . . , pr) ∈ Rr
then |{p1, . . . , pr}| = s < r/2. Hence, in order to get an element in Rr, one �rst
has to choose s < r/2 of the r × n pairs in P r, and then �ll in the r positions
with those s pairs, with the constraint that each pair appear at least twice and
one appears at least three times. Omitting the last condition, we obtain the
estimate

|Rr| ≤
∑

1≤s<r/2

(
nr

s

)
sr <

∑
1≤s<r/2

(nr)ssr,

and using that s ≤ r/2− 1/2 we get

|Rr| ≤ Crnr/2−1/2

for some constant not depending on n. This proves the second claim. In order
to prove the �rst claim, we are allowed to assume the stronger conditions from
(I) (see the remark just before the proof). But then the claim is almost trivial,
since a free family is certainly asymptotically free, and the limit distribution of
each Am,n is the semi-circle distribution by the Central Limit Theorem.

We now indtroduce the class of random matrices we will be working with
(many other classes are studied in the literature)

De�nition 4.3. Let (Ω,S, P ) be a classical probability space large enough to
support a sequence of independent Gaussian random variables de�ned on it, and
let SGRM(n, σ2) denote the set of random matrices [aij ]1≤i,j≤n with aij such
that

5In fact, cI 6= 0 only for those I = ((a1, b1), . . . , (ar, br)) ∈ P r such that a1 = m1, . . . , ar =
mr.
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(i) The entries aij, 1 ≤ i ≤ j ≤ n form a set of 1
2n(n+1) independent random

variables.

(ii) aii ∼ N(0, σ2).

(iii) Re(aij), Im(aij) ∼ N
(

0, σ
2

2

)
and Re(aij) and Im(aij) are independent.

(iv) aij = aji.

Further, let L denote the unital algebra of complex measurable functions on
(Ω,S) with moments of any order with respect to P . Finally, de�ne the non-
commutative probability space (L⊗Mn, φn) where φn = E⊗trn with trn being the
normalized trace on Mn. Note that φn is a trace, and that the algebra generated
by SGRM(n, σ2) is contained in L⊗Mn. We say that elements A,B of L⊗Mn

are independent if each element of A is independent of each element of B.

The above space is often called the GUE (for Gaussian unitary ensemble) in
the applications.

4.2 Wigner's Law

We now state and prove the main result of the section (cf. [1] Theorem 4.1.2).

Theorem 4.4. Let (Ys(n))s∈N = ([aij ]1≤i,j≤n) be independent elements of
SGRM

(
n, 1

n

)
. Then (Ys(n))s∈N is asymptotically free as n→∞ and each Ys(n)

converges in distribution to γ0,2.

The strategy of the proof is as follows:
(I) Prove that

sup
n,s1,...,sm

|φn(Ys1(n) · · ·Ysm(n))| <∞

This is the main part of the proof in terms of di�culty.

(II) Let ω ∈ βN\N be a free ultra�lter, and let µω(T ) = limn→ω µn(T ) for
each T ∈ C 〈Xi | i ∈ N〉 with µn the distribution of (Ys(n))s∈N (note that this
limit exists in view of (I)). Now prove that (Xi)i∈N ⊆ C 〈Xi | i ∈ N〉 satis�es
the conditions of Theorem 4.2 with respect to µω.

(III) Let β : N× N→ N be an injection and de�ne the random variables

Bm,n,N = N−1/2
N∑
q=1

Yβ(q,m)(n).

Let νn,N denote the distribution of (Bm,n,N )m∈N and νω,N = limn→ω νn,N
(pointwise). Then, by standard properties of Gaussian random variables, we
get νn,N = µn for each n,N ∈ N. By (I) and (II) we know that (Xi)i∈N satis�es
the conditions of Theorem 4.2 with respect to µω and note that the distribution
of the corresponding Am,N from Theorem 4.2 is exactly νω,N . Hence (Am,N )m∈N
is asymptotically free and semi-circularly distributed as N tends to∞. That is,
the respective distributions satisfy

∗i∈Nγ0,2(T ) = lim
N→∞

νω,N (T ) = lim
N→∞

µω(T ) = µω(T )
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where ∗i∈Nγ0,2 is the distribution of a family (Xi)i∈N of free variables each with
distribution γ0,2. But this is independent of the free ultra�lter, which at last
yields the desired result.

Before we start, we recall elementary facts concerning the Gauss distribution
(see [5], Example 21.1).

Lemma 4.5. The following holds:

1. If X ∼ N
(
0, 1

n

)
. Then

(a) E(X2p−1) = 0 for p ∈ N.
(b) E(X2p) = (2p− 1)!!n−p for p ∈ N

2. If X = Y + iZ with Y,Z independent and distributed as N
(
0, 1

2n

)
then

(a) E(XpXq) = 0 if p 6= q.

(b) E(|X|2p) = p!n−p for p ∈ N.

We are now ready to prove 'Wigner's law':

4.3 Proof of Theorem 4.4

(I) We want to �nd a constant C(m) such that

|φn(Ys1(n) . . . Ysm(n))| ≤ C(m) <∞

From the de�nition of φn we get (with arithmetics in the index set modulo m)

φn(Ys1(n) . . . Ysm(n)) =
1

n

∑
1≤i1,...,im≤n

jq=iq+1

E (ai1j1(s1, n) . . . aimjm(sm, n))

=
1

n

∑
1≤i1,...im≤n

E (ai1i2(s1, n) . . . aimi1(sm, n)) (∆)

Now observe that if a term in (∆) is non-zero, then by Lemma 4.5 we have

(i) Each aii(s, n) occurs an even number of times.

(ii) If aij(s, n) occurs q times, then aji(s, n) occurs exactly q times, as well.

Particularly, m must be even. Now (i) and (ii) imply the existence of a permu-
tation γ : {1, . . . ,m} → {1, . . . ,m} such that for all q ∈ {1, . . . ,m}:

γ2 = γ ◦ γ = id, γ(q) 6= q, (iq, jq) = (jγ(q), iγ(q)), sq = sγ(q)

just by ordering the groupings from (i) and (ii) into pairs and letting γ be the
permutation that switches the indices of the pairs. Grouping the terms in (∆)
and using Hölder's inequality we get

E (ai1i2(s1, n) . . . aimi1(sm, n)) = E
∏

q<γ(q)

|aiqiq+1
(sq, n)|2

≤

 ∏
q<γ(q)

E|aiqiq+1
(sq, n)|m

2/m

.
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From Lemma 4.5 we get that

E(|aiqiq+1(sq, n)|m) =
(m

2

)
!n−m/2, iq = iq+1

E(|aiqiq+1
(sq, n)|m) = (m− 1)!!n−m/2, iq 6= iq+1

In any case, we get that

E(ai1i2(s1, n) . . . aimi1(sm, n)) ≤

 ∏
q<γ(q)

n−m/2(m− 1)!!

2/m

= (m−1)!!n−m/2.

Inserting in (∆) we get

|φn(Ys1(n) . . . Ysm(n))| ≤ n−(m/2+1)(m− 1)!!
∑
γ∈Γm

θn(γ) (∆∆)

with6

Γm = {γ ∈ Sm | γ2 = id, γ(q) 6= q, sγ(q) = sq}
θn(γ) = |{(i1, . . . , im) ∈ {1, . . . n}m | iγ(q) = iq+1, iq = iγ(q)+1}|

Now let d(γ) denote the number of equivalence classes of {1, . . . ,m} under the
relation generated by

γ(q) ∼ q + 1, q ∼ γ(q) + 1

(using that γ2 = id one sees that the two relations are actually the same). Since
in the de�nition of θn one only has to choose one iq for each equivalence class,
we see that θn(γ) = nd(γ). Hence we need to prove that d(γ) ≤ m

2 + 1. This is
done using graph theory.

Consider the polygonal graph G with m vertices and m edges (see �gure)

m 1

2

34

m− 1

Now obtain another graph G′ from G as follows: The vertices e1, . . . , ed(γ) are
the equivalence classes of {1, . . . ,m} under ∼ and the edges are such that ei
and ej are connected by an edge i� there is u ∈ ei, v ∈ ej such that u and v are
connected by an edge in G - i.e., G′ is the quotient graph with the appropriate
identi�cations. Note that G′ is still connected, since one may map any path in

6Note that although Γm depends on s1, . . . , sm, the cardinality of Γm is bounded (e.g., by
m!), independently of s1, . . . sm.
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G to the quotient graph. We want to control the number of edges in G′: Hence,
assume there is an edge between ei and ej in G′, i.e., there exist u ∈ ei, v ∈ ej
such that u = v + 1 or v = u+ 1 (mod m). Assume u = v + 1 (mod m).
Now note that

γ(v) + 1 ∼ v ∈ ej and γ(v) ∼ v + 1 = u ∈ ei.

Hence both of the edges [v+ 1, v] and [γ(v), γ(v) + 1] in G represent [ei, ej ]. But
if m > 2 (the case m = 2 is easy) the two edges in G are distinct since otherwise

v + 1 = γ(v) and v = γ(v) + 1, i.e. v + 1 = v − 1 (mod m)

which is a contradiction. Therefore each edge in G′ is represented by at least
two distinct edges in G, and hence the number of edges in G′ is at most m/2.
Hence, since the Euler characteristic of any connected graph is at most 1 we get

d(γ)− m
2 ≤ χ(G′) = |{vertices in G′}| − |{edges in G′}| ≤ 1

which gives the desired inequality d(γ) ≤ m/2 + 1.
Inserting this in (∆∆) we get

|φn(Ys1(n) . . . Ysm(n))| ≤ (m− 1)!!|Γm| ≤ (m− 1)!!m!

which �nally proves (I).

(II) Since (I) proves 1 of Theorem 4.2 we need to prove 2 (a),(b),(c) for (Xi)i∈N
with respect to µω.
2 (a): If s1 6= sq for all q = 2, . . .m then using (∆) we get

µω(Xs1 . . . Xsm) = lim
n→ω

µn(Xs1 . . . Xsm)

= lim
n→ω

φn(Ys1(n) . . . Ysm(n))

= lim
n→ω

1

n

∑
1≤11,...,im≤n

E(ai1i2(s1, n) . . . aimi1(sm, n))

= lim
n→ω

1

n

∑
1≤i1,...,im≤n

E(ai1i2(s1, n))E(ai2i3(s2, n) . . . aimi1(sm, n))

= 0

as desired.

2 (b): Assume s1 = s2 and j1 6= jp for p > 2 and let Z = Ys3(n) . . . Ysm(n) =
[bjk]1≤j,k≤n. Then as above we have

µω(Xs1 · · ·Xsm) = lim
n→ω

φn

([
n∑
q=1

n∑
i=1

aji(s1, n)aiq(s1, n)bqk

]
1≤j,k≤n

)

= lim
n→ω

1

n

n∑
j=1

E

(
n∑
q=1

n∑
i=1

aji(s1, n)aiq(s1, n)bqj

)

= lim
n→ω

1

n

n∑
j=1

n∑
q=1

n∑
i=1

E(aji(s1, n)aiq(s1, n))E(bqj)

= lim
n→ω

1

n

n∑
j=1

E(bjj) = lim
n→ω

φn(Z) = µω(Xs3 · · ·Xsm)
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using that E(aji(sn)aiq(s, n)) = 1
nδj,q.

2 (c): If s1 6= s2 6= . . . 6= sm 6= s1, then by (∆∆) we have

|φn(Ys1 . . . Ysm)| ≤ n−(m/2+1)(m− 1)!!
∑
γ∈Γm

nd(γ)

We will prove d(γ) ≤ m/2 under the above assumptions. To that end assume
that for some γ ∈ Γm some equivalence class [q]∼ contains only a single element.
In other words q = γ(q) + 1 (mod m), i.e. sq−1 = sγ(q) = sq (indeices still cal-
culated mod m) by the de�nition of Γm. But this contradicts the asssumtions.
Hence each equivalence class contains at least two elements, whence d(γ) ≤ m/2
which by (∆∆) implies that φn(Ys1(n) . . . Ysm(n))→ 0 as n→∞.

(III) This argument was given brie�y in the strategy section, but is recounted
here in detail for convenience:
Let β : N× N→ N be an injection and de�ne the following random variables:

Bm,n,N = N−1/2
N∑
q=1

Yβ(q,m).

By the convolution properties of Gaussian distributions we have that Bm,n,N ∈
SGRM

(
n, 1

n

)
and clearly (Bm,n,N )m∈N are independent. Let νn,N denote the

distribution of (Bm,n,N )m∈N and put νω(T ) = limn→ω µn(T ) for each T ∈
C 〈Xi | i ∈ N〉. The above observation then implies that µn = νn,N for each
n,N ∈ N and therefore µω = νω,N as well. As in Theorem 4.2 de�ne the
random variables in (C(Xi|i ∈ N, µω))

Am,N = N−1/2
N∑
q=1

Xβ(q,m).

Note that the distribution of Am,N is exactly νω,N . The conclusion of Theorem
4.2 is then that limN→∞ νω,N (T ) = (∗i∈Nγ0,2)(T ), where

(∗i∈Nγ0,2) : C 〈Xi | i ∈ N〉 → C

is the distribution of a free family (Xi)i∈N each with distribution γ0,2. Hence
we have, for each T ∈ C 〈Xi | i ∈ N〉,

(∗i∈Nγ0,2)(T ) = lim
N→∞

νω,N (T ) = lim
N→∞

µω(T ) = µω(T ).

This yields the following conclusions:

� The limit distribution µω is independent of ω ∈ βN\N, and therefore
(Ys(n))s∈N actually has an asymptotic distribution µ.

� The equation above actually proves that µ = (∗i∈Nγ0,2). That is, (Ys(n))n∈N
is asymptoticaly free as n → ∞, and the limit distribution of each Ys(n)
is a semi-circle distribution.

This concludes the proof.
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A Formal power series

In this section we develop the theory of formal power series and prove the
Lagrange inversion formula.
As a set, the ring of formal power series C[[X]] is CN0 - the set of complex
sequences. The ring structure is

(an)n∈N0 + (bn)n∈N0 = (an + bn)n∈N0

(an)n∈N0
× (bn)n∈N0

=

(
n∑
k=0

akbn−k

)
n∈N0

.

This makes C[[X]] a ring with unit 1 = (1, 0, . . .) and 0 = (0, 0, . . .). We use the
formal expression

(an)n∈N0 =

∞∑
n=0

anX
n.

We now note a number of elementary facts about algebra in C[[X]].

� If n is a natural number and f(X) =
∑∞
k=0 akX

k, then

f(X)n =

∞∑
k=0

ckX
k.

Here

c0 = an0 , cm =
1

ma0

m∑
k=1

(kn−m+ k)akcm−k

if a0 6= 07. Note that the �rst m coe�cients of f(X)n are determined
from the �rst m coe�cients of f(X).

� If a0 6= 0 then f(X) =
∑∞
k=0 akX

k is invertible in C[[X]] with

f(X)−1 =

∞∑
k=0

bkX
k.

Here

b0 =
1

a0
, bn = − 1

a0

n∑
k=1

akbn−k n ≥ 1.

As above, the �rst m coe�cients of f(X)−1 are determined by the �rst m
coe�cients of f(X). A combination of the two previous points prove that
if a0 = 0 we get that

(1 + f(X))p =

∞∑
k=0

(
p

k

)
f(X)k (6)

for any k (positive or negative)8.

7If this is not the case write f(X) = Xm
∑∞

k=0 a
′
kX

k for some sequence a′k with a′0 6= 0.
8If n is positive we have

(−n
k

)
= (−1)k

(n+k−1
k

)
.
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� Let two formal power series be given:

f(X) =

∞∑
k=0

akX
k, g(X) =

∞∑
k=0

bkX
k.

If a0 = 0 we de�ne the composition g ◦ f of g and f by9

g ◦ f(X) =

∞∑
k=0

bkf(X)k =

∞∑
n=0

cnX
n

Here the coe�cients cn can be found by expanding the powers of f :

cn =
∑

π={B1,...Bk

a|B1| · · · a|Bk|bk.

Here π runs through the set of all partitions of {1, . . . , n} and B1, . . . , Bn
denotes the blocks of the partitions. Lastly, |Bk| denotes the number of
elements in the kth block. This formula is sometimes called the Faá di
Bruno formula. If

f(X) =

∞∑
k=1

akX
k g(X) =

∞∑
k=0

bkX
k,

we have

g ◦f(X) = b0 +b1a1X+(b1a2 +b2a
2
1)X2 +(b1a3 +2b2a1a2 +b3a

3
1)X3 + · · ·

As in the above examples, we have that the �rst m coe�cients of g ◦ f are
determined by the �rst m coe�cients of f and g.

� If f(X) =
∑∞
k=0 akX

k ∈ C[[X]] with a0 = 0 and a1 6= 0 then there
exist a compositional inverse f (−1)(X) ∈ C[[X]]10. The coe�cients can be
found recursively from the above formula. One can also use the celebrated
Lagrange inversion formula proved below.

We introduce a few extra concepts in order to get to the Lagrange inversion
formula.
As a generalization of C[[X]], we de�ne the ring of formal Laurent series C((X))
as the set of formal sums

f(X) =

∞∑
k=−∞

akX
k

with ak 6= 0 for only �nitely many negative k ∈ Z. The product is now(∑
k∈Z

akX
k

)
×

(∑
k∈Z

bkX
k

)
=
∑
k∈N

(∑
n∈Z

anbk−n

)
Xk.

9It may seem strange that we require a0 = 0. We assume this to completely avoid analytic
arguments. If we do not assume this we need to add in�nitely many terms to get the constant
term of the composition, which can not be done for a general formal power series.

10Of course the compositional neutral element is f(X) = X.
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Here the sum over n is �nite since ai and bi are only non-zero for �nitely many
negative i. The sum in C((X)) is the obvious extension of the sum in C[[X]], and
the composition is the same, as well. Lastly, de�ne the order of f(X) ∈ C((X))
to be ord(f) = min {k ∈ Z | ak 6= 0}

If f(X) =
∑
k∈Z akX

k ∈ C((X))) we de�ne the extraction functionals [Xm]
for each m ∈ Z by

[Xm]f(X) = am

In particular we denote for m = −1

[X−1]f(X) = Res (f(X))

De�ne the formal di�erentiation map D : C((X)))→ C((X))) by

D

(∑
k∈Z

akX
k

)
=
∑
k∈Z

kakX
k−1.

We also denote Df = f ′. Note that is f is a non-constant Laurent series then
ord(f ′) = ord(f) − 1. It is easy to see that D is a derivation (in particular
linear) and that it satis�es

kerD = C, imD =
{
f ∈ C((X)) |[X−1]f = 0

}
= kerRes.

By the above, we have an exact sequence

0→ C→ C((X))
D→ C((X))

Res→ C→ 0.

We prove a lemma describing some relations between the maps D and Res.

Lemma A.1. For f(X) ∈ C((X)) we have

1. Res(f ′) = 0.

2. Res(fg′) = −Res(f ′g).

3. Res (f ′/f) = ord(f) as longs as f 6= 0.

4. Res ((f ◦ g)g′) = ord(f)Res(g), if ord(g) > 0.

5. [Xn]f(X) = Res(X−n−1f(X))

Proof. Property 1. is a part of the exactness of the above sequence. Part 2.
follows from 1. and the fact that D is a derivation. To see 3. note that any
f ∈ C((X)) can be written

f(X) = Xmg(X)

where m = ord(f) and ord(g) = 0. Hence using that D is a derivation we get

f ′/f = mX−1 + g′/g.
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As ord(g) = 0 we have that both g, g′ and g−1 are elements of C[[X]]. Since
m = ord(f) 3. follows.
For the proof of 4. note that since imD = ker Res we can write

f(X) = f−1X
−1 + F ′(X)

for some F (X) ∈ C((X)). Consequently we have

(f ◦ g) = f−1g
−1g′ + (F ′ ◦ g)g′ = f−1g

−1g′ + (F ′ ◦ g)′.

From 1. and 3. we then get 4.
Property 5. follows directly from the de�nition.

We are now ready to formulate and prove the Lagrange inversion formula:

Theorem A.2 (The Lagrange inversion formula). For f(X) ∈ C[[X]] with
[X0]f(X) = 0 and [X1]f(X) 6= 0, the compostional inverse f (−1)(X) ∈ C[[X]]
satis�es for all k, n ∈ Z

k[Xk]gn = n[X−n]f−k (multiplicative powers)

In particular, for n = 1 and k ≥ 0

[Xk]g =
1

k
Res

(
f−k

)
Proof. Using Lemma A.1, we simply compute:

k[Xk]gn = kRes
(
X−k−1gn

)
= kRes

(
Xnf−k−1f ′

)
= −Res

(
Xn

(
f−k

)′)
= Res

(
(Xn)

′
f−k

)
= nRes

(
Xn−1f−k

)
= n[X−n]f−k,

as desired.

We now use this theroem to prove the moment-cumulant formulas. That is,
we let

ψ(t) = t+m1t
2 +m2t

3 + . . . = t

(
1 +

∞∑
p=1

mpt
p

)
.

Then we want to calculate the p− 1 coe�cient of the series11

R(z) = ψ(−1)(z)−1 − 1

z
.

We calculate:

[zp−1]R(z) = [zp−1]ψ(−1)(z)−1 = − 1

p− 1
[z1]ψ(z)−(p−1)

= − 1

p− 1
[zp]

(
1 +

∞∑
n=1

mnz
n

)−(p−1)

= − 1

p− 1
[zp]

 ∞∑
k=0

(−1)k
(
p+ k − 2

k

)( ∞∑
n=1

mnz
n

)k
=

p∑
k=1

(−1)k+1

k

(
p+ k − 2

k − 1

) ∑
q1,...,qk≥1

q1+···+qk=p

mq1 · · ·mqk

11Recall that the indexation of the R transform is R(z) =
∑∞

p=0 rp+1zp.
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This is the desired formula. For the other formula we perform similar compu-
tations: From the de�nition of the R transform we have

ψ(−1)(z) =
z

zR(z) + 1
= z

(
1 +

∞∑
n=1

rnz
n

)−1

We now calculate:

mp = [tp+1]ψ(t) =
1

p+ 1
[t−1]

(
ψ(−1)(t)

)−(p+1)

=
1

p+ 1
[tp]

(
1 +

∞∑
n=1

rnt
n

)p+1

=
1

p+ 1
[tp]

p+1∑
k=0

(
p+ 1

k

)( ∞∑
n=1

rnt
n

)k
=

p∑
k=1

1

k

(
p

k − 1

) ∑
q1,...,qk≥1

q1+···+qk=p

rq1 · · · rqk

as desired.12
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