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EINLEITUNG

Il-'

in dem Y¥achla8 wvon Prof. Richard Brauer surde eine grofie Menge hand-
schriftlichen Mataerials gefunden. Der grégte Teil enthielt Berechnungen und
5berlegungen, die spdter verSffentlicht wurden, aber es gab auch vereinzelte-
Ergebnisse und Mapuskriptteile, die fiir eine Veréffentlichung nicht =usge=
reift genug wvaren oder aber aus anderen Grinden nicht verSffemtiicht wurden.
Im Jahre 1979 wurde ich von Herrn Prof. Dr. Paul Fong gebeten, einen Teil
dieses Materials durchzusehen; in der Zeit vom Sommersemester 1980 bis zum
Scmmersemester 1981 hielt ich nach Eilnledung von Herrn Prof. Dr. G. Q. Miche
ler an der Universitdt Essen eine Vorlesung, die auf diesem Material berub-
te. Das vorliegende Buch ist eine Auasarbeitung eines Teils dieser Vorlesung.
‘gs ist gedacht als ein Uberblick {ber Themenkreise, die Prof. 3rauer in den
I1&31::1:6:!: Jahren seines lebens beschiftigten: es enthidlt aber auch 2ine Reihe
neuer Resultate. Wir haben uns hier auf Ergebnisse thecorstischer Tatur be-
schrénkt, obwohl die Theorie durch Beispiele erldutert wird. Wo nichts ande-
'res angegeben ist, stammen die Zrgebnisse und Beweise von Prof. Brauer.. An
mehreren Stellen war es mdglich, die Theorie oder dfe Reweise zu vereinfa-
chen oder zu vervollstdndigen. Dies ist (mit Ausnahme von den Seispielen,

-die meistens vomn mir sind} immer im Text angegeben.

Die ersten zwel Paragraphen sind als Einfiihrung gedacht und stellen die
erforderlichen Vorkenntnisse dar. AuBerdem ist in }2 ein Beispiel angegeben,
und {2.13) stammt aus dem Nachlag. Der Hauptteil der Frgebnisse von 33-§5
stapmt aus einem Mapuskript, das als eine Fortsetzung vonm Prof. Brauers
Arbait "On the structure of blocks of characters" gedacht war. In §3 werden
Gruppen der Form QC_{Q) , Q eine p-Untergruppe ven G, behandelt, die
natiirlich fdr induktiv; Zwecke interessant sind. In §% wird nochmals auf die
Theorie von unteren Defektgruppen eingegangen, die von Prof. Brauer 1969
gegriindet wurde und die Iin den letzten Jehren erneutes Interesse gefunden
hat - siehe '[101 R [111 » [114] . J[_16]. 85 enthilt neue Ergebnisse Tber die
sogenannten Beitrdge (contributions) der "subsections" zum inneren Produkt

von Charakteren. Diese Beitridge haben interessante Eigemschaften und scllten
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noch weiter untersucht werden. Die Resuliate von §6 sind hauptsdchlich einem
Manuskript entnommen, das Prof, Brauer mir 19795 gegeben hat. Es ist immer
noch offen, ob die Theorie der #-Blocke mehr als eine formale Spielerei ist,
aber Beispiele deuten an, dag es vielleicht sinnvell ist, n-Bldcke zu be-
trachten.

Ich michte an dieser Stelle Herrn Prof. Fong und Herrn Prof. Michler
danken, die die Erstellung dieses Buches ermbglicht haben. Ein besonderer
Dank an Herrn Dr. G. Schneider, der sich mit der Ausarbeitung viel Mihe
gegeben hat, sowie an Frau A. Kanfischer flir das sorgfiltige Schreiben des
Manuskripts.
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fa GHUNDLAGEN TUND VORAUSSETZUIGER

In dlesem Abschnitt werden zunéchst grundlegende Begriffe und SAtze aus der
Literatur zusammengestellt. Die dabel vervendeten Bezeichnungen sind sraﬂ-
teils allgemein iblich; man vergleiche etwa [12] , [20]. Einmal fest einge-

fiihrte Abkirgungen bleiben das ganze Buch hindurch giitig.

Es sei G. eine endliche Gruppe dgr Ordnung |G| und € eine primitive
|G |-te Einhgi;svu_rzel. Mit @  bezeichnen vir den Ring der gaﬁzmtionalen
Zahlen in g( e)l._ Ferner sei p ein restgewiﬁlter Primteiler von |G| wund
P ein maximmies Ideal in 0 mit der Eigenschaft
PED .
Schlie8lich sei F := G/pp der Restklassenkdrper der Charakteristik p.

Die Gruppe G Ybesitze Tber Pe) genauw k(G) gewdhnliche Charaktere
xl. xﬁ"“' xk{G) .
Wir vereinbaren

Irr{G) := {xl, Xyreees xk(G}}

Dann ist x(G) auch die Zahl der Klassen konjugierter Elemente, etwa

10 00 Bty
c1 1= - .
() = {Kps Kpreees gy
pie Menge Irr{G) 1EBt sich mit Hilfe der zentralen Charaktere in Aquiva-
lenzklassen einteilen. Dazu definieren wir fir x € Irr(G) und X € CL(G)

-m |7 . {x)
mx(K) : IK| 'iﬁy ’

wobei x €K gewinit ist.
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7wei Cheraktere ¥, x' € Irr{G) heiBen p-Squivalent, falla fiir alle
Xlassen K € CA(G) gilt:

ux(K) E mx,(l{) {mod p !
(Man beachte, daB stets W (K) €0).
Die so definierten p-iquinlenzklassen von Irr(G) heiBen {p~)Blécke von G.
Dis Menge aller Blcke bezeichnen wir mit B1(G).

Pir jeden HMock B € B1{G} sel k(B) die Anzahl der irreduziblen Charak-

tere in B. Offenbar gilt:

k{g) = £ x(B) .
peml(G)

Weiter selen ¢1, ¢2,.... ¢1(G) die p=modular irreduziblen Charakters von

G, die sog. Brauer-Charaktere.

. 1
IBI'(G) = [¢l’ ’2'-..| ‘l(G)J' )
Dann ist 1(G} auch die Anzahl der p-reguldren Klassen von' G. b

Wir vereinbaren

a (6) = {K €cue) | X p-reguidr]

G* = u K
KﬁClc(G)

Es existieren nichtnegative ganze Zahlen d,

4
~u

, die sogenannten ZTerlegungs-—

zahlen, so daB

{
X5 lg* = i dij $ i=1,2,.4-,k(G)

Ist aun fir B € BL(3) wund X4 ¢ B ein di' + 0, so sagen wir: QJ € B.
o

nies ergibt eine eipdeutige disjunkte Verteilung der ¢, auf die Eldcke
o

von O .

Die Matrix T, = {d,), . x, €80 Irr(G), &, €B n IBr{3)

! B i!d - v

neift Zerleﬂnﬁsmtrix zum Block B .

Analog zu oben sei

1(B} := | B n 1Be{3) |
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Vieder gilt:

1{g) = £ 1(B)
Berl(G)

Schlieflich definieren wir mittels

t
CBFDB =D

B
die Cartanmatrix von B, eine 1{B) x 1(B) Matrix.

Mir B € B1{G) sei

4(B) = mx{d ¢ lu| es exiptlert yx € BalIrr{G) mi

<+

der Defekt von B.

pdil;‘[’-},-}. |

Die B5he h{yx) eines Charakters x € B n Irr(G) ist die kKleinste nichtne-

gative ganze Zahl mit

teilt %?—l-]-.

Trivielerweise gilt, falls p- Tlel - _pa-d(B)-i-h(x} T xt{1l).

Pct(la)-h( x)

" (Wir vereinbaren wveiter

k,(B) := [{x €8 n 1ee(e) ! nilx) = 1}l .

Sei X €Cl{G) und x € X. Ei{ne Sylow-p-Untergruppe D von Cqlx) neist

Defektzruppe von K . Offenbar sind je zwei Defektgruppen von € in
jugtert. ot mn 0| = p2%) . 4o netgt 4(K) der Defekt von «.
Sel fermer B € BL{3). Dapnn exigtiert eln K € CL{3) mit

1) 4(K) = d(B)

2} ux(m £0f{mod p) tlir x €B n Char{G).

n
W

zon=

Die Defektgrupper ven K, das diese Bedingungen erfillt, heifen auch De-

fektgruppen von B.

Fir diese gelten folgende Aussagen:

1.1) Satz: ™r B ¢ 81(G) sind Je zwei Defektgruppen von B in

einander konjugiert.

L3
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Beweis: [20] , Lemmn 4.3B

{1.2) Satz: Talls P 4G, wobet P eine p-Untergruppe von G 1ist, dann

ist P in Jeder Defektgruppe von B € B1{G) enthalten.

Beweis: {20) , Lemma 6.24

Wir vereinbaren weiter fir eine p-Untergruppe D vou G:

Bly(G) : Menge aller BlScke von G mit D als Defektgruppe

C1,4(G} : Menge aller Konjugationskiassen von G =it D als
Defextgruppe

Wir denden uns mun den "induzierten™ SQldcken zu. Dazu sei 8 < G und

b € BI(H) sowie ¥ €b n Irr(H). ®ir X € Ci(G} setzen wir

‘%JG (€) = & a, (1)
LECL(H},LeX
Falls es ein y € Irr{G) gidbt mit

(w¢)G = w {mod p )

sagen wir, da8 v® defipiert ist. Ist Gberdies ¥ €B fOr ein B € BL(3),

¥’

, , it
dann schreiben wir b~ = 3.

" {1.3) Satz: Sei I< 3 , b € BlD(H). falls C.{D) < H, dann ist B defi-

niert.
Dieser Satz erkldrt folgende

Definition: Sei wieder H < & , b € 814(H). Der Block b heift ruléssig

(admissible) in 3, falls es eine Defeiktgruppe © von b -gibt mit

CG{D) < 1.
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Hierzu ein einfaches, aber wichtiges Beispiel:

Es sel x €0 ein p-Flement und b € BL(C{x)). Dann ist b zuldssig.
Ist némlich D eine Defektgruppe von b, so ist nach (1.2) x €D, also
Cg(D) < Calx). ,

Fir die Klaase der zulZssigen BlScke fihren wir die nachfolgende Vereinba~
rung ein: Fir H <G und B € BL{G) sei

BU(H,B) := {b ¢ BLH) | b zuldseig in G und 1% = B}

In diesem Zusemmenhang gelten:

{1.4) Satz: Falls b € B1{(H,B), dann existieren Defektgruppen Ty und D
von © bzw. B mit '
Dy <D

Z(D) < Z(Dy)

Beveis: [12], 5T .24 [2], 3C

(1.5) satz: Sei H< K <G , b ¢ B1{H}). Der induzierte Block bG ist

genau dann definiert, wenn bK und (bK)G definiert sind, Is gilt in

diesem Fall:

bG - {bK}G .

Beweis: [12 ], 57.2

{1.6) Brauers 1. Hauptsatz: Sei D eine p-Untergruppe von G. Durch

~

b + b wird eine bijektive Abbildung von BID{N,.{D)) - BlD(GJ er-
m’r‘t.
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3eweis: [20], Satz 6.3.

(1.7) Satz: Sei 3 € Bl (G). Dann ist 31(D+C,(D),B) #p . Die Elemente
- - )

ven 31{D+C_(D),3) heiBen Wurzeln von B in D-CG(D}.
o
3eveis: [12], 5T.3

Wir lassen pun die Gruppe G durch Konjugation auf den Charakteren von
Untergruppen wirken. PDazu sei T <3 und ¢ € Irr(E) , x € 5. Wir definie-
ren #° € Irr{EY) vermdge W5 (%) = y(n) fir alle % €H. Falls
b € Bl{H), so bildet {wx | $ €b} einen Block von e , genannt v° . Die
Untergruppe von G, die einen vorgegebenen Block % € B1(H) unter dieser
¥onjugzation festlﬁ?t, heift Trigheitagruppe ‘TG(b) von b, n
To(®) = {x € 5 (R) f v° = v}
Ist fermer D eine Defektgruppe von b mit Co(D) < H, so heift die
Zahl
e, = IT.(6) : D-C (D}

der Trigheitsindex von ©b.

Damit kSnnen wir nun 3atz (1.7) verfeinern:

(1.8) Satz: Wie in (1.7) sei b € BL(D*Cq(D),B). Dann gilt:

B1(D+C,(D} ,B) = | x € K,(D} |

Schlieglich erlaubt die Trdgheitsgruppe auch Anssagen dber die Defektgruppe

von bG H
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{1.9) Satz: Sei D eilne p-Untergruppe von G und b € BID(D-CG(D)}. o3

gilt:

1) Der Block bG hat D als Defektgruppe gzeneu dann, wenn
p 4 |TNG(D)(b) : DeC (D)
2) Sei a := max{pd teilt |7 (b) : b6 (D) |}. Dann ist immerhin
4 N, (D) G

d{b} + a = d(bG).

Beweis: (2], 6A

. Wenn die Untergruppe H zusdtzlich normal im & ist, lE8Pt sich eine Umkeh-

rung des Begriffés "induzierter Block" finden:
J

Sei H4G und b € BI{H) , B € B1(G}. Der Hlock 3 {berdeckt b, falls

es ein x ¢ B n Irr(G) gibt, so daB mindestens ein Konstituent von

H
in % liegt:

es existiert v €b n Irr(H)  mit v | (xfﬂ) .

Aus dem Satz vom Clifford 1&8t sich folgende Aussage relativ schnell ablei-

ten:

(1.10) Satz: Sei K < G und b,h' € BL(H) sowie 3 <€ BL{(G)., Es decke B
den Block b. Dann gilt:
1} B deckt b genau dann, wvenn b und %' in C konjugiert sind.
2) Wir alle ¢ € b n Irc{H) existiert ein x € B n Irr{G) mit
v | (x{HJ

G
3} Falls ©®' = B, dann deckt B auch den Block b'.
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Beweis: (2], ba

Ist speziell H eipe normale p-Untergruppe ven G, so hat Jeder Block von

G einen Charakter, der H im Kern hat.

Unter gewissen Voraussetzungen JEBt sich diese Aussage noch verschirfen:

{1.11) Satz: Sei P eine p-Untergruppe von G mit G=P°CGfP). Dann

enthdlt jeder Block B £ Blp(G) genau einen irreduziblen Charakter

¢ der RShe O mit P im Kern.

Dieser nach (1.11} eindeutig bestimmte Charakter x heift auch kanonischer

Charakter von 8 und verfiigt iiber interessante Eigenschaften:

(1.12) Satz: Sei B € BL (G} und b ¢ sl(D-cG(Di ,B) eine Wurzel vom B .

Weiter sei @ der kanonische Charakter von b, sowie x €3 n Irr(G)

und  x ECG(D). Dann ist

x(x) = a+ & o8ly xyD) (mod )
yeN

wobei N ein Nebenklassenvertratersystem von D-CG(D) in NG(D}
ist und
Ip-c(p)|
fE e Wy Qe -
Ferner ist h(y) gerade der Exponent der gr3Bten p-Potenz, die a

teilt.

Offensichtlich 148t sich dieser Satz auch so umschreiben:

. 5
Xle oy = 27 ° e, (D) (mod » )
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Ein Beweis fiir das folgende Ergebnis steht in [12], 6k.5 & £6.1

(1.13) Satz: Sei speziell G = P-Co(P) , B € B1(G) und § =G/P. Dle
Charaktere [x € B n Irr(G) | P < ker x} bilden einen Block B von
§. Jeder Block von & entsteht auf diese Weise. Ist D eine De-
fextgruppe von B, so ist D = D/P eine Defektgruppe von E. B
gilt weiter:
1{B) = 1(B) .
Iat auch noch P ¢ Z{G), 3o erfiillen die Cartanmatrizen die Glei-
chung
Cg = lol -cg
 Aus diesem Satz folgt (1.11) sofort mit P = D, da BlScke vom Defakt 0

" 'mur einen gewdhnlichen irreduziblen Charskter besitzen.

Fir B € B1(G) betrachten wir nun die Menge
v o= [XIG' I Xx-€Bn IJ.‘!‘(G)} .
Sie ist eine Teilmenge der {lassenfunktionen von G* {n € . Weiter sei

MB der von V erzeugte Z -Modul. Unter einer Dasismenge von B verstehen

wir eine X% ~Basis von MB' Eine uns wohlbekannte BEasismenge bilden z. B.
die Brauer-Charaktere. Elne beliebige Basismenge von B  bezeichnen wir

nachfolgend mit [B].

Damit lazutet der 2. Hauptsatz von Brauer:

{1.1) Satz: Sei XY €3 nIrr(G) und x €G mit x =wy , wobei ¥ ein

p-Element und ein p'-Element ist. Dann gilt

L

(x) = I I d., ¢(y)
X beBL(C,(n),B) ¢ €[b] 1k
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wobel di'; €0 nQle') fAr eine [r|-te primitive Einheitswurzel ¢’

Diege d1; hidngen nicht von ¥y ab und heifen verallgemeinerte Zer-

legungszahlen.

Beweis: [12], 63.2

Dieger Satz zeigt den EinfluB der Mengen Bl(CG(ﬂ),B) -~ 1 ein p-Element -
auf die Werte der Charskters in B. Aus diesem Grund werden im ndchsten Ka-

pitel derartige Pamre (r.,b) mit b EBI(CG(I).B) eingehender untersucht.

Zusd&tzlich zu den gewShnlichen Orthogonalit&tsrelationen fir Charaktere gibt

es noch die sog. Blockorthogonmalitidten:

{1.15) Satz: Seien Xj, Xgeeess xk(B) die gewdhnlichen irreduziblen Charak-
ere im Block B € B1{G). Sei ferner x ein p'-Element und y kein

p'-Element. Dann gilt:
k{B)

z {x) . ly) =0
ool X X

Beweis: (20], b.2¢c
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52 DOPPELXETTEX UND “SUBSECTIONS®

Das Ziel dieses Abschnittes ist die Entwicklung eines Verfahrens, das die

Berechmung der "subsections" (einschlieplich fhrer Konjugierten) eines

Blocks ermSglicht. Dagzu zunfchst folgende

Derfinition: Unter einer "subsection" eineg Elockes B verstehen wir ein
Paar {x,b), wobel x ein p-Element in G ist und b EBl(CG(x),B).

Eine Defektgruppe von (x,b) 18t eime Defektgruppe von b.

L

Wir untersuchen zuerst eimmal]l die Beziehungen zwischen Defektgruppen der

"subsections” von B und den Defektgruppen von B selbst.

Sei also (x,b) eine "subsection" von. B ¢ 81{G) und R eine Defektgruppe
von b. Dann ist wegen R < CG(x) und <x> 4 CG(x} sogar
x € Z(R) .
Das heipt aber
ReC,(R) < C (x) .
Sei weiter bR eine Wurzel iron b und

T

e y L
R Tnc(n) (b

Wir kBnnen mun (1.9) mt D = R anvenden und erhalten: Ist R keine
T"-l
Defektgruppe von B, so ist R auch keine Defektgruppe von (bq ) . ged

T
daher § eirce Defektgruppe von [bR R). Dann ist Q natirlich auch eine

Defektgruppe von
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'Q-CG(R)

(o)
- wieder wegen (1.9), denn offenbar gilt: Q-CG(R) <.TR .
Kiar iat ferner:
R4 qg und R #*Q.
Schlieplich bedingt
CG(Q) < CG(R)
die Inklusion

Qe (@) < Q+C4(R)

Q+C_ (R}
und wir finden eine Wurzel by des Klocks (bR] G . Fir diese Wurzel
bQ gilt:
QC (R} G 3+C.(R) G c.lx) G
g _ G - & - G _ & L8
(bq} = (bq ] [bR ) (ba) [bR ) k] B .

Wir haben dabei folgendes Untergruppendiagramm von G Tenutzt:

+3

q+C (R)
ReC_(R) Q-C . (Q}
e ) G
R Q
Ist nun das so gefundene Q auch keine Defektgruppe von B, so kSnnen wir
den soeben beschriebenen Prozed so oft iterativ wiederholen, bis wir dle

geviinschte Defektgruppe von B erreicht haben.

Dia zwel soeben beschriebenen Paare (Q.bq} und (R,bq) nennen wir verbun-
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den. Wie aus obiger Rechmung ersichtlich, missen daflir folgende Bedingungen
ertiilit sein:

1. R 4 §

2. b€ BlH(R°CG(RJ)

3. bq € BIQ(Q"CG(QJ)
Q-cG(a) Q°CG(R)

b

ho bq = R -

Der gerade durchgefifhrte iterative Prozef wird allgemein 30 beschrieban:

Definition: Sei B ¢ BlD(G). Eine Doppelkette ist eine Ketts von Pmaren

. {Dg,bo) , (D1,b1) seen, (Dr,br)

. vobei D = Dy gilt und je zwei Faare (Di,b und (D b, .) vera

i) i+l i+l

bunden sind.

Ist by = by elne Wurzel von B ¢ BlD(G), 8o gilt bei derartigen Doppel-

ketten _

bnG = B = B m eeen. = er = B .
Fir eine solche Wurzel by definieren wir ferner das fetz A(D,bn) als die
Menge derjenigen Untergruppen ven D, die in von (D,bﬁ) ausgehenden Dop-

pelketten auftreten. Fir dieses Netz gilt (siene [T], Kap. L):

(2.1) Satz: Seli Q € A(D,bn) fesat gewihlt.
a) Ist Q< R<D, 350 ist auch R € A(D,bn)

. .
) Falls g ¢ TNG(D) (by), dann st F ¢ A(D,b)

¢) Wenn (D,bD) s vesee 5 {(Q,b ) und (D,bD) s tnres (q,bQ') Zvei

]

Doppelketten sind, dann gilt bq = bq'
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d) Fir R4 G gilt die Aquivalenz
R € A(n,bD) <> CD(R) < R

T(‘bq) n Q'CG{R) ,
QC,(Q)

und

0 (mod p)

a) Sei wieder R4 Q und ffir alle x €G gelte § € A(Dx,bnx) und

¢ {R) < R. Dann ist R € A{D,b_) .
p* D :

£) Fir alle R Ei(D,bD) ist CD(Q) < Q.

Der Teil z) dieses Satzes liefert die wichtige Aussage, daB wir zu vorgege—~
benen_ (D,‘nn) und Q in eindeutiger Weise die Wurzel bQ und damit da;s
Endglied unserer Doppelkette von (D,bD) durch Q Dbestimmen kBnnen. Dies
erlaubt folgende

Definition: Fs seien (D.'DD) y resae 4 (Q.bq)
und (D,ba) y seans (R,bR)
zwei Doppelketten. Dann heifen die Paare (Q,bq) und (R,bR) stark
konjugiert, geschrieben (Q,bQ} 3 (B,ba} , falls es ein x € G gibt
X X
mit § =R und bQ -hR.
Geht aus dem Zusammenhang eindeutig hervor, dag Q@ und R 2um gleichen
Netz gehdren, so schreiben wir kurz

Q R .

~
3

Definition: Zwel "subsections” {x,b) und (x',b') heiBen konjugiert,
wenn sowohl x und x' als auch b und b®' in G konjugiert sind.

Wir schreiven (x,b) ~ {x',p') .

NaturgemiB8 sind nun nicht mehr alle "subsections" von Interssse, sondern nur
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noch ein Reprisentantensystem S der Klassen von subsections unter ~ . Der

néchste Satz beschreibt, wie man ein solches S findet ([7], Kap. 6).

(2.2) Satz: Sei D eine Defektgruppe und b, eine Wurzel von B € BlD(G).

Eln Reprisentantensystem 5 der Konjugationaklassen von "subsections"
unter -~ 148t sich wie folgt bestimmen:

Es bezeichne R ein bereits gefundenes Reprisentantenaystem der

o-Klsssen im Netz A(D,bn). Weiter seli mit Z_ ein Reprédsentactan-

Q
system der unter T(bq) konjuglerten Elemente vor Z(Q) so gewihlt,

dag fir alle u €2  gilt:

]
™b.) n C.{u)
9 G .
() T(:G(a—-l i 0 {mod p) .
) _ 'CG(u)
i Dann ist. ‘ E= wu y u,b .
IR ugy q

Die Bedingung (*) ist filr u €2(Q) nur dann erfilly, vemn Cylu) = Q.
Eine Kombination sus dem 2. Hauptsatz vom R. Braner und {2.2) ergibt

b}

(2.3) Satz: k(B) = L 1{v )
-(u,bu)GS ®

CG(u)

Q ist.

wobai das bu von der Form b

Ist speziell D eine TI-Untergruppe von G, so folgt daraus - bzw. durch
direkten Bewels - fiir B ¢ BJ.D(G):
k{(B) - 1{B) = k(®b) - 1(b)

fir den eindeutig bestimmten Rlock b € BlD(ﬁG{D) JB) .

In ndchsten Abschnitt werden einige Beispiele abgehandelt, vgl. [171. wir

untersuchen dabel El&Scke mit speziellen Defektgruppen - den verallgemeiner
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ten Quaternionengruppen. Fir den Rest dleses Paragraphen gelten dazu fol-

gende Vereinbarungen:

21‘1-1 211--2
Dm<x,y | X =2y*=1 , x* =y2=2z2 , ylge=xl
ol = 2" n>3
21:1-111--]. ] n
. $ = & n=
X; =z und x.m = X y |<xm=_» 2 l<m¢<n=1
Dlm = <xm,y> lD].ml a 2’”1
mel
Dzm = <xm,xy> ID2m| = 2

Auch diess Gruppen sind fir m » 2 Quaternionmengruppen. Schlieflich ist

allgemein bekannt:

1. Falls |pl > 8, so ist Aut{D) eine 2-Gruppe

2. Falls bl =8, so ist &ut(D) ¥ Sy. o '

Wir definiersn My = <o | CD(Q) <Qq} -

Dann besteht MD genan aus den D-Konjugierten ven Dlm R Dem und <x> .

(2.4) Lemma: Sei |D| > B . Dann stimmen A(D,bD) und ’“LD fiverain mit

noglicher Ausnahme der ﬂntergmppen vor D, die zu D;; oder Dy, in

I konjuglert sind, alsc

My - (0,3, 0§ | g ent g A(D,by) = My -

Beweis: Sei Q iH.D und Q) < Q, aber Q; nicht zyklisch der Ordnung L.

Dann gilt fir alle g €G: Falls Q < D%, dann QeM und cg(ql)<ql.
D

Durch wiederholtes Anwenden von 2.le folgt die Behauptung.



DOPPELKETTEN _UND _"SUBSECTIONS” 21

(2.5) Lemma: Fir D] = 8 erhalten wir: MD = A(D,bDJ.

Bewels: Es ist M, = {Dy<x> ,<_y>.éxy>}. Da diese Gruppen alle ibren eigenen .

Zentralisator enthalten, kBnnen wir wieder 2.le a.nirenden.

(2.6) Lemma: Sei Q ¢ A(D,bn), aber Q sei kelne Quaternionengruppe der

Ordnung 8. Dann glilt fir das eindeutig bestimmte bq der Doppel.kette‘

durch Q:

T(bq_} = uu(q) . CG(Q) .

Beweis: Setze zundehst Q) := K (Q). De D eine Quaternionengruppe ist
und Q €My , folgt I_ca‘1 : ql < 2.
1, Fall; Q=D
Der Block bQG = 5" nat D als Derektgruppe und wegen (1.9) gilt

Iz(o) : Decy(m = 2 (mod 2) .
'Allerdings ist T(bD}/D"CG(D) isonprph zu einer Untergruppe von Aut{D),
die eine 2-Gruppe ist.

Daher ’I‘(bD) = D-CG(D) = Q°CG(Q) = ND(Q) . cG(Q} » T(bQ}-

2. Fall: Q #D . Dam ist [@,:Q] =2 .
Suche aine Doppelkette von D dureh Q:

{(D.by)  yeeenn » (R2), (a,‘nQ)
Darn gilt: R #%#Q ,R<D und Q<R , alsc R =Qq,.
Deher sind (Q) ,le} und (Q,hq) verbunden und Qi < ‘I'(bQ) , Ja sogar
{vgl. Seite 16)

u-ClQ) < T(ry) -

Wie im 1. Fall ist aber

T(bQ) ! Q-CG(Q)
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eine 2.-Gruppe, und erneutea Anwenden von (1.9) liefert das gewiinschte Ergeb—

nis.

{(2.7) Lemma: Sei Q € R(D,bn) und @] =8 .

1 . . = 1
a) Wir D=Q ist l'r(bq) P Q=GR = [ 3

b) Im Faile D #Q gilt |T(bq) : Q-cG(Q)I = { E

Der Wert 6 tritt genau dann auf, wenn 4 ein minimales Element

in A(D,bD) ist.

Bewels: a) Fir D = Q ist Aut{Qq) 2 S, und T(bq)/Q-CG{Q) ist vieder
G

isomorph zu einer Untergruppe von S,. Da bq gleichfalls Q als Defakit~

gruppe hat, folgt auch a) aus (1.9) wegen IS“| = 38,

B) Fells D #Q, so liefert der gleiche Schius wie im 2. Fall von (2.6),
dag : : | '

¥

| Ny(Q) + Col@) < Trv,)

alse ist 2 ein Teiler vom |T(bq) : Q*CG(Q)I .

Da nach (1.9) aber NG{Q) "CG(Q) eine Sylow—a-Untergrupre von T(bq)

enthilt, muB 2 bereits die grdste 2-Potenz sein, die iT(bQ) : qeC,,{Q) |
LY )

‘Leilt.

Die letzte Behauptung folgt direkt aus (2.1d) .

Wir wissen aus (2.4), dag die beiden zyklischen Gruppen der Ordnung &

y

namlich Dy; wund Dyz , eine besondere Rolle spielen: Sie kinnen, missen
aber nicht, in dem gegebenen Netz A(D,bn) liegen. Wir benStigen daher

folgende Fallunterscheidung fGr o » 3:

aa) Dyy , Dyz2 f A(D,bp)

ab) Dy; € A(D,by) und Dy, ¢ A{D,bp)
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ba) D11¢ A(D,bn) und blz EA(D,bD)

bh) Dyy v D32 € A(D,bn) .

Hatirlich XSonen die Fille ab) und ba) aufgrund ihrer Symmetrie stets
analog abgehandelt werden. Augerdem sind wir fiir n = 3 Jetzt in der lage,

{2.7a) zu verschirfen. Im Palle aa) ist ndmlich der Trigheitsindex genau
3 unpd im Falle ©bd) genau 1.

Der Beweis fiir das folgende Ergebnis sei dem Leser dberlassen:

(2,8) Lexma: &) Fir n > 3 sind Q, Qg € A(D,bD) Zenau dapn stark kon=

Jugliert, wenn sie bereits in D konjugiert sind.

b) Fir n =3 sind im Falle aa) alle Untergruppen der Ordmung &
voo D stark konjugiert; hingegen sind bei Bb) keine zwvei

Untergruppen der Ordnung % von D satark konjugiert.

{2.9) Lemma: Wir {{bernehmen die Begzeichnungen von (2.2). Sel Q € A(D,bn)

und u € Z'Q +» Dann sind Equivalent:

T(bq) n CG(u)

1) Q'CG(ui

Ml
[

{mod 2}

2) . cD(u) =q .

Beweis: 1) => 2): folgt aus (2.2).

2) 2> 1}: Dies ist fiir Q = D gleichfalls trivial. Also sei Q # D und
lql #8 . Dann liefert (2.6) das Ergebnis. Falls aber [Q| =8, 3 Quater-

nionengruppe, 8o ist 2(D) = 2(Q) , was 2) verletzt.

Wir kSanen aus {2.8) sofort ableiten, dag wir das Repridsentantensystem R
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der ;—Kla.saen im Netz A(D.bn) als Teilmenge von
| o ,<« ,p_,0 | 1<mc<n2}
wdhlen kSnnen, Dabei ist natiirlich im

Fall aa) i1, D1 ¢ R

Fall ab} Dy ¢ R

Wegen (2.9) kSonen wir (2.2} aovenden und erhalten

(2.10) Satz: Sei S' die folgende Menge von "subsections" des Blockes

B EBILD(G)
- c {z) Cc.(x_)
st = {(1,8) , (20 ) L (G ¢ m

wobei m =2,3,...,n-1 und k = 1,3,5,...,250 -1

i b<x.>

Dann kSnnen wir die in (2.2} eingefifhrte Menge S wie .folgt wihlen:

Fall aa) S =35

C.(y)

G
Fall ab) s=8" u{(y, LI

Coly) Colxy)
Fall o) s=8 uly,n 7 ) L (o on,

Offentar gilt |s'] = 2°% + 1

{2.11) Xorollar: aa) k(B) » a2 1
ab)  k(B) » 2" 242
)  k(B) 22% %43 .,

- RREARREEERER B RN A A0 AR

, Was unter Ausmutzung von (2.3) liefert:

Wir behandeln als ndchstes BlGcke mit abelschen Defektgruppen D. In diesem

Fall erhalten wir fiir unsere Menge S ein einfacheres Ergebuis als bei den
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Quaternionengruppen.

(2.12) Satz: Es sei B ein P-BElock mit abelscher Defektgruppe D und

Wurzel bD +« Ferner bezeichne

e, = b)) : Ca(D)
den Trégheitsindex. SchlieBlich sei _[ul,....ut} ein Repridsentanten-
system der T(bD)-Kanugationsklasaen von D. Dann ist
¢ {u,)

S = {(u G i ] I

{0 P i=1,...,t}
ein Reprisentantensystem der Konjugationsklassen von "subsections"
von B. BEs gilt

In]-1
k(B) - (B} » ==,
®y

Bei zyklischen Defektgruppen gilt sogar Gleichheit.

L]

Beweis: Wegen (2.1f) ist A(D.by) = {D} .

Auferdem z(p) = D

Bestimme nun die T(bD)-Konjugationaklaasen ven D. Die Bedingung (%} aus

{2.2) ist stets erfillt, weil (eb,P) =1 . Damit ist alles gezeigt.

(2.13) satz: Sei (x,b) eine "subsection” von B € Bl (G) mit Defektgrup-

pe P #D und gei p $2 . Falls P zyklisch ist, so gilt schon

P=<x> .

Bewels: Sei P = <z> , |Pl = p" . Es existiert eine Defektgruppe D von B
und eine Wurzel bD von B in D-CG(D) , 30 dag P ¢ A(D,bD) . Wegen © % D
existiert ein Q ¢ A(D,bn) mit

Q:P| = p . Aus (2.1f) folgt, dag Q nicht
abelsch sein kann, also nach [13] , Thm 5.k.L SOgar

m=1
Q= £Z,¥ l yp =1, y-lzy = zl+p >,
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Klar ist ferner x ¢Pp ,

Sei <x> # P . Dann ist y-lxy = x und somit Q < CG(x). Es ist daher

c.(x)
Q‘CG(Q] < CG(x) und wegen Q € A(D.bn} hat der Block bq G eine

Defektgruppe, die Q enthilt - Widerspruch.

Zun Schluf dieses Paragraphen sei noch darauf hingewiesen, da8 Alperin und
Broué in [1] versucht haben, die hier beschriebene Theorie der Doppelketten
durch gednderte Definitionen zu vereinfachen. Fiir eine direkte Verallgemei-

nerung siehe auch [18 J.
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$3 GRUFPEN DER FORM c-q-cG(Q)

Sei G eine endliche Sruppe mit einer p-Untergruppe Q , so daB
G = Q‘CG(Q) .
- Definiere 3 = a/q

und sei vy :G6+3 die kanonische Projektion.

(3.1) Lemma: a) die Abbildung Y induziert eine Bijektion zwischen €'
und G° , sowie zwischen CL{G*) und CL(G")
v) B ist G = C Q) .

{3.2) Lerma: Sei D eine p-Untergruppe von G wmit Q < D. Ferner sei
Y o= T-l(ca(ﬁ)) .
Eg

A

1%:  a) Q-(:G{D) <Yd NG(D)
B) n-cG(n) <q De¥

c) D'Y/D-CG(D) ist eine p-Gruppe .

Beweis: Bs ist Y = {y ¢G | [y,d] €Q fir alle & €D} . Daraus folgen
a) und b).

c) Wegen D'I/D-CG(D) = Y/ (D'CG(D) n Y] geniigt es daher zu zeigen,
dag Y* 1in n-cG(D) liegt. Fir y € Y* gilt nach (3.1b) aber ¥ ecG(Q)',
alsc operiert ¥ trivial auf Q - ebenso wie auf ‘D/Q . Mt [13], 5.3.2
folgt ¥ € CG(D} .

{3.2) Satz: Sei B'EBlD(G) und b eine Wurzel von B in D-CG(D} . Sei
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Bsz.Y

, wobei Y wie in (3.2) gewi#hlt ist.
a) B ist eine Wurzel von B

b} Falls & den kanonischen Charakter von b bezeichnet, so ist

L] . D.Y
BD t irreduzibel und sogar SD ¥ € B, AuBerdem iat & der

kanonische Charakter von B8 .

Fiir den Beweis dieses Satzes missen erst einige Zvwischenergebnisse bereit-

gestellt verden, so z.B.

(3.4) satz {Olsson): Sei G beliebig, D eine p-Untergruppe, B EBlD(G)

und b & ELD(D'C {D})} eine Wurzel von B. Sei D+C.{D) < X < N (D),
I G G G

vobel [X : D-CG(D)] eine p-Potenz ist. Schliedlich bezeichne @

den kanonischen Charakter von b». Dann ist ﬁx ein irreduzibler

4 .

Charskter in b mit BShe O , der D im Xern nat. o

Beweis: Es ist T{(b) = T{8) . Nach (1.9} 1st die Primzahl ) kein Teiler
von |T(v) D'CG(D)I . Weill a. V. X : D'CG(D)! eine p-Potenz ist, folgt
hieraus T(b) n X = D+C,(D} , also TX(B) = D-CG(D) .

" Naeh den S&tzen von Clifford ist Bx irreduzibel und vegen {1.10)} gilt

X en* .

{3.5) Lemma {Olsson): Sei wieder G = Q-CG(Q) , B eBl(G) , v € BL(H) ,

wobei H <G .

a) Falls 5 =B und bC definiert ist, so ist auch b° = 3

- -
b) Wenn b =B und B definiert ist, so gilt BG =3,

Beweis: Sei % € b n Char(H) , Q € ker ¥ und L € C1{H'} . Dann zilt

-y -

QW(L} = |L| - ¥{x) = |I.‘ . -ﬂ-i—;—s m:ﬁ(f.)

3
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Fir . K e ci{g*) dist

w (K} = L wl(L) = L w (L) =« w (K) .
‘l’G i?!(cﬂ') ¥ Tef ¥ %G

zu a): Falls die Bedingung erfiillt ist, folgt

qu(K) = m_ﬁ(i) = mi(ﬁ) 3 uB(K) (mod p .

Da bG definiert wvar, folgt bG a 8,

Der Teil b} wird analog bewieasen.

Run zum Beweis von {3.3): .

Wir kSnnen (3.4) mit ¥ := DY arwenden. Wegen (3.2) sind dann alle Voraus-
DY DY

setzungen erfiilit und 8 ’

ist ein irreduzibler Charakter vom B = b

r— ——

der D im Kern hat. Damit ist auch _BDY- €8 und D < zer %% und o°F

ist der kanonische Charakter von 8. Nach (3.5) ist B eine Wurzel von B.

-(3.6) Bemerkung: Sei wieder G beliebig und b ¢ B].D(D°CG(D]) mit kanoni-

sché.m Charakter o . Dann ist

8.(0)  x.(p)

(e 87 gy (8} : Decy(D)] = o .

Bewveis:
§.(D) K. (D)
¢ -G r{a) . 7{8) ra J2(8) r
(e .8 ]Nc,(n) = (877,07 )y = (8.8 ‘D-CG{D}) = (6,e,00) = e

(3.7) Satz: Mit der Notation ven (3.3) gilt
a) T(b) n DY = D-CG(D)
t) T{B) = T(b) ¥

C} eb = e‘s .
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Beweis: a) BEs ist T(b) = T(8) wund damit funktioniert der Beweis von
{(3.5). '

(%) DY 4 (b)Y ¢ NG(D) ,
also T(b)-Y / Doy = ™b)/(T(b)nDey) = T(bl/(o-cs(n)).
Es ist [2(b) et : Dey] = e,= Ie) . n-cG(n)I .

X
Sel x €T(d) , also v =b. pann (VD)X . p%)DO)T L0y ist
x € 7B) , also THV+F < 7(3) .

¢) SchlieBlich ist

F. (D) N_(D) —N )] 5 8, (D) |
LU YN (CL RN 0 i W

well NGZDE = Nc(ﬁ) .
b) Folgt mit c) und (%) . | , . .

Der Satz (3.7) war nur der Induktionsanfang von

(3.8) Satz: Se1 3 €815 {8), by eine Wurzel von B, by = b, 20%0 | ¢
Yy = Y“(Cﬁfﬁu)). Ferner sei (D,,3,) , (D,.8)) ,..., (Er’gr) eine
Doppelkette, Definiers

Y, = Y‘l(ca(ﬁiJ)
8, = HE), wobel 8, ¢ Bl(p,¥.) .
£3 existiert eine Doppelkette (Dg,ba) , (Dy,b1) ,uue, (Dr,br) mit

folgenden Eigenschaften
DY

. 144
i) bi = Bi

4 = .

ii) T(biJ DY, D, cc_(ni)
1i1} T(-Bi) = leii-\:i

iv) &, T ey
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Beweis: Fir i = 0 wurde die Aussage in (3.7) gezeigt. Es sei daher die
Behauptung bereits fir i-1 (i< r) bewiesen.

Zundchst bhemutzen vir (2.1), um zu Uberprifen, dag D, € A(D,b) .
Nach Indukticnsannahme gilt bereits Dyq € A(D,b). Daher geniigt es nachzu-
weigen, dag
a) ¢ (p,) <D»
D, , ot P
») pd (e, ) ap,_ectp)) : (o, ec,d, ).

zu a) x € Cy (Di) bedingt X € Ca (5i) < ﬁi , &lso x €D

i-1 i

’ t 1 L] -
_zubl Sel B €mD ¥

‘DA (51_1,51_1)' und (ﬁi,ﬁi) zu einer Doppelkette gehdren, folgt aus (3.5}
mit der Induktionsannahme: -

g 117t . By1%y Dy 1ty
1 = B o= 8 = P '
Ind .
D, .Y,
Fun hat Bi-l =13 gie Gruppe Di—l als Defektgruppe und somit ist D, ,
. eine Defektgruppe sowohl von B' als auch von bi 1" Da selbhatveratind-

e ! < . .
lich D, , cG‘Di) D, ¥, , folgt sus {1.4), dag auch der induzierte Block

Di_l-cG(ni}

bi die Gruppe Di—l als Defektgruppe besitzt. Der Satz (1.9)

b=h die Aussage

liefert mit G = D, ,°C.(D.) < N,(p,) , D=D,_, , i1

i
ii) , also liegt D; im Netz A{p,b) .
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Zur Verdeutlichung dieser Rechnung folgt der benutzte Untergruppenverband

von G:
[}
D, ;¥4 NG(Di)\ B\
i=1 T4-1 Dy1y Bia1 3.1
|
i
D 4 cG(ni) ;
/ t
_ |
D, 1°C G ‘_1 | ~c (D) LY gesucht: D,

Wir baben bisher bewliesen: . . . C v

(Dg,bq),...,(ni,'bi) ist eine Doppelkette.

I 4

Jetzt zn i): BEs gilt 8, =11 . B vie bereits gezeligt.

Diyi]Di ~171 b Di-lri _ [b Di-l CG(D )}Dl lYL ( )Di-lri '
\ i = i = i = bi__l 2 B
w ¥ L}
Es lst DY, A D, ¥, und nach {1.10) deckt 3' sowohl B als auch
Dixi
bi ; somit sind diese zumindest konjugiert in Di 11']._.

< "N . =
Weil aber CD,“I{Di) D, , ist D, , 0D, cG(Di) D,

Somit Dy ,° CG{Di) / D, *C, (D ) =D, /D i_lracG(Di} = D, / D,

und mit (1.9) folge

(6,) = D, _+c.(D,)
1100“’1) i

und damit

'Tﬁi_l calB,) (By) = By €5y = Dy % -
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Daher gint es nur einen Block in Diti , der von B' Dbedeckt wird. Dies

bewveisgt die Behauptung:

. Diri - s
i

Zu 11): FRach i) und (1.9) gilt
ptlre) any : Di-cG(Di)l .
Wagen (3.3) ist. andererseits DY, / Di-CG(Di) ' eine p=Gruppe.

Dies beweist ii).

Ps bleibt noch der Nachweis von 1ii} umd iv):
Wie in (3.7} zeigt man, da$
{ .
| o My ey, < T(si) |
und aus einer Apwendung von (3.3) auf D.¥. folgt, dad, falls 8 der kano-

i*i

D.Y
nische Charakter von b, 1st, auch 8 1 1 4der kanonische Charakter von Ei

ist. Aus (3.6) folgt dann (mit G = N.(D,)}:
- ebi esi
und demit sind alle Behauptungen bhewiesen.

{3.9) Satz: Wir Gbernehman die Bezeichnungen aus (3.8]). Falls

DY, n Tv,) = D Ci{D,) 1€i<r s
dann ist (Eq,ﬁu),....(ﬁr,ér} eine Doppelkette, wobei wieder
D,Y
i1
ﬂi = hi .

Wie man sus (3.8) ersieht, ist die Voraussetzung in {3.9) unverzichtbar.

Bewels: Aus der zusdtzlichen Voraussetzung des Satzes und (1.9} {mit G =

DY, und D = Di) folgt, da8 6, genau D, als Defektgruppe hat. Nach
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(2.13} ist dapn ﬁi eine Defektgruppe von Bi . Das Urbild von ﬁi.ca(ﬁ‘+l)

in G ist gerade Diri+1 und wir haben die folgende Situation:

i L Yy Dir Yooy | Byay
/Di'ca(niﬂ-)\
v, | b, ¢, | Dy CalPysy) ooy
Es geniigt zber zu zeigen - wvgi. {3.5) - : ‘ :
g Pt 0 Pifg
i ivl *
Nun, as igt: _
Pfiar | PiTin D;"Ce{Pyisr) Dy¥iyy
8, = b ] = [b. ] =
i 1 i
- v
o D, CG(Di+1)]Di‘i+1 o D ¥iia - . D ¥in
Yirl i+1 i+l *

(3.10) Korollar: In der Situation ven (3.9) gilt:

p + I('T(bi) Dt ) Di°CG(Di)!

D, ¥
Beweis: Da b, - i*%

.wieder Di zur Defektgruppe hat, folgt die Behaup-
tung aus (1.9).
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§& UNTERE DEFECTGRUPPEN UND DIE ELEMENTARDIVISOREN DER CARTANMATRIZEN

Da Defektgruppen stets mur bis auf Konjugation eindeutig bestimmt sicd, ist
es zweckmifig, fliir die nnchfolg_enden Betmh_i_;ungen ein Reprﬁsentaﬁtensystuh
P(G) ‘der Ionjnsieftenklnssen von p-Unteréruppen der Gruppe G 3zu wihlen.
Analog begzeichne =x(G) ein solches Vertratersystem der p-Elemente von G.
Wir haben damit eine "Defsktgruppenabbildung®

5: a@ - Be) .
Die "unteren Defektgruppen” wurden zuergt von Brauer in [5] untergucht. Hier

verden einige n‘ete f.‘rgﬁfmisne beséhriebe_n.

Zur Zinfihrung dient das Folgende:

Sei hier der Kdrper F algebraisch abgeschlossen, Dann existiert bekannt-

lich eine Zerlegung des Zentruma 2 dear Gruppenalgebra F3I in eine direite

Summe von Blockidealen:

Z = B .

[
BeBL(G)
Daher ist

Hom (Z,F) = L] Hom (B,F) .
‘ "¢ BeBL{G) Ry
‘Sei nun D € P(G) und H < G mit

D-cG(D) CHSN

G(D) .

Der Brauer-Homomorphiszmis

Bro Z(FG) » Z(FH)

induziert dann die Abbildung

Hom(Z(FH) ,F) + Hom{Z{FG),F)

B"PD: ¢ + ¢ * Br

D
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Der Ubersichtlichkeit halber vereinbaren wir noch fiir K € C1(G) , dag  &{x)

. L]
eine Defektgruppe von ¥ bezeichne und K := I x €Pr3 .
x€&X

Es gilt (vgl. [S]):

(L.1) Satz: = Fir jeden Block B € BL(G) kdnnen eine Teilmenge Y{B) von
C1(G) und eine Teilmenge 4&(B) =: (b |k ¢ ¥(B)} 1n Fom(B,F) so
gewihlt werden, dag gilt:

a) ci{c) = U Y(B}
BeaL{G) o

b} A(B) ist eine Basis von ' Hom{B.F)
¢} Fir Q €®c) set Y (B) = {x e¥(B) | &(x) = q;
f8r X erqcn) igt dann: .. |

€ B (¢ : Hoi(b,r))
" .l beL(K,(Q),B) :
d) Fir alle Q € P(Q) und alle K, XK' € ¥(B) mit' K K gzilt

hK(K') =1 , b.K{K'.) = 0

Wir vereinbaren ferner

u,(Q) := IYQ(BJI .
Diese Zakl mB(Q) heigt Multiplizitdt von Q als Uncerdefektgruppe des
" Blockes B und ist unabhingig von der Webl von Y(B) wund 4(B) . Dia'

Gruppe Q selbst heift Unterdefektgruppe, falls (Q) > ¢ ist. Tine sol.

che Unterdefektgruppe liegt (bi_s suf Xonjugation) stets in der Defektgruppe
des entsprechenden Blocks. .

SchlieBlich sei fdr ein p-Element » € I{G):

Y; (B) := Yy (3) n {K €c1(¢) | Der p-Teil jedes Elements sus X
ist konjugiert zu =x }.

Damit wird mg')(Q) . Iz; (B)| zu einem wohldefinierten Ausdruck.
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Die folgenden Gleichungen sind offensichtlich richtig:

2 (@) = 2 m;')(_q)

v el(g)
k(B) = I (Q)
Qer(G) "8
(1)
() = T (Q)
Qep(a) mB
(%) (@ = ¢ (Q)
" bep{N,(]),B) "
(xe) : N
qep(a) B
lqlep”

]

Yobei EB(pr) ' die Vielfachheit von pr als Elementarteller der Cartan- -

matrix von B bezeichnet.

'(h.a) Satz: Sei B eBllG) , Q €P{G) . BEs ist
(

1) {1}
() = T ()
"B bEBl(IIG(Q),BJ ™

Beweis: Siehe [16]. -

{4.3) Korollar: Falls EB(pr) $0, wobel 0 < r < d(8) , dann existieren
g ¢P(a) , lal =p", und b € BLN(Q),B) wmit

m‘()l)tQ) $0.

Die Defektgruppe von b enthdlt Q echt.

Beweis: Aus (™) und {4.2) folgt die geforderte Existenz von Q wund b.



38 AUS DEM NACHLASS VON R. BRAUER

Nach dem 1. Fauptsatz von Brauer kann B Jedoch nicht Q als Defektgruppe

haben.

[(4.L) Satz;: Sei EB(p') +0 , wobei O < r < d(B}). Dann exisﬁiert ein
Q €P(6) mit [Q)=p" und Q<RCNQ) , QR ; soxie eine
Wurzel b GBJD(D-CG(D) B} von B , so da8

R € A{D,b) .
N,(Q}

Mir den induzierten Block & = b O gilt ferner:

r
EB(p ) %0 .

' Es sei darauf hingewiesen, da8 Q nicht selbst im Netz A(D,b) liegen mB.

Ist die Defektgruppe namlich z.B. eine Quaternionengruppe mit zentraler

+

Involution i , sc kann der Fall.

]

1B) =3 , 'E3(2> =2

auftreten, aber A{D,b) enthidlt keine Untergruppe der Ordnung 2 {(vgl. §2).

Beveis des Satzes (4.h): Seien Q und 8 wie in {4.3), sowie R eine De-

fektgruppe von 8 . Wir widhlen eine Wurzel bR von B in ReC_{R} ¢ N.{Q) .
LY J I
Die gleichen Argumente wie in §2 zeigen, daB
R € A{D,b)

. fir geeignete Wurzein b und Defektgruppem D .

Es folgt ein Beispiel fiir die Berechnung von EB(pr) . Dazu sei B ein
2-Block mit Defektgruppe-

D=Zyx Z, .
Es kinnen zwei Fille auftreten:

a) e, =1 x(B) = & (B} =1



UNTERE _DEFEKTGRUPPEN UND ELEMENTARDIVISOREN 39
) e, =3 k(B) = & 1UB) = 3

Im Fall b) gile: 33(1) =2 , demn es ist 1(B) = 3 = zB(h)«-sB(z)mB(l} .
Wegen Efg(“ = 1 geniigt es zu zeigen: .
| EB(z) =0 .

Sei also E (2) # 0. Demn existierenein U< D, luf = 2 und eln Boek
B €BL{N,(U),B) mit E,2) #0. Es sei U= <a>, z2 = 1. Wegen {h.h} ist
D eine Defektgruppe von 8 . Da aber z ¢ Z(CG(z)) - Z(HG(U)} , folgt
e =1 und 1(8) = 1.
Dies widerspricht Ey(2) #0 und damit Ej(2) 0.

"Ohiges Ergebnis gllt nicht allgemein fir elementar-abelache Dsfektgruppen.

InFalle D 2% <L, %L, ud G 34, x X ist ndmlich E (2) = 2.

(4.5) Satz: Sei spezieil ¢ = Q-CG(Q) , vobel Q eine p-Untergruppe ist und

B € BMG). Mir P € P(G) gilt:

0 at b
- fall
m-gl}(?) : Qsp

{wie in §3 ist G = G/Q, etc.).

allp) =
Fir die Cartanmatrix CB gilt:
¢y = lal - cg

Beweis: Ahnlich wie {16], 7.8

Bemerkung: Fir die gewShnlichen Multiplizitdten ist die Aussage von Satz

(4L.5) t.a. falsch, z.B. falls ( eins pGruppe ist. Der Leser vergleiche
nierzu (1.13).
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Sei nun wieder = & BG)., Definiere

k. (B} = L 1{v}
¥ be(c,(x),B)

Dies {st die Anzahl der Spalten der verallgeseinerten Zerlegungsmatrix, die
zur Sektion vor ¥ gehdrt. Es gilt deshald

KB) = & k, (B)
x NiG)

Das Ergebnis (4.7) wurde bereits von Srauver bewiesen. Eine Verallgemeinerung

hiervon steht ia [16], (5.11):

(L.6) Satz. {Olsson): Sei Q € PG) , Q<G , B €BLG) und = € HG).

Definiers ferner _
o= {x € MELQ)). et 0} - -

und wihle b EBl(CG(Q).B) . Denn zilt:

™

= (n)
{p) « - k_,(b)
{p)ép(m e} B wew *

. - (1)
{(k.7) Korollar: ) (P} < ky(») = 1{v)
{pe(c) lace} "3 '

(L.8) Koroliar: Wird in (h.?) zusdtzlich 1(b) = 1 vorausgesetzt und ist Q

keine Defektgruppe von B, so gilt:

m](!]')(Q) = 0 .

(L,9) Smatz: Sei x € M{G) , % *#1, BEa ist

(1)
(Q) < k_(B)
[Q@(é) [+8 @ £Gr ein g} "8 x

Wir werden fir (4.9) zwei Beweise angeben. Der erste Bewels wird mit den
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Methoden aus [16], den sogenannten Blockzerlegungen, durchgefiihrt; der zwei-

te benutzt Ideen von Brauer, vgl. [5].

Sei B € Bl(G) wmt zugehdrigem Blockidempotent 1, ¢ Z(FG). Eine digjunkte
Zerlegung von C1{G)}

cL{g) = u X(B)
BerL{G)

heist eine Blockzerlegung, falls fGr alle Bl3cke B ¢ BL(G) gilt:
(&* <1, | X €x(8)} 1ist eine F-Basis von B. '
In diesem Zusammenhang sagen wir schlicht: X ist eine Hlockzerlegung (von

G). Der folgende Satz zeigt, dag diege Rlockzerlegungen eine Folle flir die
Multiplizitdten spielen:

t ' N .
{4.10) Satz {Qlasom): 1) Sei X eine Blockzerlegung von G. Fir Jedes

B € B1(G) sei A(B) dle zu f{K* + L | K € X(B)} duale Basis 7on
Bom{B,F). Die Mengen X(B) wund A(B) Vbesitzen die in (4.1} -

geforderten Elgenschaften.

2} Genligen umgekebrt Y(B) und A{(B) dem Satz (k.1), so ist Y(B)

eine Blockzerlegung von G.

Der Leser sei hierbei auch auf die Arbeit von Iizuka [15] uingewiesen.

Bewels: Sei Q € P(G). Definiere
1.'Q = ker qu =<* | Kn CG(Q) = §>

3y = (K eca(e) | xacy(q) = o).

zu 1): Die geforderten Figenschaften {L.la) und (4.1b) sind trivial,

{k.,1d): Seien K, K' € Y(B) beliebig.

(R*) = n ( % el ) = h (K*1.) = 1.
B "% g a1 () e ¥ BtKTtly
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Analog folgt hK(K") =0 .
{4.1e): Sei ¥ erq(a). Kach Definition von hK liegt B n IQ in ker b

qu induziert einen ibnomrphirsms

B/BaI. - ®
Q beBL(N,(Q),B)

und ‘ﬁrq liefert einen Epimorphismus von

Hom({b,F} + Hom{B/BnI ,F) .

0 QI
hEBl(!IG(Q) ,B)

Da aber Ban in k.er'hK liegt, ist auch (h.lc) erffillt.

70 2) Es seien Y(B) und A(B) wie in (4.l). Ferner seien a, € P ge-
wahlt mit

z a

CK* 1. =0.
<, €¥(8) 175

Wenn nicht schon alle a.i verschvinden, so bezeichne I'E'1 eine Konjugier-
, , 1
tenklasse mit a $ 0 , deren Defektgruppe QJ maximale Ordnung hat. Es ist

dann natirlich K,j € Yq(B). Wenn wir hl( auf die obige Gleichung anven-
' J
den, 30 ergibt dies:

= * . .
0 8 * i cihK(Ki 13)

J
Dabei genigt es, die Summe mur {ber diejeﬁigen Ki laufen zu lassen, deren
Defektgruppe nicht Q ist und die K, n C_(Q) # @ erfillen. {Bei den ibri

'y L=
gen ergidt die Anvendung von h,  wegen {b.le), (4.1d) bereits O}. Elne

~J

solche Konjusationskiasse Ki. hat aber eins Defektgruppe, die ein Konju-

glertes von Q@ enthidlt, was der Maximmlitdt von lQi widerspricht.

Definition: Ein Unterraum V < Z{G) heist blockipvariant, falls Vel e v

#Mir alle B € B1(G).

Man %ann dann leicht zeigen, dag flir eine 3lockzerlegung X von G mit
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A = C1{G) und einem blockinvarianten V = <&® | K € A die Menge

{K'-:LB ! X €An X| etlne Busis von B n V ist. -

Beispiel: FGr « € EK{G) ist die Menge
<x* [ der p-Anteil Jedea Elements aus K ist zu ¥ konjugliert>

blockinvariant, Dies wird im folgenden fiir ¥ = 1 gusgeniitzt.
Bun zuriick zum Beweis von (L.9):

Erster Beweis (Olsson): Sei v € I{G) und oBdA. <x> € P(G). Weiter sei
W= [pep(c) | «8 ¢p ttir ein g €¢G}

und W, o= {x eca) st ew } .

Mit S(1) wird die Menge aller pereguliren Konjugationsklassen von G bew

zeichnet; I“> und J<:> seien wie oben gewdhilt. Aus den Definitionen

‘folgt sofort:

cla) - T us =

Fiir eine Blockzerlegung X von G erhalten wir aus der Blockinvarianz von

s{1):

L mgl)(q) = Ix(8) n sta}l - 1x(®) ns(1) 0 g,
e

x{B)as(1)
ain( fx(s)ns(l)n.rq>] .

Mun induziert Br' einen Monomorphismus

x(B)ns(1), > ® b (S(2) ac (x)
x()ns(1)as . be@1(Cy(x),B) o))

da, qu>(8{l)) = 8{1) n CG(i) . Hn Dimensionsvergleich liefert
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(1) :
z (@ < ¢ 1(v) = k (B)
qwr P beBl(C,(r).B) "

Zweiter Peweis (Brauer): Sei Y(B) wie in (4.l) gevihit. Ferner gei

tHB) := ¥(B) ns(2) , [tiB)] = 1(B) .
In ({5}, §7) vird durch ein recht kompliziertes Argument gezeigt, dad es
1(B) Charaktere x| €B o Irr(c) ‘gibt, so daf fiir gy €K, ¢ Y(B) gilt:

det(x;_(gj)) £ 0 (modp ).

1.3

Sei ' = I m;l)(Q) < 1B} .

QW

Daher existiert eipe &' x i' Unterdsterminante, die nicht kongruent zu ¢

modulec p 1ist:

dEt(xi(gJ))i,J it 0 (modp ). - '

Dabei sind die Charaktere x, aus einer Teilmenge B" von B und die
Klassen K, ait g, €K, aus einer meilmenge Y" von Yi(B) gewilhlit; die

Defektgruppe eines Jjeden KJ € Y" mf ein Konjugiertes von w enthalfen.

Daher kSnnen wir oBdA. annehmen, dag
_ g € CG(I) .
Wegen xi(th) S xi(gj} {mod » ) gilt auch

detlx,(vg)), , # 0O (mod p ) &

Kach dem 2, Heuptsatz von Brauer ist

x,(1g,) = L at .+ alg,)
LI bep1(c (x),B) Le J

oEIBr(cG(r})nb

Deswegen ist

det{ I di'; '*(53”1- 10 (mod p ) .

*d
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e e e e et e e e

Jede Spalte dieser Matrix ist eine Linearkombination von Spalten urﬁllge—
meinerter herzﬁlen. -lun var &' dle Zahl der Spalten der Matrix und
damit gibt es mindestens soviele Spalten von Zerlegungszahlen. Diese sind
aber gerade gegeben durch

T . 1{p) .
bGBl(CG(t),B)

o

(4.11) Lewwa: Sei 2 <2 G , [G:H] = n und der Block B € BL(G) decke n

verscbiedene BlScke by, b2, ...y B, von H. Dann gilt fir die

Cartanmtrizen: (:B = cbi

Beweis: Dies foigt sofort aus der Cliffordtheorie, da T(bi) =g,

1{4,12) Setz: 'Sei Q € P(G) und Q4 G;. B €B1(G) , b €BL(QC,(Q),B) .

Fermer gelte T(3) = Q CG(Q) - Dann ist wieder Cy =C, .

B
Palls ‘erner u;l)(P) ¥0 ffir sin P € P(G), 80 i3t Q < P .

Es gilt dana: uél}(ﬁ) = gg(lal) .

Beweis: Xach ‘L.11) igt CB - cb . Aus dem Brayerschen Beweis von (L.9)

folgt die Existenz von Charaikteren X, €3 Char{G) mit

det(xi(gd_)) 2 0 (mod p ) ,

i,d
vobai 5‘1 € K:’ € YHB) . Wir missen daher zeigen, daB fir jedes ¥, € ¥i(B)
(")

unser Q in einer Dérektgmppe von !(J liegt:
Jedes x, vird von einem Charskter von Q-CG(Q) induziert. Daher ver-

schwindet x, auf G - Q+C,{Q). Falls nun ein KJ € Y}(B) nicht in

q-cG(Q) enthalten ist, liefert die Aussage
x(g,) =0 fdr alle x; €Ba Char(G)
einen Widerspruch zur Regularitit cbiger Matrix. Dies erzwingt, dag X in

J
{Q'CG(Q”. = {CG(Q})" enthalten ist, und die Behauptung ist bewissen. Die
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letzte Gleichung des Satzes folgt aus (4.1):

g(ll) = 1 mgl)(é) a m;”(q)

Pefedal

Dieser Satz {4.12) kann zun Beispiel in der folgenden Situstion angewandt

werden:

Sei D eine Defektgruppe von B und mgl)(q) * 0, Sei weiter H := NG(Q).

Es existiert ein 8 ¢ BL(H,B) mit mgl)(q) $0 gech (4.3}.

Perner sei R eine Defektgruppe von 8 und b eine Wurzel von B. Wir

D
kOnnen oBdA. annehmen:

R € .i(n,bD)
= hRE for ein by € mntn-cG(R}) .
' ' Q-¢ (@) .
Behauptung: Falls T(bR) < Q-CG(Q). dann gilt fir 8% * b

T,(8%) = Q- Q).
In diesem Falle XSnnen wir (4.12) anvenden, wobei GaH , B=8 , Q=@ und
b=f" gesetzt werdan, Wir missen aber noch die Behauptung beweisgen:
Trivialerveise ist ' Q- cQ < T (8% .
Umgekehrt sei ¢ € 'I‘H( B%); dann gllt
q+c.(Q) Q+C.(Q) t Q-C.(Q)
: ey G VN L (e Y Lt
B = by [b.R ) [bR] {gw)
Da ReCy(R) < T(b.) < Q:C4(Q) und (%)% = 8 unser R als Defektgruppe

hat, bat auch 8% gerade R als Defektgruppe und Rt ist eine Defektgrup-
t

pe voun (8%)° . Also sind R und Rt bereits in Q-CG{Q) konjugiert. Es

existiert somit ein ¢ty €Q°Ce(Q) mis ¢ - t-ll € Ng(R). OBdA. kSnnen wir

daher annehmen, daB -t € !lﬂ(-R'}-- » Sowohl b, als auch b; 3ind dann Wur-
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zeln von @* in a-cG(n) « RKach (1.8) gile:

by~ bRt in "NG(_R) n Q*CG§Q) .

tet
Sei nur ty €N, (R) 0 QeCu(Q) mit b." "2ab, . Damn fst tet, €W (R)
und  tet, GT(bR) < Q-CG(Q) nach Voraussetzung. Alsc

t €Q- CG(Q')‘ .
In diesem Zusammenhang kann such der folgende Satz aus [16] von Mutzer sein:

{4.13) Satz: Sei Q €P(G) , Q4G , B €BL(G) und b eBl(Q-CG(Q)‘,B). Dann
' n(Q) < = (Q)
(@) < mt Q) .

(l's.lh) Mg_u_ggl I: {Notation wie oben) Falls mél)(q) $0 , dann existiert
ein b € Bl(Q'CG(Q) ,B) mit mt(,l)(q) %0 ., AuBardem ist in der Faktor-
gruppe Q-CG(Q) /1 Q:

B (@ = oD

Bew--e:l.s: Man vemnde. (b.2), (4.13) und (L4.5) . _
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Allgemeine Ergebnisse Uber Beitrige wurden zuerst in (4] bewiesen, Uber die
"subsection” (1,B) jedoch schon in {8]. Hier werden nun neue Resultate ge-
zeigt.

Zv_.t_lé'.chat_. eine urze BinfGhrung:

Sei B €BL(G) und yx;, xp € Irr{B) . Dann ist

L .
(_xi'xj)c - 61.1 = 15T xiﬁ xi(x} thxj
. l - - .. ‘ - '|
= )2 E . (vy} X %y}
ver(c) 1SN y&,(n)” 4 J
s L Tc_%?)'f T £ . di; dJ; o ly) H 0T .
v €n(c) G y«:G(:)‘ %.%am(cc(s)-)

'Die Zahlen dxf: sind die verallgemeinerten Zerlegingszahlen (vgl. §1)}.

Zur Vereinfachung schreiben wir kurz

x e 1
T m&' £ Ok(:r) ¢hf35 .

y&G(l)
. L ——— .
Dann ist [Ykh ]h.k die Inverse der Cartanmatrix von C.{a) .

Liegen nun ¢, ued ¢, in verschiedenen Bl3cken von CG(I_)_ , S0 iat

L}
Ykh 2 0 und wir erhalten
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BEL ' ' g
® f "
(H’XJ)G - f &:‘h i Y th
= I I Z 'd‘ Y' ‘d—'_
v bl () 4,9 @Er(p) K KR R
{e,b)
=t £ I * .
T b 2

Hier ist fir b GBl-(CG(!)):

(' ’b) T k) k|
m = B 4 Y

Y o &, TBr(b) ik kb b _
der Beitrag der "subsection” (¥,b) vom 3 zum inmeren Produkt (x, .x,); -

'Mit s := (¥,b) , ¥ und b .wie oben, durchliuft s ein Reprisentanten-
| ;

system S der Konjugationsklassen von "subgsections” von B. Daher ist

§,, = (x,x) = L =, .

13 Xt T e U
Fir = € %{G) Dbezeichnen wir mit S(x} die p-Sektion von =, also die
f‘ie‘nge aller Tlemsnte aus G, dearen p-Anteil in & zu w konjugiert iat.
Ffir eine "subsection” s = (v,b} des Rlockes B definieren wir eine Klas-

senfunktion x: von G vermdge

0 x*

-

U
: Ke€1(G)Ins(x}
x:(x) LT .

T a’r o.(y) , falls x=wny , y €C.{n)*
9, @Br(c,(1))nb v G

J

Ps ist dann
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und fir zwvei "subsections” s und t:

oS
st i °

(xz.xz)g = 4
Ein Beispiel: Sei B ein Block mit Defektgruppe D %= %, x Z, , x(B) = &,
1(B) = 3 und Trigheitsindex 3 (siehe z. B. [6]), sei z €¢D-{1} . Denn i{st
s = {(1,B} , (z,b}} '
und 1(b) =1,
Wegen z? = 1 sind die verallgemeinerten Zerlegungszablen schon ganze Zah-

len. Es kommen also our die Werte +1 und <1 in ¥rage. Aus der Definition

ron msg'b) folgt
~1 o 4 A
(m(z,b]) 1, n 1 11 1
1) 1, I N o 11 :
9 1 41 1 .
1
Es folgt
3 A1 f1 A
( (1,3)) 1, {7 3 A 7
i 1,5 N a1 3 =R :
¥ ¥ A 3
EERREERBRERREN
Der Einfachheit kalber schreiben wir
S . 3
(mi.j)L,J = M .

Wenn pa die hichste p-Potenz ist, die ;G| teilt und gy eipe primitive
pa-te Efnheitswurzel bezeichnet, so liegen die Zahlen m;j alle in der

KSrpererveiterung Q(e;} . ¥at schliedlich die Defektgruppe des Blockes b
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die Ordaung pd , 80 gilt fiir die Beitriige der zugebSrigen "subsection" s:

pd . m: J ist ganr-algebraisch.

Ferner ergibt sich aus der Definition

Dabei ist D.: die verallgemeinerte Zerlegungamatrix des Blocks. b. zur

"subgeetion" s = {v,b) , C, 4ie Cartanmatrix und D, die gewShnliche

Zerlegungsmatrix.

Sei oun [h] = {“k | krl,...} eine Basismenge von b. Ist

n = L n., ¢ .
t 4, GBr{Co(x))nb v

. ' : . ) ]
und N = {ni.‘l)iqd R
Sehlieflich hezeichne

Isogilt: det H= % .
D[;l die verallgemeinerte Zerlegungsmatrix bigl. [b]
C[b] die Cartanmmtrix von b bzgl. [b] |

D[‘n] die gewShnliche Zerlegungsmatrix bzgl. (b .

Danr gllt offemsichtlich das Folgende:

D; = D[;]'N
Db = D[b]'N

G = B ny x N Oy X

und

x -1 1r
Hs = D[b] Criy D[b] .
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Dlies zeigt:

(5.1} Satz: Die Beitragsmatrix M® hEngt nicht von der Wahl der Basismenge

ab.

Wir werden uns hier hauptsdchlich mit der Matrix

. Mi o= M{l'B)
beschiftigen. Dazu sei Ml a {mi.j)i,.j , also
I S : . Yx)
SO -1 SR Lo NPT

QOffensichtlich ist mii >0 .

Wie allgemein fiblich, sei vp(x) der Exponent der grSften p-Potenz, dle «x
. . ) . v
teilt. Ferner sei d := d(B) . Brauer hat in (L] gezeigt, da8 .

=0 falls h(x ) =0
, d 1
v, {p mii) [ _ .
s >0 falls K "1) > 0

“p{Pdm!.J) = h(x,) falls h(xs) =0 .
Ferner: Spur (M!) = i(B) | (siehe [L], 5C) .

Mg den obigen Aussagen folgert man leicht:

pdﬂnii »1 falls h(x) =0 .

4 h(xi)
pmy, 27D +1 £alls h(xi} 0.

Dag beweist:
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(s.2) satz (Olsson): a) pd'lil!) >ko(B) + L k. (B) o Piﬂ .
i>0 1

b) ptea(B) > k(B) .

Elne weitere Ungleichung dieser Art liefert

(5.3) Satz (Otsmom): p3el(3) > [kg(®)]2 + = k,(B) [2,(B)4p?]p®
i>0

Beweis: M! «ml = pecipbcipt o« potopt

; 1.d

Der Ausdruck auf der rechten Seite dei' zu beweisenden Ungleichung ist jedoch

yelne Teilsumme hli.érwc'm.“ .

Weitere kgeﬁiase dleser Art sind in [9] ﬁnd (19] zu finden.

Es ist bekannt, dag die Cartesmatrizen (als symmetrische Matrizen) quadrati-
sche Formen definieren. Im Rest dieses Paragraphen werden wir untarsuchen,

welche Rolle die Beitrige dabei spielen.

Dazu seien Q, die zur Matrix pdC‘1 und Q, die zu p.dMl gehdrigen

quadratischen Formen. g, ist positiv definit.

(5.4) Lesma: Q; wund Q, stellen die gleichen gquadratischen Formen dar;

insbesondere stellen Q, wund Qp die gleichen Zahlen dar.

Beweis: Eine quadratische Form Q wird bekanntlich von Qi dargestellt,
falls es eipe ganzzahlige Matrix A gibt =xit At Qi A=Q . Elne ganze

Zahl liegt dann im Wertebereich von Qi , falls sie in dem von Q liegt.
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Nun gilt offenbar:

t
QZ'DBQIDB .

Umgekehrt folgt, da IBr{G) n B eine Basismenge ist, die Existenz von gan-

zen Zahlen ddi' mit

4, S

. te
Mit D' = (d.ii'.).j,i gilt D'+D = TI,/p {die Einheitsmatrix), also
t

@ ot m kA b

X fgr = L E 9y % ¢

t t
R AR

(5.5) Satz: Falls L(B) > 1 wund 1(B) - m.(sl)(l) =1 - dh, die Cartan-
matrix CB hat die Elementardivisoren pd. l, sesy 1 =, dann gilt

fiir alle X €EB n Irr(G). |

Bewveis: Angenommen, die Anssage des Satzes 1st falsch und es gidt ein

Xy, €B 0 Irr{G) mit my = p'd . (Bekanntlich ist pdmn stets eine na~
tdrliche Zahl}. Da pdmai trivialerveise von Qq dargestellt wvird, wirde
denn Q, die Zahl 1 darstellen, und somit auch g, . Beziglich eiper

‘Basismenge [B] gilt dann:

00.-000

R s s v 0 o ¥

s _
c =
P =is]

D e s » OF
e o+ » 20
.

Daraus folgt:
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do..ouul.o

°lr] ~

QO + &« 2 0Org

fiir eine geeignete (1(B)-1) x (1{B)=l}-Matrix ¥. Nun ist det Cy gleich

und somit

dem Produkt der Elementarteiler, also det C[B] = det cB = pd

det ¥ = 1 . PFerner folgt aus C[B] = D[Btj D[B] , dag D[B] die folgende
Gestalt bat:
-
»
*
" - T +
| D[B] = . k&B} .
-
L ]
*
1 +« L{B)=-1 =~

'u_'obei T eine ganzzahlige Matrix ist mit Tt“l’ =Y.

Aus der Determinantentheorie ist bekannt, dag
' 1 = det Y = L {det w)?
W
wobeli W {ber alle (1{B)-1)x{1{B)}-1) Teilmatrizen von 7T lZuft. Es gibt

daher genau eine solche Teilmatrix A mit det A = %1 und

T hat oBdA.
die Form:
1{B}-1
A 1{B)-1
T = .
1 z k(Bl=1{B}+1
__J
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Dann:

1{B)=1
ALl = Q 1

ZI

(ral)® Tl = (a0 (2hm) 4!

det [(T a~H)° P A1) = (det (A1))2det ¥ = 1 .

Die Matrix TA-! erfilllt die gleiche Bedingung wie T. Durch geschickte
Wahl der Untermatrizen (eine Zeile aus 2Z' , die fibrigen aus der ®inheits-

matrix) kfnnen wir zeigen, dag 2' = 0

s, also
1
1 - - - - 0
. * L +
Tal e 0 + 1 k(B)
0 - . - - 0
. . v
0 - . L] - O

Bazeichnet w den ersten Spaltenvektor von A"L. so ist

Tow =

O s s s o8 O

Py ist.eine Z-Linearkooblnation der Spalten von DrB].
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Sel jetzt y ¢33 , y p-singulir und y= ooyt mit w € He) , y' p-regu~
1ar.

. =
xi‘ity' ) = di.} ¢J (y' ) .

T T
be(C,(¥),B) ¢ ]

Wegen der Rocker-hogonalitat {1.15) ist jede Spalte (di;) j 6rthogona.l zu

Jeder Spalte in 35 und damit zu Jeder Spalte in D[B ] « Instesondere ist
Te+w oOrthogona. zu (di:):I . Wir kSnpen dann oBdA. annehmen, dag fir die

zum Charakter x; gZehdrige Spalte (d’: }J gilt:

(du).: = 0 .

lI')u:u: verschvindet aber X; auf allen p-singul&ren Elepenten, ist also vonm

Defekt 0, was L1i3} > 1 widerspricht,

{5.6) Xaraz-ar: Ist i{B) > 1 , so stellt Cp keine quadratische Form mit

Ceter=inante i dar,

Die Cartancatrix (23 rabe die Elemsntardiviscoren

.
(g} * P

und v, vezeizite iie i-ve Zeile von D (1<i<k(B)).

e‘. < ez < .c--o. < -]

-

Fir eine Teilzezge X wvon {1,2,...,k(B)} sei

Hx 1= (wi Q wJ“)i,j -

pann ist %, =:7¢ Teilmatrix von del .
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{5.7) Satz: Sei X wie oben. Fiir die Elementardivisoren e’ < &' < ...

von Hx gelten folgende Eigenschaften:

d
;2——— = 1 teilt e
1(B}

d
-:L-—— ’ teilt e2'
1{B)-1

usv. fiir alle fraglichen Indices.

Beweis: Sel A die [8| x 1(B) - Matrix, die aus den Zeilen v, . 1€X

besteht. Daon ist

. d -t ot

% = AP S5 A _
Wegen der Ganzzahligkeit von A,{ teilt der i-te Elementardivisor von
d -1

T 'CB den i-ten Elementardivisor von Tn'x .

. . [ !
(5.8) Xorollar: In der Situation von (5.7) sei speziell |X| = 1(B) :='t
d
und e'j: ;2 —E ., Damn ist
®i-ivl

- ] 2 - " "
ei eé TER A (det ,‘&) ef .o el

=1
Beweis: Men berechne einfach die Determinante von Wx = AW( pd CB Axt

Wir sind mun in der Lage, Satz (5.5} auf eine andere Art zu beweisen.

2. Beweis fiir (5.5): Angenommen, es wire m, = p-d fir ein L, Sei ] #1i
und wihle in (5.7

x = {iJg} .
Dann ist
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d
v - 1l pnu
X a . ¢ .
T P o4

mit den Elementardivisoren 1 urd pd . Deshaldb gllt pd | det wx und

entveder ist det Hx = (} oder pd MJJ > pd .

Da es wegen &6(B) #1 Jedoch noch mindestens eine "subsection” s mit

w,, *#0 givt, widerspricht der 2. Fall der Gleichung

3
I nm 1.
I F
Semit mug fiir alle J # i die Determinante der zugehSrigen Teilmtrix 'dx

verschwinden.

¢ Fir die zugehéirige Bilinearform gilt dann:

A B SR R O R LI

.Da dies ffir alle J # 1 gilt, folgt aus der Matsache, daB Q; positiv
definit ist, dile lineare Umbhﬂngigkcit von v, und vJ + Daher:
Ra.ng(DB) = 1 = 1{B}

- der Widerspruch.
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Wir fiihren nun die wv-Bldcke als Verallgemeinerung der bisher berutzten

p~Bldcke ein und untersuchen einige ihrer Eigenschaften.

Dazu bezeichne * eine Menge von Primzahlen. Jedes Flement x € G 1dgt
aich eindeutig in einen Anteil Xy mit w-Ordnung {dh. die Ordnung von X

ist nur durch Primzahlen aus 3 teilbar) und einen w-regulidren Anteil X

zerlegen:

Die Menge der w-reguliren Elemente von G wird mit Gw. bvezeichnet; Cher($)
. ]

sei der Ring der versllgemeinerten Charakter von ¢. Ferner sei

(1) M = (A €har(e) | A(x) =0 fir alle x €3G} .

x

Dann ist M ein Z-Untermodul von Char{G) vom %Z-Rang lH(G), der An-

zahl der ®-reguliren Konjugatioansklassen von G, wie man leicht beweisen

kann.
s sei weiter {wl,...,wlw(c)j eine fT-Basis von M und fiir 1 < g < lw(G)

und X3 € Irr(G):

x{G)
(2) = L[ d, d,, € Z
Wb {=1 i) X ij
Es spielen dann die wi die Rolle der "hauptunzerlegbaren Charaktere™ und

die dij die Rolle der "Zerlegungszahlen".
Definiere: D, = {d.,),
1 if'i,

1
“
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(3) c. = D%.p

danp ist 'c' die "Cartanmatrix™.
Es ist det C, #0, weil die Matrix D den Rang 1'(0) hat. SchlieBlich

vereinbaren wir Funktionen °1' vensy °1 () ("Brauercharaktere”) mittels
, . .

1 (e)

(%) b, = L c.. ® 1<i<1(G).
1 =1 i3 x .

Da diese J' alle auf G—G" verschwinden, kdnnen wir sie als Klassenfunk-

tionen von G" auffessen.

(6.1) Lemma: Fiir x €G. " und x, € Ire{G) mit 1 < 1< k{G) gilt

1.(6)
xi(x) = L d, . SJ(x) .

g M
Beweis: Fir x €G_° bezeichne w(x) den Vektor

w(x) = [x,l(x) - dU ﬂd(x), corn x‘k(G)(X) -z ko 9J(K)) .

Wir haben wix) - D, = o ,

denn fiir 1 €1 < 11(6) ist

f [xi(x) - ;: du BJ(x)] *d, = f (v (x) = % (x)) = 0.

Seit v = v ¢ c O lv.p =o0}.
Eine C -Basis von V 1ist;

[\l’l,...--,vk(s)_l‘(e)} N wobeli Vi = (xlfyi)!"'!xk(c)(yi}) ¥

hier bilden dle y, , 1 < i < k(G)-l'(G) , ein Repridsentantensystem der
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KonJugiertenklassen von G-G" . Dana ist

k(G)—l'(G) .
v(x) = nil a v a € C geeignet ,
d.h. : xi(x) - 3‘: cli:1 eJ(:_c) = z a xi(yn)

fir alle 1 mit 1 < 1 < k(G).

Wir mltiplizieren dle Gleichung mit y 5. fiir ein festes ¥y , summie-
™ n

ren ber {1 und erhalten mnittels einer der Orthogonalitdtsrelationen f£ir

Charaktere:
i xi(x) xilyms - I 8(x) z dij xity T o= ¢ (Ym}l ca .
i J i .

Es ist Jedoch E xi(x) xltymi = 0 , da x und Y nicht konjugiert
i .

sind, und i cliJ xt(:"m) =I "-J_(”u) = 0 ; damit folgt o = O .

Es begeichne [xl. oo, xl (G)} ein Vertretersystem der Konjugationsklasaen
T

von G" . Wir definieren

X = (xi(xn))i 3 1<i<x(eg) , 1L€a¢« 1"(6)
(5) 6 = ‘93(":;”3,;1 : 1¢3,n ¢ 1,(5)
T = “’J("una,n 1< 3, <1 (c)

Dann gelten die folgenden Gleichungen:

(6) x=n'-a

(T t = p¥e.ex

{8} ' ¥ = C +0
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t = .
Veiter lst fir § =X -« (6, * Ic,..,(xm)l)n'm

]

N o ec +8  oach (6) .

Damit folgt _
. -1 .
(9) e"‘cﬁa-n =1d .

Aus der Invertierbarkeit von Y folgt, dap auch 6 ein Inverses besaitzt

und
-l ¢ -1 (=1) X
(10) 38 o = c, = (cu )LJ -
Schlieflich ist
=1 -l
(11) 1d=c, 3N ¥ =9.x +a° .

Dies beweist

(6.2) Lemma: a) -]%r . eit.’d GJ(_x) .
sl ‘ X |

@, | 4
1 ! 1 ’
® 15t xia' A8 94(‘) = 8
T

(6.3) Temema: Jedes vie oben definierte 8, ist Elnschrinkung eines verall-

gemeinerten Charakters von & auf G_" .

Bewels: Wegen (6) geniigt es, eine ganzzahlige Matrix M zu finden mit
M+=D =14 .
x
Da der 1. (G)-te Determinantendiviser von D gleich 1 'ist, existieren

nichtsingul&re 1 (&) x li(G)-Untemtrizen D, vor D und ganze Zahlen

1
a.i mit
13 ai det D:L =1 .
Ferner existieren ganzzahlige l'{G) x 1'(G)-mtrizen M, mit
M D = {det ni) - I1d .
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Daher gibt es ganzzahlige l'(G) x k{G)-Matrizen Mi' mit
f L]
M +D, = {(det Di) d .

Dann leistet M = % 8, Mi' das Verlangte.
i

Sei p €% fest gewihlt. Dann existieren 1(G) irreduzible Charsktere X, »
-~ i aus einer geeignet gewihlten Indexmenge S - und 1(G) p-reguldre
Konjugationsklassen l'EJ s § €T , so dag

det (xi(x,j})i,,j 0 (mod @ ) 1 €8 ,] 7.
{siebe [3)])

Da GI" in G* liegt, gilt lu(G) €< 1(G) . Daher existieren Teilmengen

Sﬁ von S und '1" ven T mit

s, | = Iz i =1

so dag _ : : ' :
det (:(_5_(::'1))1“1 0 (mod p ) ' i és“,,j €T .
Hier ist
T o= (s e| K, t-regulir} .
Aus (6} folgt: det (dm)i"1 i 0 (mod p )
det 8 E O (mod p ) .
Da nach (12) o ¥ = ¥, folgt
(6.4) Lemma: v (v (x)) > °p([°s(‘u)|) 1<nm<1(c) .

SPEZIALFALLE

1} = =¢ oder w enthilt keinen Primteiler von lei . paon ist
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1,(6) =kl6) , v, =x , und D wC =7Td .

2) x={p} , pl lol.

Dann kSnnen die \Pi z.B. aus der Menge der hauptunzerlegbaren Charak-

tere geviihlt werden; D und C  sind dann wie gewohnt.

3) w={plpstetit la| , p Primeani} . ms ist 1,(6) « 1 und
M = Z °p _ (Q:reg;lﬁfercharaktervon G )

%, = %o

1
813 t-lET-p .

Definition: Eine Teilmenge 5 von Irr(G) heist w-Block, falls gilt:
' 1. ffir alle p €¥ ist B ‘eine Vereinigung von p-BlScken;

2. B 1ist minimml bzgl. dieser Eigenachaft.

Wir definieren dann

k{3) = |8l

Bemer : {"t-Block vom Defekt O") Man sieht leicht, daf die folgenden
Aussagen fir einen w;Block dquivalent sind:

a) k(B) = 1

b} Fir elle p €9 enthdlt B nur peBlécke vom Defeikt O,

¢} Fir alle x €B verschwindet x auf t-singuliren Elementen.

d) Pir alle p €% und alle x €B ist vp(|G|) ein Teiler von x(1) .

Fir einen %-Block B gelten gleichfalls Orthogonalitdtsrelationen: Sei

ndmlich x EG" und y GG-G“' , damn ist

L xix) xy) = 0.
Y EBnIre(C)

Dies folgt natiirlich aus den gewShnlichen Orthogonalitftsrelationen fir
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p-Bldcke. Analog zu M definieren wir f{ir einen w-Block B:

My - [ EM'[l=inixi.niﬁl,n1#0=>xiEB}.

(6.5) sSatz: Fs gilt:
M' = | MB .

3 v-Block

Es existiert also eine Z-Basis [\&i} von Mw , 80 dafg Jedes ¢ zu,

i
einem m-Block gehdrt.

Baveis: Vollstindige Induktion nach |-:| . Fir |r| = 1 leisten _ciie

hauptunzerlegbaren Charaktere das Verlangte.

Sei alss ¥; = w={p} und der Satz gelte bereits fdr =; . Daher gibt es
eine Basis [#il} von M"I derart, daf ledes 'fbil in einem ¥)-Block
. d . LI
1 - -a . . : ° LR 3 [
liegt. Weiter seien ¢.L . . ‘bl( ) dig Brauerclzla?alsfcenelund 17 R 01( 6)
die hauptunzerlegbaren Charaktere von G beziglich der Primzahl p. Fir

x EG[;} und x, € Irr{G) gilt dann:

(1) xi(x) = I di,j ¢J(x)

{i1) 2(x) = E e, 80,

1]

vobel hier 4., , ci,j die gewShnlichen Zerlegungs- und Cartanzshlen fir o
g

sind.

Wir diirfen weiter die Existenz einer natiirlichen Zahl t annehmen mit:

i 1 1
"i s ree,y *t €8 , aber ¢t+l sevee § B

wobeli B als w-Block eine Vereinigung von 7 y~BlScken ist.

Fiir dle ersten t Basisvektoren npil gibt es daher "Zerlegungszahlen" d !

der w-BlScke mit
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(144) - v,1 = £ 4!

Aus den Gleichungen (i)-{1ii) folgt durch Efnsetzen die Existent ganzer

Zahlen m, u.i.1 mit
m e ti'l(x) = T ui,j Oj(x)
L
fir slle x € Grp} umé 1€ 1<t . Eierbei kann m = det(ci"]¢i$’°.1$ '
gevEnlt werden. Es ist dabei nicht rur m - "1l € Char(G), sondern sogar

m-¢11 €M,

‘Dies ergibt sich sofort aus G-G" = (G—G;) u (G-G{;}) (jedes wesin-
i
gaulare Element igt entweder T -singulér oder p-singuldr), da einerseits
P
fir x €G-G_" wegen % ! €M gleichfalls ny, (x) = O.
31 1 L3 i

Nir =x EG—G{ } aus OJ(x) = 0 auch nti-"_(x) = 0 folgt; andererseits ist

Durch analoge Argumentation kfnnen wir ein m € W bestimmen, sc dad es zu

jedem *11 einen *-Block B gibt mit

mpil €M .

Wir zeigen als nichstes:
(iv) m < My M

Sei also ¢ € Mt bteliebig. Da M' in M‘r liegt, gibt es ganze Zahlen
1

z go dag fdr alle x € G,° i1t
17 p} &

m p(x) = L zi(m'ti"(x)) .

Diese Gleichung ist aber auch flir x €G - Gl;} erfiillt, da aus der »-Sin-

gularitdt von x einerseits ¢{x) = 0 folgt, andererseits aber auch

mey, Yx) =0 ist, da die mvil eine Linearkombination der poHauptunzerleg-
baren sind. Also:
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u-ﬁeoua

und (iv)_ ist gezeigt.

Sei jetzt flir ¢ € M‘

v = I v, mit & = I & X, 4
B v-Block © B oys T

also

mey = L mep £8@
Doa oy

Setzen wir die cbige Zerlegung *‘B = L L ein, so folgt mit Koeffizien-

tenvergleich scfort:

mwB EMB -
Danit verschwindet th auf allen r-singuliren Elementen, also auf G-G" .

Wegen - %, € ¢har(B) folgt schlieplich

¥y ¢ M ' ' L

{6.6) Satz: det C, ist nur durch Primzahlen aus = teilbar.

Es gilt sogar die stdrkere Aussage

21 (&) -
(6.7) satz: det C_ teilt g ' . wobei g der m-nteil von |6 ist.

Beveis: Wir definieren fir 1 € i < l'(G)

. _ g_*9 (x) xG_°

Ti(X) - { x i x

0 sonst

Mittels Einschrinkung auf elementare Untergruppen zeigen wir
. Y, € Char{G) .

Sei also E eine elementare Untergruppe. Dann existiert aine Zerlegung in
1- und v'-Anteile
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E= E xg, .,
x x
Fir den reguliren Charakter p von E, “und alle x € E .,y €E, folgt
durch Nachrechnen

v, (xy) = 1% olx) « 9,(y) .

‘Wegen 'f:—'T € N uad 8 €Char(E,,) —nﬂ.cl::l (6.3) - rolgt:
L}

Yglg € Char(E) ,
2130 vy, €Char{G) nach einem Satz von Brauer ([12], 16.2).

Sei nun T.j = f ui‘1 X und U = (uij)i,,j . 30 ist U eine l:(G)X1'{G)-

Matrix. Es ist

By = (*,1"‘1?' = 15T o ?J-(x) FREN

- &
= B 8, (x) (x)

G xa,* 3 5 ‘I

1 {c) ,

-5, o ot e T
= & iﬂ % 1§l x‘G" "r a'¥

' (-1)
= I oa \

& . ‘in a3

vobei wir (6.1) und (6.2a) vervendet haben. Also gilt
-l

U = S‘_D' c' )

und deshalb
Ve = &0
und
4 t
C'U' = S,D, .
B3 folgt
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und
c(wby) = g2
L &y .

B sind C_ und vty jeweils 1 (G)x1 (G)-Matrizen. Somit

21 _{(G)
Det C_ | Det(g ? 1d) = g, ¥

Damit ist (6.7) bewiesen.

Wir w&hlen nun einelBasis {111} von Hw so, dag jedes 1:1 zu ginem
s-Block gehdrt (vgi. (6.5)). Fir einen #-Block B definieren wir weiter

5, = (8 | x, €3}

TB' = {119 €3}
Dann ist ISB| = k(B) und |TB| =: l‘(B) = 1{B) . Entaprechend zerlegt
aich D' =8 DB v C' = CB N

L]
, t
Fir ein festes p € ® arbeiten wir 'im zugehSrigen Rinrg O der p-ganzen

Zahlen und betrachten f3r einem w-Block B die Elementardivisoren sl, seny
sl(B) von CE im 0. Dann existiesren nichtkonjuglerte 'fr-régulﬁre Hlemen-—
te xl, vray xl(B) mit

vp(si) = vp( ICG(xi)h . |
Dies kann simuitan fir slle m-Blcke gemacht werden und man erhdlt (ohne

Beveis)

(6.8} Satz: Sel ¥ = [pl,...,pr} eine Teilmenge der Primteiler von el

und 28 gsei 3 ein w=Bloek. Fir 1 < i € r sei 'di der maximale

Defekt eines pi.-Blockes, der in 3 enthalten ist. Dann teilen die

Elementardivizoren von CB die Zahl
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Enth&lt ferner B Jeweils --r1 solcher pi-B].Bcke mit meximalem De-

4

fekt, 30 sind hichstens v, Elementarteiler von t'.'B durch Py 1

teilbar.

(6.9) Folgerung: 1) det © € X
2) kein p; € ist ein Teiler von det 6

Der Beweis von (6.8) und (6.9) wird Uber Versllgemeinerungen der Methoden

von (3], §3-86, durchgefihrt und bedarf etner recht komplizierten Notation.

(6.10} satz {Olsson): Die Gruppe G habe eine zyklische TI-w-Hall-Unter-
] gruppe. Fir p € * ist jeder p-Block vom Defekt O auch ein w=Block

¢ vom Defekt ID.."
.Dieser Satz ist eine einfache Folgemg von:

(6:11) Satz: Sei P ¢Syl (G) zyklisch uad 11, |p| = p'; ferner sei
CG(P) =Px M und q *p eine Primzahl. Der direkte Faktor M habe
keinen q-Block vom Defekt (. Dann ist Jeder g-Block won G vom

Defekt O auch ein p-Block vom Dafeict O,

Bewels: Angenommen, der Charskter x hat g-Defekt O, aber nlcht p~Defekt
O. Dann liegt x in einem p-Block B mit Defektgruppe &(B) = P, weil die
Defektgruppe eines p-Blocks nach Creen ein p-Sylow-Durchschnitt iast. Wir
zeigen, daf der kanonische Charskter von B in C = CG(P) den g-Defelct O
hat, um einen Widerspruch zu erhalten.

Sel b eine Wurzel von B in C und p der kanonische Charakter. Wegen
P € ker p 1st p ein Charakter von M, soger o € Irv(M). Es gilt fir

die Trégheitsgruppen
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T (b) = T (o)
NG(P) EG(P)

Es bazeichne S ein Hebenklassenvertretersystem von 'J.‘,q (p
Al
G

und T ein solches von CG(P) in Tﬂ.(?)(p); ferner sei Q €Squ(H) .

&

)(9) in NG(P)

Fir y €Q und x €P-{1} wmit x| = p*1 &1t nach Dede ([12']; §68):

day) = = ¢ © AaT(x) o'y
2 v

falls yx ein "exceptional™ Charakter ist, ansonsten

x(xg) = £ £ o'(y).
veS

Im ersten Fall haven dann alle solchen Ausnahmecharaktere Y, , A €A, den
q-Defext 0, veil alle ¥, den gleichen Grad haben.

Alzo gilt fir alle y € Q—{l} wegen der Orthogonalitdt

(M) 0= £ xG) =t I 'z AT Py = 3T o),
AEA A€A zeP veS vEs
da DV | ren,zeT) = Irr(P)-[lp}-
Auch im zweiten Pall haben wvir x{xy) = 0, alsc
(%) 0 = T oy .
AN

Sunmation von (#) Gber alle y €Q-{1} ergibt

0 = |3| . [ £ Q(Y)) ’
. y#a

daher £ oly) = o0 ,
rh
und aus |qf ° (qu . 1Q)Q -p(1) = £ ply) tolgt, dag8 p(l) durch lql
: 741 . _

teilbar, also vom g-Defeict o ist, im Widerspruch zur Veoraussetzung.

v
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