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Abstract: If s and t are relatively prime positive integers we show that the s-core

of a t-core partition is again a t-core partition. A similar result is proved for bar

partitions under the additional assumption that s and t are both odd.

Suppose that s, t ∈ N are relatively prime positive integers. In the study of
block inclusions between s- and t-blocks of partitions [5] we introduced an (s, t)-
abacus to study relations between s- and t-cores of partitions. This is because
the cores determine the blocks.

Before we state the main result of this paper let us mention that the ba-
sic facts about partitions, hooks and blocks of partitions may be found in [3],
Chapter 2 or [6], Chapter 1. You may get to the s-core λ(s) of a partition λ
by removing a series of s-hooks (i.e. hooks of length s) until all s-hooks are
removed. The s-core is independent of the order in which the s-hooks are re-
moved. A partition has by definition s-weight w, if you need to remove exactly
w s-hooks to get to its s-core. It also equals the number of hooks in the partition
of length divisible by s ([3], 2.7.40). Thus a partition is an s-core if and only if
it has s-weight 0. Two partitions of n are said to be in the same s-block if they
have the same s-core. This definition is inspired by a theorem about irreducible
characters of the symmetric groups, which is still referred to as the Nakayama
conjecture. It states that if p is a prime number, then two irreducible characters
of the symmetric group Sn are contained in the same (modular) p-block, if and
only if the partitions labelling them have the same p-core. See [3], 6.2.21. The
hook structure of a partition is conveniently determined by its first column hook
lengths, or more generally any of its β-sets ([6], section 1).

Generally, a β-set is a finite subset X of N0 = {0, 1, 2, · · · }. For i ≥ 0 let
X+i, the i’th shift of X, be the β-set which is obtained from X in the following
way: It is the union of the set {0, 1, · · · , i − 1} and the set obtained from X
by adding i to all its elements. In particuar X+0 = X. The β-set {0, 2, 3, 6, 7}
equals {1, 2, 5, 6}+1. Let λ be a partition. Let β(λ) be the β-set consisting of all
first column hook lengths of λ. Thus if λ = (3, 3, 1, 1) then β(λ) = {1, 2, 5, 6}.
A β-set on the form β(λ)+i is called a β-set for λ. Any β-set is a β-set for a
unique partition.
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In this note we want to illustrate the usefulness of the (s, t)-abacus by show-
ing the following result:

Theorem 1: Let s, t be relatively prime positive integers. Suppose that ρ is a
t-core. Then the s-core of ρ is again a t-core.

It should be mentioned that examples show that when you remove s-hooks
from the partition ρ of the theorem you may have to go through arbitrarily long
series of intermediate partitions which cannot be chosen as t-cores. The overall
behaviour may in fact appear to be rather chaotic. Yet the final result turns
out to be again a t-core. The proof of Theorem 1 is surprisingly simple, once
you understand how to use the (s, t)-abacus. The Theorem plays an important
role in two forthcoming papers ([4] and some joint work with A. Berkovic.)

As we shall see below there is an analogous result for bar partitions and bar
cores (Theorem 4) under the additional assumption that s and t are both odd.
The proof in this case is somewhat more delicate.

A partition which is at the same time an s- and t-core is called an (s, t)-
core. There are only finitely many such partitions and the maximal one has
cardinality ms,t = (s2 − 1)(t2 − 1)/24 ([1], [5]). Therefore our result implies the
following:
Corollary 2: A t-core of n has s-weight at least w = b(n − ms,t)/sc. Thus it
contains at least w hooks of length divisible by s.

As an example, m3,5 = 8 so that the 3-core (8, 6, 4, 22, 12) of 24 must contain
at least 3 hooks of length divisible by 5. It actually contains 4 such hooks.

There are a few obvious questions you might ask after having seen the the-
orem, but unfortunately they seem to have negative answers:

If λ is a partition define

λ(s,t) = (λ(s))(t).

Thus λ(s,t) is the t-core of the s-core of λ. By our theorem λ(s,t) is actually
an (s, t)-core and you may call it the (s, t)-core of λ. But generally λ(s,t) 6= λ(t,s).
Indeed, if for example λ = (3), s = 2, t = 3 then λ(2,3) = (1) whereas λ(3,2) is
the empty partition.

Also you may define a (s, t)-block of n as the set of partitions with the same
(s, t)-core. Obviously it is a union of s-blocks of n. But it is not necessarily a
union of t-blocks. Indeed the partitions of 5 with empty (2, 3)-core (0) are (4, 1)
and (2, 13). They form a 2-block (of weight 1) but obviously not a 3-block.

Finally, it is known that the number of partitions of n with a given s-core
only depends on the s-weight, ([3], 2.7.17). But it is not true, that the number
of t-cores of n with a given s-core only depends on the s-weight. Indeed here
are some examples:

Weight 1: The number of 5-cores of 10 with 7-core (3) is 2 and the number
of 5-cores of 10 with 7-core (2,1) is 4.

Weight 3: The number of 5-cores of 10 with 3-core (1) is 8. The number of
5-cores of 11 with 3-core (2) is 3.
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Theorem 1 is proved below. As an application we get the following result.
Define the principal s-block of n to be the s-block containing the partition (n).

Corollary 3: Let s and t be relatively prime. Let κ be an s-core which is
not a t-core. Then any s-block with s-core κ does not contain any t-core. In
particular, when the residue of n mod s is at least t, then the principal s-block
of n contains no t-core.

Proof: If ρ is a t-core, then by Theorem 1 its s-core is also a t-core, hence it
cannot be contained in an s-block with s-core κ. For the second assertion, let r
be the s-residue of n and take κ = (r). �

There is an analogous result to Theorem 1 for bar partitions under the
additional assumption that s and t are odd. A bar partition is a partition
into distinct parts. For these partitions there is for odd integers a theory of bars
corresponding to the theory of hooks in arbitrary partitions. See e.g. [6], Section
4 for details. In particular each bar partition has for any given odd integer s
a unique s̄-core obtained by removing a series of s-bars from the partition. We
have

Theorem 4: Let s, t be relatively prime odd positive integers. Suppose that ρ
is a t̄-core. Then the s̄-core of ρ is again a t̄-core.

There is an analogue of Corollary 2 for bar partitions, but the statement is
less precise. Also the first statement of Corollary 3 has an analogue.

We assume now that s, t ∈ N are relatively prime positive integers.
The s-abacus was introduced by G. James. Its relation to the study of s-

cores and s-quotients of partitions is explained in detail in [3], Section 2.7. (Or
see Section 3 in [6].) The s-abacus has s infinite runners, numbered 0, ..., s − 1
going from north to south. The i’th runner contains the nonnegative integers
which are congruent to i modulo s in increasing order. Here is part of the
7-abacus:

Runner: 0 1 2 3 4 5 6

0 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31 32 33 34
....

Generally you may arrange the first column hook lengths of the maximal
(s, t)-core κs,t in a diagram, which is called the (s, t)-diagram [1],[5].

Start with the largest entry st − s − t in the lower left hand corner and
subtract multiples of s along the rows and multiples of t along the columns as
long as possible. Then the first column hooklengths of any (s, t)-core must be
among the numbers of this diagram. The reason is, that st− s− t is the largest
integer which cannot be written in the form as + bt where a, b are non-negative
integers. More details may for example be found in [1].

Here is the (5,7)-diagram.
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2
9 4
16 11 6 1
23 18 13 8 3

Note that the numbers in the columns (read from north to south) are part of
some runners on the t-abacus. In the example you have runners 1,2,3,4,6 of the
7-abacus represented. The order of the runners is changed and some runners
are missing. The missing runners may be represented by extending the diagram
to the south like this:

2
9 4
16 11 6 1
23 18 13 8 3
30 25 20 15 10 5 0

We have just added part of the 0’th 5-runner to the south written in italics.
In this diagram also the missing 7-runners numbered 0 and 5 are represented.

If you continue adding rows to the south you get the t-abacus with runners in
a different order, with numbers increasing from north to south. This is referred
to as the (s, t)-abacus.

The (s, t)-abacus and a numbering of its rows is illustrated by this example
(s = 5, t = 7):

Runner: 2 4 6 1 3 5 0
Row -4 2
Row -3 9 4
Row -2 16 11 6 1
Row -1 23 18 13 8 3
Row 0 30 25 20 15 10 5 0
Row 1 37 32 27 22 17 12 7
Row 2 44 39 34 29 24 19 14
Row 3 51 46 41 36 31 26 21
Row 4 58 53 48 43 38 33 28
Row 5 65 60 55 50 45 40 35
Row 6 72 67 62 57 52 47 42
Row 7 79 74 69 64 59 54 49
Row 8 86 81 76 71 66 61 56
....

The rows in the (s, t)-diagram are numbered -1,-2,..., starting from the bot-
tom. The rows below the (s, t)-diagram are numbered 0,1,2... starting from
the top as indicated in the example. Thus the i-th row contains a decreasing
sequence of numbers which are congruent modulo s. The difference between
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neighbouring numbers is s and the eastmost number in the row (on the runner
0) is t · i. Clearly any non-negative integer is represented uniquely by a position
on the (s, t)-abacus. The runners of the s-abacus are visible in the rows of the
(s, t)-abacus. Rows whose numbers differ by a multiple of s (like rows -2,3 and
8 in the example) contain numbers from the same runner of the s-abacus. Thus
the s-runners are broken into pieces.

This means that (as already mentioned) the (s, t)-abacus is useful for studies
involving the relations between s-cores and t-cores. Take a β-set for a given
partition and represent its numbers as beads on the (s, t)-abacus. This means
that you place a bead in the position numbered i on the abacus for all i in
the β-set. Adding/removing s-hooks from partitions are reflected by horizontal
moves of the beads where a “horizontal move” could include a shift of s rows,
corresponding to the breakup of the s-runners just described. Adding/removing
t-hooks are reflected by vertical moves of the beads on the (s, t)-abacus.

We are now in the position to prove Theorem 1. Of course a t-core need not
be an s-core. We show that the s-core of a t-core is an (s, t)-core.

Proof of Theorem 1: Suppose that ρ is a t-core. Let X = β(ρ) be the set of
first column hook lengths of ρ. If X does not already contain all the numbers
of the (s, t)-diagram, you extend it to a larger β-set Y = X+i for ρ in such a
way that it contains all the numbers in the (s, t)-diagram. You then represent
the numbers in Y as beads on the (s, t)-abacus. The result is a diagram where
there is no empty space to the north of a bead (since ρ is a t-core) and the
part consisting of the (s, t)-diagram is filled with beads. Each runner contains
a number of beads outside the (s, t)-diagram.

The removal of an s-hook from ρ is reflected by moving a bead to an empty
space next to it to the east or (if it is on the eastmost runner) to an empty space
at the westmost runner s rows above. You have reached a bead configuration
for the s-core of ρ when no more moves of this kind are possible.

Notice that the parts represented by any s consecutive beads on a runner
have different residue classes modulo s and thus they do not influence the s-
core of ρ.

We reach a bead configuration for the s- core of ρ in two steps.
Step 1: Remove for as long as possible series of s consecutive beads on

runners, starting from below, leaving all the beads in the (s, t)-diagram. The
new diagram has no beads in rows with numbers s or higher. You still have a
t-core with the same s-core as ρ.

Step 2: Move all beads as far to the east as possible in their respective
rows. Then the number of beads outside the (s, t)-diagram on the runners is
decreasing, when you move from the west to the east. Moreover the beads still
represent a t-core.

After Step 2 no more horizontal moves are possible, also not to an empty
space at the westmost runner s rows above. This is because Step 1 left you with
at most s − 1 beads on each runner south of the (s, t)-diagram. Thus Step 2
leaves you with a bead configuration for the s-core of ρ. Since each step results
in a t-core, the result follows. �
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Here is an example illustrating the steps of the proof (s = 5, t = 7): The
numbers in boldface in the first diagram are the ones in the β-set Y, as described
in the proof. The initial 7-core is

ρ = (42, 36, 30, 24, 18, 12, 11, 7, 6, 24, 1),

a partition of 195. The set X = β(ρ) of first column hook lengths of ρ is

X = {1, 3, 4, 5, 6, 11, 13, 18, 20, 27, 34, 41, 48, 55}

and Y = X+12.
You apply first Step 1 and then Step 2. Rows without beads are omitted.

The 5-core of ρ is κ = (5, 4, 2, 14), another 7-core (of 15), and the 5-weight of ρ
is 36.

Runner: 2 4 6 1 3 5 0
Row -4 2
Row -3 9 4
Row -2 16 11 6 1
Row -1 23 18 13 8 3
Row 0 30 25 20 15 10 5 0
Row 1 37 32 27 22 17 12 7
Row 2 44 39 34 29 24 19 14
Row 3 51 46 41 36 31 26 21
Row 4 58 53 48 43 38 33 28
Row 5 65 60 55 50 45 40 35
Row 6 72 67 62 57 52 47 42

Runner: 2 4 6 1 3 5 0
Row -4 2
Row -3 9 4
Row -2 16 11 6 1
Row -1 23 18 13 8 3
Row 0 30 25 20 15 10 5 0
Row 1 37 32 27 22 17 12 7

Runner: 2 4 6 1 3 5 0
Row -4 2
Row -3 9 4
Row -2 16 11 6 1
Row -1 23 18 13 8 3
Row 0 30 25 20 15 10 5 0
Row 1 37 32 27 22 17 12 7

This represents the β-set {1, 2, 3, 4, 6, 9, 11}+14 = β(κ)+14.

We now turn to the case of bar partitions and the proof of Theorem 4. Let
s, t be relatively prime odd positive integers. As in [2] the (s, t)-diagram is
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divided into 3 parts. Let u = s−1
2 , v = t−1

2 . There is a rectangular subdiagram
with u rows and v columns with the number st − s − t in its lower left hand
corner and the number (s+ t)/2 in its upper right hand corner. We refer to this
as the mixed part. Outside of this there are two disjoint subdiagrams. We refer
to the upper one as the Yin part and to the lower one as the Yang part. In the
example below the Yin part is with numbers in bold and the Yang part with
numbers in italics. That two runners are conjugate w.r.t. t means that the sum
of any number on one runner and any number on the second runner is divisible
by t. Similarly you define conjugate runners w.r.t. s.

The divided (5,7)-diagram:

2
9 4
16 11 6 1
23 18 13 8 3

In addition you divide the rows of (s, t)-abacus, which are relevant for the
proof, into 4 parts: Part A consists of the rows with numbers k < −u. Part B
is the rows −u to −1. Part C is the rows 1 to u. Part D is the rows u +1 to 2u.
It should be noted, that Part A is the Yin part of the (s, t)-diagram and that
Part B contains the Yang part of the (s, t)-diagram.

The rows numbered by the pairs of integers in the following lists are called
paired:

(u+1− j, u+ j), j = 1, ..., u are (C,D)-paired (placed symmetrically around
a line between rows u and u + 1)

(−j, j), j = 1, ..., u are (B,C)-paired (placed symmetrically around row 0)
(−u − j,−(u + 1) + j), j = 1, ..., u are (A,B)-paired (placed symmetrically

around a line between rows −u and −(u + 1).)

Proof of Theorem 4: You represent the parts of ρ as beads on the (s, t)-
abacus. Since ρ is a t̄-core all beads are in the top positions on their runners
and one of each pair of conjugate runners w.r.t. t is empty. Suppose that runner
i contains mi ≥ 0 beads. Notice that the parts represented by any s consecutive
beads on a runner have different residue classes modulo s and thus they do not
influence the s̄-core of ρ.

Step 1: Remove series of s consecutive beads on runners, starting from below.
You still have a t̄-core with the same s̄-core as ρ.

After this you assume without loss of generality that mi ≤ s− 1.
You decompose mi = mi(A)+mi(B)+mi(C)+mi(D)+ e according to the

number of beads in the parts A,B,C, D respectively, where e = 0, 1 accounts
for a possible bead in row 0.

Step 2a: Remove all beads in row 0. Then consider those i for which mi(D) >
0. Do the following: Remove mi(D) pairs of beads from the i’th runner, where
each pair of beads is on (C,D)-paired rows. Modify the mi’s accordingly. You
are then in the situation that mi(D) = 0 for all i and you still have a t̄-core
with the same s̄-core as ρ.
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Step 2b: Consider those i for which mi(C) > 0. Do the following: Remove
min{mi(C),mi(B)} pair of beads from the i’th runner where each pair of beads
is on (B,C)-paired rows. Modify the mi’s accordingly. You are then in the
situation that for each i either mi(B) = 0 or mi(C) = 0. You still have a bar
partition with the same s̄-core as ρ.

Step 2c: Consider those i for which mi(B) > 0. Do the following: Remove
min{mi(A),mi(B)} pair of beads from the i’th runner where each pair of beads
is on (A,B)-paired rows. Modify the mi’s accordingly. You are then in the
situation that for each i at most one of mi(A),mi(B),mi(C) is nonzero and
mi(D) = 0. You still have a bar partition with the same s̄-core as ρ.

Step 3: Any beads left on part C of a runner are moved to part A of the
(empty) conjugate runner. The row number in which a bead is placed is reduced
by s. Thus the beads are moved into the Yin part. Any beads left on part B
of a runner are moved to part B of the (empty) conjugate runner, if it is to the
right. Thus the beads are moved into the Yang part. Otherwise they are not
moved. The row number is unchanged. Any beads left on part A of a runner
are left where they are.

After Step 3 you have reached the bead configuration of a t̄-core with the
same s̄-core as ρ. The only beads left are in the Yin and Yang parts.

Step 4: If possible remove for as long as possible pairs of beads in (A,B)-
paired rows, one bead in Yin, the other in Yang, moving west to east in both
rows. Then move the remaining beads as far to the east as possible in their
rows. After Step 4 you have reached the bead configuration of the s̄-core of ρ.

This is also a t̄-core. All beads are on the top positions on their runners,
due to the fact that all beads are moved as far east as possible. Moreover t-
conjugate runners cannot possibly both contain beads. Indeed, such a bead
configuration could only occur, when at least one of the beads has been moved.
But the t-conjugate runners are placed symmetrically around a vertical line in
the middle of the (s, t)-diagram. Since you start Step 4 in a situation where at
least one of each pair of t-conjugate runners is empty, this is not possible. �

Here is an example illustrating the steps of the proof.
(C,D)-paired rows: (2,3) and (1,4)
(B,C)-paired rows: (-1,1) and (-2,2)
(A,B)-paired rows: (-3,-2) and (-4,-1)

Runner: 2 4 6 1 3 5 0
Part A: Row -4 2

Row -3 9 4
Part B Row -2 16 11 6 1

Row -1 23 18 13 8 3
Row 0 30 25 20 15 10 5 0

Part C Row 1 37 32 27 22 17 12 7
Row 2 44 39 34 29 24 19 14

Part D Row 3 51 46 41 36 31 26 21
Row 4 58 53 48 43 38 33 28

....
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In step 2a you remove 5 and 15 (both in row 0) and the pair 19, 26 on
runner 5, rows 2 and 3. In step 2b you remove the pair the pair 8, 22 on runner
1, rows -1 and 1. In step 2c you remove the pair 4, 11 on runner 4, rows -3,-2.
You are left with:

Runner: 2 4 6 1 3 5 0
Part A: Row -4 2

Row -3 9 4
Part B Row -2 16 11 6 1

Row -1 23 18 13 8 3
Row 0 30 25 20 15 10 5 0

Part C Row 1 37 32 27 22 17 12 7
Row 2 44 39 34 29 24 19 14

....

In step 3 12 in the position row 1, runner 5 (Part C) is moved to 2 in the
position row -4 (Part A). Also 18 in row -1 runner 3 is moved to 3 in the same
row on the conjugate runner.

Runner: 2 4 6 1 3 5 0
Part A: Row -4 2

Row -3 9 4
Part B Row -2 16 11 6 1

Row -1 23 18 13 8 3
Row 0 30 25 20 15 10 5 0

Part C Row 1 37 32 27 22 17 12 7
....

In the final step 4 the pair 2, 3 is removed, leaving just the partition (1), a
7̄-core.
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