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ABSTRACT

Motivation: Modeling and analysis of complex systems are important

aspects of understanding systemic behavior. In the lack of detailed

knowledge about a system, we often choose modeling equations out

of convenience and search the (high-dimensional) parameter space

randomly to learn about model properties. Qualitative modeling side-

steps the issue of choosing specific modeling equations and frees the

inference from specific properties of the equations. We consider

classes of ordinary differential equation (ODE) models arising from

interactions of species/entities, such as (bio)chemical reaction net-

works or ecosystems. A class is defined by imposing mild assump-

tions on the interaction rates. In this framework, we investigate

whether there can be multiple positive steady states in some ODE

models in a given class.

Results: We have developed and implemented a method to decide

whether any ODE model in a given class cannot have multiple steady

states. The method runs efficiently on models of moderate size. We

tested the method on a large set of models for gene silencing by sRNA

interference and on two publicly available databases of biological

models, KEGG and Biomodels. We recommend that this method is

used as (i) a pre-screening step for selecting an appropriate model and

(ii) for investigating the robustness of non-existence of multiple steady

state for a given ODE model with respect to variation in interaction

rates.

Availability and Implementation: Scripts and examples in Maple are

available in the Supplementary Information.

Contact: wiuf@math.ku.dk

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Systems of interacting species are ubiquitous in many areas of

science, from biology and ecology to epidemiology and sociology

(Anderson and May, 1991; May, 1974; Murray, 2002). The dy-

namics of a system are typically specified by a system of ordinary

differential equations (ODEs), potentially depending on many

(unknown) parameters. The variables of the system are the con-

centrations (or abundances) of species, such as chemical or mo-

lecular species in systems biology, animal species in ecology or

infected and susceptible individuals in epidemiology.

Specifying the modeling equations is rarely trivial. For ex-

ample, in systems biology, the species concentrations change ac-

cording to the molecular reactions that take place, but the precise

reaction mechanisms and rates are typically unknown. For ex-

ample, choosing between mass-action, power-law or Hill-type

kinetics might be a matter of tradition or convenience rather

than biological knowledge. Mass-action kinetics has a simpler

functional form than the other two kinetics and only one par-

ameter. These, on the other hand, are more adaptable to systems

in biologically constrained environments, such as cellular sys-

tems. The choice of kinetics might thus affect the biological val-

idity of a conclusion derived from the ODEs. This remains true

even if we are comfortable with a particular system of ODEs: the

parameter space is generally high-dimensional and it is standard

to explore it numerically or by choosing parameters randomly.

However, this is difficult to do efficiently when the number of

parameters is large. Consequently, we can only investigate a

small part of the parameter space.
These concerns have lead to an increased interest in qualitative

properties (Atay and Jost, 2011; Silk et al., 2011). In the context

of this article, qualitative properties refer to properties of dynam-

ical systems with a common underlying structure. We focus on a

particular qualitative property, namely the capacity for multiple

steady states, or multistationarity. The common structure is

defined by an interaction network (defined in Section 2.1).

Multistationarity underlies the emergence of hysteresis and

switch-like behavior, that is, the transformation of a gradual

input into a steep change in the response. It plays an important

role in understanding systemic behavior (Markevich et al., 2004;

May, 1974; Murray, 2002).

We have developed and implemented a computationally

simple and efficient criterion to determine if a class of dynamical

systems, compatible with the same underlying interaction net-

work, cannot have multiple steady states. The reaction (inter-

action) rates are constrained by how they vary with the species

concentrations. The criterion can be refined to preclude multi-

stationarity for particular classes of kinetics such as mass-action

kinetics and, more generally, power-law kinetics. Both of these are

used widely outside systems biology and biochemistry, but with-

out the biochemical labeling, e.g. Wiuf and Feliu (2013). The

method is well suited to screen large sets of networks for

the possible emergence of switch behavior. The applicability of

our approach is demonstrated by studying a series of

small motifs in gene silencing by RNA interference and by

analysis of 408 models from the KEGG (Kanehisa and Goto,

2000) and Biomodels databases (Li et al., 2010). In the*To whom correspondence should be addressed.
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discussion we relate our method to other methods to preclude

multistationarity.

2 METHODS

2.1 Interaction networks

We define a qualitative model as an interaction network together with a

class of associated ODE systems. Interaction networks are qualitative

representations of how species interact and influence reaction rates. An

interaction network is a bipartite signed graph consisting of a set of

species nodes fS1, . . . ,Sng and a set of reaction nodes fr1, . . . , rmg.

Reactions are biochemical reactions between species nodes:

ru :
Xn
i¼1

�i, uSi !
Xn
i¼1

�i, uSi, ð1Þ

where �i, u,�i, u are positive integers or zero. Edges are undirected and

between species and reactions. A positive (resp. negative) edge indicates

that the species has positive (resp. negative) influence on the rate of the

reaction, that is, the rate increases (resp. decreases) with the concentration

of the species. The absence of an edge implies that the reaction takes place

independently of the presence of the species.

As an example, consider the simple reversible Michaelis–Menten mech-

anism for activation of a substrate S:

Sþ E ! X ! S� þ E, ð2Þ

where E is an enzyme, S� the activated substrate and X an intermediate

complex. In mass-action kinetics, the reactant species, and only those,

influence positively the rate of a reaction. With this assumption, the

interaction network corresponding to the Michaelis–Menten mechanism

is given in Figure 1.

2.2 Compatible dynamical systems

Let ci be the concentration of species Si and c ¼ ðc1, . . . , cnÞ. To each

reaction ru, we associate a rate function KuðcÞ defined on a set �u that

includes R
n
þ (all points with ci40). A rate function Ku is compatible with

the influences if it fulfills a monotonicity requirement:

� Ku is increasing in ci if there is a positive edge ðSi, ruÞ.

� Ku is decreasing in ci if there is a negative edge ðSi, ruÞ.

� Ku is constant in ci if there is no edge between Si and ru.

If there is a positive edge between Si and ru, we additionally require

that KuðcÞ ¼ 0 whenever ci ¼ 0, that is, the reaction only takes place in

the presence of the species with positive influence.

Let Ku, u ¼ 1, . . . ,m, be rate functions compatible with the influences.

A dynamical system compatible with the interaction network is given by

_ci ¼
Xm
u¼1

ð�i, u � �i, uÞKuðc1, . . . , cnÞ, ð3Þ

for i ¼ 1, . . . , n. The rate of change in ci is a weighted sum of the rate

functions involving species Si. The weight �i, u � �i, u, potentially zero, of

reaction ru is the net production of Si in that reaction.

For example, consider the Michalis–Menten mechanism in Figure 1

with the species ordered as S,S�,E,X, and the reactions ordered as

Sþ E! X, X! Sþ E, X! S� þ E, S� þ E! X. The concentration

of a species Y is denoted by the same letter in lowercase, y. Then any

model, qualitatively identical to a mass-action model, has the form

_s ¼ K2ðcÞ � K1ðcÞ, _e ¼ K2ðcÞ þ K3ðcÞ � K1ðcÞ � K4ðcÞ,

_s� ¼ K3ðcÞ � K4ðcÞ, _x ¼ K1ðcÞ þ K4ðcÞ � K2ðcÞ � K3ðcÞ,

where c ¼ ðs, s�, e,xÞ and K2,K3 are increasing in x, K1 is increasing in s

and e and K4 is increasing in s� and e.

2.3 Conservation laws

Linear combinations of species concentrations may be preserved over

time. For example in (2), the sums Etot ¼ eþ x and Stot ¼ sþ s� þ x

are constant. If these are determined by the reactions (1) alone, that is,

they are independent of the choice of influences and rate functions, then

they are said to be conservation laws.

For each reaction ru, consider the vector vu in R
n with i-th component

�i, u � �i, u. Then the stoichiometric matrix, A, is the n�m matrix with

columns vu, u ¼ 1, . . . ,m. The rank l of A is the dimension of the stoi-

chiometric space. Any vector w that lies in the left kernel of A, that is,

fulfills wA¼ 0 is a conservation law and w � ðc1, . . . , cnÞ ¼
Pn

i¼1 wici is

independent of time. Therefore, a set of linearly independent conservation

laws is obtained by choosing a basis fw1, . . . ,wdg of the left kernel of A.

Because A has rank l, there are d ¼ n� l linearly independent conserva-

tion laws. Given total amounts A1
tot, . . . ,Ad

tot in R, the associated stoichio-

metric class is defined by

fc 2 R
n
j !j � c ¼ Aj

tot, for all j ¼ 1, . . . , dg: ð4Þ

The dynamics takes place in a fixed stoichiometric class determined by

the initial concentrations of the system.

In example (2), the stoichiometric matrix is

A ¼

�1 1 0 0
0 0 1 �1
�1 1 1 �1
1 �1 �1 1

0
BB@

1
CCA:

A basis of the left kernel of A is given by the vectors !1 ¼ ð1, 1, 0, 1Þ and

!2 ¼ ð0, 0, 1, 1Þ, which give the equations !1 � c ¼ sþ s� þ x and

!2 � c ¼ eþ x.

2.4 Injectivity and multistationarity

An interaction network is said to have the capacity for multiple positive

steady states if there is a compatible dynamical system (3) that has more

than one positive steady state in some stoichiometric class. In other

words, it has the capacity for multiple positive steady states if there

exist rate functions Ku, compatible with the influences, and total amounts

A1
tot, . . . ,Ad

tot, such that the system

Xm
u¼1

ð�i, u � �i, uÞKuðc1, . . . , cnÞ ¼ 0, i ¼ 1, . . . , n, ð5Þ

!j � c ¼ Aj
tot, j ¼ 1, . . . , d, ð6Þ

Fig. 1. The Michaelis–Menten mechanism in the form of an interaction

network. The model consists of a network of reactions together with a

qualitative specification of influences. Reactions are shown as squared

nodes and species as round nodes. þ indicates a positive edge
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has more than one positive solution (the choice of basis f!1, . . . ,!dg does

not affect the outcome). If the rank of A is maximal (d¼ 0), then there are

no conservation laws and (6) is disregarded. For i ¼ 1, . . . , n, let

giðc1, . . . , cnÞ ¼
Xm
u¼1

ð�i, u � �i, uÞKuðc1, . . . , cnÞ: ð7Þ

If the function g ¼ ðg1, . . . , gnÞ is injective (one-to-one) over R
n
þ re-

stricted to a given stoichiometric class (4) then the system cannot have

multiple positive solutions within that class. An interaction network is

said to be injective if this is the case for all stoichiometric classes and all

rate functions compatible with the influences (that is, all compatible dy-

namical systems). In other words, an interaction network is injective if the

function defined by the left-hand sides of (5) and (6) is injective for all

choices of compatible rate functions Ku. The function maps c into R
nþd.

Clearly, an injective interaction network does not have the capacity for

multiple positive steady states in any stoichiometric class. We provide

here a simple characterization of injective interaction networks. Failure

of the criterion is thus a necessary condition for the existence of multiple

positive steady states in a dynamical system compatible with the given

interaction network (Wiuf and Feliu, 2013).

3 RESULTS

A matrix Y with symbolic entries y�, � is called sign–non-singular

if the determinant of Y is a non-zero homogeneous polynomial in

y�, � with all coefficients being positive or all being negative. For

the matrices considered here, Y is sign–non-singular if its deter-

minant has constant non-zero sign for positive values of y�, �.

3.1 Characterization of injective interaction networks

The influence matrix, Z, is an m� n symbolic matrix where the

non-zero entries are variables. The ðu, iÞ-th entry is defined as

� zu, i if there is a positive edge ðSi, ruÞ.

� �zu, i if there is a negative edge ðSi, ruÞ.

� 0 if there is no edge between Si and ru.

Define the n� n matrix M as the product of A and Z,

M ¼ AZ: Let f!1, . . . ,!dg be a basis of the left kernel of A

and let i1, . . . , id be indices corresponding to d rows of A that

are linearly dependent of the remaining l rows (these will be

linearly independent). An easy way to determine the indices is

to compute a basis of the left kernel of A and perform Gaussian

elimination to obtain a new basis f!1, . . . ,!dg. Then ij can be

taken to be the index of the first non-zero entry of !j (Feliu and

Wiuf, 2012). We define a new n� n matrix, M�, by replacing the

ij-th row of M by !j.
The matrix M� has d rows with real entries and l rows whose

non-zero entries are linear polynomials in z�, �. Hence, the deter-

minant ofM� is either zero or a homogeneous polynomial in z�, �
of degree l. Further, no variable has an exponent greater than 1.

THEOREM 1. (Wiuf and Feliu, 2013) An interaction network is

injective if and only if M� is sign–non-singular.

The criterion is easy to check, e.g. the influence matrix of (2) is

Z ¼

z1, 1 0 z3, 1 0
0 0 0 z4, 2
0 0 0 z4, 3
0 z2, 4 z3, 4 0

0
BB@

1
CCA:

The matrix M� is AZ with the first row changed to ð1, 1, 0, 1Þ
and the third row to ð0, 0, 1, 1Þ (according to the first non-zero

entry):

M� ¼

1 1 0 1
0 �z2, 4 �z3, 4 z4, 3
0 0 1 1
z1, 1 z2, 4 z3, 1 þ z3, 4 �ðz4, 2 þ z4, 3Þ

0
BB@

1
CCA:

The determinant of M� is

z1, 1z2, 4 þ z2, 4z3, 1 þ z1, 1z3, 4 þ z2, 4z4, 2 þ z1, 1z4, 3,

which is a non-zero polynomial with all non-zero coefficients

being positive. The interaction network is therefore injective

and there can at most be one positive steady state in any stoi-

chiometric class.

When the determinant of M� is identically zero, M� is not
sign–non-singular and hence the network is not injective. In

this case, all steady states are degenerate, that is, the Jacobian

of the system is singular at the steady state (Feliu and Wiuf,

2012).
Existence of two terms of opposite signs in the determinant of

M� implies that there are two cycles of opposite signs in the so-

called species–reaction graph (SR-graph) (Banaji and Craciun,

2009; Craciun and Feinberg, 2006; Wiuf and Feliu, 2013). These

correspond to two feedback loops, one negative and one positive,

in the SR-graph. Our method is thus a refinement of Thomas’

rule (Kaufman et al., 2007; Soulé, 2003; Thomas, 1981), applied

in the particular setting. In fact, a pair of positive cycles inter-

secting in a particular way is required for a network to be

non-injective (Banaji and Craciun, 2009; Craciun and Feinberg,
2006).

3.2 Power-law kinetics

Power-law kinetics is a general class of kinetics that includes
mass-action kinetics. Typically, they appear as approximations

to actual kinetics, for example, in chemical mass-action systems

where some reactions are fast, or in systems with spatially con-

strained reactions (non-homogeneous media) (Bajzer et al., 2008;

Kopelman, 1998; Schnell and Turner, 2004). They have been

advocated as reasonable approximations to the kinetics in gen-

eral (Savageau, 1998). The reaction rates take the functional

form

KuðcÞ ¼ kuc
vu, 1
1 � . . . � cvu, nn ,

where ku40 is a constant and vu 2 R
n. Note that the exponents

vu are allowed to be non-integer and also negative. Mass-action

kinetics is a power-law kinetics with positive integer exponents

specified by the stoichiometric coefficients of the reactant com-

plexes. Theorem 1 can be refined to determine if the function g is

injective over any stoichiometric class for any choice of ku and
fixed v�, �. The kinetic ordermatrix V is the m� nmatrix with the

vector vu in the u-th row. Let diagða1, . . . , arÞ denote the diagonal

matrix with diagonal entries a1, . . . , ar. Consider symbolic vec-

tors k ¼ ðk1, . . . , knÞ and z ¼ ðz1, . . . , zmÞ and let

M ¼ AdiagðzÞVdiagðkÞ. Let f!1, . . . ,!dg be a basis of the left

kernel of A and i1, . . . , id row indices as above. We define an

n� n matrix, M�, by replacing the ij-th row of M by !j. The

matrix M� is a symbolic matrix in z� and k�.
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THEOREM 2. (Wiuf and Feliu, 2013) The interaction network

with power-law kinetics and fixed kinetic orders is injective if

and only if M� is sign–non-singular.

Consider example (2) again and assume mass-action kinetics.

Then k ¼ ðk1, . . . , k4Þ, z ¼ ðz1, . . . , z4Þ,

V ¼

1 0 1 0
0 0 0 1
0 0 0 1
0 1 1 0

0
BB@

1
CCA,

and

M� ¼

1 1 0 1
0 �k2z4 �k3z4 k4z3
0 0 1 1

k1z1 k2z4 k3ðz1 þ z4Þ �k4ðz2 þ z3Þ

0
BB@

1
CCA:

The matrixM� in the mass-action setting and in the qualitative

setting is similar. The essential difference is that the entries z�, � in

the qualitative setting decompose into a product of two vectors

z, k in the mass-action setting. The determinant of M� is

k1k2z1z4 þ k2k3z1z4 þ k1k3z1z4 þ k2k4z2z4 þ k1k4z1z3 and the

network is injective, in agreement with the conclusion of the

qualitative analysis.

4 IMPLEMENTATION

The conditions of the theorems can be checked with software for

symbolic manipulation, such as Mathematica or Maple. This

software has efficient built-in functions to compute the rank,

kernel and determinant of a matrix, as well as functions to

manipulate polynomials and perform Gaussian elimination.
The algorithm proceeds through the following steps:

(i) Compute the matrix M¼AZ or M ¼ AdiagðzÞVdiagðkÞ.
(ii) Find a basis f!1, . . . ,!dg of the left kernel of A and reduce

it by Gaussian elimination.
(iii) Construct M�: For each j determine the first non-zero

entry ij of the !
j and replace the ij-th row of M by !j.

(iv) Compute the determinant ofM� as a function of z�, � or z�:

(a) If it is identically zero, then the network is not injective.

(b) If there are non-zero terms in the determinant, extract

the signs of the coefficients. If all signs are the same, the

interaction network is injective. If they are not, then

the interaction network is not injective.

The generic script in Maple is provided and exemplified with

model (8) (see Section 5) in the Supplementary Data S1 (or

Supplementary Data S2 for the pdf version of the code). The

computational cost of the algorithm depends on the computation

of the determinant of a symbolic matrix of size n and its expan-

sion as a polynomial in z�, � or z�. The first step is fast for sparse

matrices, which is often the case, as each species usually is

involved in few reactions. The cost of the second step increases

with the number of terms in the entries of M�

Laplace expansion of the determinant can be used to reduce

the cost of computation. Let I ¼ fi1, . . . , ikg � f1, . . . , ng be a set

of row indices and jIj ¼
Pk

j¼1 ij. For any n� nmatrix B, we have

detðBÞ ¼ ð�1ÞjIj
X

J�f1, ..., ng

ð�1ÞjJj detðBI, JÞ detðBIc, Jc Þ

where Ic ¼ f1, . . . , ngnI (similarly for Jc) and BI, J is the matrix B

restricted to the rows in I and columns in J (similarly for BIc, Jc ).
Hence, detðBÞ can be computed from n!=ðk!ðn� kÞ!Þ pairs of de-

terminants of size, k and n� k, respectively. Additionally, if a
sign contradiction is reached after inspecting set J then the com-

putation can be interrupted as the network cannot be injective in
this case.
It is worth emphasizing that for a specific system there might

be row/column operations that can be done on M� to simplify
the computation of detðM�Þ.

5 TEST

We tested the algorithm on a multisite phosphorylation system
with r sites and influences derived from mass-action kinetics

(Wang and Sontag, 2008). The system has m ¼ 6r reactions
and n ¼ 3ðrþ 1Þ species (Supplementary Data S1). For

15r58 (resp. r¼ 1), the algorithm easily concludes that the
system is not injective (resp. injective). However, the algorithm
collapses on a common computer for r¼ 8 due to memory allo-

cation problems (Table 1). This indicates that the algorithm is
not suited for large networks but can be applied efficiently for

moderately sized networks.
The matrix M� has n� 3 rows with symbolic entries and three

rows with integer entries, corresponding to the conservation
laws. We expand detðM�Þ along the three rows with integer

entries. Then, b :¼ detðBI, JÞ is a 3� 3 numerical determinant
and the symbolic determinant detðBIc, Jc Þ is only computed if
b 6¼ 0.

Table 1 shows the running time using direct computation of
the determinant and using expansion along the rows of the con-

servation laws. We first expand the determinant before conclud-
ing on injectivity. The second method can be stopped as soon as

two terms are found with contradicting signs, in which case we
conclude that the system is non-injective.
By expanding along the rows of the conservation laws, we can

decide on injectivity for up to r¼ 17, in which case M� is a
54� 54 matrix. Expansion of the determinant generates a

memory allocation error for r¼ 18. We could proceed to
expand along more rows (or columns) but these would be sym-

bolic now. The running time would increase as the number of
determinants to compute increases.

6 APPLICATIONS

The method is suited for screening large sets of interaction net-

works to detect those that have the potential for multistationar-
ity. This is illustrated in two different examples. In the first, we

generate all possible small motifs of sRNA-mediated gene regu-
lation. In the second, we consider two databases of models of

biological systems.

6.1 RNA interference motifs

sRNAs have been demonstrated to regulate gene expression in
RNA interference (Bartel, 2004; Cullen, 2005), but the mechan-

ism is not fully understood and only few mathematical models
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have been proposed (Cuccato et al., 2011; Liu et al., 2011;

Mitarai et al., 2007; Zhdanov, 2008, 2009, 2011).
In Mitarai et al. (2007), the sRNA R negatively regulates the

mRNAM by binding to it, and the degradation of the complex is

triggered. In addition, there is a protein complex F that represses

the transcription ofR and, consequently, F acts as an activator of

M through a double negative loop. The model incorporates con-

sumption of F, enhanced by the presence of M. The species con-

centrations change according to the following system of ODEs:

_f ¼ �F � �Ff�
�Mmf

fþ K
, _r ¼

�R
1þ f

� �Rr� �rm,

_m ¼ �M � �Mm� �rm,

ð8Þ

with ��, ��, ��,K40. Note that F influences negatively the

production of R, that is, the reaction 0! R. The interaction

network of this model is shown in Figure 2b.
We focus on the negative regulatory mechanism induced by

repression of either mRNA or its product (Liu et al., 2011) and

build qualitative models. In post-transcriptional repression,

sRNA binds to mRNA and the complex is degraded. In trans-

lational repression, sRNA binds to the protein F and blocks its

function. We generate all interaction networks consisting of three

species: sRNA (R), mRNA (M) and a molecule F, which is either

the protein blocked by sRNA or a molecule involved in regula-

tion of sRNA or mRNA.
The generated interaction networks share a fixed backbone,

depending on whether post-transcriptional or translational

repression is considered (Fig. 2a). Each species has positive

influence on its own degradation, that is, the reaction

(degradation) rate increases with increasing concentration. This

is also the case for the joint degradation of M and R, and of R

and F. For the two modes of repression, we allow F to influence

(positively, negatively or neutrally) the formation of M and R,

and M and R to influence positively the degradation of F. The

possibility that M enhances the production of F is optional in

post-transcriptional repression and assumed in translational re-

pression. In the latter, F is the protein translated from M. This

leads to two scenarios A and B (Fig. 2c).

In total, there are 243 interaction networks, 162 for scenario A

and 81 for scenario B (Fig. 2c). We find that 56 (reps. 15) of the

interaction networks in scenario A (reps. B).

Non-injectivity is preserved when adding edges to a non-in-

jective interaction network. In Figure 2c, we show the minimal

non-injective interaction networks for each scenario. An inter-

action network that does not contain any of these motifs is in-

jective and cannot have multiple positive steady states, whatever

the choice of rate functions. The models in Mitarai et al. (2007)

and Zhdanov (2009, Section 4) are both injective. In the latter,

multistationarity does not exist for the specific choice of rate

functions (Zhdanov, 2009, Section 4). Here we conclude that

the reason for this is independent of the choice and is, in fact,

a property of the interaction network. The main model in

Zhdanov (2009) is motif a.1 and the two models in Liu et al.

(2011) contain motifs a.2 and b.3. These findings are consistent

with the results in Zhdanov (2009) and Liu et al. (2011), where it

is shown that the systems exhibit multistationarity for specific

rate functions. The motifs in Liu et al. (2011) are not minimal

with this property.

6.2 Screening models in Biomodels and KEGG

In this section, we apply the method to screen selected models in

two publicly available databases: KEGG [Kanehisa and Goto

(2000), http://www.kegg.jp/] and Biomodels [Li et al. (2010),

http://www.ebi.ac.uk/biomodels-main/]. Specifically, we use the

models in the database PoCaB (Samal et al., 2012), which con-

sists of 365 models from Biomodels and 103 models from KEGG

with organism code hsa (Homo sapiens). The database PoCaB

contains pre-computed stoichiometric matrices, mass-action

exponent matrices and kinetic data from the selected models.
We analyzed the models from Biomodels in two different

ways. Firstly, we imposed mass-action kinetics on all models

and checked whether they are injective or not. Secondly, using

Maple functionality, we automatically extracted the influence

matrices of the reported kinetics. This step is not possible for

all models because some kinetics are not monotone. There are

323 models (out of 365) for which the influence matrix could be

computed.

The models from KEGG have no associated kinetic data. We

analyzed the models first assuming mass-action kinetics and

afterward assuming that the influences are derived from mass-

action kinetics.
Both databases contain models of varying size (Fig. 3). The

injectivity test is easily computed for the smallest systems using

the direct approach. A rough cut-off for being small is that the

number of reactions is below 33. The computation of detðM�Þ for

the larger models requires expansion of the determinant. We

noticed that the matrix M� often contains rows/columns with

Table 1. Running time for the r-site phosphorylation system

r n m Method 1 Method 2 Method 3 Minors

1 6 6 0.001 0.004 0.004 20

2 9 12 0.005 0.065 0.075 84

3 12 18 0.020 0.391 0.044 220

4 15 24 0.199 1.275 0.081 455

5 18 30 3.161 4.293 0.191 816

6 21 36 29.24 17.18 0.256 1330

7 24 42 625.9 99.39 0.444 2024

8 27 48 X 613.3 0.795 2925

9 30 54 X 3811 1.169 4060

10 33 60 X X 2.195 5456

11 36 66 X X 3.998 7140

12 39 72 X X 7.696 9139

13 42 78 X X 15.18 11480

14 45 84 X X 32.18 14190

15 48 90 X X 67.74 17296

16 51 96 X X 171.7 20825

17 54 102 X X 1199 24804

m ¼number of reactions; n ¼ number of species; ‘Method 1’, direct computation of

the determinant; ‘Method 2’, computing the signs of the coefficients of the deter-

minant by Laplace expansion along conservation laws; ‘Method 3’, same as Method

2 but stopped if a sign contradiction is reached. The last column shows the number

of minors along the conservation laws computed for Method 2. Maple 16 was

used on a Macbook Pro, Lion Mac OS X. Processor: 2.2GHz, Intel core i7.

Memory: 4 GB.
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only one non-zero entry. If the non-zero entry is a polynomial

with coefficients with distinct signs, then the network is not in-

jective. If this is not the case, then the row and column corres-

ponding to this non-zero entry can be removed fromM�, thereby

simplifying M� by one dimension. We repeat this procedure it-

eratively until no row/column can be removed. This process re-

duces the size of M�, but it also makes the matrix less sparse.

Hence the computation of the determinant can still be computa-

tionally expensive.
Table 2 and Figure 3 provide a summary of the results.

Detailed information is given in Supplementary Data S3. Non-

injective networks for which detðM�Þ ¼ 0 identically are reported

separately. For the Biomodels database, in all but 14 cases,

detðM�Þ is identically zero because there are species in the

model that do not influence any reaction (contributing a zero

column in M) and this is not compensated by the conservation

laws. A detailed analysis of each specific model might reveal that

the model should be appropriately modified.
The results in Table 2 show that the method could decide on

injectivity on a large fraction of the networks. A network can be

injective when taken with mass-action kinetics but non-injective

when taken with general rate functions compatible with mass-

action kinetics. This is the case for the KEGG data, but not the

Biomodels data, where the general influences not necessarily are

compatible with mass-action kinetics. Hence the injectivity tests

for mass-action kinetics and general influences are not necessar-

ily related.

7 DISCUSSION

We have developed and implemented a computationally efficient

and simple method to qualitatively assert whether a network

Fig. 2. sRNA-mediated repression. (a) Common backbone for the interaction networks with sRNA-mediated repression. The post-transcriptional

repression backbone does not include the orange box, and the translational repression backbone does not include the blue box. (b) Example of

sRNA-mediated repression for the model in (8). (c) Minimal non-injective motifs for the interplay sRNA–mRNA–protein/molecule. The common

backbone is not redrawn here. The solid lines indicate influence on the production rate and the snake lines indicate influence on the degradation rate. The

two different arrow tips indicate whether the influence is positive or negative. Symmetric networks are not removed, for example, a.3 and a.7 are

symmetric by interchanging M and R

Fig. 3. The number of reactions is plotted against the number of species

for the analyzed models in KEGG and analyzed models in Biomodels

(log–log scale). ‘ma’ refers to mass-action kinetics and ‘q’ to the qualita-

tive influence (see main text for details). One hundred three models were

used from KEGG in both analyses. Three hundred sixty-five (323)

models were used from Biomodels for the ‘ma’ analysis (‘q’ analysis).

Blue: Injective, Orange: Non-injective with identically zero determinant,

Green: Non-injective with non-identically zero determinant, Gray:

Analysis failed. The data used in the figure is provided in the

Supplementary Data S3
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cannot exhibit multistationarity. The approach embraces a broad

class of dynamical systems by allowing for conservation laws and

arbitrary influences. Our method decides whether an interaction

network is injective or not. If it is injective, it can at most have

one positive steady state within each stoichiometric class.

Qualitative inference relies solely on the structure of the inter-

action network. This approach to inference has the particular

strength of freeing the analysis from any specific ODE system

and to highlight the generality of a conclusion (or property). In

our context, it is surprising that the exclusion of multistationarity

can be so strongly encoded in the network structure (reactions

and influences) alone and be independent of the specific form of

the rate functions, even if these involve complicated and non-

linear terms.

An overview of different methods to preclude and/or assert

multistationarity is provided in Table 3. Our algorithm is in the

class of injectivity-based criteria to preclude multistationarity. In

the context of chemical reaction network theory, these criteria

generally fall in two groups, Jacobian-based methods (Banaji

et al., 2007; Craciun and Feinberg, 2005, 2010; Feliu and Wiuf,

2012; Gnacadja, 2012; Joshi and Shiu, 2012) and graphical meth-

ods (Banaji and Craciun, 2010, 2009; Craciun and Feinberg,

2006; Soulé, 2003). These apply to different specializations of

networks and rate functions, such as mass-action kinetics or spe-

cific influences, and can be seen as specializations of our method

(Wiuf and Feliu, 2013). The graphical conditions are derived

from conditions on the Jacobian and would therefore preclude

multistationarity in fewer cases than a corresponding Jacobian-

based method.
A different criterion (a sign condition) to characterize injective

networks is given in Shinar and Feinberg (2012) for some specific

influences. Their definition of a compatible rate function is less

restrictive than ours and corresponds, in our setting, to treat

classes of influences together (Wiuf and Feliu, 2013).
If the kinetics is restricted to mass-action, there exist methods

that complement injectivity-based methods in that multistatio-

narity not only can be precluded, but also asserted. The main

methods in this class are given in Table 3. Other methods include

an injectivity-based method applicable to weakly reversible net-

works (Otero-Muras et al., 2012) and a study of embedded net-

works (Joshi and Shiu, 2013).
We applied our method to a large class of models of gene

silencing by RNA interference. The method ran efficiently on

this set. Further, we observed that the non-existence of multi-

stationarity reported for some of the motifs for specific choices of

rate functions (Zhdanov, 2009) has a qualitative origin.

Subsequently, we applied our method to two databases of bio-

logical models and showed that the method could decide on

injectivity for a large fraction of the models. It is remarkable

that a large proportion of the networks is injective and hence

cannot exhibit multistationarity.

Existence of multistationarity is often asserted from random

parameter search, assuming the rate functions take a generic

form. However, exclusion of multistationarity cannot be decided

from a finite number of sampled parameter values alone.

Further, the result might depend strongly on how the parameters

are sampled. Our method provides an automatized procedure to

assert that multistationarity cannot occur. It provides an add-

itional tool to various other available softwares to address multi-

stationarity (Table 3). For mass-action kinetics, other softwares

exist to extract various network characteristics, e.g. Szederkényi

et al. (2012).

Table 3. Overview of methods to preclude and/or assert multistationarity with description, availability of software and main reference

Preclusion of multistationarity. Arbitrary kinetics

Determinant-based injectivity testa Maple script This manuscript

Concordant networks CRNT toolboxb Shinar and Feinberg (2012)

DSR-graph ERNESTc and CoNtRold Banaji and Craciun (2009)

Interaction graph Soulé (2003)

Assertion of multistationarity. Mass-action kinetics

Deficiency-based CRNT toolboxb and ERNESTc Feinberg (1987)

Subnetwork analysis Conradi et al. (2007)

Sign pattern analysis Conradi and Flockerzi (2012)

Toric steady states Pérez Millán et al. (2012)

Most methods are developed in several references or apply to certain specializations. Only the most general or a representative one is given in the table.
aThe method specializes when the kinetics is power-law or mass-action. A determinant-based condition is given in Craciun and Feinberg (2005) to assert multistationarity for

mass-action networks when production and degradation of all species are assumed.

Links to software: bEllison et al. (2012), cSoranzo and Altafini (2009), dDonnell et al. (2013).

Table 2. For each category (row) the percentage of networks and the

average number of species in the networks are shown

Networks Injective Non-injective Analysis

Zero Non-zero Failed

KEGG (ma) 42.7% 17.9 22.3% 52.9 16.5% 48.7 18.5% 70.4

KEGG (q) 40.7% 17.1 18.5% 55.2 20.4% 45.2 20.4% 69.1

BioM (ma) 45.8% 10.5 30.4% 22.8 14.8% 20.5 9.0% 82.3

BioM (q) 31.6% 8.3 32.2% 31.0 27.9% 13.5 8.3% 71.3

In total, there are 103, 103, 365 and 323 networks in each category, respectively.

BioM refers to Biomodels, ‘ma’ refers to mass-action kinetics and ‘q’ to the quali-

tative influence (see main text for details).
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Non-injectivity is a necessary condition for an interaction
network to exhibit multiple positive steady states. Hence, it is
possible that a network is non-injective without being multista-
tionary. In practice, however, we have observed that a non-

injective interaction network generally enables a choice of rate
functions and parameters for which multistationarity occurs.
Prospective work will focus on investigating under what condi-

tions this is true and, if it is the case, how the rate functions and
parameters can be constructed.
Typical ODE models, such as SIR models and the Lotka–

Volterra model, can be put in the framework of an interaction
network, even though the model is derived from a different per-
spective. Interpretation of ODE models as interaction networks

with potential non-realistic (hypothetical) reactions might seem
artificial. However, it highlights an important aspect, namely
that of freeing the system from a specific choice of ODEs.
Bearing in mind the difficulties in choosing the ‘correct’ system

of ODEs, we see this aspect as a strong advantage of our method
and encourage the modeling community to consider qualitative
inference broadly with the aim of separating model specificities

from structural properties.
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