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Empirical Statistical Methods

Statistics deals to a large extend with the process of transforming observed data from
one or more experiments into a probabilistic model – that is a probability measure on
the sample space E. In many cases we may want to obtain an understanding of the data
in a more superficial way – if we just want to understand some aspects of the probabil-
ity measure, say. The methods developed in this chapter are called empirical methods or
descriptive statistics, because the methods developed mostly serve the purpose of sum-
marising and describing the empirical data in a convenient way. We will also discuss some
of the theoretical properties of the empirical methods that we develop.

The assumption throughout the entire chapter is that we observe n iid variables X1, . . . ,Xn

taking values in a sample space E. A realisation of these variables (the outcome from
the experiment) is denoted x1, . . . , xn. Depending on the nature of the sample space (is
it continuous or discrete, is it multivariate or univariate) we develop some of the most
frequently used methods for summarising the data.

2.1 Continuous distributions and Quantiles

Definition 2.1.1. A histogram with break points q1 < q2 < . . . < qk, chosen so that

q1 < min
i=1,...,n

xi ≤ max
i=1,...,n

xi < qk,

is the function h given by

h(x) =
1

qi+1 − qi
εn ((qi, qi+1]) for qi < x ≤ qi+1. (2.1)

together with h(x) = 0 for x 6∈ (q1, qn]. Usually the plot of h with a box of height h(qi+1)
located over the interval (qi, qi+1] is what most people associate with a histogram.
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The function h is constructed so that

∫
h(x) =

k−1∑

i=1

∫ qi+1

qi

1

qi+1 − qi
εn ((qi, qi+1]) dx

=
k−1∑

i=1

εn ((qi, qi+1])

= εn((q1, qn]) = 1

where we use that all the data points are contained within the interval (q1, qn]. Since the
function h integrates to 1 it is a probability density. The purpose of the histogram is to
approximate the density of the true distribution of X – assuming that the distribution has
a density.

Sometimes one encounters the unnormalised histogram, given by the function

h̃(x) = nεn(qi, qi+1] for qi < x ≤ qi+1.

Here h̃(x) is constantly equal to the number of observations falling in the interval (qi, qi+1].
Since the function doesn’t integrate to 1 it can not be compared directly with a density.

Example 2.1.2. We consider the histogram of 100 and 1000 simulated N(0, 1) iid sto-
chastic variables. We choose the breaks to be equidistant from −4 to 4 with a distance of
0.5, thus the break point are

−4 −3.5 −3 −2.5 . . . 2.5 3 3.5 4.

We find the histograms in Figure 2.1. Note how the histogram corresponding to the 1000
simulated stochastic variables approximates the density more closely.

Example 2.1.4. Throughout this section we will consider data from a microarray exper-
iment. It is the so-called ALL dataset (Chiaretti et. al., Blood, vol. 103, No. 7, 2004). It
consists of samples from patients suffering from Acute Lymphoblastic Leukemia. We will
consider only those patients with B-cell ALL, and we will group the patients according to
presence or absence of the BCR/ABL fusion gene.

On Figure 2.2 we see the histogram of the log (base 2) expression levels1 for six (arbitrary)
genes for the group of samples without BCR/ABL.

On Figure 2.3 we have singled out the gene with the poetic name 1635 at, and we see the
histograms for the log expression levels for the two groups with or without BCR/ABL. On
the figur you also find the empirical distribution functions.

If x1, . . . , xn ∈ R are n real observations from an experiment, we can order the observations

x(1) ≤ x(2) ≤ . . . ≤ x(n),

1Some further normalisation has also been done, that we will not go into here
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Histogram and approximating density: 
 With 100 observations
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Histogram and approximating density: 
 With 1000 observations
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Figure 2.1: The histograms for the realisation of 100 (right) and 1000 (left) simulated
iid N(0, 1) stochastic variables. For both histograms we compare the histogram with the
corresponding density for the normal distribution.

R Box 2.1.3 (Histograms). A histogram of the data in the numeric vector x is
produced in R by the command

> hist(x)

This automatically opens a graphics window and plots a histogram using default
settings. The break points are by default chosen by R in a suitable way. It is
possible to explicitly set the break points by hand, for instance

> hist(x,breaks=c(0,1,2,3,4,5))

produces a histogram with break points 0, 1, 2, 3, 4, 5. Note that R will produce
an error if the range of the break points does not contain all the data points in
x. Note also that the default behaviour of hist is to plot the unnormalised his-
togram if the break points are equidistant. Otherwise it produces the normalised
histogram. One can always make hist produce normalised histograms by

> hist(x,freq=FALSE)

thus x(1) denotes the smallest observation, x(n) the largest and x(i) the observation with
i − 1 smaller observations. If q = i/n for i = 1, . . . , n, then x ∈ R is called a q-quantile
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Figure 2.2: Histograms

(for the dataset) if the fraction q of the observations that are ≤ x. This means that if
x(i) ≤ x ≤ x(i+1) then x is a i/n-quantile. Note that for a given q = i/n there is a whole
range of q-quantiles, namely the whole interval [x(i), x(i+1)].

If i/n < q < (i+1)/n it is slightly more tricky how one should define a q-quantile, but the
proper definition is that then x(i+1)/n) is the only q-quantile. This is the only definition
that assures monotonicity of quantiles in the sense that if x is a q-quantile and y is a
p-quantile with q < p then x < y.

Some quantiles have special names, e.g. a 0.5-quantile is called a median, and the upper
and lower quartiles are the 0.75- and 0.25-quantiles respectively. Note the ambiguity here.
If n is even then all the x’s in the interval [x(n/2), x(n/2+1)] are medians, whereas if n is
odd the median is uniquely defined as x((n+1)/2). This ambiguity of e.g. the median and
other quantiles can be a little annoying in practice, and sometimes one prefers to define
a single (empirical) quantile function Q : (0, 1) → R such that for all q ∈ (0, 1) we have
that Q(q) is a q-quantile. Whether one prefers to say that x(n/2), x(n/2+1), or perhaps
(x(n/2) + x(n/2+1))/2 is the median if n is even is largely a matter a taste.

Quantiles can also be defined for theoretical distributions. We prefer here to consider the
definition of a quantile function only.

Definition 2.1.7. If F : R → [0, 1] is a distribution function for a probability measure P
on R, then Q : [0, 1] → R is a quantile function for P if

F (Q(y) − ε) ≤ y ≤ F (Q(y)) (2.2)

for all y ∈ [0, 1] and all ε > 0.
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Figure 2.3: Histograms and empirical distribution functions of log (base 2) expression levels
for the gene 1635 at from the ALL microarray experiment with (right) or without (left)
precense of the BCR/ABL fusion gene.

Theorem 2.1.8. The generalised inverse distribution function F←, cf. Section 1.8, is a
quantile function.

Proof: To see this, first observe that with x = F←(y) then

F←(y) ≤ x ⇒ y ≤ F (x) = F (F←(y))

by the definition of F←. On the other hand, suppose that there exists a y ∈ [0, 1] and an
ε > 0 such that F (F←(y) − ε) ≥ y then again by the definition of F← it follows that

F←(y) − ε ≥ F←(y),

which can not be the case. Hence there exists no such y ∈ [0, 1] and ε > 0 and

F (F←(y) − ε) < y
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R Box 2.1.5 (Empirical distribution functions). If x is a numeric vector in
R containing our data we can construct a ecdf-object (empirical cumulative
distribution function). This requires the stats library:

> library(stats)

Then

> edf <- ecdf(x)

gives the empirical distribution function for the data in x. One can evaluate this
function like any other function:

> edf(1.95)

gives the value of the empirical distribution function evaluated at 1.95. It is also
easy to plot the distribution function:

> plot(edf)

produces a nice plot.

R Box 2.1.6 (Quantiles). If x is a numeric vector then

> quantile(x)

computes the 0%, 25%, 50%, 75%, and 100% quantiles. That is, the minimum,
the lower quartile, the medium, the upper quartile, and the maximum.

> quantile(x,probs=c(0.1,0.9))

computes the 0.1 and 0.9 quantile instead, and by setting the type parameter
to an integer between 1 and 9, one can select how the function handles the non-
uniqueness of the quantiles. If type=1 the quantiles are given as the generalised
inverse of the empirical distribution function. Note that some choices of type

actually produce a result that violates our definition of quantiles.

for all y ∈ [0, 1] and ε > 0. This shows that F← is a quantile function. �

There may exist other quantile functions besides the generalised inverse of the distribution
function, which are preferred from time to time. However, if F has an inverse function then
the inverse is the only quantile function.
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Definition 2.1.9. If F is a distribution function and Q a quantile function for F the
median or second quartile of F is defined as

q2 = median(F ) = Q(0.5).

In addition we call q1 = Q(0.25) and q3 = Q(0.75) the first end third quartiles of X. The
difference

IQR = q3 − q1

is called the interquartile range.

Note that the definition of the median and the quartiles depend on the choice of quantile
function. If the quantile function is not unique these numbers are not necessarily uniquely
defined. The median summarises in a single number the location of the probability measure
given by F . The interquartile range gives a single value telling how spread out around the
median the distribution is.

An important observation that binds the definition of a quantile function for any distrib-
ution function F and the quantiles defined for a given dataset is, that if

Fn(x) = εn((−∞, x]) (2.3)

denotes the empirical distribution function for the observations then any quantile function
for the distribution function Fn also gives empirical quantiles as defined for the dataset.

One of the applications of quantiles and the empirical quantile function is to compare two
distributions by comparing their quantiles.

Definition 2.1.10. If F1 and F2 are two distribution functions with Q1 and Q2 their
corresponding quantile functions a QQ-plot is a plot of Q1 against Q2.

R Box 2.1.11 (QQ-plots). If x and y are numeric vectors then

> qqplot(x,y)

produces a QQ-plot of the empirical quantiles for y against those for x.

> qqnorm(x)

results in a QQ-plot of the empirical quantiles for x against the quantiles for the
normal distribution.

Usually when making a QQ-plot one of the distributions, F1, say, is empirical. It is then
common only to plot

(Q2(i/n), x(i)), i = 1, . . . , n − 1,
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Figure 2.4: QQplots for gene 1635 at from the ALL dataset. Here we see the expression
levels and log (base 2) expression levels against the normal distribution with (right) or
without (left) precense of the BCR/ABL fusion gene.

choosing the generalised inverse of F1 as quantile function. If the empirical quantile func-
tion Q1 is created from a realisation of n iid stochastic variables having distribution func-
tion F with quantile function Q2 then the points in the QQ-plot should lie close to a
straight line with slope 1 and intercept 0. It can be beneficial to plot the straight line to
be able to visualise any discrepancies from the straight line.

We are often interested in comparing the empirical distribution with a distribution where
we know the form of the distribution but not the location and scale. If X has distribution
with quantile function Q2 and our dataset is a realisation of n iid stochastic variables each
having the same distribution as

σX + µ

for some unknown scale σ > 0 and position µ ∈ R, then if we make a QQ-plot of the
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empirical quantile function against Q2 it will still result in points that lie close to a straight
line, but with different slope and intercept.

One could also compare distribution functions directly instead of comparing quantile func-
tions. It is, however, often more difficult to see the differences between two distribution
functions. Especially if the differences are mostly occurring in the tails of the distribution
functions. Then the differences will show up nicely on a QQ-plot but may be undetectable
by comparing distribution functions directly.
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Figure 2.5: Comparing the empirical distributions of the six genes 1635 at,1636 g
at,39730 at,40480 s at, 2039 s at, 36643 at for those with BCR/ABL (right) and
those without (left) using boxplots

Histograms are useful for representing a single empirical distribution and QQ-plots are
valuable for comparing an empirical distribution with another empirical distribution or a
theoretical distribution. The box plot is a useful tool for visualising and comparing three
or more empirical distributions. It may also be useful for visualising just a single empirical
distribution if all you want is a rough picture of location and scale.

Definition 2.1.13. One defines a box plot using quantile function Q and whisker coeffi-
cient c > 0 in terms of a five-dimensional vector

(w1, q1, q2, q2, w2)

with w1 ≤ q1 ≤ q2 ≤ q3 ≤ w2. Here

q1 = Q(0.25), q2 = Q(0.5), q3 = Q(0.75)

are the three quartiles and

w1 = min {xi | xi ≥ q1 − c(q3 − q1)}
w2 = max {xi | xi ≤ q3 + c(q3 − q1)}
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R Box 2.1.12 (Box plots). For a numeric vector x we get a single box plot by

> boxplot(x)

If x is a dataframe the command will instead produce (in one figure) a box plot of
each column. By specifying the range parameter (= whisker coefficient), which
by default equals 1.5, we can change the length of the whiskers.

> boxplot(x,range=1)

produces a box plot with whisker coefficient 1.

are called the whiskers. The box plot is drawn as a vertical box from q1 to q3 with “whiskers”
going out to w1 and w2. If datapoints lie outside the whiskers they are often plotted as
points.


