High-throughput sequencing with R: Mapping,
Biostrings and ShortRead

Kasper Daniel Hansen
Margaret Taub
based on slides developed by
Jim Bullard

University of Copenhagen
August 17-21, 2009

Introduction

These slides will discuss mapping of sequence data as well as the
Biostrings and ShortRead packages.

» Alignment and tools (mostly external to R).
> Biostrings overview.

» Alignment tools in Biostrings.

» Mapping data and reading it into R.

A comment

Analysis of high-throughput sequencing data and especially RNA-Seq is
still in its infancy.

It is unclear what is the best way to think about and analyze these data.
It is also unclear are the right entities to compute on.

We focus on some tools and some computations we have found useful.

Alignment input: FASTQ files

FASTQ files represent a common “end-point” from the various sequencing
platforms (i.e. NCBI short read archive,
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi). Qualities are
encoded in ASCIl and depending on the platform have slightly different
meanings/ranges and encoding. More details can be found at:
http://en.wikipedia.org/wiki/FASTQ_format

OGA-EAS46_2_209DG:6:1:890:752
TTCTCTTAAGTCTTCTAGTTCTCTTCTTTCTCCACT
+GA-EAS46_2_209DG:6:1:890:752
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
OGA-EAS46_2_209DG:6:1:905:558
TCTGGCTTAACTTCTTCTTTTTTTTCTTCTTCTTCT
+GA-EAS46_2_209DG:6:1:905:558
hhhfhhhhhhhhhhhhhhhhhhhhhhhhehhGhhJh

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi
http://en.wikipedia.org/wiki/FASTQ_format

Mapping reads to the transcriptome

Transcriptome

7’
"l

Well established @

lllustration from Lior Patcher

5/38

Mapping reads to the transcriptome 2

——— = paired-end reads

(==} (==}
(=) —
e & oo

—T— Transcript

"]

e ————m—— O [
=) . =
S Length in genome space S

Genome

6

38

Mapping reads to the transcriptome 3

Genomic
Reads _
L U N [
splicelunction | E—oen o =
Reads £ g
Genomic
Reads
— === | S2Untreated

Splice Junction
Reads

Image courtesy of Brenton Graveley.

Mapping reads to the transcriptome 4

L JAM o

Image courtesy of Brenton Graveley.

Sequencing errors / Genome differences

e | Sample Genome

& Sample different from reference

Ref Genome

——== "True" read
Mapping @ Sequence error

read with sequence error

Evidence suggests that lllumina sequencing does not introduce indels.

Alignment Tools

The number of short read aligners have exploded, but a couple tools have
emerged as the de facto standards.

» Eland: lllumina’'s aligner, quality aware, fast, paired end capable

>

>

MAQ: Good SNP caller, quality aware, paired end capable

Bowtie: Super fast, offers different alignment strategies, paired end
capable

BWA: Fast, indel support, paired ends, qualities
NovoAlign: MAQ like speed, many features.

A superior overview of the different aligners is available at:
http://www.sanger.ac.uk/Users/1h3/NGSalign.shtml Additionally,
a comparison of two of the best aligners can be found here: http://www.
massgenomics.org/2009/07/maq-bwa-and-bowtie-compared.html

http://www.sanger.ac.uk/Users/lh3/NGSalign.shtml
http://www.massgenomics.org/2009/07/maq-bwa-and-bowtie-compared.html
http://www.massgenomics.org/2009/07/maq-bwa-and-bowtie-compared.html

Common Alignment Strategies

Use qualities (default for Bowtie and MAQ)
Perfect match, no repeats (Strict / Lenient)
Mismatches, no repeats

Paired end data (PET) (harder for RNA-Seq)

vV v v v

The standard lllumina protocol yields unstranded reads.

Most aligners are evaluated in terms of “how many reads are mapped”. Is
this the right objective?

Watch out for the output of the program; there are many different

conventions (0-based, what happens to read hitting the reverse strand,
etc.)

11/38

SAM/BAM Formats

SAM (BAM) is a new general format for storing mapped reads. It is
developed as part of the 1000 Genomes project and is quickly becoming a
kind of standard. Some alignment tools output this format directly,
otherwise there are scripts in samtools for doing it for most popular
aligners. Details at http://samtools.sourceforge.net/index.shtml

http://samtools.sourceforge.net/index.shtml

A comment

There are no great comprehensive tools for analyzing deep-sequence data.
It will involve a fair amount of coding and gluing together various tools.

We will introduce some tools from Bioconductor that can be useful.

| use a lot of shell scripting.

13/38

Biostrings overview

v

A package for working with large (biological) strings.

» Two main types of objects: A really long single string (think
chromosome) or a set of shorter strings (think reads or genes).
BString vs. BStringSet.

> These classes are implemented efficiently minimizing copy and
memory loading/unloading.

» The BSgenome contains some infrastructure for whole genomes.
» Methods for dealing with biological data, including basic

manipulation (complementation, translation, etc.), string searching
(exact/inexact matching, Smith-Waterman, PWMs).

» Fairly complicated class structure.

I'm sorry to say that, at least for me, this has become
hopelessly confusing, and | imagine that many other users
feel the same. — Simon Anders on bioc-sig-sequencing

Computing on genomes is not trivial. The approach to a given
computation is important.

Strings in Biostrings

» BString (general), DNAString, RNAString AAString (Amino Acid),
all examples of XString.

» complement, reverse, reverseComplement, translate, for the classes
where “it makes sense”.

Convert to and from a standard R character string.
Constructor: DNAString("ACGGGGG").
Support for IUPAC alphabet.

Subsetting subseq, using the SEW format (two out of the three
start/end/width). Efficient.

> StringSets are collections of Strings, like DNAStringSet.

vV v v v

15/38

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=complement
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=reverse
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=reverseComplement
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=translate
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=subseq

BSgenomes

As examples, we will use whole genomes. Use available.genomes to get
available genomes. Long package names, but always a shorter object
name.

> library(BSgenome.Scerevisiae.UCSC.sacCerl)
> Scerevisiae

> Scerevisiae[[1]]

> Scerevisiae[["chr1"]]

A BSgenome may also have masks. We will ignore this for now.

16 /38

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=available.genomes

Biostrings, more

» alphabetFrequency, oligonucleotideFrequency and others.

> alphabetFrequency(Scerevisiae[["chri"]])
> oligonucleotideFrequency (Scerevisiae[["chri"]],
+ width = 3)

> chartr for character translation (“make all As into Cs").
» Various 10 functions (also ShortRead).

17 /38

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=alphabetFrequency
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=oligonucleotideFrequency
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=chartr

Views

A view is a set of substrings of an XString, stored and manipulated very
efficiently. Example: to store exon sequences, one can just store the
genomic location of the exons.

> Views(Scerevisiae[["chr1"]], start = c(300,
+ 400, 500), width = 50)

Views on a 230208-letter DNAString subject
subject: CCACACCACACCCA...GTGGTGTGTGTGGG
views:

start end width
[1] 300 349 50 [CTGTTCTT. ..AAATAAC]
[2] 400 449 50 [CCCTCACT. . .AGTATAT]
[3] 500 549 50 [TCTCTCAC...CGGCACT]

A view is associated with a subject. Internally, they are essentially
IRanges, so they are very fast to compute with. Views can in many cases
be treated exactly as other strings. There are methods such as narrow,
trim, gaps, restrict.

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=narrow
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=trim
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=gaps
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=restrict

Matching in Biostrings

There are various ways of matching or aligning strings to each other. We
use matching to denote searching for an exact match or possibly a match
with a certain number of mismatches. Alignment denotes a more general
strategy, e.g. Smith-Waterman.

v

>

matchPattern / countPattern: match 1 sequence to 1 sequence.

vmatchPattern / vcountPattern: match 1 sequence to many
sequences.

pairwiseAlignment: align many sequences to 1 sequence.

matchPDict / countPDict: match many sequences to 1 sequence.
(“dict” indicates that the many sequences are preprocessed into a
dictionary).

matchPWM, trimLRpattern

The different functions are optimized for different situations. They also
use different algorithms, which has a big impact. Especially
pairwiseAlignment is flexible and therefore has a complicated syntax.

19/38

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=matchPattern
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=countPattern
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=vmatchPattern
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=vcountPattern
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=pairwiseAlignment
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=matchPDict
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=countPDict
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=matchPWM
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=trimLRpattern
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=pairwiseAlignment

Example: mapping probes to a genome

Get a list of Scerevisiae probes from the “yeast2” Affymetrix array.

> library(yeast2probe)

> ids <- scan("s_pombe.msk", skip = 2,

+ what = list(probeset = character(0),

+ junk = character(0)))$probeset

> probes <- yeast2probe$sequence[yeast2probe$Probe.Set.Name jinj,
+ ids]

> probes <- DNAStringSet (probes)

Mapping

require (BSgenome.Scerevisiae.UCSC.sacCerl)
dict0 <- PDict(probes)

dict0.r <- PDict(reverseComplement (probes))
hits <- matchPDict(dict0O, Scerevisiae[[1]])
table(countIndex (hits))

table (countPDict (dict0, Scerevisiae[[1]]))

V V.V Vv \VvyVv

Example, cont'd

Over all chromosomes

> allhits <- lapply(1:16, function(i) {
+ countPDict (dict0O, Scerevisiael[[i]]) +

+ countPDict(dict0.r, Scerevisiae[[i]])
+ }F)

> table(rowSums(do.call(cbind, allhits)))

ShortRead

ShortRead contains tools for
» Work with GERALD/BUSTARD output.
» Generate QA report on BUSTARD files.

» Read a variety of short read data formats.

Data

We will use data from (Lee, Hansen, Bullard, Dudoit, and Sherlock
(2008) PLoS Genetics).

We are considering a wild-type and a mutant strain of yeast, both grown
in rich media. The two strains were sequenced using an lllumina Genome
Analyzer.

We are using a subset of the data: 1M reads from each of two lanes of
the two strains.

Reading the unaligned data

> require(ShortRead)
> fq <- readFastq("seqdata", "mut_1_f.fastq$")
> fq

class: ShortReadQ
length: 1000000 reads; width: 36 cycles

There are various simple accessor functions for this object, especially
sread and quality.

24 /38

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=sread
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=quality

A brief look at the unaligned data

Using alphabetByCycle and as(, "matrix”) (which creates a big read times
cycle matrix), we can do

> alp <- alphabetByCycle(sread(fq))

> matplot (t (prop.table(alp[DNA_BASES,

+], margin = 2)), type = "1")

> gaMat.raw <- as(quality(fq), "matrix")

> plot(colMeans(qaMat.raw))

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=alphabetByCycle
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=as(, "matrix")

Aligning the data

We now align the data using Bowtie.

#!/bin/bash

BOWTIE_OPTS="-m 1 -v 2 --all -p 2 -q --quiet -3 10"
BOWTIE_OPTS="-m 1 -v 0 --all -p 2 -q --quiet -3 10"
BOWTIE_OPTS="-v 2 -k 2 -p 2 -q —-—quiet -3 10"
BOWTIE_OPTS="-v 0 -k 1 -p 2 -q --quiet -3 10"

for f in "1s seqdata/*.fastq’

do

bowtie s_cerevisiae $BOWTIE_OPTS $f > $f.bowtie
done

How many hits do we get?

Reading in the aligned data

We read the data into R as a 4-component list (one lane per component).

files <- list.files("seqdata",
pattern = "\\.bowtie")

aligned <- sapply(files, function(f) {
readAligned("seqdata", pattern = f,

type = "Bowtie")

P

names (aligned) <- gsub("_f.fastq.bowtie",
"t names(aligned))

aligned[[1]]

save(aligned, file = "aligned.rda")

VV+V+ + +V +V

Some exercises

1. Determine the number of times the motif “TATAA" occurs in the
yeast genome. How often does it occur with one mismatch?

2. The seqdata directory has an object called stel2 which is a
position weight matrix for the transcription factor “Stel2" (obtained
from SCPD). Where does it occur in the genome?

3. Compute the average quality for each cycle for the aligned reads and
compare to the qualities for the unaligned reads. What is the
difference?

Solution 1

> sum(sapply(1:16, function(i) {

+ motif <- DNAString("TATAA")

+ countPattern(motif, Scerevisiae[[i]]) +

+ countPattern(reverseComplement (motif),
+ Scerevisiae[[i]])

+

»)

29 /38

Solution 2

30/38

Solution 3

31/38

Sessionlnfo

> tolLatex(sessionInfo())

» R version 2.9.2 RC (2009-08-17 r49312), i386-apple-darwin9.8.0

> Locale:
en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8

» Base packages: base, datasets, graphics, grDevices, grid, methods,
stats, utils

» Other packages: Biostrings 2.12.8, BSgenome 1.12.3,
BSgenome.Scerevisiae. UCSC.sacCerl 1.3.13, classGraph 0.7-2,
graph 1.22.2, IRanges 1.2.3, lattice 0.17-25, Rgraphviz 1.23.4,
ShortRead 1.2.1

» Loaded via a namespace (and not attached): Biobase 2.4.1,
hwriter 1.1, tools 2.9.2

Some ShortRead classes

ShortRead

ShortReadQ

AlignedRead

33/38

Some Biostrings classes (single strings)

XString

BString DNAString RNAString AAString

34/38

Some Biostrings classes (sets of strings)

XStringSet

JualityScaledBStrinQ8alityScaledDNAStringSgalityScaledRNAStrinQ8alityScaledAAStringSet

35/38

