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Peppered	Moth

Three	alleles,	and	six	different	genotypes	(CC,	CI,	CT,	II,	IT	and	TT).

Three	different	phenotypes	(black,	mottled,	light	colored).

Allele	frequencies:	pC,	pI,	pT	with	pC + pI + pT = 1.



Peppered	Moth
According	to	Hardy-Weinberg	equilibrium	the	genotype	frequencies	are

p2
C, 2pCpI, 2pCpT, p

2
I , 2pIpT, p

2
T.

The	complete	multinomial	log-likelihood	is

2nCClog(pC) + nCIlog(2pCpI) + nCTlog(2pCpI)

		+2nIIlog(pI) + nITlog(2pIpT) + 2nTTlog(pT),

We	only	observe	(nC, nI, nT),	where

n = nCC + nCI + nCT
⏟
= nC

+ nIT + nII
⏟
=nI

+ nTT
⏟
=nT

As	a	specific	data	example	we	have	the	observation	nC = 85,	nI = 196,
and	nT = 341.



Multinomial	cell	collapsing
The	Peppered	Moth	example	is	an	example	of	cell	collapsing	in	a
multinomial	model.

In	general,	let	A1 ∪ … ∪ AK0
= {1, …,K}	be	a	partition	and	let	

M : NK
0 → NK0

0

	be	the	map	given	by

M((n1, …, nK)) j = ∑
i∈Aj

ni.



Multinomial	cell	collapsing
If	Y ∼ Mult(p, n)	with	p = (p1, …, pK)	then	

X = M(Y) ∼ Mult(M(p), n).

For	the	Peppered	Moths,	K = 6	corresponding	to	the	six	genotypes,	
K0 = 3	and	the	partition	corresponding	to	the	phenotypes	is

{1, 2, 3} ∪ {4, 5} ∪ {6} = {1, …, 6},

and

M(n1, …, n6) = (n1 + n2 + n3, n4 + n5, n6).



Multinomial	cell	collapsing
In	terms	of	the	(pC, pI)	parametrization,	pT = 1 − pC − pI	and	

p = (p2
C, 2pCpI, 2pCpT, p

2
I , 2pIpT, p

2
T).

Hence	

M(p) = (p2
C + 2pCpI + 2pCpT, p

2
I + 2pIpT, p

2
T).

The	log-likelihood	is,

ℓ(pC, pI) = nClog(p2
C + 2pCpI + 2pCpT)

			+nIlog(p2
I + 2pIpT) + nTlog(p2

T)



Peppered	Moths	negative	log-likelihood

We	can	code	a	problem	specific	version	of	the	negative	log-likelihood
and	use	optim	to	minimize	it.

## par = c(pC, pI), pT = 1 - pC - pI
## x is the data vector of length 3 of counts 
loglik <- function(par, x) {
  pT <- 1 - par[1] - par[2]

  if (par[1] > 1 || par[1] < 0 || par[2] > 1 
      || par[2] < 0 || pT < 0)
    return(Inf)

  PC <- par[1]^2 + 2 * par[1] * par[2] + 2 * par[1] * pT
  PI <- par[2]^2 + 2 * par[2] * pT
  PT <- pT^2

  - (x[1] * log(PC) + x[2] * log(PI) + x[3]* log(PT))
}

Note	how	parameter	constraints	are	encoded	via	the	return	value	∞.



Peppered	Moths	MLE

## Default algorithm Nelder-Mead doesn't use derivatives
optim(c(0.3, 0.3), loglik, x = c(85, 196, 341))

$par
[1] 0.07084643 0.18871900

$value
[1] 600.481

$counts
function gradient 
      71       NA 

$convergence
[1] 0

$message
NULL



Peppered	Moths	MLE
Some	thought	has	to	go	into	the	initial	parameter	choice.

optim(c(0, 0), loglik, x = c(85, 196, 341))

Error in optim(c(0, 0), loglik, x = c(85, 196, 341)): function cannot be evaluated at initial parameters



Peppered	Moths	MLE
Using	BFGS	(or	CG)	is	possible.	Gradients	are	computed	internally	by
numerical	differentiation.

optim(c(0.3, 0.3), loglik, x = c(85, 196, 341), method = "BFGS")

$par
[1] 0.07083646 0.18873621

$value
[1] 600.481

$counts
function gradient 
      40        9 

$convergence
[1] 0

$message
NULL



Peppered	Moths	negative	log-likelihood

The	computations	can	beneficially	be	implemented	in	greater
generality.

The	function	M	sums	the	cells	that	are	collapsed,	which	has	to	be
specified	by	the	group	argument.

M <- function(y, group)
  as.vector(tapply(y, group, sum))



Peppered	Moths	negative	log-likelihood

The	function	prob	maps	the	parameters	to	the	multinomial	probability
vector.	This	function	will	have	to	be	problem	specific.

prob <- function(p) {
  p[3] <- 1 - p[1] - p[2]
  c(p[1]^2, 2 * p[1] * p[2], 2* p[1] * p[3], 
    p[2]^2, 2 * p[2] * p[3], p[3]^2)
}



Peppered	Moths	MLE

loglik <- function(par, x) {
  pT <- 1 - par[1] - par[2]
  if (par[1] > 1 || par[1] < 0 || par[2] > 1 
      || par[2] < 0 || pT < 0)
    return(Inf)

  - sum(x * log(M(prob(par), c(1, 1, 1, 2, 2, 3))))
}



Peppered	Moths	MLE

pep_optim <- optim(c(0.3, 0.3), loglik, x = c(85, 196, 341))
pep_optim

$par
[1] 0.07084643 0.18871900

$value
[1] 600.481

$counts
function gradient 
      71       NA 

$convergence
[1] 0

$message
NULL



Peppered	Moths	summary
The	Peppered	Moth	example	is	very	simple.	The	log-likelihood	for
the	observed	data	can	easily	be	computed.

The	full	data	model	as	well	as	the	model	of	collapsed	cells	are
curved	exponential	families.

The	example	was	used	above	to	illustrate	different	ways	of
implementing	a	likelihood	computation	in	R.	One	was	problem
specific	and	one	was	more	abstract	and	general.

Below	the	example	is	used	to	illustrate	the	EM-algorithm.	The	EM-
algorithm	does	not	require	that	we	can	compute	the	marginal
likelihood.	In	(real)	applications	this	will	often	not	be	possible,	or	it
will	be	a	numerically	heavy	computation.



Exercise:	Gaussian	mixtures
The	following	code	simulates	samples	from	a	Gaussian	mixture

sigma1 <- 1
sigma2 <- 2
mu1 <- 0
mu2 <- 4
p <- 0.5
n <- 1000
x <- ifelse(sample(c(0, 1), n, replace = TRUE, prob = c(p, 1 - p)),
            rnorm(n, mu1, sigma1), rnorm(n, mu2, sigma2))

The	density	of	the	distribution	of	X	is

p(2πσ2
1)

−1 / 2e − ( y− μ1)2 / (2σ2
1 ) + (1 − p)(2πσ2

2) −1 / 2e − ( y− μ2 )2 / (2σ2
2 )

`

Implement	an	R	function	for	computing	the	log-likelihood.
Use	optim	to	fit	the	parameters	μ1, μ2,	and	p.	You	may	assume	σ1
and	σ2	known.	What	about	a	gradient?



Incomplete	data	likelihood
Suppose	that	Y	is	a	random	variable	and	X = M(Y).	Suppose	that	Y	has
density	f( ⋅ ∣ θ)	and	that	X	has	marginal	density	g(x ∣ θ).

The	marginal	density	is	typically	of	the	form	

g(x ∣ θ) = ∫ {y :M ( y ) = x } f(y ∣ θ)	μx(dy)

	for	a	suitable	measure	μx	depending	on	M	and	x	but	not	θ.

The	log-likelihood	for	observing	X = x	is

ℓ(θ) = logg(x ∣ θ).



Incomplete	data	likelihood
The	marginal	likelihood	is	often	impossible	to	compute	analytically	and
difficult	and	expensive	to	compute	numerically.

The	complete	log-likelihood,	logf(y ∣ θ),	is	often	easy	to	compute,	but	we
don't	know	Y,	only	that	M(Y) = x.

In	some	cases	it	is	possible	to	compute

Q(θ ∣ θ ′ ) :=Eθ ′ (logf(Y ∣ θ) ∣ X = x),

which	is	the	conditional	expectation	of	the	complete	log-likelihood
given	the	observed	data	and	under	the	probability	measure	given	by	θ ′ .



Idea

With	an	initial	guess	of	θ ′ = θ ( 0 ) 	compute	iteratively

θ (n+ 1) = arg	max	Q(θ ∣ θ ( n ))

	for	n = 0, 1, 2, ….

This	is	the	EM-algorithm:

E-step:	Compute	the	conditional	expectation	Q(θ ∣ θ ( n ) ).

M-step:	Maximize	θ ↦ Q(θ ∣ θ ( n ) ).



The	EM-algorithm
For	some	nice	models	(e.g.	exponential	families)	the	conditional
expectation	is	easy	to	compute,	the	complete	log-likelihood	is	easy	to
maximize,	and	this	transfers	to	easy	maximization	of	Q.

We	prove	below	that	the	algorithm	is	an	ascent	algorithm;	it	(weakly)
increases	the	marginal	likelihood	in	every	step.

But	first	some	theory	about	conditional	distributions.



Conditional	distributions
It	holds	in	great	generality	that	the	conditional	distribution	of	Y	given	
X = x	has	density	

h(y ∣ x, θ) =
f(y ∣ θ)
g(x ∣ θ)

	w.r.t.	a	suitable	measure	μx	that	does	not	depend	upon	θ.

You	can	verify	this	for	discrete	distributions	and	when	Y = (Z, X)	with
joint	density	w.r.t.	a	product	measure	μ ⊗ ν	that	does	not	depend	upon	
θ.



Conditional	distributions
In	the	latter	case,	f(y ∣ θ) = f(z, x ∣ θ)	and	

g(x ∣ θ) = ∫f(z, x ∣ θ)	μ(dz)

	is	the	marginal	density	w.r.t.	ν.

In	general	

logg(x ∣ θ) = logf(y ∣ θ) − logh(y ∣ x, θ),

	and	under	some	integrability	conditions,	this	decomposition	is	used	to
show	that	the	EM-algorithm	increases	the	log-likelihood,	ℓ(θ),	in	each
iteration.



Multinomial	conditional	distributions

The	conditional	distribution	of	YAj = (Yi) i∈Aj	conditionally	on	X	can	be
found	too.

YAj ∣ X = x ∼ Mult
pAj
M(p)j

, xj .

The	probability	parameters	are	simply	p	restricted	to	Aj	and
renormalized	to	a	probability	vector.	Hence

E(Yk ∣ X = x) =
x jpk
M(p)j

	for	k ∈ Aj.

( )



Abstract	E-step
The	EM-algorithm	can	be	implemented	by	two	simple	functions	that
compute	the	conditional	expectations	above	(the	E-step)	and	then
maximization	of	the	complete	observation	log-likelihood.

EStep0 <- function(p, x, group) {
  x[group] * p / M(p, group)[group]
}



Multinomial	MLE

With	y = (nCC, nCI, nCT, nII, nIT, nTT)
T	a	complete	observation,	it	can	be

shown	that	the	MLE	is

p̂C = nCC + (nCI + nCT) /2

p̂I = (nCI + nIT) / 2 + nII

Which	is	p̂ = Xy	for

 X <- matrix(
  c(2, 1, 1, 0, 0, 0,
    0, 1, 0, 2, 1, 0) / 2,
  2, 6, byrow = TRUE)
X

     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1  0.5  0.5    0  0.0    0
[2,]    0  0.5  0.0    1  0.5    0



Abstract	M-step
The	MLE	of	the	complete	log-likelihood	is	a	linear	estimator,	as	is	the
case	in	many	examples	with	explicit	MLEs.

MStep0 <- function(n, X)
  as.vector(X %*% n / (sum(n)))

The	EStep0	and	MStep0	functions	are	abstract	implementations.	They
require	specification	of	the	arguments	group	and	X,	respectively,	to
become	concrete.

The	M-step	is	only	implemented	in	the	case	where	the	complete-data
MLE	is	a	linear	estimator,	that	is,	a	linear	map	of	the	complete	data
vector	y	that	can	be	expressed	in	terms	of	a	matrix	X.



Peppered	Moths	E-	and	M-steps
Concrete	functions	for	the	E-	and	M-steps	are	implemented	for	the
particular	example.

EStep <- function(p, x)
  EStep0(prob(p), x, c(1, 1, 1, 2, 2, 3))

MStep <- function(n) {
  X <- matrix(
  c(2, 1, 1, 0, 0, 0,
    0, 1, 0, 2, 1, 0) / 2,
  2, 6, byrow = TRUE)

  MStep0(n, X)
}



Peppered	Moths	EM

EM <- function(par, x, epsilon = 1e-6, trace = NULL) {
  repeat{
     par0 <- par
     par <- MStep(EStep(par, x))
     if(!is.null(trace)) trace()
     if(sum((par - par0)^2) <= epsilon * (sum(par^2) + epsilon))
        break
  } 
  par  ## Remember to return the parameter estimate
}

EM(c(0.3, 0.3), c(85, 196, 341))
pep_optim$par

[1] 0.07083693 0.18877365
[1] 0.07084643 0.18871900



Inside	the	EM
Check	what	is	going	on	in	each	step	of	the	EM-algorithm.

source("Debugging_and_tracing.R")

EM_tracer <- tracer("par")
EM(c(0.3, 0.3), c(85, 196, 341), trace = EM_tracer$trace)

n = 1: par = 0.08038585, 0.22464192; 
n = 2: par = 0.07118928, 0.19546961; 
n = 3: par = 0.07084985, 0.18993393; 
n = 4: par = 0.07083738, 0.18894757; 
n = 5: par = 0.07083693, 0.18877365;

[1] 0.07083693 0.18877365



Inside	the	EM

summary(EM_tracer)

       par.1     par.2 .time
1 0.08038585 0.2246419 0.000
2 0.07118928 0.1954696 0.000
3 0.07084985 0.1899339 0.000
4 0.07083738 0.1889476 0.001
5 0.07083693 0.1887737 0.001



Inside	the	EM

EM_tracer <- tracer(c("par0", "par"), N = 0)
phat <- EM(c(0.3, 0.3), c(85, 196, 341), epsilon = 1e-20, trace = EM_tracer$trace)
phat

[1] 0.07083691 0.18873652

EM_trace <- summary(EM_tracer)
tail(EM_trace)

       par0.1    par0.2      par.1     par.2 .time
10 0.07083691 0.1887366 0.07083691 0.1887365 0.002
11 0.07083691 0.1887365 0.07083691 0.1887365 0.002
12 0.07083691 0.1887365 0.07083691 0.1887365 0.002
13 0.07083691 0.1887365 0.07083691 0.1887365 0.002
14 0.07083691 0.1887365 0.07083691 0.1887365 0.003
15 0.07083691 0.1887365 0.07083691 0.1887365 0.003



Adding	computed	values

loglik_pep <- Vectorize(function(p1, p2) loglik(c(p1, p2),  c(85, 196, 341)))
EM_trace <- transform(
  EM_trace, 
  n = 1:nrow(EM_trace),
  par_norm_diff = sqrt((par0.1 - par.1)^2 + (par0.2 - par.2)^2),
  loglik = loglik_pep(par.1, par.2)
)



Inside	the	EM

qplot(n, log(par_norm_diff), data = EM_trace)

Note	the	log-axis.	The	EM-algorithm	converges	linearly	(this	is	the
terminology,	see	Algorithms	and	Convergence).

https://cswr.nrhstat.org/algorithms-and-convergence.html


Linear	convergence
The	log-rate	of	the	convergence	can	be	estimated	by	least-squares.

log_rate <- coefficients(lm(log(par_norm_diff) ~ n, 
                            data = EM_trace))["n"]
exp(log_rate)

        n 
0.1750251

It	is	very	small	in	this	case	implying	fast	convergence.

This	is	not	always	the	case.	If	the	log-likelihood	is	flat,	the	EM-algorithm
can	become	quite	slow	with	a	rate	close	to	1.



Convergence	of	the	log-likelihood

qplot(n, log(loglik- loglik[15]), data = EM_trace)



Exercise:	Gaussian	mixtures
Implement	the	EM-algorithm	for	the	Gaussian	mixture.

Can	you	generalize	to	more	than	two	groups?

Can	you	also	estimate	the	variance	parameters?



Object	oriented	implementation
An	(S3)	object	oriented	implementation	is	useful	when

some	parts	of	an	algorithm	can	be	implemented	abstractly

other	parts	require	details	specific	to	a	particular	problem

Details	can	be	data,	dimensions	and	parametrizations.	These	are
logically	related,	and	they	can	be	stored	in	a	list	and	given	a	label.

That's	all	there	is	to	an	S3	object.



Pep.	Moths	object

pepMoths <- structure(
  list(
    x = c(85, 196, 341),

    X = matrix(
      c(2, 1, 1, 0, 0, 0,
        0, 1, 0, 2, 1, 0) / 2,
      2, 6, byrow = TRUE),

    group = c(1, 1, 1, 2, 2, 3),

    par = c(0.3, 0.3),

    prob = function(p) {
      p[3] <- 1 - p[1] - p[2]
      c(p[1]^2, 2 * p[1] * p[2], 2* p[1] * p[3], 
        p[2]^2, 2 * p[2] * p[3], p[3]^2)
    }
  ), 
  class = "MultCollapse"
)



EM	generic	function

EM <- function(x, ...)  ## ... allows for additional arg. 
  UseMethod("EM")



An	EM	method

EM.MultCollapse <- function(x, epsilon = 1e-6) {
    par <- x$par
   repeat{
     par0 <- par
     par <- MStep0(EStep0(x$prob(par), x$x, x$group), x$X) 
     if(sum((par - par0)^2) <= epsilon * (sum(par^2) + epsilon))
        break
  } 
  x$par <- par
  x ## Returns the entire object
}



Pep.	Moths	EM

pepMoths <- EM(pepMoths)
pepMoths$par

[1] 0.07083693 0.18877365

phat

[1] 0.07083691 0.18873652

str(pepMoths)

List of 5
 $ x    : num [1:3] 85 196 341
 $ X    : num [1:2, 1:6] 1 0 0.5 0.5 0.5 0 0 1 0 0.5 ...
 $ group: num [1:6] 1 1 1 2 2 3
 $ par  : num [1:2] 0.0708 0.1888
 $ prob :function (p)  
  ..- attr(*, "srcref")= 'srcref' int [1:8] 14 12 18 5 12 5 14 18
  .. ..- attr(*, "srcfile")=Classes 'srcfilecopy', 'srcfile' <environment: 0x7fcf1ecf7c10> 
 - attr(*, "class")= chr "MultCollapse"



Optimization	and	statistics
The	EM-algorithm	is	a	general	algorithm	for	numerical	optimization	of	a
log-likelihood	function.	It	works	by	iteratively	optimizing

Q(θ ∣ θ (n ) ) = Eθ (n )(logf(Y ∣ θ) ∣ X = x).

For	numerical	optimization	of	Q	or	variants	of	EM	(like	EM	gradient	or
acceleration	methods)	the	gradient	and	Hessian	of	Q	can	be	useful.

For	statistics	we	need	the	observed	Fisher	information	(Hessian	of	the
negative	log-likelihood	for	the	observed	data).

There	are	interesting	and	useful	relations	between	these	different
derivatives	that	we	will	cover	in	this	lecture.



Gradient
Note	that	with	p = p(θ)	in	some	parametrization	of	the	cell	probabilities,

Q(θ ∣ θ ′ ) = ∑
i

xj ( i )pi(θ
′ )

M(p(θ ′ ))j ( i )
logpi(θ),

	where	j(i)	is	defined	by	i ∈ A j ( i ) .

The	gradient	of	Q	w.r.t.	θ	and	evaluated	in	θ ′ 	is

∇θQ(θ ′ ∣ θ ′ ) = ∑
i

xj ( i )
M(p(θ ′ )) j ( i )

∇pi(θ
′ ).



Gradient

Dprob <- function(p) {
   matrix(
    c(2 * p[1],                    0, 
      2 * p[2],             2 * p[1], 
      2* p[3] - 2 * p[1],  -2 * p[1],
      0,                    2 * p[2],         
      -2 * p[2], 2 * p[3] - 2 * p[2], 
      -2 * p[3],           -2 * p[3]),
    ncol = 2, nrow = 6, byrow = TRUE)
}

gradQ <- function(p, x) {
  p[3] <- 1 - p[1] - p[2]
  group <- c(1, 1, 1, 2, 2, 3)
  - (x[group] / M(prob(p), group)[group]) %*% Dprob(p)
}



Gradient	identity
Though	computed	as	the	gradient	of	Q,	

∇θQ(θ ′ ∣ θ ′ ) = ∇θℓ(θ
′ )

	from	the	fact	that	θ ′ 	maximizes

θ ↦ Q(θ ∣ θ ′ ) − ℓ(θ).

This	can	also	be	verified	by	direct	computation.

We	can	use	the	gradient	for	optimization	of	the	log-likelihood.



Gradient	used	for	optimization

optim(c(0.3, 0.3), loglik, gr = gradQ, x = c(85, 196, 341), 
      method = "BFGS")[1:3]

$par
[1] 0.07083689 0.18873652

$value
[1] 600.481

$counts
function gradient 
      46        9

phat  ## Optimum computed by EM algorithm

[1] 0.07083691 0.18873652



Empirical	Fisher	information
Note	that	a	multinomial	observation	with	size	parameter	n	can	be
regarded	as	n	i.i.d.	samples.

For	i.i.d.	samples	the	Fisher	information	(for	one	sample)	can	be
estimated	as	the	empirical	variance	of	the	gradient	of	the	log-likelihood.
By	the	identity	

∇θQ(θ ′ ∣ θ ′ ) = ∇θℓ(θ
′ )

	holding	for	each	sample,	we	can	compute	the	empirical	variance.



Pep.	Moths	empirical	Fisher

empFisher <- function(p, x, center = FALSE) {
  gradQ <- 0 ## is supposed to be 0 in the MLE
  if (center) 
     gradQ <-  gradQ(p, x) / sum(x)
   grad1 <- gradQ(p, c(1, 0, 0)) - gradQ
   grad2 <- gradQ(p, c(0, 1, 0)) - gradQ
   grad3 <- gradQ(p, c(0, 0, 1)) - gradQ
   x[1] * t(grad1) %*% grad1 + 
     x[2] * t(grad2) %*% grad2 + 
     x[3] * t(grad3) %*% grad3 
}

Note	that	the	gradient	is	0	in	the	maximum	of	Q( ⋅ ∣ θ̂),	but	the	code
above	allows	for	empirically	centering	the	gradient	before	computing
the	estimate	of	the	Fisher	information.



Pep.	Moths	empirical	Fisher

empFisher(phat, c(85, 196, 341))

          [,1]     [,2]
[1,] 18487.558 1384.626
[2,]  1384.626 6816.612

empFisher(phat, c(85, 196, 341), center = TRUE)

          [,1]     [,2]
[1,] 18487.558 1384.626
[2,]  1384.626 6816.612



Pep.	Moths	numerical	Fisher	information

We	can	compute	the	observed	Fisher	information	using	optim.

ihat <- optim(c(0.3, 0.3), loglik, x = c(85, 196, 341), hessian = TRUE)$hessian
ihat

          [,1]     [,2]
[1,] 18489.734 1384.604
[2,]  1384.604 6817.921

Note	that	this	Hessian	and	the	empirical	Fisher	informations	above	are
different	estimates	of	the	same	quantity.	Thus	they	are	not	supposed	to
be	identical	on	a	given	data	set.



Fisher	information
Computing	an	estimate	of	the	Fisher	information	is	important	for
computing	standard	errors	of	MLEs.

The	empirical	Fisher	information	can	be	computed	for	i.i.d.	samples
using	the	gradient	of	Q,	if	that	gradient	can	be	computed	or	estimated.

SEM	is	a	general	alternative	that	relies	only	on	EM-steps	and	a
numerical	differentiation	scheme.

Bootstrap	is	a	another	alternative	for	estimating	standard	errors;	in	the	i.i.d.	case	it	can	be
done	nonparametrically	,	which	means	that	the	inference	is	correct	even	if	the	model	is
wrong;	for	other	models,	parametric	bootstrapping	can	be	implemented,	which	then
hinges	on	model	assumptions	just	like	the	Fisher	information.	Bootstrapping	is
computationally	expensive.	It	will	not	be	covered	in	this	course	(but	in	Regression).



The	EM-mapping
Define	Φ: Θ ↦ Θ	by	

Φ(θ ′ ) = arg	maxQ(θ ∣ θ ′ ).

A	global	maximum	of	the	likelihood	is	a	fixed	point	of	Φ.

The	EM-algorithm	searches	for	a	fixed	point	for	Φ,	that	is,	a	solution
to	

Φ(θ) = θ.

Variations	of	the	EM-algorithm	can	often	be	seen	as	other	ways	to
find	a	fixed	point	for	Φ.



Information	identity
From	

ℓ(θ) = Q(θ ∣ θ ′ ) − H(θ ∣ θ ′ )

	it	follows	that	the	observed	Fisher	information	equals

îX := − D2
θℓ(θ̂) = −D2

θQ(θ̂ ∣ θ ′ )
⏟

= îY ( θ ′ )

+ D 2
θH(θ̂ ∣ θ ′ )

⏟
= − îY ∣X (θ ′ )

.

It	is	possible	to	compute	îY := îY(θ̂).	For	Pep.	Moths	(and	exponential
families)	it	is	as	difficult	as	computing	the	Fisher	information	for
complete	observations.

We	want	to	compute	îX	and	îY ∣ X := îY ∣X(θ̂)	is	not	computable	either.



Supplemented	EM
It	can	be	shown	that	

DθΦ(θ̂)T = îY ∣ X îY
− 1.

Hence

îX = I − îY ∣X îY
− 1 îY

= I − DθΦ(θ̂)T îY.

DθΦ(θ̂)	can	be	computed	via	numerical	differentiation.

( )

( ( ) )
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Numerical	hessian	of	Q
First	we	implement	the	map	Q	as	an	R	function.

Q <- function(p, pp, x = c(85, 196, 341)) {
  p[3] <- 1 - p[1] - p[2]
  pp[3] <- 1 - pp[1] - pp[2]
  group <- c(1, 1, 1, 2, 2, 3)
  - (x[group] * prob(pp) / M(prob(pp), group)[group]) %*% log(prob(p))
}

The	R	package	numDeriv	contains	functions	that	compute	numerical
derivatives.

library(numDeriv)
iY <- hessian(Q, phat, pp = phat)



Supplemented	EM

Phi <- function(pp) MStep(EStep(pp, x = c(85, 196, 341)))
DPhi <- jacobian(Phi, phat)  ## Using numDeriv function 'jacobian'
iX <- (diag(1, 2) - t(DPhi)) %*% iY
iX

          [,1]     [,2]
[1,] 18487.558 1384.626
[2,]  1384.626 6816.612

ihat

          [,1]     [,2]
[1,] 18489.734 1384.604
[2,]  1384.604 6817.921



Supplemented	EM
The	inverse	Fisher	information	is

î
− 1
X = î

− 1
Y I − DθΦ(θ̂)T

− 1

= î
− 1
Y I +

∞

∑
n= 1

DθΦ(θ̂)T
n

= î
− 1
Y + î

− 1
Y DθΦ(θ̂)T I − DθΦ(θ̂)T

− 1

where	the	second	identity	follows	by	the	Neumann	series.

The	last	formula	above	explicitly	gives	the	asymptotic	variance	for	the
incomplete	observation	X	as	the	asymptotic	variance	for	the	complete
observation	Y	plus	a	correction	term.
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Supplemented	EM

iYinv <- solve(iY)
iYinv %*% solve(diag(1, 2) - t(DPhi))

              [,1]          [,2]
[1,]  5.492602e-05 -1.115686e-05
[2,] -1.115686e-05  1.489667e-04

iYinv + iYinv %*% t(solve(diag(1, 2) - DPhi, DPhi))

              [,1]          [,2]
[1,]  5.492602e-05 -1.115686e-05
[2,] -1.115686e-05  1.489667e-04



Compare	these	with	previous
computations

solve(iX) ## SEM-based, but different use of inversion

              [,1]          [,2]
[1,]  5.492602e-05 -1.115686e-05
[2,] -1.115686e-05  1.489667e-04

solve(ihat) ## Numerical hessian

              [,1]          [,2]
[1,]  5.491927e-05 -1.115318e-05
[2,] -1.115318e-05  1.489373e-04



Supplemented	EM
The	SEM	implementation	above	relies	on	the	hessian	and	jacobian
functions	from	the	numDeriv	package	for	numerical	differentiation.

It	is	possible	to	implement	the	computation	of	the	hessian	of	Q
analytically.

Variants	on	the	strategy	for	computing	DθΦ(θ̂)	via	numerical	differentiation	suggest	using
difference	approximations	along	the	s	equence	of	EM-steps.	I	don't	see	the	point	of	doing
this	over	standard	numerical	differentiation	(besides	that	it	explicitly	uses	that	θ̂	is	a	fixed
point).	On	the	contrary,	I	don't	believe	such	difference	approximations	will	converge.
When	the	algorithm	gets	sufficiently	close	to	the	MLE,	the	numerical	errors	will	dominate.



For	Monday
Implement	SEM	for	Gaussian	mixtures.

Experiment	with	using	Rcpp	for	implementing	the	computation	of
the	log-likelihood.


