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1 Introduction

Survival analysis
— or reliability analysis.
The topic has its own development with focus on aspects of models and distributions that

differ from many other applications of statistics. This is primarily due to the following two
issues:

e Survival distributions are skewed distributions on the positive half line. It is the shape
of the distribution rather than the location of the distribution that is of interest.

e There is almost always a censoring mechanism, and certain aspects of the data are
consequently missing. We need to deal with this in the modeling.

Example I
In medicine we want to test whether a new, promising drug can prolong the life of humans.
We set up a controlled, double-blinded experiment with 1000 individuals of age 55 given this

drug and a control group of 1000 individuals of age 55 given a placebo drug (disregarding
any ethical considerations at this point).

The test runs for 10 years, and those that survive for 10 years are all censored at that time.
That is less problematic than if 10%, say, of the participants are censored because they
abandon prematurely the experiment without dying.



Example IT

In engineering we want to estimate the life time of an electrical component. We record
whenever a component is put to work and whenever it fails. At a given time, all working
components that have not yet failed are censored.

To estimate the life time based on the observed life times for the components that have
failed up to this time will give a too pessimistic, biased result.

Example ITI

A “real” survival application.

Patients are enrolled in a study whenever they are diagnosed with a given (serious, life
threatening) disease. Data on the subjects are collected — and may be collected regularly.

At a planned calendar time the statistical analysis is done, and patients alive at this time
are censored.

Many questions are of interest, e.g. how different covariates are associated with the survival
for this particular disease. One issue may be to compare the survival distributions for two
or more treatments.

2 Non-parametric estimators

The setup

We consider n individuals, T7,..., T independent, positive random variables (survival

times). We observe l
T; = min{T}, C;}

with censoring times Cy,...,C,. With
e, = (T} <)

we observe the pairs
(Tl, 61)7 ey (Tn, en).

Survival function

The distribution function is F'(t) = P(T} < t) and the survival function is

S(t) =1 F(t) = P(T} > t).



Without censoring,
1 n
— E WTF <t)
n
i=1

is the empirical distribution function and
Sit)y=1- —1§:1T*>t
- N n =1

the empirical survival function.

Introduce the process of individuals at risk

The Kaplan-Meier estimator

Based on the censored survival observations (T3, ;), the process, Y (s), of at risk individuals,
and the (ordered) observed survival times ¢; for ¢ = 1,...,k up to time ¢ the Kaplan-Meier

estimator is
50 = (1-7) (- 71m) - (- vw)

This estimator is the survival analysis version of the empirical distribution function.

The version of the Kaplan-Meier estimator above assumes that only one death occurs at
each time. An alternative formulation is as follows. With the counting process of deaths

(non censored events)
n

N =S UT < te; = 1)

i=1

and the jumps for the counting process given as

AN(t) = N(t) = N(t=) = N(t) = lm N(t—e),

the Kaplan-Meier estimator is

A AN(s)
S(t) = 1- .
o-1(-53)
s<t
The factors are equal to 1 for all s where AN(s) = 0. In the notation above, k = N(t).
This version allows for AN(s) > 1 to accommodate multiple deaths at the same time. This

is in practice only a question of resolution. Survival times are typically in days, thus we can
encounter multiple deaths at the same day.



The intuition behind the estimator is that each factor is an estimator of the conditional
probability of surviving the time interval (¢;,¢;+1] given survival beyond time ¢;. Precisely,

St)y=P(Iy >t) = Py >t|Ty >tg) X P(T} >ty | Tf > tg—1)
XP(Tl* > tg |T1* >t1) XP(Tl* >t1).
There is one individual out of Y (¢;) that dies in the interval (¢;,t;1+1], whence conditionally
on having survived beyond t; the probability of dying is estimated as 1/Y(¢;) and the

probability of surviving beyond ¢;41 is thus 1 — 1/Y(¢;). This argument is again under the
assumption that multiple deaths do not occur at the same time.

3 Hazards

The hazard rate

If F is continuously differentiable with derivative f (the density for the survival distribution),
we introduce the hazard rate
_f®)

(t) = S
Observe that

1F(t+¢) — F(t)
e—0+ € S(t)

1
lim —P(T; € (t,t+¢]|T] > ©).
e—0+ €

Thus A(¢) is the instantaneous rate of death at time ¢.

Examples

The ezponential distribution has hazard rate

which is constant.

The Weibull distribution has hazard rate
At) = ayt? !

for a,y > 0.

The Weibull distribution can, in particular, capture increasing hazard rates over time by
taking v > 1.



The cumulative hazard function

Note that
A(t) = —(log S(t))’

hence .
At) = / A(s)ds = — log S(1),
0
which is called the cumulative hazard function.

Observe that
S(t) = exp (=A(t)) .

The Nelson-Aalen estimator

With S the Kaplan-Meier estimator of the survival function the cumulative hazard can be
estimated as —log S.

Alternatively, the Nelson-Aalen estimator is a direct estimator given as

[©]
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with

o (v) (7o)

for large Y (t;) using the Taylor expansion exp(z) = 1 + z + o(z?).

The intuition behind the Nelson-Aalen estimator is as follows. The probability that an
individual that survived beyond time t; dies in (a small) interval (¢;,¢;+1] is approximately
A(t;)(tiy1 — t;) by the definition of the hazard rate. The cumulative hazard function A(t) is
approximately the sum of these quantities for ¢; < ¢t. The probability of a death in (¢;, t;41] is
estimated as 1/Y (¢;) and aggregated by summation we get the Nelson-Aalen estimator of A.
A technical justification that provides a deeper insight requires the framework of counting
processes and martingales, which reveal that the estimator is unbiased.
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1 The survival likelihood

Setup

Assume that T™ is a positive random variable with density f and survival function S, C is
a positive random variable with density g and survival function H.

We define
T =min{T*,C} and e=1T"<C).

Theorem 1. If T and C are independent the joint distribution of (T,e) has density
F)S(®)  g(t)' — H(t)®

w.r.t. the product measure m @ T (the Lebesque measure times the counting measure).

Proof. The derivation is as follows

P(T'<tie=1) = P(T*<t,e=1)
P(T* <t,C>T%)

_ /Otf(s) /:Og(u)duds
= [ s
Likewise,
P(T<te=0) — /Otg(s)S(s)ds,

and we conclude that the density is

[ FWH@E) ife=1
It €) = { g(1)S(t) ife=o0.



The full likelihood

With (Ty,e1),...,(Th,e,) i.i.d. with the same distribution as (7, e) the full likelihood is

n

L= [ F(T)es()' e g(T)' H(T,)*.

=1

We assume that f = fy is parametrized by 6 and that the distribution, given by g, of the
censoring mechanism holds no information about §. This implies that

n

L(0) = [ ] fo(T0)* So(Ti) !~ K,

i=1
with K; depending on the observations but not the parameter 6.

Note that Harrell (and many others) “derive” the likelihood in a relatively informal way,
which leaves some room for wondering exactly what the dominating measure is. This is
explicit above. The derivation also makes it clear how the distribution of the censoring
mechanism enters, and why it can be ignored if it does not depend on the unknown parameter
f. This has nothing to do with independence, which is important for the derivation of the
full likelihood, but for the ignorability part, the assumption is that g does not depend upon
0.

It is possible to take a slightly different point of view and condition on the censoring variables
instead. One arrives at essentially the same likelihood, but this time the dominating measure
for the #’th observation becomes m + d¢, (d¢, is the Dirac measure in C;).

The likelihood

From hereon the likelihood to consider is

L) = [l/fo@) seT) =

The log-likelihood is

n

1(0) = Zei log \o(T3) — > Ag(T3)

i=1

recalling that the cumulative hazard function is

Ao(t) = —log So(®).



MLE for the censored exponential

If the survival distribution is the exponential with parameter A\ being the rate, the MLE is
zn

YT

with n, the number of failures/deaths (the number of uncensored observations).

5\:

e If we ignore censoring the MLE is

n ~

—_ > A
Z?:l T; ’
which will overestimate the rate.

e If we discard censored observations the MLE is

n ~
niu > >\’
Zi:l ei,-ri

which will overestimate the rate.

The derivation of the MLE is found in Harrell’s book page 415.

2 Accelerated failure time models

The log-logistic distribution

If X has a logistic distribution the distribution function is

6)@

G(zx) = To o

and Y = eX — the log-logistic distribution — has distribution function

F h
(y) = G(logy) = T+

and density L
) = F') = s

We introduce a scale parameter as follows

)\ef)my)\fl

fn(y) = m-



Exercise

e Show that if Y has a log-logistic distribution with density f = fo then
ey
has density f;.
e Show that if Y has a log-logistic distribution with density f, then
logY —n

has a logistic distribution.

Linear predictors

Ifn=>" j x;8; is a linear predictor we assume that it affects the survival distribution as a
scale transformation
ey

of the baseline distribution of Y.

The X\ parameter is a nuisance parameter that determines the shape of the baseline distri-
bution.

The survival function is 1

S"’](t) = 14+ e)my)\'

Accelerated failure time models

Definition 2. An AFT model has survival function given as

Sn(t) = ¢((logt —n)/0)

with n the linear predictor, ¥ a survival function (on R), and o > 0 called the scale param-
eter.

For the log-logistic model the scale parameter is o = A~1.

A unit change of z; increases — or accelerates — the failure by a factor €.



3 Proportional hazards models

Proportional hazards models

Definition 3. The proportional hazards model has hazard rate
A(t) = Ao(t)e"

with 7 the linear predictor and g the baseline hazard rate.

It follows that for the cumulative hazard function
A(t) = Ap(t)e”

the proportionality holds too.

The factor e is the hazard ratio between two models corresponding to a unit change of
ij.
Weibull example
The Weibull baseline hazard rate and cumulative hazard function are
Mo(t) =t771  Ag(t) =17,
The log-likelihood is
L= Y eilog(yryen) — 17 en
i=1

n n
eI T 4 Y g0

i=1 =1

Poisson log-likelihood

This is (surprisingly) up to a constant the log-likelihood for a Poisson model of the e;’s with
log link and mean value T}’ e” for fixed 7.

The glm-framework can be used to fit the model (for fixed ) with the survival times entering
as an offset term.

The a parameter has been dropped in the Weibull distribution above as it is captured by
an intercept in the linear predictor.

Weibull example

To estimate v we can use an iterative procedure or compute the profile likelihood using the
glm-framework for the optimization for a range of y-parameters.

For fixed linear predictor we find that

Oyl = Z(ei —Te")log T; + %.

i=1



Thus v solves the equation

Ny
Yoy (T em —e;)log T;

’y:

with n, the number of uncensored observations.

There is no closed form solution to the equation. One idea is to use an iterative procedure
and approximate the solution by

(k) M
A =)
Yo (T e —e;)logT;

7

and then reestimate the linear predictors before the next iteration.



