
2

Empirical Statistical Methods

Statistics deals to a large extend with the process of transforming observed data
from one or more experiments into a probabilistic model – that is a probability
measure on the sample space E. In many cases we may want to obtain an under-
standing of the data in a more superficial way – if we just want to understand some
aspects of the probability measure, say. And even if we want to identify a specific
probability measure we may find a “quick and dirty” approximation sufficient. The
methods developed in this chapter are called empirical methods or descriptive statis-
tics, because the methods developed mostly serve the purpose of summarising and
describing the empirical data in a convenient way. We will also discuss some of the
theoretical properties of the empirical methods that we develop.

2.1 The Empirical Probability Measure

Throughout we assume that we have a dataset,

x1, . . . , xn ∈ E,

given. This means that we imagine that we have conducted an experiment n times
and obtained the observations x1, . . . , xn. One should remember that this notation,
though quite innocently looking, covers a very wide range of possibilities. We could
have a simple sample space like E = {A, C, G, T} but n being in the order of millions,
i.e. the dataset could be a DNA-sequence (a genome) being millions or even milliards
of letters long. The dataset could also contain protein structures for n different
proteins, each structure being represented by three-dimensional coordinates in space
for each atom in the protein. Each observation in such a dataset is therefore a real
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valued vector typically containing several thousand coordinates. So looking at the
raw sequence of data may not provide any insight whatsoever about what probability
measure that generated the data.

The first thing we are going to do is to transform the dataset into a probability mea-
sure – the empirical probability measure, to be defined below. This does not seem
to simplify things much from a practical point of view, but the rest of this chapter
will almost exclusively deal with deriving different kinds of descriptive statistical
methods based on the empirical measure. The viewpoint of this chapter is therefore
that descriptive statistics is a two step procedure: (i) Decide upon a useful, quan-
titative property that can be computed for all (or most) probability measures and
(ii) compute that property for the empirical probability measure.

Definition 2.1.1. Given a dataset x1, . . . , xn we define the empirical probability

measure, or simply the empirical measure, εn, on E by

εn(A) =
1

n

n∑

k=1

1(xk ∈ A) (2.1)

for all events A ⊆ E.

The empirical measure is the collection of frequencies, εn(A), for all events A ⊆ E,
which we encountered when discussing the frequency interpretation in Section 1.2.
It is also the frequency interpretation that provides the rationale for considering
the empirical measure. We will throughout this chapter assume that the dataset
has been generated as a realisation of n iid stochastic variables X1, . . . , Xn with
distribution P. The frequency interpretation then states that

εn(A) ≃ P(A)

for all events A ⊆ E when n is sufficiently large. The empirical measure therefore
seems to be a reasonable approximation of the true probability measure.

We will in the following also regard the empirical measure of any event A ⊆ E as a
stochastic variable taking values in [0, 1] and defined by

εn(A) =
1

n

n∑

k=1

1(Xk ∈ A).

Formally this is a substitution on the r.h.s. in (2.1) of xk with Xk. Thus the empirical
measure εn has two meanings. It means a collection of stochastic variables,

1

n

n∑

k=1

1(Xk ∈ A), A ⊆ E,
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as well as a concrete realisation of these stochastic variables,

1

n

n∑

k=1

1(xk ∈ A), A ⊆ E,

for x1, . . . , xn a concrete realisation of X1, . . . , Xn. Usually this abuse of notation
doesn’t lead to problems, since it will we clear from the context whether we regard
εn(A) as a stochastic variable or a concrete realisation. The purpose of regarding
εn(A) as a stochastic variable is that we can then analyse its distribution, and we
can discuss to what extend a concrete realisation of the empirical measure will be
a good approximation of P. In the following we will always assume unless otherwise
stated that X denotes a stochastic variable with distribution P.

2.2 Mean, Variance and Covariance

If X is a real valued stochastic variable, i.e. the sample space is R, we will introduce
the expectation (or mean) and the variance of X. They provides us with two numbers
representing the the typical location of a realisation of X and the spread around this
location.

2.2.1 Expectations

To define the expectation operator E we choose for each n a division of the real line
into n disjoint intervals I1, I2, . . . , In given as

I1 I2 . . . Ik Ik+1 . . . In−1 In

q q . . . q q . . . q q

(−∞, s1] (s1, s2] . . . (sk−1, 0] (0, sk+2] . . . (sn−1, sn] (sn,∞)

with sk = sk+1 = 0. Then we can compute the average of the si’s weighted with the
the probabilities that X ∈ Ii:

ξn(X) :=
n∑

i=1

siP(X ∈ Ii).

If the size of all the intervals shrinks towards zero as n → ∞, the differens between
X and si when X ∈ Ii will also shrink towards zero and in many cases the number
ξn converges towards something that we will call the expectation of X. The limiting
value, if it exists, is a suitable (generalised) weighted average of the values that X
can take – weighted according to the distribution of X. If we had to summarise
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our expectations to the outcome into one single number this limit seems to be a
reasonable choice.

If X is only taking positive values it is possible to show that ξn(X) always converges
to something as n → ∞ but that this something may be ∞. In case the limit is finite
we say that X has finite expectation and otherwise it has infinite expectation. If X
is any real valued stochastic variable its absolute value, |X|, is a positive real valued
stochastic variable, and it is then possible to show that if |X| has finite expectation
the sequence ξn(X) will converge to some finite real number.

Definition 2.2.1. If X is a real valued stochastic variable we say that it has finite

expectation if

lim
n→∞

ξn(|X|) < ∞.

In this case the expectation operator E is defined as

EX = lim
n→∞

ξn(X).

The formal properties of the expectation operator is best studied within the frame-
work of measure and integration theory. It is far beyond the scope of these notes to
go into the mathematical details of this theory, and we will instead simply state how
to do computations with the expectation operator E.

Theorem 2.2.2. The expectation operator is linear. If X and Y are two real valued

stochastic variables with finite expectation then X + Y has finite expectation and

E(X + Y ) = EX + EY.

Furthermore, if c ∈ R is a real valued constant then cX has finite expectation and

EcX = cEX

Theorem 2.2.3. If X is a positive real valued stochastic variable with distribution

function F then it has finite expectation if and only if
∫
∞

0
1−F (x)dx < ∞ in which

case

EX =

∫
∞

0

1 − F (x)dx.

The two preceding theorems are in principle sufficient for computing the expectation
of any real valued stochastic variable. If we define

X+ = max{X, 0} and X− = max{−X, 0},

which are called the positive and negative part of X respectively, then

X = X+ − X− and |X| = X+ + X−.
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Both X+ and X− are positive stochastic variables and with F+ and F− their re-
spective distribution functions we get that if E(X+) < ∞ and E(X−) < ∞ then X
has finite expectation and

EX = EX+ − EX−

=

∫
∞

0

1 − F+(x)dx −
∫

∞

0

1 − F−(x)dx

=

∫
∞

0

F−(x) − F+(x)dx.

Theorem 2.2.4. If X is a real valued stochastic variable with density f and finite

expectation then

EX =

∫
∞

−∞

xf(x)dx.

Theorem 2.2.5. If X is a discrete stochastic variable taking values in E ⊆ R with

point probabilities (p(x))x∈E and finite expectation then

EX =
∑

x∈E

xp(x).

Example 2.2.6. If X is a Bernoulli variable with succes probability p we find that

EX = 1 × P(X = 1) + 0 × P(X = 0) = p. (2.2)

Example 2.2.7. Let X be uniformly distributed in [a, b]. Then the density for the
distribution of X is

f(x) =
1

b − a
1[a,b](x).

We find the expectation of X to be

EX =

∫ b

a

x
1

b − a
dx =

1

2(b − a)
x2

∣∣∣
b

a

=
1

2

b2 − a2

b − a
=

1

2

(b − a)(b + a)

b − a
=

1

2
(a + b).

We see that EX is the midpoint between a and b.

Example 2.2.8. Let X be an exponentially distributed random variable with in-
tensity parameter λ > 0. The density is

f(x) = λ exp(−λx)
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for x ≥ 0 (and f(x) = 0 for x ≤ 0). We find using Theorem 2.2.4 and partial
integration that

EX =

∫
∞

0

xλ exp(−λx)dx

= x exp(−λx)
∣∣∣
∞

0
−

∫
∞

0

exp(−λx)dx

=
1

λ
exp(−λx)

∣∣∣
∞

0
=

1

λ
.

Example 2.2.9. Let X ∼ Bin(n, p) then

X = X1 + . . . + Xn

where X1, . . . , Xn are iid Bernoulli variables with succes probability p. We find using
Theorem 2.2.5 that

EX =
n∑

k=0

k

(
n

k

)
pk(1 − p)n−k.

It requires a little work to compute this sum. It is much easier to use Theorem 2.2.2
together with (2.2) to obtain that

EX = EX1 + . . . + EXn = p + . . . + p = np.

Theorem 2.2.10 (Transformations). Let X be a stochastic variable taking values

in a discrete set E with distribution P given by the point probabilities (p(x))x∈E. If

h : E → R is any real valued function then if h(X) has finite expectation

Eh(X) =
∑

x∈E

h(x)p(x).

Proof: The stochastic variable h(X) takes values in the discrete subset E ′ ⊆ R

given by
E ′ = {h(x) | x ∈ E}.

For each z ∈ E ′ we let Az = {x ∈ E | h(x) = z} denote the set of all x’s in E which
h maps to z. Note that each x ∈ E belongs to exactly one set Az. We say that the
sets Az, z ∈ E ′, form a disjoint partion of E. The distribution of h(X) has point
probabilities (p(z))z∈E′ given by

p(z) = P(Az) =
∑

x∈Az

p(x)

by Definition 1.7.1, and using Theorem 2.2.5 the expectation of h(X) can be written
as

Eh(X) =
∑

z∈E′

zp(z) =
∑

z∈E′

z
∑

x∈Az

p(x).



Mean, Variance and Covariance 45

Now the function h is constantly equal to z on Az so we get

Eh(X) =
∑

z∈E′

∑

x∈Az

h(x)p(x).

Since the sets Az form a disjoint partition of the probability space E the sum on
the r.h.s. above is precisely a sum over all elements in E, hence

Eh(X) =
∑

x∈E

h(x)p(x).

¤

Math Box 2.2.11 (General Transformations). For a stochastic variable
X taking values in R

n there is an analoge of Theorem 2.2.10. If h : R
n → R

is a real valued function, if the distribution of X has density f : R
n → R

and if h(X) has finite expectation then

Eh(X) =

∫
h(x)f(x)dx

=

∫
∞

−∞

· · ·
∫

∞

−∞︸ ︷︷ ︸
n

h(x1, . . . , xn)f(x1, . . . , xn)dx1 · · · dxn.

As for the discrete case one can verify whether h has finite expectation by
computing

E|h(X)| =

∫
|h(x)|f(x)dx

=

∫
∞

−∞

· · ·
∫

∞

−∞︸ ︷︷ ︸
n

|h(x1, . . . , xn)|f(x1, . . . , xn)dx1 · · · dxn.

The result is very useful since we may not be able to find an explicit analytic
expression for the density of the distribution of h(X) – the distribution may
not even have a density – but often we have the distribution of X specified
in terms of the density f . The computation of the iterated integrals can,
however, be a horrendous task.

Remark 2.2.12. It always holds that

E|h(X)| =
∑

x∈E

|h(x)|p(x)
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which can be verified by computations similarly to those above. This expectation
may be infinite and h(X) has finite expectation if and only if

∑

x∈E

|h(x)|p(x) < ∞.

It is silently understood above that for a stochastic variable under consideration we
have given a fixed distribution P which is always used in the computations. If it is
not clear from the context what the distribution of X is when we are computing EX
we write EPX instead of EX if the distribution of X is P. If x1, . . . , xn is the outcome
of n iid replications of our experiment, the corresponding empirical measure εn is an
approximation of P. If we substitute the true distribution P of X, which is unknown,
with the empirical distribution we can compute the approximation

µ̂n = Eεn
X

of the true mean EPX. We call µ̂n the empirical mean. It follows that

µ̂n =
1

n

n∑

i=1

xi.

2.2.2 Variance

Definition 2.2.13. If X is a real valued stochastic variable with expectation EX,

then if X2 has finite expectation we define the variance of X as

VX = E(X − EX)2 (2.3)

and the standard deviation is defined as
√

VX.

The variance is the expectation of the squared difference between X and its expec-
tation EX. This is a natural way of measuring how variable X is.

Remark 2.2.14. Writing out (X−EX)2 = X2−2XEX+(EX)2 and using Theorem
2.2.2 we obtain

VX = EX2 − 2EXEX + (EX)2 = EX2 − (EX)2, (2.4)

which is a useful alternative way of computing the variance. The expectation of X2,
EX2, is called the second moment of the distribution of X.
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Remark 2.2.15. For any µ ∈ R we can write

(X − µ)2 = (X − EX + EX − µ)2

= (X − EX)2 + 2(X − EX)(EX − µ) + (EX − µ)2,

from which

E(X − µ)2 = E(X − EX)2 + 2(EX − EX)(EX − µ) + (EX − µ)2

= VX + (EX − µ)2 ≥ VX (2.5)

with equality if and only if EX = µ. The number E(X −µ)2 is the expected squared
difference between µ and X, thus a measure of how much the outcome deviates
from µ on average. We see that the expectation EX is the unique value of µ that
minimises this measure of deviation. The expectation is therefore in this sense the
best constant approximation to any outcome of our experiment.

Example 2.2.16. If X is a Bernoulli stochastic variable with succes probability p
we known from Example 2.2.6 that EX = p. We find that

VX = E(X − p)2 = (1 − p)2
P(X = 1) + p2

P(X = 0)

= (1 − p)2p + p2(1 − p) = (1 − p)p(1 − p + p) = (1 − p)p.

Example 2.2.17. If X is a stochastic variable with mean 0 and variance 1 then

E(σX + µ) = σE(X) + µ = µ

and
V(σX + µ) = E(σX + µ − µ)2 = E(σ2X2) = σ2

VX = σ2.

This shows that if we make a position-scale transformation of a mean 0 and variance
1 stochastic variable X, with µ and σ the position and scale parameters, then the
mean and variance of the position-scaled transformed variable becomes µ and σ2

respectively. In the other direction we find that if EX = µ and VX = σ2 then

E

(
X − µ

σ

)
= 0 and V

(
X − µ

σ

)
= 1.

Example 2.2.18 (The Normal distribution). If X ∼ N(0, 1), that is the distri-
bution of X has density

f(x) =
1√
2π

exp(−x2

2
),

then
EX = 0 and VX = 1.

We will not show this (although the mean can be found by simple symmetri argu-
ment). Using the example above we find that if X ∼ N(µ, σ2) then

EX = µ and VX = σ2.
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Computing the empirical variance (the variance under the empirical measure) amounts
to

σ̃2
n = Vεn

X = Eεn
(X − Eεn

X)2

=
1

n

n∑

i=1

(xi − µ̂n)2 (2.6)

with µ̂n = Eεn
(X) the empirical mean. If we use (2.4) we obtain the alternative

formula

σ̃2
n =

1

n

n∑

i=1

x2
i − µ̂2

n (2.7)

It should be remarked that whereas (2.4) can be quite useful for theoretical com-
putations it is not recommended that one uses (2.7) for numerical computations.
This is because both 1

n

∑n

i=1 x2
i and µ̂2

n can attain very large numerical values, and
subtracting numerically large numbers can lead to a serious loss of precision.

As for the empirical mean we regard the empirical variance σ̃2
n as an approximation

of the true variance V(X) of X under P. Likewise, the square root

σ̃n =
√

σ̃2
n

of the empirical variance is an approximation of the standard deviation.

Example 2.2.19 (Empirical normalisation). If we have the dataset x1, . . . , xn

and let X be a stochastic variable with distribution εn (the empirical distribution).
Then by definition

Eεn
X = µ̂n and Vεn

X = σ̃2
n.

The distribution of

X ′ =
X − µ̂n

σ̃2
n

is the empirical measure defined by the normalised dataset

x′

i =
xi − µ̂n

σ̃2
n

.

That is, the distribution of X ′ is ε′n given by

ε′n(A) =
n∑

i=1

1(x′

i ∈ A).

By Example 2.2.17 it follows that

Eε′n
X = Eεn

X ′ = 0 and Vε′n
X = Vεn

X ′ = 1.

This means that having normalised the dataset with the empirical mean and variance
results in a dataset that has empirical mean 0 and empirical variance 1.
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2.2.3 Multivariate Distributions

If we consider two real valued stochastic variables X and Y the bundled variable
(X,Y ) takes values in R

2. The mean and variance of each of the variables X and Y
rely exclusively on the marginal distributions of X and Y . Thus they tell us nothing
about the simultaneous distribution of X and Y . We introduce the covariance as a
measure of dependency between X and Y .

Definition 2.2.20. If XY has finite expectation the covariance of the stochastic

variables X and Y is defined as

V(X,Y ) = E(X − EX)(Y − EY ) (2.8)

and the correlation is defined by

corr(X,Y ) =
V(X,Y )√

VXVY
(2.9)

The covariance is a measure of the covariation, that is the dependency, between
the two stochastic variables X and Y . It is possible to show that if X and Y are
independent then

V(X,Y ) = 0,

but having covariation equal to zero does not guaranty independence. The correla-
tion is a standardisation of the covariance by the variances of the coordinates X and
Y , and it can be shown that

−1 ≤ corr(X,Y ) ≤ 1.

We should note that the covariance is symmetric in X and Y :

V(X,Y ) = V(Y,X).

Furthermore, if X = Y then

V(X,X) = E(X − EX)2 = VX

that is the covariance of X with X is simply the variance of X. Finally observe that

V(X,Y ) = E(X − EX)(Y − EY )

= E(XY − XEY − Y EX + EXEY )

= EXY − EXEY − EXEY + EXEY

= EXY − EXEY, (2.10)

which gives an alternative formula for computing the covariance. It also provides us
with the formula

EXY = EXEY + V(X,Y )

for the expectation of the product of two stochastic variables.
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Theorem 2.2.21. If X and Y are two stochastic variables with finite variance then

the sum X + Y has finite variance and

V(X + Y ) = VX + VY + 2V(X,Y ). (2.11)

If X is a stochastic variable with finite variance and c ∈ R is a constant then cX
has finite variance and

VcX = c2
VX. (2.12)

Proof: We use (2.4) to compute the variance of X + Y :

V(X + Y ) = E(X + Y )2 − (E(X + Y ))2

= E(X2 + Y 2 + 2XY ) − ((EX)2 + (EY )2 + 2EXEY )

= EX2 − (EX)2 + EY 2 − (EY )2 + 2(EXY − EXEY )

= VX + VY + 2V(X,Y )

using (2.4) again together with (2.10) for the last equality. ¤

Remark 2.2.22. We observe that the formula

V(X + Y ) = VX + VY (2.13)

holds if and only if V(X,Y ) = 0, which in particular is the case if X and Y are
independent. Note also that it follows from the theorem that

V(X − Y ) = V(X + (−1)Y ) = VX + V(−1)Y + 2V(X,−Y )

= VX + (−1)2
VY + 2V(X,−Y )

= VX + VY − 2V(X,Y )

If we consider not just two stochastic variables but a k-dimensional vector X =
(X1, . . . , Xk) of real valued stochastic variables we can compute the k2 covariances
for each pair of variables Xi and Xj. One usually arrange the covariances in a k × k
matrix Σ given by

Σij = V(Xi, Yj).

That is

Σ =





VX1 V(X1, X2) · · · V(X1, Xn)
V(X2, X1) V(X2) · · · V(X2, Xn)

...
...

. . .
...

V(Xn, X1) V(Xn, X2) · · · VXn





Note that due to the symmetry of the covariance we have that the covariance matrix
Σ is symmetric:

Σij = Σji.
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With x1, . . . , xn ∈ E a dataset where xl = (x1l, . . . , xkl) ∈ R
k the computation of

the covariance under the empirical measure gives

σ̃2
ij,n = Vεn

(Xi, Xj) = Eεn
(Xi − Eεn

Xi)(Xj − Eεn
Xj)

=
1

n

n∑

l=1

(xil − µ̂i,n)(xjl − µ̂j,n)

where

µ̂i,n =
1

n

n∑

l=1

xil.

Using (2.10) instead we obtain that

σ̃2
ij,n =

1

n

n∑

l=1

xilxjl − µ̂i,nµ̂j,n. (2.14)

As for the variance this is not a recommended formula to use for the practical
computation of the empirical covariance.

The empirical covariance matrix Σ̃n is given by

Σ̃ij,n = σ̃2
ij,n

The empirical correlation becomes

c̃orrij,n =
σ̃2

ij,n

σ̃i,nσ̃j,n

=

∑n

l=1(xil − µ̂i,n)(xjl − µ̂j,n)√∑n

l=1(xil − µ̂i,n)2
∑n

l=1(xjl − µ̂j,n)2
.

2.2.4 Properties of the Empirical Approximations

We recall that the empirical measure can be regarded as a realisation of a stochastic
variable. Thus with a different realisation we would get a different empirical mean µ̂n

and a different empirical variance σ̃2
n. To evaluate the performance of these empirical

quantities as approximations of the expectation and variance respectively we can
study their distributions when regarded as stochastic variables. In particular we can
compute the expectation and variance of µ̂n and σ̃2

n.

Theorem 2.2.23. Regarding εn as a stochastic variable, the empirical mean µ̂n and

the empirical variance σ̃2
n are also stochastic variables and

Eµ̂n = EX and Vµ̂n =
1

n
VX (2.15)

together with

Eσ̃2
n =

n − 1

n
VX. (2.16)
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Proof: The derivation of these results is an exercise in using the properties of the
expectation operator and independence of the stochastic variables X1, . . . , Xn.

Eµ̂n = E
1

n

n∑

i=1

Xi =
1

n

n∑

i=1

EXi = EX,

Vµ̂n = V
1

n

n∑

i=1

Xi =
1

n2

n∑

i=1

VXi =
1

n
VX,

and

Eσ̃2
n = E

(
1

n

n∑

i=1

X2
i − µ̂2

n

)
=

1

n

n∑

i=1

EX2
i − Eµ̂2

n

= EX2 − Vµ̂n − (Eµ̂n)2 = EX2 − (EX)2 − 1

n
VX =

n − 1

n
VX.

¤

The theorem shows that the expected value of µ̂n equals the true expectation EX
and that the variance of µ̂n decreases as 1/n. Thus for large n the variance of µ̂n

becomes negligible and µ̂n will always be a very close approximation to EX. How
large n should be depends on the size of VX. Regarding the empirical variance its
expectation does not equal the true variance VX. The expected value is always a
little smaller than VX. The relative deviation is

VX − Eσ̃2
n

VX
=

1

n
,

which becomes negligible when n becomes large. However, for n = 5, say, the empir-
ical variance undershoots the true variance by 20% on average. For this reason the
empirical variance is not the preferred way of computing an empirical approximation
to the variance. Instead the standard choice of approximation is

σ̂2
n =

n

n − 1
σ̃2

n =
1

n − 1

n∑

i=1

(xi − µ̂n)2. (2.17)

It follows from Theorem 2.2.23 and linearity of the expectation operator that

Eσ̂2
n = V(X).

The square root σ̂n =
√

σ̂2
n naturally becomes the corresponding approximation of

the standard deviation. Note, however, that the expectation argument doesn’t carry
over to the standard deviations. In fact, it is possible to show that

Eσ̂n <
√

V(X)



Mean, Variance and Covariance 53

so σ̂n is still expected to undershoot the standard deviation.

It is also possible to compute the variance of σ̃2
n but the derivation is long and tedious

so we will skip it. The result is

Vσ̃2
n =

n − 1

n3

(
(n − 1)E(X − EX)4 − (n − 3)(VX)2

)
, (2.18)

which is not a particular nice formula either. One can observe though that the vari-
ance decreases approximately as 1/n, which shows that also the empirical variance
becomes a good approximation of the true variance when n becomes large. But re-
gardless of whether we can compute the variance of the empirical variance, we can
compare the variance of σ̃2

n with the variance of σ̂2
n and find that

V(σ̂2
n) =

(
n

n − 1

)2

V(σ̃2
n).

Hence the variance of σ̂2
n is larger than the variance of the empirical variance σ̃2

n.
This is not necessarily problematic, but it should be noticed that what we gain by
correcting the empirical variance so that the expectation becomes correct is (partly)
lost by the increased variance.

R Box 2.2.24 (Mean and variance). If x is a numeric vector one can
compute the (empirical) mean of x simply by

> mean(x)

Likewise, the (empirical) variance can be computed by

> var(x)

Using var results in σ̂2
n where we divide by n − 1.

The normalised dataset where we subtract the mean and divide by the
variance can be efficiently computed by

> y <- scale(x)

If we consider a k-dimensional stochastic variable X = (X1, . . . , Xk) we can also
derive a result about the expectation of the empirical covariance.

Theorem 2.2.25. The expectation of the empirical covariance regarded as a stochas-

tic variable is

Eσ̃ij,n =
n − 1

n
V(Xi, Xj).
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Proof: Using (2.14) yields

Eσ̃ij,n =
1

n

n∑

l=1

EXilXjl − Eµ̂i,nµ̂j,n

= EXiXj −
1

n2

n∑

l=1

n∑

m=1

EXilXjm

Observing then that due to independence of Xil and Xjm when m 6= l

EXilXjm = EXiEXj.

There are n(n − 1) such terms in the last sum above. There are n terms equalling
EXiXj. This gives that

Eσ̃ij,n = EXiXj −
1

n
EXiXj −

n − 1

n
EXiEXj

=
n − 1

n
(EXiXj − EXiEXj) =

n − 1

n
V(Xi, Xj).

¤

As we can see the empirical covariance also generally undershoots the true covariance
leading to the alternative approximation

σ̂ij,n =
1

n − 1

n∑

l=1

(xil − µ̂i,n)(xjl − µ̂j,n) (2.19)

of the true variance with Eσ̂ij,n = VX(Xi, Xj).

2.3 Frequencies and Tables

Recall that the empirical measure is a collection of frequencies εn(A) for all events
A ⊆ E. In the previous section we discussed how to derive approximations from
the empirical measure, hence from the frequencies, of the two characteristics of P –
the mean and variance. In this section we return to the frequencies themselves and
study how we can organise and present this collection of frequencies in a reasonable
manner. First we give a theorem that tells us something about the distribution of
the empirical measure and hence why εn(A) is a reasonable approximation of P(A).

Theorem 2.3.1. If X1, . . . , Xn are independent and identically distributed with dis-

tribution P on E and εn is the corresponding empirical probability measure,

εn(A) =
n∑

k=1

1(Xk ∈ A), A ⊆ E,
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then for any event A it holds that

Eεn(A) = P(A) (2.20)

and

Vεn(A) =
1

n
P(A)(1 − P(A)). (2.21)

Proof: Since 1(Xi ∈ A) is a Bernoulli variable we can use Example 2.2.6 to find
that

E1(Xi ∈ A) = P(A)

so

Eεn(A) = E
1

n

n∑

i=1

1(Xi ∈ A) =
1

n

n∑

i=1

E1(Xi ∈ A)

=
1

n

n∑

i=1

P(A) = P(A).

Example 2.2.16 gives that

V1(Xi ∈ A) = P(A)(1 − P(A)).

Hence by independence of the stochastic variables X1, . . . , Xn

Vεn(A) = V
1

n

n∑

i=1

1(Xi ∈ A) =
1

n2

n∑

i=1

V1(Xi ∈ A)

=
1

n2

n∑

i=1

P(A)(1 − P(A)) =
1

n
P(A)(1 − P(A)).

¤

As for all other probability measures the collection of numbers εn(A) for all events
A ⊆ E is enormous even for a small, finite set E. If E is finite we will therefore
prefer the smaller collection of frequencies

εn(z) =
1

n

n∑

i=1

1(xi = z)

for z ∈ E – which is also sufficient for completely determining the empirical measure
just like for any other probability measure on a discrete set. If P is given by the point
probabilities (p(z))z∈E Theorem 2.3.1 tells us that

Eεn(z) = p(z) (2.22)
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and

Vεn(z) =
1

n
p(z)(1 − p(z)). (2.23)

It is common to arrange the frequencies in a table like the following

z1 z2 z3 . . . zN

εn(z1) εn(z2) εn(z3) . . . εn(zN)

where E = {z1, . . . , zN}, but usually a table of nεn(z) is presented instead – this
table simply being a table of the counts of each of the possible outcomes.

Example 2.3.2. If the dataset consists of the DNA sequence

AGACTTGACAGCAGTACCCAG

of length 21 the resulting frequency and count tables become

A C G T

0.33 0.29 0.24 0.14
A C G T

7 6 5 3

If E = E1×E2 is a product space, we will organise the counts into a two-dimensional
(N + 1) × (M + 1) table in the following way:

w1 w2 . . . wM

z1 nεn(z1, w1) nεn(z1, w2) . . . nεn(z1, wM) nεn(z1, •)
z2 nεn(z2, w1) nεn(z2, w2) . . . nεn(z2, wM) nεn(z2, •)
...

...
...

...
...

zN nεn(zN , w1) nεn(zN , w2) . . . nεn(zN , wM) nεn(zN , •)
nεn(•, w1) nεn(•, w2) . . . nεn(•, wM) n

Here we use the notation

(z, •) = {(z, w) ∈ E | w ∈ E2} and (•, w) = {(z, w) ∈ E | z ∈ E1} .

We place the row sums

nεn(zi, •) = n

M∑

k=1

εn(zi, wk), i = 1, . . . , N,

at the right hand side of each row and the column sums

nεn(•, wj) = n

N∑

k=1

εn(zk, wj), j = 1, . . . ,M,

at the bottom of each column. The probability measures given by the point probabil-
ities εn(z, •) and εn(•, w) are the marginals of the empirical measure εn on E1 ×E2.
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Example 2.3.3. If our dataset consists of two (gaplessly) aligned DNA sequences

AGACTTGACAGCAGTACCCAG

AGCCGTTACAGCGGTAACCAA

both of length 21 the resulting 4 × 4 frequency and count tables become

A C G T

A 0.238 0.048 0.048 0.000 0.33
C 0.048 0.238 0.000 0.000 0.29
G 0.048 0.000 0.143 0.048 0.24
T 0.000 0.000 0.048 0.095 0.14

0.33 0.29 0.24 0.14 1

A C G T

A 5 1 1 0 7
C 1 5 0 0 6
G 1 0 3 1 5
T 0 0 1 2 3

7 6 5 3 21

If our sample space is the product of more than two spaces one can in principle
presents tables of frequencies or counts that are three or higher dimensional. On
a computer there is no problem in representing such higher dimensional data by
tables but it is a little more problematic to visualise three or higher dimensional
tables. One approach especially useful for three dimensional tables is to stratify the
two-dimensional tables for two of the coordinates according to the third (and forth
and ...) variable. A theory for systematically analysing multidimensional discrete
data is known as analysis of contingency tables. We will not pursue this further in
these notes, but if one wants to make probabilistic models of letters occurring in the
alignment of three or more sequences, the theory of analysing contingency tables is
a good starting point.

2.4 Histograms and Quantiles

If E ⊆ R is a subset of the real line there are several different methods for repre-
senting the empirical measure.

Definition 2.4.1. A histogram with break points q1 < q2 < . . . < qk, chosen so that

q1 < min
i=1,...,n

xi ≤ max
i=1,...,n

xi < qk,

is the function h given by

h(x) =
1

qi+1 − qi

εn ((qi, qi+1]) for qi < x ≤ qi+1. (2.24)

together with h(x) = 0 for x 6∈ (q1, qn]. Usually the plot of h with a box of height

h(qi+1) located over the interval (qi, qi+1] is what most people associate with a his-

togram.
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The function h is constructed so that

∫
h(x) =

k−1∑

i=1

∫ qi+1

qi

1

qi+1 − qi

εn ((qi, qi+1]) dx

=
k−1∑

i=1

εn ((qi, qi+1])

= εn((q1, qn]) = 1

where we use that all the data points are contained within the interval (q1, qn].
Since the function h integrates to 1 it is a probability density. The purpose of the
histogram is to approximate the density of the true distribution of X – assuming
that the distribution has a density.

Sometimes one encounters the unnormalised histogram, given by the function

h̃(x) = nεn(qi, qi+1] for qi < x ≤ qi+1.

Here h̃(x) is constantly equal to the number of observations falling in the interval
(qi, qi+1]. Since the function doesn’t integrate to 1 it can not be compared directly
with a density.

Example 2.4.2. We consider the histogram of 100 and 1000 simulated N(0, 1) iid
stochastic variables. We choose the breaks to be equidistant from −4 to 4 with a
distance of 0.5, thus the break point are

−4 −3.5 −3 −2.5 . . . 2.5 3 3.5 4.

We find the histograms in Figure 2.1. Note how the histogram corresponding to the
1000 simulated stochastic variables approximates the density more closely.

Definition 2.4.4. If F : R → [0, 1] is a distribution function for a probability

measure P on R, then Q : [0, 1] → R is a quantile function for P if

F (Q(y) − ε) ≤ y ≤ F (Q(y)) (2.25)

for all y ∈ [0, 1] and all ε > 0.

Theorem 2.4.5. The generalised inverse distribution function F←, cf. Section 1.8,

is a quantile function.

Proof: To see this, first observe that with x = F←(y) then

F←(y) ≤ x ⇒ y ≤ F (x) = F (F←(y))
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Histogram and approximating density: 
 With 100 observations
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Histogram and approximating density: 
 With 1000 observations
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Figure 2.1: The histograms for the realisation of 100 (right) and 1000 (left) simulated
iid N(0, 1) stochastic variables. For both histograms we compare the histogram with
the corresponding density for the normal distribution.

by the definition of F←. On the other hand, suppose that there exists a y ∈ [0, 1]
and an ε > 0 such that F (F←(y) − ε) ≥ y then again by the definition of F← it
follows that

F←(y) − ε ≥ F←(y),

which can not be the case. Hence there exists no such y ∈ [0, 1] and ε > 0 and

F (F←(y) − ε) < y

for all y ∈ [0, 1] and ε > 0. This shows that F← is a quantile function. ¤

There may exist other quantile functions besides the generalised inverse of the distri-
bution function, which are preferred from time to time. However, if F has an inverse
function then the inverse is the only quantile function.

Definition 2.4.6. If F is a distribution function and Q a quantile function for F
the median or second quartile of F is defined as

q2 = median(F ) = Q(0.5).

In addition we call q1 = Q(0.25) and q3 = Q(0.75) the first end third quartiles of X.

The difference

IQR = q3 − q1

is called the interquartile range.
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R Box 2.4.3 (Histograms). A histogram of the data in the numeric
vector x is produced in R by the command

> hist(x)

This automatically opens a graphics window and plots a histogram using
default settings. The break points are by default chosen by R in a suitable
way. It is possible to explicitly set the break points by hand, for instance

> hist(x,breaks=c(0,1,2,3,4,5))

produces a histogram with break points 0, 1, 2, 3, 4, 5. Note that R will
produce an error if the range of the break points does not contain all the
data points in x. Note also that the default behaviour of hist is to plot
the unnormalised histogram if the break points are equidistant. Otherwise
it produces the normalised histogram. One can always make hist produce
normalised histograms by

> hist(x,freq=FALSE)

Note that the definition of the median and the quartiles depend on the choice of
quantile function. If the quantile function is not unique these numbers are not nec-
essarily uniquely defined. The median represents like the mean a single number
summarising the location of the probability measure given by F . The interquartile
range is then comparable with the spread in the sense that it defines a measure of
how spread out around the median the distribution is.

Definition 2.4.7. If E ⊆ R we define the empirical distribution function Fn as the

distribution function for the empirical measure εn:

Fn(x) = εn((−∞, x]). (2.26)

An empirical quantile function is a quantile function for Fn.

If Qn is an empirical quantile function for Fn then the quartiles for Qn

q̂1 = Qn(0.25), q̂2 = Qn(0.5), q̂3 = Qn(0.75),

are called the empirical quartiles (and q̂2 is also called the empirical median).

The empirical distribution function is notoriously ugly meaning that it never has
an inverse and the quantile function is never unique. On the contrary there exists a
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R Box 2.4.8 (Empirical distribution functions). If x is a numeric
vector in R containing our data we can construct a ecdf-object (empirical
cumulative distribution function). This requires the stats library:

> library(stats)

Then

> edf <- ecdf(x)

gives the empirical distribution function for the data in x. One can evaluate
this function like any other function:

> edf(1.95)

gives the value of the empirical distribution function evaluated at 1.95. It is
also easy to plot the distribution function:

> plot(edf)

produces a nice plot.

variety of quantile functions, and which one to choose can lead to much debate and
confusion. In particular one can debate what the empirical median and the empirical
quartiles should be. From a practical and pragmatic point of view it is likely to be
completely irrelevant which quantile function one chooses, but it is good to keep in
mind that different choices can lead to (small) discrepancies.

If we sort our dataset x1, . . . , xn in increasing order, writing

x(1) ≤ x(2) ≤ . . . ≤ x(n)

for the sorted data so that x(i) is the i’th smallest observation, then we can observe
that

Fn(x) = i/n for x(i) ≤ x < x(i+1)

for i = 1, . . . , n − 1. If we don’t have ties, i.e. x(i) < x(i+1) for i = 1, . . . , n, then the
empirical distribution function is constant in between the sorted observations and
has jumps of size 1/n at each observation. If there are ties Fn has larger jumps.

By the definition of quantile functions one can see that

Qn(y) = x(i) for
i − 1

n
< y <

i

n
.
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with i ∈ 1, . . . , n. If there is no ties Qn is in addition going to satisfy that

x(i) ≤ Qn

(
i

n

)
≤ x(i+1).

The generalised inverse distribution function is given by

F←

n (y) = x(i) for
i − 1

n
< y ≤ i

n
,

that is, F← is the quantile function that takes the value x(i) in i/n. We see that
the ambiguity of which quantile function to choose is present only at the finite
many numbers i/n, i = 1, . . . , n. This is, however, quite annoying when computing
the empirical median, say. If n is even, then 0.5 is one of the problematic points
of ambiguity. If n is odd, however, there is not ambiguity and a uniquely defined
empirical median.

One of the applications of quantiles and the empirical quantile function is to compare
two distributions by comparing their quantiles.

Definition 2.4.9. If F1 and F2 are two distribution functions with Q1 and Q2 their

corresponding quantile functions a QQ-plot is a plot of Q1 against Q2.

R Box 2.4.10 (QQ-plots). If x and y are numeric vectors then

> qqplot(x,y)

produces a QQ-plot of the empirical quantiles for y against those for x.

> qqnorm(x)

results in a QQ-plot of the empirical quantiles for x against the quantiles
for the normal distribution.

Usually when making a QQ-plot one of the distributions, F1, say, is empirical. It is
then common only to plot

(Q2(i/n), x(i)), i = 1, . . . , n − 1,

choosing the generalised inverse of F1 as quantile function. If the empirical quantile
function Q1 is created from a realisation of n iid stochastic variables having distri-
bution function F with quantile function Q2 then the points in the QQ-plot should
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lie close to a straight line with slope 1 and intercept 0. It can be beneficial to plot
the straight line to be able to visualise any discrepancies from the straight line.

We are often interested in comparing the empirical distribution with a distribution
where we know the form of the distribution but not the location and scale. If X
has distribution with quantile function Q2 and our dataset is a realisation of n iid
stochastic variables each having the same distribution as

σX + µ

for some unknown scale σ > 0 and position µ ∈ R, then if we make a QQ-plot of
the empirical quantile function against Q2 it will still result in points that lie close
to a straight line, but with different slope and intercept. We typically normalise the
dataset

x′

i =
xi − µ̂n

σ̂n

and make the QQ-plot of the empirical quantile function Q′

n based on the normalised
dataset against Q2 in which case we should get points approximately on a straight
line with slope 1 and intercept 0.
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Figure 2.2: The right graph shows the empirical distribution function for the dataset
in Example 2.4.11. The left graph shows a QQ-plot of the normalised dataset against
the normal distribution with mean 0 and variance 1.

Example 2.4.11. Consider the dataset

2.5 4.8 11.4 0.6 13.4 10.6 10.1 10.4 3.2 11.4
20.5 11.3 19.7 18.9 19.9 8.5 10.1 2.7 15.9 20.5
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consisting of 20 real values. The empirical distribution function is shown in Figure
2.2. The mean and variance are

µ̂20 = 11.3 and σ̂2
n = 41.2.

To compare the empirical distribution with a normal distribution, say, we normalise
the observations to have mean 0 and variance 1. On Figure 2.2 we also find the
QQ-plot of the normalised data against the normal distribution.

One could also compare distribution functions directly instead of comparing quantile
functions. It is, however, often more difficult to see the differences between two
distribution functions. Especially if the differences are mostly occurring in the tails
of the distribution functions. Then the differences will show up nicely on a QQ-plot
but may be undetectable by comparing distribution functions directly.

Histograms are useful for representing a single empirical distribution and QQ-plots
are valuable for comparing an empirical distribution with another empirical distri-
bution or a theoretical distribution. The box plot is a useful tool for visualising and
comparing three or more empirical distributions. It may also be useful for visualising
just a single empirical distribution if all you want is a rough picture of location and
scale.

R Box 2.4.12 (Box plots). For a numeric vector x we get a single box
plot by

> boxplot(x)

If x is a dataframe the command will instead produce (in one figure) a
box plot of each column. By specifying the range parameter (= whisker
coefficient), which by default equals 1.5, we can change the length of the
whiskers.

> boxplot(x,range=1)

produces a box plot with whisker coefficient 1.

Definition 2.4.13. One defines a box plot using quantile function Q and whisker

coefficient c > 0 in terms of a five-dimensional vector

(w1, q1, q2, q2, w2)

with w1 ≤ q1 ≤ q2 ≤ q3 ≤ w2. Here

q1 = Q(0.25), q2 = Q(0.5), q3 = Q(0.75)
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are the three quartiles and

w1 = min {xi | xi ≥ q1 − c(q3 − q1)}
w2 = max {xi | xi ≤ q3 + c(q3 − q1)}

are called the whiskers. The box plot is drawn as a vertical box from q1 to q3 with

“whiskers” going out to w1 and w2. If datapoints lie outside the whiskers they are

often plotted as points.

V1 V2 V3 V4 V5

−
20

0
20

40

Boxplot of five different empirical distributions

Group

Figure 2.3: A box plot of the five datasets from Example 2.4.14. Note that in all
cases except the first the whiskers stretch out to the most extreme observations.

Example 2.4.14. Consider the following five datasets
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12.99 -0.28 -1.84 16.15 -15.85
6.09 -2.44 -9.64 3.57 3.81

14.36 5.46 2.24 1.50 5.66
5.10 -1.17 -21.74 26.87 -10.57

29.14 -4.81 -19.14 6.90 8.62
7.05 14.28 38.41 45.34 10.80

27.15 -2.60 56.56 11.69 0.13
-1.31 -2.77 31.15 0.87 8.59
10.68 1.33 -0.59 16.42 17.35
14.21 -4.68 33.58 31.18 -1.18
2.48 -1.93 9.04 37.60 -16.90
3.13 15.64 20.80 22.54 11.27
9.02 18.14 -25.49 5.34 -9.57

14.59 10.00 -0.67 25.93 -6.84
18.01 6.58 19.77 22.21 13.19
11.64 6.16 15.97 21.92 -9.10
37.47 5.75 15.08 17.56 12.58
-13.18 -5.10 7.39 2.30 -3.54
-0.49 4.26 12.63 14.43 -19.60
9.80 19.64 30.50 0.79 12.73

We want to compare these five datasets in one figure. We do so by drawing a box
plot of each dataset in the same figure, cf. Figure 2.3. The figure shows that the five
datasets all seems to differ from each other in one way or the other. The five datasets
are simulations of 20 stochastic variables having distribution (in order) N(10, 10),
N(5, 10), N(10, 20), exponentially distributed with intensity parameter 1/15, and
uniformly distributed on [−20, 20].

2.5 Simulating from the empirical distribution

We may be interested in simulating from the unknown probability measure P that
models the experiment with sample space E. All we have though is the observations
x1, . . . , xn being the realisation of n iid stochastic variables X1, . . . , Xn with distri-
bution P. Since the empirical measure is an approximation of P we can choose to
simulate from εn instead as an approximation to simulating from P. Being able to
do so will play an important role a subsequent chapter. There are several possible
approaches for simulating from εn – some more intelligent than others.

First of all one should observe that the empirical probability measure is always
essentially a probability measure on a discrete set. This is because even if our sample
space E is not discrete the empirical probability measure only assigns probabilities
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to the finite number of points x1, . . . , xn observed. That is, the sample space under
the empirical measure can be restricted to

En = {z ∈ E |z = xi for some i = 1, . . . , n} ⊆ E

and the empirical probability measure has point probabilities

εn(z) =
1

n

n∑

i=1

1(xi = z)

for z ∈ En. If all the xi’s differ, which is the typical situation, then En simply consists
of the n different observed values each with the point probability 1/n. In this case
the empirical distribution is the uniform distribution on En. Note, however, that the
definition of En depends on the observed values x1, . . . , xn.

Since εn is a probability measure on the discrete set En we can use Algorithm 1.8.3.
This is certainly a possibility but applying the algorithm literally requires that we
construct intervals I(z) for each z ∈ En with length εn(z). Doing this directly for
each new dataset is not necessary. The solution presented below in Theorem 2.5.1 is
an adaption of Algorithm 1.8.3 suitable for simulating from any empirical measure.

If E ⊆ R it is also possible to use Algorithm 1.8.6 with the generalised inverse
distribution function F←

n of the empirical distribution function Fn. Although a pos-
sibility this approach is first of all restricted to sample spaces being subsets of R

and secondly we need to construct the generalised inverse distribution function for
each new dataset.

The recommended approach is to sample indices of the dataset uniformly. This ap-
proach is efficient and completely generic. The implementation requires no knowledge
about the sample space whatsoever.

Theorem 2.5.1. Let x1, . . . , xn be a dataset with values in the sample space E and

corresponding empirical measure. If U is uniformly distributed on {1, . . . , n} then

the distribution of

X = xU

is the empirical measure εn.

Proof: With En = {z ∈ E | xi = z for some i = 1, . . . , n} we find that for z ∈ En

and with Iz = {i ∈ {1, . . . , n} | xi = z} then

P(X = z) = P(xU = z) = P(U ∈ Iz) =
|Iz|
n

=
1

n

n∑

i=1

1(xi = z) = εn(z).

¤
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Remark 2.5.2. It follows from the theorem that if U1, . . . , UB are B iid uniformly
distributed stochastic variables taking values in {1, . . . , n} then X1, . . . , XB defined
by

Xi = xUi

for i = 1, . . . , B are iid with distribution εn. Taking U1, . . . , UB to be iid uniformly
from {1, . . . , n} is known as sampling with replacement B times from {1, . . . , n}.
The stochastic variables X1, . . . , XB can therefore be regarded as B samples with
replacement from the set {x1, . . . , xn}. How we chose to perform the simulation of
U1, . . . , UB is another issue. It could be done by Algorithm 1.8.3, but the details are
not important. The implementation of that simulation can be done once and for all
and optimised sufficiently.

R Box 2.5.3 (Simulation from the empirical measure). If x is a
vector of length n containing the dataset x1, . . . , xn we can obtain a sample
of size B = 1000 from the empirical measure by

> y <- sample(x,1000,replace=TRUE)

The vector y then contains 1000 simulations from the empirical measure.
Note the parameter replace which by default is FALSE.


